
UNIVERSITÄT AUGSBURG

Nondeterministic Modal Interfaces

Ferenc Bujtor, Sascha Fendrich,

Gerald Lüttgen, Walter Vogler

Report 2014-06 Oktober 2014

INSTITUT FÜR INFORMATIK
D-86135 AUGSBURG

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35097757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Ferenc Bujtor
Sascha Fendrich
Gerald Lüttgen
Walter Vogler
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Nondeterministic Modal Interfaces∗

Ferenc Bujtor† Sascha Fendrich‡ Gerald Lüttgen‡ Walter Vogler†

October 14, 2014

Abstract
Interface theories are employed in the component-based design of concurrent systems. They often

emerge as combinations of Interface Automata (IA) and Modal Transition Systems (MTS), e.g., Nyman
et al.’s IOMTS, Bauer et al.’s MIO, Raclet et al.’s MI or our MIA. In this paper, we generalise MI to non-
deterministic interfaces, for which we resolve the longstanding conflict between unspecified inputs being
allowed in IA but forbidden in MTS. With this solution we achieve, in contrast to related work, an associa-
tive parallel composition, a compositional preorder, a conjunction on interfaces with dissimilar alphabets
supporting perspective-based specifications, and a quotienting operator for decomposing nondeterministic
specifications in a single theory.

1 Introduction
Interface theories [2, 7, 8, 16, 17, 22] support the component-based design of concurrent systems and offer a
semantic framework for, e.g., software contracts [1] and web services [5]. Several such theories are based on
de Alfaro and Henzinger’s Interface Automata (IA) [11], whose distinguishing feature is a parallel composi-
tion on labelled transition systems with inputs and outputs, where receiving an unexpected input is regarded
as an error, i.e., a communication mismatch. All states are pruned from which entering an error state cannot
be prevented by the environment, rather than leaving the parallel composition fully undefined as in [2].

Various researchers have combined IA with Larsen’s Modal Transition Systems (MTS) [15], which fea-
tures may- and must-transitions to express allowed and required behaviour, resp. In a refinement of an
interface, all required behaviour must be preserved and no disallowed behaviour may be added. Whereas in
IA outputs are optional, they may now be enforced in theories combining IA and MTS, such as Nyman et
al.’s IOMTS [16], Bauer et al.’s MIO [2], Raclet et al.’s Modal Interfaces (MI) [22] and our Modal Interface
Automata (MIA) [17, 18]. In this paper we extend MI to nondeterministic systems, yielding the most general
approach to date and permitting new applications, e.g., for dealing with races in networks. We built upon
our prior work in [18], from which we adopt disjunctive must-transitions that are needed for operationally
defining conjunction, which is another key operator in interface theories and supports perspective-based
specification.

Combining IA and MTS is, however, problematic since unspecified inputs are forbidden in MTS, but
allowed in IA with arbitrary behaviour afterwards. In IOMTS [16], the MTS-view was adopted and, as a
consequence, compositionality of refinement wrt. the parallel operator ‖ was lost. In [18] we followed the
∗Research support was provided by the DFG (German Research Foundation) under grants LU 1748/3-1 and VO 615/12-1.
†Institut für Informatik, University of Augsburg, Germany
‡Software Technologies Research Group, University of Bamberg, Germany

1

IA-view but found that resolving the conflict is essential for a more flexible conjunction. In our new MIA,
we can optionally express the IA-view for state p and input i by an i-may-transition from p to a special,
universal state e that can be refined in any way; we will need this option when defining ‖. There is a similar
idea in MI [22], but an ordinary state is used there with the consequence that ‖ is not associative. In contrast
to the somewhat related demonic completion as used, e.g., in [12], we do not enforce input-enabledness.
With the new feature, our interface theory allows for a proper distinction between may- and must-transitions
for inputs, unlike [17, 18]. This enables us to define conjunction also on interfaces with dissimilar alphabets
via alphabet extension.

As in MI, our MIA is equipped with a multicast parallel composition, where one output can synchronise
with several inputs. This is accompanied by a hiding operator for scoping actions as in [19]. These operators
together are more expressive than the binary parallel composition of IA, which is used in [2, 16, 17, 18].
We also develop a quotienting operator as a kind of inverse of parallel composition ‖. For a specification P
and a given component D, quotienting constructs the most general component Q such that Q ‖ D refines P.
Quotienting is a very practical operator because it can be used for decomposing concurrent specifications
stepwise, specifying contracts [4], and reusing components. In contrast to [22], our quotienting permits
nondeterministic specifications and complements ‖ rather than a simpler parallel product without pruning.

In summary, our new interface theory MIA generalises and improves upon existing theories combining
IA and MTS: parallel composition is commutative and associative (cf. Sec. 3), quotienting also works for
nondeterministic specifications (cf. Sec. 4), conjunction properly reflects perspective-based specification (cf.
Secs. 5 and 6), and refinement (cf. Sec. 2) is compositional and permits alphabet extension (cf. Sec. 6).

2 Modal Interface Automata: The Setting
In this section we define Modal Interface Automata (MIA) and its supported operations. Essentially, MIAs
are state machines with disjoint input and output alphabets, as in IA [11], and two transition relations, may
and must, as in Modal Transition Systems [15]. May-transitions describe permitted behaviour, while must-
transitions describe required behaviour. Unlike previous versions of MIA [17, 18] and also unlike other
similar theories, we introduce the universal state e as an extra constituent.

Definition 1 (Modal Interface Automata). A Modal Interface Automaton (MIA) is a tuple (P, I,O,−→,99K
, p0,e), where

• P is the set of states containing the initial state p0 and the universal state e,

• I and O are disjoint sets, the alphabets of input and output actions, not containing the special internal
action τ , and A =df I∪O is called the alphabet,

• −→⊆ P× (A∪{τ})× (Pfin(P)\ /0) is the disjunctive must-transition relation, with Pfin(P) being the set
of finite subsets of P,

• 99K⊆ P× (A∪{τ})×P is the may-transition relation.

We require the following conditions:

(a) For all α ∈ A∪{τ}. p α−→ P′ implies ∀p′∈P′. p
α
99K p′ (syntactic consistency),

(b) e appears in transitions only as the target state of input may-transitions (sink condition).

2

Cond. (a) states that whatever is required should be allowed; this syntactic consistency is a natural and
standard condition (cf. [15]). Cond. (b) matches the idea for e explained in the introduction. We use this
state in the context of parallel composition to represent communication errors (see Def. 8). A MIA P is
called universal if P = ({e}, I,O, /0, /0,e,e), i.e., if p0 = e. Note that our disjunctive must-transitions have a
single label, in contrast to Disjunctive MTS [14].

In the sequel, we identify a MIA (P, I,O,−→,99K, p0,e) with its state set P and, if needed, use index P
when referring to one of its components, e.g., we write IP for I. Similarly, we write, e.g., I1 instead of IP1
for MIA P1. In addition, we let i, o, a, ω and α stand for representatives of the alphabets I, O, A, O∪{τ}
and A∪{τ}, resp.; we write A = I/O when highlighting inputs I and outputs O in an alphabet A, and we
define â =df a and τ̂ =df ε (the empty word). Furthermore, outputs and internal actions are called local
actions since they are controlled locally by P. For convenience, we let p a−→ p′, p 6 a−→ and p 6 a

99K denote
p a−→ {p′}, 6 ∃p′. p a−→ p′ and 6 ∃p′. p

a
99K p′, resp. In figures, we often refer to an action a as a? if a ∈ I,

and as a! if a ∈ O, and omit the label of τ-transitions. Must-transitions (may-transitions) are drawn using
solid, possibly splitting arrows (dashed arrows); any depicted must-transition also implicitly represents the
underlying may-transition(s) due to syntactic consistency.

We now define weak must- and may-transition relations that abstract from transitions labelled by τ , as is
needed for MIA refinement. It is an alternative but equivalent definition to the one presented in [18].

Definition 2 (Weak Transition Relations). We define weak must-transition and weak may-transition rela-
tions, =⇒ and =⇒ resp., as the smallest relations satisfying the following conditions:

(a) P′ ε
=⇒ P′ for finite P′ ⊆ P,

(b) P′ α̂
=⇒ P′′, p′′ ∈ P′′ and p′′ τ−→ P′′′ implies P′ α̂

=⇒ (P′′ \{p′′})∪P′′′,

(c) P′ ε
=⇒ P′′ = {p1, . . . , pn} and ∀ j. p j

a−→ Pj, implies P′ a
=⇒

⋃n
j=1 Pj,

(d) p ε
=⇒ p,

(e) p ε
=⇒ p′′

τ
99K p′ implies p ε

=⇒ p′,

(f) p ε
=⇒ p′′

α
99K p′′′ ε

=⇒ p′ implies p α
=⇒ p′.

For {p′} α̂
=⇒ P′′ we often write p′ α̂

=⇒ P′′. Mostly for inputs a, we also use relation compositions a−→ ε
=⇒

and
a

99K
ε

=⇒ resp., i.e., where leading τs are disallowed. Observe that p a−→ ε
=⇒ P′ implies p a

=⇒ P′, and
p

a
99K

ε
=⇒ p′ implies p a

=⇒ p′.

Lemma 3 ([18]). Consider arbitrary MIAs P and Q.

(a) Let p α̂
=⇒ P′, p′ ∈ P′ and p′ ε

=⇒ P′′. Then, there exists some P such that p α̂
=⇒ P and P′′ ⊆ P ⊆

(P′ \{p′})∪P′′.

(b) Let p α̂
=⇒ P′, {p1, . . . , pn} ⊆ P′ and pi

ε
=⇒ Pi for 1 ≤ i ≤ n. Then, there exists some P such that

p α̂
=⇒ P⊆ (P′ \{p1, . . . , pn})∪

⋃n
i=1 Pi.

(c) Let p α̂
=⇒

⋃n
i=1 Pi and Pi

ε
=⇒ P′i for 1 ≤ i ≤ n. Then, there exists some P such that p α̂

=⇒ P and
P⊆

⋃n
i=1 P′i .

3

(d) Let P ε
=⇒ P′ and P′′ ⊆ P. Then, there exists some P such that P′′ ε

=⇒ P⊆ P′.

(e) Let p ε
=⇒ P′ = {p1, . . . , pn} and pi

a
=⇒ Pi for 1≤ i≤ n. Then, there exists some P such that p a

=⇒ P⊆⋃n
i=1 Pi.

Note that Parts (a)–(c) also hold for a−→ ε
=⇒ in place of α̂

=⇒ with analogous proofs.

Proof. (a) We proceed by induction on the definition of p′ ε
=⇒ P′′. The claim is trivial for P′′ = {p′}.

Now assume that p′ ε
=⇒ P′′′, p̂ ∈ P′′′, p̂ τ−→ P̂ and P′′ = (P′′′ \{p̂})∪ P̂. Further, by induction hypothesis,

p α̂
=⇒ P′ ⊆ (P′ \ {p′})∪P′′′ for some P′ such that P′′′ ⊆ P′. Applying Def. 2(b) to p α̂

=⇒ P′ and p̂ τ−→ P̂

(observe p̂∈P′), we get p α̂
=⇒P with P=df (P

′\{p̂})∪ P̂⊆ (((P′\{p′})∪P′′′)\ p̂)∪ P̂⊆ (P′\{p′})∪(P′′′\
{ p̂})∪ P̂ = (P′ \ {p′})∪P′′; note that equality fails at the second inclusion if p̂ ∈ P′ \ ({p′}∪ P̂). Further,
P′′ ⊆ P = (P′ \{p̂})∪ P̂ since P′′′ ⊆ P′.

(b) We show by induction on k that there exists a Pk such that p α̂
=⇒ Pk ⊆ (P′ \{p1, . . . , pk}) ∪

⋃k
i=1 Pi.

Part (a) implies the case k = 1. Assume the claim holds for k. Now, there are two cases. If pk+1 /∈ Pk, then

Pk+1 = Pk ⊆ (P′ \{p1, . . . , pk+1)∪
⋃k+1

i=1 Pi. Otherwise, p α̂
=⇒ Pk+1 ⊆ (Pk \{pk+1})∪Pk+1 by Part (a). As a

consequence, Pk+1 ⊆ (((P′ \{p1, . . . , pk})∪
⋃k

i=1 Pi)\{pk+1})∪Pk+1 ⊆ (P′ \{p1, . . . , pk+1)∪
⋃k+1

i=1 Pi.
(c) The proof proceeds by induction on the total number of applications of Def. 2(c). If this is 0, then

P =df
⋃n

i=1 Pi. Otherwise, assume w.l.o.g. that P1
ε

=⇒ P′′1 , p1 ∈ P′′1 , p1
τ−→ P′′ and P′1 = (P′′1 \ {p1})∪P′′.

By induction hypothesis, there exists a P̂ such that p α̂
=⇒ P̂ ⊆ P′′1 ∪

⋃n
i=2 P′i . If p1 /∈ P̂, then P̂ ⊆

⋃n
i=1 P′i

and we are done. Otherwise, p α̂
=⇒ P =df (P̂ \ {p1})∪P′′. Since P̂ ⊆ P′′1 ∪

⋃n
i=2 P′i implies P̂ \ {p1} ⊆

(P′′1 \{p1})∪
⋃n

i=2 P′i , we obtain P⊆
⋃n

i=1 P′i .
(d) The proof is by induction on the derivation of P ε

=⇒ P′. For P = P′, choose P =df P′′. Otherwise,
assume P ε

=⇒ P̂, p ∈ P̂, p τ−→ P̂′ and P′ = (P̂ \ {p})∪ P̂′. By induction hypothesis, there exists a P′ such
that P′′ ε

=⇒ P′ ⊆ P̂. If p /∈ P′, then P′ ⊆ P′ and we are done. Otherwise, P =df (P
′ \{p})∪ P̂′ ⊆ P′.

(e) For all 1≤ i≤ n, we have pi
ε

=⇒ P′i = {pi
1, . . . , pi

ki
} such that pi

j
a−→ Pi

j for 1≤ j≤ ki, and can derive

pi
a

=⇒ Pi from pi
a

=⇒
⋃ki

j=1 Pi
j by repeated application of Def. 2(b), i.e.,

⋃ki
i=1 Pi

j
ε

=⇒ Pi. By Part (d), we

get for each Pi
j a P

′i
j such that Pi

j
ε

=⇒ P
′i
j ⊆ Pi ⊆

⋃n
i=1 Pi. When applying Part (b), we obtain some P̂ such

that p ε
=⇒ P̂ ⊆

⋃n
i=1 P′i . With Def. 2(c) we get p a

=⇒U , where U is the union of some of the Pi
j. Taking

these Pi
j as the Pi in Part (c) yields p a

=⇒ P such that P is contained in the union of the resp. P
′i
j and, thus, in⋃n

i=1 Pi.

Now we define our refinement relation. It is a weak alternating simulation conceptually similar to the
observational modal refinement found, e.g., in [13]. A notable aspect, originating from IA [11], is that
inputs must be matched immediately, i.e., only trailing τs are allowed. Intuitively, this is due to parallel
composition requiring that a signal sent from one system must be received immediately; otherwise, it is
considered an error (a communication mismatch). Since one wishes not to introduce new errors during
refinement, a refined system must immediately provide all specified inputs. This is discussed further in
Remark 9.

We treat the universal state e as completely underspecified, i.e., we decree that any state refines it. This
is only possible since e is not an ordinary state. We define our refinement preorder for MIAs with common
input and output alphabets; we relax this in Sec. 6.

4

Definition 4 (MIA Refinement). Let P,Q be MIAs with common input and output alphabets. A relation
R ⊆ P×Q is a MIA-refinement relation if for all (p,q) ∈R with q 6= eQ:

(i) p 6= eP,

(ii) q i−→ Q′ implies ∃P′. p i−→ ε
=⇒ P′ and ∀p′∈P′∃q′∈Q′.(p′,q′) ∈R,

(iii) q ω−→ Q′ implies ∃P′. p ω̂
=⇒ P′ and ∀p′∈P′∃q′∈Q′.(p′,q′) ∈R,

(iv) p
i

99K p′ implies ∃q′.q i
99K

ε
=⇒ q′ and (p′,q′) ∈R,

(v) p
ω
99K p′ implies ∃q′.q ω̂

=⇒ q′ and (p′,q′) ∈R.

We write pv q and say that p MIA-refines q if there exists a MIA-refinement relation R such that (p,q)∈R,
and we let pwv q stand for pv q and qv p. Furthermore, we extend these notations to MIAs, write PvQ
if p0 v q0, and use wv analogously.

As we show next, Lem. 3 allows us to replace the transition in the premises of (ii) and (iii) above by
a trailing weak and a weak one, resp.; the analogous replacement in (iv) and (v) is standard. This result is
needed for proving that v is a preorder.

Proposition 5. Let R ⊆ P×Q be a MIA-refinement relation for MIAs P and Q, and let (p,q) ∈ R with
q 6= eQ.

(ii) q i−→ ε
=⇒ Q′ implies ∃P′. p i−→ ε

=⇒ P′ and ∀p′∈P′∃q′∈Q′.(p′,q′) ∈R.

(iii) q ω̂
=⇒ Q′ implies ∃P′. p ω̂

=⇒ P′ and ∀p′∈P′∃q′∈Q′.(p′,q′) ∈R.

(iv) p
i

99K
ε

=⇒ p′ implies ∃q′.q i
99K

ε
=⇒ q′ and (p′,q′) ∈R.

(v) p ω̂
=⇒ p′ implies ∃q′.q ω̂

=⇒ q′ and (p′,q′) ∈R.

Proof. The proof of Parts (iv) and (v) is standard; the proof of Part (ii) is very similar to that of Part (iii),
although the third case is not relevant for Part (ii); thus, we focus on proving Part (iii) concerning weak

disjunctive transitions. We proceed by induction on the definition of q ω̂
=⇒ Q′:

• Let ω = τ and Q′ = {q}. Then, we choose P′ =df {p}.

• Let q ω̂
=⇒Q′ due to Def. 2(b), i.e., we have q ω̂

=⇒Q′′′, q′′ ∈Q′′′, q′′ τ−→Q′′ and Q′ = (Q′′′ \{q′′})∪Q′′.

By induction hypothesis, there is a P′′′ with p ω̂
=⇒ P′′′ and ∀p′′′∈P′′′∃q′′′∈Q′′′.(p′′′,q′′′) ∈R. Further,

for all p′′ ∈ P′′′ with (p′′,q′′) ∈R, there is a P′′ with p′′ ε
=⇒ P′′ and ∀p∈P′′∃q∈Q′′.(p,q) ∈R. Let P̂

be the union of these P′′. By Lem. 3(b), we have p ω̂
=⇒ P′ ⊆ (P′′′ \{p′′ ∈ P′′ | (p′′,q′′) ∈R})∪ P̂. If

p′ ∈ P′, then either p′ ∈ P̂ with a matching q ∈ Q′′ ⊆ Q′, or there is a matching q′′′ ∈ Q′′′ \{q′′} ⊆ Q′.

• Let q ω̂
=⇒Q′ due to Def. 2(c), i.e., ω̂ = o, q ε

=⇒Q′′′= {q1, . . . ,qn}with q j
o−→Q j for all 1≤ j≤ n, and

Q′=
⋃n

j=1 Q j. By induction hypothesis, there exists some P′′′ with p ε
=⇒P′′′ and ∀p′′′∈P′′′∃q j∈Q′′′.(p′′′,q j)∈

R. For each p′′′ ∈ P′′′, there exists some j and P′′ with p′′′ o
=⇒ P′′ and ∀p∈P′′∃q ∈ Q j.(p,q) ∈R;

let P̂ be the union of all these P′′. By Lem. 3(e), we obtain p o
=⇒ P′ ⊆ P̂. For each p′ ∈ P′, there exists

a matching q in some Q j ⊆ Q′.

5

Corollary 6. MIA refinement v is a preorder and the largest MIA-refinement relation.

Proof. Reflexivity of v immediately follows from the fact that the identity relation on states is a MIA-
refinement relation. For transitivity one shows that the composition of two MIA-refinement relations is
again a MIA-refinement relation, using Prop. 5 and following the lines of [20]. The second claim follows
since MIA-refinement relations are easily seen to be closed under union.

3 Parallel Composition and Hiding
Interface Automata (IA) [10, 11] are equipped with an interleaving parallel operator, where an action occur-
ring as an input in one interface is synchronised with the same action occurring as an output in some other
interface; the synchronised action is hidden, i.e., labelled by τ . Since our work builds upon Modal Interfaces
(MI) [22] we instead consider here a parallel composition, where the synchronisation of an interface’s out-
put action involves all concurrently running interfaces that have the action as input. Moreover, we include a
separate operator for hiding outputs (cf. [19]). This properly generalises the binary communication of IA to
multicast in MIA.

3.1 Parallel Composition
We present a parallel operator ‖ on MIA in the same way as we did in [17, 18], except that common actions
are not hidden immediately. Parallel composition is defined in two stages. First, a standard product ⊗
between two MIAs is introduced. Then, errors are identified, i.e., states where an output is not matched by
an appropriate input, and, similarly as in IA, all states from which reaching an error cannot be prevented, are
pruned, i.e., removed.

Definition 7 (Parallel Product). MIAs P1, P2 are composable if O1 ∩O2 = /0. For such MIAs we define the
product P1⊗P2 = ((P1×P2) ∪̇ {e12}, I,O,−→,99K,(p01, p02), e12), where I =df (I1 ∪ I2) \ (O1 ∪O2) and
O =df O1∪O2 and where −→ and 99K are the smallest relations satisfying the following conditions:

(PMust1) (p1, p2)
α−→ P′1×{p2} if p1

α−→ P′1 and α /∈ A2

(PMust2) (p1, p2)
α−→ {p1}×P′2 if p2

α−→ P′2 and α /∈ A1

(PMust3) (p1, p2)
a−→ P′1×P′2 if p1

a−→ P′1 and p2
a−→ P′2 for some a

(PMay1) (p1, p2)
α
99K (p′1, p2) if p1

α
99K p′1 and α /∈ A2

(PMay2) (p1, p2)
α
99K (p1, p′2) if p2

α
99K p′2 and α /∈ A1

(PMay3) (p1, p2)
a

99K (p′1, p′2) if p1
a

99K p′1 and p2
a

99K p′2 for some a.

From the parallel product, parallel composition is obtained by pruning, i.e., one removes errors and
states leading up to errors via local actions, so called illegal states. This cuts all input transitions leading to
an illegal state.

In [6] we have shown that de Alfaro and Henzinger have defined pruning in an inappropriate way in [10].
We remedied this by cutting not only an i-transition from some state p to an illegal state, but also all other
i-transitions from p. Now, in [6, 10], p can be refined by a state with an i-transition and arbitrary behaviour
afterward; we express this by introducing an i-may-transition to the universal state.

Definition 8 (Parallel Composition). Given a parallel product P1⊗P2, a state (p1, p2) is a new error if there
is some a ∈ A1 ∩A2 such that (a) a ∈ O1, p1

a
99K and p2 6

a−→, or (b) a ∈ O2, p2
a

99K and p1 6
a−→. It is an

inherited error if one of its components is a universal state, i.e., if it is of the form (e1, p2) or (p1,e2).

6

q0

q

q′ q′′ q′′′

i?

τ i? d!

p0

p

p′′ p′′′

i?

i? d!

q0 ‖ r0

q ‖ r0

q′ ‖ r0

eQ‖R
i?

τ

i?

p0 ‖ r0

eP‖R

i?

Figure 1: Illustration of the complications of pruning, where AP = AQ = {i}/{d} and AR = {d}/ /0.

We define the set E ⊆ P1×P2 of illegal states as the least set such that (p1, p2) ∈ E if (i) (p1, p2) is a
new or inherited error or (ii) (p1, p2)

ω
99K (p′1, p′2) and (p′1, p′2) ∈ E.

Should the initial state be an illegal state, i.e., (p01, p02) ∈ E, then e12 becomes the initial – and thus the
only reachable – state of the parallel composition P1 ‖ P2. In this case, P1 and P2 are called incompatible.

Otherwise, P1 ‖ P2 is obtained from P1 ⊗ P2 by pruning illegal states as follows. If there is a state

(p1, p2) 6∈ E with (p1, p2)
i

99K (p′1, p′2) ∈ E for some i ∈ I, then all must- and may-transitions labelled i and

starting at (p1, p2) are removed, and a single transition (p1, p2)
i

99K e12 is added. Furthermore, all states in
E, all unreachable states (except for e12), and all their incoming and outgoing transitions are removed. If
(p1, p2) ∈ P1 ‖ P2, we write p1 ‖ p2 and call p1 and p2 compatible.

Remark 9. As mentioned before Def. 4, allowing leading τs when matching input may-transitions would
render our pruning insufficient. When generalising Def. 4(iv) this way, we would have PvQ in Fig. 1 due to
{(p0,q0),(p,q),(p,q′),(p′′,q′′),(p′′′,q′′′)}. Their parallel compositions with R=df ({r0,eR},{d}, /0, /0, /0,r0,eR)
would, with our current pruning, no longer be in the refinement relation: q0 ‖ r0 would still have an i-must-
transition, while p0 ‖ r0 would have lost both i-must-transitions during pruning. Thus, the refinement would
not be a precongruence wrt. parallel composition.

It is possible to repair this by a different pruning construction. For example, when cutting i-transitions
at some state s, one can go backward from s along τ-transitions and cut all outgoing i-transitions; in the
example, q′ ‖ r0 has an i-transition that is cut and, consequently, we would also remove every i-transition
originating from q0 ‖ r0 since q0 ‖ r0

ε
=⇒ q′ ‖ r0. This different parallel composition ‖′ fixes the current

counterexample as it removes q0 ‖ r0
i−→ q ‖ r0 and its underlying may-transition, replacing them with a

i-may-transition to the universal state.

In [22], Raclet et al. use a similar approach to pruning: they introduce a state we denote as tt, which has
only input may-transitions as incoming transitions. Furthermore, it has a may-loop for every action of the
parallel composition so that it can be refined by any state, much like our universal state (cf. Def. 4(i)). To see
the difference, condsider the MIAs P, Q, R in Fig. 2, where we construct (P ‖Q) ‖ R according to [22]. Since
tt is an ordinary state, it is combined with r0 inheriting the j-must-loop. When refining the a-may-transition
to this combined state by a must-transition, the target state of the latter necessarily has a j-must-transition.
In our approach, the combination with r0 is an inherited error, and e does not have any must-transitions.

More importantly, there is the severe problem that parallel composition in [22] is not associative. Con-
sider again the systems P, Q and R in Fig. 2; their parallel compositions shown are not equivalent according

7

p0P:
a? b! q0Q: b? r0R: j?

(p0 ‖ q0) ‖ r0 tt ‖ r0
a?

j?

a?,b!

j?

p0 ‖ (q0 ‖ r0) tt
a?

j?

a?,b!, j?

Figure 2: Differences of our state e to tt in [22], where AP = {a}/{b}, AQ = {b}/ /0 and AR = { j}/ /0.

to wv (and the equivalence in [22]). Note that our example does not rely on the multicast aspect of our
parallel composition; it works just as well for IA parallel composition.

We prove now that parallel composition is associative, starting with two lemmas.

Lemma 10. If P, Q are composable MIA and p‖q ∈ P‖Q, o ∈ OP‖Q and i ∈ IP‖Q, then:

1. p ‖ q
o

99K iff p
o

99K and o ∈ OP, or q
o

99K and o ∈ OQ.

2. If p 6 i−→ and i ∈ IP or if q 6 i−→ and i ∈ IQ, then p ‖ q 6 i−→. The reverse implication does not hold in
general.

Proof. 1. Implication “⇒” is obvious. If implication “⇐” were false, (p,q) would be a new error or
(p,q)

o
99K (p′,q′) in P⊗Q with p′ ‖ q′ undefined. Both would render (p,q) illegal and p ‖ q undefined,

leading to a contradiction.

2. The implication is also obvious, but the reverse implication does not hold since the must-transition
of p ‖ q might have been cut during pruning.

Lemma 11. Given three MIAs P1, P2 and P3, we have:

(a) (P1 ‖ P2) ‖ P3 is defined iff P1,P2 and P3 are pairwise composable iff (P1 ‖ P2) ‖ P3 is defined as well.

(b) (P1 ‖ P2) ‖ P3 is equal to S obtained from pruning (P1 ⊗ P2)⊗ P3 (up to the name of the respective
universal state). For this purpose, a state ((p1, p2), p3) is a new error if, for some i 6= j with i, j ∈
{1,2,3}, there is some a ∈ Ai∩A j such that a ∈Oi, pi

a
99K and p j 6

a−→; it is an inherited one, if pi = ei
for some i ∈ {1,2,3}.

Proof. (a) is easy. (b) For reasons of readability we use P ,Q, R instead of P1, P2, P3 and write (p,q,r) for
((p,q),r). Let EPQR denote the illegal states of (P⊗Q)⊗R as defined above for constructing S. We denote
the illegal states of P⊗Q and (P ‖ Q)⊗R by EPQ and E(P‖Q)⊗R resp. Furthermore, let ErrPQR, ErrPQ and
Err(P‖Q)⊗R be the errors of the respective systems. We also say that two states p and q produce an error, if

(p,q) is an error due to p
a

99K and q 6 a−→ while a ∈ OP∩ IQ or vice versa.
Our first aim is to show that EPQR = (EPQ×R)∪ (E(P‖Q)⊗R \ ({eP‖Q}×R)).

⊆: We prove that (p,q,r) ∈ EPQR is contained in the r.h.s. by induction on the length of a local transition
sequence from (p,q,r) to an error in ErrPQR. For the base case, we show ErrPQR ⊆ (EPQ×R)∪
(E(P‖Q)⊗R \ ({eP‖Q}×R)).

8

Consider (p,q,r)∈ ErrPQR. If (p,q) is illegal in P⊗Q (this covers the cases that p or q is universal or
that p and q produce an error), then (p,q,r) ∈ EPQ×R. Otherwise, r = eR and (p,q,r) ∈ Err(P‖Q)⊗R \
({eP‖Q}×R) ⊆ E(P‖Q)⊗R \ ({eP‖Q}×R), or r produces the error with p or q (possibly both). W.l.o.g.

let p and r produce the error because p
a

99K and r 6 a−→ for some a ∈ OP ∩ IR or because p 6 a−→ and
r

a
99K for some a ∈ IP ∩OR. By Lem. 10.1, this leads to p ‖ q

a
99K and – by Lem. 10.2 – to r 6 a−→ or

p ‖ q 6 a−→ and r
a

99K. Again, (p,q,r) ∈ Err(P‖Q)⊗R \ ({eP‖Q}×R).

For the induction step, consider (p,q,r) ∈ EPQR with (p,q,r)
ω
99K (p′,q′,r′) ∈ EPQR and (p′,q′,r′) ∈

(EPQ×R)∪(E(P‖Q)⊗R\({eP‖Q}×R)) by induction. By the argument at the beginning of the base case,
we can assume that p ‖ q is defined and, thus, (p ‖ q,r) exists in (P ‖ Q)⊗R. Thus, if (p′,q′,r′) ∈
E(P‖Q)⊗R \ ({eP‖Q}×R)), then (p,q,r) ∈ E(P‖Q)⊗R \ ({eP‖Q}×R)) by definition of E.

Finally, consider (p′,q′,r′) ∈ EPQ×R. If the ω-transition is only performed by r, then (p′,q′,r′) =
(p,q,r′) and thus (p,q) ∈ EPQ, contradicting that (p,q) is not illegal. Otherwise, if ω ∈ OP⊗Q∪{τ},
then (p,q)

ω
99K (p′,q′) ∈ EPQ and (p,q)∈EPQ, a contradiction. Thus, ω ∈ IP⊗Q and r performs ω as

an output since, overall, it is an output. As (p,q)
ω
99K (p′,q′) ∈ EPQ, this input transition is cut when

pruning P⊗Q, implying p ‖ q 6 ω−→. This shows again that (p,q,r) ∈ Err(P‖Q)⊗R \ ({eP‖Q}×R).

⊇: We show that (EPQ×R)∪ (E(P‖Q)⊗R \ ({eP‖Q}×R))⊆ EPQR.

• EPQ×R ⊆ EPQR: We prove that (p,q,r) ∈ EPQ×R is contained in EPQR by induction on the
length of a local transition sequence from (p,q) to an error in ErrPQ. In the base case (p,q) ∈
ErrPQ, we have that p and q produce an error or one of them is an error state. In either case

(p,q,r)∈ ErrPQR ⊆ EPQR. For the induction step, consider some (p,q)
ω
99K (p′,q′)∈ EPQ where,

by induction, {(p′,q′)}×R ⊆ EPQR. If ω 6∈ AR, then (p,q,r)
ω
99K (p′,q′,r) ∈ EPQR and we are

done. If ω ∈ AR, we must have ω ∈ IR. Now either (p,q,r) ∈ ErrPQR or (p,q,r)
ω
99K (p′,q′,r′) ∈

EPQR for some r′, and in either case we are done.

• E(P‖Q)⊗R \ ({eP‖Q}×R)⊆ EPQR: We prove that (p,q,r) ∈ E(P‖Q)⊗R \ ({eP‖Q}×R) is contained
in EPQR by induction on the length of a local transition sequence from (p ‖ q,r) to an error in
Err(P‖Q)⊗R.
In the base case (p ‖ q,r) ∈ Err(P‖Q)⊗R \ ({eP‖Q}×R), we have that r = eR and, thus, (p,q,r) ∈
ErrPQR⊆EPQR, or that p ‖ q and r produce an error. The latter means: Either p ‖ q

a
99K and r 6 a−→

for some a ∈ (OP ∪OQ)∩ IR, implying p
a

99K and a ∈ OP or q
a

99K and a ∈ OQ by Lem. 10.1,
and hence (p,q,r) ∈ ErrPQR ⊆ EPQR. Or p ‖ q 6 a−→ and r

a
99K for some a ∈ (IP ∪ IQ)∩OR.

Here p ‖ q 6 a−→ can have several reasons. We might have p 6 a−→ and a ∈ IP or q 6 a−→ and a ∈ IQ

and in both cases (p,q,r) ∈ ErrPQR due to r
a

99K. Otherwise, (p,q) a−→ (p′,q′) ∈ EPQ; in this
case (p,q,r)

a
99K (p′,q′,r′) ∈ EPQ×R ⊆ EPQR by the above, implying (p,q,r) ∈ EPQR, since

a ∈ O(P⊗Q)⊗R.

For the induction step, consider some (p ‖ q,r)
ω
99K (p′ ‖ q′,r′) ∈ E(P‖Q)⊗R; since (p′,q′,r′) ∈

EPQR by induction, we are done with the ‘⊇’-case and thus with showing the desired equality.

We now show that the state space (P×Q×R)\EPQR∪{e} of S coincides with that of (P ‖Q) ‖ R (up

9

to the name of the universal state). The states of (P ‖ Q) ‖ R are:

(((P×Q)\EPQ∪{eP‖Q})×R)\E(P‖Q)⊗R∪{e}
= ((P×Q×R)\ (EPQ×R)∪{eP‖Q}×R)\E(P‖Q)⊗R∪{e}

= (P×Q×R)\ (EPQ×R∪E(P‖Q)⊗R)︸ ︷︷ ︸
=(P×Q×R)\EPQR

∪({eP‖Q}×R\E(P‖Q)⊗R︸ ︷︷ ︸
= /0

∪{e})

For the last step, note that (P×Q×R)∩{eP‖Q}×R = /0.

Finally, we show that the transitions of S and (P ‖ Q) ‖ R are the same. For transitions to e, consider

(p ‖ q) ‖ r
i

99K e for some i ∈ I(P‖Q)‖R. This transition exists, iff (p ‖ q,r)
i

99K (t,r′) ∈ E(P‖Q)⊗R. Now

either t = p′ ‖ q′ for some p′ and q′, and (t,r′) ∈ E(P‖Q)⊗R \ {eP‖Q}×R. Or (p ‖ q,r)
i

99K (eP‖Q,r′),

which holds iff (p,q)
i

99K (p′,q′) ∈ EPQ and either r
i

99K r′ or i /∈ AR and r = r′. This is equivalent to

(p,q,r)
i

99K (p′,q′,r′) ∈ EPQ×R. Both cases together show: (p ‖ q) ‖ r
i

99K e iff (p,q,r)
i

99KP⊗Q⊗R

(p′,q′,r′) ∈ EPQR iff (p,q,r)
i

99KS e in S.

For transitions between the states of S (which are also the states of (P ‖Q) ‖ R), observe that these are

exactly the transitions inherited from (P⊗Q)⊗R minus all i-transitions from any s with s
i

99K e. In

(P ‖ Q) ‖ R, all transitions are inherited indirectly from (P⊗Q)⊗R; if s
i

99K e, s clearly has no other
i-transitions.

It remains to show that no a-transition from some s is missing, if s 6 a
99K e. Assume the contrary, namely

that a transition s = (p,q,r)
a

99KP⊗Q⊗R (p′,q′,r′) of S is missing in (P ‖Q) ‖ R although s 6 a
99K e. This

can only be due to pruning; recall that (p ‖ q) ‖ r and (p′ ‖ q′) ‖ r′ are states of (P ‖ Q) ‖ R.

If (p,q) 6 a
99KP⊗Q, then a /∈ AP ∪AQ, and the missing transition was lost when pruning (P ‖ Q)⊗R,

contradicting s 6 a
99K e. Thus, (p,q)

a
99KP⊗Q (p′,q′).

If p ‖ q 6 a
99K p′ ‖ q′, then we have p ‖ q

a
99K eP‖Q and (p ‖ q,r) is illegal if a ∈ OR or (p ‖ q) ‖ r

a
99K e,

a contradiction in both cases. Thus, (p ‖ q,r)
a

99K (p′ ‖ q′,r′) in (P ‖ Q)⊗R. Again in this case, the
transition was lost when pruning (P ‖ Q)⊗R, a contradiction.

This lemma immediately implies the desired associativity.

Theorem 12 (Associativity of Parallel Composition). Parallel composition is associative in the sense that,
for MIAs P, Q and R, if (P ‖ Q) ‖ R is defined, then P ‖ (Q ‖ R) is defined as well and they are isomorphic,
and vice versa.

Now we proceed to show that MIA refinement is compositional wrt. parallel composition, which essen-
tially means that Pv Q implies P ‖ R v Q ‖ R for MIAs P, Q and R. The proof requires the following two
lemmas.

Lemma 13 (Compatibility). For MIAs P1, P2 and Q1, let EP be the E-set of P1⊗P2 and EQ be the one
of Q1 ⊗ P2. Further, let p1 ∈ P1, p2 ∈ P2 and q1 ∈ Q1 such that p1 v q1. Then, (p1, p2) ∈ EP implies
(q1, p2) ∈ EQ.

Proof. Let I1/O1 be the alphabets of P1 and Q1, let I2/O2 be the alphabets of P2 and let I/O be the alphabets
of the products. The proof is by induction on the length of a path from (p1, p2) to an error of P1⊗P2:

10

(Base) Let (p1, p2) be an error.

• Let p1
a

99K with a ∈ O1∩ I2 and p2 6
a−→. Then, for some q′1, we have q1

ε
=⇒ q′1

a
99K by p1 v q1;

hence, (q1, p2)
ε

=⇒ (q′1, p2) ∈ EQ and (q1, p2) ∈ EQ as well.

• Let p2
a

99K with a∈O2∩ I1 and p1 6
a−→. If q1

a−→, we have a contradiction to p1 v q1; otherwise,
(q1, p2) is an error since a ∈ I1∩O2.

• If p1 = eP1 , then q1 = eQ1 because of p1 v q1, and thus (q1, p2) ∈ EQ.

• Case p2 = eP2 is obvious.

(Step) For a shortest path from (p1, p2) to an error, consider the first transition (p1, p2)
ω
99K (p′1, p′2) ∈ EP,

where ω ∈ O∪{τ}. The transition is due to either Rule (PMay1), (PMay2) or (PMay3). In all cases
we find some q′1 ∈ Q1 such that (q′1, p′2) is locally reachable from (q1, p2) and p′1 v q′1. The latter
implies (q′1, p′2) ∈ EQ by induction hypothesis.

(PMay1) p1
ω
99K p′1, p2 = p′2, ω /∈ A2. Due to p1 v q1, there is a q′1 such that q1

ω̂
=⇒ q′1 and p′1 v q′1,

and (q1, p2)
ω̂

=⇒ (q′1, p2) by applications of (PMay1). By induction hypothesis, (q′1, p2) ∈ EQ
and, therefore, (q1, p2) ∈ EQ.

(PMay2) p1 = p′1, p2
ω
99K p′2 and ω /∈A1. Using (PMay2) we obtain (q1, p2)

ω
99K (q1, p′2), so that (q1, p′2)∈

EQ by induction hypothesis. Hence, (q1, p2) ∈ EQ, too.

(PMay3) ω = o, p1
o

99K p′1 and p2
o

99K p′2 with o∈A1∩A2. Note that o is an output for the product and
one of its components, but an input for the other. By p1 v q1 we have q1

ε
=⇒ q′′1

o
99K q′′′1

ε
=⇒ q′1

for some q′1,q
′′
1 ,q
′′′
1 with p′1 v q′1. (Note, that in case o ∈ I1 we have q1 = q′′1 .) Therefore, we

get (q1, p2)
ε

=⇒ (q′′1 , p2)
o

99K (q′′′1 , p′2)
ε

=⇒ (q′1, p′2) via (PMay1) and (PMay3). By induction
hypothesis, (q′1, p′2) ∈ EQ and, hence, (q1, p2) ∈ EQ, too.

The next lemma generalises the synchronisation according to Rule (PMust3) to weak transitions.

Lemma 14 (Weak Must-Transitions). Let P, Q be composable MIAs. If p a
=⇒ P′ (or p a−→ ε

=⇒ P′) and
q a−→ Q′ for some a ∈ AP∩AQ, then (p,q) a

=⇒ P′×Q′ (or (p,q) a−→ ε
=⇒ P′×Q′) in P⊗Q.

Proof. Consider P′′⊆P and P′′′ with (i) p ε
=⇒P′′= {p1, . . . , pn} and ∀i. pi

a−→Pi such that P′′′=
⋃n

i=1 Pi and
(ii) P′ is obtained from P′′′ by repeated application of Def. 2(c) with α = τ . In P⊗Q, we get (p,q) ε

=⇒ P′′×{q}
by the definition of ε

=⇒ and repeated application of (PMust1). Now, one can replace (p1,q), . . . ,(pn,q) in
P′′×{q} simultaneously by the elements of P1×Q′, . . . ,Pn×Q′, whence (p,q) a

=⇒ P′′′×Q′. The replace-
ments of some p by P that transform P′′′ to P′ can be applied to P′′′×Q′: each (p,q′) with q′ ∈Q′ is replaced
by the elements of P×{q′}.

The alternative claim for the trailing-weak transitions is a special case of the first claim, where P′′ =
{p}.

Theorem 15 (Compositionality of Parallel Composition). Let P1, P2 and Q1 be MIAs and P1 v Q1. Assume
that Q1 and P2 are composable, then:

(a) P1 and P2 are composable.

(b) P1 ‖ P2 v Q1 ‖ P2, and P1 ‖ P2 is compatible if Q1 ‖ P2 is.

11

Proof. Part (a) is trivial. Regarding Part (b), the second claim is immediate from the first with Lem. 13. We
denote the universal state of P1 ‖ P2 and Q1 ‖ P2 as eP and eQ resp. EP stand for the E-set of P1⊗P2 and EQ
for the one of Q1⊗P2, as in Lem. 13. To establish the first claim, we prove that

R =df {(p1 ‖ p2, q1 ‖ p2) | p1 v q1}∪ (P1 ‖ P2)×{eQ}

is a MIA-refinement relation, for which we check the conditions of Def. 4; the second set obviously satisfies
them. Then, we are done since p01 v q01 due to P1 v Q1 and therefore (p01 ‖ p02, q01 ‖ p02) ∈R. For the
second subset, the check is trivial; so consider some (p1 ‖ p2, q1 ‖ p2) ∈R:

(i) Obvious, since p1 ‖ p2 6= eP.

(ii) Let q1 ‖ p2
i−→ Q due to either Rule (PMust1), (PMust2) or (PMust3). Note that (q1, p2)

i−→ Q in
Q1⊗P2 as well. If any state pair in Q was illegal, the transition would have been removed by pruning.

(PMust1) q1
i−→ Q′1 and Q = Q′1×{p2}. By p1 v q1, there is a P′1 ⊆ P1 such that p1

i−→ ε
=⇒P1

P′1 and ∀p′1∈P′1∃q′1∈Q′1. p′1 v q′1. Now, (p1, p2)
i−→ ε
=⇒ P′1×{p2} by repeated application of

Rule (PMust1) and since i /∈ A2. For every (p′1, p2) ∈ P′1×{p2}, we have a suitable (q′1, p2) ∈
Q′1×{p2}; moreover, (p′1, p2) /∈ EP since (q′1, p2) /∈ EQ and due to Lem. 13. Thus, we have
(p′1 ‖ p2,q′1 ‖ p2) ∈R.

It remains to show that (p1, p2)
i−→ ε
=⇒ P′1×{p2} also exists in P1 ‖ P2, i.e., that no state (p′′1 , p2)

along this weak transition is pruned. More generally, let us consider any p1 and p′′1 with p1
i

99K

p1
ε

=⇒ p′′1 , implying (p1, p2)
i

99K (p1, p2)
ε

=⇒ (p′′1 , p2). Because of p1
i

99K p1 and p1v q1, there

must be some q1 with q1
i

99K
ε

=⇒ q1 which implies (q1, p2)
i

99K
ε

=⇒ (q1, p2), and p1 v q1. If
(q1, p2)∈ EQ, then all outgoing i-transitions from q1 ‖ p2 would have been pruned, contradicting
our assumptions. Thus, and by Lem. 13, (p1, p2) /∈ EP, which means that (p′′1 , p2) /∈ EP, too.

(PMust2) p2
i−→ P′2 and Q = {q1}×P′2. Then, (p1, p2)

i−→ P = {p1}×P′2 according to (PMust2)
and since i /∈ A1. For (p1, p′2) ∈ P, we get (p1, p′2) /∈ EP because (q1, p′2) /∈ EQ and due to

Lem. 13. Thus, p1 ‖ p2
i−→P and, for every p1 ‖ p′2 ∈P, we have q1 ‖ p′2 ∈Q with (p1 ‖ p′2,q1 ‖ p′2)∈

R.

(PMust3) q1
i−→ Q′1, p2

i−→ P′2 and Q = Q′1×P′2. (Note that i ∈ I1 ∩ I2.) Then, by p1 v q1, there

is a set P′1 ⊆ P1 such that p1
i−→ ε
=⇒ P′1 and ∀p′1∈P′1∃q′1∈Q′1. p′1 v q′1. By Lem. 14 we get that

(p1, p2)
i−→ ε
=⇒ P′1×P′2.

Similarly to Case (PMust1), it remains to show that (p1, p2)
i−→ ε
=⇒ P′1×P′2 also exists in P1 ‖

P2, i.e., no state (p′′1 , p′2) along this weak transition is pruned. More generally, let us consider

any p1 and p′′1 with p1
i

99K p1
ε

=⇒ p′′1 and some p′2 with p2
i

99K p′2, implying (p1, p2)
i

99K

(p1, p′2)
ε

=⇒ (p′′1 , p′2). Because of p1
i

99K p1 and p1v q1, there must be some q1 with q1
i

99K
ε

=⇒
q1, which implies (q1, p2)

i
99K

ε
=⇒ (q1, p′2), and p1 v q1. If (q1, p′2) ∈ EQ, then all outgoing i-

transitions from q1 ‖ p2 would have been pruned, contradicting our assumptions. Therefore, and
by Lem. 13, (p1, p′2) /∈ EP, which means that also (p′′1 , p′2) /∈ EP.

(iii) Let q1 ‖ p2
ω−→ Q due to either (PMust1), (PMust2) or (PMust3). Again the transition and the states

exist in Q1⊗P2, too, for the same reasons as above.

12

(PMust1) q1
ω−→ Q′1 and Q = Q′1×{p2}. Then, by p1 v q1, there exists P′1 ⊆ P1 such that p1

ω̂
=⇒ P′1

and ∀p′1∈P′1∃q′1∈Q′1. p′1v q′1. Now, (p1, p2)
ω̂

=⇒P′1×{p2} according to (PMust1) and since ω /∈
A2. Because p1 and p2 are compatible, this also holds for all pairs along this weak transition by
the definition of EP. For p′1 ∈ P′1 we have a suitable q′1 ∈ Q′1 such that, for the arbitrary p′1 ‖ p2,
we also have (p′1 ‖ p2,q′1 ‖ q2) ∈R.

(PMust2) p2
ω−→P2 P′2 and Q = {q1}×P′2. In this case we obtain that (p1, p2)

ω−→ P = {p1}×P′2
by (PMust2) and ω /∈ A1. For (p1, p′2) ∈ P we get (p1, p′2) /∈ EP since (q1, p′2) /∈ EQ and due to

Lem. 13. Thus, p1 ‖ p2
ω−→ P and therefore also p1 ‖ p2

ω̂
=⇒ P. For (p1, p′2) ∈ P we also have

(p1 ‖ p′2,q1 ‖ p′2) ∈R.

(PMust3) ω = o, q1
o−→ Q′1, p2

o−→ P′2 for some action o ∈ (O1∩ I2)∪ (I1∩O2), and Q = Q′1×P′2.
By p1 v q1, there exists some P′1 with p1

o
=⇒ P′1 (possibly p1

o−→ ε
=⇒ P′1, if o ∈ I1) such that

∀p′1∈P′1∃q′1∈Q′1. p′1 v q′1. Now, (p1, p2)
o

=⇒ R ⊆ P′1×P′2 by Lem. 14 and, as in Case (PMust1)
above, all pairs along this weak transition are compatible. Hence, p1 ‖ p2

o
=⇒ R and, for all

p′1 ‖ p′2 ∈ R, we have some q′ ∈ Q′ such that (p′1 ‖ p′2,q
′
1 ‖ p′2) ∈R.

(iv) First, we consider p1 ‖ p2
i

99K eP due to pruning, i.e., (p1, p2)
i

99K (p′1, p′2) ∈ EP.

(PMay1) p1
i

99KP1 p′1 and p′2 = p2. By p1 v q1, we have q1
i

99K q′′1
ε

=⇒ q′1 for some q′1,q
′′
1 such that

p′1 v q′1. Hence, (q1, p2)
i

99K (q′′1 , p2)
ε

=⇒ (q′1, p2) by repeated application of (PMay1) and since

i /∈ A2. By Lem. 13 we get that (q′1, p2) ∈ EQ and thus (q′′1 , p2) ∈ EQ. Therefore, q1 ‖ p2
i

99K eQ
by pruning.

(PMay2) p2
i

99K p′2 and p′1 = p1. Then, (q1, p2)
i

99K (q1, p′2) by (PMay2). By Lem. 13 we get that

(q1, p′2) ∈ EQ. Therefore, q1 ‖ p2
i

99K eQ by pruning.

(PMay3) p1
i

99K p′1 and p2
i

99K p′2 for some action i∈ I1∩I2. Due to p1v q1, we get q1
i

99K q′′1
ε

=⇒ q′1
for some q′1,q

′′
1 such that p′1 v q′1. Hence, (q1, p2)

i
99K (q′′1 , p′2)

ε
=⇒ (q′1, p′2) by Rules (PMay1)

and (PMay3). By Lem. 13 we get that (q′1, p′2) ∈ EQ, and thus (q′′1 , p′2) ∈ EQ as well. Therefore,

q1 ‖ p2
i

99K eQ by pruning.

Second, we consider p1 ‖ p2
i

99K p′1 ‖ p′2, due to one of the Rules (PMay1), (PMay2) or (PMay3).

(PMay1) p1
i

99K p′1 and p′2 = p2. By p1 v q1, we have q1
i

99K
ε

=⇒ q′1 for some q′1 such that p′1 v q′1.

Hence, (q1, p2)
i

99K
ε

=⇒ (q′1, p2) by repeated application of (PMay1) and since i /∈ A2. If any

state along this weak transition is in EQ, then we get q1 ‖ p2
i

99K eQ and (p′1 ‖ p′2,eQ) ∈ R.

Otherwise, q1 ‖ p2
i

99K
ε

=⇒ q′1 ‖ p2 with (p′1 ‖ p2,q′1 ‖ p2) ∈R.

(PMay2) p2
i

99K p′2 and p′1 = p1. Then, (q1, p2)
i

99K (q1, p′2) by (PMay2). If the latter state (q1, p′2)

is in EQ, then we get q1 ‖ p2
i

99K eQ and are done. Otherwise we have (p1 ‖ p′2,q1 ‖ p′2) ∈R.

(PMay3) p1
i

99K p′1 and p2
i

99K p′2 for some action i∈ I1∩I2: Due to p1v q1, we get q1
i

99K q′′1
ε

=⇒ q′1
for some q′1,q

′′
1 ∈ Q such that p′1 v q′1. Now, we obtain (q1, p2)

i
99K (q′′1 , p′2)

ε
=⇒ (q′1, p′2)

13

by (PMay1) and (PMay3). If any state along (q′′1 , p′2)
ε

=⇒ (q′1, p′2) is in EQ, then we get

(q1, p2)
i

99K eQ and (p′1 ‖ p′2,eQ) ∈R. Otherwise, we again have (p′1 ‖ p′2,q
′
1 ‖ p′2) ∈R.

(v) Let p1 ‖ p2
ω
99K p′1 ‖ p′2, due to one of the Rules (PMay1), (PMay2) or (PMay3).

(PMay1) p1
ω
99K p′1 and p′2 = p2. By p1 v q1, we have q1

ω̂
=⇒ q′1 for some q′1 such that p′1 v

q′1. Hence, (q1, p2)
ω̂

=⇒ (q′1, p2) by repeated application of (PMay1) and since ω /∈ A2. If
any state along this weak transition was in EQ, then also (q1, p2) ∈ EQ, which contradicts

(p1 ‖ p2,q1 ‖ p2) ∈R. Thus, q1 ‖ p2
ω̂

=⇒ q′1 ‖ p2 with (p′1 ‖ p2,q′1 ‖ p2) ∈R.

(PMay2) p2
ω
99K p′2 and p′1 = p1. Then, (q1, p2)

ω
99K (q1, p′2) by (PMay2) and due to p1 v q1. If the

latter state (q1, p′2) were in EQ, then also the former state (q1, p2). Thus, we have q1‖p2
ω
99K

q1‖p′2 and (p1‖p′2,q1‖p′2) ∈R.

(PMay3) ω = o, p1
o

99K p′1 and p2
o

99K p′2 for some action o ∈ (O1 ∩ I2)∪ (I1 ∩O2). Due to p1 v
q1, we get q1

ε
=⇒ q′′1

o
99K q′′′1

ε
=⇒ q′1 (or q1

o
99K q′′′1

ε
=⇒ q′1 if o ∈ I1) for some q′1,q

′′
1 ,q
′′′
1 ∈

Q such that p′1 v q′1. Now, we obtain (q1, p2)
ε

=⇒ (q′′1 , p2)
o

99K (q′′′1 , p′2)
ε

=⇒ (q′1, p′2) (or
(q1, p2)

o
99K (q′′′1 , p′2)

ε
=⇒ (q′1, p′2)) by (PMay1) and (PMay3). We get q1 ‖ p2

o
=⇒ q′1 ‖ p′2

and (p′1 ‖ p′2,q
′
1 ‖ p′2) ∈R, as in Case (PMay1) above.

3.2 Hiding and Restriction
We now introduce operators for scoping actions, as is usual in process algebra. In our setting, outputs are
under the control of the system; when disconnected, they are still performed but the signal is no longer sent
outside, i.e., the action is internal. In contrast, inputs are only performed because of an outside stimulus.
Disconnecting an input rather blocks it and, therefore, we introduce a restriction operator for inputs. The
same idea is used in the IA-setting of [9] but hiding and restriction are combined in one operation.

Definition 16 (Hiding). Given a MIA P = (P, I,O,−→P,99KP, p0,e) and a set L of actions with L∩ I = /0,
then P hiding L is the MIA P/L =df (P, I,O \L,−→P/L,99KP/L, p0,e), where all transition labels o ∈ L are
replaced by τ .

Definition 17 (Restriction). Given a MIA P = (P, I,O,−→P,99KP, p0,e) and a set L of actions such that
L∩O = /0, then restricting L in P yields the MIA P \ L =df (P, I \ L,O,−→P\L,99KP\L, p0,eP), where all
transitions with label in L are deleted.

Regarding weak must-transitions under hiding, it is important to note that, in analogy to Lem. 3, the
transition’s target set in P/L might be smaller than it is in P.

Lemma 18 (Weak Must-Transitions under Hiding). Let P be a MIA, L∩ I = /0 and o ∈ L∩O. If p o
=⇒P P′,

then p ε
=⇒P/L R⊆ P′. In general, R 6= P′.

Proof. Consider P′′ ⊆ P and P′′′ with (i) p ε
=⇒P P′′ = {p1, . . . , pn} and ∀i. pi

o−→P Pi such that P′′′ =
⋃n

i=1 Pi

and (ii) P′ is obtained from P′′′ by repeated application of Def. 2(e) with ω = τ . In P/L, we get p ε
=⇒P/L P′′

by the definition of ε
=⇒ and Def. 16. Now, according to the definition of ε

=⇒, one can replace p1, . . . , pn

14

P :

p0

1 3

2 4

τ

o!

o!

P/L :

p0

1 3

2 4

τ

τ

τ

Figure 3: Example showing that set R in Lem. 18 is not always the full set P′.

in P′′ one after the other by the elements of P1, . . . ,Pn such that we finally get p ε
=⇒P/L R′ where R′ ⊆ P′′′.

Note that R′ can be a proper subset of P′′′, as is demonstrated by the example below.
The replacements of some p by P that transform P′′′ to P′ can be applied to R′ in P/L, as well, provided

p ∈ R′; if not, no replacement occurs. This results in R and, since the replacements preserve the inclusion,
we have p ε

=⇒P/L R⊆ P′.
To see that R 6= P′ in general, consider Fig. 3 (see [18]), where p0

o
=⇒P {1,2,3,4}, but it is not possible

to reach {1,2,3,4} in P/L with a weak τ-must-transition. The reachable sets with maximal cardinality are
{1,3,4} and {2,3,4}.

As desired, MIA refinement is a precongruence wrt. hiding and restriction.

Proposition 19. Let P and Q be MIAs with Pv Q.

1. P/Lv Q/L for any set L of actions with L∩ I = /0.

2. P\Lv Q\L for any set L of actions with L∩O = /0.

Proof. Since Pv Q, there must be a MIA-refinement relation R with (p,q) ∈R. We show that R is also a
MIA-refinement relation for P/Lv Q/L and P\Lv Q\L.

In case of hiding, the only interesting case of Def. 4 is (iii), i.e., q τ−→Q/L Q′ due to q o−→Q Q′ for some

o ∈ O∩L. The latter is matched by some transition p o
=⇒P P′. By Lem. 18, this means p ε

=⇒P/L P′′ ⊆ P′.
Since P′ matches Q′, P′′ matches Q′ as well.

3.3 Parallel Composition with Hiding
We now turn our attention to parallel composition with immediate hiding on synchronised actions, enforc-
ing binary communication. This parallel composition was used by de Alfaro and Henzinger for Interface
Automata (IA) in [10, 11]. We show that the standard IA parallel composition can be expressed via our
multicast parallel composition and hiding.

Definition 20 (Parallel Product and Composition with Hiding). MIAs P1 and P2 are H-composable if O1∩
O2 = /0 = I1∩ I2. We then define the product with hiding in the same way as the parallel product in Def. 7,
except for I =df (I1∪ I2)\ (O1∪O2) and

(PMust3) (p1, p2)
τ−→ P′1×P′2 if p1

a−→ P′1 and p2
a−→ P′2 for some a

(PMay3) (p1, p2)
τ

99K (p′1, p′2) if p1
a

99K p′1 and p2
a

99K p′2 for some a.

From this parallel product with hiding, we get the parallel composition with hiding P1 | P2 by the same
pruning procedure as in Def. 8.

15

It can easily be seen that the parallel product with hiding can be expressed by our parallel product
without hiding and the hiding operator. Pruning does not change this since it treats outputs and internal
actions equally.

Proposition 21. Let P1 and P2 be MIAs and S = A1∩A2 be the set of synchronising actions. Then, P1 |P2 =
(P1 ‖ P2)/S.

For establishing the associativity of |, we first show some simple properties regarding hiding and parallel
composition.

Proposition 22. For MIAs P and Q we have the following laws, where = means that the respective MIAs
are identical (up to the naming of the resp. universal states in (iii)).

(i) P/L = P if AP∩L = /0.

(ii) P/L/L′ = P/(L∪L′) if L∩ IP = L′∩ IP = /0.

(iii) (P ‖ Q)/L = (P/L) ‖ (Q/L) if AP∩AQ∩L = /0.

Proof. Parts (i) and (ii) are straightforward. We thus focus on proving Part (iii). P⊗Q and P/L⊗Q/L are
the same due to the condition AP ∩AQ ∩ L, except that transition labels o ∈ L in the former are replaced
by τ in the latter; observe that (PMust3) and (PMay3) are never applicable to o ∈ L by assumption, and
the other rules work for o ∈ L and τ in the same way. Also by assumption, the same states are considered
as errors in both products. As a consequence and since pruning makes no difference between output- and
τ-transitions, it deletes the same states in both systems and the same input transitions get redirected to the
respective universal states of the parallel compositions. Finally, applying hiding to P ‖Q for the first system
makes the MIAs identical.

Associativity is a natural property of parallel composition, so one would expect that (P |Q) |R = P | (Q |
R) for some suitable equivalence = (e.g., equality up to isomorphism) provided that one side is defined. This
law looks much less natural if we rewrite it according to Prop. 21; it is wrong in the version of | in [10].
Here, associativity can be proved from Thm. 12 and Prop. 22:

Proposition 23. Parallel composition with hiding is associative in the sense, that for pairwise H-composable
MIAs P, Q and R, if (P |Q) |R is defined, then P | (Q |R) is defined as well and both are isomorphic, and vice
versa.

Proof. Let P, Q, R be pairwise H-composable MIAs. We use SPQ, APQ etc. as above and let SPQR = SPQ∪
SPR ∪ SQR. Note that (∗) SPQ ∩AR = /0 since, otherwise AR would contain an action that is an input in one
of P and Q and an output in the other, contradicting H-composability of R with one of the other MIAs.

Furthermore, (∗∗) SPQ ∪ (APQ ∩AR) = SPQ ∪ (((AP ∪AQ)/SPQ)∩AR)
(∗)
= SPQ ∪ (((AP ∪AQ)∩AR)/SPQ) =

SPQ∪ ((AP∪AQ)∩AR) = SPQ∪ (AP∩AR)∪ (AQ∩AR) = SPQR. We now obtain:

(P |Q) |R = ((P ‖ Q)/SPQ ‖ R)/(APQ∩AR) (Prop. 21)
= ((P ‖ Q)/SPQ ‖ R/SPQ)/(APQ∩AR) (Prop. 22.(i) and (∗))
= ((P ‖ Q) ‖ R)/SPQ/(APQ∩AR) (Prop. 22.(iii) and (∗))
= ((P ‖ Q) ‖ R)/SPQR (Prop. 22.(ii) and (∗∗))
= (P ‖ (Q ‖ R))/SPQR (Thm. 12)
= P | (Q |R) (by symmetric arguments)

16

P:

p0

rqst!
resp!
fail!

D:

d0

d1

rqst? resp! fail!

Q:

q0

q1

eQ

rqst! resp? fail?

resp?
fail?

Q ‖ D:

(q0,d0)

(q1,d1)

rqst! resp! fail!

Figure 4: Q = P//D with q0 = p0//d0 and q1 = p0//d1, where the alphabets are AP = /0/{rqst, resp, fail},
AD = {rqst}/{resp, fail}, AQ = {resp, fail}/{rqst} and AQ‖D = /0/{rqst, resp, fail}.

4 Quotienting
The quotient operation is a kind of inverse or adjoined operation to parallel composition. It equips the
theory with a means for component reuse and incremental, component-based specification. To describe the
participants in a quotient operation we use the letters P for the specification, D for the divisor (the already
implemented component) and Q for the quotient or its refinements. Given MIAs P and D, the quotient is the
coarsest MIA Q such that Q ‖ D v P holds; we call this inequality the defining inequality of the quotient.
We write P//D for the quotient if it exists.

We demonstrate quotienting with the simple client-server application of Fig. 4. The server takes the role
of the already given component D. It can receive a request and answers with a response. Additionally, the
server may implement a failure as answer. When composed in parallel, client Q and server D are supposed
to form a closed system, i.e., all shared actions are outputs. Thus, the parallel composition of client and
server must refine the overall specification P. A specification for the client is then obtained as the quotient
Q = P//D. Figure 4 gives a preview of this Q according to our construction below. Client Q may implement
the sending of a request, and if so, it must be receptive for a response and a failure. If one of the latter two
transitions were of may-modality, this would cause a communication mismatch in the parallel composition
with D. The may-transitions resp? and fail! from q0 to eQ only exist to make Q as coarse as possible; they
disappear in the parallel composition with D. Now, it is easy to check that the defining inequality Q ‖Dv P
is satisfied. The example also shows that, in general, we do not have equality of (P//D) ‖ D and P.

We define the quotient for a restricted set of MIAs, namely where the specification P has no τs and where
the divisor D is may-deterministic and without τs. We call D may-deterministic if d

α
99K d′ and d

α
99K d′′

implies d′ = d′′. Due to syntactic consistency, a may-deterministic MIA has no disjunctive must-transitions,
i.e., the target sets of must-transitions are singletons. In addition, we exclude the pathological case where P

has some state p and input i with p
i

99K eP and ∃p′ 6= eP. p
i

99K p′. Recall that transitions p
i

99K eP are meant
to express the following situation: (a) input i is not specified at p, but at the same time (b) p shall be refinable
as in Interface Automata [11] by a state with an i-transition and arbitrary subsequent behaviour.

Despite these restrictions, our quotient significantly generalises that of Modal Interfaces [22], which
considered deterministic specifications and deterministic divisors only. In the following, we call MIAs P
and D satisfying our restrictions a quotient pair.

4.1 Definition and Main Result
Like most other operators we define the quotient in two stages, where mayP(p,α) stands for {p′ ∈ P | p α

99KP
p′}.

17

Definition 24 (Pseudo-Quotient). Let (P, IP,OP,−→P,99KP, p0,eP), (D, ID,OD,−→D,99KD,d0,eD) be a
quotient pair with AD ⊆ AP and OD ⊆ OP, and I =df IP ∪OD and O =df OP \OD. The pseudo-quotient
of P over D is defined as the universal MIA ({(eP,eD)}, I,O, /0, /0,(eP,eD),(eP,eD)) if p0 = eP. Otherwise,
P�D =df (P×D, I,O,−→,99K,(p0,d0),(eP,eD)), where the transition relations are defined by the follow-
ing rules:

(QMust1) (p,d) a−→ P′×{d} if p a−→P P′ and a 6∈ AD

(QMust2) (p,d) a−→ P′×{d′} if p a−→P P′ and d a−→D d′

(QMust3) (p,d) a−→ P′×{d′} if P′ =df mayP(p,a) 6= /0, eP 6∈ P′,
d

a
99KD d′ and a ∈ OD

(QMay1) (p,d)
a

99K (p′,d) if p
a

99KP p′ 6= eP and a 6∈ AD

(QMay2) (p,d)
a

99K (p′,d′) if p
a

99KP p′ 6= eP and d a−→D d′

(QMay3) (p,d)
a

99K (p′,d′) if p
a

99KP p′, eP 6∈mayP(p,a),
d

a
99KD d′ and a 6∈ OP∩ ID

(QMay4) (p,d)
a

99K (eP,eD) if eP ∈mayP(p,a) (note: a ∈ IP ⊆ I)
(QMay5) (p,d)

a
99K (eP,eD) if p 6= eP, d 6 a

99KD and a ∈ AD \ (OP∩ ID)
(note: AD \ (OP∩ ID) = I∩AD)

Regarding the definition of the input and output alphabets we follow Chilton et al. [8] and Raclet et al. [22];
there is, however, a choice regarding the input alphabet, which we discuss in Sec. 4.2. The intuition behind
a state (p,d) in P�D is that (p,d) composed in parallel with d refines state p, and that (p,d) should be
coarsest wrt. MIA refinement satisfying this condition. With this in mind, we now justify the above rules
intuitively. A formal proof is given in Lem. 26 and Thm. 27 below.

Rule (QMust1) is necessary due to the following consideration. If P has an a-must-transition where a is
unknown to D, this can only originate from an a-must-transition in the quotient Q that we wish to construct;
in order to be most permissive, each p′ ∈ P′ must have a match in Q ‖ D. The corresponding consideration
is true for Rule (QMay1), which also establishes syntactic consistency for Rule (QMust1).

Rule (QMust2) is obvious in the light of the choice of alphabet in Def. 24. As P�D has all actions
of P and D in its alphabet, it also needs an a-must-transition to produce such a transition at (p,d) ‖ d. Here,
Rule (QMay2) is the companion rule for guaranteeing syntactic consistency.

Rule (QMust3) ensures that (p,d) and d are compatible in case of an output of d. An application of this
rule can be seen in Fig. 4 for action fail? at q1 = p0//d1. Syntactic consistency results from Rules (QMay2)
and (QMay3); note that a ∈ OD implies a 6∈ ID.

Observe how Rules (QMay2) and (QMay3) play together well. By the condition a 6∈ OP∩ ID = O∩ ID,
Rule (QMay3) does not generate an output a-may-transition in the pseudo-quotient that could make (p,d)
and d illegal. These transitions are added by Rule (QMay2) if the a-transition at d is of must-modality and
compatibility is ensured. This is exactly the situation in Fig. 4 for action rqst! at q0 = p0//d0.

Rule (QMay4) deals with the universal state in P. Obviously, eP�D is the most general state of P�D
that refines eP in parallel composition with d. Implicitly, this rule replaces all states (eP,d) by eP�D.

Rule (QMay5) makes P�D as coarse as possible. The input a-may-transitions introduced here just
disappear in (P�D) ‖ D, since a is blocked by D. This can be seen in Fig. 4 for actions resp? and fail? at
q0 = p0//d0 and in Q ‖ D at (q0,d0).

P�D is indeed a MIA. We have already argued for syntactic consistency. All rules ensure p 6= eP;
hence, eP�D has no outgoing transitions. Incoming transitions of eP�D can only arise from Rules (QMay4)
or (QMay5), which are only applicable for a ∈ I.

18

Up to now, we have only defined the pseudo-quotient. Considering a candidate pair (p,d), for some
combinations of modalities and assignments of actions to input or output, it is impossible that p is refined by
a state resulting from a parallel composition with d. We call such states impossible states and remove them
from the pseudo-quotient states. For example, consider states p a−→ and d

a
99K such that d 6 a−→; no parallel

composition with d refines p. While may-transitions can be refined by removing them and disjunctive
transitions can be refined to subsets of their targets to prevent the reachability of impossible states, all states
having a must-transition to only impossible states must also be removed. This pruning results in the quotient.

Definition 25 (Quotient). Let P�D be the pseudo-quotient of P over D. The set G ⊆ P×D of impossible
states is defined as the least set refining the following rules:

(G1) p a−→P and d 6 a−→D and a ∈ AD implies (p,d) ∈ G
(G2) p 6= eP and p 6 a

99KP and d
a

99KD and a ∈ OD implies (p,d) ∈ G
(G3) p 6= eP and d = eD implies (p,d) ∈ G
(G4) (p,d) a−→P�D R′ and R′ ⊆ G implies (p,d) ∈ G

The quotient P//D is obtained from P�D by deleting all states (p,q) ∈ G. This also removes any may-
or must-transition exiting and any may-transition entering a deleted state. Deleted states are also removed
from targets of disjunctive must-transitions. If (p,d) ∈ P//D, then we write p//d. If (p0,d0) 6∈ P//D, then
the quotient P over D is not defined.

Rule (G1) is obvious since (p,d) cannot ensure that p a−→P is matched if d has no a-must-transition, as an
a-may-transition or even a forbidden action at d can in no case compose to a refinement of a must-transition
at p. Rule (G2) captures the situation where d has an output a that is forbidden at p. Offering an a-must-
input in the quotient would lead to a transition in the parallel composition with d, while not offering it would
lead to an error; both would not refine p. Rule (G3) captures the division by eD: state eD in parallel with
any state is universal and does not refine p 6= eP. Finally, Rule (G4) propagates back all impossibilities that
cannot be avoided by refining.

Observe that P//D (i.e., the quotient is defined) is a MIA. Syntactic consistency and the universal state
are preserved by pruning; in this case Rule (G4) is not applicable since P�D is a MIA. If the target set of
a disjunctive must-transition became empty, it would be deleted. We show that the quotient operation above
yields the coarsest MIA satisfying the defining inequality. For this proof, the next lemma ensures that the
definedness of ‖ and // is mutually preserved across refinement.

Lemma 26. Let P, D and Q be MIAs such that P and D is a quotient pair, AD ⊆ AP, OD ⊆OP, OQ =OP \OD
and IQ = IP∪OD. Further, let p, d, q, be states in P, D, Q, resp. Then, the following statements hold:

1. If q ‖ d v p, then p//d is defined.

2. If qv p//d and p 6= eP, then q ‖ d is defined.

Proof. We write −→⊗, −→‖, −→� and −→// as a shorthand for −→Q⊗D, −→Q‖D, −→P�D and −→P//D,
resp., and analogously for may-transitions. We show both claims by contraposition.

Claim 1: For all (p,d) ∈ G, the refinement q ‖ d v p does not hold for any q ∈ Q, possibly because
q ‖ d is not defined, i.e., (q,d) ∈ E according to Def. 8. We prove this by induction on the derivation length
according to the G-rules. In each case, we assume q ‖ d v p for some q ∈ Q and derive a contradiction.

(G1) p a−→, d 6 a−→ and a ∈ AD: By q ‖ d v p, we have q ‖ d a−→‖, which can only be due to (PMust2) or
(PMust3); thus, d a−→, which is a contradiction.

19

(G2) p 6= eP, p 6 a
99K, d

a
99K and a ∈OD: By q ‖ d v p, we have q ‖ d 6 a

99K‖. Now, either (q,d)
a

99K⊗ reaching

an illegal state or q 6 a
99K; in either case, (q,d) ∈ E, which is a contradiction.

(G3) p 6= eP and d = eD: Here, (q,d) ∈ E is an inherited error, which is a contradiction.

(G4) (p,d) a−→� R′ with R′ ⊆ G: Our claim holds for all (p′,d′) ∈ R′ by induction hypothesis, and the
transition is due to one of the (QMust) rules:

(QMust1) p a−→ P′, a 6∈ AD and R′ = P′×{d}: By q ‖ d v p, we have q ‖ d a−→‖ Q′×{d} such that
∀q′∈Q′∃p′∈P′.q′ ‖ d v p′. This is a contradiction, since (p′,d) ∈ R′.

(QMust2) p a−→P′, d a−→ d′ and R′=P′×{d′}: q ‖ dv p implies the existence of a Q′ with q a−→Q′

and ∀q′∈Q′∃p′∈P′.q′ ‖ d′ v p′. This is again a contradiction since (p′,d′) ∈ R′.

(QMust3) eP 6∈mayP(p,a) 6= /0, R′ = mayP(p,a)×{d′}, d
a

99K d′ and a ∈OD: Since q ‖ d is defined,
we have some q a−→ Q′; otherwise, we would have (q,d) ∈ E. Thus, by definition of illegal
states, also q′ ‖ d′ must be defined for some (and in fact all) q′ ∈ Q′. Now, q ‖ d

a
99K‖ q′ ‖ d′

must be matched by some p
a

99K p′ due to q ‖ d v p, and we have q′ ‖ d′ v p′. This is again a
contradiction since (p′,d′) ∈ R′.

Claim 2: For all (q,d) ∈ E, qv p//d does not hold for any p ∈ P with p 6= eP, possibly because p//d is
not defined. We prove this by induction on the length of a local path from (q,d) to an error in Q⊗D; here,
all actions on the path are outputs. In each case, we assume qv p//d for some p ∈ P with p 6= eP and derive
a contradiction.

(Base) Let (q,d) be an error according to Def. 8.

(a) q
a

99K q′, d 6 a−→ and a ∈ OQ ∩ ID: Here, q v p//d implies a transition (p,d)
a

99K� (p′,d′). But,
such a transition cannot exist since none of the (QMay) rules applies; note that a ∈ OP ∩ ID
for (QMay3) and (QMay5) and that eP ∈ mayP(p,a) implies a ∈ IP, which contradicts a ∈ OQ,
for (QMay4).

(b) q 6 a−→, d
a

99K d′ and a ∈ IQ ∩OD: As just noted, a ∈ OP implies eP 6∈ mayP(p,a). Since (G2)
does not apply, we have mayP(p,a) 6= /0. Thus, we get p//d a−→// by (QMust3), contradicting
qv p//d and q 6 a−→.

(c) (q,d) is an inherited error: If q = eQ, then p//d = eP//D by q v p//d, and we have p = eP. If
d = eD, then Rule (G3) and the definedness of p//d imply p = eP. Both cases contradict p 6= eP.

(Step) Assume (q,d)
a

99K⊗ (q′,d′) ∈ E with a ∈ OQ⊗D such that our claim holds for (q′,d′) by induction.
We consider the different rules that resulted in this transition.

(PMay1) a 6∈ AD, d′ = d and q
a

99K q′: By qv p//d, there is a transition p//d
a

99K// p′//d′′ such that
q′ v p′//d′′. The only applicable Rule (QMay1) (note that a ∈ OP) implies d′′ = d and p′ 6= eP.
Thus, we have q′ v p′//d, contradicting the claim for (q′,d′).

(PMay2) a 6∈ AQ, q′ = q and d
a

99K d′: We have a ∈ AD ⊆ AP = AP�D = AQ, which is a contradiction.

(PMay3) q
a

99K q′ and d
a

99K d′: By q v p//d, there is a transition p//d
a

99K// p′//d′′ such that q′ v
p′//d′′. The only rules that are applicable are (QMay2) and (QMay3) (note that a ∈ OP) both
imply d′′ = d′ and p′ 6= eP. Thus, we have q′ v p′//d′, contradicting the claim for (q′,d′).

20

Theorem 27 (// is a Quotient Operator wrt. ‖). Let P and D be a quotient pair and Q be a MIA such that
AD ⊆ AP, OD ⊆ OP, OQ = OP \OD and IQ = IP∪OD. Then, Qv P//D iff Q ‖ Dv P.

Proof. We use the same shorthands as in Lem. 26. If p0 = eP, then p0//d0 = eP//D and both sides of the
theorem’s statement are simply true. For p0 6= eP we have: If P//D is defined, then also p0//d0 and, by
Lem. 26, q0 ‖ d0 is defined. If Q ‖Dv P, then the initial state of Q ‖D is q0 ‖ d0 6= eQ‖D because of p0 6= eP;
with q0 ‖ d0 also p0//d0 is defined by Lem. 26. Therefore, it suffices to establish the refinements.

“⇒”: We show that R =df {(q‖d, p)∈ (Q‖D)×P | qv p//d or p= eP}∪̇{(eQ‖D,eP)} is a MIA-refinement
relation. We only have to consider a (q‖d, p)∈R with p 6= eP. Note that Cases (iii) and (v) are mostly
analogous to Cases (ii) and (iv), resp.

(i) From p 6= eP we conclude, by q v p//d and Lem. 26, that q ‖ d exists, i.e., it is not the universal
state.

(ii) p i−→ P′ for i ∈ IP:

1. If i ∈ AD and d i−→ d′, then (QMust2) implies (p,d) i−→� P′×{d′}. In P//D, the target
set might only be a subset P′′×{d′} of P′×{d′}. By qv p//d, we have q i−→ Q′ for some
Q′ such that ∀q′∈Q′∃p′∈P′′.q′ v p′//d′, whence (q′‖d′, p′) ∈R; note that p′ 6= eP since,
otherwise, eP ∈ P′. Now, by (PMust3) there is a transition (q,d) i−→⊗ Q′×{d′}. Since
for all (q′,d′) ∈ Q′×{d′} there is some p′ ∈ P′′ with q′ v p′//d′, we also have q ‖ d i−→‖
Q′×{d′} by Lem. 26.

To see the latter, note that it is impossible that (q,d)
i

99K� (q,d′) ∈ E, for some q ∈ D′.

This is because of the following reasons. If (q,d)
i

99K� (q,d′) ∈ E, then q
i

99K q by IP ⊆ IQ.

Since q v p//d, we have p//d
i

99K// p//d for some p with q v p//d, which can only be
due to (QMay2). Observe that (QMay4) is excluded by P and D being a quotient pair, and

that (QMay5) is excluded due to i∈ IP. In the remaining case (QMay2) we have p
i

99K p 6= eP
and d = d′; further, Lem. 26 implies (q,d′) /∈ E.

2. If i ∈ AD and d 6 i−→, then (p,d) ∈ G by (G1), which is impossible since p//d is defined.
3. If i 6∈AD, the proof is analogous to Case 1 with d = d′, when replacing (QMust2) by (QMust1)

and (PMust3) by (PMust1).

(iii) p o−→ P′ for o ∈ OP: Here, the same arguments as for (ii) apply.

(iv) q ‖ d
i

99K‖ and i ∈ IP: Consider (a) q ‖ d
i

99K‖ q′ ‖ d′ or (b) q ‖ d
i

99K‖ eQ‖D for i ∈ IQ‖D. In

both cases (q,d)
i

99K⊗ (q′,d′) by one of (PMay1) or (PMay3) and (q′,d′) ∈ E in case of (b).
Rule (PMay2) is impossible as AQ = AP ⊇ AD.

(PMay1) q
i

99K q′ and i 6∈ AD: We have d = d′, and q v p//d implies p//d
i

99K// p′//d′′ for

some p′, d′′ such that q′ v p′//d′′. Since i 6∈ AD, we get either d = d′′ and p
i

99K p′ 6= eP

by (QMay1), or p
i

99K p′ = eP by (QMay4). In the latter case, we have (q′‖d′,eP) ∈R for
Case (a) and (eQ‖D,eP)∈R for Case (b). In the former case (QMay1), we have (q′‖ d′, p′)∈
R for Case (a) since q′ v p′//d′. Case (b) is impossible because q′ ‖ d′ /∈ E by Lem. 26,
q′ v p′//d′ and p′ 6= eP.

21

(PMay3) q
i

99K q′ and d
i

99K d′: As q v p//d we conclude p//d
i

99K// p′//d′′ for some p′, d′′

with q′ v p′//d′′. This can be due to (QMay2), (QMay3) or (QMay4); in all cases we

have p
i

99K p′. In case (QMay4), we have p′ = eP and (q′‖d′,eP) ∈ R for Case (a) and
(eQ‖D,eP) ∈R for Case (b). In the other cases, we have d′′ = d′ by may-determinism and
p′ 6= eP; the proof now concludes like case (QMay1) above.

(v) q ‖ d
o

99K‖ and a ∈ OP: This case is already covered by (iv)(a).

“⇐”: We show that R =df {(q, p//d) ∈Q× (P//D) | q ‖ d v p or p//d = eP//D} is a MIA-refinement rela-
tion. It suffices to consider some (q, p//d) ∈R with p//d 6= eP//eD. In the following, the arguments
for (iii) are analogous to those for (ii).

(i) Since (q,d) 6∈ E, we have q 6= eQ.

(ii) p//d i−→// R′ ⊆ P′×{d′} for i ∈ IP//D, where (p,d) i−→� P′×{d′} is due to one of the (QMust)
rules, and R′ consists of the possible states of P′×{d′}. In the following, we use AP = AQ
throughout.

(QMust1) p i−→ P′, d = d′ and i 6∈ AD: By q ‖ d v p we get q ‖ d i−→‖ Q′×{d′′} for some
Q′, d′′ with ∀q′∈Q′∃p′∈P′.q′ ‖ d′′ v p′. Since i 6∈ AD, this transition can only be due to
Rule (PMust1) and d′′ = d. By Lem. 26, q′ ‖ d v p′ implies that p′//d is not impossible,
hence p′//d ∈ R′. Thus, we are done due to q i−→ Q′.

(QMust2) p i−→ P′ and d i−→ d′: By q ‖ d v p, we get q ‖ d i−→‖ Q′×{d′} for some Q′ such
that ∀q′∈Q′∃p′∈P′.q′ ‖ d′ v p′. The transition must result from (PMust3). Thus, we are
done as in (QMust1).

(QMust3) P′ = mayP(p,a) and d
i

99K d′ with i ∈OD: Since i ∈ IQ∩OD and q ‖ d is defined, we

have q i−→ Q′ for some Q′. Now, Rule (PMay3) gives us (q,d)
i

99K⊗ (q′,d′) for all q′ ∈ Q′.

Since i ∈ OQ⊗D and (q,d) 6∈ E, we also know that (q′,d′) 6∈ E, hence q ‖ d
i

99K‖ q′ ‖ d′. By

q ‖ d v p we have ∀q′ ∈ Q′∃p′ ∈ P′. p
i

99K p′ and q′ ‖ d′ v p′. As above, p′//d′ ∈ R′ and
q i−→ Q′ matches p//d i−→// R′.

(iii) p//d o−→// R′ with o ∈ OP//D = OP \OD: The same arguments as for (ii) apply, except that
Rule (QMust3) is not applicable due to o 6∈ OD.

(iv) q
i

99K q′ for i ∈ IQ:

1. i 6∈ AD: By (PMay1) we have (q,d)
i

99K⊗ (q′,d). Thus, either q ‖ d
i

99K‖ eQ‖D or q ‖ d
i

99K‖

q′ ‖ d. In the first case we get p
i

99K eP, because of q ‖ d v p, and (p,d)
i

99K� (eP,eD)

by (QMay4). Since (eP,eD) can never be impossible, we have p//d
i

99K// eP//eD and are

done. For the second case, q ‖ d
i

99K‖ q′ ‖ d, we get p
i

99K p′ for some p′ with q′ ‖ d v p′,

because of q ‖ d v p. If p
i

99K eP, we are done as above. Otherwise, we get (p,d)
i

99K�

(p′,d) by (QMay1). Lem. 26 implies the definedness of p′//d, hence p//d
i

99K// p′//d, and
we are done.

22

2. i∈AD and d 6 i
99K: Since p 6= eP and i∈AD\OQ =AD\(OP∩ID), we get (p,d)

i
99K� (eP,eD)

by (QMay5). Since (eP,eD) can never be impossible, we have p//d
i

99K// eP//eD and are
done.

3. i ∈ AD and d
i

99K d′: By (PMay3), there is a transition (q,d)
i

99K⊗ (q′,d′). Thus, either

q ‖ d
i

99K‖ eQ‖D (only possible, if i ∈ ID) or q ‖ d
i

99K‖ q′ ‖ d′ (ensured, if i ∈OD, since q ‖ d
defined). The first case is as in (iv).1 and so is the second case, except for (QMay3) instead
of (QMay1); for this, note that i ∈ ID implies i /∈ OP by i ∈ IQ.

(v) q
o

99K q′ for o ∈ OQ:

1. o ∈ AD: We have d o−→ d′ for some d′; otherwise, q ‖ d would not exist. By (PMay3), we
have (q,d)

o
99K⊗ (q′,d′), and hence q ‖ d

o
99K‖ q′ ‖ d′ by definedness of q ‖ d. By q ‖ d v p,

we have p
o

99K p′ for some p′ with q′ ‖ d′ v p′. Since o ∈ OP, we have p′ 6= eP, and we can
apply (QMay2) to get (p,d)

o
99K� (p′,d′). Lem. 26 implies the definedness of p′//d, hence

p//d
o

99K// p′//d′ and we are done.

2. o 6∈ AD: q ‖ d
o

99K‖ q′ ‖ d by (PMay1) and definedness of q ‖ d; hence, due to q ‖ d v p, there

is a p
o

99K p′ for some p′ with q′ ‖ d v p′. Now we are done as in (v).1, applying (QMay1)
instead of (QMay2).

From this theorem, we can also conclude that // is monotonous wrt. v in the specification argument.

Theorem 28 (Monotonicity of // wrt. v). Let P1, P2, D be MIAs with P1 v P2. If P1//D is defined and P2
and D are a quotient pair, then P2//D is defined and P1//Dv P2//D.

Proof. If P1//D is defined, then (P1//D) ‖Dv P1 by Thm. 27. Applying the assumption P1 v P2, transitivity
of v and Thm. 27 again, we conclude that P1//Dv P2//D; in particular, P2//D is also defined.

4.2 Discussion
In this section we discuss the choice of alphabet for the quotient Q = P//D, argue why its input alphabet
may be chosen differently, and conclude with some remarks on quotienting for Modal Interfaces [22].

For Q ‖ D v P to hold, Q ‖ D and P must have the same input alphabet and the same output alphabet.
Thus, we must have OQ = OP \OD and IQ ⊇ IP \ ID. Concerning the input actions in D, quotient Q can
listen to them but does not have to. Hence, IQ ⊆ IP \ ID∪AD = IP∪OD. The more inputs Q has, the easier
it is to supply the behaviour ensuring Q ‖ D v P. Thus, we have chosen the input alphabet IP∪OD for our
quotient P//D, just as is done in [8] and [22]. When comparing some Q to P//D in Thm. 27, Q necessarily
has the same input and output alphabets as P//D, by Def. 4.

Quotient operators for interface theories have already been discussed by Raclet et al. [22] and Chilton et
al. [7]. Our quotient Q = P//D is most similar to [22], where D is assumed to be may-deterministic, P and
D have no internal transitions, and IQ = IP∪OD. However, also P must be may-deterministic there, whereas
we additionally allow nondeterminism and disjunctive must-transitions in P.

In addition, we have corrected some technical shortcomings of Modal Interfaces (MI) [22]. MI adapts
the quotient operation for Modal Specifications from [21], with some additional rules defining the input and
output alphabets of the quotient interface. However, compatibility is completely ignored for the quotient
operation, which in [22] is an inverse or adjoint to their parallel product but not to parallel composition. This
has been recognised in a technical report [4]. Unfortunately, that report employs a changed setting without

23

a universal state. This is reflected by a different, non-compositional parallel composition that does not allow
arbitrary behaviour in case of an inconsistency and that employs a more aggressive pruning strategy, where
a mismatch can also occur if two systems share an input.

5 Conjunction and Disjunction
Besides parallel composition and quotienting, conjunction is one of the most important operators of inter-
face theories. It allows one to specify different perspectives of a system separately, from which an overall
specification can be determined. More formally, the conjunction should be the coarsest specification that
refines the given perspective specifications, i.e., it should characterise the greatest lower bound of the refine-
ment preorder. In the sequel, we define conjunction on MIAs with common alphabets, as we did for MIA
refinement. Similar to parallel composition, we first present a conjunctive product and, in a second step,
remove state pairs with contradictory specifications.

Definition 29 (Conjunctive Product). Consider two MIAs (P, I,O,−→P,99KP, p0,eP) and (Q, I,O, −→Q
,99KQ,q0,eQ) with common alphabets. The conjunctive product is defined as P&Q =df (P×Q, I,O,−→
,99K,(p0,q0),(eP,eQ)) by the following operational transition rules:

(OMust1) (p,q) ω−→ {(p′,q′) | p′ ∈ P′, q ω̂
=⇒Q q′} if p ω−→P P′ and q ω̂

=⇒Q

(OMust2) (p,q) ω−→ {(p′,q′) | p ω̂
=⇒P p′, q′ ∈ Q′} if p ω̂

=⇒P and q ω−→Q Q′

(IMust1) (p,q) i−→ {(p′,q′) | p′ ∈ P′, q
i

99K
ε

=⇒Q q′} if p i−→P P′ and q
i

99K
ε

=⇒Q

(IMust2) (p,q) i−→ {(p′,q′) | p i
99K

ε
=⇒P p′, q′ ∈ Q′} if p

i
99K

ε
=⇒P and q i−→Q Q′

(EMust1) (p,eQ)
α−→ P′×{eQ} if p α−→P P′

(EMust2) (eP,q)
α−→ {eP}×Q′ if q α−→Q Q′

(May1) (p,q)
τ

99K (p′,q) if p τ
=⇒P p′

(May2) (p,q)
τ

99K (p,q′) if q τ
=⇒Q q′

(OMay) (p,q)
ω
99K (p′,q′) if p ω

=⇒P p′ and q ω
=⇒Q q′

(IMay) (p,q)
i

99K (p′,q′) if p
i

99K
ε

=⇒P p′ and q
i

99K
ε

=⇒Q q′

(EMay1) (p,eQ)
α
99K (p′,eQ) if p

α
99KP p′

(EMay2) (eP,q)
α
99K (eP,q′) if q

α
99KQ q′

Note that this definition is similar to the one in [18], except for the treatment of inputs and the universal
state. The conjunctive product is inherently different from the parallel product. Single transitions are defined
through weak transitions, e.g., as in Rules (OMust), (IMust), (May), and τ-transitions synchronise by Rule
(OMay). Furthermore, as given by Rules (EMust) and (EMay), a universal state is a neutral element for the
conjunctive product, whereas it is absorbing for the parallel product.

Definition 30 (Conjunction). Given a conjunctive product P&Q, the set F ⊆P×Q of (logically) inconsistent
states is defined as the least set satisfying the following rules for all p 6= eP and q 6= eQ:

(F1) p o−→P and q 6 o=⇒Q implies (p,q) ∈ F
(F2) p 6 o=⇒P and q o−→Q implies (p,q) ∈ F

(F3) p i−→P and q 6 i99KQ implies (p,q) ∈ F

(F4) p 6 i99KP and q i−→Q implies (p,q) ∈ F
(F5) (p,q) α−→ R′ and R′ ⊆ F implies (p,q) ∈ F

24

R1:

0

1

2

rqst1!, rqst2!

rqst?
rqst1! rqst2!

sel!

R2:

0

1 2

rqst?

sel! sel!
rqst1! rqst2!

R1∧R2:

(0,0)

(1,0)

(2,1) (2,2)

rqst?

sel!

rqst1! rqst2!

Figure 5: Conjunction on MIAs may lead to disjunctive transitions.

The conjunction P∧Q is obtained by deleting all states (p,q)∈ F from P&Q. This also removes any may- or
must-transition exiting a deleted state and any may-transition entering a deleted state; in addition, deleted
states are removed from targets of disjunctive must-transitions. We write p∧q for state (p,q) of P∧Q; all
such states are defined – and consistent – by construction. However, if (p0,q0) ∈ F, then the conjunction of
P and Q does not exist.

An example of conjunction is given in Fig. 5. MIAs R1 and R2 can be understood as requirements for a
server front-end that routes between a client and at least one of two back-ends. MIA R1 specifies that, after
getting a client’s request (rqst?), a back-end selection (sel!) must be performed, after which the request can
be forwarded to one of the two back-ends (rqst1!, rqst2!). MIA R2 specifies that, with the selection, it is
decided to which one of the back-ends the request will be forwarded (rqst1!, rqst2!).

In R1∧R2, the selection process (sel!) is given by a disjunctive must-transition. Such a requirement can-
not be specified in a deterministic theory, such as Modal Interfaces [22] which our theory extends. Although
one might approximate the disjunctive sel! by individual selection actions sel1! and sel2! for each back-end,
the conjunction would either have both actions as may-transitions and thus allow one to omit both, or would
have both actions as must-transitions, disallowing a server application with only one back-end.

Next, we prove that conjunction as defined above is the greatest lower bound wrt. MIA refinement. To
this end, we introduce the notion of a witness as in [18].

Definition 31 (Witness). A witness W of P&Q is a subset of P×Q such that the following conditions hold
for all (p,q) ∈W:

(W1) p o−→P implies q o
=⇒Q or q = eQ

(W2) q o−→Q implies p o
=⇒P or p = eP

(W3) p i−→P implies q
i

99K
ε

=⇒Q or q = eQ

(W4) q i−→Q implies p
i

99K
ε

=⇒P or p = eP

(W5) (p,q) α−→ R′ implies R′∩W 6= /0

Intuitively, a witness is a set of state pairs that are consistent and thus witnesses the existence of a conjunc-
tion.

Lemma 32 (Concrete Witness). Let P, Q and R be MIAs with common alphabets.

(i) For any witness W of P&Q, we have F ∩W = /0.

25

(ii) The set {(p,q) ∈ P×Q | ∃r ∈ R.r v p and r v q} is a witness of P&Q.

Proof. While the first statement of the lemma is quite obvious, we prove here that W =df {(p,q) ∈ P×
Q | ∃r ∈ R.r v p and r v q} is a witness of P&Q:

(W1) p o−→P P′ implies r o
=⇒R R′ by rv p. Choose some r′ ∈ R′. Then, r o

=⇒R r′ by syntactic consistency
and q o

=⇒Q or q = eQ by r v q.

(W2) Analogous to (W1).

(W3) Similar to (W1) with o replaced by i, =⇒ by −→ ε
=⇒, and =⇒ by 99K

ε
=⇒.

(W4) Analogous to (W3).

(W5) First, consider (p,q) ∈W due to r, with (p,q) ω−→ S′ because of p ω−→P P′ and S′ = {(p′,q′) | p′ ∈
P′, q ω̂

=⇒Q q′} by (OMust1). By r v p and since p 6= eP, we get some R′ ⊆ R such that r ω̂
=⇒R R′ and

∀r′∈R′∃p′∈P′.r′ v p′. Choose r′ ∈ R′; now, r ω̂
=⇒R r′ due to syntactic consistency, and q ω̂

=⇒Q q′

with r′ v q′ by r v q; this also holds if q = eQ and ω = τ . Thus, we have p′ ∈ P′ and q′ such that
(p′,q′) ∈W ∩S′ due to r′. The same line of argument works for inputs with trailing-weak instead of
weak transitions. The remaining case concerns transitions (p,eQ)

α−→ S′ because of p α−→P P′ and
S′ = P′×{eQ} by (EMust1). Choose some p′ ∈ P′; then, (p′,eQ) ∈W ∩S′ due to r = p′.

On the basis of this lemma we can now establish the desired greatest lower bound result for ∧, which
implies the compositionality of v wrt. ∧ (cf. [18]).

Theorem 33 (∧ is And). Let P and Q be MIAs with common alphabets. Then, (i) (∃R. Rv P and RvQ) iff
P∧Q defined. Further, in case P∧Q is defined and for any R: (ii) Rv P and Rv Q iff Rv P∧Q.

Note that R is implicitly required to have the same alphabets as P and Q by Def. 4.

Proof. (i) “⇒”: This follows from Lem. 32.

(i), (ii) “⇐”: It suffices to show that R =df {(r, p) | ∃q.r v p∧ q} is a MIA-refinement relation. Then,
in particular, (i) “⇐” follows by choosing r0 = p0 ∧ q0. Furthermore, note that (EMust1) and (EMay1)
essentially produce an isomorphic copy of P. The refinement conditions for states (r, p) ∈R due to q = eQ
hold by definition of R, and we can ignore these rules in the rest of this proof.

We check the conditions of Def. 4 for some (r, p) ∈R due to q, where p 6= eP:

• p 6= eP implies p∧q 6= eP∧ eQ. By r v p∧q, we have r 6= eR.

• Let p α−→P P′; then, q α̂
=⇒Q. For α 6= τ , this is because, otherwise, p∧ q would not be defined due

to (F1). Hence, by (OMust1) (or similarly (IMust1)), p∧ q α−→ {p′ ∧ q′ | p′ ∈ P′, q α̂
=⇒Q q′, p′∧q′

defined}. By r v p∧q, we get r α̂
=⇒R R′ such that ∀r′∈R′∃p′∧q′. p′ ∈ P′, q α̂

=⇒Q q′ and r′ v p′∧q′.
Thus, ∀r′∈R′∃p′∈P′.(r′, p′) ∈R.

• r
α
99KR r′ implies ∃p′ ∧ q′. p∧ q α̂

=⇒ p′ ∧ q′ and r′ v p′ ∧ q′. The contribution of p in this weak

transition sequence gives p α̂
=⇒P p′, and we have (r′, p′) ∈R due to q′.

26

(ii)“=⇒”: Here, we show that R =df {(r, p∧q) | rv p and rv q} is a MIA-refinement relation; by Part (i),
p∧ q is defined whenever r v p and r v q. As above, the (EMust) and (EMay) rules do not need to be
checked, in particular, since r′ v eQ for all r′. We now verify the conditions of Def. 4:

• If p∧q 6= eP∧ eQ, then w.l.o.g. p 6= eP. By r v p, we also have r 6= eR.

• p∧q α−→ S′; w.l.o.g. this is due to p α−→P P′ and S′ = {p′∧q′ | p′ ∈ P′, q α̂
=⇒Q q′, p′∧q′ defined}.

Because of r v p, we have r α̂
=⇒R R′ so that ∀r′∈R′∃p′∈P′. r′ v p′. Consider some arbitrary r′ ∈ R′

and the resp. p′ ∈ P′. Then, r α̂
=⇒R r′ by syntactic consistency and, due to r v q, there exists some q′

with q α̂
=⇒Q q′ and r′ v q′. Thus, p′∧q′ ∈ S′ and (r′, p′∧q′) ∈R. In case of α ∈ I, we replace weak

transitions by trailing-weak transitions.

• Let r
α
99KR r′ and consider p α̂

=⇒P p′ and q α̂
=⇒Q q′ satisfying r′ v p′ and r′ v q′. Therefore,

(r′, p′∧q′) ∈R. Further, if α 6= τ , we have p∧q
α
99K p′∧q′ by (OMay). Otherwise, either p τ

=⇒P p′

and q τ
=⇒Q q′ and we are done by (OMay), or w.l.o.g. p τ

=⇒P p′ and q = q′ and we are done
by (May1), or p = p′ and q = q′. Again, in case of α ∈ I, we replace weak transitions by trailing-weak
transitions.

Corollary 34. MIA refinement is compositional wrt. conjunction.

Clearly, conjunction is commutative. Furthermore, any conjunction operator that satisfies the statement
of Thm. 33 for some preorder v is associative.

Lemma 35. Let P, Q, R and S be MIAs.

(1) P∧ (Q∧R) is defined iff (P∧Q)∧R is defined.

(2) If P∧ (Q∧R) is defined, then Sv P∧ (Q∧R) iff Sv (P∧Q)∧R.

Proof. (1) Thm. 33(i), (ii) imply that P∧(Q∧R) is defined iff ∃S.Sv P and SvQ∧R iff ∃S.Sv P and Sv
Q and S v R iff ∃S.S v P∧Q and S v R iff (P∧Q)∧R is defined. Statement (2) follows directly from
multiple applications of Thm. 33(ii).

As a consequence of Lem. 35 we obtain strong associativity of conjunction.

Theorem 36 (Associativity of Conjunction). Conjunction is strongly associative in the sense that, if one of
P∧ (Q∧R) and (P∧Q)∧R is defined, then both are defined and P∧ (Q∧R)wv (P∧Q)∧R.

We now turn our attention to disjunction∨ on MIAs with the same alphabets and show that it corresponds
to the least upper bound of MIA refinement.

Definition 37 (Disjunction). Given two MIA (P, I,O,−→P,99KP, p0,eP) and (Q, I,O, −→Q,99KQ,q0,eQ)
with common input and output alphabets. Writing also e for eP ∨ eQ, the disjunction P∨Q is defined as
({e}, I,O, /0, /0,e,e) if p0 = eP or q0 = eQ. Otherwise, and assuming disjoint state sets, P∨Q=({p0∨q0,e}∪
P∪Q, I,O,−→,99K, p0∨q0,e), where −→ and 99K are the least sets satisfying the conditions −→P⊆−→,
99KP⊆99K, −→Q⊆−→, 99KQ⊆99K, and the following rules:

27

(Must) p0∨q0
τ−→ {p0,q0} if p0 6= eP and q0 6= eQ

(IMust) p0∨q0
i−→ P′∪Q′ if p0

i−→P P′ and q0
i−→Q Q′

(May) p0∨q0
τ

99K p0, p0∨q0
τ

99K q0 if p0 6= eP and q0 6= eQ

(IMay1) p0∨q0
i

99K p′ if p0
i

99KP p′

(IMay2) p0∨q0
i

99K q′ if q0
i

99KQ q′

Further, for each input may-transition to eP or eQ, the target is replaced by eP∨ eQ.

It is not difficult to see that disjunction is commutative and associative. The latter follows from the dual
statement to Thm. 33, namely that ∨ is indeed disjunction.

Theorem 38 (∨ is Or). Let P, Q and R be MIAs with common alphabets. Then, we have P∨Qv R iff Pv R
and Qv R.

Proof. If, say, p0 = eP, then both sides imply r0 = eR, which implies Qv R in any case. So we can assume
that neither p0 = eP nor q0 = eQ.

“=⇒”: We establish that R =df {(p0,r) | p0∨q0 v r} ∪ v is a MIA-refinement relation. To do so, we let
(p0,r) ∈R due to q0 and check the conditions of Def. 4:

(i) If r 6= eR, then p0∨q0 6= e; thus, p0 6= eP.

(ii) Let r i−→R R′. Because of p0∨q0 v r and by the only applicable Rule (IMust), we have p0∨q0
i−→ ε
=⇒

P′∪Q′, due to p0
i−→ ε
=⇒P P′ and q0

i−→ ε
=⇒Q Q′, such that ∀p′∈P′∪Q′∃r′∈R′. p′v r′; recall P∩Q=

/0. Hence, ∀p′∈P′∃r′∈R′. p′ v r′ and

(iii) Let r ω−→R R′. By p0 ∨ q0 v r, we get p0 ∨ q0
ω̂

=⇒ S′ for some S′ such that ∀s∈S′ ∃r′∈R′. s v r′. If
p0 ∨ q0

ω
=⇒ S′, then the transition sequence underlying this weak transition starts with p0 ∨ q0

τ−→
{p0,q0}, and the remainder can be decomposed showing p0

ω̂
=⇒P P′, q0

ω̂
=⇒Q Q′ and S′ = P′∪Q′. As

∀p′∈P′∃r′∈R′. p′ v r′, we are done now. The only remaining case is ω = τ and S′ = {p0 ∨ q0}, in
which there is some r′ ∈ R′ such that p0∨q0 v r′, i.e., (p0,r′) ∈R. Hence, we are done in this case,

too, since p0
τ̂

=⇒P p0.

(iv) Let p0
i

99KP p′. Then, p0∨q0
i

99K p′ and, due to p0∨q0 v r, we obtain some r′ with r
i

99K
ε

=⇒R r′ and
p′ v r′ by Def. 4 (iv).

(v) Let p0
ω
99KP p′. Then, p0∨q0

τ
99K p0 and, due to p0∨q0 v r, we apply Def. 4 (iv) twice to obtain some r′

with r ω̂
=⇒R r′ and p′ v r′.

“⇐=”: We prove that R =df {(p0∨q0,r) | p0 v r and q0 v r}∪ v is a MIA-refinement relation; consider
(p0∨q0,r) with r 6= eR.

(i) Since r 6= eR, we have p0 6= eP and q0 6= eQ; thus, p0∨q0 6= e.

(ii) Let r i−→R R′. By p0 v r and q0 v r, we have P′ and Q′ satisfying p0
i−→ ε
=⇒P P′, q0

i−→ ε
=⇒Q Q′ such

that ∀p′∈P′∃r′∈R′. p′ v r′ and ∀q′∈Q′∃r′∈R′. q′ v r′. Thus, p0∨q0
i

=⇒ P′∪Q′ using Rule (IMust)
and interleaving the replacements involved in the weak transitions p0

i−→ ε
=⇒P P′ and q0

i−→ ε
=⇒Q Q′;

recall that P∩Q = /0.

28

(iii) Let r ω−→R R′. By p0 v r and q0 v r we have P′ and Q′ such that p0
ω̂

=⇒P P′, q0
ω̂

=⇒Q Q′ and ∀p′ ∈
P′∪Q′∃r′∈R′. p′ v r′. Hence, p0∨q0

ω̂
=⇒ P′∪Q′ due to Rule (Must).

(iv) Let p0∨q0
i

99KQ. Then, w.l.o.g., we only need to consider p0
i

99KP p′, and as p0v r we have r
i

99K
ε

=⇒R
r′ for some r′ satisfying p′ v r′.

(v) Let p0∨q0
ω
99K. This is only possible for ω = τ . W.l.o.g. we only need to consider p0∨q0

τ
99K p0. This

transition is matched with r ε
=⇒R r since p0 v r.

Corollary 39. MIA refinement is compositional wrt. disjunction.

6 Alphabet Extension
So far, MIA refinement is only defined on MIAs with the same alphabets. This is insufficient for supporting
perspective-based specification, where an overall specification is conjunctively composed of smaller speci-
fications, each addressing one ‘perspective’ (e.g., a single system requirement) and referring only to actions
that are relevant to that perspective. Hence, it is useful to extend conjunction and thus MIA refinement to dis-
similar alphabets in such a way that we can add new inputs and outputs in a refinement step. For this purpose
we introduce alphabet extension as an operation on MIAs, similar to [18] and also to weak extension in [22].
More precisely, we add may-loops for all new actions to each state, except the universal state. Conjunction
and also disjunction are easily generalised by applying alphabet extension to the operands. These two and
parallel composition are compositional wrt. the extended refinement preorder. For the quotient, however, the
situation is more difficult as we discuss below.

Definition 40 (Alphabet Extension & Refinement). Given a MIA (P, I,O,−→,99K, p0,e) and disjoint action
sets I′ and O′ satisfying I′∩A = /0 = O′∩A, where A =df I∪O, the alphabet extension of P by I′ and O′ is
given by [P]I′,O′ =df (P, I∪I′,O∪O′,−→,99K′, p0,e) for 99K′=df 99K ∪{(p,a, p) | p ∈ P \ {e}, a ∈ I′ ∪O′}.
We often write [p]I′,O′ for p as state of [P]I′,O′ , or conveniently [p] in case I′, O′ are understood from the
context.

For MIAs P and Q with p ∈ P, q ∈ Q, IP ⊇ IQ and OP ⊇ OQ, we define p v′ q if p v [q]IP\IQ,OP\OQ .
Sincev′ extendsv to MIAs with different alphabets, we writev forv′ and abbreviate [q]IP\IQ,OP\OQ by [q]P;
the same notations are used for P and Q.

As an aside we remark that our alphabet extension is different to the one proposed by Ben-David et al.
for Modal Transition Systems in [3], where unknown actions are treated as internal actions. This has the
consequence, however, that a state with an a-must-transition can be refined by a state that offers a b-must-
transition followed by an a-must-transition, where b is a new action. In the context of interface theories, this
is undesirable, particularly, if a is an input.

Compositionality of parallel composition as in Thm. 15 is preserved by the extended refinement relation
as long as alphabet extension does not yield new communications.

Theorem 41 (Compositionality of Parallel Composition). Let P1, P2, Q be MIAs such that Q and P2 are
composable and P1vQ. Assume further that, for I′=df I1\IQ and O′=df O1\OQ, we have (I′∪O′)∩A2 = /0.
Then:

(a) P1 and P2 are composable.

(b) If Q and P2 are compatible, then so are P1 and P2 and P1 ‖ P2 v Q ‖ P2.

29

Proof. It is easy to see that [Q]I′,O′ and P2 are composable due to (I′ ∪O′)∩A2 = /0, which implies (a).
Furthermore, [Q]I′,O′ ⊗P2 is isomorphic to [Q⊗P2]I′,O′ via mapping [q]⊗ p2 7→ [q⊗ p2]. This is because
of (PMay1) in the definition of ⊗, since we only add “fresh” may-transitions to each q ∈ Q. The mapping
also respects errors as new may-transitions with label o ∈ O′ cannot create new errors since o /∈ I2, and no
new i ∈ I′ has to have a must-transition since i /∈ O2. Thus, [q0] and p02 are compatible if q0 and p02 are;
moreover, p01 v [q0]. Now, the result follows from Thm. 15.

For outputs it is obvious that new communications might result in an error and, therefore, must be
disallowed. Although a new shared input i ∈ I′ ∩ I2 does not raise errors in synchronisation, it can break
compositionality for multicast communication: if p01 v q0, p02

i−→ and p01 6
i−→, then q0 ‖ p02

i−→ but
p01 ‖ p02 6

i−→.
We lift our conjunction operator to conjuncts with dissimilar alphabets.

Definition 42 (Lifting Conjunction). Let P, Q be MIAs, p ∈ P and q ∈ Q such that IP∩OQ = /0 = IQ∩OP.
Then, p∧′ q =df [p]Q∧ [q]P and similarly for P∧′Q. We simply write ∧ for ∧′.

To be able to lift our main result, Thm. 33, it is sufficient to establish that the alphabet extension operation
is a homomorphism for conjunction. The proof of Thm. 33 follows exactly the line of argument in [18].

Lemma 43. Let P with p ∈ P and Q with q ∈ Q be MIAs with common alphabets. Consider the alphabet
extensions by some I′ and O′. Then:

(a) p and q are consistent iff [p] and [q] are.

(b) Given consistency, [p∧q]wv [p]∧ [q].

Proof. For proving (a), consider the mapping β : (p,q) 7→ ([p], [q]), which is a bijection between P&Q
and [P]&[Q]. We have (p,q) ∈ FP&Q due to a ∈ A and (F1), (F2), (F3) or (F4) iff ([p], [q]) ∈ F[P]&[Q] due
to a ∈ A and (F1), (F2), (F3) or (F4). Observe that (F1), (F2), (F3) and (F4) never apply to ([p], [q]) and
a ∈ I′∪O′, since there are no must-transitions labelled a. For the same reason, Rules (OMust1), (OMust2),
(IMust1), (IMust2), (EMust1) and (EMust2) are never applicable for a and, thus, β is an isomorphism
regarding must-transitions; hence, (F5) is applicable exactly in the corresponding cases according to β .
Therefore, β is also a bijection between FP&Q and F[P]&[Q].

For (b), we can regard β also as a bijection between [P∧Q] and [P]∧ [Q], and establish each direction
of wv separately:

• “v”: We show that β is a MIA-refinement relation, for which we consider [p∧q] and [p]∧ [q].
Cond. (i) of Def. 4 is trivial. Conds. (ii) and (iii) are clear, because β is still an isomorphism on must-
transitions. Regarding Conds. (iv) and (v), we only have to consider α ∈ I′∪O′ and [p∧q]

α
99K [p∧q].

This transition can be matched by the transition [p]∧ [q] α
99K [p]∧ [q], which exists by (IMay), (OMay),

(EMay1) or (EMay2).

• “w”: We show that also β−1 is a MIA-refinement relation. Take [p]∧ [q] and [p∧q]; again, Conds. (i),
(ii) and (iii) are clear. Thus, we only have to consider α ∈ I′∪O′ for establishing Conds. (iv) and (v),
so that [p]∧ [q] α

99K r iff r = [p′]∧ [q′] for p ε
=⇒ p′ and q ε

=⇒ q′. Such a transition can be matched
by the transition [p∧q]

α
99K [p∧q] ε

=⇒ [p′∧q′], where the weak may-transition exists by (May1),
(May2), (OMay), (IMay), (EMay1) or (EMay2), or because p = p′ and q = q′.

30

Theorem 44 (∧ is And). Let P, Q and R be MIAs such that IP ∩OQ = /0 = IQ ∩OP, IR ⊇ IP ∪ IQ and
OR ⊇ OP∪OQ. Then, (i) there exists such an R with Rv P and Rv Q iff P∧Q is defined. In case P∧Q is
defined: (ii) Rv P and Rv Q iff Rv P∧Q.

Proof. Recall that we denote by [·]P an extension with the additional actions of P, and similarly for Q and R.
Also note that, in the context of this theorem, [[p0]Q]R = [p0]R and [[q0]P]R = [q0]R.

(i) If r0 v [p0]R and r0 v [q0]R, then [p0]R ∧ [q0]R is defined by Thm. 33. The latter conjunction equals
[[p0]Q]R ∧ [[q0]P]R; hence, [p0]Q ∧ [q0]P is defined by Lem. 43, and this conjunction is p0 ∧ q0 by
definition. If [p0]Q∧ [q0]P is defined, there exists R with the common alphabets of [P]Q and [Q]P with
r0 v [p0]Q and r0 v [q0]P by Thm. 33. For this R, we have [p0]Q = [p0]R and [q0]P = [q0]R; thus,
r0 v p0 and r0 v q0 by definition.

(ii) Let p0∧q0 be defined. We reason as follows:

r0 v p0 and r0 v q0
iff r0 v [p0]R and r0 v [q0]R (by definition)
iff r0 v [p0]R∧ [q0]R (by Thm. 33)
iff r0 v [[p0]Q∧ [q0]P]R (by Lem. 43 and note above)
iff r0 v p0∧q0 (by Defs. 40 and 42)

The situation for disjunction under alphabet extension is analogous to the one above, but exploiting
monotonicity of the alphabet extension operation wrt. v.

Definition 45 (Lifting Disjunction). Let P, Q be MIAs, p ∈ P and q ∈ Q such that IP ∩OQ = /0 = IQ ∩OP.
Then, p∨′ q =df [p]Q∨ [q]P and similarly for P∨′Q. Once again, we simply write ∨ for ∨′.

Lemma 46 (Monotonicity of [·]). Let P with p ∈ P and R with r ∈ R be MIAs having the same alphabets, as
well as I′ and O′ be suitable action sets for extending them. Then, pv r iff [p]v [r].

Proof. Since we only add may-loops with a fresh label a for the extension, it suffices to observe for direc-
tion ”=⇒” and pv r that each may-transition [p]

a
99K [p] can be matched by [r]

a
99K [r], or r = eR.

Theorem 47 (∨ is Or). Let P, Q and R be MIAs such that IP ∩OQ = /0 = IQ ∩OP, IR ⊆ IP ∪ IQ and OR ⊆
OP∪OQ. Then, P∨Qv R iff Pv R and Qv R.

Proof. The proof proceeds along the following chain of equivalences:
p0∨q0 v r0

iff [p0]Q∨ [q0]P v [[r0]P]Q (by definition)
iff [p0]Q v [[r0]P]Q and [q0]P v [[r0]P]Q (by Thm. 38)
iff p0 v [r0]P and q0 v [r0]Q (by Lem. 46)
iff p0 v r0 and q0 v r0 (by definition)

We conclude this section by reconsidering our quotient operator. As discussed in Sec. 4.2, there is some
freedom in choosing the input alphabet of the quotient P//D of a specification P and a divisor D, namely
IP\ID⊆ IP//D⊆ IP∪OD. Since our extended refinement allows us to compare MIAs with different alphabets,
one could aim for a generalisation of Thm. 27 where Q and P//D may have different alphabets.

Because Q v P//D, the quotient would have a minimal alphabet in this version, in contrast to our choice
of IP//D = IP ∪OD. However, this leads to complications as one can see from the example in Fig. 6. A
MIA Q satisfying Q ‖ D v P must have OQ = {x,y}, but IQ = IP \ ID = /0 clearly does not suffice because

31

P : {a,b}/{o,x,y}

p0
a? b?

o!

x!

o!

y!

D : {a,b}/{o}

d0
a? b?

o! o!

Q′ : {a,o}/{x,y}

q0
a? o?

o?

x!

y!

Figure 6: Complications of quotienting in the context of alphabet extension.

Q is allowed to produce x or y only after o. Furthermore, Q must see a or b to distinguish between the
branches. Solutions are possible for IQ = {a,o} and IQ = {b,o}; a solution Q′ for {a,o} is also shown in
Fig. 6, where transitions to the universal state are not drawn for simplicity. It looks like there are several
maximal solutions. Note, however, that Thm. 27 in its present form still holds for our extended refinement
preorder.

Another aspect of alphabet extension for quotienting is that we can generalise the problem by permit-
ting D to have actions unknown to P. A straightforward generalisation of our approach in Sec. 4 would make
these actions inputs for the quotient, but there can also be solutions to Q ‖ D v P where Q has some new
inputs of D as outputs. We leave a further investigation of these aspects to future work.

7 Conclusions and Future Work
We presented an extension of Raclet et al.’s modal interface theory [22] to nondeterministic systems. To
do so we resolved, for the first time properly, the conflict between unspecified inputs being allowed in
interface theories derived from de Alfaro and Henzinger’s Interface Automata [11] but forbidden in Modal
Transition Systems [15]. To this end, we introduced a special universal state, which enabled us to achieve
compositionality (in contrast to [16]) as well as associativity (in contrast to [22]) for parallel composition;
this also allowed for a more practical support of perspective-based specification when compared to [17,
18]. In addition, we defined a quotienting operator that permits the decomposition of nondeterministic
specifications and takes pruning in parallel composition into account (in contrast to [22]).

Regarding future work, we wish to explore the choice of alphabets for quotienting and relax the de-
terminism requirement on divisors. We also intend to implement our theory in MICA (see http://www.

irisa.fr/s4/tools/mica/) or the MIO Workbench [2].

References
[1] S. S. Bauer, A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski. Moving

from specifications to contracts in component-based design. In FASE, volume 7212 of LNCS, pages
43–58. Springer, 2012.

[2] S. S. Bauer, P. Mayer, A. Schroeder, and R. Hennicker. On weak modal compatibility, refinement, and
the MIO Workbench. In TACAS, volume 6015 of LNCS, pages 175–189. Springer, 2010.

32

[3] S. Ben-David, M. Chechik, and S. Uchitel. Merging partial behaviour models with different vocabu-
laries. In CONCUR, volume 8052 of LNCS, pages 91–105. Springer, 2013.

[4] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. Sangiovanni-
Vincentelli, W. Damm, T. A. Henzinger, and K. G. Larsen. Contracts for system design. Technical
Report 8147, INRIA, November 2012.

[5] D. Beyer, A. Chakrabarti, T. A. Henzinger, and S. A. Seshia. An application of web-service interfaces.
In ICWS, pages 831–838. IEEE, 2007.

[6] F. Bujtor and W. Vogler. Error-pruning in interface automata. In SOFSEM, volume 8327 of LNCS,
pages 162–173. Springer, 2014.

[7] T. Chen, C. Chilton, B. Jonsson, and M. Z. Kwiatkowska. A compositional specification theory for
component behaviours. In ESOP, volume 7211 of LNCS, pages 148–168. Springer, 2012.

[8] C. Chilton. An Algebraic Theory of Componentised Interaction. PhD thesis, Oxford, 2013.

[9] C. Chilton, B. Jonsson, and M. Kwiatkowska. An algebraic theory of interface automata. Technical
Report RR-13-02, Oxford, 2013.

[10] L. de Alfaro and T. A. Henzinger. Interface automata. In FSE, pages 109–120. ACM, 2001.

[11] L. de Alfaro and T. A. Henzinger. Interface-based design. In Engineering Theories of Software-
Intensive Systems, volume 195 of NATO Science Series. Springer, 2005.

[12] R. De Nicola and R. Segala. A process algebraic view of input/output automata. Theor. Comput. Sci.,
138(2):391–423, 1995.

[13] H. Hüttel and K. G. Larsen. The use of static constructs in a modal process logic. In Logic at Botik,
volume 363 of LNCS, pages 163–180. Springer, 1989.

[14] K. Larsen and L. Xinxin. Equation solving using modal transition systems. In LICS, pages 108–117.
IEEE, 1990.

[15] K. G. Larsen. Modal specifications. In Automatic Verification Methods for Finite State Systems, volume
407 of LNCS, pages 232–246. Springer, 1989.

[16] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface and product line theories.
In ESOP, volume 4421 of LNCS, pages 64–79. Springer, 2007.

[17] G. Lüttgen and W. Vogler. Modal interface automata. LMCS, 9(3), 2013.

[18] G. Lüttgen and W. Vogler. Richer interface automata with optimistic and pessimistic compatibility.
ECEASST, 66, 2013. An extended version has been submitted to Acta Informatica.

[19] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[20] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[21] J.-B. Raclet. Residual for component specifications. ENTCS, 215:93–110, 2008.

[22] J.-B. Raclet, E. Badouel, A. Benveniste, B. Caillaud, A. Legay, and R. Passerone. A modal interface
theory for component-based design. Fund. Inform., 108(1-2):119–149, 2011.

33

