MOLECULAR PHysIcs, 1987, VoL. 62, No. 1, 109-127

Calculation of hyperfine coupling constants

An ab initio MRD-CI study for nitrogen to analyse
the effects of basis sets and CI parameters

by BERND ENGELS and SIGRID D. PEYERIMHOFF

Lehrstuhl fiir Theoretische Chemie, Universitidt Bonn,
Wegelerstrafie 12, D-5300 Bonn 1, F.R. Germany

and E. R. DAVIDSON

Indiana University, Department of Chemistry,
Chemistry Building, Bloomington, Indiana 47405, U.S.A.

(Received 20 March 1987 ; accepted 22 April 1987)

The hyperfine coupling constant for the nitrogen atom is evaluated by
large-scale MRD—CI calculations. A detailed analysis of the charge density at
the nucleus and the spin polarization in the 1s and 2s shell as a function of
various technical parameters is undertaken. Various (s, p) AO basis sets and the
influence of correlation orbitals is investigated as well as selection threshold
and other properties in CI calculations. The best value, obtained for the iso-
tropic hyperfine coupling constant in an s, p, d basis, based on theoretical
judgment of ‘ best’ quantities, is 99 MHz compared to 10-4509 MHz

1. Introduction

The interaction between the nuclear spin and the spin of an unpaired electron in
atoms or molecules causes a splitting of energy levels; this interaction is referred to
as hyperfine interaction. From the experimental side microwave and beam tech-
niques, among others, have been employed to measure these effects, and it is pos-
sible to extract from the measured data information about the unpaired spin
distribution in the system. The analysis is generally undertaken in terms of an
isotropic and anisotropic contribution [1].

The isotropic hyperfine coupling constant a,,,, also called Fermi contact term, is
defined for the nucleus N as

Blso = (87/3)g./g0)gn Bn<HTN)D spia- )

The terms g, and g, are the g values for the free electron and the electron in the free
radical respectively. The ratio is taken to be unity. The quantities gy and Sy are the
nuclear g factor and the value for the nuclear magneton respectively.

This isotropic hyperfine coupling contribution is a direct measure of the net
unpaired spin density at the nucleus N. Only s atomic orbitals make contributions
to it.

The anisotropic (or dipolar) hyperfine coupling constant is given by

Azz = (ge/g(l)gN ﬁN<(3zz - rz)/r5>:pin (2)

and is a measure for the spatial distribution of the spin density. It is zero for s
orbitals and averages to zero in § states.
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The majority of theoretical ab initio calculations on spin properties in molecules
[2] are limited to the use of the unrestricted Hartree-Fock (UHF) method, but it is
known that this method overestimates the spin polarization contribution to the
total spin density. A modification of this method, the projected UHF (PUHF)
procedure attempts to remedy the spin contamination problem, and it has been
shown in many cases [3] that an improvement is obtained at least judged by a
better agreement with experimental data. On the other hand, Chipman [4] has
noted that UHF generally reproduces trends in hydrocarbon radicals better. But
neither method is able to give a uniform agreement with experiment better than
about 60 per cent.

In the past few years calculations for spin properties employing extended AO
basis set and natural orbital CI wavefunctions have been published [5, 6]. Generally
good agreement with experiment for both a,,, and A4, is found, but in some cases
the difference is about 40-50 per cent in a,,, whereas A,, is always in good agree-
ment with the values deduced from measurements. The cause for the large discrep-
ancy is still unclear.

It is thus the goal of the present work to calculate the hyperfine coupling
constants (hfcc) for a simple system and to systematically study the influence of the
various ingredients in the theoretical treatment. The *S ground state of nitrogen
with the electronic configuration 1522s*2px2py2pz is such a test system. The aniso-
tropic (dipolar) part is zero in this case and the Fermi contact term a,,, is different
from zero because of the spin polarization in the 1s and 2s shells. The SCF value
aSF is also zero whereas the measured value is 10-4509 MHz [7]. Hence the *S state
of nitrogen is an excellent system to study in which way the description of spin
polarization effects influences the value of a,,,. All calculations employ correlated
wavefunctions.

2. Calculations

All calculations are undertaken with multi-reference single and double-excitation
configuration interaction (MRD-CI) wavefunctions [8]. In this case a set of domin-
ant (or reference) configurations is chosen from which all single and double excita-
tions are generated; these configurations (or the symmetry-adapted functions SAF
therefrom) build the MRD-CI space. For very large spaces only those SAFs are
included in the wavefunction which contribute more than a given threshold T to the
total energy, measured relative to the energy of the reference species, while the effect
of the unselected species to the total energy is included in a perturbation-like
manner. In most cases the selection threshold T was set to zero, ie. all SAFs of the
MRD-CI space are included in the treatment. Details of the reference species or
threshold are given in the respective section. In addition to the MRD—CI energy the
energy corresponding to the full CI has been estimated in the standard manner [9]
E(full CI est) = E(MRD-CI) + (1 — Y., c3) x [E(MRD-CI) — E(Ref)] whereby the
term ref refers to all reference configurations. All calculations are undertaken in the
D,, point group.

The ground state SCF orbitals are employed in the MRD-CI expansion, unless
specified otherwise. In some cases the 1s core has been kept doubly occupied, as is
done in standard MRD-CI calculations for excited states or potential energy curves.
Similarly, the 2s shell has been kept doubly occupied in some instances in order to
differentiate between the 1s and 2s shell contribution. These calculations will be



MRD-CI study of hyperfine coupling in N(*S) 111

referred to as core (one doubly occupied shell) calculations. In the standard calcu-
lations all electrons are included in the MRD-CI procedure. All virtual SCF MOs
are allowed variable occupation in the MRD-CI treatment undertaken. The Fermi
contact term has been coded according to the integral evaluation given by Buenker
and Chandra [10].

3. Influence of the atomic orbital s and p basis

The AO basis employed in the calculation influences the isotropic hyperfine
coupling constant g,,, in two ways. First of all, because of the delta function in
equation (1) only the density at the nucleus contributes to a,,,. Secondly, the basis
set has to be able to describe the spin polarization of the 1s shell as well as that of
the 2s shell, because both contributions to the spin polarization are expected to be
similar in magnitude, but of opposite sign [11]. In order to obtain experience with
respect to the size and the kind of basis sets which are appropriate for hfcc calcu-
lations, we employed basis sets of different quality from Duijneveldt [12], Huzinaga
[13] and Ruedenberg [14]. A gaussian s function with a very large exponent,
referred to as cusp function, is also added in some cases as indicated in table 1. All
calculations were carried out with two reference configurations, namely the ground
state configuration and a configuration which results from a 2s — 3s single excita-
tion relative to the ground state. The ground state configuration is thereby domin-
ant with ¢ = 0-9845, while the other configuration has a contribution of about
c? = 0-003. The selection threshold was T = 0-0, i.e. the entire MRD-CI space was
used in the secular equations.

It is seen (table 1) that for a given 9s5p choice the Huzinaga basis yields lower
energies than those of the two other authors. This changes upon expansion of the s
and p set so that both, the Duijneveldt and Huzinaga 10s6p basis are almost
equivalent energetically, while the 11s6p set of Duijneveldt is superior to the other
employing the same number of functions. The Ruedenberg basis gives higher ener-
gies than the others at each level. The SCF energy of the Duijneveldt basis sets are
practically constant beyond 12s7p, and this pattern is also observed (although not
quite as strong) in the CI values.

Table 1 and figure 1 show that the Fermi contact term a;,, depends drastically
on the AO basis sets employed; the variation of a,,, becomes less, however, with
basis sets larger than 11s6p. The effect of cusp functions is almost zero. The differ-
ences between the basis sets of different authors show a parallel pattern as is
observed in the energies, i.e. a closer agreement between the Huzinaga and Duijne-
veldt basis than with that given by Ruedenberg.

To examine the reason for the improvement of a,,, upon extension of the basis
set, the two points mentioned earlier must be considered. The error of the basis set
for calculating the density at the nucleus |'¥ (r = 0)|?> can be estimated by compar-
ing the Hartree-Fock total electron density at the nucleus 8y = (rn)Dcparge fOr 2
given basis set with large STO basis set results for the isolated atoms [15], denoted
as the exact SCF value in the table. The calculated values with their errors are listed
in table 2. The quality of the basis sets in calculating §, behaves again similar as in
calculating the total energy. Huzinaga and Duijneveldt basis sets produce nearly the
same &, while the Ruedenberg basis sets are of lower quality. In the larger basis sets
of Duijneveldt, i.e. 13s8p, the error amounts to less than 2 per cent. The effect of
cusp functions is small.



Table 1. Summary of the calculated energies and isotropic hee ay employing different contracted gaussian basis sets.

Duijneveldt Ruedenberg Huzinaga
Full CI Full CI Full CI

Basis SCFt, §/h MRD-Cl/h est./h a,/MHz} SCF/h MRD-CI/h  est/h  q,/MHz SCF/h MRD-CI/h est/h  a,/MHz
9s5p 0-3918 0-4788 0-4800 4.05 0-3888 0-4754 0-4765 062 0-3953 0-4830 0-4842 361
10s6p 0-3990 0-4895 0-4508 515 0-3957 04854 0-4866 2-58 0-3989 0-4891 0-4903 5-32
11s6p 0-3999 0-4909 0-4922 7-33 0-3978 0-4882 0-4895 493 0-3992 0-4896 0-4909 7-86
1257p 0-4006 0-4924 0-4937 7-64 0-3996 0-4913 0-4926 666

13s7p 0-4007 0-4926 0-4939 782

13s8p 0-4008 0-4929 0-4943 7-82

13s8pS* 0-4008 0-4929 0-4942 7-84

13s8pS**  0-4008 0-4929 0-4943 7-86

14s8p 0-4004 0-4922 0-4936 7-34

+ The Hartree-Fock limit is — 54-4009 h. In all tables the energies are given in hartree units (E, or short h), unless specified otherwise.
1 The experimental value is a,, = 10-4509 MHz.

§ All energies are taken relative to — 54-O hartree, i.e. the total energy is —54-3918 h etc.

* The exponent of the cusp function is 192368-6215a5 %

** The exponent of the cusp function is 299046-8604 a5 2.
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Figure 1. Dependence of the isotropic hfcc gy, (in MHz) on different AO basis sets (2
reference configurations in the MRD-CI, T = 0). O, Duijneveldt; (J, Ruedenberg; @,
Huzinaga. For details see table 1.

Next we have to study the ability of a basis set to describe the spin polarization.
In order to distinguish between the 1s and 2s contributions the calculations are
carried out such that a frozen 2s shell is maintained in investigating the 1s polariz-
ation while the 2s contribution is obtained in a calculation with a frozen 1s shell.
Table 3 gives the results of such core calculations in the Duijneveldt basis set series.
It is seen that both the 1s polarization and the 2s polarization increases (in absolute
value) with the AO flexibility whereby a larger increase (about 3 times that found for
1s) is seen for the 2s polarization.

Table 2. Hartree~Fock total electron densities {d(ry)) at the nucleus.

Duijneveldt Ruedenberg Huzinaga
Basis {&(ry)y Error/per cent (&ry)) Error/per cent (d(ry)> Error/per cent

9s5p 1969 441 190-2 7-67 195-4 5-15
10s6p 198-8 3-50 194-6 5-53 199-0 3-40
11s6p 2006 2:62 194-6 5-53 200-6 2-62
12s7p 201-9 1-99 198-2 3-79
13s8p 203-0 1-45
13s8pS* 203-6 1-17
13s8pS** 2041 092

{Hrn)D exact = 206-0 (near Hartree-Fock value).
* The exponent of the cusp function is 192368-6215a5 2.
** The exponent of the cusp function is 299046-8604 a; 2.
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Table 3. The Is and 2s contribution to a,, as a function of flexibility in the basis sets of Duijneveldt

(T =00).
Contribution 9s5p 10s6p 11s6p 1257p 13s8p 13s8pS* 1358pS**
1s a,,,/MHz —52-81 —53-50 -5397 —54-32 —54-62 —54-80 —5493
2s a;,,/MHz 5302 54-73 57-31 5798 58-52 5871 58-85

The increase in polarization can be rationalized by looking at the behaviour of
the orbital energies. Table 4 shows the effects of the basis set extension (Duijneveldt
basis) on various AOs, characterized by their eigenvalues. The two double occupied
orbitals remain essentially unchanged. The major contribution of the more diffuse
functions included in the larger AO sets is found in the virtual orbitals; they possess
low (positive) orbital energies, an effect which can be directly related to the more
extended charge distribution in space. In this connection one must remember that
actual Rydberg orbitals approaching the ionization limit converge to an orbital
energy of zero. It is seen in table 4 that the 3s and 4s virtual orbitals exhibit only a
minor change in orbital energy from basis 1156p to 13s8pS** while the higher-lying
MOs are affected much more. Because of the lower energies of the virtual orbitals
the possibility of making excitations to them is improved, which in turn leads to an
increased spin polarization. The factor 3 between the increase of Is and 2s polariz-
ation is reasonable since the energy gap between 1s and the virtual AOs is about an
order of magnitude larger than between them and 2s.

A diagonalization of the one-electrons total spin density matrix (TSM) leads to
eigenvalues and eigenvectors which give some insight into the mechanism for 1s and
2s polarization due to the virtual s orbitals. We call the new basis in which the total
spin density matrix is diagonalized, a spin natural orbital (SNO) basis, in analogy to
natural orbitals (NOs) which are obtained from diagonalization of the one electron
(spatial) density matrix. The eigenvalues of the SNOs give a measure for the spin
polarization of the AOs. They show equivalent trends as the core calculations
discussed so far. It is found that in the TSM the off-diagonal elements are an order
of magnitude larger than the diagonal elements. This implies a strong coupling of
the AOs which combine to create the SNOs.

In table 5 the results of the diagonalization of the TSM is given. From the
eigenvectors it is seen that in the 9sSp basis both the SNO1 and SNO2 are domi-
nated by AO1 and AO4. The first is equivalent to the original 1s orbital while the
second is a virtual s orbital with eigenvalue 89318 according to table 4, All other
contributions are small. In the larger 13s8pS** basis the contributions to SNO1 and

Table 4. Orbital energies (in hartree units) of the six lowest s orbitals (4,, symmetry) in the
Duijneveldt basis sets series.

Orbital 9s5p 10s6p 11s6p 12s7p 13s8p 1358pS**
1s —15:6254 —15-6282 —15-6287 —15-6290 —15-6291 —15-6291
2s —0-9435 -09448 —0-9451 —0-9453 —0-9453 —09453
3s 0-9568 0-7055 0-4841 0-4334 0:3777 03777
4s 89318 44704 2:7938 2-4509 20563 20563
5s 44-4033 20-0204 12-6594 9-9350 7-4237 7-4237

6s 167-8720 76-2256 47-7572 33-8433 23-2307 23-2307
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Table 5. (a) Diagonalization of total spin density matrix for the basis 9s5p of Duijneveldt.

Eigenvectors
Eigenvalue AO1 AO2 AO3 AO4 AOS AO6
SNO1 —0-00481 —0-70547 0-03821 -0-00812 0-70343 007726 00
SNO2 0-00482 0-70675 —0-03676 —0-01127 0-70220 0-07708 00
SNO3 —0-11382 0-03862 0-69715 0-71583 0-00880 0-00289 00
SNO4 011761 -0-03639 —0-71496 —0-69814 0-01008 0-00298 0-0

Table 5. (b) Diagonalization of total spin density matrix for the basis 13s8pS** of Duijneveldt.

Eigenvectors
Eigenvalue AO1 AO2 AO3 AO4 AOS AO6
SNO1 —0-00598 —-0-70810 0-02481 012127 -—0-46078 —0-49115 —0-17070
SNO2 0-00606 0-70478 —0-02224 012749 ~0-49056 —0-46620 —0-16733
SNO3 —0-14866 0-02442 0-69534 0-69120 0-19497 —0-01044 —0-00538
SNO4 0-15402 0-02274 0-71790 —0-67031 —0-18613 001072 0-00539

SNO?2 are distributed more over the virtual orbitals. The contributions of AO4 and
AOS5 (with eigenvalues 2-:06 and 7-4 according to table 4) are nearly identical and
those of AO3 and AO6 are smaller but also of equal magnitude. This shows in yet
another manner that excitation to virtual orbitals become more important in the
more flexible (larger) basis, or in other words, that the virtual space is better rep-
resented and allows for a more adequate description of the spin polarization. This
behaviour is in agreement with the rationalization on the basis of the orbital
energies.

The same scheme is applicable to SNO3 and SNO4 which are dominated by
AO?2 and AO3, whereby the first is equivalent to the 2s orbital and AO3 to the first
virtual s orbital. If one goes from the 9s5p to 13s8pS** set, the contributions of AO2
and AO3 remain nearly constant, whereas the mixing of all other AOs increases.
Judged on the basis of orbital energies (table 4), AO2 is essentially the same in both
basis sets whereas AO3 possesses an orbital energy of 0-9568 in the first and 0-3777
in the second basis; common to both AO3 is that they contain a marked contribu-
tion from the most diffuse AO in the basis. The increased mixing of other AOs is an
indication that the larger basis is in a better position to describe the spin-
polarization of a doubly-occupied orbital.

A comparison of the basis sets by various authors also shows differences in a,,, .
The reason is probably the same as discussed above. The differences in the density
at the nucleus J, (table 2) are not large enough to explain the variances; the
improvement in the description of the spin polarization is probably more important
(tables 6, 7). The Duijneveldt 11s6p basis set is more flexible in the valence region
than the equivalent Ruedenberg basis set judged by considering the orbital energies
(table 6). Its virtual AOs spread a larger range of electron distribution than the
other bases, but the effect is clearly smaller than that between the Duijneveldt 9s5p
and 13s8pS** basis. From the core calculations (table 7) it seems as if the size and
character of a basis set is more important for the 2s polarization than for the 1s
polarization.
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Table 6. Orbital energies (in hartree units) of the six lowest s orbitals (4,, symmetry) using
the 11s6p basis sets.

Orbital Huzinaga Duijneveldt  Ruedenberg

1s —15-6299 —15-6287 —15-6276
2s —0-9453 —0-9451 —0-9447
3s 0-3409 0-4841 0-6702
4s 19264 2:7938 4-1376
Ss 9:2156 12-6594 18-5148
6s 386173 47-7572 72-7736

Table 7. Core calculations for comparing the basis sets 11s6p of different authors (T = 0-0).

Contribution = Duijneveldt =~ Huzinaga Ruedenberg

1s a;,/MHz -5397 —54-07 -5291
2s a,,,/MHz 57-31 5811 54-01

In the entire discussion we have not mentioned p functions. Their influence on
a,, is clearly small, because |¥ (r = 0)|> = 0 for such species. They have only a
secondary effect via double excitations out of AO1 and AO2, i.e. for the description
of electron correlation. Calculations with the Duijneveldt’s 13s7p and 13s8p basis
sets show no change, and hence no further analysis for p function influence has been
made. These functions become important for calculations in molecules or in excited
states of nitrogen.

4. Influence of d functions

In order to examine the influence of d polarization functions on g,,,, which are
not contained in standard AO basis sets, but are known to be important for the
description of electron correlation, the 13s8p basis set of Duijneveldt is first con-
tracted to 8s4p. The contraction scheme (5, 2, 1, 1, 1, 1, 1, 1) for the s functions and
(4, 2, 1, 1) for the p functions gives the best energy result and was therefore used in
the following calculations. In table 8 the results for various contractions are sum-
marized. It is seen that the differences in a;,, are small.

To the contracted basis set first one d function is added and the exponent is
optimized, always with respect to the total energy. For these calculations two differ-
ent sets of reference configurations (table 9) are employed for the CI, namely a one
main set which contains only the ground state configuration (referred to as 1

Table 8. Contraction of the (13s8p) Duijneveldt basis to [8s4p].

Contraction
s-functions p-functions SCF/h MTD-CI/h  Full-Clest/h a,/MHz
52111111 4211 —54-40076  —54-47094 —54-47196 8-03
52111111 5111 —54-40076  —64-46565 — 54-46660 8:31
43111111 5111 —54-40064  —54-46539 —54-46634 824
43111111 4211 —54-40064  —54-47067 —54-47170 7-98
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Table 9. The different sets of reference configurations employed in the calculations employ-
ing d functions. Their contribution to a final representative MRD-CI wavefunction is

also given.

IMIR  (1s)? (25)? 2p)! 2p,)! (2p)! ¢} =09674

4AMIR  (1s5)% (25)2 (2p,) 2p,)! 2p,) c} = 09674
(15)* (25" (35)' @p)'  @p)'  @p) 3 =00027
(15 29)' @ae1-ya-)'  2p)'  (2p)  (@p)' 5 =00026
(15 (29)' (ds-,2)! 2p)'  (p)'  @p)'  ci=00026

main-1 root calculation: 1IM1R) and a 4 reference configuration set. The latter is
constructed by using the ground state and single excitations to the first virtual
s-type orbital (3s) and to the virtual d-type orbitals d,,2_j._,, or d,._,. (s- and
d-type orbitals belong to the same irreducible representation 4,,). The correspond-
ing calculations are referred to as 4M1R.

The results of the calculations are given in figure 2. It is seen that the value for

<57 )>-10%au.
10.0-
5.0
0.04+— — —>
06 07 08 09 10 £/a?
Ful-Cl
Energy/h o LMIR
oIMIR
-54.525{
-5L.530-
L | 1)  J ’
06 07 08 09 10 Efa7

Figure 2. Calculated values for (&(ry)) and the total energy employing two different refer-
ence sets in the MRD-CI calculations as a function of the d function exponent {.
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Table 10. Core calculations employing the [8s4p1d] Duijneveldt basis.

d-function a,/MHz a,,/MHz
exponent/ag?  1s contribution  2s contribution
0-6 —54-39 60-75
08 —54-42 57-31
1-0 —54-42 54-68

Table 11. Orbital energies (in hartree) of the lowest seven a,, orbitals in the [8s4p1d] basis

of Duijneveldt.
d exponent/ag 2 Is 2s 3s 4 dya-yrogr dpon 5SS 6s
1-0 —15629 -0945 0350 1-717 2-459 2459 4871 11-655
06 —15629 -0-945 0-288 1:251 1-563 1-563 3-330 8814

{8(rn)>spin» Which is proportional to a,, (see equation 1), decreases with increasing
exponent of the d-function. The energy minimum is not accompanied by any special
point in the {&(ry)),pi, graph.

Core calculations (table 10) show only a decrease of the 2s contributions within
the limited exponent variation while the 1s contribution remain unchanged. Again a
rationalization for this behaviour can be found in the spatial distribution of the d
orbitals reflected in the orbital energies (table 11). Higher virtual orbitals than the 8s
orbital make no contribution and therefore their energies are not of interest in the
present context. The energy gap between the 2s and the virtual AOs is much smaller
than between the 1s and the virtual species; furthermore there is much less overlap
between the relatively contracted 1s charge distribution and that of the d function
compared to the overlap between 25 and d. Both effects explain that the 1s contribu-
tion to a,, is less affected by this d function variation than that of the 2s. The
differences between the 1MIR calculation and the 4MIR calculation will be dis-
cussed later.

When the basis set is enlarged by further d polarization functions whose electron
distribution covers approximately the same space (i.e. the original exponent { is
modified to give {; = 2{ and {, = 0-5{ according to standard procedure) the influ-
ence of the exponents becomes, as expected, smaller (table 12). The reason for this
behaviour lies in the smaller dependence of the 2s contribution on the higher
exponents. Similarly the 1s contribution remains unchanged.

Table 12. Variation of data employing two d functions with exponents {, and {, [8s4p2d] basis
(Escp = —54-40076 h, 1M 1R calculation, T = 0-0).

d exponents Core calculations
{i/ag? {y/a5? MRD-CI/h est. full CI/h a,/MHz is a, /MHz 2s a, /MHz
19 04 —54-53404 —54-53895 6-05 —53-60 57-89
19 05 —54-53547 —54-54035 5-50 —53-62 57-36
19 06 —54-53495 —54-53964 4-65 —53-67 56-56
17 05 —54-53534 —54-54020 541
21 05 ~54-53526 —54-54014 5-67
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Figure 3. Behaviour of total energy and a,,, upon addition of d functions.

Addition of more compact d functions to correlate the 1s shell shows relatively
little influence on the total energy (figure 3) but at first some surprising effect on a,,,, .
The optimized d function exponents are listed in table 13 and it is seen that the
standard rule of chosing exponents (multiplying the lower exponent always by a
factor of four) as described by Flesh [16] is quite good. The value for a,, decreases
first when going from zero to one d function (figure 3 and table 14) and returns to
the original value in the IMIR calculation only upon introduction of all four d
species. If four reference configurations are employed instead, a definite improve-
ment in a,,, is seen upon introducing the more compact (No. 3, 4) species. An
examination of the selection threshold will show later on that the increase from
T=00to T=5x10"'%hartree or T = 10~? hartree, which was necessary in

Table 13. Optimized exponents of the d functions.

Number of
d functions Exponents/ag ?

HwWN -
SRS
WK
—

o
o0
(=]

05 19 80 390
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Table 14. Summary of the calculated values by enlarging the basis set with d polarization

functions.
IMIR calculation 4MI1R calculation
Number of
d functions MRD-CIL/h est. full CI/h g, /MHz MRD-CI/h est. full CI/h g, /MHz
0 —54-47053 —54-47189 6-48 —54-47094 —54-47196 803
1 —54-52414  —54-52817 498 —54-52533  —54-52780 7-61
2 —54-53547 —54-54035 5-50 —54-53696  —54-54029 810
3 —54-53851 —54-54350 634 —54-54003 —54-54346 9-74%
4 —54:54094  —54-54601 6-46 —54-54247  —54-54597 9921

Egcp = —54:40076 h, CI with selection threshold T = 0-0.
+ Selection threshold T = 5 x 10~ 1%h,
t Selection threshold T = 10~ °h.

order to keep the secular equation in the 3-d and 4-d calculations at manageable
size, has no effect on the results. Note that the estimated full CI is about the same in
both IM1R and 4M1R treatments, as expected.

Core calculations (table 15) reveal that the total value of a,,, increases from the
1-d to 4-d calculation because the absolute value of the 1s contribution decreases
faster than that of the 2s whereby the latter is almost constant when compact d
functions are added. The definite decrease of both, 1s and 2s contribution to a,,
upon d function introduction can be rationalized. Introduction of d functions which
are necessary to describe electron correlation change the total CI space so that
excited configurations populating d orbitals are present. On the other hand, d-type
orbitals make no contribution to a,, because of their symmetry properties; hence
the net effect is a reduction in s-type population, ie. a reduction in a,,,. This effect
can be seen directly in the eigenvalues of the spin natural orbitals SNOs listed in
table 16. In the two lowest SNOs, which consist in the main of the 1s AOs the
magnitude of the spin eigenvalue is reduced from 0-0061 to 0-0059 upon introducing
the first d function. The situation in the two orbitals describing the 2s shell is
similar, i.e. a reduction from 0-15 to 0-12 or from the 0-155 to 0-141. The parallel
behaviour in 1s and 2s contribution obtained from core calculations and from this
SNO analysis (carried out in the 4MIR treatment without any core) is also obvious
from the table.

In table 17 the calculated correlation energies accounted for in the various
calculations are summarized. It is seen that the first d function has by far the largest
effect, in particular for the 2s shell, although the 1s shell also profits from it. The

Table 15. Core calculations for the basis set extension with d functions.

Number of  1s a, /MHz 2s a, /MHz 2s a,, /MHz
d functions IMIR IMIR a,,,/MHz 4MIR

0 -54-91 5875 3-84 59-37

1 —54-42 57-31 2-89 59-49

2 —53-62 57-36 374 59-53

3 —52:80 57-34 4-54 59-53

4 —52-80 57-40 4-60 59-59
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Table 16. Eigenvalues of the most important SNOs in calculations employing zero to three

d functions.
SNO1 Is ~0-00606 ~-0-00591 ~0-00585 —0-00577
SNO2 Is 0-00611 0-00593 0-00588 0-00583
SNO3 2s/3s ~0-14986 ~0-12333 —0-11962 ~0-11985
SNO4 2s/3s 015527 0-14117 0-14104 0-14127
SNOS5 draoyiop 0-00346 0-00547 0-00548
SNO6 dyp 0-:00346 0-00547 0-00548
1s contributiont -5491 —54-42 —53-62 —52-80
2s contributiont 58-75 57-31 57-36 57-34

t a,, of the core calculations in MHz, from 1MIR treatment.

double-{-representation of the d function adds relatively little to the 2s correlation;
the higher exponent obviously favours the 1s shell. Addition of the contracted 3d
and 44 function affects only the correlation description in the 1s shell, as one would
expect from the comparable spatial extension of the 3d and 4d orbitals and the 1s
shell, listed in table 18. From this table it is also obvious that the 1d function
matches the 2s optimally.

In summary then it is clear that the absolute magnitude of both the 1s and 2s
contributions to a;,, decrease upon introduction of d orbitals because the d popu-
lation does not contribute directly to a,,,. The first d species correlates primarily the
2s shell and therefore the decrease in the 2s shell contribution to a,,, is largest.
Introduction of d functions with high exponents leave the 2s shell essentially unaf-
fected and are correlation functions for the 1s shell; they are fairly contracted and
show approximately the same radial distribution as the 1s shell (table 18). As a
result the magnitude of the 1s contribution to a,,, keeps decreasing upon further
inclusion of d correlation functions; the difference between the 2s and 1s contribu-
tion becomes larger and leads to the increase in the total value of a,,, from the 1-d
to 4-d calculation (table 15). For a balanced treatment it is thus necessary to

Table 17. Calculated correlation energies (in eV) E(CI)-E(SCF) for various treatments
employing from zero to four d functions.

Core calculations

All-electron calculations 2,
Number of 1s
d functions IMIR 4MIR IMIR iMIR 4MIR
0-d 1.90 191 093 1-23 1-24
193¢ 1-93¢
1-d 3.35 339 1-27(+36%)  2:67(+117%)  2-70(+ 118%)
3-46 346
2-d 3:66 n 1-42(+12%)  2:92(+9%) 2-96( + 9%)
379 379
3-d 375 379 1-49(+ 5%) 2:93 297
3-87 3-87
4-d 381 3-86 1:55(+4%) 293 297
394 394

1 Numbers in the second row always refer to the full CI estimate while otherwise the data
from the MRD-CI calculations are taken.
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Table 18. Expectation value of {r) in a, for the various AOs in the calculations employing
from one to four d functions as a measure for their spatial extension.

Calculations
AO 1-d 2-d 3.d 4-d

Is 0-2283 0-2283 0-2283 0-2283
2s 1-3322 1-3321 1-3321 1:3322
3Is 3-2026 3-0932 3-0935 3-1255
4s 1-4273 2-1194 2:1200 2-1851
1d 2:3493 1-8136 1-8161 1-8163

2d — 1-0398 1-0459 10467
3d — — 0-5150 0-5202
4d — — — 0-2266

account properly for both, the 1s and 2s shell correlation. The increase of the 2s
contribution by changing from the IM1R to 4MIR calculation lies in the fact that
the new reference configurations with an open 2s shell (table 9) generate more 2s
shell SAFs and hence more 2s shell contribution. The corresponding change upon
introducing of open 1s shell reference configurations is much smaller.

5. Dependence on Cl-selection threshold

In a standard calculation it is not economical to consider all single and double
excitations from a set of reference configurations explicitly. In order to analyse the
dependence of the calculated value of a,, on the selection threshold T used in the
MRD-CI program we performed calculations with the 8s4p2d basis described
above. The total number of SAFs (symmetry adapted functions) for the 4M1R
calculations is 17522 in this case, so that it is possible to perform in addition a
calculation with the threshold T = 0-0.

To examine the influence of single excitations for hfcc calculations two computa-
tions were made for every threshold. One in which all single excitations are treated
like all other configurations in the selection procedure and the other in which all
single excitations relative to the ground state configuration are included automati-
cally in the wavefunction. In figure 4(a) a,,, is given as a function of log T. Figures
4(b){d) contain further information about the calculations. z AE; (unselected)
means the sum of the energy lowerings produced by the SAfs which have not been
selected. Figure 4(c) shows as a function of threshold T the size of the secular
equation (SAFs) actually diagonalized. The third figure (figure 4 (d)) gives the ground
state eigenvalue of the largest secular equation, referred to as E(T). Table 19 con-
tains the results of different core calculations and in table 20 the results of the
diagonalization of the total spin density matrices are given.

From figure 4 (a) it is seen that g, calculated with T = 10" %h, ie. by using
about 5 per cent of the possible SAFs, is too high by about a factor of 3 if a
selection among the single excitation configurations is undertaken. The value
decreases drastically by lowering the selection threshold, and remains nearly con-
stant from T = 10~% h, when about 46 per cent of the possible SAFs are considered,
to T = 0-0. If one takes all single excitations to the wavefunction, the calculated
value of ay,, for T = 10"h is too low by about a factor of 0-5 and increases by
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Table 19. Core calculations at various selection thresholds. E = single excitations automatically
included.

Selection threshold 7/10¢h

Contribu- 10-0 6-0 1-0 01

tion of 10-0 E 60 E 1-0 E 01 E 0-0
1s a,,/ )

MH:z —25-86 —53-77 -—37-18 —5368 —5074 —53-68 —5071 —5364 —53-62
2s a,,/

MHz 58-59 56-55 59-09 56-80 5897 57-85 59-36 59-26 59-53

changing T to lower values. Again a,,, does not change if a selection threshold
below 1078 h (corresponding to 8110 SAFs) is taken. The energy difference between
the E(T) energy for T = 10~ %h and that for T = 0-0is only {7cm™.

From table 19 it is obvious that the incorrect value of a,,, is obtained with
standard selection of single excitations and a selection threshold of T =10"%h
because the 1s contribution to a;,, is calculated much too small. The reason for this
lies in the emission of excitations in higher MOs as it is shown by a comparison
between the first and the third set of numbers in table 20. While the contribution of
the AOs 7, 11, 12 to the SNO1/SNO2 is almost zero for T = 10~ *h they reach
values about 0-25 when T is lowered to 10~ 7 h. In comparison to the 1s contribu-
tion the 2s part is less affected; it increases slowly by 1 MHz (table 19). The contri-
butions of the AO 7, 11, 12 to SNO3/SNO4 have about the same weight at the
smaller threshold.

If one considers automatic selection of all single excitations the 2s contribution
becomes the troublesome part (table 19, marked E), while the 1s contribution
remains nearly unchanged by lowering the selection threshold T. The effects on a;,,
are much smaller, however.

A comparison of the second and fourth set of numbers in table 20 does show
some differences in the 2s contributions when changing from 1075h to 10~ 7h. It
seems that for T = 10"°h the error in the wavefunctions from truncating less
important double excitations and that which arises from ommitting single excita-
tions cancel each other approximately. By including all the single excitations relative
to the ground state configuration the main error at T = 10~ h occurs from omit-
ting double excitations, and the calculated value of the 2s contribution is
56-55 MHz. By improving the wavefunction this error is also removed and for
T = 10""h the 2s contribution reaches 59-26 MHz, which is close to the value of
the calculation with T = 10~5h, but without a general consideration of the single
excitations. It is clear, however, that for smaller thresholds (T < 10~7h) the 2s
contribution is the same regardless of whether single excitations are included auto-
matically or selected only via an energy criterium.

6. Summary and conclusion

In the present work we have analysed in which way the calculated hyperfine
coupling depends on the ingredients of a standard ab initio calculation employing
gaussian orbitals and correlated wavefunctions. As a test example the nitrogen atom
in its *S state has been chosen. In this case only the isotropic hyperfine coupling



Table 20. Diagonalization of the total spin density matrix obtained in the 4M1R calculation. Basis [8s4p2d].

Eigenvalue AO1 AO2 AO3 AO6 AO7 AOI10 AOl11 AO12 AO13
Standard selection procedure, T = 10~ %h
SNO 1 —0-00468 —0-709 0-031 0172 —0-469 —0-004 —0-497 00 00 00
SNO 2 0-00473 —0-702 —0-026 —-0-174 —0-484 —0-008 0-489 00 00 00
SNO 3 —0-10951 0-029 0672 0-696 0-251 —0-003 0-005 00 00 00
SNO 4 0-12980 —0-028 —-0-739 0634 —0-226 —0-001 —0-001 00 0-0 00
Inclusion of all single excitations, T = 10~ %h
SNO 1 —0-00596 —0-707 —0-030 —0-134 0-383 —0-268 0-406 0-294 0-109 —-0024
SNO 2 000595 —0-706 —0-027 —-0134 0-391 —0-268 0-399 0-294 0110 —0:024
SNO 3 —-0-11067 —0-029 0-673 —0-694 —0-254 —0-008 —0-003 0-011 0-002 0-0
SNO 4 0-13097 —0-028 —-0-739 0633 —0-229 0-007 0-001 0-010 0-003 00
Standard procedure, T = 10~"h
SNO 1 —0-00585 —0-706 0029 0-138 —0-395 0:263 —0-402 —0-286 —-0-112 0-0
SNO 2 0-00582 —-0-707 0026 —-0-138 0-404 —0-256 0-395 0-286 0112 00
SNO 3 —0-11688 —0-028 0-674 0-698 0-242 —0-010 0-003 —-0-010 0-003 00
SNO 4 0-13805 0027 0-738 —0-637 -0-219 —0-008 —0-001 0-009 —0-003 00
Inclusion of all single excitations, T = 10~ "h
SNO 1 —0-00585 —0-706 0-029 0-138 —0-395 0-263 —0-402 —0-283 —0-112 0012
SNO 2 0-00582 0-707 —0-026 0138 —0-404 0-256 —0-395 —0-286 -0-112 0012
SNO 3 —0-11688 —0-028 —0-674 —0-698 —0-242 0-010 —0-003 0010 0-003 00
SNO 4 0-13805 —0-027 —0-738 0-637 0-219 —0-008 0-001 —0-009 —0-003 00
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constant, which seems to be the quantity most difficult to represent in theoretical
calculations, is different from zero.

The present investigations find that the quality in the description of the electron
density at the nucleus Jq(ry) parallels to a large extent that of a total energy
description. It is therefore found that a quite flexible AO basis set is required. The
(1257p) gaussian set of Duijneveldt, for example gives an energy which is only
3 x 10"*h above the Hartree-Fock limit and yields a value for dy(ry) of 201-9
compared to the Hartree-Fock limit of 206-0 [15). This basis gives 7-64 MHz for
a,, wWhen averaged over the spin functions, whereby the measured value is
10-45 MHz. Larger AO sets with s and p functions, in particular those including an s
cusp function, lead only to minor improvements. Smaller basis sets such as (10s, 6p)
or (9s, 5p) seem to be not sufficient for a reliable description of the hyperfine coup-
ling constants. It is also found that the Duijneveldt and Huzinaga basis sets in the
(11s6p) or smaller version are superior for energy and hfcc calculations compared to
those of the same size given by Ruedenberg. A basis set contraction is also possible,
just as in energy calculations, and a (13s8p) set contracted to [8sd4p] has proven to
be most profitable with respect to a loss in accuracy for energy and the hfcc value.

The description of spin polarization, which is the second important quantity in
the evaluation of {8(pn)),pin, depends on a very delicate balance of 1s and 2s shell
polarization in nitrogen. It has been analysed by core calculations on one side (i.e.
calculations with an alternative fixed 1s or 2s core), and by looking at the constitu-
tion of natural spin orbitals obtained by diagonalizing the total spin density matrix.

A more flexible AO basis allows for a better description of spin-polarization; this
appears in form of various configurations in the CI expansion which possess single-
occupied s shells. Their coefficients depend on the difference in energies between
occupied and virtual orbitals and on the matching of their charge distribution.
From this it is clear that the more flexible AO basis which covers a larger range in
space gives a better representation of the spin polarization, in particular that of the
2s shell (but not negligible for the 1s shell). Introduction of d functions, which are
necessary to account for electron correlation, decrease the magnitude of both, the 2s
and 1s shell spin polarization. This is also to be expected since the extra configu-
rations populating d species do not contribute to {3(rn)spi, and as such reduce this
value. The first d function generally correlates primarily the 2s shell and as a result
a,,, decreases. Addition of more compact d functions to also account for an equiva-
lent 1s shell correlation has the effect, that eventually the magnitude of 1s spin
polarization decreases faster than that of the 2s shell with addition of contracted d
species, which leads to an increase in the total value of a,,,.

The hfcc depends on details of the CI as long as only a small portion of the
MRD-CI space is taken into account. The effect of single excitation configurations,
which are relatively unimportant for energies, may seem to have a large effect on q,,,
as long as a very selected subset of configurations is chosen. From the present
calculations it looks as if the results do not change from a selection threshold of
10~ 7h to one of zero. On the other hand, this amounts to approximately one third
of all SAFs generated in the MRD-CI space. Similar results have also been found in
an entirely independent study [17] on the hfcc of NJ in which part of the work is
also dedicated to the N atom, although not in as much detail as in the present work.

This finding could lead to a quite pessimistic view since the total MRD-CI space
in realistic molecular calculations is in the order of 10° SAFs or more. On the other
hand it is clear that the hfcc a,,, for nitrogen is very difficult to obtain, since it is
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zero at the SCF or Hartree-Fock level and solely responsible to correlation effects.
It is thus hoped that in molecular calculations some of the adverse effects in describ-
ing the hfcc cancel. But even if this is not the case, a route, similar to the energy
calculation based on the present MRD-CI approach, could turn out to be feasible,
namely a combined variational-perturbation or extrapolation-like treatment. This
has been suggested earlier for one electron properties [18), whereby the density
matrix at a given threshold obtained from the truncated MRD—CI wavefunction can
be compared to that obtained from the reference set and the property can be
extrapolated to zero threshold, i.e. the total space. Such procedure has not been
necessary so far for standard properties such as electric dipole, transition dipole
moments or various spin-orbit properties, but might well be necessary for hyperfine
interactions which depend on electron correlation. Both ways, the influence of the
molecular environment as well as a method to extrapolate from a representative
portion of the configuration space to the total space will be studied for the hfcc in
further work.
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