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Abstract

The growing complexity of current computer systems requires a high amount of admin-

istration, which poses an increasingly challenging task for manual administration. The

Autonomic and Organic Computing Initiatives have introduced so called self-x proper-

ties, including self-configuration, self-optimization, self-healing, and self-protection, to

allow administration to become autonomous. Although research in this area revealed

promising results, it expects all participants to further the system goal, i.e, their benev-

olence is assumed. In open systems, where arbitrary participants can join the systems,

this benevolence assumption must be dropped, since such a participant may act mali-

ciously and try to exploit the system. This introduces a not yet considered uncertainty,

which needs to be addressed.

In human society, trust relations are used to lower the uncertainty of transactions with

unknown interaction partners. Trust is based on past experiences with someone, as well

as recommendations of trusted third parties. In this work trust metrics for direct trust,

reputation, confidence, and an aggregation of them are presented. While the presented

metrics were primarily designed to improve the self-x properties of OC systems they can

also be used by applications in Multi-Agent-Systems to evaluate the behavior of other

agents. Direct trust is calculated by the Delayed-Ack metric, that assesses the reliability

of nodes in Organic Computing systems. The other metrics are general enough to be

used with all kinds of contexts and facets to cover any kind of trust requirements of

a system, as long as corresponding direct trust values exist. These metrics include

reputation (Neighbor-Trust), confidence, and an aggregation of them.

Evaluations based on an Automated Design Space Exploration are conducted to find the

best configurations for each metric, especially to identify the importance of direct trust,

reputation, and confidence for the total trust value. They illustrate, that reputation, i.e.,

the recommendations of others, is an important aspect to evaluate the trustworthiness

of an interaction partner. In addition, it is shown that a gradual change of priority

from reputation to direct trust is preferable instead of a sudden switch when enough

confidence in the correctness of ones own experiences is accumulated. All evaluations

focus on systems with volatile behavior, i.e., system participants change their behavior

over time. In such a system, the ability to adapt fast to behavior changes has turned

out to be the most important parameter.





Kurzfassung

Die steigende Komplexität aktueller Systeme benötigt einen hohen Grad an Adminis-

tration, was eine wachsende Herausforderung für die manuelle Administration darstellt.

Die Autonomic- und Organic-Computing Initiativen haben so genannte Selbst-x Eigen-

schaften vorgestellt, unter anderem Selbst-Konfiguration, Selbst-Optimierung, Selbst-

Heilung sowie Selbst-Schutz, die eine autonome Administration erlauben. Obwohl die

Forschung in diesem Gebiet erfolgversprechende Ergebnisse geliefert hat, wird von allen

Teilnehmern erwartet, dass sie das Systemziel vorantreiben, d.h., ihr Wohlwollen wird

vorausgesetzt. In offenen Systemen, in denen beliebige Teilnehmer dem System beitreten

können, muss diese Wohlverhaltensannahme fallen gelassen werden, da solche Teilnehmer

bösartig handeln und versuchen können, das System auszunutzen.

In einer menschlichen Gesellschaft werden Vertrauensbeziehungen dazu benutzt, die Un-

sicherheit von Transaktionen mit unbekannten Interaktionspartnern zu mindern. Ver-

trauen basiert auf den bisherigen Erfahrungen mit Jemandem und auf Empfehlun-

gen von Dritten. In dieser Arbeit werden Trust-Metriken für direkten Trust, Repu-

tation, Konfidenz und deren Aggregation vorgestellt. Obwohl die vorgestellten Metriken

hauptsächlich dafür entworfen wurden, die Selbst-x Eigenschaften von Organic-Compu-

ting Systemen zu verbessern, können sie ebenso von Applikationen in Multi-Agenten-

Systemen benutzt werden, um das Verhalten anderer Agenten einschätzen zu können.

Direkter Trust wird durch die Delayed-Ack Metrik berechnet, welche die Zuverlässigkeit

von Knoten in Organic-Computing Systemen einschätzt. Die anderen Metriken sind

allgemein genug gehalten, um in jedem Kontext und jeder Facette benutzt werden zu

können, in dem ein System operiert, solange ein Trust-Wert für direkten Trust existiert.

Diese Metriken beinhalten Reputation (Neighbor-Trust), Konfidenz und die Aggregation

dieser.

Es werden Evaluationen basierend auf einer automatischen Design Space Exploration

durchgeführt, um die beste Konfiguration für jede Metrik zu finden, um dabei speziell

die Wichtigkeit von direktem Trust, Reputation und Konfidenz auf den gesamten Trust-

Wert zu identifizieren. Sie veranschaulichen, dass Reputation, d.h. die Vorschläge Drit-

ter, ein wichtiger Aspekt ist, um die Vertrauenswürdigkeit eines Interaktionspartners

einschätzen zu können. Zusätzlich zeigen sie, dass ein gradueller Wechsel von Repu-

tation zu eigenen Erfahrungen einem plötzlichen Wechsel vorzuziehen ist, wenn genug

Zuversicht auf die Korrektheit der eigenen Erfahrungen vorhanden ist. Alle Auswertun-

gen befassen sich mit Systemen mit unbeständigem Verhalten, d.h. Systemteilnehmer

ändern ihr Verhalten über die Zeit. In solch einem System hat sich herausgestellt, dass



die Fähigkeit, sich schnell an Verhaltensänderungen anpassen zu können, der wichtigste

Faktor ist.
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1. Introduction

Modern systems consist of a growing number of interacting parts, whose interactions in-

crease in complexity as well. This leads to challenges for their design and administration.

A lot of work has to be done at design time to enable the systems to handle all possible

situations they need to operate in. Organic Computing (OC) [44] identified the growing

complexity as a critical problem and introduced mechanisms for a possible solution. The

primary goal of OC is to move decisions from design time to runtime. By giving the

system control over its own configuration, an OC system is able to autonomously adapt

to at design time unforeseen situations. To achieve this, OC introduced so called self-

x properties, i.e., self-configuration, self-optimization, self-healing and self-protection.

To implement these properties the systems constantly observe themselves and initi-

ate autonomous reconfigurations when necessary (Observer/Controller paradigm). By

enabling autonomous reconfigurations, OC systems are able to react to disturbances

without the immediate intervention of a user.

So far, OC systems assume the benevolence of every involved interaction partner to ob-

tain a more robust system using these self-x properties. In open heterogeneous systems,

like in cloud [43] or grid [17] computing, this benevolence assumption can no longer hold.

In such systems, participants can enter and leave the systems at will. In addition, not

every participant is interested in an altruistic cooperation to further the system goal.

Some participants might try to exploit the systems or even try to attack and disrupt it.

This introduces a new level of uncertainty and risk to the systems, when the participants

might have malicious interaction partners.

Human societies cope with uncertain interaction partners, and the possible risks when

working with them, by using trust. Trust is a subjective concept, that considers past

actions of another person to gauge its upcoming behavior. Trust has shown to be an

enabling ability for human societies. With it, one can assess the possible risk that might

occur with that interaction. By transferring the concept of trust into OC systems,

the described uncertainties and risks can be assessed as well by monitoring and and

evaluating the behavior of the system participants. Using this information the self-x

properties of OC systems are able to consider the behavior of its participants, even in

case of behavior changes, and are therefore able to maintain a more robust configuration

in the face of unreliable components. This enables a reliable system out of unreliable
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1. Introduction

components.

In this work I present trust metrics for direct trust, reputation, confidence and an ag-

gregation of them. While the presented metrics were primarily designed to improve the

self-x properties of OC systems they can also be used by applications in Multi-Agent-

Systems (MAS) [60][61] to assess the behavior of other agents. On the one hand, the

metrics focus to improve the self-x properties on middleware level, i.e., without knowl-

edge about the applications running on the middleware, but on the other hand they

are designed to be as general as possible where possible. The presented metric for di-

rect trust (Delayed-Ack) focuses on the reliability of nodes in a Multi-Agent-System

(MAS) to provide information for suitable targets when assigning or relocating services

or agents. The reputation, confidence and aggregation metrics are designed to work with

every kind of direct trust value and can therefore be used to process direct trust values

of agents as well as nodes.

Chapter 2 describes the OC systems considered in this work, explains the self-x properties

in more detail and gives an overview over existing OC systems. After that, the concept of

trust is described and defined, giving a more in depth description of the facets considered

in this work, followed by a description of the context sensitive and subjective nature of

trust. Current trust metrics and frameworks are discussed at the end of the chapter.

Chapter 3 presents the trust metrics for direct trust, reputation, confidence and ag-

gregation with some small evaluations for each metric showing its effectiveness. The

Delayed-Ack metric calculates the reliability of nodes, providing direct trust values.

The reputation is calculated by the Neighbor-Trust algorithm, which is able to identify

lying nodes and only considers trustworthy recommendations. Confidence as a means to

assess the accuracy of ones own direct trust value serves as basis to weight direct trust

and reputation to a total trust value. Figure 1.1 depicts the relation of the different

trust aspects, i.e., direct trust, reputation, and confidence to get a total trust value.

Chapter 4 presents an evaluation based on Automated Design Space Exploration (ADSE).

The trust metrics introduced in Chapter 3 are evaluated in a MAS with changing agent

behavior. There are two main research questions investigated in this chapter:

1. To identify the effect and importance of the different aspects of trust, including

direct trust, reputation, and confidence on a total trust value, i.e., in what situation

only some of them are used to make the decision, with which possible partner to

interact with.

2. Finding the turning point between reputation (the opinion of others) and direct

trust (ones own opinion), when direct trust dominates reputation. The main re-

search question is, if that point can be denominated or if a more fuzzy approach

is required.

14
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Figure 1.1.: Aggregating direct trust with confidence and reputation to a total trust value
including the corresponding metrics described in this work.

These points are investigated in a pure computational system with no human involve-

ment.

Chapter 5 presents the Trust-Enabling Middleware (TEM) that was developed to provide

agents and other applications a platform to exploit the trust metrics described in this

work. It allows applications to use their own direct trust metrics with the reputation,

and confidence metrics by well defined interfaces. They are general enough to support

calculations on agent level, i.e., trust about other agents independent on which nodes

they were one, and middleware level, i.e., trust about other nodes. This makes the TEM

a suitable platform for trust-enhanced self-properties.

Finally, Chapter 6 concludes this dissertation by discussing the results of the evaluations

and presents future work.
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2. Organic Computing and Trust

Definitions

2.1. Organic Computing

Organic Computing describes a class of systems, where adaptions of the systems are

moved from design time to runtime. An OC system self-configures, self-optimizes, self-

heals and self-protects autonomously to minimize the need of interventions by an ad-

ministrator. These properties are called the self-x properties. The self-x properties were

first discussed by Horn in the Autonomic Computing Manifest [24] at IBM, introducing

the field of Autonomic Computing. Kephart [31] refined the work of Horn, describing

the self-x properties in more detail. Autonomic Computing was founded to manage the

increasing complexity of modern systems, especially data centers, by introducing self-x

properties to these systems.

Organic Computing [44] expanded these ideas to a broader class of systems. Organic

Computing aims to enhance complex systems, e.g, middleware systems [58] or traffic

light systems [48], with the aforementioned self-x properties. In particular, the effect of

emergence is important in the context of Organic Computing. Emergence is a global

system property that is a result from the local behavior of its participants. A typical

example for an emerging property is the ability of ants to find the shortest path to a

food source just by following and emitting pheromones [15]. Every ant decides whether

to follow the pheromone trace set by other ants or explore new ways, while emitting

pheromones itself. Adding pheromones to an already existing pheromone track intensifies

it and increases the chance of other ants to follow this track. The pheromones dilute

over time, which results in the shortest path to accumulate higher pheromone levels than

longer paths. While only using local rules the ant system in total is able to find the

shortest path to a food source without a global entity, which makes this an emergent

ability.

The fundamental idea of OC systems is the transfer of decisions from design time to run-

time. This allows OC systems to adapt autonomously to a higher variety of situations,

because not every situation has to be considered when designing the system. OC sys-

tems constantly observe themselves and the environment they are in, identify situations
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2. Organic Computing and Trust Definitions

when they enter an unacceptable state and reconfigure themselves to regain an accept-

able state. This ability is called the Observer/Controller paradigm [44]. A variant of

the Observer-Controller paradigm is the MAPE (M onitor, Analyze, P lan, and Execute)

cycle [31] introduced in Autonomic Computing. A system constantly monitors the sys-

tem state. The collected data are then analyzed to identify unwanted system states. In

case one such state occurs, a plan is created to move the system back into an acceptable

state, which is then executed.

The OC systems considered in this work are grid systems [17]. A grid system consists of

several heterogeneous parts, called nodes, that can communicate with each other. Each

node is capable to run several services that provide the functionality of the grid. Some

examples of grid systems are described in Section 2.3. A node is typically a single PC that

runs a middleware which abstracts the transport layer, which allows the services to send

messages to other nodes without the need to know, if the nodes communicate with UDP

or TCP. The middleware used in this work is the Trust-Enabling Middleware (TEM) [1],

which is described in more detail in Chapter 5. Nodes are heterogeneous, because they

have different amounts of resources, e.g., CPU power and memory, and services require

different amounts of these resources. These systems are also open, i.e., participants can

enter and leave the system at any time. The services on the grid can also be agents,

forming a Multi-Agent-System (MAS) [60][61]. An agent can act autonomously, while

a service only reacts to incoming requests. Agents are able to collaborate and form

communities to improve the system. Figure 2.1 displays a sample network with three

TEM nodes and some services on these nodes.

Service
Service

Service
Service

TEM

TEM TEM TEM
Figure 2.1.: A sample network using the TEM.

The following sections (2.1.1 - 2.1.4) will look at the four self-x properties more closely.

2.1.1. Self-Configuration

A normal system has a configuration defined at design time and starts using this con-

figuration. If such a configuration has to be changed a human typically adjusts the

configuration and applies it to the system. A self-configuring system is able to build an

initial configuration as well as detect and identify situations requiring a reconfiguration
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2.1. Organic Computing

and executing it autonomously. In our grid system, a service has to be assigned or re-

located to an appropriate node. The distribution of the services on the nodes form the

configuration of the grid. If a new service or node enters the system, a reconfiguration

has to be conducted. An appropriate node has to be identified and the service then

relocated to it. When a new node enters the system, it may be more appropriate for

services than the nodes they are allocated to. This leads to the next self-x property,

self-optimization, which chooses the best configuration for a given optimization goal.

2.1.2. Self-Optimization

Self-optimization enables a system to autonomously reach a optimized state, which can

vary per application, without the need of a user. A typical optimization for a distributed

system is load balancing. Services are distributed in such a way that all nodes are

equally loaded. Current self-organization algorithms do either expect their nodes to be

reliable or consider only an inevitable decrease of a node’s reliability, e.g, a failure due

to hardware degregation. In an open system, the reliability of the nodes can fluctuate,

i.e., the reliability can increase again. This is the case, when an unstable connection to

a node stabilizes again. To create a reliable system out of such unreliable components,

the self-organization algorithms need additional information by constantly monitoring

the behavior of the nodes in the system. Trust values do provide this information, see

Section 2.2.

2.1.3. Self-Healing

A self-healing system is able to react to partial failures, i.e., the failure of a node. It is

able to detect such a failure and reorganize itself to compensate it. In a grid, a node

may fail and the system is then able to restart all of its services on other nodes. A self-

healing algorithm is therefore a reactive algorithm to identify an unwanted or unstable

system state and initiate actions to move the system into a stable state again. Taking the

trustworthiness of node into account, i.e., its reliability, it is possible to predict upcoming

failures when the reliability of a node is dropping, adding a proactive component. In

addition, when restarting services from a failed node, these services can be started on a

trustworthy node. Otherwise that service might be in need to be restarted again, when

the new node itself is unreliable and therefore likely to fail as well.

2.1.4. Self-Protection

A self-protecting system is able to identify attacks on its infrastructure and uses proac-

tive steps to reduce or prevent the impact of such attacks. Since trust evaluates nodes
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2. Organic Computing and Trust Definitions

as appropriate interaction partners, an attack on the trust metrics, which result in mis-

leading trust values, can impair the robustness of the system. A trust system therefore

has to implement a self-protection mechanism to increase its robustness against such

attacks.

2.1.5. Organic Computing Systems

This section presents relevant systems from the field of Organic Computing.

The Artificial Hormone System (AHS) [58] is a middleware inspired by the human hor-

mone system. It distributes tasks on heterogeneous processing elements, e.g., on a pro-

cessor grid. It uses artificial hormones to find the best suitable processing element (PE)

for a given task, including eager value, suppressor, and accelerator hormones. Eager val-

ues initially determine the suitability of a PE for a specific task, which is then modified

by suppressors that reduce and accelerators that increase its suitability. The application

of suppressors and accelerators depends on several factors, e.g, if a group of tasks should

be executed in close proximity (accelerators for close PEs, suppressors for far PEs) or if a

PE is already loaded with other tasks (suppressors for this PE). Through the hormones

the AHS implements self-configuration, self-optimization, and self-healing. Compared

to this work, the AHS requires all PEs to be trustworthy to achieve these abilities, i.e.,

all PEs equally have to work towards the system goal. Otherwise, misleading hormones

could be created, potentially destabilizing the system.

Organic Traffic Control [48] adds adaptive behavior to the traffic control of urban road

networks. So far, traffic lights are programmed with a fixed-time signal plan that are

based on expected and typical traffic. These preset plans can not cope with unforeseen

situations, though, including traffic jams or road works. By giving the traffic lights

the ability to communicate and observe the current traffic flow, the signal plans can be

adjusted with the goal to reduce the number of total stops each vehicle has to take.

Additionally, recommendations can be given to the vehicles to choose another path,

when an incident, e.g., a traffic jam, has occurred. The approach uses a reinforced

learning system (XCS) [59] to adapt to unknown situations at runtime. To achieve these

improvements, each participant has to cooperate, especially the recommendations for

alternative routes in case of an incident, is based on an assumption of benevolence. If

not, malicious recommendations could actually create a traffic jam, which would result

in the opposite effect than what was originally intended.

CARISMA [47] is a middleware for embedded distributed systems. It is able to distribute

tasks and react to failing nodes or new nodes entering the system. Some of these tasks

have real-time constraints [7]. A task with a real-time constraint must finish its work

within a specified time span or its result is worthless or may even cause a catastrophic
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2.2. Definition of Trust

result, e.g, an airbag in a car that did not trigger in time. CARISMA introduces so

called capabilities, which provide a general description of the abilities of a node and

its resources. To support the real-time requirements, CARSIMA expects to run on

specialized hardware that provides these real-time capabilities. Here, the collaboration

of each node is essential, otherwise a node lying about its capabilities would result in

failed deadlines of real-time tasks.

The Self-Organizing Smart Camera System [22][28] consists of a number of cameras

with computation power. They communicate and work together to autonomously track

persons or groups of persons. They are able to maintain their tracking abilities in

case of partial communication failures and can even compensate for cameras that have

failed. Due to the processing power of each camera, the required calculations are done

distributively, negating a single point of failure. However, the system relies on the

correctness of the calculations done by the cameras. If a camera deliberately returns

false but plausible results, the information from the system would be compromised, e.g.,

falsifying statistics or loosing track of a person. This benevolence assumption hinders

the approach to be applied in an open system that uses arbitrary but available cameras

from unknown sources, when no own cameras are available.

The Organic Middleware OCµ [50] distributes services on a distributed system with

the goal to load balance the nodes in the system. It was enhanced with an automated

planner [55] to combine the separated self-x properties into an integrated approach.

However, in an open system with arbitrary nodes, not every node is equally suited

for a service, even if it provides the required resources. Nodes might be unreliable or

have malicious intent. The Trust-Enabling Middleware (TEM) presented in this work

improves OCµ by integrating the trust metrics. OCµ and TEM are described in more

detail in Chapter 5.

2.2. Definition of Trust

As was described in Section 2.1.5, current OC systems assume the benevolence of all par-

ticipants. Only when every part of the system tries to further the system goal, emergent

properties occur. In an open and heterogeneous system, that benevolence assumption

must be dropped. In such a system, malicious participants have to be considered, which

adds uncertainties and risks. By observing the behavior of the participants, malicious

ones can be identified. Trust enables cooperation, when uncertainty and risks exist and

is therefore an adequate tool to rate the behavior of an interaction partner and adjust

decisions accordingly [54].

By observing the trustworthiness of interaction partners the self-x properties of OC

systems can be improved. Services, that are more important, e.g., that are essential for

21



2. Organic Computing and Trust Definitions

the system, can be assigned to more trustworthy nodes, therefore reducing the chance of

their failure. This increases the availability of these services, which increases the overall

robustness of the system, since a failure of the important services would have a much

higher impact than failing of normal services.

Trust was investigated in several works, Marsh [41] made a thorough review of the

literature to trust on philosophy, sociology and psychology and described a first approach

to transfer trust into computational systems. Since then more research was conducted

to model trust for computational systems, e.g., the FIRE [25] trust framework. An

overview of newer trust frameworks is presented in Section 2.4.

Trust is context sensitive, multifaceted and subjective. It is context specific, since trust

in an interaction partner does not include for all possible interactions, e.g., Alice may

trust Bob to drive her safely per car, but not to fly her safely per plane. So Bob is

trustworthy in the context as a car driver, but not in the context of a pilot. In an

OC system, where a node can have several different services, which may each provide a

different capability, the trust value has to be distinguished for each service of a node. In

addition, an arbitrary context can be specified for each service.

Trust consists of several facets, the following of which were defined by the DFG Research

Group 1085 OC-Trust [57]:

Functional correctness: The quality of a system to adhere to its functional specifica-

tion under the condition that no unexpected disturbances occur in the system’s

environment.

Safety: The quality of a system to be free of the possibility to enter a state or to create

an output that may impose harm to its users, the system itself or parts of it, or to

its environment.

Security: The absence of possibilities to defect the system in ways that disclose private

information, change or delete data without authorization, or to unlawfully assume

the authority to act on behalf of others in the system.

Reliability: The quality of a system to remain available even under disturbances or

partial failure for a specified period of time as measured quantitatively by means

of guaranteed availability, mean-time between failures, or stochastically defined

performance guarantees.

Credibility: The belief in the ability and willingness of a cooperation partner to par-

ticipate in an interaction in a desirable manner. Also, the ability of a system to

communicate with a user consistently and transparently.

Usability: The quality of a system to provide an interface to the user that can be used ef-

ficiently, effectively and satisfactorily that in particular incorporates consideration

of user control, transparency and privacy.
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Trust can either be calculated by a global trust metric or by local trust metrics. An

example for a global trust metric would be the eBay reputation metric1, where all par-

ticipants write their experiences in a centralized repository and also request trust values

from that repository. A local trust metric calculates a trust value locally on each par-

ticipant of the trust net, without a global entity. Therefore these trust values can vary

between different participants, making them subjective.

Apart from being context specific and having different facets, trust consists of two as-

pects: Direct trust and Reputation.

Direct trust describes the personal experiences one gathers about another, based on

interactions with that interaction partner.

Reputation on the other hand describes the experiences of third parties, recommenda-

tions based on the information gathered from others, who had direct experiences

themselves.

Direct trust is typically preferred over reputation, since using ones own experiences

instills more confidence than using the opinions of others. But at times, e.g., when not

enough or outdated experiences exist, reputation can be used to complement the own

lack of information. Figure 1.1 illustrates how direct trust, reputation and confidence

are aggregated to a total trust value. The metrics used for direct trust (Delayed-Ack)

and reputation (Neighbor-Trust) are described in Section 3.1 and Section 3.2.

Most trust metrics in this work are generally applicable to all facets. Reputation, con-

fidence and the aggregation work with direct trust values, i.e., they work if a direct

trust value can be calculated. The reliability of a node indicates its qualification to

host important services. A node with a low reliability has a higher chance of failure

and is therefore not suitable for important services. The Delayed-Ack algorithm (see

Section 3.1) was developed to gauge the reliability of a node. Reliability trust values

are best suited for trust-enhanced self-x properties. The credibility rates the ability of

a service to deliver what it promised. When working with a service, a specific perfor-

mance is expected from that interaction, e.g., based on the interface description or a

Quality of Service promise. An interaction that fulfills that promise increases the cred-

ibility of a service, and problems with the interaction lowers it. This information is

crucial for applications to decide which service to interact with. The decision whether

a service provided a satisfactory interaction, can only be done by the application. The

applications developed in the OC-Trust project use trust of the facet credibility. Besides

Delayed-Ack to calculate reliability on middleware level, algorithms to gather reputation

(Section 3.2), confidence (Section 3.3) and an aggregation of these values (Section 3.4)

are presented in this work. They are suitable to be used with any kind of direct trust of

every facet. Overall these facets are based on the behavior of interaction partners and

1http://pages.ebay.com/help/feedback/scores-reputation.html
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have to be calculated at runtime.

Trust values can be defined in one of the following domains:

1. A discrete number of possible values. One example is the eBay trust metric with

three values: positive, neutral and negative. Another is the rating system of

Amazon, which has five values, 1 to 5 stars.

2. A real number between 0 and 1.

3. A real number between -1 and 1.

Variant (1) is typically used for humans, since humans can handle discrete values better

than continuous ones and also prefer natural numbers [21]. However, real numbers allow

for a more detailed evaluation of an interaction partner’s trustworthiness. Especially

some applications, e.g., the EnergyGrid described in Section 2.3, even require trust values

based on real instead of discrete numbers for a sensible trust estimation. Therefore,

trust metrics used in artificial societies or computation systems are typically based on

real numbers.

The scale of [-1;1] explicitly models distrust. A trust value of 0 stands for indifference,

i.e., no knowledge about the trustworthiness of the interaction partner is known. -1

stands for complete distrust, i.e., one is sure that the interaction partner is not trust-

worthy, whereas 1 stands for complete trust, i.e., one is sure that the interaction partner

is completely trustworthy. The corresponding trust metrics have to consider the effect of

negative numbers in their calculations. This leads to a different kind of metric compared

to the [0;1] interval.

Whether there is a difference and what that difference is between these two domains is

still debated in current literature [63]. Mathematically both domains can be converted

into each other, but one can argue, that distrust is semantically different from having

no trust. Also, if distrust is the opposite of complete trust is still open to debate. The

metrics presented in this work use the [0:1] scale, because the goal is to always find

the most trustworthy interaction partner. Adding explicit distrust would not increase

information value, since an untrustworthy interaction partner is equally unqualified as

an distrusted interaction partner. In this interval a value of 0 represents complete

untrustworthiness, whereas 1 stands for complete trustworthiness. 0.5 here can be seen

as an indifferent opinion about the trustworthiness of the interaction partner.

2.3. Application Scenarios

Within the OC-Trust Research Group, several application scenarios for trust in OC

systems are presented.

24



2.3. Application Scenarios

Our current energy grid is supplied by an increasing number of different power plants,

which have either a deterministic or stochastic energy production. Deterministic power

plants can adjust their energy production, e.g., coal or atomic power plants. The en-

ergy production of stochastic power plants is not controllable, it is dependent on the

environment, e.g., solar power plants produce energy in relation to the current level of

solar radiation, or wind power plants depend on the strength of the wind. In recent

years, the amount of stochastic power plants has increased, particularly since they do

not consume fossil fuel. The European Union published its goal to further regenerative

energy sources 2 which will increase the amount of stochastic power plants by an even

greater amount in the near future.

This poses a significant challenge for the future structure of the energy grid. It is based

on the fact, that the same amount of energy is produced and consumed. With an increase

of stochastic power plants, the regulation of the energy grid to maintain this equilibrium

will be increasingly difficult, exceeding the possibility of the manual regulation of today.

For an automatic regulation, the power production of the stochastic power plants needs

to be predicted, e.g, by using the weather forecast, so that the deterministic power

plants can be regulated as needed. By integrating trust, the trustworthiness of the

predictions can be measured. This allows a self-organizing system of Autonomous Virtual

Power Plants (AVPPs) [56] that group together small power plants with accurate and

non accurate power predictions. Grouping trustworthy and untrustworthy power plants

together to an AVPP prevents the possibility of a cumulative divergence of the energy

production of several untrustworthy power plants at once that might prevent a timely

reaction. AVPPs also reduce the complexity to calculate plans for the deterministic

power plants to balance the variable output of the stochastic power plants, since these

plans need only be calculated per AVPP instead of the entire energy grid. Trust is

therefore a way to cope with the upcoming uncertainties of the future energy grid, when

a high number of power plants are of a stochastic nature.

Another example of an application that profits from the inclusion of trust is an open

computing grid. Such a grid provides high parallel computation power for applications

that profit from it, e.g., face recognition [6] or ray tracing [19]. However, not every

member of the grid is equally interested and able to perform computational tasks for

other members. For example, some members might want to exploit the grid by only

sending and rejecting every task from others, so called FreeRiders [4]. By introducing

trust, the members can identify those malicious nodes and form Trusted Communities

(TCs) [37]. The members of a TC know each other to be trustworthy, which reduces

the risk for each member to receive unsatisfactory work. By continuous observation of

the behavior of the members of a trusted community, members can be excluded if their

behavior changes. The other way is also possible, a so far untrustworthy participant can

2http://ec.europa.eu/clima/policies/package/
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regain its trustworthiness and rejoin a trusted community, if it acts accordingly. This

reduces the need to distribute redundant tasks to cope for untrustworthy nodes in the

computing grid, increasing its throughput.

2.4. Trust Metrics in Literature

There exists a wide variety of literature about trust. Several researchers in the fields of

psychology, sociology and philosophy researched trust and presented several definitions,

what trust actually is [14][38][18]. Marsh [41] conducted an extensive survey of that

literature and presented a first approach to translate trust to a computational system.

Since then, several metrics and trust frameworks have emerged to formulate trust in a

way, that computers can calculate.

A lot of metrics concentrate on reputation, based on direct trust entries of humans,

e.g., rating systems of websites like eBay3 or Amazon. Likewise the Google PageRank

algorithm [5] exploits the connectivity of websites to identify highly frequented web-

sites, which can be compared to reputation, since linking to another website illustrates

a positive reference to that website. The algorithm was enhanced since then to prevent

spamming, but in its basis it provided superior search results compared to other search

engines. Another example is the Web of Trust (WoT) [11], which uses real life meetings

between persons to verify the identity of someone. Given enough confirmations, the

identity of a person is considered valid. All of these metrics are global reputation met-

rics. A global reputation metric saves its information at a central space, that all other

participants can request information from. In comparison a local reputation metric is

based on local information of each participant, i.e., for each reputation request appropri-

ate information has to be gathered from all relevant participants, which can contribute

with their own experiences. Several local reputation metrics, e.g., TidalTrust[21] and

MoleTrust [42], ask known interaction partners for information (called neighbors), which

in turn ask their neighbors until they reach someone with direct experiences or the path

gets too long. The longer the path, the lower the value of the information (similar to

the information someones gets from a friend, who gots it from a friend and so on).

Kamvar et al. present EigenTrust [30], a reputation metric for P2P networks with

the goal to minimize the amount of broken files a participant gets through malicious

peers. They rate the integrity of a file, i.e., is it working and correct, and this way

identify peers, which inject broken files into the network. The biggest difference to the

reputation metric presented in this work lies in their assumption that the ability of a peer

to provide good files is equivalent to its ability to provide good information about others.

Marmól and Peréz [39] demonstrated some problems with this assumption, leaving the

3http://pages.ebay.com/help/feedback/scores-reputation.html
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metric vulnerable for certain kinds of attacks. The Neighbor-Trust metric in this work

explicitly separates these two. They also assume that trust is transitive, which is not

necessarily true. The question whether trust should be assumed to be transitive or not

is an ongoing debate [12][21].

SPORAS [62] is yet another reputation metric. Its focus is to prevent entities to leave

and rejoin the network to reset possible bad reputation values. Compared to Neighbor-

Trust, SPORAS does not assign different values for the reputation value provided by

another entity and the trustworthiness of that entity to give accurate reputation data.

The trustworthiness is calculated from its reputation value. Neighbor-Trust differentiates

between these values by defining separate weights; Mármol and Pérez [39] have shown

the importance to do this.

FIRE [26] is a trust framework combining direct trust and reputation (called witness

reputation in FIRE). In addition, it adds the trust parts of certified trust and role-

based trust. Certified trust describes past experiences others had with an agent, who

can present it as reference of his past interactions. Role-based trust stands for generic

behavior of agents within a role and the underlying rules are handcrafted by users. The

four parts are then aggregated with a weighted mean, whereas the weights are adjusted

by a user depending on the current system. In comparison, the metrics described in this

work do not require user hand-crafted parts like the role-based trust of FIRE and are

therefore able to run in a fully automated environment.

ReGreT [51][52] is a trust framework providing similar metrics for direct trust, rep-

utation, and aggregation to the metrics described in this work. Some differences yet

exist. The age of experiences is part of the direct trust calculation whereas the trust

metrics described in this work consider the age, number and variance as part of the

confidence. ReGreT describes a similar metric, which is called the reliability of the trust

value instead of confidence. Additionally, the formulas for the confidence metrics used

in this work are parametrized. Similarly, the reputation metric can be parametrized

to define the threshold, when one’s own experiences are close enough to the reputation

data given by a neighbor (called a witness in ReGreT). Also instead of directly using

the confidence for the aggregation of direct trust and reputation a weight is calculated

by a parameterizable function using the confidence. One of the major differences though

lies in the evaluation. While ReGreT works in a scenario with fixed agent behavior the

evaluation in this work investigates systems with varying agent behavior, where a very

trustworthy agent can change to the direct opposite. Several such changes per scenario

are considered. Bernard et al. [3], e.g., describe a system with such adaptive agents.
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When calculating trust in a distributed systems, there are generally two facets to look

at:

1. To measure theReliability of a node or service, i.e., its ability to process incoming

requests or availability.

2. To measure the Credibility of a node or service, i.e., its ability to deliver, what

it promised to do.

To calculate a trust value for any of these facets, the following steps are required:

1. Gathering experiences by interacting with another node or system.

2. Evaluate these experiences and assign a value between 0 and 1, with 0 for the

worst possible experience and 1 for the best possible experience.

3. Calculate a trust value from these evaluated experiences using appropriate trust

metrics.

To be able to calculate the credibility of an interaction partner, the semantics of the

transaction have to be known, i.e., item 2 requires the evaluator to know, what the

transaction was about to be able to measure its correctness. On middleware level this is

not possible, since the middleware does not know about the semantics of the messages

sent to other services, therefore the credibility of services is impossible to calculate. The

applications that issued the transaction are able to do these measurements, though.

The credibility of a node would measure the correctness of its basic functions, i.e., if a

service relocation was successful or a message was delivered to the correct services. The

Trust-Enabling Middleware (TEM) was created to provide these functionality as well as

trust capabilities, see chapter 5. We therefore assume that all basic operations of the

middleware are executed correctly, regarding its credibility.

In comparison the reliability of a node can be measured without the need to interpret

the semantics of application messages. By observing the message flow to other nodes,

dropped messages can be identified and the availability of a node in a given time can be

determined. The middleware can provide this information to all of its running services

to give them additional information to decide, with which other application to interact

with. The middleware itself can exploit this information to improve the self-x properties
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to create a more robust service distribution and react on changes in the environment that

reduces the reliability of a node. Section 3.1 presents the Delayed-Ack algorithm [35][36]

that identifies lost messages and calculates a direct trust value from it.

Section 3.2 presents the Neighbor-Trust metric [33], a metric to calculate reputation

that is able to identify lying nodes and adjust its reputation calculation to only include

trustworthy nodes. Section 3.3 shows, how the accuracy of the calculated direct trust can

be measured by determining the confidence in these trust values [32]. Finally section 3.4

presents a metric to calculate a total trust value out of direct trust and reputation

using confidence to weight both parts for the total value [34]. All of these metrics do

not require the Delayed-Ack algorithm as direct trust metric, but work with any type

of direct trust metric and every facet. This allows the applications running on the

middleware to exploit these metrics based on their own direct trust metrics, leading to

a generic approach for calculating trust in a distributed system. The implementation of

these metrics into the TEM are described in chapter 5.

3.1. Direct Trust

The reliability of a node is an important basis for all interactions executed on the system.

If a node is not reliable, i.e., it cannot be reached due to a high rate of lost messages,

the applications on it can be as good as they will, their calculations are unable to reach

their interaction partner or only with a lot of delay due to error corrections. For the

self-x properties the reliability has also to be considered to assign those services that are

essential for the structural integrity of the system only to highly reliable nodes. It also

allows for a more robust failure detection, where the chance of all observers of a node

failing simultaneously is minimized. Due to these reasons the Delayed-Ack algorithm

was developed to measure the reliability of a node by observing the message flow between

nodes and identifying lost messages.

3.1.1. Delayed-Ack Algorithm

The Delayed-Ack algorithm observes the message flow on middleware level. This espe-

cially means that no knowledge from the underlying transport layer need to be consid-

ered. While TCP has error corrections, message loss can be expected by using UDP.

Loosing a message can have two reasons:

� The message is lost on its way to the node, see Figure 3.1(a) or

� the message is lost because the target node has failed, see Figure 3.1(b).
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(a) Loss of a message in transit.
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(b) Loss of a message due to failed node.

Figure 3.1.: The Delayed-Ack algorithm

Both variants result in problems to reach the node, reducing its reliability, and are

therefore handled equally. If an distinction has to be made, additional knowledge must

be taken from the underlying transport layer. When measuring the amount of lost

messages, the reliability of a node can be determined. A high number of lost messages

indicates, that communication with that node is impaired and therefore extra care and

additional error corrections are required to communicate with services on this node.

To measure if a message was lost, a unique ascending message number is added to

each message. This number will get acknowledged by the interaction partner and the

acknowledgment is sent back as piggy-back as well. Every message therefore contains

acknowledgments for every received message since the last time a message was sent.

Figure 3.1 depicts the use of these message numbers.

In total every sent message contains:
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� A unique ascending message number

� A list of acknowledgments, acknowledging all messages received since the last time

a message was sent.

The received acknowledgments are then compared to the list of sent message numbers.

In case of message numbers that are not acknowledged, so called gaps, the message is

considered lost, resulting in a negative experience (0). Acknowledged message numbers

result in a positive experience (1). If messages do not get acknowledged after a set

amount of time, a negative experience (0) is saved. This allows for an increase in

negative experiences over time, after a node failed and stopped sending message, and

therefore is not generating any more gaps. If an acknowledgment is received after the

message was already set as not received, the experience is retroactively changed to a

positive value (1).

A potential problem with the Delayed-Ack algorithm occurs, when a node rates the

reliability of a communication partner but is unreliable itself. Let node1 be the unreliable

node and node2 its interaction partner, then the following case can occur:

1. Node1 sends some messages to node2.

2. Node2 receives the messages and responds later, adding the acknowledgments for

the received messages.

3. Node1 on the other hand now looses the messages sent by node2 with the added

acknowledgment due to a transient failure of node1.

4. Node1 will now rate node2’s reliability down because it believes node2 to have

lost the original messages while node1 lost the message with the acknowledgment

instead.

Figure 3.2 depicts the loss of a message, which would acknowledge three messages sent

by node1.

In this case a node unjustifiable rates down the reliability of interaction partners because

of its own bad reliability. Evaluations have shown that the calculated trust value tn for

node n in this case results in

tn = t(self) · t(real)n

where t(self) denotes the reliability value of the node, which is rating the node n, and

t(real)n denotes the trust value of the node n, if the observing node would be completely

reliable and not loose some messages itself.

To counter this effect the Delayed-Ack algorithm[35] was improved to the Enhanced

Delayed-Ack [36] algorithm. The basic idea is to resend acknowledgments until it is

certain at least one message with this acknowledgment is received. This is archived
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Figure 3.2.: Loss of a message with a piggy-backed ack

when at least one of these messages itself are acknowledged. After that this specific

acknowledgment does not have to be resent anymore. When a node is highly unreliable

itself, it will eventually gain an appropriate estimation of the reliability of its interaction

partner regardless of its own reliability. In this case a metric that rates older values

higher than newer values is preferable, because older values actually depict the real

reliability value of the interaction partner whereas newer values most likely are timed

out negative experiences due to lost messages with acknowledgments.

Based on these experiences a trust value for reliability tr can be calculated. For this

calculation several metrics were examined, with n the amount of messages, ordered by

the time of their occurrence and xi the experience of the interaction (1 for a positive

experience, 0 for a negative experience):

1. arithmetic mean: tr =
1
n

n
i=1 xi

2. time weighted mean: tr =
n

i=1
i
n
xin

i=1
i
n

=
1
n

n
i=1 i xi
n+1
2

3. inverted time weighted mean: tr =
n

i=1
n−i
n

xin
i=1

n−i
n

=
n

i=1 (n−i) xin
i=1 (n−i)

(1) is a simple mean metric. (2) and (3) are a weighted mean metric that weight the

experiences based on the time they occurred. (2) weights newer experiences higher

whereas (3) weights older experiences higher. On first glance (3) does not look like

a reasonable metric considering the higher expressiveness of more current experiences.

In case of an interaction partner with consistent, but fluctuating, behavior, weighting

older experiences higher results in a trust value with less fluctuation. Such a behavior

is a result of an interaction partner with a specific reliability value but with a high

variance around it, e.g., 20% of messages are lost by an interaction partner based on an
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observation of lost (0.0) and received (1.0) messages. A mean value will average these

losses to a reliability value of 0.8 (loss of 20% messages), but new experiences of 1.0 or

0.0 will create a high fluctuation around the mean value especially if current experiences

are weighted high. This effect is diminished by rating old experiences higher.

3.1.2. Evaluation

To evaluate the Delayed-Ack algorithm it is analyzed with respect to its convergence

speed towards a fixed real trust value. Every node has a specific fixed trust value p.

Such a node will react to messages with a probability of (1-p). So if the node’s real

fixed trust value is 0.9, 10% of the messages are lost and therefore not acknowledged. In

the evaluation the sought reliability value of that node is therefore 0.9. The evaluation

analyzes the amount of interactions needed for the algorithms to converge on the real

trust values as well as how much impact bad reliability of an observer has on its observing

capabilities.

To accomplish this, a network of 30 nodes is used with the following configuration:

� Ten nodes with 100% reliability,

� ten nodes with 90% reliability, and

� ten nodes with 50% reliability.

A node with a reliability value of less than 100% only receives messages with the given

percentage, be it because of transient node failures or actual message loss. A node picks

two random nodes as communication partners at every time step and sends a message

to them. The corresponding nodes reply with 75% probability. This should picture a

real world system where applications send requests to other applications on other nodes

but not always expect a reply, e.g., when a simple information message is sent. The

chosen percentages stand for perfect nodes (100%), slightly unreliable nodes (90%), as

well as very unreliable nodes (50%) and should represent typical nodes within a network.

Ten nodes of every type were chosen to get a variety of results due to the randomness

of the message loss probabilities and averaged results. The very low reliability of the

nodes, especially a 50% message loss, were chosen to demonstrate the robustness of the

algorithm in systems with very unreliable components.

Figure 3.3 shows the average result of all nodes with 100% probability observing the

nodes with 50% probability. After some interactions the observed trust value stabilizes

around the real trust value. The Delayed-Ack algorithm gauged the trust of other nodes

successfully.

On the other hand if the observing node itself is unreliable it gets a biased view on other

nodes, demonstrated by Figure 3.4. This scenario is similar to the aforementioned, but
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Figure 3.3.: Enhanced Delayed-Ack: 100% reliable node observing another 50% reliable node
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Figure 3.4.: Enhanced Delayed-Ack: 50% reliable node observing another 50% reliable node
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Figure 3.5.: Enhanced Delayed-Ack: 50% reliable node observing another 50% reliable node

this time the observing node has a 50% reliability instead of 100%. As can be seen,

the observed trust value stabilizes but at a far lower value than the real trust value.

This happens due to additional message losses caused by the observing node. Not only

are message lost that were sent to the interaction partner but also the messages coming

from this interaction partner, probably containing acknowledgments of actually received

messages. Losing these messages and therefore rightly sent acknowledgments marks

these message incorrectly as not received. In total the observed trust value is close to

0.25, which is the product of the reliability of both nodes.

In contrast Figure 3.5 shows the same situation, nodes with 50% reliability observing

nodes with 50% reliability, with the use of the Enhanced Delayed-Ack algorithm. Com-

pared to Delayed-Ack the observing node gets a quite correct impression of the observed

node, regardless of its own unreliable state.

3.2. Reputation

While direct trust gives a good estimation of an interaction partner’s behavior, it is

not always available. Especially when a new node enters the system, it does not know

anything about the system yet. Additionally it’s behavior itself is not known to any node

in the network. The network on the one hand has no choice but to build experiences

with the new participating node by conduction transactions with it. The new node on
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Figure 3.6.: Nodes in the reputation graph

the other hand can exploit the knowledge of the nodes in the network, that already

accumulated experiences with each other until it has enough own experiences itself.

These indirect experiences from third parties are called reputation.

3.2.1. Neighbor-Trust Algorithm

To measure reputation the Neighbor-Trust Algorithm [33] is introduced. It is based on

metric 2 presented by Satzger et al. [53], which gathers the direct trust information of

all neighbors of the target node. Neighbors in this context describes all nodes that have

direct trust information about the interaction partner. Satzger et al. calculated a mean

value of the direct trust values of the neighbors. The Neighbor-Trust Algorithm enhances

the metric to a weighted mean, where the weights are adjusted over time to consider

only neighbors that had similar experiences than oneself, thereby introducing a learning

component. Figure 3.6 shows a short example of a network and the neighborhood

relationships.

Alice (a) wants to get information about Carol (c), so she asks Bob (b) about his opinion

about Carol. wab is the trust Alice gives the information Bob provides respectively the

weight she gives his information and tbc is the direct trust value Bob has about Carol.

Later Alice might have a direct experience with Carol, displayed by tac. To get an

accurate value, Alice will ask more entities than just Bob. She will ask all neighbors

(i ∈ neighbors(c)) of Carol.

The reputation rab, i.e., the reputation a gathered about b by collecting information

about b from its neighbors (i ∈ neighbors(c)), is calculated with the following formula:
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Figure 3.7.: Characteristics of the weight adjustment function of the neighbor-trust reputation
metric

rac =


i∈neighbors(c) wai · tic

i∈neighbors(c) wai

The learning component is the weight wai. This weight will be adjusted over time,

depending how similar the trust values from the neighbors correlate with the node’s own

experience. If an experience is close enough to the information given by a neighbor, its

weight will be increased and further information will be rated higher. Then again, if the

discrepancy is too high the weight will be reduced and therefore further information of

this neighbor will be rated down. This creates a group of neighbors that had similar

experiences than the asking node. Golbeck [20] showed with a movie review platform

enhanced with a social network, that getting reviews from users preferring similar movies

yielded better information than getting the global mean. Not only does the Neighbor-

Trust Algorithm provide this functionality, but it also excludes nodes that provide false

information purposely.

Figure 3.7 shows the characteristics of the weight adjustment function:

w will only be adjusted within a maximal adjustment θ, thus preventing a too excessive

change of w through a single transaction. Furthermore, two thresholds are defined:

� τ : Up to this threshold the experiences of the neighbor and one’s own are close

enough to increase the weight to this neighbor. More precisely the obtained trust

value from the neighbor tbc lies within the own direct trust value tac ± τ .

� τ ∗: Up to τ ∗ but beyond τ the difference between the received trust value of the

neighbor tbc and one’s own trust value tab is too high, therefore w is decreased.

Beyond that w is reduced fully by θ.

In total the formula for the Neighbor-Trust metric is as follows:
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wn+1
ab = wn

ab


+(

τ−|tnac−tnbc|
τ

) · θ, if 0 ≤ |tnac − tnbc| ≤ τ

−(
|tnac−tnbc|−τ

τ∗−τ
) · θ, if τ < |tnac − tnbc| ≤ τ ∗

−θ, otherwise

3.2.2. Evaluation

To evaluate the Neighbor-Trust metric a network of 10 nodes with different percentages

of lying (malicious) nodes was used. The relatively small number 10 was chosen to

identify specific effects that are presented further down. Simulations with more nodes

yielded similar results. A node is malicious if it returns a reputation value that does

not match its actual experiences, i.e., it is lying about other nodes. In the case of

this simulation the malicious nodes always return a reputation value of 0, regardless of

previous experiences. By doing this, they try to denunciate all other nodes to push their

own reputation value compared to the others. The malicious nodes themselves return

always wrong results if interacted with. The simulation was conducted in timesteps. In

every timestep every node chose an interaction partner based on their reputation values,

whereas the node with the highest reputation value was chosen. In case of a draw, one

of the nodes with the highest reputation rating was chosen randomly. Especially at the

start of the evaluation, when no reputation value is known yet, a random node is chosen

for the first interaction. Apart from the first interaction, a value has to be defined for

nodes, which were not interacted with yet and therefore no information about them

exist so far. An arbitrary starting value has to be assigned to such a node to be able to

compare it to the others. The simulation will show the effect for different initial values.

To show the results, the nodes were categorized in two types: honest and malicious

nodes. For each time step the average reputation value of the honest nodes about the

two types are displayed as well as the weight the honest nodes have about both types.

The weight represents the honesty the corresponding nodes have about relaying their

direct experiences.

Figure 3.8 displays the results for a network with 30% malicious nodes. Mainly two

things can be seen here. In the start, the honest nodes get wrong reputation data

about other honest nodes due to the false information of the malicious nodes. Over

time the malicious nodes are identified as such, which can be seen by the decreasing

weight the honest nodes have about the malicious nodes. Simultaneously the reputation

of the honest nodes increases as the weight of the malicious nodes drops. After about

20 interactions all malicious nodes are identified as such and have their weights set to 0.

Therefore their reputation data is removed from the calculation and does not influence

it anymore.
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Figure 3.8.: Reputation in a network with 30% malicious nodes

Apart from that the weight of honest nodes about the other honest nodes starts and

ends at 1: Telling the truth, their weight never gets reduced. The same happens with

the reputation data of the honest nodes about the malicious nodes. Since they never lie,

they always rely their bad experiences about the malicious nodes.

In Figure 3.9 the amount of malicious nodes was increased to 50%. The results are

similar to 30%. Even increasing the amount of malicious nodes to 70%, as can be seen

in Figure 3.10, results in a stable system. This demonstrates the robustness of the

Neighbor-Trust metric, as it returns meaningful results, even if the amount of malicious

nodes exceeds 50% of the total nodes.

In the three scenarios above the threshold for unknown nodes was set to 0, i.e., if no

reputation data was available for a node a start value of 0 was assumed. This can be

seen as a pessimistic approach [40]. In Figure 3.11 the threshold was changed to 0.5,

i.e., a node with no reputation data starts with 0.5. Similar to the above scenarios the

honest nodes identified the malicious nodes resulting in a final reputation value of 1 for

other honest nodes.

Compared to the other scenarios the average weight value stabilizes on a value above

0. Since this value is an average value, not all weights of honest nodes about malicious

nodes are set to 0. In this case a switch to another interaction partner occurred after

its reputation dropped below 0.5, the threshold for an unknown node. In the end the

malicious nodes and the honest nodes interacted with a different set of nodes. From the

point of view of an honest node, some of its final interaction partners never interacted
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Figure 3.9.: Reputation in a network with 50% malicious nodes
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Figure 3.10.: Reputation in a network with 70% malicious nodes
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Figure 3.11.: Reputation in a network with 50% malicious nodes and threshold 0.5

with some malicious nodes, therefore no results are returned from reputation requests

from these nodes. This is especially true, since the evaluation used the TEM middleware

that handles reputation requests internally based on the saved data of the services.

Services can only save the results of their experiences into the middleware. If no results

were saved, the middleware does not return any value, thus preventing a malicious service

to, e.g, return 0 to every reputation request. By not receiving any reputation data from

some malicious nodes no more comparisons to its own experiences can be observed, hence

the weight value stays above 0. Therefore the average weight stays above 0.

Figure 3.12 shows an interesting effect of a single isolated node in a network with 50%

malicious nodes. By chance all honest nodes interacted with a single node, in this

case node7. This resulted in no experiences gathered with the isolated node shown in

Figure 3.12. Therefore the reputation data about the honest node stayed at the starting

threshold, in this case 0. The weight of the malicious nodes about the isolated node is

dropping, since the malicious nodes actually did interact with the isolated node. But

compared to the honest nodes, they always save a bad experience into the middleware,

although the isolated node returns positive results. The comparison between the two

values and the calculation of the weight is done within the middleware, which leads to the

decrease of the weight. Therefore using the TEM middleware increases the robustness

against malicious services. The weight stabilizes at a value > 0 due to similar results as

with Figure 3.11.
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Figure 3.12.: an isolated node with 50% malicious nodes

3.3. Confidence

Direct trust itself already gives a good estimation of the observable behavior of a com-

munication partner. But this estimation might not be very reliable itself, e.g., only a

few values might not be enough to gauge the true behavior of an interaction partner, as

can be seen in the evaluation of the Delayed-Ack algorithm. Therefore an estimation of

the reliability of the trust value, the confidence, is introduced [32]. This work was done

in cooperation with Gerrit Anders and Florian Siefert, University of Augsburg. The

confidence consists of three parts:

1. The number of experiences cn: A low number of experiences might not be enough

to gauge the behavior correctly, as can be seen in the Delayed-Ack evaluation.

2. The age of experiences ca: Older entries might not reflect the true behavior of an

interaction partner anymore, especially when the behavior can change.

3. The variance of the experiences cv: A high variance in the observed behavior indi-

cates a higher uncertainty for future interactions, especially a rise in the variance

might stand for a change in the behavior of the interaction partner.

The metric of every part is based on the same function, depicted in Figure 3.13:
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f(z) =

4


z−z0
z1−z0

3

if z0 ≤ z ≤ z0 +
1
2
(z1 − z0)

4


z−z1
z1−z0

3

+ 1 if z0 +
1
2
(z1 − z0) < z ≤ z1

z

f(z)

1

z0 z1

Figure 3.13.: Illustration of f(z).

The characteristics of the function is based on the observations from the Delayed-Ack

evaluation. Within the thresholds z0 and z1 only slight changes occur near z0 and z1,

while the function changes to a a near linear characteristic in the middle. Also the

function takes the value 0.5 exactly in the middle, i.e., at 1
2
(z1− z0).

3.3.1. Number of Experiences

For the number of experiences a threshold τn defines, when enough experiences are

gathered to set a credibility of 1. A confidence of 0 is set for 0 experiences. A trust

value based on 0 experiences would be an initial trust value for instance. For our base

function, this will set z0 = 0 and z1 = τn. Based on the evaluation for Delayed-Ack

a value of 25-50 for τn seems like an appropriate value. The formula to calculate the

confidence about the number of experiences cn(X) is as follows:

cn(|X|) =


4


|X|
τn

3

if 0 ≤ |X| ≤ 1
2
τn

4


|X|−τn
τn

3

+ 1 if 1
2
τn < |X| ≤ τn

1 if τn < |X|

Figure 3.14 depicts the metric in a graphical way.

The function is based on the base function f(z) depicted in Figure 3.13. First the

function rises from 0 to 1
2
at 1

2
τn, where its gradient reaches its maximum. After that

it rises with decreasing gradient to 1 at τn, where it stays at 1 for all values > τn. This

reflects the characteristic observed by the Delayed-Ack evaluation, see Figure 3.3, where

at first the trust value was adjusting to the real trust value with a high gradient and
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Figure 3.14.: Illustration of cn(|X|).

stabilized with decreasing gradient at the actual trust value. Similarly a small change

near the edges (0 or τn) changes the confidence only a bit, while in the middle at 1
2
τn a

change in the number of experiences has the highest influence on the confidence. The

other parts of the confidence use functions with a similar characteristic.

3.3.2. Age of Experiences

For the age of experiences, two thresholds are introduced: z0 = τr on the one hand

defines the time frame, up until experiences count as up to date, therefore resulting into

a confidence value of 1. z1 = τo on the other hand denotes the point in time, from when

experiences are considered as completely out of date, resulting in a confidence value of

0. In between those two thresholds the confidence level drops according to the basic

confidence function. In total the formula for the confidence for the age of experiences is

as follows:

r(ax) =



1 if 0 ≤ ax < τr

−4


a−τr
τo−τr

3

+ 1 if τr ≤ ax ≤ τr +
1
2
(τo − τr)

−4


a−τo
τo−τr

3

if τr +
1
2
(τo − τr) < ax ≤ τo

0 if τo < ax

Figure 3.15 depicts the formula in a graphical way.

ax

r(ax)

1

τr τo

Figure 3.15.: Illustration of r(a).
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This formula will rate every single experience by its age. The confidence is 1 until the

first threshold τr is reached, which marks the point, when the experience starts to get

old. After that the confidence falls with increasing gradient to 1
2
at 1

2
(τo − τr). Then it

falls with reducing gradient to 0 at τo, where it stays at for all ratings > τo indicating

that the experience is fully outdated.

After every experience was rated, the total confidence is calculated by calculating the

mean from the single confidence values:

ca(X) =


x∈X r(ax)

|X|

3.3.3. Variance of Experiences

The variance can be used as an indication for a behavioral change, especially if the age

of experiences can not be used, e.g., a change occurs during consecutive interactions.

An increase in the variance, and therefore a drop in the confidence of the variance,

indicates such a behavior change, since returning results will differ from the results up

to this point. After some time the confidence will stabilize again. At this point the new

trust value has adjusted and represents the new behavior. The formula to calculate the

variance confidence Cv(X) is as follows:

cv(vX) =


−4


vX
ν

3
+ 1 if 0 ≤ vX ≤ 1

2
ν

−4

vX−ν

ν

3
if 1

2
ν < vX ≤ ν

where v describes the highest possible variance, when the confidence reaches 0. In this

case v = 0.25, which is the maximal confidence for a mean value of 0.5. For the proof

for this claim see appendix A. Figure 3.16 depicts the formula in a graphical way.

vX

cv(vX)

1

1
2
ν ν

Figure 3.16.: Illustration of cv(X).

A confidence of 1 equals 0 variance, i.e., all results are identical, while a confidence of 0

marks maximal variance. The maximal confidence is dependent on the mean value, e.g.,

the maximal confidence for a mean value of 0.5 is 0.25 whereas the maximal confidence
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for a mean value of 0.4 is 0.24. Because v of the confidence formula is chosen statically

to be 0.25, only a distribution around the mean value 0.5 can actually reach confidence

0, all others will have a minimum confidence greater than 0. The closer the mean value

is to 0 or 1, the closer is also the minimum confidence for the variance. If v is not chosen

to be 0.25, but to be the maximum variance for the according mean value (the trust

value here) unintentional effects can be observed. A variance of 0.1 would translate to

another confidence value for a maximal variance of 0.25 than for a maximal variance of

0.24 since the function characteristics are slightly compressed. One would expect the

same confidence value of identical variance values. Instead the total maximum of 0.25

is always chosen as v and the minimum confidence is instead changed, the function is

cut off at the lower end.

v

µ
1
2

0.25

1

Figure 3.17.: maximal variance v

Figure 3.17 demonstrates the behavior of the maximal variance v compared to mean

values µ. The maximum is, as mentioned above, at v = 0.25 for µ = 0.5. The character-

istics are similar to the other two functions. The confidence is 1 for a variance of 0 and

falls with increasing gradient to 1
2
at 1

2
v. After that it drops with a decreasing gradient

to 0 at v. Since the variance is between 0 and v, the maximal variance, this marks also

the domain of the variance confidence.

All three parts of the confidence metric are aggregated to a total confidence value c with

configurable weights:

c =
wncn(|X|) + waca(X) + wvcv(vX)

wn + wa + wv

where wn is the weight for the number of experiences, wa the weight for the age of

experiences and wv the weight for the variance of experiences. Each application is able

to adjust the weights according to their requirements. By default all parts are weighted

equally, i.e., wn = wa = wv = 1.
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3.3.4. Evaluation

To evaluate the effectiveness of the confidence metrics, a network consisting of 100 agents

was created. Another dedicated agent chooses in every timestep, with which of the 100

possible agents it wants to interact with. Each agent i has a mean benefit bi. The 100

agents were created using 4 different types:

� Type 1: bi ∈ [0.85, 0.95] (30 agents)

� Type 2: bi ∈ [0.55, 0.65] (40 agents)

� Type 3: bi ∈ [0.4, 0.5] (20 agents)

� Type 4: bi ∈ [0.2, 0.3] (10 agents)

In addition, the agents have a variance of vi in their behavior. The agents of each

type have vi = 0.1 (40%), vi = 0.05 (30%) and vi = 0.025 (40%). The benefit of an

interaction with such an agent is created by using a beta distribution with their mean

bi and variance vi. In addition a sliding time window was used, only taken into account

the last 30 interactions to calculate the trust value and the corresponding confidence

values.

As a first evaluation the dedicated agent interacted 100 times in a row with a single

agent i with the following characteristics:

� The Agent i was of Type 2 with bi ≈ 0.6 and vi = 0.1.

� Agent i changed its behavior to Type 4 with bi ≈ 0.2 and vi = 0.1 after 60

timesteps.

� The confidence formulas were parametrized with τr = 30, τo = 40 and τn = 25.

The interaction with this agent is conducted in 3 steps:

1. An interaction per timestep for 30 timesteps.

2. Type change from Type 2 to 4 at timestep 30, but no further interactions for

another 30 timesteps.

3. Again one interaction per timestep for 40 timesteps, up to a total of 100 timesteps.

Figure 3.18 displays the evaluation and the three steps.

In part 1, up until timestep 30, the dedicated agent interacts once per timestep with

agent i. The trust value evens out on the mean benefit bi of the agent i. The confidence

of the number of experiences (cn) increases up to its threshold τn, where it stays at

1. This covers the time the trust value needs to even out and correctly represents the

mean benefit this agent facilitates. Since there are experiences in every timestep, the

confidence about the age of experiences stays at 1. The confidence of the variance

stabilizes at around 0.75. This value is below 1, because the benefit of the agent varies
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interaction partner
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Figure 3.18.: Confidence values of a single agent

per transaction, as can be seen in the value vi.

In part 2, after the behavior change and interactions stop, the trust stays at its old

value, since no more interaction indicate its change. However, the experience age and

the corresponding confidence value drops. At timestep 60, 20 out of the 30 gathered

experiences have fully expired and therefore have a confidence rating of 0 regarding

their age. The 10 newest, which are still 30-40 timesteps old, have decreasing values

of confidence. In total this brings the confidence down to about 0.2. The variance

confidence is stable, since only the data from timestep 1-30 are still available and they

do not change after the additional 30 timesteps have passed.

In part 3, interactions with the agent i are resumed and continued for another 40

timesteps with one interaction per timestep. With interactions that return values ac-

cording to the new benefit gain, the trust value drops until it reaches the expected value,

where it stabilizes. Since new interactions are conducted the age confidence increases

until it reaches 1 again. The interesting part is the variance confidence. Since the new

interaction results now differ from the old values the variance increases and therefore the

corresponding confidence drops. After more of the new interaction results are gathered,

the system adapts to the new behavior and as the trust value reaches its real value the

variance confidence stabilizes at its new value, indicating the trust value is accurate

again.

After initially investigating the different parts of the confidence metric, the designated

agent now chooses 1 agent out of all 100 in every timestep to interact with. The selection

metrics are based on a roulette-wheel metric. A roulette-wheel metric assigns all choices
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a possibility value and chooses randomly, where choices with a higher value have a higher

chance to be selected. In total 4 selection metrics were used:

� selRdm: An agent was chosen randomly using a uniform distribution, setting a

baseline for comparison.

� selTrust : The designated agent calculated the trust values for all agents and se-

lected an interaction partner by a roulette-wheel selection method.

� selTrustConf : The designated agent additionally assessed its confidence in these

trust values and used the product of trust and confidence in combination with a

roulette-wheel selection method.

� selTrust2Conf : This method determined an interaction partner in two stages.

First, a set of 10 agents was selected by using the selTrust method. Subsequently,

the designated agent selected its interaction partner by using the selTrustConf

selection method.

The evaluation goes for 8000 timesteps with 2 behavior changes at timestep 2000 and

4000:

� Type 1: 6/4/2 agents changed to Type 2/3/41.

� Type 2: 6/6/2 agents changed to Type 1/3/4.

� Type 3: 4/6/1 agents changed to Type 1/2/4.

� Type 4: 2/2/1 agents changed to Type 1/2/3.

All agents are initiated with a trust value by conducting exactly 1 interaction, before the

evaluation itself is started. Due to the higher amount of possible interaction partners, a

long time span might occur between 2 interactions with a single agent, therefore the age

confidence metric got parametrized differently, i.e., with τr = 2000 and τo = 3000. The

total confidence was calculated with wn = wa = wv =
1
3
, giving all 3 parts equal weight

for the total confidence value. The results are averaged from 200 evaluation runs.

Figure 3.19 displays the average gain in benefit of the designated agent of the last 50

interactions per time step. The random selection metric selRdm has the lowest gain of

benefit but is stable throughout the evaluation. Using trust alone (selTrust) already

increases the gain in benefit by approximately 9.54% compared to selRdm at time step

8000. At timestep 2000 and 6000, when the behavior chances, a drop in the gain of benefit

can be observed. This is to be expected, since agents with former good benefit are chosen

although they now act a lot worse. The system acknowledges this change though and

stabilizes again. Regardless, selTrust never drops below selRdm, even shorty after the

changes. Adding confidence to trust with the simple method of selTrustConf increases

1Type 1: 6/4/2 agents changed to Type 2/3/4 means: 6 agents of type 1 changed to type 2, 4 agents
of type 1 changed to type 3 and 2 agents of type 1 changed to type 4.
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Figure 3.19.: Average gain in benefit

Figure 3.20.: Average difference between expected and real gain in benefit

the benefit gain, but not significantly, whereas the more complex metric selTrust2Conf

does strongly increase the benefit gain, by 17.84% compared to selRdm.

Figure 3.20 displays a slightly different sight on the evaluation. Here the difference

between the expected benefit and actual benefit is depicted. The lower the difference, the

better. selRmd is displayed here as comparison, but the data was not used for selection

purposes. Similar to the benefit gain, selRdm is the worst metric and selTrust2Conf the

best.
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3.4. Aggregating Direct Trust and Reputation

With the confidence defined, direct trust tdt and reputation tr can now be aggregated

to a total trust value:

ttotal = wc · tdt + (1− wc) · tr

The weight wc is calculated using the confidence. The higher the confidence, the higher

wc and therefore the higher the influence direct trust has over reputation. The function

to calculate the weight from the confidence is depicted in Figure 3.21. It is based on the

same function as the confidence metrics, see Figure 3.13.

confidence

wc

1

τcl τch

Figure 3.21.: Illustration of f(confidence) = wc.

Mathematically the function is defined as

wc =



0 if c < τcl

4


c−τcl
τch−τcl

3

if τcl ≤ c ≤ τcl +
1
2
(τch − τcl)

4


c−τch
τch−τcl

3

+ 1 if τcl +
1
2
(τch − τcl) < c ≤ τch

1 if τch < c

There are two thresholds defined:

� τcl marks the threshold for too low confidence. When the confidence is lower than

τcl the weight wc is set to 0, resulting in using only reputation for the aggregated

value.

� τch marks the threshold for high confidence. When the confidence is higher than

τch the weight wc is set to 1, resulting in using only direct trust and no reputation

for the aggregated value.

Having all trust parts combined, two questions arise:

1. What are appropriate values for τcl and τcr? These two thresholds define the area,

when to switch from reputation to direct trust. For humans this point is highly
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subjective and therefore a quantification of it proves difficult.

2. How do the parameters of the different metrics influence the result and which parts

(direct trust, reputation, confidence and aggregation) of the metrics are favorable

for future decisions.

The metrics for confidence, reputation, and aggregation define a total of 12 different pa-

rameters. The direct trust metric itself is not parametrized, since it is either application

specific (when rating application interaction) or surveyed by the Delayed-Ack algorithm

for node reliability, which is not parametrizable. Table 3.1 summarizes the different

parameters defined in the trust metrics.

Table 3.1.: Parameters to configure the metrics direct trust with confidence (DTC, top only)
and direct trust with confidence and reputation (DTCR, top and bottom part);
also the history length needs to be defined for all metrics.

wn {0, 1, . . . 10000} weight for the number confidence
wa {0, 1, . . . 10000} weight for the age confidence
wv {0, 1, . . . 10000} weight for the variance confidence
τn {0, 1, . . . 50} threshold for the number confidence
τr {0, 1, . . . 8000} recent experiences threshold for the age confidence
τo {0, 1, . . . 8000} outdated experiences threshold for the age confidence
rs {0.1, 0.2, . . . 1} initial weight for the reputation
θ {0.00, 0.01, . . . 1} maximal weight adjustment per experience for the reputation
τ {0.01, 0.02, . . . 1} threshold for positive weight adjustment for the reputation
τ ∗ {0.01, 0.02, . . . 1} threshold for the negative weight adjustment for the reputation
τch {0.00, 0.01, . . . 1} high confidence threshold for the aggregation weight
τcl {0.00, 0.01, . . . 1} low confidence threshold for the aggregation weight

All these parameters span a total design space of ≈ 3.36∗1032 possible configurations. A
complete investigation of such a large design space is not feasible, therefore an Automated

Design Space Exploration (ADSE) utilizing heuristic search algorithms, e.g., particle

swarm optimization or genetic algorithms, is performed. A definition of ADSE and the

algorithms used are presented in Chapter 4, which contains the scenario to evaluate these

metrics. Through ADSE the other research question to identify appropriate values for

τcl τcr is also feasible. First results of the evaluation were published in [34]. Chapter 4

presents the basis scenario but expands it with further evaluations.
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Metric Parts

This chapter describes the scenarios to evaluate the aggregation metric, i.e., the combi-

nation of direct trust and reputation using the confidence to calculate the weight between

the two. It is similar to the scenario for the confidence, with the following enhancements:

� The parameter space of the different metrics is traversed by an Automated Design

Space Exploration to identify the best parameters as well as the influence these

parameters have on each other.

� Besides direct trust and direct trust with confidence, the aggregation of direct

trust and reputation with the help of the confidence is evaluated and compared to

the other two metrics as well as random.

In addition, the difference between trust calculations based on continuous and binary

experience ratings is investigated. On the one hand the Delayed-Ack algorithm for

reliability rates message transitions either with 0 (not received) or 1 (received). On

the other hand the algorithms for credibility applied by the other research groups of

the OC-Trust project rate their experiences with continuous values [3][2]. Furthermore

the influence of behavior changes, especially the amount of their occurrences, for both

experience ratings (binary and continuous) are examined.

Section 4.1 describes the automated design space exploration (ADSE) used to investigate

the effects, that different amounts of behavior changes and different kinds of experience

ratings might have. Section 4.2 presents the evaluation environment, in which all eval-

uations are conducted. Then the results for different behavior change amounts are

presented, each for continuous and dual experience ratings. The fist scenario, described

in Section 4.3 features 8 behavior changes that increase in occurrence before the system

stabilizes again. In a second scenario, described in Section 4.4, only 2 behavior changes,

far apart, are examined. Finally, in Section 4.5, a volatile system with 160 behavior

changes is examined.
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4.1. Automated Design Space Exploration

The general idea of an Automatic Design Space Exploration (ADSE) is to find good

values for parameters with heuristic (e.g. genetic) algorithms automatically; this is

especially useful when a mathematical solution is not easy to reach. The core algorithm

defines values for all parameters; such a set of values is called configuration and represents

a point in the multi-dimensional design space or parameter space. The quality of a

configuration is measured by a single or multiple performance indicators called objectives.

Typically, there are a lot more parameters than objectives.

Alternative methods to find good configurations are manual exploration and exhaustive

search. In a manual exploration an engineer manually tries to find good configurations

(“educated search”). Although this method can provide results very quickly there is a

high risk of stopping in a local optimum, hence the best global solution is not found. In

an exhaustive search all possible configurations are evaluated. Hence it is guaranteed to

find the global optimum. Nevertheless, the price for evaluating all possible configurations

is high; for large design spaces this method is simply not applicable.

An ADSE, especially if run with widely accepted good quality algorithms, can both

dramatically reduce the number of necessary evaluations and reduce the risk of finding

local optima as well.

The dominance relationship defines an order for configurations. A configuration i dom-

inates another configuration j if all values of the objectives for i are better or the same

and for at least one definitely better than those of j. The true Pareto front is defined as

the optimal set consisting of all non-dominated individuals. It is approximated during

the ADSE by the set of known non-dominated individuals, which is called approximated

Pareto front.

Different exploration runs can be compared with the hypervolume, also called hyperarea.

It is the region between the so-called hypervolume reference point and the approximation

of the Pareto front. The higher the hypervolume is, the better is the found approximation

of the Pareto front.

The Framework for Automatic Design Space Exploration (FADSE) provides a way to

reduce development effort for fast and reliable explorations with standard algorithms. It

was originally presented by Horia Calborean to find optimal configurations of processor

architectures [9][10] and was later enhanced for robustness and to accelerate explorations

by parallel evaluations [8]. It is now able to optimize both hardware and code optimiza-

tion parameters [27], e.g., FADSE is implemented completely in Java and available as

open source1.

1Homepage of FADSE: http://code.google.com/p/fadse/
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The main advantages of FADSE are that it provides (a) best-practice standard algo-

rithms, which are modified for (b) parallel evaluation of the individuals of a generation

and (c) accelerated with a database to avoid re-evaluation of an already known individ-

ual. Also, FADSE features (d) mechanisms to improve robustness of the evaluation, i.e.,

it can automatically recover from errors in the evaluation of an individual, deal with

infeasible individuals, and stores checkpoint files after every generation allowing a late

resume of an exploration.

ADSE applies genetic and particle swarm algorithms to heuristically search the design

space for an optimal enough solution. Commonly these algorithms do not find the global

optimum, but typically find a local optimum that is quite close to the global optimum.

Genetic Algorithms [23] try to mimic evolution. Each configuration is defined as a

vector and called an individual, where each element of the vector represents one

parameter. A generation contains a set number of individuals, e.g., 100. Each

individual of a generation is rated by a fitness function. After each individual

was rated, a new generation is created by building offspring using crossover and

mutation of selected individuals. Crossover takes two individuals and combines

one part of the first individual’s configuration with another part of the second

individuals’s configuration. Mutation randomly changes some part of an individ-

ual. After that some individuals of the original generation are replaced with the

newly generated individuals. Then the algorithm starts again with the new gener-

ation until a defined number of generations are processed. The initial generation

is created randomly. How to conduct crossover, mutation, and what individuals

to replace on a new generation depends on the algorithm used. In this work the

NSGAII [13] genetic algorithm was used for FADSE.

Particle Swarm Algorithms [46] take natural swarms, like fish schools or swarm of

birds, as basis. A number of individuals are randomly created. Similar to genetic

algorithms, each individual represents a configuration. Each individual (consisting

of n different parameters) moves through the design space with an n-dimensional

velocity vector. This vector is composed of three components: (1) its old velocity

vector, (2) the difference between its current and its best known position and (3)

the difference between its current position and the best known position of the entire

swarm. These three parts are weighted to create the final velocity vector and can

be parametrized, e.g., a high weight for (1) would focus on exploring the design

space. In addition (2) and (3) include random modifiers to add some individualism

to each particle. In this work the particle swarm algorithm SMPSO [45] was used

for the evaluation.

Since the particle swarm algorithm SMPSO provided better results than NSGAII all

evaluations were conducted using SMPSO instead of NSGAII.
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4.2. Abstract Evaluation Scenario

The evaluation is based on agents of a Multi-Agent System (MAS), which want to inter-

act with each other to further their personal goals. The MAS consists of 10 evaluation

agents that decide each time step with which of 100 possible agents to interact with.

These agents reply to an interaction request with either a continuous value between 0

and 1 (first evaluation type) or with a binary value of 0 or 1 (second evaluation type).

These replies represent the quality of the interaction, with 0 being the worst and 1 being

the best possible outcome. This result is the benefit an agent gets from this interaction

and is a quality measure for the selection of the transaction partner. The agent can

either be a service, which rates the credibility of another service or a node, which rates

the reliability of another node.

In a real life system the entity that initiated the interaction needs a way to evaluate

the quality of an interaction to be able to rate it. The Delayed-Ack algorithm rates

interactions with either 0 or 1, 1 being a received message, 0 for a message that was

lost. The credibility algorithms of the other OC-Trust groups rate their experiences with

values between 0 and 1. Both cases are evaluated for each scenario). In the simulation,

we assume each agent performs predictably. This means that, on average, an interaction

with an agent leads to the same result, although with some variation. This is archived

by using a beta distribution [29] with a specific mean value µ and a variance. A beta

distribution additionally provides the possibility to simulate other distribution functions

to simulate alternative behavior, e.g. mean distribution with α = 1 and β = 1 to simulate

completely random behavior. For binary experience values, a random number (r) from

the beta distribution is rounded to either 0 (µ < r) or 1 (µ ≥ r).

An exemplary agent could be one for face recognition. Based on the hardware it is

running on and the quality of the algorithm, its results should be on the same level of

quality. Nevertheless there can be variations depending on the quality of the picture it

has to work with.

To simulate different agent qualities, four types of agents are defined with different mean

values µ for the benefit that can be gained from interacting with one of them:

� Type 1: µ ∈ [0.85, 0.95], 30 agents

� Type 2: µ ∈ [0.55, 0.65], 40 agents

� Type 3: µ ∈ [0.4, 0.5], 20 agents

� Type 4: µ ∈ [0.2, 0.3], 10 agents

Additionally, the agents of each type are initialized with different variances σ2 for their

mean benefits:
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� high variance of σ2 = 0.15, 40% of agents within each type group

� medium variance of σ2 = 0.1, 30% of agents within each type group

� low variance of σ2 = 0.05, 30% of agents within each type group

Over time, the agents can change their behavior. In real life, this could, e.g., be triggered

by environment factors like a reduction of available computing capacity by a user, which

would increase response time of an agent and therefore the quality of the outcome. To

model the switches in agents’ behaviors the following changes are performed2:

� Type 1: 6/4/2 agents change to type 2/3/4.

� Type 2: 6/6/2 agents change to type 1/3/4.

� Type 3: 4/6/1 agents change to type 1/2/4.

� Type 4: 2/2/1 agents change to type 1/2/3.

An evaluation is performed for 8000 time steps, where each evaluation agent chooses one

agent to interact with and performs a single interaction. In total, 50 such evaluations

were per scenario and averaged. Only the results of the first evaluation agent are observed

to ease comparability and because the other nine of ten evaluation agents are needed

only for their reputation values. In case of direct trust as selection metric, calculating

the average result of all ten agents would influence the overall result negatively because

a kind of reputation would also be considered.

Each time step the evaluation agents have to decide, with whom of the 100 agents to

interact with. The metric used for that decision is called the selection metric. In total,

four selection metrics are used.

All metrics beside the random metric are based on roulette wheel selection, similar to

the evaluation of the confidence metric, see Section 3.3. For this, all possible candidates

are placed on a metaphoric roulette wheel, whereas a higher factor for a candidate means

a bigger fraction of the wheel. Then a random number is taken to choose the candidate.

A candidate with a higher trust value has a higher chance to be picked than someone

with a lower trust value. By using this base metric we give the evaluation agents the

chance to still explore possible other agents to interact with while still having a high

chance to exploit already known good agents.

� Random (RAND): A random selection metric is used as baseline. This metric

picks one of the 100 agents randomly in each time step.

� Direct trust (DT): In this selection metric, only direct trust is used as selection

metric. Trust is calculated by a normal mean metric. The trust values are used

2Type 1: 6/4/2 to type 2/3/4 means that 6 agents of type 1 switch their behavior to type 2, 4 of type
1 switch to type 3, and 2 of type 1 switch to type 4, and vice versa.
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for the roulette wheel metric.

� Direct trust and confidence (DTC): In this metric we add confidence as se-

lection parameter. For that we use a two step approach, similar to the confidence

evaluation:

1. Calculate the direct trust values for all agents and choose 10 different agents

by using the roulette wheel metric.

2. Calculate confidence for these 10 agents, multiply it with trust value and use

the result for a second round of roulette wheel.

Such a two step approach always yields better results than executing step 2 alone.

This effect can be seen in [32].

� Direct trust, confidence, and reputation (DTCR): In this metric reputation

is additionally considered. The metric is similar to trust and confidence, as that a

two step roulette wheel metric is used again. Step 1 is identical as before, whereas

step 2 uses the trust aggregation metric described in Section 3.4. As reputation

data, the direct trust data of the other nine evaluation agents are taken.

4.3. Scenario with Some Behavior Changes

In the first scenario, a total of 8 behavior changes are conducted. They are triggered

after 1000 time steps and again after 1000, 200, 500, 200, 100, 2000, and 2000 time steps.

The last 1000 time steps do not have any more behavior changes. This mimics a system,

that is stable for a time, then starts to fluctuate in its behavior until it stabilizes again.

Evaluations with continuous as well as binary experience values are run to investigate

the influence and difference of these two different ratings.

4.3.1. Continuous Experience Ratings

In this section, experiences are rated with continuous values, i.e., values between 0 and 1.

The following results show the total cumulative benefit compared to the history length

for every selection metric. The points displayed in the graphs are all configurations

evaluated by SMPSO in all exploration runs. Because of the optimization goals the

number of generated and evaluated configurations is more dense in the top-left corner

and not equally distributed.

Selection metric random (RAND) with benefit 5018 is taken as baseline.

The selection metric direct trust (DT), see Figure 4.1, is not influenced by parameters

besides the history length. Hence its results do not show any variance. It can be seen that
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with lower history length better results are achieved, whereas using only the most recent

experience (history length is 1) results in the worst observed benefit. A history length

of 2 is the most profitable setting in the evaluated scenario. Only a few experiences as

history give the system the chance to adapt quickly to changes. In comparison, if the

history length is a high value, then the history can also contain many already out-dated

experiences. They do not reflect the current behavior of the agent anymore, and hence

have a negative impact on the trust value. When the agent is not changing its behavior,

i.e., is in a stable state, the last few experiences are enough to model its upcoming

behavior accurately, too.

Figure 4.2 depicts the results for selection metric direct trust and confidence (DTC).

The resulting benefit is higher compared to direct trust (DT) only but features a high

variance; especially with low history length very low benefits can be observed. The trend

of a higher benefit with lower history length is still visible. The top values are at history

length 2-3. While giving generally better results than with only direct trust (DT), the

high variance of the results shows that adding confidence might result in worse benefit

compared to only direct trust (DT) if the parameters are set unwisely.

The results for selection metric direct trust, confidence, and reputation (DTCR)

are displayed in Figure 4.3. By adding reputation, the best results for every history

length are comparable to the results of selection metric DTC. The trend of lower history

length leading to better benefits is unchanged. The important difference to metric DTC

is the variance of the data and the benefit obtained with unluckily chosen parameter

values. The variance is much smaller than without reputation. Also there are no low

runaway values, which leads to much more stable results.

Concluding, the evaluation shows that with all three aspects, i.e., direct trust, confidence,

and reputation, much better and more robust results can be achieved. In addition, we

did not observe any configuration3 with metric DT, DTC, or DTCR, that showed lower

benefit than metric random (RAND)4. The impact of the history length on the benefit

seems surprising because the best results were achieved not with a high number of past

experiences but with only a few of them.5 However, a low history length gives the system

a chance to swiftly adapt to changing agent behavior.

The observed minimum and maximum values for all selection metrics are shown, in

comparison to RAND as baseline, in Figure 4.4. The history length was set to 2. In

order to get the displayed observed worst benefits, SMPSO was configured to minimize

3In total, about 40,000 configurations were evaluated.
4Nevertheless, it is not impossible but extremely unlikely that always the best theoretical agent is
selected by chance and hence better results can also be achieved non-deterministically with metric
random (see infinite monkey theorem).

5The dominant points are found in all three Figures for history lengths 1, 2, and 3. Because of this, a
typical Pareto front cannot be observed; it consists only of these three configurations.
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benefit, hence looking for the worst configuration. As mentioned before, with direct trust

(DT) a higher benefit than random is archived. Adding confidence (DTC), the benefit

can be increased but with the possibility of getting worse benefit if parameters are

chosen unwisely. Nonetheless, the worst result for direct trust with confidence (DTC) is

still better than with random (RAND). By adding reputation (DTCR), the worst found

result is significantly better; it is even better than the best result of direct trust (DT)

alone. Reputation seems to reduce the effects of bad parameter settings and leads to

good results, even in the worst case.

Figure 4.1, 4.2, and 4.3 show that the history length is generally the dominating factor

for the benefit. Figure 4.2 shows as well, that even with a history length of 2, the

cumulative benefit can be quite low for selection metric DTC, if the other parameters

are chosen unluckily.

To get an idea about how to set the different parameters in order to have a very good

benefit with high probability the configurations were classified into two groups. The

best 10% of all configurations are classified as very good and are the group that should

be isolated from all the other configurations. With statistical analysis and a decision

tree calculated automatically with the algorithm C4.5 [49] the following was observed:

� Amount confidence: The threshold of the amount confidence τn must not be

higher than the history length, therefore there is not much choice how to configure

it with such low history length values. The weight for this part of the confidence

was generally set quite high in the DTC metric. In the DTCR metric the weight

was set relatively uniformly over the domain range.

� Age confidence: In the DTC metric, the thresholds were set far apart, i.e., a

lower value for τr and a higher value for τo, creating a larger gray zone. In contrast,

the thresholds did not show any trend in the DTCR metric. For the weight, no

trend was discernible for the DTC or the DTCR metric.

� Variance confidence: The weight for the variance metric tended to be at a lower

value for the DTC metric, while showing no trend in the DTCR metric.

� Reputation metric: The τ threshold tended towards a low value, while the τ ∗

value spanned a higher range. This means a narrow range for the reputation weight

to increase, with a wider range for it to decrease. An agent thus expected a high

similarity to increase the weight and was fast to reduce the weight. The maximum

adjustment θ for the reputation just showed a value of 0.8 or lower, but was

uniformly distributed within that interval. The initial weight rs was distributed

over the entire domain with a slight preference in the value range of > 0.5.

� Aggregation metric: When looking at the thresholds for the aggregation method

a strong trend to always consider reputation can be seen. Nearly all of the values
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for τch were set near confidence 1. This means that the area when taking no

reputation into account was practically non existent. On the other hand, the low

threshold τcl was set relatively low, which also resulted in a nearly nonexistent area

for using direct trust only. In total, the transition from reputation only to direct

trust only seems to be fluent.

To summarize, the history length appears to be the dominating factor. An explanation

would be, that by using a low amount of experiences, the system can adjust quickly

to changes, while some experiences are also enough, when the behavior of an agent

is consistent over time. Another interesting result is the combination of direct trust

and reputation. Both of them are important to use with a fluent transition between

them. Reputation strongly helps to counteract possibly wrong decisions, which explains

the missing trends for the confidence parameters: Due to the corrective ability of the

reputation, the parameters for the confidence are less influential. In human society,

both direct trust and reputation are applied for decision making and our evaluation has

shown, that this also applies for computational agent societies.
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Figure 4.1.: Benefit versus history length for selection metric direct trust (DT) using continuous
experience ratings (8 behavior changes)
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Figure 4.2.: Benefit versus history length for selection metric direct trust and confidence (DTC)
using continuous experience ratings (8 behavior changes)
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Figure 4.3.: Benefit versus history length for selection metric direct trust, confidence, and
reputation (DTCR) using continuous experience ratings (8 behavior changes)

64



4.3. Scenario with Some Behavior Changes

DT DTC DTCR
4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

5724

5162

5912

5724

6136 6145MIN MAX

B
e
n
e
fit

RAND

Figure 4.4.: Best and worst observed results for each selection metric in comparison with ran-
dom (RAND) for history length 2 when using continuous experience ratings (8
behavior changes)
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4.3.2. Binary Experience Ratings

The aforementioned evaluation was based on experience ratings between 0 and 1. Such

an assumption can be made if the direct trust values are credibility values, e.g., when

evaluating the amount of correctly tagged faces on a picture using a face recognition

algorithm. In such a case, a single misclassified face does not result in an experience

rating of 0, but a value between 0 and 1. In other cases, i.e., with the Delayed-Ack

algorithm, the direct trust values can only be set to either 0 or 1.

To investigate the differences between using binary experience values and continuous

ones, a similar experiment was conducted. There the agent behavior is based on a beta

distribution with a target mean value and a variation. The agent configuration is the

same as for the first experiment, but the continuous values from the beta distribution

are rounded in the following way: If the number drawn from the beta distribution is

smaller than the mean value, it is rounded down to 0. Otherwise it is rounded up to 1.

Again an automated design space exploration (ADSE) was executed to find the best con-

figuration for the direct trust (DT), direct trust and confidence (DTC) as well as direct

trust, confidence and reputation (DTCR) metrics regarding the parameters described in

table 3.1.

Figure 4.5 shows the results for the DT selection metric. Since nearly all by ADSE

investigated parameters described in Table 3.1 are for confidence, reputation and aggre-

gation, the only free parameter is the history length. Similar to continuous experience

values a lower history length is favorable to gain a high benefit.

Figure 4.6 shows the results for the DTC selection metric. The results show a similar

trend towards lower history length for higher benefit. The vast majority of good results is

observed with low history length with only singular exceptions at higher history length.

As with the first experiment, a variation of benefits for each history length can be

observed, demonstrating the effect of unwisely chosen parameters. The few points with

very good benefit at high history are found due to a specific characteristic of the heuristic

algorithms. These algorithms tend to over adjust parameters, i.e., they find parameters

that are optimized for one specific case the algorithm is run on and that are not useful

in any other situation. These single values can therefore be ignored.

Figure 4.7 lastly shows the result when combining direct trust, confidence and rep-

utation (DTCR). The same trend of lower history length for greater benefit persists

here as well. As with the first experiment, the reputation reduces the variation of benefits

at each history length.

A first difference to observe is the absence of low benefit results for small history length,

even on the DT and DTC metrics. To turn to this effect, another ADSE was conducted,

but this time with a fixed history length of 2. Figure 4.8 shows the results of the
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experiment, depicting the minimal and maximal cumulative benefit per metric. As

reference, the benefit of the random (RAND) metric (4871), which picks an agent

randomly in every time step, is depicted as well.

Here a major difference to the first experiment is seen. The best and worst results for

all metrics are about the same. They only vary insignificantly. When looking at the

values that were chosen for the parameters of Table 3.1, wv (the weight of the confidence

metric) tended towards high values, hence the variance is an important aspect. As was

shown in Appendix A, a variance value based on {0,1}-values is always maximal, so

therefore one would expect the variance to not be important. The answer to that also

explains the difference to the continuous experiment. Based on binary experience values

and a history length of 2, only three possible trust values tdirect exist (based on the

experience ratings r):

� tdirect = 0 if r = (0, 0)

� tdirect = 0.5 if r = (1, 0) or r = (0, 1)

� tdirect = 1 if r = (1, 1)

Also, only two possible variations for an experience exist, either 0 or 1. So when choosing

a random agent, the chance to get a 1 is calculated based on the mean value of each

agent. Considering the agent types described in the first section and using a mean

distribution to choose the actual mean value for a specific agent the mean value of each

interval is used to estimate the result of random:

� Type 1 has a mean value of 0.8, providing 30 agents.

� Type 2 has a mean value of 0.6, providing 40 agents.

� Type 3 has a mean value of 0.45, providing 20 agents.

� Type 4 has a mean value of 0.25, providing 10 agents.

The mean value also is the chance to get a 1 from an agent, so the chance per timestep

to get a 1 when picking randomly is 0.8∗30+0.6∗40+0.45∗20+0.25∗10 = 0.595. The

experiment ran for 8000 timestep so the expected average result of the random selection

metric is 8000 ∗ 0.595 = 4760. The observed result of 4871 was only about 2.3% off. A

small deviation was to be expected, since the variance of each agent was not considered

to simplify the calculation of the expected result.

Considering only the last two experiences, an adequate prediction can be done for the

next transaction. The closer the mean value is to the extremes of 0 and 1, the better

the prediction, since a longer chain of zeros and ones is required to obtain that mean

value, e.g., mean value 0.9 = 9∗1+1∗0
10

. The goal is to find agents with a high mean value

and avoid agents with a low mean value, so this prediction is especially well-suited.

This also explains why a high weight was chosen for the confidence variance. If a trust
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value of 0 or 1 was calculated, the variance confidence is 1 (variance of 0). Since all

considered experiences had the same rating, one can expect the next experience to be

the same. The only other value, 0.5, results in a confidence variance of 0 (variance

maximal). In this case the prediction of the next experience has the highest uncertainty

so it is the best to ask others, i.e., include reputation.

A noticeable difference to the experiment with continuous experience ratings is on the one

hand the much higher cumulative benefit at low history length and a lower cumulative

benefit at higher history length. Since an experience can only be good (rated as 1) or

bad (rated as 0), a mean value can be misleading. An exception are the mean values

of 0 and 1 as was explained above. All other values just mark uncertainty about the

interaction partner and how good the next interaction will be. The evaluation has shown

that adding several grades of uncertainty does not add more information, especially since

they also increase the time until a change of behavior is identified. When the diversity

of uncertainty gets too high, i.e., too many mean values between 0 and 1, the cumulative

benefit even drops below the achieved benefit of the continuous experiment.

Having a binary rating system for experience increased the total benefit and is therefore

preferred to a continuous rating system, but how experiences can be rated is application

specific. The Delayed-Ack Algorithm logically rates messages binary (received or not

received) while the Energy Grid rates a prediction of power production. The further the

prediction is off from the actual production, the worse the prediction which is naturally

a continuous rating.
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Figure 4.5.: Benefit versus history length for selection metric direct trust (DT) using binary
experience ratings (8 behavior changes)

Figure 4.6.: Benefit versus history length for selection metric direct trust and confidence (DTC)
using binary experience ratings (8 behavior changes)
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Figure 4.7.: Benefit versus history length for selection metric direct trust, confidence, and
reputation (DTCR) using binary experience ratings (8 behavior changes)

Figure 4.8.: Best and worst results for each selection metric in comparison with random
(RAND) for history length 2 when using binary experience ratings (8 behavior
changes)
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4.4. Scenario with Few Behavior Changes

In this section the amount of behavior changes is reduced, yet not completely removed.

Behavior changes are conducted after 2000 and then again after another 4000 time

steps. The last 2000 time steps contain no more behavior changes. In total, only 2

behavior changes are done within this scenario. Again both continuous as well as binary

experience ratings are investigated.

4.4.1. Continuous Experience Ratings

First the results for continuous experience ratings are presented. As before every expe-

rience is rated with a value between 0 and 1.

Figure 4.9 depicts the results if only direct trust (DT) is used to decide the next inter-

action partner. The characteristics of the curve is similar to the preceding experiment.

A lower history length is preferable to a higher history length. The difference to before

is, that a history length of 3 results in about the same, if not slightly higher, cumulative

benefit as a history length of 2.

Figure 4.10 depicts the cumulative benefit for different history lengths when using direct

trust with confidence (DTC) to select the next interaction partner. The results for

this metric are widely different than the other experiments so far. Compared to them, the

history length is not the dominating factor, instead a high variance of good cumulative

benefit values can be observed up to history length 30. Since the behavior of each agent

is stable most of the time, a fast adjustment is not essential here, leaving the history

length with strongly reduced influence on the total result. Instead, the configuration of

the other parameters is more important to obtain a good cumulative benefit.

Figure 4.11 depicts the results when using all three parts of the trust metric, i.e., direct

trust, confidence, and reputation (DTCR). Here the history length is again the

dominating factor. Similar to using only direct trust, but contrary to the experiments

with 8 behavior changes, the highest cumulative benefit is achieved with history length

3 and not with 2.

Since a history length of 3 seems to create better results than a history length of 2, the

best and worst possible configurations for both history length 2 and 3 are investigated.

The baseline selection metric random (RAND) achieved a cumulative benefit of 4871.

Figure 4.12 shows the best and worst cumulative benefit that were found by ADSE for

history length 2. The results are similar to the experiment with 8 behavior changes. That

is adding confidence (DTC) or reputation (DTCR) can result in a better cumulative

benefit than direct trust (DT) alone. But the DTC metric also allows for a worse

cumulative benefit, if an unwisely set of parameters are chosen, while adding reputation
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with the DTCR metric evens out bad parameter configurations with the lowest found

result being higher than with direct trust alone. The best found result for DTC and

DTCR are similar.

Increasing the history length to 3 yields interesting results, see Figure 4.13. For one,

the cumulative benefit is generally higher with all metrics, which is to be expected when

looking at the experiments with variable history length. The most notable difference

though is the strong increase of the best possible value for direct trust, increasing it even

beyond the best possible value for the DTCR metric.

A statistical analysis showed some interesting effects:

� Number Confidence: Due to the low number of considered past experiences,

i.e., low history length, the number confidence had very little influence. Its weight

to the total confidence value showed no trend in the analysis.

� Age Confidence: An experience was aging fast, i.e., dropping below 1 for its

actuality rating, in both metrics (τr tended to low values). The threshold, when

to consider it out of date (τo) showed no real trend, but was in the higher half of

the domain for the DTCR metric. Its weight showed no trend in the DTC metric

and was low in the DTCR metric.

� Variance confidence: While the weight of the variance metric showed no trend

in the DTC metric, it tended to higher values in the DTCR metric.

� Reputation metric: Here an interesting effect occurred. Both thresholds tended

to high values, with τ ∗ set near the maximum of the domain. This means that

even a considerable deviation from a recommendation to ones own experience is

still considered good enough for a positive adjustment of the participant that gave

the recommendation.

� Aggregation metric: The parameters for the aggregation metric were chosen

to mostly use reputation only: τcl tended high with τch near the maximum of the

domain. The result was a system that is similar to web reputation systems, e.g,

the ebay reputation metric. They often take decisions based on the experience

of others. Since the system is in a mostly stable state, i.e., nearly no behavior

changes, a combination of the knowledge of others was an acceptable basis to

choose the next interaction partner.
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Figure 4.9.: Benefit versus history length for selection metric direct trust (DT) using continuous
experience ratings (only 2 behavior changes)

Figure 4.10.: Benefit versus history length for selection metric direct trust and confidence
(DTC) using continuous experience ratings (only 2 behavior changes)
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Figure 4.11.: Benefit versus history length for selection metric direct trust, confidence, and
reputation (DTCR) using continuous experience ratings (only 2 behavior changes)

Figure 4.12.: Best and worst observed results for each selection metric in comparison with
random (RAND) for history length 2 when using continuous experience ratings
(only 2 behavior changes)
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Figure 4.13.: Best and worst observed results for each selection metric in comparison with
random (RAND) for history length 3 when using continuous experience ratings
(only 2 behavior changes)
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4.4.2. Binary Experience Ratings

As comparison, this experiment uses binary experience values, i.e., experiences are rated

as either 0 or 1. Otherwise the experiment is identical to the continuous variant with

only a total of 2 behavior changes.

Figure 4.14 depicts the result for the direct trust (DT) selection metric. Here the

history length is again the dominating factor, with a maximum cumulative benefit at

history length 2.

Figure 4.15 depicts the results when adding confidence to direct trust (DTC) when

selecting a suitable interaction partner. Similar to the continuous experiment, the re-

sults show some high benefit values at higher history length, but with less variance.

Nonetheless lower history length is preferable, since no low results were observed while

having the highest result at low histoy length.

Adding reputation to direct trust and confidence (DTCR), see Figure 4.16, re-

duces the variance of the results. Here the impact of a low history length is again

prevalent. The best results are again observed with history length 2.

Since a history length of 2 seems to be the best choice, all selection metrics were ex-

amined with a fixed history length of 2. The results are depicted in Figure 4.17. Ran-

dom (RAND) was again used as baseline with an achieved cumulated benefit of 4886.

The results are similar to the experiment with binary experience values and 8 behavior

changes. The minimum and maximum achieved cumulative benefit values are similar.

In addition, not much can be gained by adding confidence and reputation.

As comparison with the continuous results, Figure 4.18 depicts the best and worst found

parameter set for a fixed history length of 3 instead of 2. The best found parameter

set for the DTC metric is slightly higher with a history length of 2, showing a similar

trend as the continuous case. But typical for the experiments with binary experiment

ratings, the minimal and maximal found benefit values differ only slightly. Additionally,

the benefit values found with the DTCR metric are better with history length 2 than

with 3. So in total, history length 2 is preferable in the binary case.
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Figure 4.14.: Benefit versus history length for selection metric direct trust (DT) using binary
experience ratings (only 2 behavior changes)

Figure 4.15.: Benefit versus history length for selection metric direct trust and confidence
(DTC) using binary experience ratings (only 2 behavior changes)
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Figure 4.16.: Benefit versus history length for selection metric direct trust, confidence, and
reputation (DTCR) using binary experience ratings (only 2 behavior changes)

Figure 4.17.: Best and worst observed results for each selection metric in comparison with
random (RAND) for history length 2 when using binary experience ratings (only
2 behavior changes)
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Figure 4.18.: Best and worst observed results for each selection metric in comparison with
random (RAND) for history length 3 when using binary experience ratings (only
2 behavior changes)
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4.5. Scenario with Frequent Behavior Changes

This scenario features a lot of behavior changes, happening every 50 time steps. This

leads to a total of 160 behavior changes during the evaluation. Both continuous and

binary experience values are investigated. The evaluation system is constructed as the

systems before, just with the difference of more behavior changes, evaluation a highly

volatile system that is hard to predict. An example could be a solar power plant, when

a lot of clouds are moving to mask and unmask the sun regularly. The prediction of said

power plant will probably be more and less off, depending if clouds are masking the sun

at the moment or not.

4.5.1. Continuous Experience Ratings

At first, the results for continuous experience ratings are investigated.

Figure 4.19 depicts the results with the direct trust (DT) selection metric. On the

one hand, the typical characteristic of the results can be observed again, that is, the

advantage of a lower history length with the optimum at history length 2. On the

other hand, the total cumulative benefit, even at history length 2, is significantly lower

than with the other experiments. This effect is a result of the volatile nature of the

agents, switching their behavior every 50 time steps. As a result, the interaction partner

has to be changed a lot when its behavior changes for the worse, leading to some bad

experiences each time.

Figure 4.19 depicts the result when using only direct trust (DT). Similar to the other

experiments, a low history length is preferable again. the biggest difference to the other

evaluations is the significantly lower benefit that is achieved for every history length.

This happens due to the volatile nature of the system, when a behavior change often

results in some bad experiences until the system adapts.

Figure 4.20 shows the results when using direct trust with confidence (DTC). In

contrast to the evaluation with only 2 behavior changes but similar to the first ex-

periment, the results show again the typical characteristics of preferably lower history

length. While the highest cumulative benefit is higher than with only direct trust, it is

still lower than with the other experiments. This is to be expected due to the volatile

nature of the agents.

Figure 4.21 depicts the results when using all parts of the trust metrics, i.e., direct

trust, confidence, and reputation. The variance for each history length is strongly

reduced compared to DTC, while still achieving similar good results for low history

length.

To compare the effectiveness of each selection metric, the best and worst possible config-
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uration for history length 2 was searched for. Similar to the other experiments, history

length 2 provided the highest cumulative benefit. Figure 4.22 depicts the best and worst

found benefit values for each selection metric. Random (RAND) as baseline achieved

a cumulative benefit of 4997. All metrics are significantly better than random selection.

It also shows that the DTC metric provided better results than the DT metric. If the

other 12 parameters are chosen unwisely, the result is as lows as with the DT metric.

Adding reputation increases the minimal found cumulative benefit, while retaining the

good results of DTC.

Some parameters showed definite trends on a statistical analysis:

� Number Confidence: Due to the low history length, the amount confidence

naturally featured a low value for wn, i.e., the confidence reached 1 very fast.

For DTC, it was weighted very highly for the total confidence, while the opposite

happened for DTCR.

� Age Confidence: Both the DTC and DTCR metric favored a parameter choice

to swiftly let the actuality rating of an experience drop below the maximum (low

τr) but with a significant time until they are marked as outdated (middle to high

τo). For DTC the amount confidence was rated very low for the total confidence

while the DTCR metric preferred a low to middle weight.

� Variance confidence: The variance confidence showed no trend for both DTC

and DTCR.

� Reputation metric: The reputation metric was parametrized to feature a very

small area for a positive match (low τ threshold) but with a high area until the rec-

ommendation is adjusted negatively (high τ ∗). The maximal adjustment was also

set very high, so a false recommendation was punished strongly. This reinforces

the observed effect, that fast change to behavior is important in such a volatile

system.

� Aggregation metric: For the aggregation the thresholds for the confidence were

chosen wide apart, creating a big range, where the total trust value is shifted from

reputation to direct trust. It was preferable to nearly always include both parts in

the total trust value.
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Figure 4.19.: Benefit versus history length for selection metric direct trust (DT) using contin-
uous experience ratings (behavior changes every 50 time steps)

Figure 4.20.: Benefit versus history length for selection metric direct trust and confidence
(DTC) using continuous experience ratings (behavior changes every 50 time steps)
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Figure 4.21.: Benefit versus history length for selection metric direct trust, confidence, and
reputation (DTCR) using continuous experience ratings (behavior changes every
50 time steps)

Figure 4.22.: Best and worst observed results for each selection metric in comparison with
random (RAND) for history length 2 when using continuous experience ratings
(behavior changes every 50 time steps)
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4.5.2. Binary Experience Ratings

The last experiment was run with binary experience ratings but still 160 behavior

changes.

Figure 4.23 depicts the results for the direct trust (DT) selection metric. The positive

effect of low history length can be clearly seen, with the maximum at history length 2 yet

again. The best parameter set found results in a cumulative benefit that is higher than

with continuous experience ratings. But it is also lower than the achieved cumulative

benefits of the other experiments with binary experience ratings. It is therefore consistent

with the continuous experiment that showed similar results, i.e., the volatile nature of

the agents lowers the achievable benefit. One big difference to all other experiments can

be observed, though: The achieved cumulative benefit for history length 1 is quite high

and one of the better points. Since the system is highly volatile of its behavior, a fast

adjustment to change is required, which also explains the strong increase in benefit when

getting to the lower history length values. Due to the high necessity of a fast behavior

change adjustment and the fact, that an experience can only be of two types (good or

bad), a history length of one provided acceptable results. Nonetheless, a meaningful,

i.e., non trivial, mean value is still preferable for the best result.

Figure 4.24 shows the results for the direct trust with confidence (DTC) selection

metric. Similar to the other experiments, a low history length is preferable. The ob-

tained benefit values show some variation on higher history length depending on the

chosen values for the other 12 parameters. Also, similar to the DT metric, the achieved

cumulative benefit for history length 1 is quite high and does show no deviation. The

missing deviation can be explained, since most metrics are based on some kind of mean

value, which can not deviate based on only one single value.

Figure 4.25 shows the results, if all trust metric parts, i.e., direct trust, confidence

and reputation (DTCR), are used in conjunction. It shows the typical characteristics

of preferable low history length while negating the variation of DTC. Yet again, the result

for history length 1 is quite high.

To conclude, Figure 4.26 shows a direct comparison of each selection metric (DT, DTC,

and DTCR) for history length 2, which has proven to be the optimal value, overshadow-

ing the other 12 parameters. For each selection metric the minimal and maximal found

benefit are displayed, as well as the benefit obtained by random (RAND) selection

(4872). All minimal and maximal values are close to each other while being significantly

better than random selection, which is consistent with the other binary experiments.

The generally lower benefit values are due to the volatile system with 160 behavior

changes. Therefore several more bad interactions each time the system needs to adapt

are experienced, leading to a generally lower total result.
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Figure 4.23.: Benefit versus history length for selection metric direct trust (DT) using binary
experience ratings (behavior changes every 50 time steps)

Figure 4.24.: Benefit versus history length for selection metric direct trust and confidence
(DTC) using binary experience ratings (behavior changes every 50 time steps)
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Figure 4.25.: Benefit versus history length for selection metric direct trust, confidence, and
reputation (DTCR) using binary experience ratings (behavior changes every 50
time steps)

Figure 4.26.: Best and worst observed results for each selection metric in comparison with ran-
dom (RAND) for history length 2 when using binary experience ratings (behavior
changes every 50 time steps)

86



5. Trust-Enabling Middleware (TEM)

To make the trust metrics described in Chapter 3 available for a wide variety of ap-

plications the Trust-Enabling Middleware (TEM) [1] was designed. The goal of

the TEM is to provide a prototypical implementation of an distributed organic system

that provides the aforementioned trust metrics. Each instance of the TEM middleware

represents a logical node in a distributed system, which can be a grid system or a Multi-

Agent-System (MAS). The TEM was enhanced with MAS concepts in the OC-Trust

research group to the Trust-Enabled Multi-Agent-System (TEMAS) [1].

The TEM as basis of the TEMAS serves as basis for all kinds of applications, which can

be registered and run on the TEM. These services define the functionality available. In

turn, the TEM provides the following capabilities for every service:

� Sending and receiving messages with logical node IDs. The middleware executes

the actual message sending on lower level.

� Monitoring of the message flow. Each service can register monitors in the TEM,

which are able to monitor all incoming (from a node to services) and outgoing

(from services to other nodes) messages.

� Piggybacking additional information on application messages. With the aforemen-

tioned monitors additional data can be added to application messages, e.g., which

is used by the Delayed-Ack algorithm (see Section 3.1) to identify whether the

messages were received.

� Saving experiences and calculating direct trust and reputation. The TEM provides

all the metrics described in Chapter 3, which in turn can be utilized by the services.

The architecture of the so called trust metric infrastructure is described in

Section 5.3.

Each service can be in one of three states, depicted by Figure 5.1.

� Unregistered: Such a service is just instantiated but not yet registered on a node.

It can neither receive messages nor generally participate in the system in any way.

� Inactive: The service is registered on a node. A message queue is created and all

messages for the service are stored in it. They are not sent to the service until it

is active.
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Figure 5.1.: Life-cycle of a service

� Active: The service is now fully functional and can communicate and receive

messages normally.

5.1. Architecture

The TEM is a multi-tier middleware system depicted in Figure 5.2. It is based on OCµ

[50], a middleware for Organic Computing Systems. In OCµ the left part is the System

under Observation and Control (SuOC) that is monitored and controlled by the Organic

Manager [50][55]. TEM adds trust capabilities to OCµ by adding the TrustService as a

core service for the trust calculations and will adjust the self-x properties of OCµ by using

the collected trust values. Compared to typical self-x property algorithms, especially for

self-configuration that only consider load information, trust is an opinion about someone

else. This implies that trust information can not be gathered from a node directly,

unlike load information, but have to be calculated by others. This significant difference

requires new approaches for the self-x properties and are not simple adjustments for

already existing algorithms.

A TEM node represents a logical node in a network, usually a PC. The Middleware, the

left part of Figure 5.2, consists of three layers:

� TransportConnector: This layer handles the communication between nodes.

All implementations have to implement the TransportConnector interface, ab-

stracting the actual transport layer from the applications. The TEM provides a

LocalTransportConnector, which handles the transport of messages within the

same JVM and therefore enables several logical nodes to run on a single PC. An-

other important TransportConncector is the JXTATransportConnector, which
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Figure 5.2.: Architecture of OCµ [55]

implements the JXTA Protocol1, an open source P2P network protocol. With

JXTA a P2P network of TEM nodes can be established and therefore communi-

cation over a network or even the Internet can be conducted. This enables the

TEM to run on any kind of network, if an appropriate TransportConnector is

provided, while the services run on the TEM do not need to be aware of the

underlying network.

� EventDispatcher: This layer distributes services to their respective service tar-

gets and manages the monitors. On the one hand each received message is del-

egated from the TransportConnector to the EventDispatcher, which identi-

fies the services the message is designated to. It also calls every Monitor for

incoming messages with the given message. On the other hand each service

calls the EventDispatcher to send a message to another node or service. If

the message is designated to a service on another node, it is delegated to the

TransportConnector, otherwise it is directly assigned to the right service. Similar

to incoming messages these outgoing messages are given to the Monitors respon-

sible for outgoing messages.

� Service: This layer is the actual application layer. Each service that runs on a

TEM node needs to implement the Service interface. The interface provides the

service with all required methods to interact with the middleware. This mainly

includes the ServiceConnector interface, which provides a set of other interfaces,

e.g., to register a monitor, send a message or register the service to receive specific

1https://jxse.kenai.com/
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messages. The Service interface also includes the processMessagemethod, which

is called by the EventDispatcher, when a message has to be sent to this service.

public interface Service {

public void init(String serviceId , ServiceConnector serviceConnector ,

Map <String , Serializable > initialData)

throws InitializationException;

public void start() throws ServiceStartException;

public void stop() throws ServiceStopException;

public void destroy(Map <String , Serializable > transferData );

public void processMessage(EventMessage message );

public String getName ();

public String getServiceId ();

public String getServiceType ();

}

The methods init, start, stop, and destroy notify the service about changes in its

life-cycle (see Figure 5.1). These methods are called by the TEM when the service

state within the TEM changes:

– init is called, when the service is registered on a node by the method regis-

terService. Messages to the service are saved on the node but not yet deliv-

ered.

– start notifies the service that it is started, i.e., the startService method was

called. The service is now running normally.

– stop informs the service, that it is suspended but not yet deleted due to the

stopService method being called on the node. Messages are stored until it is

started again.

– destroy marks the end of the life-cycle. It is called when the service is

removed from a node by calling the unregisterService method on the node.

Besides the Service interface, additonally a small version of a service, called

Plugin, is provided. A Plugin can be seen as a service without the capability

to send and receive messages. This is especially useful for an application that only

wants to register Monitors and provide gathered information. The Delayed-Ack

Algorithm is implemented in such a manner. Since the Delayed-Ack algorithm

only observes the message flow of application messages, the added capability to

send and receive messages is not required and would only add overhead.

public interface Plugin {
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public void register(PluginConnector connector );

public void unregister ();

public String getName ();

}

Additionally to the application services, a number of basic services are registered on

every node automatically when the node is started:

� RelocatorService: Provides the functionality to relocate services to other nodes.

This service is exclusively called by the self-x property algorithms and is not visible

to application services.

� DiscoveryService: With this service other services can be located. All appropri-

ate methods are provided by the Discovery interface, which can be obtained by

the ServiceConnector.

� TrustService: This service provides the ability to save experiences and calculate

trust values. All public methods are provided by the Trust interface, the core of

the TEM, which is explained in detail in Section 5.3.

To enable the self-configuration to start services on a remote node, or generally enable a

remote setup of a node, the RemoteControl interface is provided. It provides methods to

remotely register, start, stop and unregister a service on any node. The RemoteControl

interface can be obtained through the TEM node class, so no ordinary service is able to

access its methods. Only the self-x property algorithms are supposed to be able to call

these methods. Alternatively it can be used for bootstrapping the system. The services

are dynamically instantiated by reflection on the target node and then registered.

public interface RemoteControl {

public <I extends Map <String , Serializable > & Serializable >

String registerServiceOnRemoteNode(

String fullyQualifiedClassName , I initialData ,

String destinationNodeId , RemoteResult remoteResult );

public <I extends Map <String , Serializable > & Serializable >

String registerServiceOnRemoteNode(

String fullyQualifiedClassName , I initialData ,

Serializable [] constructorData , String destinationNodeId ,

RemoteResult remoteResult );

public <I extends Map <String , Serializable > & Serializable >

String registerServiceOnRemoteNode(

String fullyQualifiedClassName , String serviceType ,

I initialData , String destinationNodeId ,

RemoteResult remoteResult );

public <I extends Map <String , Serializable > & Serializable >

String registerServiceOnRemoteNode(

String fullyQualifiedClassName , String serviceType ,

I initialData , Serializable [] constructorData ,
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String destinationNodeId , RemoteResult remoteResult );

public void startServiceOnRemoteNode(String remoteServiceId ,

String destinationNodeId , RemoteResult remoteResult );

public void stopServiceOnRemoteNode(String remoteServiceId ,

String destinationNodeId , RemoteResult remoteResult );

public void unregisterServiceOnRemoteNode(String remoteServiceId ,

String destinationNodeId , RemoteResult remoteResult );

}

When calling one of the methods, an instance of the RemoteResult interface needs to

be given as well. This instance gets acknowledged if the remote action was successful or

aborted due to an error. Since the remote operations are asynchronous, requiring mes-

sages to be sent to other nodes, the methods of the RemoteControl interface are designed

as void methods with the RemoteResult methods called asynchronously when a return

message with the result of the operation arrives. The method remoteActionSucceded

marks a successful transaction while remoteActionFailed is called in case of an error.

public interface RemoteResult {

public void remoteActionFailed(String serviceId , Exception exception ,

String ocmNodeId );

public void remoteActionSucceeded(String serviceId , String ocmNodeId );

}

5.2. Organic Manager

OCµ additionally features an Organic Manager [50][55] to implement the self-x prop-

erties. The Organic Manager is based on the MAPE-cycle [31]: Monitor, Aanalyze,

Plan, and Execute. Monitors are registered with the EventDispatcher to observe the

message flow and to distribute load information with piggy-back data on application

messages. These raw information are stored in the Information Pool. In the next step,

the analyze phase, this raw information is processed and aggregated into a more high

level view, e.g., high load instead of the exact amount. The aggregated information is

then interpreted by an Automated Planner [55] which calculates the necessary steps to

regain a stable and optimized system. A step here is the relocation, starting or stop-

ping of a service and the goal is to reach a load balanced system. The planner can be

configured by user-defined objectives, which define the intended amount of services in

the network. The Organic Manager also features a Reflex Manager that saves already

occurred situations, i.e., unbalanced system states, and the plans, which did correct

these situations. If a similar situation appears again, the plan of the Reflex Manager

can be immediately executed instead of waiting for the full planner calculations. The
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actual execution of each step is performed by the Actuator. The Actuator has a direct

connection to OCµ and is therefore able to send messages to other nodes to realize the

service relocations, starts and stops.

The main aspect of the Organic Manager is the automated planner. A planner finds

a series of steps to reach a designated goal, in case of OCµ a distributed load of the

nodes. The steps to reach that goal can either be the relocation, starting or stopping

of a service. The start or stop steps are required, because users can define objectives,

like at least 10 services of a specific type have to run in the system. The planner makes

sure to start the appropriate amount of services. It also relocates the services to balance

the load. While the planner does indeed find suitable solutions for the objectives, its

scalability is a problem. A planer searches through the entire planning space, which is

constructed as a tree with all possible paths. The nodes of said tree are the steps the

system can take. In general the runtime of the planner increases exponentially with the

size of the problem. To counter this problem, the Reflex Manager was introduced that

caches already calculated plans for further use if a similar situation occurs again.

With the introduction of trust, a planner is not suitable anymore due to its runtime.

Trust values are expected to change constantly during the runtime of a system, which

would result in repeated misses of the Reflex Manager and therefore constant recalcu-

lation of new plans. This also means, that a change in a trust value of a node would

trigger the planner again, leading to constant replanning, a high consumption of runtime

and long reaction times. For such an ever-changing property like trust a planner is not

a suitable tool. Therefore the TEM takes a different approach with integrated basic

services for the self-x properties.

5.3. The Trust Metric Infrastructure

The trust metric infrastructure (TMI) consists of all interfaces and classes for the trust

calculation, Figure 5.5 at the end of this chapter gives an overview of the involved classes.

The TEMAS technical report [1] presents an in depth description of the entire system.

This chapter will focus on the general structure of the TMI. The Trust interface is the

entry point for all services to the TMI and provides all required methods for trust calcu-

lations. Emphasis was put to support any kind of trust calculation from applications as

well as the middleware. Especially the different viewpoints of the middleware and MAS

(Multi-Agent-Systems) are supported.

� Middleware view: The self-x properties need trust values about a node, and its

reliability to host important services.

� MAS view: Multi-Agent-Systems calculate trust values about other agents and
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abstract from the node they are running on. Therefore their experiences and trust

values are about specific agents and normally do not include node information.

To calculate trust the services save so called RawData into the TEM. These RawData

represent the experiences the services had with their interaction partners. These expe-

riences already contain an evaluation of these interactions, i.e., a value between 0 and

1 with 0 representing the worst and 1 the best possible outcome. When a direct trust

calculation is initialized, a Transformer transforms them into TransformedData, e.g.,

applying a sliding time window. Then an Interpreter calculates TrustData out of the

TransformedData. This process is depicted in Figure 5.3.

RawData

TransformedData

TrustData

Transformer

Interpreter

Figure 5.3.: Trust calculation process

RawData represents all experiences gathered with an interaction partner. The type of

these experiences are application specific. The Delayed-Ack algorithm, e.g., uses

an additional list that contains ACKs of messages that were set to not received

due to a timeout, which defines a waiting time for ACKs of sent messages. After

the timeout has elapsed, a message is considered as lost. These late ACKs need

to be verified as ACKs for real messages to prevent manipulation of the reliability

value, otherwise a malicious node could send random message numbers as ACKs

and those would be considered real without cross checking if those numbers were

actually sent. After setting a number to not received in the database it is removed

from memory to prevent a memory leak. The RawData are saved per

� source service, that made the experience,

� target service, with whom the experiences was made,

� target node, which hosted the service the interaction was conducted with,

� facet, and

� context

The ID of a service consists of two parts:

1. The type of the service, usually the fully qualified class name. This default

94



5.3. The Trust Metric Infrastructure

type can be overridden per Service by the getServiceType method if re-

quired.

2. A universally unique ID based on the java.util.UUID class.

Additionally, services can be set to NULL. In this case the trust value is saved for

a node, e.g, in case of the Delayed-Ack algorithm. By saving the trust values in

such a fine-grained way, different aggregations of these values can be conducted to

provide different trust calculations based on the same data. Some examples are

given below (context and facet are considered the same for the examples):

� Calling with a NULL source service, a target service type and a target node,

the experiences of all services of the requesting node about all services on the

target node that are of that type, whatever specific ID they had, are selected.

� Calling with a source service type, a specific target service and a target node,

the experiences off the services of the given type about one specific instance

of the target service on the given node are selected.

� Calling with a specific source service, a specific target service and NULL as

node, the experiences of that one specific service about the specific target

service, independent what node that service ran on, are selected.

Despite being application specific, two abstract methods of the RawData interface

have to be overridden.

public interface RawData extends Serializable {

public void addRawData(RawData newRawData );

public void deleteObsoleteData ();

}

� addRawData: Within this method a new set of RawData have to be merged

with already existing data. The merge logic itself is application specific, but

the method is called by the TEM to add additional RawData.

� deleteObsoleteData: This method is called each time RawData is saved or

read from the database, this includes trust calculations. It gives the designer

of the RawData the chance to delete outdated data to conserve space and to

prevent a degeneration of the speed of trust calculations. Many data points

can reduce the speed of a trust calculation quite significantly.

TransformedData is a preprocessed version of the RawData. For example only some

RawData can be chosen to be used for the trust caluclation. In addition the format

can be adjusted to make the calculation itself simpler.

TrustData is the final calculated trust value. Similar to the aforementioned classes,

TrustData is application specific as well. To assure compatibility with the reputa-
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tion metric, each TrustData object needs to return its trust value as a single double

value, indicated by the method getTrustValue, which needs to be overridden by

every TrustData object. In addition, the TrustData object contains the confi-

dence values for that trust value, which can be obtained by the getConfidence

method.

public interface TrustData extends Serializable {

public String getTargetNodeId ();

public void setTargetNodeId(String targetNodeId );

public void setTrustContext(String trustContext );

public String getTrustContext ();

public void setFacet(Facet facet );

public Facet getFacet ();

public void setTargetServiceTypeOrId(String serviceTypeOrId );

public String getTargetServiceTypeOrId ();

public ConfidenceValues getConfidence ();

public double getTrustValue ();

public void setSourceServiceTypeOrId(String sourceServiceTypeOrId );

public String getSourceServiceTypeOrId ();

}

The other methods in the TrustData define the parameters, w.g., which node or

services the trust was calculated for. The setter methods are called by the TEM

and all set parameters can then be obtained again by the getter methods. In

contrast to RawData, which is saved for a specific service, the trust value can be

about a group of services, hence the ServiceTypeOrId methods. This supports the

different viewpoints of middleware or MAS systems. The TEM provides a default

implementation SingleValueTrustData, if a trust value consists of just a single

double value.

The following listing shows the methods of the Trust interface. The types between angle

brackets (< and >) are java specific and define generic types that are checked at compile

time.

public interface Trust {

public TrustData calculateDirectTrust(String sourceServiceTypeOrId ,

String targetServiceTypeOrId , String targetNodeId , Facet facet ,

String trustContext , Object ... metricParameters)

throws IncompatibleRawDataException;

96



5.3. The Trust Metric Infrastructure

public <R extends RawData , T extends TransformedData ,

U extends TrustData > U calculateDirectTrust(

String sourceServiceTypeOrId , String targetServiceTypeOrId ,

String targetNodeId , Facet facet , String trustContext ,

Transformer <R, T> transformer , Interpreter <T, U> interpreter ,

ConfidenceMetric confidenceMetric , Object ... metricParameters)

throws IncompatibleRawDataException;

public void calculateReputation(String sourceServiceTypeOrId ,

String targetServiceTypeOrId , String targetNodeId , Facet facet ,

String trustContext , long timeout ,

ReputationResultListener resultListener );

public void addRawData(String sourceNodeId , String sourceServiceId ,

String targetNodeId , String targetServiceId , Facet facet ,

String trustContext , RawData rawData)

throws IncompatibleRawDataException;

public List <RawData > getRawData(String sourceNodeId ,

String sourceServiceTypeOrId , String targetNodeId ,

String targetServiceTypeOrId , Facet facet , String trustContext );

public <R extends RawData , T extends TransformedData ,

U extends TrustData > void setTrustMetric(

String serviceType , Facet facet , String trustContext ,

Transformer <R, T> transformer , Interpreter <T, U> interpreter );

public <R extends RawData , T extends TransformedData ,

U extends TrustData > void setTrustMetric(

String serviceType , Facet facet , String trustContext ,

Transformer <R, T> transformer , Interpreter <T, U> interpreter ,

ConfidenceMetric confidenceMetric );

public Metric <? extends RawData , ? extends TransformedData ,

? extends TrustData > getTrustMetric(

String serviceType , Facet facet , String trustContext );

}

setTrustMetric: Sets a default metric to use for direct trust calculations. The metric

consists of a Transformer and an Interpreter, where the output type of the

Transformer needs to match the input type of the Interpreter, as well as the

confidence metric. The metric is set for the service type, facet and context. The

service type is defined by the getServiceType method of the Service interface.

Typically the fully qualified class name of the Service class is returned, but more

sophisticated types are also possible. By using the service type, every specific

instance of a Service uses the same Transformer and Interpreter.

calculateDirectTrust: This method enables the calculation of a direct trust value for

the services or the middleware. It comes in two versions: One additionally expects

the corresponding Transformerand Interpreter to use for the calculation, the

other tries to take the default ones set by the setTrustMetric method. Both

methods expect the following arguments:

� sourceServiceTypeOrId: This parameter defines, which of the service’s
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data, that made the experiences, should be used for the trust calculation.

This can either be a specific instance of a service (e.g., a specific hash service),

a service type (e.g. a hash service), or NULL, if the experiences of all services

run on his node should be considered.

� targetServiceTypeOrId: This defines the service, about whom the trust

should be calculated. Either the calculation is about a specific service in-

stance, a service type or, if NULL, about the node itself.

� targetNodeId: This specifies the node ID of which the trust is calculated.

Either this specifies the node the service or service type is on, or is set to

NULL. In this case a trust value of a service aggregated over all the nodes it

was on is calculated.

� facet: The trust facet to use for the calculation. The RawData have to be

saved for this facet. Most of the time, applications use the facet credibility.

The Delayed-Ack algorithm uses the facet reliability.

� context: The context the trust is calculated in. Most of the time, the context

is NULL, since using the service in addition to the node is good enough. The

Delayed-Ack algorithm uses a specific context, since his experiences are on

node level, hence the services are NULL, and need to be distinguished from

the other experiences that might be saved on node level.

Giving less precise or none information on some of the aforementioned parameters

results in different aggregation levels for the trust calculation. On the one hand a

call with a specific targetServiceId and sourceServiceId as well as a NULL nodeId

calculates the trust based on the experience of a specific service, but independent

on what node that service was on in its lifetime, which is a typical call in a

Multi-Agent-System. On the other hand, a NULL for targetServiceTypeOrId, a

targetServiceType and a specific nodeId provides the trust value of a service type

on a node based on the experiences of every service on the requester node. Such

a request would give an estimation, how appropriate a node was so far for a

service type. By providing such a flexible request interface, every system view is

supported.

calculateReputation: With this method, a service can obtain reputation data of other

services or nodes. The calculateReputation method can be called in a similar

flexible way as the calculateDirectTrust methods. The method sends messages

to the node the trust value is requested of, who sends it to all its neighbors,

i.e., all nodes that interacted with the target node and therefore are expected to

have direct trust information. The TEM applies a Monitor to save all nodes that

were interacted with by observing outgoing messages and saving the IDs of the

target nodes. Then the direct trust value is calculated and returned to the original
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node. These values are then used as input data for the Neighbor-Trust algorithm

described in Section 3.2.

Compared to calculating direct trust, this is an asynchronous method. This means

that the method can not wait until all results are returned, because, from the sight

of the calling node, the total number of results is not known, as well as the maximal

time such a request needs. Therefore the caller of the method has to provide

a timeout and an object, an implementation of the ReputationResultListener

interface, that can receive the result of the reputation calculation after the timeout

has elapsed.

public interface ReputationResultListener {

public void calculatedReputation

(SingleValueTrustData reputationData );

}

Figure 5.4 depicts the message flow of the method.

node1 node2

neighbor1

neighbor2

1: request

2: relay

2: relay

3: response

3: response

Figure 5.4.: Message flow on a reputation request

addRawData: Adds new RawData to the TEM. The data is saved to the identifiers

sourceService, targetService, targetNode, facet and context. If some RawData object

already exists for these identifiers, the addRawData method is called with the new

object and both experiences are merged. The merged object is then saved.

getRawData: Returns the RawData object for the identifiers described above.

An overview of the classes and interfaces used for trust calculations in the TEM, also

called the trust metric infrastructure (TMI), can be seen in Figure 5.5
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5.4. Confidence

Another big part of the TMI is the ConfidenceMetric interface, with the default im-

plementation ConfidenceMetricImpl that realizes the metrics described in Section 3.3.

Every Interpreter is given the ConfidenceMetric in its interpret method, besides

the TransformedData. This is the same class given in the setTrustMetric method.

This enables the Interpreter to calculate the confidence and set it in the calculated

TrustValue.

public interface ConfidenceMetric {

public abstract ConfidenceValues calculateConfidence(

List <RatedExperience > experiences );

public abstract ConfidenceValues calculateConfidence(

List <RatedExperience > experiences , List <Double > weights );

public abstract double calculateTotalConfidence(double numberConfidence ,

double ageConfidence , double varianceConfidence );

public abstract double calculateNumberConfidence(

List <RatedExperience > experiences );

public abstract double calculateAgeConfidence(

List <RatedExperience > experiences );

public abstract double calculateVarianceConfidence(

List <RatedExperience > experiences );

public abstract double calculateVarianceConfidence(

List <RatedExperience > experiences , List <Double > weights );

public boolean isConfidenceValuesOutdated(ConfidenceValues

confidenceValues );

}

The ConfidenceMetricImpl class contains all confidence parameters as fields, which

are set to default values by the TEM. If another set of parameters has to be used, the

ConfidenceMetricImpl class can be instantiated with these parameters and that class

then used when calculating trust. To use the individual confidence metric, it can either

be set in the setTrustMetric method or given in the calculateDirectTrust method

of the Trust interface. To make the confidence metric compatible with every kind of

experience, another interface, the RatedExperience is introduced.

public interface RatedExperience extends Serializable {

public abstract long getTimestamp ();

public abstract double getRating ();

}

100



5.4. Confidence

The interface needs to be implemented either by all experiences saved in RawData or

generated by the Transformer. It tells the confidence metric, when the experience

happened (getTimestamp) and rates each experience with a number between 0 and 1

(getRating). This information is sufficient for the confidence calculation and abstracts

the actual raw data that was used to calculate the trust value, making it useable for any

kind of data.
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Figure 5.5.: Reduced class diagram of the trust metric infrastructure

102



6. Conclusion

In this work a framework to calculate trust in Organic Computing Systems was intro-

duced. The framework consists of metrics to calculate direct trust, confidence, reputa-

tion, as well as a metric to combine these three parts. In this thesis, trust encompasses

several facets, e.g., reliability and credibility, and can be applied to different contexts.

Therefore, most trust metrics were designed to support several kinds of systems, e.g, a

computing grid or energy grid. The direct trust metric Delayed-Ack gathers reliability

information of other nodes on middleware level, while the other parts, i.e., confidence,

reputation, and the aggregation of all, work for all trust facets, as long as a direct trust

metric is supplied. However, the metrics were mainly designed to improve the self-x

properties of Organic Computing Systems. In particular, this means that trust was

applied to a pure computational system without human participants.

In addition to the trust framework, the Trust-Enabling Middleware (TEM) was designed,

which allows services, that are hosted on nodes running the middleware, to exploit

the presented trust metrics. Services can also add their own trust metrics for direct

trust through a well defined interface. The TEM was developed in Java to be platform

independent, allowing it to even run on mobile devices supporting Java like Android

smartphones. The trust metrics, especially the Delayed-Ack algorithm to asses the

reliability of other nodes, are fully implemented. Together with the monitoring system

to observe the message flow and to add piggy-back information on application messages,

the TEM is ready to host trust-enhanced self-x algorithms.

Additionally, the importance of each part of the trust framework, i.e., direct trust,

confidence, and reputation has been evaluated, to gain the most benefit of a system. For

this, Automated Design Space Exploration (ADSE) with the help of a particle swarm

algorithm was applied. The use of ADSE was required due to the dimension of the

design space of ≈ 3.36 ∗ 1032 possible parameter settings. The most important aspect

of the evaluation was the change in behavior of the participants, when the benefit from

interacting with a participant changes for the worse and the system has to adapt. Beside

the impact of each trust metric, the turning point when switching from reputation to

direct trust when making the decision with whom to interact, was investigated. If there

is a specific point, when to change from reputation to direct trust. Or if there is a gray

zone, where both parts are important but the weight shifts slowly towards direct trust.
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6. Conclusion

In experiments, one characteristic stood out: One parameter, the history length, dom-

inated the other twelve. The history length defines the amount of past experiences,

which are considered when calculating the trust values, be it direct trust or reputation.

Intuitively, one would expect to consider several experiences to get a good assessment of

someones’ behavior, yet a history length of two proved to be the best choice. By using

only the last two experiences, the system can adjust much faster to changing behavior,

while still maintaining a good enough estimation of the targets’ current behavior. With

the DTC metric, the influence of the other parameters was the strongest, reputation

(DTCR metric) mitigated most of the variance. This behavior could be observed in

nearly all scenarios, the DTC (direct trust and confidence) metric with only two behav-

ior changes being the only exception, where the other parameters where more important

than the history length. An explanation for this might be, that in a highly stable system,

where all participants stay true to their behavior nearly all of the time, the interaction

partners rarely need to adapt. Adding reputation reinstated the dominance of the his-

tory length again, though. And even with only eight behavior changes, the history length

is again dominant in all scenarios.

This leads to the conclusion, that exploiting the stable state of a system weights less than

a fast adaption to change. The opposite is only true if the time between changes, i.e., the

time of stability, is sufficiently long. So in a system showing high behavior fluctuation,

fast adaption is most important. A history length of two seems to be sufficient for

computational systems. In comparison, humans feel subjectively better if they can

resort to a larger amount of past experiences, regardless if that many experiences are

rationally required to asses the trustworthiness of an interaction partner.

Another prevalent effect in each scenario was a higher achieved cumulative benefit when

experience ratings were based on binary instead of continuous values, i.e., only 0 (bad

experience) or 1 (good experience) compared to values between 0 and 1. Intuitively,

this seems unexpected, since a continuous rating allows for a more precise estimation.

But combined with a preferable low history length, there are only three possible trust

values based on binary experience ratings: 0, 0.5, and 1. A trust value of 0 or 1 is

based on identical experiences (all 0 or all 1) and a strong indication that the next

experience will be the same, especially if the actual behavior of the interaction partner

is close to the extremes of 0 and 1. Since the goal of the interactions is to make as many

good experiences as possible, i.e., experiences rated with 1, a streak of good experiences

provides a good estimation about the future. At the same time, a short history length,

in this case two, gives the opportunity to adapt fast to a behavior change; see above.

It seems that a binary basis for experience ratings is preferable to continuous ratings.

However, the rating function depends on the underlying application. The Delayed-

Ack algorithm is suitable to be binary rated (0 for a lost message, 1 for a received

message). Other applications can only sensibly use continuous ratings, e.g., the energy
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grid application. Here, the experience rating represents the divergence between a power

prediction and the actual power production of a power plant. This divergence requires

a continuous scale by nature.

Regarding the turning point between direct trust and reputation, the evaluations have

shown that a single point between these two can not be defined. Essentially the opposite

was the case. Reputation was still considered with high confidence, as well as direct trust

with low confidence. This means that both reputation and direct trust are considered

when assessing the trustworthiness of an interaction partner, with a steady shift from

reputation to direct trust when the confidence in one’s own experiences increases. This is

similar to how humans utilize trust. Preferences differ from person to person, and there

are extremes on both ends; but humans are still influenced by the recommendations

of others although they had their own experiences so far. This shows that computer

systems can profit from the inclusion of trust like humans.

A next step to research are the effects of a low history length. If the observed effect car-

ries over to other scenarios, or if a transfer to user trust is possible. An answer to these

questions could increase the insight of the trust concept. Within the field of Organic

Computing, the presented trust metrics are now ready to be integrated into the self-x

properties, including self-configuration, self-optimization, and self-healing. The consid-

eration of trust allows a differentiation of service importance, moving more important

services to more reliable nodes and, therefore, increasing the robustness of the system.

A degeneration of reliability of a node over time enables the self-configuration to predict

an impending node failure, which allows the application of preemptive measures, e.g.,

moving services from an endangered node, before it actually crashes.

Another important aspect is the robustness of the trust metrics themselves. When

integrated into the self-x properties, the robustness of the trust metrics is most important

and a manipulation by an attack can jeopardize the stability of the system. Marmól

and Peréz [39] describe attacks on trust metrics and an evaluation of the metrics against

these attacks would be a logical next step.
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A. Proof to calculate maximal variance

Be µ the weighted arithmetic mean with µ =
n

i=1 wixin
i=1 wi

, where xi is the value at time i

and wi the weight for value xi at time i.

Based on [16] the formula for weighted variance comes to:

σ2
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1n
i=1wi

(
n

i=1

wi(xi − µ)2)

Assumption: In case of 0 ≤ µ ≤ 1 the variance is maximal if all values xi ∈ {0, 1}, i.e.,
the mean is based solely on 0 or 1 values.

Proof:

Be wc =
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i=1wi, x1 variable and x2 . . . xn be constant.
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A. Proof to calculate maximal variance

1. Deviation:

f ′(x1) =
1

wc

w12(
wc − w1

wc
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wc

+
1

wc

n
i=2

wi2(−
1

wc

w1x1 + c2(i))(−
1

wc

w1)

=
1

wc

w12
(wc − w1)

2

w2
c

x1 +
1

wc

w12
wc − w1

wc

c1  
c3

+
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wc

n
i=2

wi2(−
w1

wc

)2x1 + wi2(−
w1

wc

)c2(i)

=
2w1(wc − w1)

2
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1
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(wc − w1)2
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1
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1
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n
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wi2(−
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wc

)c2(i)  
c4

=
2w1(wc − w1)

2

w3
c

x1 +
2w2

1(wc − w1)

w3
c

x1 + c3 + c4  
c5

=
2w1(wc − w1)((wc − w1) + w1)

w3
c

x1 + c5

=
2w1(wc − w1)

w2
c

x1 + c5

2. Deviation:

f ′′(x1) =
2w1

w2
c

(wc − w1)

The 2nd deviation is > 0 for n > 1 and weights > 0. In case of n = 1 the sum of all

weights wc consists of only the first weight w1, therefore wc = w1, which results in 0 for

the second deviation. The same is true for weights equal to 0. Otherwise the second

deviation is always greater 0, regardless of the values of xi, resulting in an increasing

gradient of the original function. The maximum of the function is therefore at the limits

of the domain, in this case 0 or 1. Without loss of generality this conclusion applies to

all xi. Therefore the variance with all xi ∈ {0, 1} is maximal.

If all xi ∈ {0, 1} the weighted mean algorithm can be written as:
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µmaxv =


{i∈X|xi=1}wixi +


{i∈X|xi=0}wixin

i=1wi

=


{i∈X|xi=1}win

i=1wi

=⇒ µmaxv

n
i=1

wi =


{i∈X|xi=1}

wi

Also:


{i∈X|xi=0}

wi =
n

i=1

wi −


{i∈X|xi=1}

wi

The weighted confidence formula has a similar special case for xi ∈ {0, 1}:

σ2 =
1n

i=1wi

(


{i∈X|xi=1}

wi(1− µ)2 +


{i∈X|xi=0}

wi(0− µ)2)

=
1n

i=1wi

(µ
n

i=1

wi(1− µ)2 + (
n

i=1

wi − µ
n

i=1

wi)(0− µ)2))

= µ(1− µ)2 + (1− µ)(0− µ)2

= µ(1− 2µ+ µ2) + (1− µ)µ2

= µ− 2µ2 + µ3 + µ2 − µ3

= µ− µ2

In total the formula for the maximal variance is, with or without weights:

σ2 = µ− µ2

When all weights are set to 1, the weighted variance is equivalent to the normal variance,

therefore this formula holds true for normal variance as well.
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