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Abstract

Due to the omnipresence of digital cameras and mobile phones the number of images
stored in image databases has grown tremendously in the last years. It becomes
apparent that new data management and retrieval techniques are needed to deal
with increasingly large image databases. This thesis presents new techniques for
content-based image retrieval where the image content itself is used to retrieve
images by visual similarity from databases. We focus on the query-by-example
scenario, assuming the image itself is provided as query to the retrieval engine.

In many image databases, images are often associated with metadata, which may be
exploited to improve the retrieval performance. In this work, we present a technique
that fuses cues from the visual domain and textual annotations into a single compact
representation. This combined multimodal representation performs significantly
better compared to the underlying unimodal representations, which we demonstrate
on two large-scale image databases consisting of up to 10 million images.

The main focus of this work is on feature bundling for object retrieval and logo
recognition. We present two novel feature bundling techniques that aggregate mul-
tiple local features into a single visual description. In contrast to many other works,
both approaches encode geometric information about the spatial layout of local fea-
tures into the corresponding visual description itself. Therefore, these descriptions
are highly distinctive and suitable for high-precision object retrieval.

We demonstrate the use of both bundling techniques for logo recognition. Here, the
recognition is performed by the retrieval of visually similar images from a database of
reference images, making the recognition systems easily scalable to a large number of
classes. The results show that our retrieval-based methods can successfully identify
small objects such as logos with an extremely low false positive rate. In particular,
our feature bundling techniques are beneficial because false positives are effectively
avoided upfront due to the highly distinctive descriptions.

We further demonstrate and thoroughly evaluate the use of our bundling technique
based on min-Hashing for image and object retrieval. Compared to approaches based
on conventional bag-of-words retrieval, it has much higher efficiency: the retrieved
result lists are shorter and cleaner while recall is on equal level. The results suggest
that this bundling scheme may act as pre-filtering step in a wide range of scenarios
and underline the high effectiveness of this approach.

Finally, we present a new variant for extremely fast re-ranking of retrieval results,
which ranks the retrieved images according to the spatial consistency of their local
features to those of the query image. The demonstrated method is robust to outliers,
performs better than existing methods and allows to process several hundreds to
thousands of images per second on a single thread.
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1
Introduction

1.1 Motivation

The objective of image retrieval is to find images in a database that are relevant to a given
query. In the early days image retrieval systems were almost entirely text-based: The query
was supplied by keywords or free text. The relevance of an image with respect to the query
was then determined by matching text fragments such as image captions or manually made
annotations with the query text. However, such a technique requires the presence of metadata
or manual labels and thus strongly limits its scope.

In contrast, this thesis focuses on content-based image retrieval, which allows to search for
visually similar images without requiring annotations or free text as query. Here, the actual
image content is processed to determine whether two images are visually similar. By extract-
ing information from edges, corners and blobs as well as color and gradient distributions the
image is eventually described by a higher-level representation than by plain pixels. We follow
the query-by-example paradigm where the query itself is supplied as an image without addi-
tional text keywords. The retrieval engine then processes the input image, extracts a suitable
representation and searches an image database for images that have a similar representation.

It is important to understand that image retrieval does not require image understanding
or “image recognition”. This is due to the fact that a plain retrieval engine normally lacks a
semantic anchor. Just like a child that plays with a toy car but never got told what toy it is
playing with, the engine can neither name nor recognize the content of an image. However, it
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1.2 Applications

is able compute a similarity measure for two images showing the same yet unknown object.
The retrieval system just maps similar visual content to similar descriptions but has no

conception of an underlying high-level concept such as specific objects, scenes or landmarks.
The underlying principle is simply that two images that show the same object, scene or concept
should have a visual description that is in some notion similar. In contrast, if images are
dissimilar, the visual description should reflect this and be dissimilar as well.

The main objective of research on image retrieval is to find a well-working mapping that
follows this principle and further allows efficient and effective search for similar descriptions.
This alone poses great demands on the robustness of the visual description – ruling out naive
visual description such as from plain pixels immediately – as image retrieval should work in a
wide range of imaging settings.

While the inability of a retrieval system to recognize image content for a high-level under-
standing seems unfortunate, it also allows to deal with new concepts without re-training – in
contrast to an object recognition or image classification system.

In the following Section 1.2 we briefly sketch several applications for content-based image
retrieval. In Section 1.3 we present common challenges for image retrieval system. Section 1.4
outlines the contributions of this thesis, while Section 1.5 explains the structure of this thesis.

1.2 Applications

Humans have always used images to express themselves and to transport information. With
the appearance of digital cameras and the rise of the Internet the amount of images stored
world-wide has increased tremendously. Thus, the demands for automatic vision-based man-
agement and retrieval techniques rise quickly. Here we briefly sketch a few current and future
applications, focusing on those where image retrieval is the core technique.

Location Recognition Location Recognition is the localization of the user’s current position
within a city or a building by visual inspection of his surroundings. This may be done by taking
pictures of the surroundings and searching a database of reference images such as Google’s
Streetview or Microsoft’s Streetside. A location recognition system must be able to handle
thousands to millions of locations and constantly adapt to changing environments. For that
reason pre-trained classifiers are often infeasible and retrieval techniques need to be used. The
user may use a mobile device to query such a system by views of his current surrounding. The
system may answer the search by providing additional information about his current location
such as information about the city district or the building’s floor-plan.

Product Search Another scenario already partly realized on nowadays mobile phones is
product search. Here, the objective is to quickly fetch information of a product while shopping.
By taking a photograph of the product or its packaging users may retrieve information about
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1.2 Applications

the product on their mobile phone almost immediately. In contrast to traditional solutions such
as scanning bar codes or QR codes, content-based retrieval does not require a special label on
the product itself. Consequently, this technique also allows to use posters and printed ads as
visual link. Once captured by the mobile application, the retrieval engine points to a web page
describing the event or product.

Visual Hyperlinks Quite similar, yet slightly different is the concept of visual hyperlinks.
Following the PageRank principle (Page et al. 1999) web pages are linked by hyperlinks and
deemed similar if they contain similar keywords and text. This scheme may be translated to the
visual domain where pages are linked by the visual content of images. This may be extended to
image sub-regions: For instance, an image often shows more than one concept or object. The
corresponding image regions describe different concepts and thus may be linked to different
images. The resulting image graph will describe the visual relations - just like the graph for
web pages. It may be used to enrich the representations of a web page in order to improve
search results in a web search engine, which can be queried either by text or image examples.

Visual Dictionary One long-term goal and a very useful application of image search would
be a visual dictionary. User may take photographs of scenes, locations, landmarks, products and
objects to retrieve information about those based on visual analysis. For example, a user may
want to know the name of a flower that is unknown to him. With the help of a mobile device
he may query a huge database of images cross-referenced and annotated either by humans or
automatically with a photograph of that flower. The retrieval engine searches for the most
similar image in the database, processes the corresponding metadata and returns the search
result such as flower name and species to the user.

In general, such application provides a convenient and intuitive way to lookup information
for arbitrary scenes and objects within a large visual dictionary. As additional information
source, time, the user’s location or his profile may be further used to augment the query.

3



1.3 Challenges

1.3 Challenges

Early research mostly dealt with artificial and relatively clean data while nowadays the focus is
on real-world images. Consequently, retrieval systems have to deal with a variety of challenges.

(a) Lighting (b) Perspective (c) Scale changes (d) Truncation (e) Occlusion

(f) Rotation (g) Noise & Blur (h) Small Objects (i) Variations (j) Multiple Objects

Figure 1.1: Examples of common challenges for image retrieval systems. The top row shows
various views of the All Souls College. The lower row shows various views of the Coca-Cola logo.
Images taken from the datasets Oxford (see Section 3.1.2) and FlickrLogos-32 (see Section 3.1.4).

The common challenges for image retrieval and also for computer vision in general include
different varying lighting and illumination conditions (see Figure 1.1(a)). This alone basically
rules out many color- or intensity-based representations as these image properties vary greatly
under different illumination conditions. Photographs from different viewpoints (Figure 1.1(b))
pose a great challenge to the visual description as the underlying image content changes ac-
cordingly and rigid geometric descriptions are unable to handle this. Scale changes e.g., caused
by camera zoom (Figure 1.1(c)) require robust scale-invariant descriptions. Truncation (Fig-
ure 1.1(d)) and Occlusion (Figure 1.1(e)) both partially hide the underlying concept or object.
Thus naive global descriptions will break and more sophisticated representations are required.

A robust search for objects with different poses e.g with different orientations (see Fig-
ure 1.1(f)) requires a rotation-invariant visual description. Image noise and blur (Figure 1.1(g))
require a robust yet distinctive visual description that deals with those artifacts from difficult
conditions. In contrast, small objects (Figure 1.1(h)) or objects with little structure (e.g., the
apple logo) pose the challenge to be able to describe them at all. All visual representations must
handle reasonable intra-class variations (Figure 1.1(i)) and be robust against minor changes.
Eventually, multiple objects (Figure 1.1(j)) are problematic if methods can cope with a single
instance only.
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1.4 Contributions

1.4 Contributions

The main contributions of this thesis can be summarized as follows:

• Modality Fusion: We describe a technique for fusing different modalities such as visual
features and text or different visual features into a single description derived from a topic
model. The underlying model is learned in a fully unsupervised manner. Experiments
show that this method copes well with weak human annotations extracted from commu-
nity databases. In this field, our contribution is two-fold: (1) We present a multi-level
model consisting of independent topic models and describe an efficient heuristic for fast
initialization. (2) We further describe a method that globally optimizes the model jointly
over all levels and modalities.

• Geometric Re-Ranking: We present an extremely fast and effective geometric re-
ranking method termed 1p-wgc-ransac. Our method is based on establishing 1-point
correspondences resulting in a deterministic procedure that is also robust against false
correspondences. We especially demonstrate how the re-ranking can be accelerated by
omitting the projective re-estimation and by introducing a weak-geometric constraint.
Overall, this approach significantly improves the retrieval results and outperforms related
approaches in the literature. Due to its speed it is further suited for real-time applications.

• Feature Bundling for Object Retrieval and Logo Recognition: We developed two
different feature bundling techniques especially suited for retrieval and detection of small
objects. We explicitly designed our methods such that the spatial layout of local features
is encoded into the signature. This is the key distinction to most existing approaches and
effectively discards a great proportion of false positives.

– We present a method to encode the spatial layout of feature triples into a compact
signature. This signature is then used to access a hash table when indexing or query-
ing. Using this highly distinctive signature we demonstrate an effective logo detection
system by means of counting occurrences of distinctive feature configurations.

– We further developed a second bundling technique to aggregate the spatial neighbors
of local features into feature bundles. By employing a locality-sensitive hashing via
min-Hash, our method is capable of robust similarity search for similar yet not
identical sets of local features.

– We extensively evaluate these methods on publicly available datasets of real-world
images showing small objects – i.e., logos of different brands. We further demonstrate
the general applicability of the latter bundling technique for object retrieval and its
improvement over existing methods.

– Finally, we demonstrate a system that exploits our highly distinctive bundle repre-
sentation to perform logo recognition with state-of-the-art performance.
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1.5 Thesis Overview

Parts of this thesis have been published in peer-reviewed conferences and journals: The
multi-modal fusion of visual features and tags has been described in Romberg et al. (2009),
Lienhart et al. (2009) and Romberg et al. (2012). The automatic discovery of spatially consistent
feature pairs and triples and the encoding of their spatial layout into discrete signatures have
been presented in Romberg et al. (2011). The re-ranking technique based on a modified ransac
variant was presented in Romberg and Lienhart (2013b). Our approach for feature bundling
based on min-Hashing has been exploited for retrieval in Romberg et al. (2012) and for logo
detection in Romberg and Lienhart (2013a;b). See Appendix A for a full list of publications.

1.5 Thesis Overview

This thesis consists of four parts:
Part I introduces the technical and theoretical foundations. In Chapter 2 we introduce visual

features, clustering techniques, visual vocabularies and the underlying vector space model we
build on. The different datasets and evaluation criteria are described in Chapter 3.

Part II presents an approach for multi-modal image retrieval exploiting both visual and
textual cues in a fully unsupervised manner. In Chapter 4 a method is described that fuses
information from different domains such as visual features and text, as well as different kinds
of visual features into a single representation. We describe a method that learns a global model
by jointly optimizing the representation over all levels and modalities, as well as a heuristic for
fast initialization of the model – speeding up both training and inference in practice.

Part III focuses on feature bundling methods that aggregate multiple local features into
a single description. In particular we target object retrieval, logo retrieval and high-precision
image search for small objects in general. In Chapter 5 a high precision Monte-Carlo method for
detecting logos in images is presented. A novel ransac variant for extremely fast re-ranking of
image search results based on their geometric consistency with respect to the query is described
in Chapter 6. In Chapter 7 a feature bundling technique based on min-Hashing is presented,
suited for robust approximate similarity search for feature bundles. This technique is then
exploited for object retrieval as well as logo recognition.

Finally, Part IV concludes this thesis with a brief discussion and outlook.
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Part I

Foundations
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2
Fundamental Techniques

In this chapter we discuss fundamental concepts and techniques of content-based image retrieval.
In Section 2.1 we describe the different visual features used in this thesis. In Section 2.2 we
explain different clustering techniques for grouping similar visual features into discrete classes
that are used as visual representatives – the visual words. In Section 2.3 we then show how
these visual words are used within the bag-of-words framework for a robust and scalable image
description.

2.1 Visual Features

One of the most critical components of any computer vision application is the visual description
of image content itself. Over the years a vast number of different visual features have been
explored. With increasing computational power those features got more sophisticated, robust
and were adopted and tuned to application-specific domains. The choice of the actual visual
feature has to be made based on its properties, such as its intrinsic design, e.g., color- vs. non-
color capturing features, its robustness, memory consumption and speed.

For a long time it was common that the whole image was described by a single global feature.
Global features encode the visual content into a single description. Thus, these usually have
very low memory requirements and are fast to compute. Global features are still being used
e.g., for content-based video analysis or video retrieval - mostly due to their small memory
footprint. However, in many domains local features superseded global features. Local features
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have been successfully applied to image retrieval, object recognition, image classification and
are an important building block for many other computer vision applications. In this thesis, we
focus on local features only as their performance for accurate object retrieval has been proven
more effective than global features. A comparison of global and local features of various kinds
in the context of image retrieval is given in (Deselaers et al. 2008).

By definition a local feature describes an image region (“patch”) locally around a chosen
point of interest. Such interest points are usually determined automatically by an interest point
detector, sampled from a regular grid; or in rare cases one can select them manually. The de-
scription of the image patch is carefully designed to be invariant against certain transformations
and robust to changes that commonly occur to images. For instance, the description should
be unimpaired by image noise, changes in lighting and changes of the perspective viewpoint.
At the same time the visual description should be also descriptive and discriminative such that
unrelated image patches can be distinguished from each other and a meaningful similarity can
be computed from the distance between descriptors.

Each image contains multiple local features; therefore any local feature-based approach im-
plicitly deals with occlusion or partial appearances of an object. A change in lighting conditions
or the perspective viewpoint may significantly change the pixel intensities of an image patch
around a certain keypoint. An accurate visual description therefore largely depends on the
robust detection of interest points and the invariance of the encoding by the descriptor.

Starting with simple naive descriptions of image patches soon more sophisticated visual
descriptors were proposed. In combination with the progress on detection of interest points the
decade of 2000-2010 became the decade of local features. Lowe (1999) proposed SIFT features
including a scale- and rotation-invariant detection of interest point as well as a robust description
of the local neighborhoods around these points and has become the de-facto standard. Today
SIFT and some of its variants are the most widely used visual features in the domain of image
retrieval despite the publication of a vast number of other features.

Much research has been dedicated to both the actual visual descriptors and the interest point
detectors and yielded detectors likeMSER (Matas et al. 2004), Hessian-Laplace, Harris-Laplace,
Hessian-affine, Harris-affine (Mikolajczyk et al. 2005). Research has also focused on improving
speed (Bay et al. 2008) and robustness against perspective changes (Mikolajczyk et al. 2005).
Recently several detectors based on machine-learned extremely fast corner detection schemes
have been proposed such as FAST (Rosten and Drummond 2006), AGAST (Mair et al. 2010),
BRISK (Leutenegger et al. 2011) and ORB (Rublee et al. 2011).

Among the visual descriptors the original SIFT descriptor (Lowe 2004) remains one of
the most used and best-performing descriptors. Countless SIFT variants have been proposed,
such as Rank-SIFT (Li et al. 2011), SIFT-Rank (Toews and Wells 2009), π-SIFT (Park et al.
2008), VF-SIFT (Alhwarin and Ristić-Durrant 2010), Eff2 (Lejsek et al. 2006) or approximated
SIFT (Grabner et al. 2006). Each of them tackles a specific weakness of the original SIFT
scheme. Other less closely related variants such as GLOH (Mikolajczyk et al. 2005), PCA-
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SIFT (Sukthankar 2004) and DAISY (Grabner et al. 2006) rely on improved spatial pooling of
image gradients. However, none of these nor any of the former variants replaced the de-facto
standard SIFT. SURF (Bay et al. 2008); conceptually similar to SIFT - while being much faster
- received much attention especially because it was easily portable to GPU hardware. While the
aforementioned descriptors above are more or less gradient-based descriptions other descriptors
capture shape (Belongie et al. 2002) or local self-similarities (Shechtman and Irani 2007) instead.
Commonly local features are extracted from gray-scale images but color descriptors also have
been explored (van de Sande et al. 2010). Recently several descriptors have been proposed that
exploit a compact binary representation for efficient storage and fast distance computations
such as BRIEF (Calonder et al. 2010), ORB (Rublee et al. 2011), BRISK (Leutenegger et al.
2011) and FREAK (Alahi et al. 2012).

In contrast to local features that were traditionally computed from sparse interest points,
other features were introduced for the purpose of object recognition and later used for retrieval
as well. This mainly includes SIFT descriptors computed from a regular grid (often termed
dense SIFT ) or from densely distributed pseudo-interest points (Tuytelaars 2010). In addition,
the Histogram of Oriented Gradients (HOG) descriptor was specifically designed for object class
description and received much attention.

A complete discussion of different local features and their techniques is beyond this thesis;
a comprehensive overview is given in Tuytelaars and Mikolajczyk (2008). In the following we
briefly describe the feature used in this thesis.

2.1.1 SIFT

Interest Point Detection

The Scale Invariant Feature Transform (SIFT) (Lowe 2004) marks an important milestone in
computer vision. After a decade of competing local visual features SIFT features still remain
among the best-performing and widest-used visual features in the computer vision community.
It still is the de-facto standard for image retrieval. In order to make our results easily comparable
to other results in literature most of the work in this thesis uses SIFT features. We use a
mature implementation that incorporates many minor additions that have been added since
Lowe’s early publication (Lowe 1999) and were later summarized in Lowe (2004).

Local features describe small image patches locally around certain points in an image.
Preferably these points should be in salient image regions e.g., showing structures or having
high contrast. The detection and localization of those points is performed by an interest point
detector - also coined salient point detector or more vaguely region detector. Such a detector
determines interest points that can be repeatedly detected across a wide range of viewing con-
ditions at distinctive locations on the underlying scene or object. Ideally, those points should
have only small localization errors both regarding in position and scale.

Lowe’s SIFT detector follows the scale-space theory to determine interest points across dif-
ferent scales, such that the estimated scales of the interest points are roughly covariant with
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original image interest point detection in scale-space gradient representation
estimation of dominant

orientation

Figure 2.1: SIFT: Interest point detection - From left to right: First interest points are
detected in scale-space by determining the scale for which the DoG has the maximum response with
subsequent localization refinement and edge suppression. The dominant orientation is estimated
by measuring the strongest gradient directions in the underlying image patch.

interest point descriptor = spatial binning 
+ interpolation + gaussian weighting

gradients
(original)

gradients
(in scale-space)

Figure 2.2: SIFT: Descriptor computation - From left to right: The local region surrounding
an interest point is described by aggregating gradient magnitudes into a histogram-like descriptor
that encodes gradient orientations, their strength as well as their spatial distribution. The gradient
magnitudes are binned into 4 × 4 spatial cells and 8 orientation bins with interpolation between
adjacent bins and a Gaussian weighting by the distance to interest point.

the image size of the underlying object or scene. For efficient computation Lowe adopted the
Difference-of-Gaussian (DoG) function as used by Lindeberg (1993; 1994; 2007) that approx-
imates the Laplacian-of-Gaussian function. Its response in scale-space is used to determine
extrema locations that are candidates for interest points.

Starting with the original image the scale-space is built incrementally by repeatedly con-
volving the image with a Gaussian filter resulting in an increasingly blurred sequence of images.
This process continues over multiple octaves; after each octave the blurred image is halved to
save computations. The pyramid of DoG response maps is then built by computing the differ-
ence map between two adjacent levels in the scale-space. Local extrema in the DoG response
maps are found by a 8-neighborhood intensity comparison across three adjacent scale levels.

The interest point is initially localized by the pixel position of the extremum and the cor-
responding scale level in the DoG pyramid. It is then further refined both spatially and in
scale-space with sub-pixel accuracy: A 3-D quadratic function is fitted to the location in scale-

12
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Figure 2.3: Example for sparse SIFT features computed from Difference-of-Gaussian interest
points. The image patch captured by the descriptors is shown as yellow circle. The green line
denotes the dominant orientation estimated for each interest point.

space (i.e., to x, y, scale) by a 2nd-degree Taylor-expansion on the gradient samples (Brown and
Lowe 2002). The final interest point location is determined as the extremum of this function.
This refinement is important, especially for image registration, since interest point locations
detected on different scale levels are back-projected to the original image resolution.

To prevent unstable detections, a threshold on the DoG response at the location of the
refined extremum discards spurious detections at points with little contrast. To reduce the
responses along edges an additional edge suppression step is applied: Similar as in the Harris
corner detector (Harris and Stephens 1988) the ratio between trace and determinant of the
Hessian at the interest point is exploited to discard points on edge-like structures.

Once the interest point has been localized, the dominant gradient direction of the underlying
image patch is estimated to allow the visual description being transformed into a rotation-
normalized canonical frame. The orientation estimation is done by building a histogram of
gradient orientations that measures which gradient directions occur most in the underlying
image patch. The gradients of the neighborhood around the interest point are sampled at the
appropriate scale-space level and added to the orientation histogram whereby each sample is
weighted by its gradient magnitude and the distance to the interest point. Last, a quadratic
function is fitted to the discretized orientations; the peak of the fitted parabola yields the final
orientation estimation.

The SIFT detection scheme is sketched in Figure 2.1. Examples of interest points and their
estimated dominant orientation are shown in Figure 2.3.

SIFT Descriptor

The SIFT descriptor represents the image region around an interest point by the spatial distri-
bution of the underlying image gradients. Gradient samples provide both the gradient direction
as well as the gradient strength (magnitude). The spatial distribution of these gradients in the
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descriptor window yields a highly distinctive yet robust visual description.
To reduce the size of the visual description to a relatively small descriptor that is also

independent of the patch size, the gradients are quantized both spatially as well as by their
direction into a 128-dimensional real-valued histogram of gradient orientations. The spatial
information is encoded by a 4× 4 grid of cells, whereby each cell encodes underlying gradients
by 8 different angles. The size of a single grid cell depends linearly on the scale of the interest
point, i.e., the scale of the interest points is multiplied with a magnifier that controls the
described patch size and may be chosen depending on application requirements. To obtain
a rotation invariant visual description the gradients are encoded into a canonical frame: All
gradient orientations are measured relative to the estimated orientation of the interest point.

A minor change on the descriptor location – such as small shifts or minor scale changes –
should only have minor effect on the computed visual signature. To achieve this, the gradients
are interpolated bi-linearly into the cells of the spatial histogram. Thus, a single gradient
sample (at a single pixel) contributes to multiple cells with weights according to its position on
the underlying grid. In the same spirit, the gradient directions are interpolated into adjacent
orientation bins. Each entry is weighted by the gradient magnitude such that the gradient
histograms closely resemble the distributions of strong and weak edges in the underlying image1.
In addition to the aforementioned interpolation all gradient weights that are added to the
histogram are further weighted by a Gaussian on the distance to the interest point. This
descriptor computation scheme is illustrated in Figure 2.2.

Eventually, the robustness of the descriptor to changes in lighting is improved by normal-
ization: To achieve invariance to changes in the overall image intensity the descriptor is first
L2-normalized. To further reduce the dominance of extremely strong edges - in contrast to
their surroundings - large peaks in the histogram are clipped and finally the descriptor is L2-
normalized to unit length again. This scheme results in a visual description that is robust across
a wide range of varying lighting conditions and also somewhat robust to slight localization errors
and changes in perspective (roughly up to 40◦).

2.1.2 RootSIFT

RootSIFT (Arandjelović and Zisserman 2012b) is a relatively new variant of the SIFT descriptor
with a minor change that has major impact: The SIFT descriptors are computed as normal,
but the descriptors are normalized in a different way before the square root of each element is
taken. The steps to obtain a RootSIFT descriptor x′ are as follows:

1. The regular SIFT descriptor x is computed and L1-normalized afterwards.2

2. For all descriptor elements the square root is taken: x′i = √xi.
1The whole process can also be seen as a trilinear interpolation of gradient samples into a 3-D histogram

holding both spatial bins and orientation bins.
2Usually SIFT descriptors are L2-normalized, truncated to damp down peaks in the gradient histograms

and L2-normalized again. In case of RootSIFT the last L2-normalization is replaced by an L1-normalization.
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back-projected

feature extraction
over multiple scales

Figure 2.4: Dense SIFT: Multi-scale computation of local features sampled from a regular grid.

Intuitively, the square-rooting of the descriptor elements reflects a down-weighting of large
gradients. The differences between large gradient magnitudes carry less information than differ-
ences between small gradient magnitudes. Consequently large gradient magnitudes are down-
weighted. More general, this scheme is also known as power-law normalization with x′i = xαi .
In slightly different settings it has been explored earlier with even stronger down-weighting i.e.,
α = 1

3 by Lejsek et al. (2006) or recently with α = 0.2 by Delhumeau et al. (2013).
This minor change improves the visual description significantly, yielding higher performance

for both retrieval and classification as shown by Arandjelović and Zisserman (2012b). We
experimentally confirm this in Chapter 7.

2.1.3 Dense SIFT

For most methods that rely on image descriptions representing the image content by occurrences
of local features, the total number of sampled local features is critical. Indeed, even random
sampling of patches from an image increases performance over determining these patches by
interest point detectors as long as the number of randomly sampled patches is high (Nowak
et al. 2006). Consequently, it turns out to be beneficial that the image content is not described
by local features sampled from sparse interest points but from a regular grid (Hörster et al.
2008a). The “dense” sampling of overlapping visual features in regular intervals increases the
number of features dramatically compared to features computed from sparse interest points.
This increases the chance that certain object parts are properly captured by multiple over-
lapping visual features and it further encodes regions where interest point detectors do not
fire e.g., due to little contrast. Sparse interest point detectors discard such homogeneous re-
gions by design. However, even homogeneous or low-contrast-regions carry visual information
about the context of the object or scene. For instance, these may encode sky, a wall or simply
homogeneous regions within the object’s contour. The downsides are increased memory require-
ments and computational costs. The former makes a subsequent compression1 step mandatory,

1Compression in the sense of data reduction not necessarily lossless compression.
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the latter can be reduced drastically by exploiting the regularity and overlap of dense visual
features (Uijlings et al. 2009, Vedaldi and Fulkerson 2010).

In the spirit of a multi-scale sliding window search the SIFT features are computed on
multiple scales to achieve pseudo scale-invariance. Starting with the highest image resolution,
i.e., the lowest scale, which is commonly down-sampled from the original resolution to save
computations, the image is consecutively down-scaled. The down-scaling (usually by a scale
factor of 2 1

2 or 2 1
4 ) is performed multiple times down to a minimum size, or equivalently up to a

maximum scale of the resulting features. Unlike the Gaussian smoothing in scale-space it might
be beneficial to slightly sharpen the image after down-scaling1. For each scale level features are
computed from a dense regular grid and stored with their scale and location information. The
extraction scheme of dense local features over multiple scales is illustrated in Figure 2.4.

The sheer amount of local features per image prohibits techniques like direct feature match-
ing or visual word-based lookup in an index. However, in Chapter 4 we show a technique that
is able to compress the visual information into small signatures.

2.1.4 Histograms of Oriented Gradients

Originally Dalal and Triggs (2005) have developed the Histograms of Oriented Gradients (HOG)
features for human detection. Later these have been extended by Felzenszwalb et al. (2010) in
the context of object recognition. We used the latter improved variant in this thesis.

HOG features are conceptually similar to SIFT as they also describe image gradients by a
histogram of gradient orientations. However, the encoding is fundamentally different: As for
dense SIFT the HOG features are computed over multiple scales by downscaling the image and
repeatedly computing the features. For a single scale the corresponding image is divided into
a grid of square cells. The gradients in each cell are described by a single HOG descriptor
whereby image gradients are binned into spatially adjacent cells with bilinear interpolation. In
contrast to SIFT there are usually much more orientation bins (i.e., 18 directed and 9 undirected
orientations in the variant of Felzenszwalb et al. (2010)) to allow fine-grained distinction between
object contours at classification time.

For object detection the HOG descriptors are usually arranged in templates: the descriptors
of multiple cells are concatenated into a single descriptor for a certain template of e.g., 6×6 cells.
However, for retrieval where data reduction as with bag-of-words is necessary, we aggregate the
HOG descriptors of 2× 2 neighboring cells into a single descriptor which is then quantized to a
single visual word (Xiao et al. 2010). This aggregation encodes spatial information of adjacent
cells but retains the property that this descriptor only weakly describes the spatial layout of
image gradients, making it somewhat complementary to dense SIFT.

1There a few indicators: Dalal and Triggs (2005) showed that the omission of smoothing improves classifi-
cation based on templates of gradient histograms. The sharpening after resizing itself is a standard operation
in many image viewers justified by visual inspection. Vedaldi and Fulkerson (2010) further suggest in the
documentation of the VLFeat library that it might be beneficial to “undersmooth” the image.
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2.2 Visual Vocabularies

When indexing images, the corresponding visual descriptions should require little memory to
allow large databases and fast searching. In practice, storing high-dimensional visual descrip-
tors is in most cases infeasible beyond a few thousands images. Sivic and Zisserman (2003)
first proposed to build visual vocabularies or visual dictionaries by clustering descriptors. The
clustering groups similar descriptors into the same cluster by minimizing the intra-cluster dis-
tances. A descriptor is then represented by the identifier of the cluster it belongs to – a single
number.

This approach has several benefits: (1) The representation of the descriptor by a single
number requires only a fraction of memory. If further speeds up subsequent processes and
allows to determine similar visual features by comparing their identifiers. (2) Each cluster may
be seen as the conceptual counterpart of a textual word in the visual domain and is consequently
termed visual word. In contrast to the real-valued high-dimensional descriptor vectors, clusters
are represented by a finite number of discrete identifiers. This allows to apply techniques from
the textual domain such as natural language processing to visual features.

To sum it up, due to the compact representation of visual descriptors as single integers,
databases of millions of images can be efficiently searched for similar visual descriptions. We
describe the use of visual words in the context of the bag-of-words model in Section 2.3 in
detail. In this section we present three different clustering techniques to derive visual words.
Each of these techniques groups high-dimensional descriptor vectors into clusters such that the
corresponding cluster can be used as representative.

Clustering is an important building block for many applications and research areas. Conse-
quently, both quantity and variety of those techniques is huge. However, for the task of visual
vocabulary construction most clustering techniques are ruled out by the large number of de-
sired clusters which lead in turn to huge amounts of training data. In practice k-means and its
variants are widely used as these are simple and easy to parallelize. In this thesis we use several
variants of k-means for clustering visual features and to derive a discrete set of visual words.

2.2.1 k-means

One of the oldest and most well-known clustering techniques is k-means (Macqueen 1967, Forgy
1965, Lloyd 1982). Despite its simplicity it is widely used and its principle serves as foundation
for several more advanced methods. The basic idea is to group data samples by their similarity
into clusters by maximizing the intra-cluster similarity between those members. The similarity
between data samples is hereby measured by a distance function. k-means then produces
clusters that minimizes the intra-cluster distance between those data samples belonging to a
certain cluster.

The outcome of this clustering method are k cluster centers or “means” – hence the name –
obtained by averaging those vectors belonging to the cluster. The cluster mean – also termed
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“centroid” or “center” – can then be used as a representative for those vectors within the
particular cluster. k-means requires the number of clusters k to be specified by the user. There
are methods to determine k automatically from data but mostly it is chosen manually. For
visual vocabularies, we found that the number of clusters is application-dependent and critical
for good retrieval results. Thus, we set the number of clusters ad hoc and do a parameter sweep
over the number of clusters if necessary.

While k-means can be generalized to other metrics, the Euclidean distance is probably the
most important distance in practice. As the similarity between visual feature descriptors is
usually measured by the Euclidean distance we use this metric throughout this thesis.

2.2.1.1 The k-means Algorithm

A cluster k is represented by its centroid µk and has an associated member set Ck describing
which data samples are contained in this particular cluster. The clustering objective is to
partition a set of N data samples xi from a D-dimensional space RD into K different subsets –
termed clusters – such that those vectors belonging to the same cluster are similar in the sense
that their pair-wise distances are small. To achieve this, k-means minimizes the quadratic error:

K∑
k=1

∑
xi∈Ck

||xi − µk||
2 → min (2.1)

In other words, k-means seeks for the cluster configuration with the smallest intra-cluster
error. Unfortunately, there is no guarantee that k-means will find the global minimum when
seeking for the configuration with the smallest intra-cluster error. It is known to be particularly
prone to finding local minima instead. Consequently many improved variants were proposed
that aim to increase the chance that k-means finds the global optimum. Many of these target
the initialization of k-means. In k-means++ (Arthur and Vassilvitskii 2007) the initial clusters
are drawn from a random distribution such that these are likely “far away” from each other.
Another common strategy is to perform multiple k-means runs with different initializations
and to take the clustering with the smallest error. We have tried both but found negligible
differences in the outcome for our application - probably due to the very densely populated
features space of visual features.

At the beginning all cluster centroids µk, k ∈ {1, ...,K} are initialized by selecting a random
yet unique data sample xi. The k-means clustering is then performed iteratively by repeating
the following three steps:

1. The cluster assignments are reset: ∀k : Ck ← ∅.
2. Each vector xi is assigned to its nearest cluster. That is, that the cluster k whose centroid

µk has the minimum distance to xi is determined and xi is added as cluster member:

Ck ← Ck ∪ {xi} with k = argmin
k′

||xi − µk′ || (2.2)
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3. The cluster means are (re-)computed from their corresponding cluster members as deter-
mined in step 2:

∀k : µk = 1
|Ck|

∑
xi∈Ck

xi (2.3)

This iterative procedure converges to a local minimum of the error as given in Equation 2.1. In
practice, due to slow convergence and numerical issues the two steps are usually repeated until
one of the following termination criteria is met: The iterations are stopped if the centroids do
not move anymore (no centroids shifts more than ε during two subsequent iterations) or if a
fixed number of iterations is reached.

This scheme is known as Lloyd’s algorithm (Lloyd 1982) whereas the two steps themselves
are sometimes referred to as Voronoi iteration as the resulting partition of the space is a Voronoi
tessellation. There are several variations to these steps: In Lloyd’s method the cluster means
are computed once in each iteration after all data samples have been assigned to their nearest
cluster. This is also sometimes referred to as “batch update”. However, similar to Stochastic
Gradient Descent, one may alternate step 1 and 2 while iterating over all data samples such
that each sample incrementally updates the corresponding cluster mean. In our implementation
we implemented the former technique as it is widely used and both steps can be parallelized
easily which is important for clustering large datasets.

It can happen that a cluster loses all members from one iteration to the next. Thus, empty
clusters get a randomly chosen member from another non-empty cluster re-assigned. The
latter is chosen randomly e.g., among the top 25% percentile of largest clusters, such that this
procedure tends to split the densest regions in feature space during the next iteration.

In contrast to the problem of finding the exact solution, which is known to be NP-hard, the
complexity of k-means is O(NK). Thus, its complexity scales linearly with the number of sam-
ples and the number of clusters, which makes k-means suitable for clustering high-dimensional
data into thousands of clusters. In addition, the clustering is relatively fast and the quantiza-
tion of vectors only involves plain distance computations in contrast to more complex schemes
such as simulated annealing (Selim and Alsultan 1991), agglomerative clustering schemes (Day
and Edelsbrunner 1984) or Affinity Propagation (Frey and Dueck 2007).

2.2.1.2 Quantization

A quantization function is a function q(xi) that maps the high-dimensional, real-valued vector xi
from RD to a discrete number vi ∈ N. The quantization of a descriptor to a single number –
its representative visual word label – is an intrinsic step in the k-means method: A visual word
vi is obtained from the corresponding descriptor xi by finding the centroid being closest to xi
as during each clustering iteration as given in Equation 2.2 and using its ID as visual word:

vi = q(xi) = argmin
k
||xi − µk|| (2.4)
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The quantization maps all cluster members to the same visual word, thus all descriptors that
are quantized to the same visual words are similar in the sense that their distance to the cluster
centroid was smaller than to any other cluster.

2.2.2 Hierarchical k-means

The complexity of k-means is linearly dependent on the number of clusters as well as the number
of samples. Therefore, creating large vocabularies – which in turn require a large number of
training samples – is prohibitive. Even worse, during quantization the distance between a query
descriptor and all cluster centroids needs to be computed. While visual vocabularies are usually
computed off-line once in advance, this linear exhaustive search makes such “flat” vocabularies
undesirable for applications that use large vocabularies beyond a few thousand words.

Hierarchical k-means is an extension that offers more efficient clustering and more efficient
quantization than standard k-means. Nistér and Stewénius (2006) proposed hierarchical k-
means to build a vocabulary tree where k-means is used to obtain a hierarchy of clusters that
hierarchically partition the feature space. The main goal is to reduce both the time for clustering
as well as for querying the tree – when quantizing a query vector. It is realized by reusing
information resulting from previous clusterings and exploiting the hierarchical relationship:
The whole feature space is partitioned recursively into sub-spaces. Just like in other tree
structures the number of nodes that need to be visited when looking for the nearest neighbor
is logarithmic to the number of leaves that eventually form the centroids of the vocabulary. At
the same time, the partitioning is performed by hierarchical clustering from coarse to fine. In
contrast to conventional k-means in each step only a fraction of the full dataset needs to be
kept in memory eventually leading to faster clustering.

At each tree level the data samples are clustered with conventional k-means. The resulting
clusters divide the parent feature space into k subspaces. Continuing this scheme yields nested
subspaces where each subspace is a child of its parent space and is further recursively divided
into sub-subspaces. The tree structure is directly inferred from the relationships between these
subspaces: Each tree node represents a subspace with its centroid vector and the corresponding
child and parent subspaces. The number of sub-spaces per node is termed branch factor and is
equivalent to the number of clusters k that k-means produces when sub-dividing each partition.

Figure 2.5 shows an example of an (incremental) hierarchical clustering of a vocabulary tree
with a branch factor of 3 over 3 tree levels.

Quantization Once the vocabulary tree is constructed, quantizing a descriptor to a single
number as its representative is straightforward. Starting at the root node the input vector is
propagated down in the tree as shown in Figure 2.6. In the first level (level 0) the whole feature
space is represented by the root node, which in turn is partitioned into 3 sub-spaces represented
by its child nodes. The query vector is thus compared to these sub-spaces by computing the
Euclidean distance between the input vector and each of the k cluster centroids (red nodes).
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2.2 Visual Vocabularies

Figure 2.5: An example of hierarchical clustering with hierarchical k-means: on each level the
clustering was created with k-means and k = 3. From top to bottom: Clustering at different
tree levels with 31, 32 and 33 clusters. Left column: Visualization of data points assigned to
each cluster. All points within a cluster have the same color – the clusters are colored differently.
Center column: Visualization of the distance to the centroids. Right column: Visualization of
the distance ratios. This ratio describes the distance to the closest centroid relative to the distance
to the 2nd closest centroid. The visualization – as in Schindler et al. (2007) – clearly reveals the
Voronoi cells.
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Vocabulary Tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

query vector

level 1

level 0

level 2

level 3

query vector classification: 11

Figure 2.6: An example of querying a vocabulary tree with a branch factor of k = 3 and 3 tree
levels (the level of the root node is not counted). Red nodes are cluster centroids that are compared
to the input vector. Green nodes are cluster centroids that are compared to the input vector and
turn out to be the most similar ones. Gray nodes are not involved at all.

The nearest cluster is then chosen as subspace where the query continues (green nodes). That
is, the input vector is propagated down to the child node representing this nearest cluster and
rooted at the corresponding sub-tree. This procedure continues recursively and terminates once
a leaf node is reached. By enumerating all leaf nodes these can be used as visual word identifiers
that represent the input vector. Hence, the size of the vocabulary is determined by the number
of leaf nodes, which in turn is determined by both branch factor and the tree’s height. The
inner nodes of the tree are only needed to propagate input vectors down the tree.

The number of comparisons i.e. distance computations when propagating the query down
the tree is O(K logK(N)) where N denotes the number of leaf nodes and K the branch factor
at each level. For instance, quantizing a vector with a vocabulary of 1 million clusters and
a linear scan would require 1, 000, 000 distance computations, which is infeasible in practice.
A vocabulary tree with 3 levels and a branch factor of 100 reduces this to only 300 distance
computations. A binary tree with k = 2 is optimal with respect to the number of distance
computations1 but has higher memory overhead due to the large number of inner nodes.

Hierarchical k-means has the major advantage that is able to deal with a huge amount of
training samples: only the samples required for clustering a single node need to be present in
the memory at the same time. For reasonable choices of the branch factor – usually between 2
and 1000 – the clustering is quite fast. Furthermore, as the tree grows, the data samples falling
into each node are clustered into finer-grained sub-spaces. That is, the clustering performed
at each node is able to exploit training samples for further partitioning that are specific for
this particular region in the feature space. In contrast, conventional k-means is only able to
deal with fewer training samples at the same time and thus fine-grained differences may be
underestimated as the original training data usually need to be sub-sampled.

Hierarchical k-means also adapts to the training data: The training data may not provide
a sufficient number of training vectors to the clustering for a certain sub-space of the original

1A tree with 20 levels and 1, 048, 576 leaves requires 40 distance computations.
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feature space. In this case, the corresponding tree branch stops growing before reaching the
maximum desired height of the tree. This prevents over-partitioning of the training data into
small meaningless clusters.

2.2.3 Approximate k-means

Another clustering technique scalable to a large number of data samples and millions of clusters
is approximate k-means (AKM). This method employs the same k-means iterations as standard
k-means but replaces the exact distance computations by approximated ones. The speed-up
comes from the sub-linear search of the nearest centroids in each k-means iteration eventually
allowing both a higher number of clusters for partitioning the feature space and more data
samples to be used. Once the vocabulary is built, the approximate nearest neighbor search also
speeds up the quantization of high-dimensional descriptors to visual words.

While the name not further specifies which specific technique is used for the approxi-
mate nearest neighbor search, commonly a forest of randomized kd-trees is used for this pur-
pose (Philbin et al. 2007, Muja and Lowe 2009). A predecessor – the “Filtering technique” –
uses conventional kd-trees for exact but yet speeded-up distance computations (Kanungo et al.
2000; 2002). Beis and Lowe (1997) and Lowe (2004) then proposed the Best Bin First strategy
that allows for approximate distance computations at lower computational costs. In the sense
of doing multiple independent nearest neighbor searches being merged afterwards, Silpa-Anan
and Hartley (2008) utilized a single priority queue across multiple trees and proposed random-
ized kd-trees, rotated kd-trees as well as PCA-aligned kd-trees that either have data-aligned or
randomly chosen split hyperplanes. In similar manner, Jia et al. (2010) select partition axes
from binary combinations of coordinate axis to improve the space partitioning.

2.2.3.1 Approximate nearest neighbor search

A classic kd-tree is a binary space-partitioning scheme for indexing and nearest neighbor search
of k-dimensional vectors. The vector space is hierarchically split into partitions until each
indexed data point occupies its own partition. The kd-tree is built recursively top-down: At
each tree level one of the k dimensions is selected and the set of vectors is split into two disjoint
partitions by comparing the vector values at that dimension with a split value. Commonly, the
split value is chosen as the median value of the selected dimension among the data samples.
Thus, each tree node effectively splits the data into halves. This procedure continues recursively
until each partition contains only a single data point. At each tree level the split dimension
is varied cyclically and the split value is computed from the corresponding dimension of the
data subset in the partition that is to be split. The result is a balanced binary tree of height
log2 N where N denotes the number of data points. Each leaf node represents one data point
and the corresponding vector. Each inner node splits its parent space into two sub-spaces such
that the original vector space is split recursively by orthogonal hyperplanes into increasingly
fine-grained partitions.

23
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The nearest neighbor search for a query vector is performed by first finding an initial leaf
node close to the query and then examining adjacent nodes to determine the true nearest
neighbor. To find the initial leaf node, the tree is traversed by comparing the split value of inner
nodes with the corresponding dimensions of the query vector. Depending on the comparison the
search continues either on the left or right sub-tree of the corresponding inner node until a leaf
node is reached. The corresponding data point is an initial nearest neighbor candidate but not
necessarily the correct one. To find the true nearest neighbor the search must further continue
and evaluate the distances from the query to adjacent tree cells: the true nearest neighbor may
be just beyond the partition border of the initial cell but still closer than the initial candidate.

This backtracking process is performed in a branch-and-bound manner: During the search
for the initial leaf node, the descent down in the tree is basically a depth-first search for the best
kd-tree bin. At every inner node its split value is compared to the corresponding dimension
of the query vector. The outcome of the comparison determines whether the descent follows
the left or right branch of the current node, which represent the sub-spaces of the hierarchical
binary space partitioning accordingly. Branching: The branches not taken are recorded for
later examination. The recording may be done either implicitly by the recursion or explicitly by
pushing each branch keyed by the 1-dimensional distance between split value and query vector
in the corresponding dimension to a priority queue. Once the descent reaches a leaf node, the
true distance between the query and the point represented by the leaf node is computed. This
distance is the initial upper bound as the distance between any true nearest neighbor and the
query must be closer or equal to this initial distance.

The backtracking then starts either by unwinding the recursion or by processing the not-yet-
examined tree branches from the priority queue in ascending order of their distance estimate.
Bounding: Tree branches that are further away from the query than the current upper bound
on the distance are not inspected but discarded immediately. For that, it is checked whether the
current search radius around the query point – given by the current upper bound on the distance
– intersects the kd-tree cell of the corresponding branch. This check is done by computing the
1-dimensional distance between query vector and the corresponding split value, leading to a
highly efficient bounding criterion. If there is an intersection, the search continues in that
branch, otherwise the search restarts in a different branch either from recursion or by fetching
the next branch from the priority queue. As both tree traversal and bounding are performed
by operations on a single dimension of the underlying vector space, tree branches are explored
efficiently. Once a leaf node is reached that has a smaller distance to the query than the current
upper bound on the distance, the latter is updated and the search continues. An exact nearest
neighbor search terminates if no more tree branches are left for inspection. An approximate
nearest neighbor search may stop after inspecting a fixed number of branches.

The backtracking by recursion can be an expensive process especially in high-dimensional
spaces. The nearest neighbor search with a conventional kd-tree (Bentley 1975, Friedman
et al. 1977) is often reported to be inefficient in high dimensional spaces, e.g., greater than
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8 dimensions in Beis and Lowe (1997). Consequently, Arya and Mount (1993) proposed a
more efficient yet approximate search by using a priority queue to process the adjacent cells
in increasing order of the distance to the query point. Independently, Beis and Lowe (1997)
proposed the very similar Best Bin First technique. The main difference is that the former
method uses a distance cutoff while the latter uses a constant time cutoff by only examining a
fixed number of cells with the help of a priority queue.

Silpa-Anan and Hartley (2008) first proposed to use multiple randomized kd-trees in parallel
to improve the accuracy of the approximate nearest neighbor search. Here, not only a single kd-
tree but multiple kd-trees built from the same data are traversed with the Best Bin First search
strategy. The idea is to build trees that differ in their internal structure and exploit them as if
each tree was used in an independent search. Such kd-forest is built from randomized kd-trees
that choose its split dimension randomly among the 5 dimensions with the highest variance
such that the search is performed over multiple different orthogonal splits of the original data
space. In addition, after parallel descent in each tree to find the initial leaf nodes, a single
global priority queue is used to traverse the tree cells across multiple trees in the order of
increasing distance to the query vector. This technique was extensively compared to other
nearest neighbor-search techniques by Muja and Lowe (2009).

In this work, we adopt this technique and use a forest of 8 randomized kd-trees to index
the visual word centers. This kd-forest then allows to perform approximate nearest neighbor
search to find the nearest cluster for a descriptor vector both during clustering as well as when
quantizing descriptor vectors to single visual words. To make our results comparable to other
works in the literature we fix the number of backtracking checks to 768 (Philbin et al. 2007).

2.2.3.2 Clustering with approximate nearest neighbor search

The approximate k-means clustering that partitions the data samples xi into K clusters with
the corresponding centroids µk, k ∈ {1, ...,K} is performed as follows:

1. First all cluster centroids µk are initialized by selecting a random unique data point xi or
with more advanced seed generation techniques as for regular k-means (e.g., k-means++).

2. The cluster assignments are set to Ck ← ∅.

3. A randomized kd-forest Fµ is built that indexes the centroids for nearest neighbor search.

4. Each vector xi is assigned to its nearest cluster k as follows:

S ← Fµ(xi) (2.5)

k = q(xi) = argmin
k′

||xi − µk′ || , µk′ ∈ S (2.6)

Ck ← Ck ∪ {xi}, (2.7)

Here, the randomized kd-forest Fµ is used to find a set S of potential nearest centroids.
The vector xi is then added to the cluster where the corresponding centroid has the
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minimum distance to xi. Note that this formulation only sketches the outcome of the
nearest neighbor search with a forest of kd-trees; it does not really reflect its internal
operations. In practice, the steps of both Equations 2.6 and 2.7 are inherently linked and
performed implicitly when traversing the forest. The forest Fµ then finds the centroid
that has the minimum distance to xi with high probability or a centroid with a small
distance otherwise.

5. The cluster mean is computed as for conventional k-means from all cluster members:

µk = 1
|Ck|

∑
xi∈Ck

xi (2.8)

6. Steps 2-5 are repeated until the clustering converges i.e. the centroid vectors move less
than ε between subsequent iterations or a maximum number of iterations is reached. In
addition, empty clusters are suppressed by replacing the centroid with a randomly drawn
data sample, which is especially important during the first few iterations.

This clustering scheme is able to cope with several millions of data samples and millions
of clusters. Philbin et al. (2007) claim that at least for a moderate number of clusters the
difference between cluster assignments obtained by exact and approximate nearest neighbor
search differs by less than 1%.

2.2.3.3 Visual words from approximate k-means

Once the visual vocabulary is obtained the quantization of descriptor vectors to visual words is
performed in the same manner as during each approximate k-means iteration. The outcome of
Equation 2.6 directly yields the cluster ID i.e. the visual word label. In addition it is straight-
forward to fetch not only the nearest but e.g., the 3-nearest neighbors and the corresponding
distances for use with multiple assignment and soft assignment schemes (Philbin et al. 2008).
As the forest maintains a priority queue with the potential nearest neighbors during each query
the m-closest neighbors are simply determined by selecting the top m entries in this queue.

2.2.4 Comparison of Vocabularies and Quantization Techniques

In order to evaluate the impact of the different techniques for creating vocabularies and search-
ing for the nearest cluster, we compare the retrieval performance on the FlickrLogos-32 dataset
(8240 images) in terms of speed and search performance for visual vocabularies obtained by
k-means, hierarchical k-means and approximate k-means and their corresponding quantization
techniques in the following experiment.

We compute RootSIFT descriptors from Difference-of-Gaussian interest points and measure
the CPU time for the feature extraction and the quantization of descriptors to visual words.
The experiments are performed with a multi-threaded application on an Intel Xeon X5550 (See

26



2.2 Visual Vocabularies

k-
m

ea
ns

,k
=1

K

k-
m

ea
ns

,k
=2

K

k-
m

ea
ns

,k
=5

K

k-
m

ea
ns

,k
=1

0K

H
K

M
,k

=3
02

H
K

M
,k

=1
00

2

H
K

M
,k

=3
17

2

H
K

M
,k

=4
73

H
K

M
,k

=1
84

A
K

M
,k

=1
K

A
K

M
,k

=2
K

A
K

M
,k

=5
K

A
K

M
,k

=1
0K

A
K

M
,k

=2
0K

A
K

M
,k

=5
0K

A
K

M
,k

=1
00

K

A
K

M
,k

=2
00

K

A
K

M
,k

=5
00

K

A
K

M
,k

=1
M

A
K

M
,k

=2
M

A
K

M
,k

=3
M

A
K

M
,k

=4
M

0

5000

10000

15000

20000

25000

30000

35000

40000

[c
pu

se
co

nd
s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
A

P

time feature extraction
time quantization
mAP

Figure 2.7: Comparison of speed and retrieval accuracy for various visual word quantization
methods and various vocabulary sizes k. Left axis: Time for feature extraction (blue) and quan-
tization (red). Right axis: mean Average Precision (mAP, see Section 3.2.3 for details) for a
bag-of-words retrieval with tf-idf weighting (green). k-means denotes the quantization by linear
nearest neighbor search using a vocabulary obtained by k-means. HKM denotes the quantiza-
tion via a hierarchical k-means tree of depth l and a vocabulary of size kl. AKM denotes the
quantization with a forest of randomized kd-trees that indexes a vocabulary obtained with ap-
proximate k-means. Note that the vocabulary sizes for k-means and AKM increase from left
to right roughly exponentially. Thus, quantization with a forest of randomized kd-trees roughly
scales logarithmically with the number of clusters.

Appendix D). The time is accumulated per thread such that the sum is a rough estimate for
the time consumption as if the program was executed sequentially.

The results of the timings are shown in Figure 2.7 (left scale). The timings for the feature
extraction (blue) are approximately the same across all runs (standard deviation: 2.2%) – as
expected – but the time consumption of the quantization (green) varies greatly. One can see
that the vocabulary tree (HKM) is by far the fastest quantization method followed by the
linear search (k-means) when used with small vocabularies. The quantization by a forest of
randomized kd-trees (AKM) has significantly higher computational costs but allows to use
large vocabularies with several hundreds of thousands visual words. Starting at around 100,000
(100K) visual words the quantization of descriptors to visual words takes more time than the
feature extraction itself. We assume that the main issue here is the complexity of maintaining
a priority queue for every query descriptor when traversing the forest of kd-trees in order to
find the nearest centroid vector.

We further evaluate how the different vocabularies and quantization techniques affect the
retrieval accuracy: we perform a bag-of-words retrieval with tf-idf weighting and measure the
mean Average Precision (mAP). For brevity, a more extensive description of the retrieval tech-
nique is postponed until Section 2.3; the performance measure is explained in Section 3.2.3.

The results representing the retrieval quality are shown in Figure 2.7 (right scale). Clearly,
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2.3 Visual Words and Bag-of-Words

when comparing the retrieval performance of vocabularies with the same size, the quantization
of descriptors to visual words by a linear nearest neighbor search (k-means) – for small vocabu-
laries – or approximate search via a forest of randomized kd-trees (AKM) – for large vocabularies
– yield significantly better search results in terms of mAP than visual words obtained from a
hierarchical vocabulary tree (HKM). Also vocabulary trees of greater depth perform inferior to
trees with fewer levels. This is in line with Philbin et al. (2007); the hierarchical partition of
the feature space may often prevent descriptors to be represented by the corresponding cluster
that has truly the smallest distance in feature space. This issue may be overcome with more
elaborate backtracking methods as shown by Schindler et al. (2007) and Muja and Lowe (2009).
In contrast, the linear search and also the approximate nearest neighbor search via random-
ized kd-trees may search larger portions of the feature space, which are not separated by hard
boundaries. Thus the quantization yields better visual word assignments.

2.2.5 Visual Analysis

It is good practice to visually inspect the visual vocabularies (partially) as sanity check. This can
be done by inspecting those image patches that are grouped together into the same cluster and
therefore are represented by the same visual word. In the following we show several examples for
vocabularies of different sizes to give an intuition what the image description actually captures.

Figure 2.8 show several examples of image patches that are described by the visual words
computed from RootSIFT descriptors. Each row depicts randomly sampled image patches de-
scribed by the same visual word. In this case approximate k-means has been used for clustering
and the corresponding forest of randomized kd-trees has been used for quantization. More
specifically, Figure 2.8 (a) shows examples of visual words from a vocabulary of 10,000 words,
Figure 2.8 (b) of a vocabulary with 100,000 words and Figure 2.8 (c) of a vocabulary with
1 million words.

One does observe that some of the patches are highly distinctive while others are not. Also,
individual patches alone are most likely not sufficient to recognize an object from a single
patch. While the few examples we can present here hardly reflect this, larger vocabularies –
especially the vocabulary with 1 million words – tend to have fewer patches associated with
certain distinctive words. Also the visual appearance of those patches described by the same
visual word tends to be more consistent.

2.3 Visual Words and Bag-of-Words

In Section 2.2 we already described several clustering techniques to obtain visual vocabularies.
In this section we discuss implications of this representation and its use for retrieval.

A turning point in scalable image retrieval and object retrieval has been the introduction
of the bag-of-words approach (Sivic and Zisserman 2003). At its core is the quantization of
local features for efficient indexing and retrieval. Here, the real-valued high-dimensional visual
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(a)

(b)

(c)

Figure 2.8: Sample patches associated with four different visual word clusters of RootSIFT
features computed from DoG interest points. Each row shows patches that are described by the
same visual word with a vocabulary of 10,000 (a), 100,000 (b) and 1,000,000 visual words (c).
Each vocabulary contains frequent words describing mostly primitive visual structures (top row
in each block) and more distinctive words (other rows).

feature descriptors are quantized to discrete visual words that are represented by a single
integer. The visual words are usually obtained by clustering feature descriptors. Each cluster
by definition contains highly similar descriptors and is represented by the centroid vector and its
corresponding cluster label – the visual word. Given these clusters, a descriptor is represented by
its most suitable visual word, i.e., the cluster label of that cluster that has the smallest distance
to the descriptor vector. As a consequence, each visual word represents all the descriptors that
have been grouped together by minimizing the intra-cluster distances.

Instead of matching descriptors by computing distances between the corresponding vectors,
these can be matched by determining if these have identical corresponding visual word labels.
Thus, once the descriptors have been quantized to visual words the matching of local feature
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descriptors reduces to comparing integers. This has several major implications:

• The visual word representation is an enormous data reduction. Instead of full descriptor
vectors the visual description is stored as single integer number.
• The quantization reduces vectors to a discrete representation that may be counted and
processed similar to textual words. This allows the usage of classic text retrieval and data
mining techniques for indexing and retrieval of visual words.
• Finding correspondences between two sets of visual features A and B could be formulated
as bipartite (maximum weighted) graph matching problem, which might take the dis-
tances between descriptors into account. However, such an approach is computationally
expensive. By using visual words, feature matching can be performed in constant time:
correspondences are simply determined by finding those descriptors that are quantized to
the same visual word.
• The former concept of feature matching can easily be expanded to databases. By using
the visual word label as key, sub-linear search within a database of local features can
be performed. Such index structure that maps a visual words to those images that con-
tain it is known as inverted index and allows sub-linear search of corresponding visual
word matches between a query image and images in the database (Sivic and Zisserman
2003). Consequently the inverted index has become the most important data structure
for scalable image retrieval during the last years.

The ability to treat visual features as a discrete entity (e.g., counting and matching) quickly
led to the adoption of numerous text retrieval techniques in the visual domain. However, it
is well-known that visual words are not as expressive as textual words. Visual words mostly
only encode visual primitives (see Section 2.2.5 for a visualization of these) while a text word
may have a high-level meaning (e.g., “car”), describe an abstract concept (e.g., “vehicle”) or
an action (e.g., “driving”). This main difference between visual and textual words is known
as semantic gap (Smeulders et al. 2000, Datta et al. 2008). In Chapter 4 we show how topic
models can be used to obtain an abstraction layer for visual words that is able to partially deal
with the semantic gap.

2.3.1 Image Representation

The most prominent way to model images is the bag-of-words model. Hereby, an image is
represented by the visual words it contains and the similarity between images depends on
the number of visual words that occur in both images. More specifically, the l local feature
descriptors di extracted from an image I are quantized to visual words vi = q(di), (i = 1, ..., l)
by a quantizer function q as introduced in Section 2.2.1.2. Thus, each descriptor di is replaced
by a discrete visual word label vi, vi ∈ {1, ..., V } where V denotes the number of visual words.

The image is then represented by an unordered collection of visual words encoded into a
histogram of word occurrence frequencies x = (t1, ..., tj , ..., tV ). Here, tj denotes the occurrence
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frequency of visual word j given as tj =
∑l
i=1 δ(vi, j) where δ(vi, j) = 1 if vi = j and 0

otherwise. The collection of words x is termed bag-of-words as it is an unordered collection in
the sense that neither the relationship between visual words in feature space nor in the spatial
domain are preserved or encoded. Indeed, it only captures the appearance of visual features
(by their visual word labels) and their occurrence frequencies.

In other words, an image is modeled by the occurrences of discrete observations without
incorporating their spatial distribution. This is a major simplification, but in turn allows using
simple similarity measures for classification and search and further provides robustness against
rotation, scale change and other image perturbations. In addition it also provides a fixed-size
representation for images that may contain a different number of local features. The simplicity
and robustness of the bag-of-words model eventually led to its popularity for image retrieval,
classification and other use cases.

2.3.2 Vector Space Model

The most popular model for bag-of-words retrieval in information retrieval is the vector space
model (Salton et al. 1975). It represents documents as vectors where each vector dimension
encodes the weighted occurrence frequency of a particular (visual) word. These document
vectors are usually L2-normalized in order to give them unit length. In the corresponding
vector space the set of all possible documents thus forms a hypersphere1.

Inherited from the bag-of-words model is the underlying word independence assumption:
No relationship between words is modeled and it is further assumed that the individual words
occur independently from each other. This assumption is certainly violated in practice, as visual
features by design do overlap or are in close proximity and partially describe the same image
content. However, it makes resulting image models simpler and computationally feasible.

In the vector-space model the similarity between images is modeled roughly by the dis-
tance between the corresponding bag-of-words histograms. While there are various similarity
measures the most important and also a well-performing similarity measure in practice is the
Cosine similarity from information retrieval. The Cosine similarity of two vectors x and y
is defined as the scalar product of the histograms x and y where both histogram vectors are
(post-)normalized to unit length:

simcos(x,y) =
∑K
i=1 xiyi
||x|| ||y|| (2.9)

Here, ||x|| and ||y|| denote the L2-norm. The Cosine similarity thus by definition measures
the angle between the two unit-normalized vectors in the space of all possible documents.
Taking the cosine of this angle yields a score in the interval [0, 1], which is in turn used to
rank the retrieval results. See Figure 2.9 for an illustration of the Cosine similarity. For L2-
normalized vectors the cosine similarity equals the dot product: simcos(x,y) =

∑K
i=1 xiyi.

1If the weighted occurrence frequencies are all positive, these live on a quarter-hypersphere.
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Figure 2.9: The vector space model for vectors in R3 and its relationship to the cosine similarity:
The similarity between two document vectors x and y that are normalized to unit length is
measured by cosα of the angle α between these. Here x and y have three dimensions i, j and k
whereby each dimension has positive values only, e.g., as for occurrences frequencies.

Note, that in this case the cosine similarity induces the same ranking as the L2-distance as∑
i(xi − yi)2 =

∑
i x2

i − 2
∑
i xiyi +

∑
i y2

i = 2− 2simcos(x,y).

However, if an image description is used that does not directly build on visual words,
other similarity measures may also be used. In fact, while all methods in this thesis build
on visual words and the bag-of-words scheme, quite different similarity measures are used:
In Chapter 4 we use the L1-distance to determine the most similar images with respect to
their topic distributions. In Chapter 5 we demonstrate a method that detects the appearance
of objects in images by counting the occurrence of distinguished visual feature triples. And
finally, in Chapter 7 we present a min-hash based similarity search approximating the Jaccard
similarity between the corresponding set of visual words. The final ranking is then obtained by
the Cosine similarity.

2.3.3 Weighting

The entries in the bag-of-word histogram are usually weighted to improve the retrieval: A local
weight wlocali,j describes the importance of a particular visual word i for a particular image Ij .
A global weight wglobali reflects the overall importance and distinctiveness of the visual word i
measured across a training set or the whole database. Finally a normalization factor nj brings
the bag-of-words vector to unit length. The weights for the visual word i in the bag-of-words
vector x are combined as:

xi = wlocali,j wglobali nj (2.10)
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The most prominent example is the use of the tf-idf weighting scheme

xi = tfijidfi , (2.11)

where tfij describes the term-frequency i.e. the L1-normalized occurrence frequency of the visual
word i in image Ij . The inverse document frequency idfi reflects the global importance of the
visual word i as the inverse of its appearance across multiple documents measure by log(Nni ).
Here, N denotes the total number of images in the database while ni denotes the number of
images that contain the visual word i. Note, that the actual basis of the logarithm does not
matter as logarithms to different bases only differ by a constant factor that is canceled out
by the normalization. The normalization factor is given by the inverse of the L2-norm and
implicitly contained in the cosine similarity measure itself (see Equation 2.9).

Numerous different weighting schemes have been proposed that incorporate the informa-
tiveness of visual words (Chisholm and Kolda 1999, Sivic and Zisserman 2003, Jégou et al.
2009a, Cour et al. 2011, Zheng et al. 2013). Recently, several approaches improve retrieval
by (down)-weighting repeated visual words resulting from repetitive structures in images such
as building facades or fences (Schindler et al. 2007, Jégou et al. 2009b, Torii et al. 2013). A
comprehensive evaluation of weighting and normalization schemes can be found in Tirilly et al.
(2009).
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“In god we trust. All others bring data.”

Attributed to William Edwards Deming (1900-1993)

3
Datasets and Evaluation Criteria

3.1 Datasets

Throughout this work all methods were evaluated on publicly available datasets. Several dif-
ferent datasets were used and while each dataset is meant for a distinct purpose most of them
have been gathered by downloading images from Flickr. All of these datasets feature real-world
images taken in an uncontrolled environment with a variety of different camera models.

3.1.1 Flickr

Beginning roughly in 2005 highly interactive websites appeared - the so-called Web 2.0 - which
quickly led to large community-driven websites and social networks. Soon users began to upload
their private photos and videos in order to share them with friends, family and other users.
Researchers started investigating in large-scale learning and data mining problems exploiting
the community-generated content. This trend continues – nowadays large-scale and web-scale
problems are often vaguely summarized with the buzzword “big data”.

Flickr1 was once the world’s largest public image sharing website (with 6 billion images in
August 20112). While nowadays Facebook3 far exceeds Flickr’s size (with 220 billion images in
October 20124) Flickr is still a popular source for crowd-sourced image datasets.

1http://www.flickr.com
2http://blog.flickr.net/en/2011/08/04/6000000000/
3http://www.facebook.com
4http://gigaom.com/2012/10/17/facebook-has-220-billion-of-your-photos-to-put-on-ice/
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Groups
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Author
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Comments
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Geotag

Figure 3.1: A screenshot of the Flickr user interface as of March 2013. Areas that display
user-generated metadata or social relationships are highlighted.

For the first time these social platforms provided the users a convenient interface to manage
their private photos. Consequently, millions of users created photo collections, added descrip-
tions and tags to their photos and associated them with geographic locations. Figure 3.1 shows
the user interface of Flickr’s platform available to end-users. The ease of use and the large
number of active users are probably the main reason why community websites such as Flickr
became popular as image source.

Researchers exploited that Flickr not only provides access to the images themselves but
also to the associated metadata. This includes image descriptions, titles, relationships to other
users and user groups, EXIF information and much more. Especially the tags that users assign
to images in order to briefly describe their content received much attention: Many researchers
treat such images as weakly labeled images, e.g., in weakly-supervised learning approaches.

In this work two large-scale datasets were used: Flickr-250K and Flickr-10M. Starting with
the first dataset Flickr-250K we subsequently continued to increase size and diversity of our
datasets to demonstrate the scalability of our methods, eventually ending up with 10 million
images up to now.
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3.1 Datasets

Landmarks Scenes Objects
Abu Simbel, Angel falls, Arc de
Triomphe, Church of Saviour
Blood, Ayers Rock, Basilica de
Notre Dame, Bilbao Guggen-
heim Museum, Big Ben ...

Beach, Carnival, Christmas,
City, Desert, Forest, Portrait,
Street, Sunset, Wedding

Aircraft, Bicycle, Bird, Boat,
Bottle, Building, Bus, Butter-
fly, Car, Cat, Chair, Cow, Dog,
Fish, Flower, Horse, ...

Activities National Parks Stars
Aikido, Archery, Ax throwing,
Badminton, Ballett, Baseball,
Basketball, Belly dance, Bil-
liards, BMX, Bowling, Boxing,
...

Abel Tasman, Acadia, Addo
Elephant, Algonquin, Ayuit-
tuq, Bandhavgarh, Banff,
Bromo Tenger, Cuc Phuong,
Gran Paradiso, ...

Alice Cooper, Angelina Jolie,
Audrey Hepburn, Barack
Obama, Bill Clinton, Bill
Gates, Brad Pitt, Britney
Spears, Bruce Willis, ...

Total number of images (without duplicates ) 10,080,251

Table 3.1: Example categories in Flickr-10M. The full list is available online1.

3.1.1.1 Flickr-250K

The Flickr-250K dataset consists of 246,348 images. Each image is geo-tagged and associated
with at least a single tag. By grouping related tags into categories such as “dogs”, “flowers”,
etc. each image belongs to at least one of 12 different categories. A detailed description can be
found in Hörster (2009). The database has not been cleaned or post-processed.

3.1.1.2 Flickr-10M

Continuing the idea of sub-sampling a real image database by a smaller stochastically equivalent
image dataset we have further created another publicly available dataset called “Flickr-10M”1

to evaluate the proposed retrieval methodology on a large real-world image database. This
dataset consists of 10 million images downloaded from Flickr. This size of the dataset is beyond
most datasets targeting a specific domain like scenes (e.g., SUN database (Xiao et al. 2010)),
objects (e.g., PASCAL VOC (Everingham et al. 2009)), or landmarks (e.g., Oxford (Philbin
et al. 2007)). As of 2013 its size is only comparable to Imagenet (Deng et al. 2009) and
TinyImages (Torralba et al. 2008) and orders of magnitudes larger than most other datasets
used for image retrieval evaluations.

We aimed to make this dataset as diverse as possible to allow the evaluation of greatly
varying retrieval approaches. Therefore we collected images that were annotated with specific
tags, which indicate a variety of landmarks, scenes, cities, stars as well as objects. Geotags were
explicitly not used to download images for two reasons: In most cases the number of images that
actually have been geo-tagged is very small even for popular landmarks. Furthermore many
landmarks are photographed from the far distance. In that case the geo-tagged location may
be far from the position of the landmark itself. Also, for many categories like cities or national
parks geotags are relatively meaningless despite narrowing down the number of available images.
Therefore we focused on tags and image descriptions. In cases a certain category did not yield

1The dataset is available at http://www.multimedia-computing.de/wiki/Flickr-10M
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3.1 Datasets

Figure 3.2: The 80 queries of the Flickr-10M dataset. The object or concept of interest are
clearly depicted. The queries of the Flickr-250K dataset were selected in similar manner.

a sufficient number of images (e.g., several thousands) we performed a full-text search for the
query term in the image description to select the downloaded images.

This dataset consists of JPEG images with their associated metadata. This includes tags,
titles, descriptions, and other user-generated content as well as other information stored with
the photos (e.g., EXIF data if available). There are 852,697 different Flickr users that contribute
at least one photo to our dataset. In total there are more than 300 different categories yielding
a total of 10,080,251 images. The 80 query images we used for evaluation on this dataset are
show in Figure 3.2. These evaluate the retrieval with different objects, scenes or concepts.
As for previously mentioned datasets, this datasets has not been cleaned or post-processed.
Thus, it includes all kinds of content, e.g., from high-quality to low-quality photographs with
and without annotations in all kinds of languages. In short, we believe this database is a
representative sample of the real data that is uploaded and shared on community websites and
social networks on a daily basis.
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3.1 Datasets

Figure 3.3: The 55 query images of the Oxford5K dataset. The yellow rectangle denotes the
region of interest used to query an image database.

3.1.2 Oxford Buildings

Where appropriate we tested our approaches on the Oxford buildings dataset (Philbin et al.
2007). This dataset contains 5063 images of 11 buildings from Oxford as well as various dis-
tractor images. It is known for its difficulty to discriminate very similar building facades from
each other and is one of the most well-known datasets for image retrieval.

The original dataset is often termed “Oxford5K”. To demonstrate the scalability of a certain
retrieval system a common practice is to increase the database size by adding unrelated images
– often called “distractor images” – downloaded from Flickr, which are unlikely to show the
same object. The enriched database is often then termed according to its size “Oxford105K”
and “Oxford1M”, meaning that 100,000 and 1,000,000 Flickr images have been added.
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3.1 Datasets

Figure 3.4: Examples of the images in the UkBench dataset. The datasets consists of groups of
four near-duplicate images showing both scenes, objects and CD covers.

3.1.3 UkBench

Nister et al. published a dataset of 10,200 images called UkBench targeting specifically the
evaluation of near-duplicate image detection and retrieval systems (Nistér and Stewénius 2006).
The images are arranged in groups of four images with a resolution of 640x480 pixels. The
images depict scenes, objects and a variety of CD covers whereby the objects are roughly
centered in the image. For evaluation all images are indexed and each image is used as query
once. As there are four images to be retrieved the performance is measured by the average
top 4 score (see Section 3.2.5) counting the number of correctly retrieved images of each group
among the top 4 retrieved results.
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3.1 Datasets

Figure 3.5: Example images of the test set (all 32 brand classes) of the FlickrLogos-32 dataset.

3.1.4 FlickrLogos-32

For the evaluation of methods targeting object retrieval and in particular logo retrieval or
logo detection we built a new dataset called FlickrLogos-32 containing photos depicting lo-
gos (Romberg et al. 2011).1 We collected logos of 32 different brands by downloading them
from Flickr. The specific brands were roughly those where we could retrieve images showing
the correct logo by querying the Flickr web service with appropriate queries. We only included
logos that have an approximately (piece-wise) planar surface.

There are 32 logo classes: Adidas, Aldi, Apple, Becks, BMW, Carlsberg, Chimay, Coca-Cola,
Corona, DHL, Esso, Erdinger, Fedex, Ferrari, Ford, Foster’s, Google, Guiness, Heineken, HP,
Milka, Nvidia, Paulaner, Pepsi, Ritter Sport, Shell, Singha, Starbucks, Stella Artois, Texaco,
Tsingtao and UPS. We manually inspected the retrieved images to ensure that the specific logo
is actually shown. The whole dataset is split into three disjoint subsets P1, P2, and P3. Each
subset contains images of all 32 brands. The first partition P1 consists of 10 images of each
brand that were manually selected such that these consistently show a single logo from various
views with little background clutter. The other two partitions P2 and P3 contain 30 images per
brand. Unlike P1 these images may contain more than one instance of a logo. In total both P2

1The dataset and supplementary material is available at http://www.multimedia-computing.de/
flickrlogos
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3.1 Datasets

Subset Description Images Sum

P1
Hand-picked images,
single logo, clean background 10 per class 320

P2
Images showing at least a single logo under various views 30 per class 3960Logo-free images 3000

P3
Images showing at least a single logo under various views 30 per class 3960Logo-free images 3000

Table 3.2: Disjoint subsets of our dataset

and P3 have 960 images showing logos. The subset P3 for all 32 classes is shown in Figure 3.5.
For high-precision classifiers the evaluation of their sensitivity on non-logo images is very

important. Therefore both partitions P2 and P3 include another 3000 images downloaded from
Flickr with the queries “building", “nature", “people" and “friends". These images are unlikely
to contain one of the 32 brand logos and are considered as negatives i.e., “logo-free” images. A
brief summary of the data subsets is shown in Table 3.2.

This dataset targets both retrieval and classification methods. It features logos, which can be
considered as rigid objects with a (roughly) planar surface visible from a single viewpoint only.
The difficulty arises from the great variance of object sizes, from tiny logos in the background
to image-filling views. Other challenges are perspective tilt and for classification eventually the
task of multi-class recognition.

Compared to other well-known datasets suited for image retrieval, e.g., Oxford buildings,
images of a similar class in FlickrLogos-32 share much smaller visually similar regions. For
instance, the average object size of the 55 query images (annotated in the ground truth) of the
Oxford dataset is 38% of the total area of the image (median: 28%) while the average object
size in the test set of the FlickrLogos dataset is only 9% (median: 5%) of the whole image. As
the retrieval of the Oxford buildings is sometimes coined “object retrieval”, the retrieval task
on the FlickrLogos dataset can be considered as “small object retrieval”.
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3.2 Performance measures

3.2 Performance measures

This section discusses the performance measures relevant in the context of this thesis.

3.2.1 Precision & Recall

The precision (P) measures how precise a retrieval system is, i.e., how many of the returned
images actually show the object being searched for. In contrast, the recall (R) describes how
many of the relevant objects in the database are actually retrieved when querying the retrieval
system with the appropriate query. Precision and recall are defined as follows:

P = TP

TP + FP
(3.1)

R = TP

TP + FN
(3.2)

Here, TP denotes the true positives i.e., the number of correctly retrieved images that belong
to the same class as the query image. FP denotes the false positives denoting the number of
returned images that do not show the object of interest; i.e., these do not belong to the same
class as the query image. Finally, FN denotes the false negatives – the total number of images
of the same class as the query that were missed by the retrieval.

Both precision and recall require a ground truth of the database. In cases where it is
not possible to define a ground truth, e.g., for large image collections, these scores are not
applicable. However, the precision may be evaluated for the top N images (sometimes termed
Precision@N ) with manual judgments. This is described in more detail in Section 3.3.

3.2.2 Mean Precision & Mean Recall

In order to report a single score describing the performance of a retrieval system measured
across multiple queries often the mean precision (mP) and mean recall (mR) are used. Note
that these scores cannot be obtained by averaging precision and recall over multiple queries.

To illustrate this, consider the following example. For half of N queries a retrieval system
returns all the corresponding relevant images in the database and no other images. For the
remaining half of the queries the retrieval system returns no images at all. Computing the mean
precision naively by averaging over the individual precision Pi of each query i as 1

N

∑N
i Pi yields

an incorrect mean precision of 0.5.
Instead, the mean precision must be computed similar to Equation 3.1 whereby the true

and false positives are summed over all N queries:

mP =

N∑
i=1
TPi

N∑
i=1
TPi +

N∑
i=1
FPi

(3.3)
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mR =

N∑
i=1
TPi

N∑
i=1
TPi +

N∑
i=1
FNi

(3.4)

Similar, the mean recall is computed analogously as in Equation 3.2 by summing over the true
positives and false negatives of all queries. In the example above the correct mean precision
is 1 as the retrieval system only returned correct images and its mean recall is 0.5.

3.2.3 Average Precision (AP)

The trade-off between precision and recall is well-known, i.e., often high-precision implies low
recall and vice versa. One drawback of those measures is that neither precision nor recall do take
the ranking of a retrieval system into account. For instance, if two different result lists contain
the same items, precision and recall of these are identical disregarding the actual ranking and
position of each individual item in the result list.

Therefore the retrieval performance is often measured by a score that incorporates both
precision and recall as well as the actual position of retrieval results in the ranking list. Examples
of such scores that (partly) address this issue are the F-measure, Discounted cumulative gain
(DCG) and normalized DCG (NDCG). However, for image retrieval, the average precision (AP)
is the most well-known and most frequently used measure.

The AP is defined as the area under the precision recall curve. It characterizes both precision
and recall; a system will only gain high AP scores if both are high. Unfortunately, there are
multiple definitions of this measure used in the literature. Depending on the definition and its
implementation the AP varies greatly.

Its continuous form that integrates the precision at recall level P (r) over all recall levels r

AP =
∫ 1

0
P (r) · dr (3.5)

must be transformed into its discrete formulation to cope with discrete rankings. The discrete
formulation is given as

AP =
N∑
i=1

Pi ·∆Ri =
N∑
i=1

Pi · (Ri −Ri−1), with R0 = 0 (3.6)

where Pi is the precision for the top i results (P@i) and ∆Ri describes the increase in recall
from position i− 1 to i. This solution considers all recall levels by summing from i = 1...N . In
fact this is more elaborate than summing over a limited number of fixed recall levels, e.g., by
selecting the 11 recall levels 0, 0.1, 0.2, ...., 1.0.

However Equation 3.6 is still an approximation and even worse, it consistently overestimates
the AP. This can be shown with a toy example as given by Table 3.3. A list of retrieval
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3.2 Performance measures

Position
Position 1 2 3 4 5 6 7 8 9 10
Class +© -© -© +© -© -© -© +© -© -©

Table 3.3: Toy example of a retrieval result. The results were sorted after an arbitrary similarity
score (not shown) yielding a position per item. +© denotes items that are true positives with
respect to the query, -© denotes false positives.
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Figure 3.6: A toy example. Left: The precision of a fictive result set with positive examples
(green dots) and negative examples (red dots) at the respective position pos within the result list.
Right: The corresponding precision-recall curve.

results contains true positives (+©) and false positives ( -©). For simplicity we assume the whole
database contains a total of 3 true positives and all of them were retrieved. The corresponding
precision-position (pos) and precision-recall curves for this example are shown in Figure 3.6.

To compute the AP this result list is processed starting from position 1. Following Equa-
tion 3.6 the AP is computed by summing over the precision at those points in the result list
that are positive results, because otherwise ∆Ri = 0. This results in an overestimation of the
area-under-curve as shown in Figure 3.7 on the left.

To overcome this problem and to obtain the exact AP, not only the current precision Pi but
also the precision at the previous position Pi−1 must be considered, when processing the list of
items at each position i.

AP =
N∑
i=1

1
2(Pi + Pi−1) · (Ri −Ri−1), with R0 = 0, P0 = 1 (3.7)

Again, ∆Ri describes the increase in recall from position i − 1 to i. Analogously, ∆Pi
describes the increase/decrease in precision from position i − 1 to i. Equation 3.7 represents
the numerical integration of Equation 3.5 with the trapezoidal rule. It leads to the correct AP
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Figure 3.7: Left: Overestimation of the AP as computed by Equation 3.6. Right: Correct
computation of the AP as by Equation 3.7.

as it exactly describes the area-under-curve as shown in Figure 3.7 on the right. Throughout
this work we computed the AP always by this definition.

3.2.4 mean Average Precision (mAP)

The AP measures the area-under-curve for a single list of retrieval or classification results.
To obtain a single score representing the performance of the whole system the AP is usually
averaged over multiple queries. Note that unlike in the case of mean precision, the averaging
of the AP is valid. It represents the mean performance of a system (in terms of AP) whereby
every query has the same impact on final score.

3.2.5 Average Top 4 score (Top4)

Nistér and Stewénius (2006) introduced the average top 4 score for the evaluation with their
dataset UkBench as it consists of groups of four near-duplicate images (see Section 3.1.3). The
retrieval is measured as the average number of correctly retrieved images among the top 4
results. Hereby, the query image itself is counted as true positive if retrieved among the top 4.
A perfect retrieval would retrieve 4 correct top-ranked images and therefore yield a score of 4.0.

3.2.6 Response Ratio (RR)

The response ratio (RR) is used to measure the efficiency of the retrieval. It describes the
number of retrieved images in relation to the database size. The higher the response ratio
the more images are contained in the result set, which is usually post-processed or verified by
computationally expensive methods. A low response ratio will therefore increase the overall
efficiency of the search.
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For two retrieval systems with similar mAP, the one with lower response ratio is preferable.
The response ratio is related to mAP, precision and recall in the sense that a system with a
low response ratio must have high precision to retrieve the correct images in order to also have
high recall and therefore a high mAP.

3.3 Evaluation on Large-scale Datasets with User Studies

All of the scores discussed so far require the presence of a ground truth. In cases where it is
not possible to define ground truth for a certain dataset these scores are not applicable. For
instance, for large-scale datasets with millions of images downloaded from community websites it
is usually not feasible to create an annotation for every single image because of the required time
and manpower. At the same time, semi-automatic annotation e.g., with the help of computer
vision techniques is also not desirable because of the danger that the resulting dataset is heavily
biased towards certain techniques and might contain mostly “easy” images.

In this particular case we used the following methodology: A number of predefined queries
are issued to the retrieval system returning the top k results. These top results are then
presented to human users which in turn label the results as “correct” or “incorrect”. This
allows us to compute a precision up to the k-th result often denoted as Precision@k (P@k)
which is then averaged over multiple queries and multiple users.

More precisely, the participants of a user study were asked to rate the top 19 results of
each query image. The following scoring then yields a quantitative performance measure: An
image considered being similar gets 1 point, an image considered as “somewhat” similar gets
0.5 points. All other images get 0 points. The mean Precision@19 is calculated for each user
and the mean over all users’ means yields the final score of the system being evaluated.

For this we have developed a graphical tool that allows to perform user studies where
human non-experts can label and rate the retrieval results. A screenshot of this tool is shown
in Figure 3.8. We collect and process the obtained ratings in order to compute the final score.

We have strived to offer the participants an easy and convenient tool but nevertheless these
user studies are tedious. There are various reasons; the most obvious is the plain number of
experiments and the number of query images. In order to get results with reasonable efforts
of the participants that are meaningful and significant we had to make the following design
choices for the setup of all experiments:

1. The query images are not chosen randomly but carefully selected. This is done to avoid
“junk” query images where no object or any other visual concept is depicted clearly.
Judgments for retrieval results of those queries would hardly be consistent and useful.
Examples of such query images are shown in Figure 3.2.

2. The different queries are chosen such that different visual concepts are depicted, espe-
cially those that were used to build the dataset. As there is no ground truth we do not
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3.3 Evaluation on Large-scale Datasets with User Studies

Figure 3.8: Graphical user interface used for evaluation of the retrieval results in user studies.
The pre-defined query image is shown at the top-left (white frame). The other images show
the top 19 retrieval results. The user may label each retrieved image as “correct” (green frame),
“somewhat correct” (yellow frame) or “incorrect” (red frame). This process is repeated for multiple
queries.

know exactly which concepts are covered by the images present in the dataset. Thus we
manually select query images based on our knowledge how we built the dataset, where
it is highly likely that there are conceptually similar images contained in the database.
For instance, the dataset was created by downloading images having certain tags such as
“car”, “cars”, etc. Thus, an image showing a car is a reasonable choice as query.

3. As we have a limited number of participants in our user studies only, the number of results
is not sufficient to cancel out a potential bias introduced by the particular selection of
query images. Therefore, the same query images are used for each experiment. Also, each
user rates the results for all of these query images. In short, every user rates the same
retrieval results for the same query images.

This set of rules leads to the score that is used as final performance measure for our retrieval
systems. It is important to note that the actual value of the score is not meaningful, as it will
vary once query images or the dataset are changed. But the relative difference between scores
of different retrieval systems is a good indicator, which has the better overall performance.
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Part II

Multimodal Image Retrieval
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4
Multilayer Multimodal pLSA

Recently, community websites and social networks have become increasingly popular. These
networks store a huge number of images and associated metadata. Due to the sheer amount
of data, data management becomes non-trivial and the demand for effective yet memory-
conservative retrieval methods is high.

In this chapter we present a retrieval technique suited for the context of large-scale com-
munity databases. In particular, we follow the query-by-example scenario: A user initiates the
retrieval by selecting an image from the image database as query image – without supplying
further information such as keywords. The retrieval engine can only exploit the information,
which is already stored within the database – such as the image itself but also its associated
metadata.

For that reason, we especially focus on fusing information from different domains such as
visual features and textual annotations into a single compact and effective representation. We
study our approach on two large databases of 250,000 and 10 million images.

More specifically, in the following the standard single-layer probabilistic Latent Semantic
Analysis (pLSA) approach (Hofmann 1999; 2001) is extended to multiple layers. We name this
approach multilayer multimodal probabilistic Latent Semantic Analysis (mm-pLSA). It captures
the information from multiple modalities – such as visual features or textual annotations –
within a single high-level description. As for unimodal topic models, each modality is modeled
by the corresponding topic distribution. By aggregating the topic distributions of multiple
modalities into a higher-level distribution we build a hierarchy of abstractions. Eventually,
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4.1 Introduction

multiple modalities are described by a single description in a compact representation.
Parts of the work presented in this chapter have been described in Romberg et al. (2009),

Lienhart et al. (2009) and Romberg et al. (2012). The remainder of this chapter is organized as
follows. Section 4.2 surveys related work. In Section 4.3 we introduce the standard pLSA model.
Then, Section 4.4 presents the multilayer multimodal pLSA. A heuristic for fast initialization
of the mm-pLSA model is described in Section 4.5. In Section 4.6 we present the experiments,
their setup and pre-processing as well as the results on the Flickr-250K dataset. In the same
manner, the experiments regarding the Flickr-10M dataset, their setup, their results and a
detailed discussion are given in Section 4.7. Finally, Section 4.8 concludes the chapter.

4.1 Introduction

Many image retrieval systems rely only on visual representation of the image content. However,
nowadays images are often stored in and retrieved from large-scale community databases such
as Flickr or Facebook. In many of those community databases the images are associated with
different kinds of metadata, such as titles, descriptions, tags, comments and more. The aim is
to exploit this additional information in order to improve the accuracy of image retrieval.

In this chapter we describe an approach suited particularly for community databases. Such
databases allow photographers to label their images with keywords commonly termed tags.
These tags reflect the user’s personal view of an image and may express its content and con-
text. As such tags are widely used even by non-professional photographers, we focus especially
on exploiting these tags. The downside is that a large fraction of tags is usually either mis-
leading, ambiguous or missing. Thus, using tags directly for retrieval is difficult, making more
sophisticated models necessary.

We base our approach on probabilistic Latent Semantic Analysis (pLSA) models of Hofmann
(2001), a popular topic model with moderate complexity and thus fast learning and inference.
Topic models, originating from text retrieval, are one attempt to deal with data such as noisy
and ambiguous words. Such topic models represent the actual words occurring in a document
by a mixture of topics that generated these. Implicitly, topic models are thus able to deal with
ambiguous words such as synonyms or sememes.

With that in mind, pLSA was adopted for the visual domain where textual words are
replaced by their visual counterparts, the visual words. However, in most works the pLSA
is applied to unimodal data only. One reason is that the early fusion of feature vectors in a
multimodal setting often does not yield the desired improvement.

We propose a multilayer multimodal pLSA model (referred to as mm-pLSA) that can handle
different modalities effectively and efficiently. The data of the different modalities is modeled
by a hierarchy of topics, naturally representing the hierarchy of the underlying concepts. While
our approach is applicable to multiple modalities and also hierarchies across multiple layers,
we constrain ourselves to using the smallest possible non-degenerated mm-pLSA model: Two
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modalities are represented by two separate sets of (leaf-)topics. A set of top-level topics then
merges the knowledge of the two sets of leaf-topics.

This approach somewhat resembles the computation of two independent pLSA models for
each data modality separately. Their modality-specific topics are in turn merged by a single
top-level pLSA model, and thus lends the proposed approach its name. In fact, we borrow this
approach for a fast and strictly stepwise forward procedure to initialize the mm-pLSA model
bottom-up. Following that scheme, we demonstrate that we obtain much better results for the
mm-pLSA algorithm compared to random initialization.

4.2 Related Work

Topic models originate from text-based document retrieval. Here, documents are represented
by a mixture of topics. This representation is much more compact than representing documents
by the words themselves and also deals with synonyms and ambiguous words. Numerous models
have been proposed, the pLSA of Hofmann (2001) and the Latent Dirichlet Allocation (Blei
et al. 2003) are probably the most popular ones. In this work we focus on the former as it was
widely used in the context of our work and both training and inference can be done efficiently.

The pLSA model was originally proposed for document retrieval (Hofmann 1999) and was
later used for analyzing document corpora (Hofmann 2001). The pLSA but also other topic
models were soon ported to the visual domain by replacing the textual words with visual words.
Barnard et al. (2003) and Blei and Jordan (2003) as well as Monay and Gatica-Perez (2004)
exploit topic models to model annotated image databases. Here, the learned models are used
to infer the annotations given only the visual description.

Bosch et al. (2006) use the pLSA for scene classification where the topic distribution is
used to decide to which category an image belongs. Fergus et al. (2005) learn pLSA models
from training images retrieved by a text-based image search engine. The learned models are
then used for object recognition in new unseen images. Inspired by their approach Li et al.
(2006) use radial templates and topic models for object recognition. Lienhart and Slaney (2007)
create a compact image representation by using the topic distributions as visual signatures for
image search. Similarly, Hörster et al. (2007) apply Latent Dirichlet Allocation (LDA) while
Greif et al. (2008) adopt the Correlated Topic Model (CTM) (Blei and Lafferty 2005) for the
same application. Hörster et al. (2008a) study the impact of various local features and their
parameters on image retrieval by topic models. Rodner and Denzler (2009) further propose to
use an ensemble of pLSA models to diminish the impact of overfitting. In Ries et al. (2010) we
show that the vocabulary size has less impact when used with topic models rather than when
used directly as bag-of-words. A comprehensive review of different topic models in the context
of image retrieval is given by Hörster (2009).

Our approach uses a hierarchical model with more than one topic layer. In a similar manner,
Sivic et al. (2008) adapt the Hierarchical Latent Dirichlet Allocation model to the visual domain,
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d
M

z w
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Figure 4.1: The graphical representation of the standard pLSA-Model in plate notation. The
number of documents is denotes as M , while Ni denotes the number of words within document i.
Observable variables are shaded in gray. The respective distribution P (z|d) for the unobservable
latent variable z is eventually used to represent images by a mixture of topics.

originally developed for unsupervised discovery of topic hierarchies in text. It is then used for
object classification and image segmentation.

However, most previous works build their image representation solely from a single modality.
In contrast, we aim specifically at incorporating information from two different sources or
modalities into a single model. By exploiting the relationships, correlation and redundancy of
two different modalities we aim to improve image representation. Similar, Zhang et al. (2011)
propose a multi-feature pLSA. However, their approach uses a single topic layer that models the
co-occurrence of visual features of two different types at once and is thus somewhat restricted to
different kinds of visual features alone. Our approach is explicitly able to fuse totally different
domains such as visual words and textual words into a combined representation. This chapter
describes its direct usage for retrieval, but the representation of images by topic distributions
has also been used for a multimodal similarity measure in the context of graph algorithms. In
Richter et al. (2010; 2012) we build a graph of images linked by their multimodal similarities
and apply the PageRank algorithm (Page et al. 1999) in order to obtain an estimate of the
importance of each image.

4.3 Probabilistic Latent Semantic Analysis (pLSA)

The probabilistic Latent Semantic Analysis (pLSA) was originally devised by Hofmann (1999;
2001) in the context of text document retrieval, where words constitute the elementary parts
of documents. Quite similar, in the visual domain images are represented by the visual words
they contain. In the following we use the terms document and image as well as the terms word
and visual word or term interchangeably.

4.3.1 Model

The key concept of the pLSA model is to map the high-dimensional word distribution vector of
a document to a lower dimensional topic vector (or aspect vector). Therefore pLSA introduces
a latent, that is, unobservable topic layer between the documents and the observed words.
The model assumes that each document consists of a mixture of topics and that the actual
occurrences of words are a result of the topic mixture. This generative model is expressed by
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Figure 4.2: Term-document matrix. Each entry n(di, wj) denotes the number of occurrences of
the word j in document i. Each row is equivalent to the bag-of-words histogram of document di.

the following probabilistic model:

P (di, wj) = P (di)
∑
K

P (zk|di)P (wj |zk) (4.1)

Here, P (di) denotes the probability of a document di of the database to be picked, P (zk|di)
the probability of a topic zk given the current document, and P (wj |zk) the probability of a
visual word wj given a topic. The graphical representation of this model is shown in Figure 4.1.
Here, given M documents, Ni denotes the number of words of which document di consists.

The topic mixture P (zk|di) is used to represent each document di by a mixture of K topics.
Naturally, the number of concepts or topics in the model is chosen to be much smaller than
the vocabulary sizes. In other words, the representation by a distribution of topics instead of a
distribution of words acts as data reduction yielding a compact representation. Furthermore,
the topic mixture is a high-level representation as it decouples documents from the words that
it contains. Documents are represented by the topics that are likely to generate the observed
words. This representation deals with synonyms as it learns which words co-occur with each
other and incorporates the statistical dependencies into the distribution P (wj |zk). It also
handles ambiguous words as a certain word may be generated by multiple topics.

The topic vector can be used directly for retrieval. For that we measure the document
similarity by computing the distance between the topic vectors of the corresponding documents.
An evaluation of different distance measures in this context was performed by Hörster (2009).
It was shown that the L1-distance – though not being the best metric – works reasonably well
while being computationally efficient.

4.3.2 Training and Inference

Computing a term-document matrix of the training corpus is a prerequisite for deriving a
pLSA model (see Figure 4.2). Each entry in row i and column j of the term-document ma-
trix [n(di, wj)]i,j specifies the absolute count with which word wj (also called a term) occurs
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in document di. The terms are taken from a predefined dictionary consisting of N terms.
The number of documents is M . Note that by normalizing each document vector to 1 using
the L1-norm, the document vector (n(di, w1), ..., n(di, wN )) of di becomes the estimated mass
probability distribution P (wj |di).

We learn the unobservable probability distributions P (zk|di) and P (wj |zk) from the observ-
able data P (wj |di) and P (di) using the Expectation-Maximization algorithm (EM-Algorithm)
(Dempster et al. 1977, Hofmann 2001). The update equations are as follows:

Expectation-Step:

P (zk|di, wj) = P (wj |zk)P (zk|di)∑K
l=1 P (wj |zl)P (zl|di)

(4.2)

Maximization-Step:

P (wj |zk) =
∑M
i=1 n(di, wj)P (zk|di, wj)∑N

j=1
∑M
i=1 n(di, wj)P (zk|di, wj)

(4.3)

P (zk|di) =
∑N
j=1 n(di, wj)P (zk|di, wj)

n(di)
(4.4)

Given a new test image dtest, we estimate the topic probabilities P (zk|dtest) from the ob-
served words. The sole difference between inference and learning is that the K learned con-
ditional word distributions P (wj |zk) are never updated during inference. Thus, only Equa-
tion (4.2) and Equation (4.4) are iteratively updated during inference.

4.4 Multilayer Multimodal pLSA

4.4.1 Motivation and Model

In recent years pLSA as well as other topic models have been applied successfully to uni-
modal data such as text (Hofmann 2001), image tags (Monay and Gatica-Perez 2004), or visual
words (Hörster et al. 2008b) for different applications.

However, combining two modalities such as visual words and tags is challenging. The
straightforward combination by concatenating the input vectors is one choice, but may not
perform well. For instance, commonly there are very few tags per image but several hundred to
a few thousand visual words. Also, the vocabulary sizes for visual and textual words may differ
greatly. As a consequence, the resulting word histograms are heavily imbalanced and require
at least normalization or other treatment. The direct combination of input vectors can be seen
as an early fusion scheme. In contrast, our multimodal multilayer pLSA effectively acts as a
late fusion method that deals with class imbalances by learning the appropriate distributions.

In the following we describe our multi-layered pLSA model for two leaf models and one top-
level model fusing the former two lower-level models. In the following description, we assume
that the first modality of our image representation are visual words and the second textual
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Figure 4.3: Plate notation of the multilayer multimodal pLSA mode combining two different
modalities. Only the visual words wv and the textual words wt can be observed. The distribution
of visual and textual words is represented in the lower layer by the separate topic distributions
P (wv|zv) and P (wt|zt). The top-level topics ztop model the distribution over both lower level
distributions – representing the distributions P (zv|ztop) and P (zt|ztop), merged as

∑
P (zv|ztop)+∑

P (zt|ztop) = 1. The image representation is then given by P (ztop|d).

word or tags. However, our model is not constrained to these modalities in any way and may
be further extended to more than two modalities and also more than two layers.

The smallest possible multilayer multimodal pLSA model is depicted in Figure 4.3. It
consists of two modes, the observed words of that mode and the corresponding distributions.
Every word of mode x (here: x ∈ {v, t} with v standing for visual and t for text) occurring in
document di is generated by an unobservable document model:

• Pick a document di with prior probability P (di)
• For each visual word in the document:

– Select a latent top-level concept ztopl with probability P (ztopl |di)
– Select a visual topic zvk with probability P (zvk |z

top
l )

– Generate a visual word wvm with probability P (wvm|zvk)

• For each tag associated with the document:
– Select a latent top-level concept ztopl with probability P (ztopl |di)
– Select a tag topic ztp with probabilityP (ztp|z

top
l )

– Generate a tag wtn with probability P (wtn|ztp)

Thus, the probability of observing a visual word wvm in document di is

P (di, wvm) =
L∑
l=1

K∑
k=1

P (di)P (ztopl |di)P (zvk |z
top
l )P (wvm|zvk). (4.5)

Similar, the probability of observing the tag wtn in document di is given by

P (di, wtn) =
L∑
l=1

P∑
p=1

P (di)P (ztopl |di)P (ztp|z
top
l )P (wtn|ztp). (4.6)

To summarize, a mixture of topics in each mode describes an image or more specifically the
occurrences of its visual and textual words. The topic distributions represent the distribution
of the observed words over the topics. These low-level topics are in turn represented by the
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top-level topic distribution that describes the distribution of lower-level topics given the top-
level topics. Representing an image by a mixture of topics seems natural, since images often
contain multiple objects or a scene may be visually decomposed into different parts.

4.4.2 Training and Inference

Given our word generation model (see Figure 4.3) with its implicit independence assumption
between generated words, the likelihood L of observing our database consisting of the observed
pairs (di, wvm) and (di, wtn) from both modes is given by

L =
M∏
i=1

 Nv∏
m=1

P (di, wvm)n(di,wvm)
Nt∏
n=1

P (di, wtn)n(di,wtn)

 . (4.7)

Taking the log to determine the log-likelihood l of the database

l =
M∑
i=1

 Nv∑
m=1

n(di, wvm) logP (di, wvm) +
Nt∑
n=1

n(di, wtn) logP (di, wtn)

 (4.8)

and plugging Equation (4.5) and (4.6) into Equation (4.8), it becomes apparent that there is
a double sum inside of both logs making direct maximization with respect to the unknown
probability distributions difficult. Therefore, we learn the unobservable probabilities distri-
bution P (ztopl |di), P (zvk |z

top
l ), P (ztp|z

top
l ), P (wvm|zvk) and P (wtn|ztp) by using the Expectation-

Maximization (EM)-Algorithm (Dempster et al. 1977).
Introducing the indicator variables

4clk =
{

1 if the pair (di, wvm) was generated by ztopl and zvk
0 otherwise

4dlp =
{

1 if the pair (di, wtp) was generated by ztopl and ztp
0 otherwise

the complete data likelihood Lc, that is the data likelihood assuming that di, wzn, wvm, 4clk,
and 4dlp are observable, is given by

Lc =
M∏
i=1

[
Nv∏
m=1

P (di, wvm,4c)n(di,wvm)
Nt∏
n=1

P (di, wtn,4d)n(di,wtn)] (4.9)

with

4c = (4c11, ...,4c1K , ...,4cLK) (4.10)

4d = (4d11, ...,4d1K , ...,4dLP ) (4.11)
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P (di, wvm,4c) =
L∏
l=1

K∏
k=1

P (di)P (ztopl |di)P (zvk |z
top
l )P (wvm|zvk)4clk (4.12)

P (di, wtn,4d) =
L∏
l=1

P∏
p=1

P (di)P (ztopl |di)P (ztp|z
top
l )P (wtn|ztp)4dlp (4.13)

Unlike in Equation (4.8), we now only have product terms in the complete likelihood Lc,
thus its log-likelihood can easily be determined and maximized. A complete derivation of
the EM-update equations for this mm-pLSA model is given by Hörster (2009). The resulting
expectation (E-step) and maximization (M-step) steps are given as follows:
Expectation Step: We estimate the unknown indicator variables 4clk conditioned on the
observable variables di and wvm by computing their expected value:

cimlk := E(4clk|di, wvm)

= P (4clk = 1|di, wvm) · 1 + P (4clk = 0|di, wvm) · 0

= P (4clk = 1|di, wvm) · 1

= P (di, wvm,4clk = 1)
P (di, wvm)

=
P (di)P (ztopl |di)P (zvk |z

top
l )P (wvm|zvk)

L∑
l=1

K∑
k=1

P (di)P (ztopl |di)P (zvk |z
top
l )P (wvm|zvk)

. (4.14)

Analogously we estimate the unknown indicator variables 4dlp conditioned on the observable
variables di and wtn by computing their expected value:

dinlp := E(4dlp|di, wtn)

=
P (di)P (ztopl |di)P (ztp|z

top
l )P (wtn|ztp)

L∑
l=1

K∑
k=1

P (di)P (ztopl |di)P (ztp|z
top
l )P (wtn|ztp)

(4.15)

Maximization Step: For legibility of the M-step estimates, we set

γimlk := n(di, wvm)cimlk (4.16)

δinlp := n(di, wtn)dinlp , (4.17)

which is the expected probability of observing a pair (di, wvm) multiplied with the actual number
of occurrences. Thus, we get:

P (di)new =

Nv∑
m=1

n(di, wvm) +
Nt∑
n=1

n(di, wtn)

M∑
i=1

(
Nv∑
m=1

n(di, wvm) +
Nt∑
n=1

n(di, wtn)
) (4.18)
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P (ztopl |di)
new =

Nv∑
m=1

K∑
k=1

γimlk +
Nt∑
n=1

P∑
p=1

δinlp

L∑
l=1

(
Nv∑
m=1

K∑
k=1

γimlk +
Nt∑
n=1

P∑
p=1

δinlp

) (4.19)

P (zvk |z
top
l )new =

M∑
i=1

Nv∑
m=1

γimlk

K∑
k=1

M∑
i=1

Nv∑
m=1

γimlk +
P∑
p=1

M∑
i=1

Nt∑
n=1

δinlp

(4.20)

P (ztp|z
top
l )new =

M∑
i=1

Nt∑
n=1

δinlp

K∑
k=1

M∑
i=1

Nv∑
m=1

γimlk +
P∑
p=1

M∑
i=1

Nt∑
n=1

δinlp

(4.21)

P (wvm|zvk)new =

M∑
i=1

L∑
l=1
γimlk

Nv∑
m=1

M∑
i=1

L∑
l=1
γimlk

(4.22)

P (wtn|ztp)new =

M∑
i=1

L∑
l=1
δinlp

Nt∑
n=1

M∑
i=1

L∑
l=1
δinlp

(4.23)

Note that Equation (4.18) is constant across all iterations and needs not be recomputed.
Given a new test image dtest, we estimate the top-level aspect probabilities P (ztopl |dtest)

with the same E-step equations as for learning and Equation (4.19) for P (ztopl |dtest) as the
M-step. The probabilities of P (zvk |z

top
l ), P (ztp|z

top
l ), P (wvm|zvk) and P (wtn|ztp) have been learned

from the corpus and are kept constant during inference.

4.4.3 Implementation Details

Normalization Before starting the mm-pLSA the document vectors of different modalities,
i.e., the entries n(di, wvm) and n(di, wtn) should be normalized to equal scale. This is especially
important if one modality has much higher occurrence frequencies of the respective words than
the other modality. For instance, compare the highly populated histograms of visual features to
the extremely sparse tag histograms. In such setting, the mm-pLSA on unnormalized histograms
is dominated by the visual domain.

The simplest way to achieve a balancing of modalities, is to convert the absolute occurrence
counts to relative frequencies:

n′(di, wvm) = n(di, wvm)∑
m n(di, wvm) n′(di, wtn) = n(di, wtn)∑

n n(di, wtn) (4.24)

The sums over each modality are then of equal scale as
∑
m n
′(di, wvm) =

∑
n n
′(di, wtn) = 1.
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Figure 4.4: The fast initialization of the mm-pLSA model is computed in two separate steps.
In step 1 two pLSA models are learned on each modality separately. In step 2 a third model is
learned on top; the topic distribution of the former two serves as input for the third model.

Note that this normalization does not mean that the modalities have the same weight
within the mm-pLSA as the constraint for the conditional probabilities of the subtopics given
the supertopics is given by

K∑
k=1

P (zvk |z
top
l ) +

P∑
p=1

P (ztp|z
top
l ) = 1. (4.25)

In fact we noticed that the mm-pLSA on SIFT features and tags determines a higher weight
for the textual domain. See the discussion in Section 4.7.5 for further details.

Training The training itself must only consider documents that have non-zero document
vectors for both domains. With missing co-occurrences across the modalities the model training
is useless. However, the inference is still able to derive a topic distribution even if one modality
is not available for an image. This is important, as in practice images often lack annotations.

Furthermore the training procedure should sample training documents such that basically
all visual and textual aspects that appear in the database are also present in the training
set. However the number of images for a certain class or category may vary. Therefore we
pseudo-randomly pick training samples by selecting documents at certain intervals from the
whole list of documents starting at a random offset. This guarantees that the whole database
is used when drawing samples disregarding the actual layout and order. Training documents of
a certain category are drawn with a probability corresponding to its size.

4.5 Fast Initialization by a Step-wise Forward Procedure

More complicated probabilistic models always come with an explosion in required training
time. This issue is becoming more severe, the more layers and the more individual models
are aggregated into higher-level models. Therefore, we use the outcome of an approximate
multimodal multilayer pLSA model produced by the stepwise forward procedures as input for
our global optimization. It serves as a fast initialization for the estimates of the conditional
probabilities.
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Figure 4.5: Schematic overview of the retrieval system based on our fast initialization strategy.
The subsequent mm-pLSA then globally optimizes all three topic distributions jointly across all
layers. Alternatively, the fast initialization scheme may be directly used for retrieval.
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Figure 4.6: Log-likelihood over training data when learning the mm-pLSA model. The mm-
pLSA initialized by the strictly stepwise forward multimodal pLSA converges much faster than
the model starting from a random initialization. The upper image shows the log-likelihood when
the mm-pLSA is applied for SIFT features and tags, the lower image shows the log-likelihood for
SIFT and HOG block features.

The basic idea is to apply pLSA in a first step to each mode separately yielding mode-specific
topic distributions. In the second step another pLSA model is learned on top. That is, the
top-level pLSA uses the respective topic distributions of the former two base models as input,
as if these were weighted occurrence frequencies.

For a hierarchy of two levels and two leaf modalities – such as visual features and text –
this procedure first computes separate pLSA models for each modality. The topic distributions
of these models are only implicitly linked as they originate from the same image (see Step 1 in
Figure 4.4). Next the computed topics of all modes are taken as the observed words at the top
level (see Step 2 in Figure 4.4). The final image representation is then given by the top-level
topic distribution. It describes each image as a “topic distribution over topic distributions” and
thereby fuses the visual pLSA model and the tag pLSA model. A full schematic overview of an
image retrieval system based on this fast initialization strategy is shown in Figure 4.5.

This procedure can also be applied in a strictly forward procedure to multiple modalities
and multiple layers. We expect, that with increasing complexity of the global model the fast
initialization may become more important due to its computational efficiency.

As we will show in the experimental results, this fast initialization procedure already pro-
duces a decent model. It can be further improved by applying the globally optimizing EM-
algorithm as stated in Section 4.4.2 to the complete model after initializing it with the strictly
forward computed solution. Thus, as we initialize our model with constrained solutions – i.e.,
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multiple partial solutions, each limited to a single modality – we expect (1) that the global op-
timization further improves the solution and (2) this procedure yields faster convergence than
learning a mm-pLSA model starting from a random initialization.

To demonstrate this, Figure 4.6 shows the development of the complete data log-likelihood
over the number of iterations when learning mm-pLSA models on the Flickr-10M dataset.
Indeed, one can observe that the global optimization of the mm-pLSA model converges much
faster when initialized with our fast initialization strategy (termed “fast init”) instead of random
initialization (“random init”).

4.6 Evaluation on the Flickr-250K dataset

4.6.1 Visual pLSA-Model

We build a bag-of-words representation of images by extracting SIFT features from images. In a
previous work Hörster et al. (2008a) showed that SIFT features computed from a dense regular
grid outperform sparse SIFT features in the context of image retrieval via topic models. Thus,
we extract dense SIFT features at points on a regular grid with a vertical and horizontal step
size of 10 pixels. The image is incrementally down-scaled by a scale factor of 2 1

4 and features
are extracted at each scale of the resulting image pyramid. The image regions around keypoints
are described by SIFT descriptors computed over a region of 41 × 41 pixels. Finally, the 128-
dimensional feature vectors are quantized into discrete visual words. Hierarchical k-means
clustering was used to create a visual vocabulary of 10,000 visual words. Efficient quantization
was then performed by the corresponding vocabulary tree (see Section 2.2.2).

4.6.2 Tag-based pLSA-Model

The second modality we consider are tags. Tags are free-text annotations provided by the image
authors or image owners. In the context of the Flickr community website, a tag can be a single
word as well as a phrase or a sentence. While Flickr stores the original form of an annotation
such as “Golden Gate Bridge” in three separate words, it also provides a generated raw tag
like “goldengatebridge” that encodes the whole word combination. In this work we treat each
of these generated raw tags as a single word, disregarding if it is a natural or an artificially
generated word. In the following the term tag denotes a single word derived from the set of all
raw tags and is used interchangeably with "word" and "term".

As we use Flickr images to evaluate our mm-pLSA model, it is important to note that these
tags reflect the photographer’s personal view of the uploaded image. In previous work carefully
annotated image databases were used for learning combined image and tag models (Barnard
et al. 2003). In contrast, the image tags from Flickr are often subjective, ambiguous, and do not
necessarily describe the image content shown (Kennedy et al. 2007, Lienhart and Slaney 2007).
This makes it difficult to use the tags directly for retrieval purposes and thus some preprocessing
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breakfast eat food meal
dog animal beast canine creature fauna mammal move object travel
flying action air event motion move movement travel travelling
house construction home object structure
love emotion state
yellow color colour

Table 4.1: Examples for hypernyms (right) found in Wordnet for the words left.

is required. Even worse, some images do not have tags at all. In fact about 13% of all Flickr
images lack annotations1. In this case textual information is not available for retrieval and a
fallback strategy is needed. This underlines the importance of using a multimodal approach
when exploiting user-generated content for image retrieval.

In order to prepare the input for our topic model, we first need to reduce the virtually
infinite number of different tags to a finite vocabulary of frequently occurring tags. For that we
keep all tags that have been used more than TminOcc times and by at least TminUsers different
users. This heuristic discards all rarely used tags. Note that a tag is also neglected if only a few
users have used it. We further filter the list by discarding all tags that contain numbers and
by splitting tags at underscores into separate words. In a last filtering step all words within
the vocabulary are checked whether they are known by Wordnet (Fellbaum 1998), a lexical
database of English. Only words that exist according to Wordnet are gathered in the final
vocabulary.

Once the tag vocabulary is defined, the term-document table is built by counting the tag
occurrences for each image. To augment the existing annotations we expand the list of tags
associated with an image by using Wordnet. For that, we query Wordnet for the semantic
parents of the tags specified by the author. Semantic parents for a word can easily be extracted
from Wordnet as each word in Wordnet is associated with hypernyms. Here, Y is a hypernym of
X if every X is a (kind of) Y . A word’s hypernyms denote its parents that express the specific
concept of the tag more generally. Table 4.1 shows hypernyms (right) for several example tags
(left). As these hypernyms build a hierarchy and form a tree structure, we add the hypernyms
up to three levels above in the hierarchy of the tag itself to the tag list of the corresponding
image. Thus, while counting tag occurrences for each image in order to build the document
vector, these parents are included in our model by counting them as if they were present in the
list of tags. In case the vocabulary does not contain a tag or the associated hypernyms of an
annotation, the word is simply ignored. This procedure emphasizes semantic features rather
than just plain word counts.

In our experiments we set the parameters for the tag vocabulary to TminOcc = 18 and
TminUsers = 10 resulting in a vocabulary size of 2421 words. Most images in our database
have between 5 and 15 tags (including hypernyms) as an analysis reveals (see Figure 4.7). The
number of tags for some images is however unreasonably large as some users also tend to label

1Analysis was done on the Flickr-10M dataset.
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Figure 4.7: Histogram of the number of tags per image (including hypernyms) within the Flickr-
250K database.

images with whole sentences and phrases.

4.6.3 Setup

We evaluate our mm-pLSA model by comparing it to various standard pLSA models on the
Flickr-250K dataset (Section 3.1.1.1), which consists of 246,347 geo-tagged Flickr images asso-
ciated with at least a single tag and belonging to one of 12 different categories.

We learned two 50-topic pLSA models that serve as baseline: one for tag features and one
for visual features. All models were trained with 5000 images except the tag model that was
learned from 10,000 images. The training corpus for tags had been widened to cover more of
the “tag space” as the tag occurrence histograms were very sparse (see Figure 4.7).

The fast initialization strategy of the mm-pLSA mapped the two 50-dimensional image
representations computed by the two base models (based on visual features and tags) to a
multimodal topic distribution over 50 “super” topics. The global mm-pLSA models directly
computed models with 50 topics. The number of iterations used during training and inference
varied. All models were learned from 500 EM-iterations, except the mm-pLSA with the fast
initialization method, which was computed using 50 iterations, since we already started from a
decent initialization.

The only probability distribution computed during inference is the probability distribution
P (ztopl |di) of the top-level topics given the document. Therefore the EM-algorithm converges
faster than during training and we could reduce the number of iterations. For the inference of
these topic distributions we used 200 iterations with the visual-based pLSA, tag-based pLSA,
concatenated topic-based pLSA, and the fast initialization of the mm-pLSA. 75 iterations were
used for the mm-pLSA with random as well as fast initialization.

We evaluated all the systems in a query-by-example task and evaluated the results by a
user study as described in Section 3.3. 60 query images were selected and the L1 distance was
used to find their most similar images. The users were asked to rate the 19 closest results to
each of our query images. We used the following scoring to get a quantitative performance
measure: An image considered being similar received 1 point, an image considered somewhat
similar received 0.5 points. All other images got 0 points. A mean score was calculated for each
user; the mean over all users’ means yielded the final score of the system being evaluated.
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Figure 4.8: Scores for our different retrieval systems. Vertical bars mark the standard deviation
of the individual mean scores of all users.

It is important to note that during the user study we presented the images to the participant
without showing their associated tags. This is due to our application scenario, which follows
the query-by-example paradigm: We assume that within a community-website image search
is initiated by a user with selecting a query image. The associated tags are just used in the
background by the retrieval engine to improve the search; the user does not enter his own
keywords for querying.

4.6.4 Results

The results of our experiment are shown in Figure 4.8. The first two experiments denote the
performance of the systems based solely on visual features or tags. “Concatenated pLSA”
denotes the pLSA model computed from merging the words from the visual domain as well as
the tag domain into one vocabulary. The fast initialization scheme that applies a third pLSA
model on top of the two base models is termed “mm-pLSA (fast init only)”. The mm-pLSA
being initialized randomly or with the outcome of the fast initialization strategy is denoted as
“mm-pLSA (random init)” or “mm-pLSA (fast init)”, respectively.

It can be seen that the systems relying solely on tags perform better than the system relying
solely on visual features. In contrast, the system aiming to fuse the modalities by concatenating
the occurrence counts performs worse than the system based on tags only. Expectedly its
performance is the same as of the system based on visual features only, as the few items
added to the co-occurrence matrix by concatenating the tag occurrences to the visual feature
occurrences are unlikely to have a major impact on the learned pLSA model training. Both mm-
pLSA models with fast initialization only and with optimizing the already good initialization
outperformed these systems by up to 24% which confirms the expected superior performance
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of multimodal multilevel models.
The randomly initialized mm-pLSA performs better than the pure fast initialization strategy

(“mm-pLSA fast init only)”, but not quite as good as the mm-pLSA initialized with the outcome
of the latter and further global optimization (“mm-pLSA with fast init)". This is in line with our
expectations: we expect the randomly initialized model to perform inferior to its well-initialized
counterpart. It should be noted that as the EM-algorithm already starts from a relatively good
solution, the number of training iterations can be small. Therefore the mm-pLSA model with
fast initialization and a few iterations of the global EM equations is a fast and effective way to
obtain good results.

4.7 Evaluation on the Flickr-10M dataset

4.7.1 Models for Visual Features

SIFT As for the previous dataset we extract dense SIFT features from a regular grid over
multiple scales. Again, we use a scale factor of 2 1

4 for the spacing between scale level and a
step size of 10 pixels. The descriptors were computed over image patches of 41× 41 pixels.

Quantization of the features into visual words is performed by using a flat vocabulary of
10,000 visual words derived by k-means clustering as described in Section 2.2.1. In contrast to
the previous setting we use a flat vocabulary rather than a vocabulary tree. Thus, we quantize
the descriptors to visual words by an exact linear nearest neighbor search in order to minimize
the (potential) loss in performance due to the quantization step early in our pipeline.

HOG We further extract Histogram of Oriented Gradient features using the improved 31-
dimensional HOG features of Felzenszwalb et al. (2010) (see Section 2.1.4). Each individual
HOG cell describes an image patch of 8 × 8 pixels. Similar to dense SIFT, these cell features
are densely computed across several scales with a scale factor of

√
2. We concatenate the

feature vectors of adjacent cells into multiple overlapping block features, each describing a 2×2
neighborhood. The resulting 124-dimensional vectors are then quantized into visual words using
a flat vocabulary of 10,000 visual words created with k-means clustering.

4.7.2 Tag-based pLSA-Model

We build a tag vocabulary holding the most frequent and meaningful tags by applying a series
of filtering steps: As for the previous dataset we filter tags by requiring that these occur more
than TminOcc times and are used by at least TminUsers different users. We further discard all
tags that have less than three characters, contain numbers or are stop words. Table 4.2 shows
the vocabulary sizes before and after filtering the available tags step by step.

Once the tag vocabulary is defined, the term-document matrix is built by counting the tag
occurrences for each image. On average, the number of tags per images in our database is 7.7
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Number of images 10,080,251
Number of images with tags (90.4%) 9,109,593
Number of Flickr users 852,697
Vocabulary size after each filtering step
Number of all tags (unfiltered) 1,691,336
Removal of tags with less than 3 characters 1,690,029
Removal of tags that occur in less than TminOcc images 6,681
Removal of tags that contain numbers 6,500
Removal of stop words 6,467
Removal of tags used by less than TminUsers different Flickr users 3,158
Final vocabulary size 3,158
#Images with tags within vocabulary (87.3%) 8,803,834
Vocabulary words present in Wordnet (78.6%) 2,483

Table 4.2: The vocabulary size before and after each filtering step. TminOcc has been set to
1, 000 occurrences and TminUsers has been set to 500 users.

– not taking tag-free images into account.
In our previous experiment (Section 4.6.2) we used Wordnet to expand the available image

annotations. However, Wordnet is limited to English, and more than 20% of the words in our
final vocabulary are not part of Wordnet (see Table 4.2). This may be caused by the use of
different languages, slang words and abbreviations for annotations as well as the generation
of raw tags that describe a specific location or scene. We assume that these annotations may
carry specific and meaningful information for correct retrieval. We further expect, that the
automatic expansion of tags to their hypernyms may also introduce additional noise to the
annotations. Therefore, we do not use Wordnet for the following experiments and focus on the
plain annotations provided by the users who uploaded the image themselves.

In our experiments we set the thresholds for the minimum number of occurrences TminOcc =
1000 and for the minimum number of distinct users TminUsers = 500 resulting in a vocabulary
size of 3158 words. A larger tag vocabulary would be beneficial for a retrieval that is based solely
on tags or other textual information. However, the training of the pLSA model is performed
by sampling a subset of the whole database as training set (in this work 10,000 images). Thus,
tags that do not occur within the set of training documents are not used for learning the pLSA
model. In other words, tags that should be handled by the topic model need to be sufficiently
frequent across all images in order to be included when (randomly) sampling the training set.
This is the reason for choosing this relatively small vocabulary for tags.

4.7.3 Setup

For all models – low-level and high-level – we chose 50 topics. The number of iterations used
during training and inference varied. All models were computed using 500 iterations except
the mm-pLSA with the fast initialization method. In this case the model was computed using
50 iterations, since we already had a good starting point. All models were trained with 10,000
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images, disregarding whether a unimodal pLSA model or a mm-pLSA model was used.
For the inference of these topic distributions we used 200 EM iterations for the visual- and

tag-based pLSA, as well as for the concatenated topic-based pLSA and the fast initialization
strategy. 50 iterations were used for the inference of the mm-pLSA models when randomly
initialized or initialized by the fast initialization technique.

Following the same evaluation procedure as for the smaller Flickr-250K dataset we evaluated
all the systems in a query-by-example task and evaluated the results by a user study with 9
users. 80 query images were selected and the L1 distance was used to find their most similar
images. The participants were asked to rate the 19 closest results to each of our query images.
Again, we always showed the images without their associated tags as we study a query-by-
example system.

As we also evaluate one system that is based solely on tags, it happens that there are several
hundred up to thousands of images that have the same distance to the query image. This is due
to the fact that images annotated with the same words will yield the same topic distribution
disregarding the image content. For an unbiased evaluation the images in the result list need
to be sorted by ascending distance (as usual) with an additional randomization step for images
with equal distances. That is, images with equal distance to the query are randomized in their
order while the ascending order of distances is still maintained for the whole list. This procedure
eliminates any bias introduced by the order, in which similar images are found when scanning
through the database.

We further impose two additional constraints:
• Images from the Flickr user who uploaded the query image will be ignored during retrieval.
• Any Flickr user may only contribute a single image to the result set. The image being
selected is the one with the smallest distance; other images of that user will be ignored.

These restrictions basically prevent that the result set is dominated by image series uploaded
by a single user and thus emphasizes both recall and diversity of the search.

4.7.4 Results

First we evaluate the fusion of the visual domain (represented by SIFT features) with the image
annotations. The results of this experiment are shown in Figure 4.9. The first two experiments
measure the performance of the systems based solely on visual features or tags and are labeled
“pLSA on SIFT” and “pLSA on tags”, respectively. “Concatenated pLSA” denotes the model
computed from merging the words from the visual domain as well as the tag domain into a
single feature vector. The straight-forward approach of applying a third pLSA model on top
of the two base models is termed “mm-pLSA (fast init only)”, while the mm-pLSA that is
initialized randomly or with the outcome of the fast initialization is denoted as “mm-pLSA
(random init)” or “mm-pLSA (fast init)”, respectively.

It can be seen that the system relying solely on tags performs worse than the system relying
solely on visual features. This is somewhat unexpected as in previous work tags were shown
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Figure 4.9: Scores for our different retrieval systems based on SIFT features and tags. Vertical
bars mark the standard deviation between the users’ means.

to outperform the visual features alone (Lienhart et al. 2009). Clearly, more work is needed to
understand this effect. The third system, aiming to fuse the modalities by simply concatenating
the occurrence counts – which were normalized to equal scale, in contrast to the corresponding
experiment in Section 4.6.4 – already performs better than the unimodal systems but worse
than than any mm-pLSA model.

All mm-pLSA models – with either using the fast initialization strategy or optimization of
the already good initialization – outperform the unimodal models, which confirms the expected
superior performance of multimodal models. However, the mm-pLSA models with global opti-
mization (starting either from a random or fast initialization) perform slightly worse than the
model that only performs the fast initialization. This is somewhat contradictory to previous
works (Lienhart et al. 2009). We suspect that the global optimization drifts too much towards
the textual domain. Given the poor performance of tags alone the overall performance then suf-
fers. Another possible reason is that the global optimization is unable to optimize the solution
from the fast initialization strategy any further but deteriorates it due to the less constrained
optimization problem. Figure 4.6 shows that the log-likelihood of that model does hardly in-
crease. This may be caused by too much noise on image annotations or a too small number of
training documents.

The randomly initialized mm-pLSA model performs worse than the mm-pLSA with fast
initialization strategy. This is in line with our expectations: we expected a random initialized
model to perform inferior to its well-initialized counterpart.

In a second series of experiments we evaluate how the mm-pLSA can be used to fuse multiple
features into a combined representation. In these experiments the two modalities that are
evaluated are SIFT and HOG features. The results of the corresponding user studies are
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Figure 4.10: Scores for our different retrieval systems based on SIFT and HOG features. Vertical
bars mark the standard deviation between the users’ means.

shown in Figure 4.10. Similar to the previous experiments, the pLSA on the concatenated
feature histograms does hardly improve over the better of the two modalities. This observation
underlines the importance of hierarchical models even for assumed easy tasks such as multi-
feature combination. Despite the close relation of these gradient-based features one can see
that a stepwise combination of three pLSA models (termed “mm-pLSA fast init only”) further
improves the retrieval, but is slightly outperformed by the mm-pLSA model that performs a
global optimization.

Finally, for visualization purposes two example queries and the topmost retrieved images of
various variants are shown in Figure 4.11.

4.7.5 Discussion

It remains subject of future research why the mm-pLSA model with fast initialization strategy
and global optimization performs worse than expected on this data set but outperformed all
other variants in previous work in the case where SIFT features and tags are combined. A
probably related issue is the inferior performance of the tag-based model. One possible solution
may be to upscale the tag vocabulary in order to describe such a large dataset more accurately.
However, one needs to address that only a few thousand tags occur frequently and most are
used only by a relatively small number of images. Here, stemming could be of help. Another
potential solution may be to also include the provided textual image description of Flickr images
rather than tags alone.

For further insights we visualize the conditional probabilities of the modality-specific low-
level topics (“subtopics”) given the top-level topics P (zvk |z

top
l ) and P (ztp|z

top
l ) (“supertopics”) of

the mm-pLSA training. We chose the mm-pLSA with fast initialization strategy and plot these
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Figure 4.11: Examples of retrieval results on the Flickr-10M dataset for the different approaches
and two different queries. The query image is shown at the top left corner (pink frame) followed by
the retrieved images. Query: "Eiffel Tower": Upper left: pLSA on SIFT features. Upper right:
pLSA on tags. Lower left: mm-pLSA (the fast initialization only) on both SIFT and tags. Lower
right: mm-pLSA with fast initialization and global optimization on both SIFT and tags. Query:
"bike": Upper left: pLSA on SIFT features. Upper right: pLSA on HOG features. Lower left:
mm-pLSA (the fast initialization only) on both SIFT and HOG features. Lower right: mm-pLSA
with fast init and global optimization on both visual feature types.

probabilities as a matrix, where the actual probability value is mapped to a color ranging from
dark black for 0 to bright white for 1. Each row l of such a matrix represents P (zvk |z

top
l ) on the

left half (split by the red line) and P (ztp|z
top
l ) on the right half. The columns then enumerate

the subtopics k and p correspondingly. Note that each row sums up to 1. Therefore one can
visually identify the mixture of the topics by looking at each row.

The conditional probabilities for SIFT features and tags are shown in Figure 4.12. It can
be seen that most entries with high probability value are present for tags only (right half of
Figure 4.12). The visual part (left half) has no peaks but is apparently less sparse. One can
further observe that the entries in each row with a significant probability (the non-black entries)
are either on the visual or on the textual side, not on both. There is no direct correspondence
between visual topics and textual topics. Apparently, the mm-pLSA basically acts as a kind
of auto-selection mechanism, selecting either a visual or a textual sub-topic distribution for
each top-level concept. The mixture of visual and textual description is thereby achieved by
representing each individual image by a mixture of such supertopics. These are in turn mutually
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Figure 4.12: Visualization of the matrix P (subtopic|supertopic) for the mm-pLSA on SIFT
features and tags. One row in this matrix denotes the conditional probabilities P (zk|supertopic)
(left half) and P (zp|supertopic) (right half), which sum to 1. The subtopics for the SIFT features
are shown on the left half, the subtopics describing tags on the right half.
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Figure 4.13: Visualization of P (subtopic|supertopic) for the mm-pLSA on SIFT and HOG
features. One row in this matrix denotes the conditional probabilities P (zk|supertopic) (left half)
and P (zp|supertopic) (right half), which sum to 1. The subtopics for the SIFT features are shown
on the left half, the subtopics describing HOG features on the right half.

exclusive on their subtopic representation, but the mixture of these describes both modalities.
This is different for the multi-feature model combining SIFT and HOG features. In Fig-

ure 4.13 one can see that the supertopics represent a real mixture of subtopics from different
modalities. Seemingly, the close relation of the two types of visual features is directly reflected
in the top-level concept.
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4.8 Summary

In this chapter we presented a general scheme, the multilayer multimodal probabilistic Latent
Semantic Analysis. It extends the single-layer pLSA to the concept of layered or hierarchical
topics – a natural way to describe an image composition. It also allows to grasp concepts from
different modalities such as visual features and text and describe them with a single compact
representation by the distribution of top-level concepts.

We described the structure of our mm-pLSA model as well as training and inference and
further proposed a fast initialization technique making the mm-pLSA efficiently computable in
a step-wise forward manner. The overall approach was evaluated on two large-scale datasets of
250,000 and 10 million images originating from a real-world database. The result consistently
show that the mm-pLSA outperforms unimodal pLSA significantly and can be applied to fuse
information from very different domains.
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5
Feature Triples

In collaboration with Yahoo! Inc. – the company running Flickr – we developed a retrieval-
based technique to detect brand and product logos in images. The main motivation is to boost
click-through rates and thus advertising revenues on large community-driven websites such as
Flickr, YouTube, Facebook or Google+ by improving the user experience of advertisements.
This may include the selection of ads based on the user’s interests and his profile but also
the selection of ads based on the current visual content presented to the user such as images
or videos. For instance, if a user visits a sport news site and his favorite team wears clothes
of a particular brand, it might be a good idea to present him advertisements and offerings of
exactly this brand and not of those brands supporting the opponents. For such applications
logo recognition is the back-end service necessary to extract the needed semantics from images
that are then exploited for better user experience and at the end for more profitable services.

We entirely focus on the logo recognition step itself and consider it a subtask of object
recognition as most logos can be considered as objects with a planar surface having only a
moderate variance in their appearance. A pleasing property is that logos are usually visually
distinctive and designed to catch someone’s attention. Also, many logos contain text, which
on the one hand is often a prominent description of the brand. On the other hand, text-like
structures are particularly difficult to deal with as they have repeated visual primitives that
can occur across a wide range of images. In the end, the recognition of logos in natural images
is challenging due to major changes in lighting, scale and perspective, making this setting
significantly different to pure near-duplicate retrieval.
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There are many powerful object recognition schemes, the most popular at the moment prob-
ably being deformable part-based models (Felzenszwalb et al. 2010). However, such methods
require to learn and apply one or more models per class. From an industrial point of view
classification-based approaches that follow the 1-vs-all classification paradigm are rather unde-
sirable: these implicitly require that given an unknown test images the models of all classes
must be evaluated on this single image in order to determine if objects of the corresponding
classes are present. There are multi-class classification schemes, but these do not scale well
with hundreds and thousands of classes.

In contrast, our long-term goal is to perform logo recognition on thousands of images per
minute, whereby the number of different logo classes is huge. In that case the usage of one-
vs-all classifiers is most likely too expensive and thus infeasible. In general a logo recognition
system should be able to determine quickly if an unknown image contains a logo of a certain
class. While it is certainly doable to test an incoming test image for every logo class present in
the database, this is not an option due to speed issues, the expected high false alarm rate and
especially because of the likely disagreement among the multiple classifiers. Typically, a logo
database contains multiple samples of thousands of brands. While the commercial interest to
detect logos in images is huge, any recognition system needs to address the scalability constraints
in terms of images processed per minute and numbers of classes supported. At the same time
a very high rate of recognition accuracy must be maintained.

In this chapter we describe a system heavily tuned towards efficient multi-class object
recognition with high precision at the cost of recall. Our approach may be combined with
classification-based approaches and acts as a filtering before more costly classifiers are applied.

At the basis of our system we use local features, which have been proven effective for object
retrieval in general. In that setting, the bag-of-word model is probably the most common
technique for image retrieval. However, experience shows that individual visual words lack
distinctiveness, which leads to the retrieval of many incorrect yet high-scored images. This is
often addressed by employing post-retrieval geometric verification steps to discard images that
were retrieved, but do not share geometrically consistent visual features with the query.

Consequently, one goal is to incorporate geometric information into the visual signature
that is being used for searching similar images in order to suppress false positives. The key
challenge is to derive a search and index scheme that is capable of robust similarity search
beyond pure near-duplicates. In other words, we want to find similar images while maintaining
translation, rotation and scale invariance of the underlying visual description. Solutions for
visual similarity search that satisfy these requirements are rather tricky. Most methods we are
aware of are either targeting near-duplicate search using a global signature or do not use the
signature for search but rather for post-processing.

In this work we describe a system that encodes both the appearance as well as the spatial
configuration of three local features (in the following termed feature triples) into the visual
signature. The signature is translation, scale- and rotation invariant and due to the geometric
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information highly distinctive. Logo classes are represented by distinguished spatial configu-
rations of feature triples being learned on a training set. By exploiting that feature triples
themselves consist of feature pairs, a hierarchical index can be built that allows for efficient
search of feature pairs and triples. Given a query image and its feature triples, the logo de-
tection is performed by searching for matching spatial configurations within the database of
feature triples from multiple classes.

The remainder of this chapter is organized as follows. Section 5.1 surveys related work
relevant to our approach. In Section 5.2 we describe how to determine spatially consistent
feature pairs and triples from training images. The usage of this representation in combination
with our index for efficient logo recognition is discussed in Section 5.3. Finally, the results of
our experiments are presented in Section 5.4, followed by the conclusions in Section 5.5.

5.1 Related Work

There are several publications that address the retrieval of printed logos, that is, for efficient
search in logo databases of design patents. However, logo recognition in real-world images has
not gained as much attention yet. Bagdanov et al. (2007) determine correspondences between
SIFT descriptors of video frames and reference images in order to detect whether a logo is
present. The logo is then further localized by estimating the center of all the matches. Joly
and Buisson (2009) propose a new query expansion strategy for querying a database with SIFT
descriptors followed by a geometric consistency check. Both approaches do not scale well with
growing database size.

A turning point in scalable object retrieval, which also provides the basis for our approach,
has been the introduction of the bag-of-words approach (Sivic and Zisserman 2003). At its core
is the quantization of local features to visual words allowing efficient indexing and search.

Fu et al. (2010) combine three types of local features within the bag-of-words framework to
capture gradient distribution, shape and patch appearance and adaptively weight their com-
bination during retrieval. Jiang et al. (2011) use a regular grid to bundle local features that
reside in the same grid cell. Similar to Partition Min-Hashing (Lee et al. 2010) each grid cell
is described by a bag-of-words but the lookup for matching grid-cells is done by bag-of-words
retrieval followed by branch-and-bound object localization. Letessier et al. (2011) perform fea-
ture selection to determine consistent visual words. This allows to reduce the number of visual
words used to query the inverted index with no or little loss of accuracy.

Many approaches building on the inverted index as indexing data structure employ geo-
metric verification steps to filter the high number of false-positives. By embedding the spatial
information in the index one can significantly reduce the number of false positives. However
most approaches use plain visual words to query the index and store additional geometric infor-
mation in the payload associated with each word for immediate yet post-retrieval verification
of the matches between the query word and retrieved candidates. Due to memory constraints,
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only compressed or quantized geometric information is stored and weak-geometric consistency
is checked on query time (Wu et al. 2009, Jégou et al. 2008; 2009a, Perdoch et al. 2009).

In contrast, we explicitly focus on the encoding of the geometry into the query itself such
that (1) the index neither has to store the additional information nor (2) the result set of each
individual visual word needs to be verified at query time. To achieve this, the spatial structure
is encoded with a hash function. In short, similar regions in two images are determined by
indexing the geometric layout of local features in hash tables. Our work in this area is in the
spirit of geometric hashing (Rigoutsos et al. 1997), however we do not have a single model image
but create a model for each logo-class out of several training images. The result of the training
is a set of triples of interest points, which consistently appear across different training images.

Similar to our approach Zitnick et al. (2007) use feature triples to describe product logos.
In contrast to our work they focus on the post-retrieval verification by exploiting the geometry
of feature triples and use an inverted index holding all possible n3 feature combinations out of
n features of a reference image. An exhaustive search for all combinations of feature triples in
the query image is then used for retrieval. This basically renders this method impracticable
for real-time applications. We address this issue by a specialized index structure that can be
utilized for efficient search of feature triples.

Cranston and Samet (2007) review different ways to encode the geometry of triangles and
pay special attention to degenerated cases that we explicitly discard in advance. Poullot et al.
(2009) use bucketing techniques to build signatures from local feature triples. In contrast to
our approach they build a signature for the whole image and their approach is more suited to
near-duplicate detection. Avrithis et al. (2010) incorporate global geometry in the index by
means of hashing the global layout of all features. Rather than building a global geometric
representation, we index spatial structures that describe a small region of the image, making
our approach more suitable for the detection of small logo regions. Kalantidis et al. (2011) use
feature triples and distinctive signatures are derived from a multi-scale Delaunay triangulation
of interest points. However, this approach heavily relies on the tessellation and requires very
stable interest point detections.

In this work we use SIFT (Lowe 2004) descriptors derived from hessian-affine interest
points (Mikolajczyk et al. 2005) to describe images, as these are more robust to image tilt
and perspective transformations than other features. However, our approach may be used with
any other local feature as well.

5.2 Training

In the following we describe a method that automatically discovers local feature pairs and triples
with consistent spatial layout from training images of a certain class. These feature pairs and
triples are described by a representation that not only encodes their visual appearance but also
their spatial layout. The mined feature configurations are used to represent the logo classes and
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indexed into a hash table that is used for logo detection described in the subsequent Section 5.3.
In fact, we use the underlying representation of feature triples as triangles twice: During

training it is used to find feature triples that have a similar spatial layout across training images.
Once indexed the triangle representation is further used for detection: logos are discovered by
testing if feature triples of an unknown image are present in the index.

We would like to stress the fact that the training we employ can be replaced or combined
with other approaches for finding local feature correspondences between image pairs.

5.2.1 Modeling Logo Classes

We model our logo classes by the appearance of certain distinctive configurations of local fea-
tures. More specifically, we look for spatially consistent local feature configurations that con-
sistently appear at prominent locations of the logo when seen from multiple different views. In
order to obtain such configurations we search for those that appear across pairwise combination
of training images. Given n training images per class, our training procedure processes n(n−1)

2
image pairs and collects those feature triples that appear across multiple training images.

This implicitly requires that the training images show the object of interest with varying
background, otherwise spatially consistent feature triples might also be mined from background
regions. In practice, the training images we used have a clutter-free background and due to our
distinctive visual description feature triples are mined only from the logos themselves.

For several reasons the matching procedure sometimes is not able to find feature triples for
certain training image pairs. For instance, the matching of individual features fails for image
pairs where the logo’s colors are inverted or where images differ greatly in their perspective
viewpoint. One may see the pairwise matching as the creation of a graph where images represent
vertices that are linked by feature triples with consistent spatial layout. The benefit of the pair-
wise matching is the implicit discovery of multiple connected components in this graph.

Eventually, all feature triples determined from pairwise combinations of training images
form the model of a logo class covering those views of the logos that we present in the training
set. In the following we describe the discovery of spatially consistent feature pairs and feature
triples from pairs of training images.

Throughout this chapter, we represent an image by the set of its local features I. Each
individual feature i ∈ I is described by its position, scale, orientation. Its visual appearance
is captured by its visual word label v(i). A correspondence i ↔ i′ between two local features
i and i′ means that these have been considered in some sense as similar and are declared as
matching. Pairs of features are naturally represented as an edge (i, j). An edge correspondence
(i, j)↔ (i′, j′) denotes that two pairs of local features are considered as similar.

5.2.2 Discovery of Spatially Consistent Feature Pairs

We start the automatic discovery of feature pairs that match across a pair of training images
IA and IB by mining visual feature correspondences. The correspondences are obtained in
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Figure 5.1: Relative position of feature pairs in two images. Green arrows indicate the orientation
of the corresponding SIFT feature.

constant time by determining those local features that have been assigned to the same visual
word. Given the visual word matches V = {i ↔ i′|i ∈ IA, i′ ∈ IB , v(i) = v(i′)} we further
compute the Euclidean distance between the corresponding descriptors. The matches are then
sorted in ascending order by the distance between descriptors. For each image pair we keep up
to Nfeat feature correspondences with the smallest distances for further processing.

Given the correspondences of individual features, we proceed by searching for corresponding
pairs of them, i.e., edge correspondences. This is done by determining pairs of correspondences
{(i, j)↔ (i′, j′) | i↔ i′ ∈ V, j ↔ j′ ∈ V, v(i) < v(j)} from the set of individual correspondences.
To remove ambiguities we require that edges must consist of different visual words that are
ordered by their label. In particular, we are only interested in those edge correspondences
where the participating local features have a consistent spatial layout in both images. For
that, the absolute distance between points cannot be taken into account, as it would break the
desired scale-invariance of our representation. Thus, we explore the relative orientation of a
feature i to a feature j by determining the relative angle α between the dominant orientation
of i (as given by the interest point detection itself) and the spatial position of j. Vice versa,
the reversed relation is captured by the angle β between the orientation of j and the position
of i.

If a feature pair has a spatially consistent counterpart in the other image, the relative
orientations α and α′, as well as β and β′ are similar to each other (see Figure 5.1 for an
illustration). Naturally, we can represent such relationship as the correspondence between two
edges e and e′ enriched with the corresponding relative orientations: e ↔ e′ ≡ (i, j, α, β) ↔
(i′, j′, α′, β′). In the remainder of this chapter the term edge always refers to two points plus
their relative orientation angles. In the following we construct a filtering function to determine
edge correspondences with similar spatial layout. For any two pairs of points we compute
the relative orientation of these two correspondences across both images by computing the
difference of the relative angle:

∆α = angle_diff (α, α′) and ∆β = angle_diff (β, β′) (5.1)

Here, angle_diff (α, α′) denotes the smallest sign-preserving enclosing angle between α and α′
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Figure 5.2: Score function for scoring the difference of angles as in Equation 5.2.

taking into account the circular wrapping at 0◦ and 360◦ (see Appendix B for details). The
similarity score s(Δα) is based on the difference of the angles. We compute a normalized score
for this difference of the two angles:

s(Δα) = η e− (Δα)2

2σ2 . (5.2)

This score yields a value that indicates the similarity of the angles. We empirically adjusted
σ = 8 and normalize the score by η such that the function has its maximum of 1.0 at 0◦

difference. With increasing Δα the score quickly and smoothly decreases towards zero for
differences higher than 25◦ (see Figure 5.2). While s(Δα) only considers a score for the relative
position of j seen from point i, we further use s(Δβ) to describe the spatial consistency from
the view of point j relative to position of i. The final symmetric score is then defined as

simedge(e, e′) = s(Δα)s(Δβ). (5.3)

Note that the score will quickly drop to 0 if one of the angles is not consistent across the image
pair. While the comparison of such a difference of angles could yield a binary result the use of
a continuous score function allows to sort the matching edges according to their match quality.

We compute the score simedge describing the consistency of the spatial layout for all possible
edge correspondences between the pair of images. The top Nedge edge correspondences that
have a score above a threshold Tsim form the set Ematch for further processing. Eventually,
this filtering discards many potential combinations of features that are not spatially consistent.
The remaining edge correspondences serve as a starting point for deriving feature triples.

5.2.3 Triangle Representation

In previous qualitative experiments we experienced that even pairs of local features are often
not as discriminative as desired for logo recognition. Also, as we want to capture the spatial
structure of objects we chose to describe them by feature triples of local features. Such feature
triples naturally form a triangle (if the point configuration is non-degenerated). As for the
edges we capture both the visual appearance of the individual local features as well as their
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Figure 5.3: Representation of a triangle

relative position in a highly distinctive signature. Each triangle is described by an 8-tuple:

• The three visual words of each of the points i, j, k. To remove ambiguities the points are
ordered by their visual word labels such that v(i) < v(j) < v(k).

• The angle δ1 between edges (i, j) and (i, k).

• The angle δ2 between edges (j, k) and (j, i).

• The relative orientations α, β and γ of the three points.

Figure 5.3 depicts the information extracted from each triangle to create a signature.
There are many equivalent ways to describe the shape of a triangle. The proportion of the

edge lengths may be one choice, but we chose to capture the shape by the two angles δ1 and δ2 as
we assume that the ratio of angles is less affected by out-of-plane rotations than a ratio of edge
lengths. By observation we then found that taking the orientations of the features themselves
into account leads to better performance on letter-like logos. In this case the orientations of the
features are also important to describe the layout. Therefore we include the relative orientations
α, β and γ (see Figure 5.3) of the three points in the signature. These orientations depend on
the orientations of the SIFT features but are relative to each other. Therefore both in-plane
rotation invariance and scale invariance of the triangle representation is maintained.

In all operations we discard degenerated triangles that carry little spatial information and
are not descriptive by imposing the following constraints:

1. Each of the three points must be a different visual word. This constraint addresses that
logos are often framed with some kind of border. Along that border many identical visual
words may be detected. Feature triples consisting entirely of such words do not carry
sufficient discriminative information.

2. Points must not be in a degenerated position. That is, no two points must coincide. Even
stricter, the spatial distance between all of the points i, j, k has to be above 5 pixel and the
minimum angle of the triangle has to be 15◦. This discards degeneracies where at least
two points are located very close to each other and the resulting triangle would hardly

86



5.2 Training

describe spatial structure. The minimum distance further deals with the fact that the
interest point detector tends to over-detect and returns many interest points that only
differ slightly by their location and scale.

3. Finally, once two features on the actual logo were detected we observed cases where a
bad detected triangle was caused by the detection of a correct edge and a false positive
third point outside the actual logo. Thus we further constrain the eccentricities d(i,j)

d(i,k) and
d(j,k)
d(i,j) such that these are in [ 1

3 , 3]. This constraint discards triangles which carry little
information of spatial structure and also improves the locality of the detection.

5.2.4 Discovery of Spatially Consistent Feature Triples

Given the set of detected edges correspondences Ematch, we can construct a triangle (i, j, k) by
selecting an edge (i, j) from Ematch and a third arbitrary point k from Vmatch where Vmatch =
{i, j|(i, j) ∈ Ematch}. While the search for edge correspondences is of quadratic nature – as
it requires to evaluate the score function for every feature correspondence between a pair of
training images – it is still feasible as there are usually only a few hundreds of those per image
pair. Moreover, the score function can be efficiently evaluated. However, moving from pair-wise
to triple-wise feature combinations renders exhaustive search techniques impractical.

To determine feature triples that have a geometrically consistent spatial layout across the
two training images IA and IB in sub-linear time, we make use of the same technique we later
use for indexing. We store the triangle representations of all triangles within image IA in a hash
table by element-wise quantizing the triangle representations into discrete hash keys. For that
the angles capturing the triangle shape δ1 and δ2 as well as the relative orientations α, β, γ are
quantized into regular bins. The final triangle signature consists of these 5 discrete numbers and
the three visual word labels. For space-efficiency each signature is packed into a 64-bit integer
value (see Figure 5.3) used as hash key to access the hash table when indexing or searching.

The “search” for triangles that are spatially consistent across both images then proceeds
as follows: All possible triangles and their quantized representation are computed for image
IB . By performing look-ups in the hash table one can immediately determine whether these
discrete signatures have a matching counterpart. In other words, once triangle representations
have been quantized and indexed, matching triangles can be found in constant time by querying
the hash table. Thus, spatial consistent triangles are determined by finding identical signatures.

Quantizing the angles and proportions using hard boundaries introduces errors and poten-
tial loss of matches that eventually decreases recall. We have extensively experimented with
the parameter settings to optimize the recall, while maintaining the specificity of the triangle
signatures. We observed the best performance when multiple signatures for each triangle were
stored. Similar in spirit to the multiple assignment strategy where local features are quantized
to the k-closest cluster centers instead of a single one, the five different angles are quantized
to both the best bin and the second best bin. Furthermore, the circular wrapping of angles
is taken into account. We explicitly omit the multiple assignment step for the visual words
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Figure 5.4: Examples of spatially consistent triangles across pairs of training images from the
FlickrLogos-32 dataset. Blue lines denote the edges, green lines the feature orientations. The
numbers denote the visual word label.

themselves as we already use small vocabularies of a few thousand visual words. Therefore,
when constructing the signature for each triangle, multiple signature variants are generated
such that we store 32 (= 25) different signatures for each triangle. The optimal bin size for the
quantization is evaluated in Section 5.4.2. Note that for every triangle in IB we only generate
a single discrete representation and only query the hash table of IA once.

To summarize, our training procedure produces a set of spatially consistent triangles per
class by aggregating those found across individual pairs of training images. Due to memory
constraints we control the memory consumption with the following parameters: The number
of feature correspondences Nfeat kept for each training image pair – ranked by the Euclidean
distance between descriptors – was set to 300. Out of these point correspondences we determine
up to Nedge = 2000 spatially consistent edge correspondences per image pair. Finally, for
efficiency during logo detection, we sort the triangles of each logo class by the scales of the
participating features and keep only the 500,000 triangles with the largest scales. Figure 5.4
shows several examples of spatially consistent triangles determined by our learning procedure.

5.3 Recognition

5.3.1 The Cascaded Index

Given an unknown test image we have no prior knowledge regarding which logo it contains
- if any at all - and at what locations, scales and sizes. As we exploit a higher-order visual
description that aggregates three distinct local features into a single description, testing an
image for the presence of a logo by evaluating each combination of features is infeasible.
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Figure 5.5: Schema of the cascaded index. i, j and k denote the local features that have been
indexed. (i, j) denotes a pair and (i, j, k) denotes a triple of local features.

For instance, given a set of points V, the space of all possible combinations of points into
2-tuples or edges is given by the Cartesian product of the set V with itself as E = V × V.
Similar, the space of all possible 3-tuples or triangles is spanned by T = V × V × V = V3. An
exhaustive search for a certain combination of three points (i, j, k) would thus require to fully
search the discrete space V3, which is intractable.

However, by exploiting the structure of the data we index, we can scan the sparsely populated
high-dimensional feature space of feature triples by scanning the lower-dimensional subspace of
feature pairs part of it first. Therefore we exploit a cascaded index. The cascaded index holds
both lower- and higher-dimensional representations in terms of their combinatorial complexity.
These are linked such that each lower-dimensional representation is part of a higher-dimensional
representation.

In our case, we index local feature pairs and their relative spatial layout within an edge index
as the lower dimensional description. The higher-dimensional triangle index contains feature
triples including their relative layout. The two indexes are linked, such that the edge index
contains only edges that are part of the triangle index. Figure 5.5 illustrates this scheme. This
dependency allows us to perform efficient querying in two steps: First feature pairs are sampled
and used for querying the first stage of the cascaded index, i.e., the edge index. The majority
of queries will not yield any hits in this index but the ones which do serve as starting points for
constructing more complex queries that are issued to the second stage of the cascaded index,
i.e., the triangle index. We then accumulate the numbers of hits in this index as votes for the
presence of the corresponding class.

In this work we limit ourselves to a cascaded index consisting of two linked index structures
where the first stores 2nd-order features (edges derived from feature pairs) and the second
stores 3rd-order features (triangle derived from feature triples). Future work might extend this
to multi-layer cascaded indices for efficient search in databases of higher-order features. In our
case, both indexes are implemented as hash tables but the concept is not limited to these.

5.3.2 Querying the Cascaded Index

Querying the Edge Index We employ two complementary edge-sampling methods to boot-
strap the detection:
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Figure 5.6: Examples of sampled edges (red) from local features (black dots) with two different
sampling strategies: Left: Monte Carlo sampling of edges. Right: Proximity sampling. The
neighbors within a given distance (blue circle) of a point (yellow) are used to sample edges. This
process is repeated for all local features.

1. Monte Carlo Sampling: The edge index is queried with randomly selected feature pairs
out of all visual features of the input image. As for the triangle representation we encode
both the visual appearance and the relative spatial position of the feature pair into a
discrete signature used as hash key. The hash table is then used to determine whether it
contains an identical edge signature. This kind of sampling is shown in Figure 5.6 (left).

2. Proximity Sampling: As the number of interest points in logo regions roughly correlates
with the size of the logos, bigger logos are more likely to be covered when random points
are selected. In order to cover also even very small logos by multiple edge samples we
further scan the immediate neighborhood of each local feature in addition to the Monte
Carlo sampling. For that, close pairs of points are sampled by selecting the neighbors
within a distance of 5px to 30px of an interest point. As the radius is limited, a relatively
small number of edges will cover the whole image on very small scales. This sampling
scheme is illustrated in Figure 5.6 (right).

Querying the Triangle Index The key idea is that once we discover a certain edge of the
query image that is contained in the edge index it further implies that a part of a triangle
within the triangle index has been detected. Thus, the more complex triangle representation is
constructed by randomly sampling an edge from the set of detected edges and sampling an addi-
tional point belonging to one of these. Duplicates and degenerated triangles (see Section 5.2.2)
can be discarded without actually querying the index.

Once we find matching triangles, the votes for each class are accumulated. The frequency
of detections per class is used as confidence score for a per-class decision: The system decides
by a class-specific threshold Tc on the detection counts whether a certain object class is present
in an image. The decision thresholds are learned for each class separately (see Section 5.4). In
general, once more than Tc feature triples of a certain class c are detected the logo is considered
to be present in the image.

Figure 5.7 shows example detections of different logos. One can see that in contrast to
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Figure 5.7: Example detections of the Esso logo (top row), the FedEx logo (middle row) and
the Ritter Sport logo (bottom row). From left to right: Original image (left), all detected edges of
any class (middle left), edges belonging to real class (middle right) and the final detected triangles
(right). The locations of local feature are marked with green crosses. Within each image: edges
of different classes are colored differently.

feature pairs the triangle representation is highly distinctive. Moreover, due to the constraints
on shape and eccentricity (Section 5.2.3) the detections provide a good localization of the logo
inside the image.

5.4 Evaluation

In the following we describe the setup of our experiments and their results. For all training
images we performed the matching of image pairs as described in Section 5.2 to derive the
triangles for each image pair. Then we index all triangles in our cascaded index and let our
system perform the logo detection. We tune the parameters using a validation set (subset P2 of
the FlickrLogos-32 dataset) and report the performance obtained on the test set (subset P3).

5.4.1 Automatic Optimization for High Precision

Our proposed system has several parameters that can be tuned for performance. Many of
them directly change the number of detections of point pairs and triples. Moreover, due to the
different visual appearance of logos but also due to their typical placement within images, a
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varying number of local features is detected on logos of different brands. This directly influences
the chance to find these logos by drawing random samples of local feature triples for searching
within a logo database. For instance, logos of brands like “Coca-Cola”, “Corona”, “Becks” or
“Guinness” are typically placed on tables or in front of people being photographed. In contrast,
logos of brands like “FedEx”, “Shell” or “DHL” tend to be not in the main focus of the image
and as a result these are often depicted rather small. As the number of local features in those
logo regions may vary significantly and depends on the logo class, we adaptively select our
threshold Tc for the decision whether a logo of a given class c is present or not.

An individual threshold per logo class addresses the issues mentioned above by controlling
the sensitivity of our detector. Thus, we first run the detection on a validation set and determine
class-specific thresholds: Once we obtained the raw detection counts on the validation set, we
perform a parameter sweep over the threshold Tc and recompute precision and recall for each
class separately. We determine the optimal threshold for each class by fixing the precision to
0.95 and selecting the corresponding minimal threshold where the system reaches the desired
precision. In case one class does not reach 0.95 precision we select the threshold for the best
precision obtained. Note that this sweep is performed efficiently by running the detection once
on the validation set and counting the detected feature triples for each image. As we have
the detection counts for each image we can determine the impact of the decision threshold by
varying it without re-running the actual detection.

The final performance is then computed on the test set using those class-specific thresholds
that have been refined on the validation set. In other words, in our experiments we choose our
target precision of 0.95 first and then select the decision threshold. Since we fix precision only
for the validation set, we also report the precision on the test set as it may differ.

Note that while we tune parameters defining the quantization of items in the cascaded index
we implicitly tune the constraints of our indexing scheme to be restrictive or tolerant. If these
constraints get less restrictive false positive detections increase. However, the precision is kept
constantly high by the adaptive increase of the decision threshold if more noise is present. Thus,
more noise on the validation set implicitly leads to decreasing recall on the test set.

5.4.2 Evaluation of Parameters

As initial parameters we chose parameter values that have been determined empirically and
seemed a good starting point. Here we used a visual vocabulary of 2000 visual words derived
from gray-scale images. The quantization is done with empirically determined bin sizes of 24◦

for the three feature orientations and 10◦ for δ1 and δ2.
In each experiment we optimize one parameter at a time and keep all others fixed. However,

during all experiments, we re-learn the adaptive threshold for all logo classes and re-build the
cascaded index for all shape and orientation parameter values. This assures that the evaluation
is not biased towards certain parameter configuration
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Figure 5.8: Precision and recall for varying numbers of random samples.

Monte Carlo Sampling Density As the recall of our approach is based on Monte Carlo
sampling of points; one crucial parameter is the number of random samples, that is, the number
of queries to the index. To increase recall, we can increase the density of the Monte Carlo
sampling. Increasing the number of samples and thus queries will increase the chance to detect
edges and triangles that occur both in query image and in the index. Note that the sampling
can be adjusted at query time according to the application needs or time budgets.

Consequently, we evaluate the impact of varying the number of queries made to the cascaded
index. As the number of queries instantly changes the number of detections we perform the
parameter sweep as described in Section 5.4.1 on the validation set and compute the final
performance on the test set. This assures that we compare the recall only for equivalently well
performing systems (in terms of precision). In Figure 5.8 the results of two type of systems
are shown. The first system only performs the Monte Carlo sampling, i.e., it only samples
random edges. The second additionally performs the proximity sampling that uses the edges
from spatial nearest neighbors as described in Section 5.3.2 as queries.

One can see from Figure 5.8 that recall consistently improves with an increasing number
of random samples. The proximity sampling significantly improves recall when only a few
thousand edges are tested by the Monte Carlo sampling. There is a major improvement of the
latter when e.g., 100K samples are used instead of a few thousands but only little improvement
since then. Thus, in the following we always perform both proximity sampling as well as Monte
Carlo sampling of 100,000 random edges.

Visual Vocabularies An important part of the discriminative triangle representations is the
distinctiveness of the visual words themselves. Therefore we compare different vocabulary sizes
from 1000 to 4096 visual words, up to the maximum number of distinct labels we can pack
into our 64-bit integer code. As we chose to use 12 bits to encode each visual word label, 4096
words are the largest possible vocabulary size. The remaining 28 bits are needed to encode the
5 angles of the relative orientations and the shape of the triangle. In addition to SIFT features
extracted from gray-scale images we also compare their performance to color-SIFT features.
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Figure 5.9: Performance for different visual vocabulary sizes of both gray-scale and color SIFT.

The clustering and the quantization of the descriptors introduce hard boundaries in feature
space, thus a smaller vocabulary should be more robust to minor changes of descriptors but
also possibly yield more false positives during detection. Note that in our setting an increasing
amount of false positive detections on the validation set leads to smaller recall on the test set
(see Section 5.4.1) as we keep the precision high by the automatic threshold selection strategy.

The result of this experiment is shown in Figure 5.9. One can see that larger vocabularies in-
crease the performance. Most likely, this trend will further continue with increasing vocabulary
sizes. However, longer signatures make efficient indexing in hash tables more difficult but may
be explored in the future, though. In this work, we are constrained to 64-bit signatures. One
can further observe that capturing color in descriptors further improves performance. Therefore
the following experiments are performed with the largest color-SIFT vocabulary.

Quantization of Shape Representation and Feature Orientation In our representation
the shape of a triangle is captured by two angles δ1 and δ2 that are quantized and packed into
our 64-bit signature. Each of those is put into the first and second best bin during indexing
to minimize loss of recall due to these quantization boundaries. We thus evaluate how the
quantization of those angles affects the performance. From Figure 5.10 (left) we can see the
best recall is obtained with a bin size of 15◦.

The same experiment is repeated to test how the performance is affected if the quantization
of the feature orientations changes. Figure 5.10 (right) shows the recall for different quantization
bin sizes of feature orientations. There is no clear peak, but the best performance is achieved
when the features orientations are quantized with a bin size of 40◦. This in line with our
experiences: While designing our system we observed that the orientations of features can
change quite significantly depending on the view angle of the logo - much more than the shape
of the corresponding triangles.

Larger and smaller quantization bin sizes of either shape or feature orientations lead to
overly specific or coarse triangle signatures that then degrade recall. However, both graphs
in Figure 5.10 show rather insignificant differences. We assume this might be caused by the
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Figure 5.10: Performance for different bin sizes used for quantizing angles. Left: Quantization
bin sizes for angles that capture the shape of the triangles. Right: Quantization bin sizes for
relative feature orientations of the individual features.

extremely sparse triangle representation and the fact that its discriminativeness is bound by
several components instead of a single component.

5.4.3 Logo Detection Results

After tuning the parameters of the system, our best system achieves a precision of 0.982 at a
recall of 0.61 on the test set. The corresponding edge index holds about 613,000 keys and the
triangle index holds about 11 million keys. This demonstrates that even without sophisticated
post-processing the detection accuracy based on the occurrences of spatial configurations of
local features can be kept high.

Finally, Figure 5.11 shows the confusion matrix for all 32 classes of this system, which further
underlines the high precision of the logo recognition system. The results obtained clearly show
that our system produces an extremely low number of false positives, resulting in high precision
at the cost of recall. However, one can also observe that the detection of some logo classes works
better than for others. This may be caused by many factors; among them the visual appearance
i.e., the texture of a logo and its typical size in the photographed environment play a major
role. With fewer local features and thus fewer triangles and edges in the index the chances of
detecting a logo declines.

5.5 Summary

In this chapter we described a highly effective and scalable framework for recognizing logos
in an image. Our approach is based on encoding and indexing the spatial configurations of
local features in logo images. We use an automatic method for constructing a model for each
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Figure 5.11: Confusion Matrix showing the true positive detections per class.

logo-class out of multiple training images, which significantly extends the ability to detect logos
under varying conditions.

Our logo recognition system is inspired by the bag of visual words approach, but through
embedding spatial knowledge into the index, we have shown that we effectively suppress false
positive detections such that the resulting logo recognition has an extremely high precision of
about 99%. We have tuned and tested our system against the novel FlickrLogos-32 benchmark,
and found that we can effectively recognize the different logo classes with a high precision and
good recall.

Though we demonstrated the detection of logos by counting the occurrences of highly dis-
tinctive visual feature triples, the underlying technique might be further exploited within an
inverted index framework e.g., for high-precision near-duplicate search in images and videos.
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6
Fast Spatial Re-ranking with

1P-WGC-RANSAC

In order to ensure that the top retrieved images correctly show the query object we employ a
re-ranking step that ranks the retrieved images with respect to the spatial consistency of their
local features to the query. Good practice for this purpose is to employ Random Sample and
Consensus (ransac)-based methods as these cope well with false local feature correspondences.

We describe the underlying principles and discuss a ransac variant that uses single feature
correspondences to estimate a transformation between two images (Philbin et al. 2007). The
associated scales and dominant orientations of the two local features of a single correspondence
is used to estimate a similarity transform. Evaluating all these correspondences makes this
procedure deterministic, fast and robust to small inlier ratios.

In this chapter we present our 1-point-based wgc-constrained ransac variant (Romberg
and Lienhart 2013b). We demonstrate that the spatial re-ranking can be considerably accel-
erated by omitting the projective re-estimation that is usually employed to refine the best k
transformations with a fully projective re-estimation on the set of inliers. A further speed-up is
obtained by imposing a weak geometric constraint. Correspondences violating this constraint
are directly treated as outliers and evaluating the error function can be omitted.

In the end, our 1-point based wgc-constrained ransac outperforms the results in the liter-
ature. Especially for small vocabularies the re-ranking is significantly better in terms of mAP.
Moreover, our approach achieves real-time performance and is even faster than the method of
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6.1 The Homography

Tolias and Avrithis (2011) designed specifically for fast re-ranking of retrieval results.

6.1 The Homography

A homography or projective transformation H is defined as the transformation that maps a
point x that describes the real-world point xπ in one image to the point x′ in another image
describing the same real-world point xπ but from a different view. Both points x and x′ lie on
the image plane as they have no depth information (i.e., no z-coordinate) and are represented
in homogeneous coordinates as x = (x, y, 1)T and x′ = (x′, y′, 1)T .

H

xπ
π

x x�

C�C

Figure 6.1: Homography model: The point xπ lying on the word plane π is mapped to the points
x and x′ in the image planes of cameras C and C’. The point correspondence x ↔ x′across two
images is related by a homography H. Adapted from Hartley and Zisserman (2003).

The 3-D point in world coordinates xπ is mapped to the point x in image 1 by a projection
matrix P1 and a camera matrix K1:

x = K1P1xπ (6.1)

In the same manner, the point xπ is mapped to the point x′ in image 2 as

x′ = K2P2xπ. (6.2)

Thus, the two points x and x′ are related by a chain of transformations as

x′ = K2P2P−1
1 K−1

1 x = Hx. (6.3)

This relation between the two measured points in image coordinates x and x′ is summarized
in a single transformation matrix H. The homography H describes the mapping of points
in the image plane of image 1 to points in the image plane of image 2. Most important,
the computation of such homography does not require the knowledge of the actual real world
coordinates - it can be directly estimated from correspondences of points in the image planes.
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6.2 Homography Estimation

The homography model requires that all correspondences consistent with a possible model
must lie on a plane in the real world (see the plane π in Figure 6.1). Fortunately, the presented
methods are robust against minor violations of this assumption, e.g., when correspondences
arise from bumpy or uneven object surfaces.

In the following we describe techniques to directly solve for H without the explicit com-
putation of the matrices K2,P2,P−1

1 and K−1
1 . The matrix H itself is a 3×3 transformation

matrix

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 =

a11 a12 tx
a21 a22 ty
p1 p2 1

 =
(
A t
p 1

)
, (6.4)

which can be either decomposed into or composed from a 2×2 affine transformation matrix
A =

(
a11 a12
a21 a22

)
that includes rotation, scaling and shearing, a translation vector t = (tx, ty)T

and a vector p = (p1, p2) describing the perspective projection. If H describes a purely affine
transformation then p = 0. As the homography operates on homogeneous coordinates it is only
defined up to scale. Once the scale is fixed (see next section), the solution for the homography
has then 8 degrees-of-freedom.

If H is known, the projection of x into image 2 (in homogeneous coordinates) can be com-
puted by a matrix multiplication as in Equation 6.3. One can compute the image coordinates
of the projected point x′ in non-homogeneous coordinates directly as

x′ = h11x+ h12y + h13

h31x+ h32y + h33
, (6.5)

y′ = h21x+ h22y + h23

h31x+ h32y + h33
. (6.6)

The remaining parts of this chapter deals with the homography estimation from point corre-
spondences. These points correspondences are usually established automatically by determining
visual feature correspondences across images.

6.2 Homography Estimation

6.2.1 Direct Linear Transform

The standard way to compute the homography from given point correspondences is the Direct
Linear Transform (DLT) (Hartley and Zisserman 2003, pp. 88-110). At least four point corre-
spondences are needed to estimate a full perspective transform between two images by solving
a system of linear equations. To achieve this Equation 6.5 is reformulated:

h11x+ h12y + h13 − h31xx
′ − h32yx

′ − h33x
′ = 0 (6.7)

One can see that Equation 6.7 is linear dependent on the unknowns hij and can be written as
a homogeneous linear system. To write the former equations in matrix form the vector h is
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6.2 Homography Estimation

derived from H by flattening the homography matrix into a vector as

h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)T . (6.8)

Thus, Equation 6.7 can be written as dot product

(x, y, 1, 0, 0, 0,−xx′,−yx′,−x′)h = 0. (6.9)

The same procedure for Equation 6.6 yields

(0, 0, 0, x, y, 1,−xy′,−yy′,−y′) h = 0. (6.10)

As H is a transformation of points in homogeneous coordinates there are multiple equivalent
solutions only differing by a scale factor. Therefore, once the scale is fixed, h can be described
by 8 degrees of freedom. This can be done by fixing the last value of the transformation
matrix h33 = 1, resulting in a inhomogeneous system of linear equations that can be solved
with standard techniques such as Gaussian elimination. Alternatively, one may impose the
constraint ||h|| = 11. We will assume the latter approach in the following.

As 8 linear equations are needed to solve such a linear system and each point correspon-
dence yields two equations, four point correspondences are sufficient to solve this system for a
projective homography. The coefficient matrix A is built from these equations as

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1 −x′1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1 −y′1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2 −x′2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2 −y′2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3 −x′3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3 −y′3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4 −x′4

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4 −y′4


h = 0 (6.11)

where x1, y1 ... x4, y4 denote the image coordinates of the four point correspondences. Note
that, no three points of these correspondences must be collinear otherwise this linear system
has no valid solution.

The homography h can be obtained by solving the linear system with Singular Value De-
composition (SVD). As the solution is the eigenvector with the smallest eigenvalue – itself
part of a orthonormal basis – the constraint ||h|| = 1 is intrinsically satisfied by this particular
method and also the trivial solution h = 0 is prevented. Moreover, this approach can be further
extended to exploit more than 4 point correspondences yielding more than 8 equations. The
SVD then solves the resulting overdetermined linear system in least-square manner. Once h is
known, H is obtained by reshaping the 1×9 vector h into a 3×3 matrix.

The estimation of the homography by solving Ah = 0 effectively minimizes the Algebraic

1This has the advantage that solutions with h33 = 0 are possible. See Hartley and Zisserman (2003, p. 91).
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Error. The drawback is (1) that the Algebraic Error does not have a geometric meaning and (2)
it is also not invariant under certain transformations. For instance, the Algebraic Error of two
solutions derived from point sets that only differ by a global rotation and translation will be
different (Zhang 1997). Consequently, other error functions with real geometric meaning such
as Reprojection Error, Transfer Error, Symmetric Transfer Error and Sampson Error can be
used for a more accurate estimation of the homography (Hartley and Zisserman 2003, pp. 93-
104) but this requires non-linear optimization. In this case the outcome of the Direct Linear
Transform may be used as initialization, the homography is then subsequently optimized with
more expensive iterative optimization techniques.

While the term homography usually denotes projective transformations only, the DLT algo-
rithm can be easily adapted to solve for affine transformations as well. This requires only three
point correspondences and simplifies the equations – eventually leading to a faster computa-
tion. As an advantageous side effect, in this case the Algebraic Error minimized by the DLT
algorithm equals the geometric error (Hartley and Zisserman 2003, p. 96).

6.2.2 Normalization

Hartley and Zisserman (2003, pp. 107-110) further state that for numerical stability of the
Direct Linear Transform it is mandatory that the point coordinates are normalized before the
homography is estimated. Otherwise the entries in A are of different orders of magnitudes –
e.g., due to the products in column 7 and 8 in Equation 6.11 – and the solution is numerically
unstable. To address this issue Hartley and Zisserman strongly recommend to pre-process the
point coordinates (xi, yi), (x′i, y′i) and normalize them such that the points are centered at 0
and the points have an average distance to their center of

√
2:

x = 1
N

N∑
i=1

xi , y = 1
N

N∑
i=1

yi , dmean = 1
N

N∑
i=1

√
(xi − x)2 + (yi − y)2 (6.12)

The normalized points are then given as x̃ =
(
x̃
ỹ

)
=
(
x− x
y − y

) √
2

dmean
. This normalization is

simply a shift followed by scaling and can be written as matrix N:

N =


√

2
dmean

0 0
0

√
2

dmean
0

0 0 1


1 0 −x

0 1 −y
0 0 1

 =


√

2
dmean

0 −
√

2
dmean

x

0
√

2
dmean

−
√

2
dmean

y

0 0 1

 (6.13)

This procedure is done for the points x as well as the points x′ such that the points in the
two images are normalized independently, each with a different shift and scaling factor. The
homography is then computed from point correspondences with normalized coordinates. The
resulting homography describes the mapping between the points of the two images both in their
own canonical coordinate system. To apply the obtained homography matrix to unnormalized
image coordinates it must be denormalized subsequently. The steps are as follows:
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1. Normalize all points xi, x′i, to x̃i, x̃′i, obtain N, N′.

2. Compute homography H̃ from normalized points by applying the Direct Linear Transform.

3. Denormalize homography H̃ to H with H = N′−1H̃N.

6.2.3 Limitations

The DLT algorithm allows to estimate H from point correspondences assuming that all of
the chosen point correspondences are correct. In practice, these correspondences are often
determined automatically and many or even the majority of them are incorrect. Consequently,
robust estimators are required to correctly estimate a homography in the presence of a high
number of false correspondences.

The breakdown point describes the minimum percentage of bad data points that may com-
pletely spoil the result of an estimator. For example, in case of Least-Mean-Squares a single
outlier may lead to an arbitrarily wrong estimation, thus its breakdown point is 0%. Least-
Median-Of-Squares requires the majority of the data samples to be consistent with a possible
model, resulting in a breakdown point of 50%. In the following we describe the ransac frame-
work for robust estimators that has a much lower breakdown point. Its ability to handle outliers
depends on the model and on the particular variant. In practice it is mostly only limited by the
ability to verify a model as it requires a certain number of supporting data points to declare a
model as valid.

6.3 Conventional RANSAC

Random Sample and Consensus (ransac) (Fischler and Bolles 1981) is a general framework
for robust estimation of arbitrary models from noisy data. The underlying assumption is that
among all data samples there are samples that are consistent with a possible model – termed
inliers – and other samples that are not – termed outliers. Neither the actual model nor inliers
and outliers are known in advance – most of the time not even their ratio. The objective of
ransac is therefore to find the particular model that is consistent with the most samples.
This implies that a robust estimation is needed that is capable of handling inliers and outliers
appropriately. To achieve this, ransac requires (1) an estimator for the particular model type,
(2) an appropriate error function and (3) a threshold on the error that determines if a certain
sample is consistent with the current model or not.

In the following the term samples denotes the measurements – in our case these are point
correspondences given by visual word correspondences and their locations. A sample set consists
ofm samples, i.e., m point correspondences. A random selection of sample sets therefore implies
that multiple sample sets are drawn and each sample set in turn is determined by drawing m
point correspondences at random from the set of all point correspondences.

102
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The core of ransac is surprisingly simple and can be summarized by the following steps:

1. Hypothesize: A model hypothesis is estimated from randomly drawn sample sets. The
cardinality of each sample set is minimal with respect to the model. For instance, when
estimating affine transformations a single sample set consist of 3, in case of projective
transformation of 4 randomly drawn points. These are the minimum number of points
needed for an unambiguous estimation. Thus, a single sample set is sufficient to hypothe-
size a potential model. This procedure maximizes the chance that the sample set contains
inliers only and is uncontaminated.

2. Verify: The hypothesis, i.e., the estimated model is verified by testing it against all
samples. Samples that agree with the model are termed inliers, others outliers. In its
simplest form the number of inliers is used as score indicating the quality of the model.

3. Repeat: This procedure is repeated and terminated either after a fixed number of itera-
tions or once the likelihood of finding a better model becomes low. ransac then returns
the model with the highest score. As now not only the model parameters but also the
corresponding inliers are known, the model may be refined with other techniques based
on the reduced but clean set of samples that are consistent with the model.

In the end ransac’s objective is to find those model parameters θ? that minimize the error
ρ
(
θ
)
over all samples i:

θ? = argmin
θ

∑
i

ρ
(
θ
)

(6.14)

The minimization works by repeated sampling and estimation of candidate models followed by
immediate verification. Due to its random nature this process must be repeated often. Given
the inlier ratio ε = #inliers

#inliers+#outliers , the chance of obtaining an uncontaminated sample set
of m randomly drawn points is given as εm. Therefore, the probability η of obtaining at least
one uncontaminated sample set of size m within n repetitions is given as

η = 1− (1− εm)n. (6.15)

Vice versa, the minimum number of ransac iterations n needed to ensure that at least a single
uncontaminated set of samples is drawn with a probability > η depends on the ratio of inliers
to outliers ε:

n =
⌈

log(1− η)
log(1− εm)

⌉
(6.16)

While Equation 6.16 nicely guides in determining the number of iterations, unfortunately in
practice the inlier ratio is often unknown. Besides that, one can see that with decreasing inlier
ratio and by increasing the desired confidence the required number of iterations explodes.

There are several ransac variants that address this issue. While all of these variants vary
significantly in their nature there are two common principles: (1) Faster hypothesis generation
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by better sampling: The aim is to increase the chance to draw an all-inlier sample early that
will yield a good model. The increased likelihood in turn allows earlier stopping. (2) Faster
hypotheses verification: The hypothesis is either verified on a subset or pre-tested before it is
evaluated on all samples. Faster verification allows to test more hypotheses in the same time.

Despite of the former two principles it is of significant benefit to reduce the model com-
plexity. Reducing the model complexity – e.g., constraining it from projective transformations
to affine transformation – directly means a reduction of the sample cardinality m needed for
an unambiguous estimation of a model. In the subsequent Section 6.5 we discuss our ransac
variant based on 1-point correspondences (i.e., m = 1), which reduces the model complexity
by several order of magnitudes. Given the inlier ratio ε, the probability of drawing an all inlier
sample increases from ε4 (projective transformation) or ε3 (for an affine transformation) to
plain ε.

6.4 Related Work

ransac has gained wide-spread popularity mostly because of its robustness to noisy data and
is used in numerous applications. We would like to point out that ransac and other robust
estimators such as Least-Median-of-Squares (Rousseeuw 1984) or minpran (Stewart 1995) are
closely related. In the following we focus on variants within the ransac framework as it is
widely used in the context of homography estimation and highlight important works. Each of
these variants addresses different shortcomings of a naive ransac implementation.

The choice of the cost function has significant impact on the robust estimator, thus vari-
ous were investigated: Fischler and Bolles (1981) essentially used a binary “top-hat” scoring
function: inliers induce no costs and outliers a constant penalty. Torr and Zisserman (2000)
proposed the m-sac estimator using a truncated error function that measures how good the
data actually fits the model and penalizes outliers by a constant term. They extend this scheme
towards mlesac using a maximum likelihood estimate as error function, assuming Gaussian
noise on the point correspondences. Lebeda et al. (2012) proposed the use of the truncated
quadratic error, as it is more robust to the choice of the decision threshold than m-sac at little
computational costs.

Further improvements have been achieved by guided sampling instead of uniform sampling
of the point correspondences: prosac (Chum and Matas 2005) speeds the estimation up by
taking the individual quality of feature correspondences into account - increasing the chance to
find good hypotheses early. napsac (Myatt et al. 2002) assumes that inliers tend to be spatially
close to each other and draws individual point correspondences from the same neighborhood
when sampling. Ni et al. (2009) exploit by their groupsac scheme that inlier correspondences
are often naturally grouped. As each sample consists of multiple point correspondences, drawing
the individual point correspondences from the same groups increases the chance of obtaining
an all-inlier sample. Rodehorst and Hellwich (2006) formulate the model estimation as genetic
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6.5 1P-WGC-RANSAC

algorithm (gasac) that replaces the random sampling by an evolutionary strategy.
Increased robustness and speed is obtained by exploiting additional constraints: Márquez-

Neila et al. (2008) check the spatial consistency of each hypothesis by determining the relative
order of points. Sattler et al. (2009) discard point correspondences in advance that have in-
sufficient support from other correspondences in their neighborhood. This scheme, termed
scramsac, results in fewer correspondences, which in turn increases speed and also tends to
increase the inlier ratio as well.

ransac has been further accelerated by randomizing not only the hypothesis generation but
also the verification (Chum and Matas (2002), Capel (2005), Chum and Matas (2008a)). By
employing preemptive tests on small randomly chosen subsets from the whole set of samples,
poor hypotheses can be directly discarded. Only promising hypotheses are evaluated on the
whole set of samples. Nistér (2003) developed a preemptive ransac scheme suited for real-time
applications due its constant time-budget. Preemptive ransac selects the best hypothesis from
a fixed number of samples and thus depends on a minimum inlier ratio to succeed.

Chum et al. (2003) proposed lo-ransac that performs a local optimization step as soon as it
finds promising hypothesis. The local optimization aims to find an accurate model immediately
once a promising hypothesis is found, eventually leading to shorter run times. Lebeda et al.
(2012) extensively discuss this approach and further address several flaws of lo-ransac leading
to lower computational costs in their lo-ransac+ scheme.

Rabin and Delon (2010) address the problem that ransac commonly only selects the single
best hypothesis and modify it to deal with multiple objects (mac-ransac).

A comprehensive overview of several variants and implications as well as a unified view of
the ransac framework is given in Raguram et al. (2013).

6.5 1P-WGC-RANSAC

Most works on improving ransac focus on cases where a relatively high number of inliers can
be expected. In the literature often ≥ 25% inliers are assumed. However, in image retrieval
it is common practice to employ ransac as a post-retrieval verification step. Here, its input
are visual word correspondences between the query image and a retrieved candidate image
from an image database. The visual vocabulary may be large; as a result a relatively small
number of correspondences between these images can be established – unlike when the full
feature descriptors are used for matching. However, due to memory constraints, the descriptors
themselves are usually never stored in image databases but represented by the corresponding
visual words. As the re-ranking is by definition a post-retrieval step, a major concern is speed.
Thus, re-computing descriptors is intractable and the re-ranking must operate on visual word
correspondences. Unfortunately, even with these correspondences there are often many mis-
matches on background clutter – e.g. on foliage – such that in practice there are often very few
inliers. For this challenging setting the traditional approach that draws four points to estimate
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6.5 1P-WGC-RANSAC

a homography often fails or yields degenerated results.
In this section we describe a ransac variant based on the approach of Philbin et al. (2007)

that uses single feature correspondences to estimate a transformation between two images. The
associated scale and dominant orientation of the two local features of each correspondence is
used to estimate a similarity transform, i.e., translation, rotation and uniform scaling.

6.5.1 Model generation

Given two local features x and x′, their locations (xx,xy), (x′x,x′y), their scales σ(x), σ(x′) and
their dominant orientations ori(x), ori(x′) – as determined by the feature detector – we can
derive the transformation in closed form from their correspondence x ↔ x′. The scaling f is
determined by the scale ratio between the interest points f = σ(x′)

σ(x) and the rotation angle is
given as θ = angle_diff (ori(xi), ori(x′i)) (See Appendix B for details).

The hypothesized transformation is then given by a chain of transformations: The point x
is shifted to point x′ as denoted by the translation T(x′−x), followed by scaling and rotation
of θ degrees around x′. The latter two induce themselves a chain of transformations given by
the translation T(−x′) to the origin followed by rotation R(θ) and scaling S(f) and finally the
back-shifting T(x′). Here, T, R and S denote the corresponding 3×3 transformation matrices.
Putting it together, we can compute the hypothesized transformation H in closed form as

H = T(x′)S(f)R(θ)T(−x′)T(x′−x) =

 a b −axx − bxy + x′x
−b a bxx − axy + x′y
0 0 1

 (6.17)

where for brevity a and b are substitutes with a = f cos(θ), b = f sin(θ).
The major benefit is that a single feature correspondence is sufficient to generate a hypoth-

esis. Evaluating all these correspondences makes this procedure deterministic, fast and robust
to small inlier ratios. To summarize, a ransac scheme based on 1-point-correspondences has
the following advantages over the traditional 3- or 4-point ransac:

• The underlying model is simple. We chose to estimate translation, scaling and rotation.
Such similarity transform has 4 degrees of freedom and only 3 if it is constrained to trans-
lation and scaling only. A single local feature correspondence carries enough information
to derive a hypothesis for such a model. Due to their simplicity estimated models are less
likely to be degenerated - unlike projectivities that have to be carefully checked for sanity.

• The estimation of each hypothesis can be done analytically. Given two local features the
translation as well as scaling and rotation can be directly derived in closed form from the
localization information determined by the feature detector. In conventional ransac one
has to estimate H by solving a linear system as described in Section 6.2.1, which is much
more costly.

• Each hypothesis is intrinsically either correct or incorrect as it is derived from a single
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feature correspondence which itself is either correct or incorrect. In contrast, when sam-
pling more than a single point correspondence one has to deal with those cases where only
some of the randomly drawn correspondences are correct as well as the case where points
are collinear. The former is solved by repeating the ransac steps multiple times, lead-
ing to an explosion of the number of iterations (see Equation 6.16). The latter requires
additional checks before H is estimated.

• While ransac randomly samples correspondences and repeats this up to hundreds of
thousands times, a 1-point-ransac only uses each correspondence for the estimation of
a transformation once. Thus, the randomized sampling is turned into a deterministic
procedure. The computational complexity for the estimation itself therefore linearly de-
pends on the number of feature matches. Unrelated images that usually have a few (false)
correspondences only, will therefore require very little computational effort.

• If desired, the homography estimation can be employed in a cascade-like manner: The
1-point ransac may be used to quickly filter the total set of samples and discard most
outliers. In a subsequent step a fully perspective transformation with 8 degrees-of-freedom
may then be estimated by a traditional method such as Least-Mean-Squares or Least-
Median-of-Squares from the set of inliers only.

6.5.2 Error Function

Various error functions have been proposed for the robust estimation of homographies. We
chose the Symmetric Transfer Error as it is symmetric and can be efficiently computed without
requiring iterative refinement of H as other error functions do (Hartley and Zisserman 2003).
The Transfer Error measures the Euclidean distance between a measured point x′i and the
projection of its counterpart xi by the estimated homography given as Hxi. The Symmetric
Transfer Error is defined as the Transfer Error induced both by H and its back-projection H−1

(see Figure 6.2 for an illustration). Here, xi and x′i denote the points of the i-th the corre-
spondence x′ ↔

i
x. Thus, the (squared) Symmetric Transfer Error for a single correspondence

x′ ↔
i
x is given as

εi(H)2 = d(Hxi,x′i)
2 + d(H−1x′i,xi)

2 (6.18)

where d(a,b) denotes the Euclidean distance between the projections of the homogeneous points
a and b to the image plane. To avoid the costly computation of the square root usually the
squared error is computed only.

The symmetric transfer error is superior to the one-sided transfer error as it assumes that
measurement errors of points occur in both images. The error minimized is symmetric, thus
swapping the image pair does not change its output. It can also be shown that the minimiza-
tion of the symmetric transfer error is invariant under similarity transforms in contrast to the
algebraic error (Hartley and Zisserman 2003, p. 106). However, it implies that H−1 is known.
Therefore, a conventional ransac not only has to estimate H but also needs to determine the
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Image 1

x
x�d

d�H

H−1x�

Hxestimated as

estimated as
H−1

Image 2

Figure 6.2: The Symmetric Transfer Error of a single point correspondence: It measures the
distances d and d′ (red) between the real points x and x′ (black dots) and the corresponding
projections (blue dots). Adapted from Hartley and Zisserman (2003).

inverse H−1, which at least doubles its computational costs1. In contrast the 1-point-based
ransac can easily derive the inverse analytically when estimating H. Thus, this particular
advantage has double impact.

6.5.3 Scoring

ransac searches for the homography H∗ that minimizes the following objective function over
all data samples i:

H? = argmin
H

∑
i

ρi
(
εi(H)

)
(6.19)

Thus, the error εi(H) is not evaluated directly but by the indirection of a scoring function. Much
work has been dedicated to the investigation of different scoring functions. The particular choice
of the error function may have a significant impact on the overall performance, as it is critical
for a robust estimation. We use the truncated quadratic cost function (Torr and Zisserman
1998, Lebeda et al. 2012) that has the same robustness as the MLESAC error function (Torr
and Zisserman 2000) for large distances but uses a quadratic error for small distances:

ρ(d) =
{

d2 if d2 < T 2

T 2 otherwise (6.20)

The threshold T denotes the maximum distance inliers are allowed to deviate from the ideal
projected point. If a correspondence has an error ρ(d) < T it is treated as inlier otherwise as
outlier. Thus, the truncated quadratic error (Equation 6.20) scores inliers depending on their
distance to the ideal point while outliers get a constant penalty. The constant penalty is impor-
tant for robust estimation. If outliers would get a penalty depending linearly or even quadratic
on the distance to the ideal point, the error and thus the overall estimation may be significantly
influenced by outliers, which is the contra-position of the original goal of ransac. Consequently,
the truncation of the error function is an intrinsic requirement of ransac. For comparison,
Least-Mean-Squares (LMS) minimizes the same objective function as in Equation 6.19 but with

1The computation of the inverse is more expensive than estimating H−1 from reversed correspondences.
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Figure 6.3: Various cost functions used for scoring the quality of estimated homographies. For
illustration; in practice the error/distance d cannot be negative.

the non-truncated quadratic error ρ(d) = d2.
In Figure 6.3 the truncated quadratic error function is compared to the traditional inlier

counting scheme (inverse top-hat function) denoted as top-hat score and a MLESAC-like score
function. Intuitively it is clear that the truncated quadratic function will avoid ties, that is
different homographies with the same score (=number of inliers in this case) as determined
by the top-hat function. In contrast to the MLESAC-error function the truncated quadratic
has the further advantage that it can be directly computed from the quadratic error without
taking the square root. The particular choice of the threshold T within the error function
in Equation 6.20 is obviously critical for the performance of the application. Throughout the
following experiments we use the truncated quadratic score function widened by a factor of 1.5
as suggested by Lebeda et al. (2012). The slightly relaxed decision allows a robust estimation
of homographies across a wide range of settings.

However, without further care the threshold depends on the image resolution. To address
this, we adopt the normalization technique as described in Section 6.2.2 for our 1P-wgc-ransac
variant - even though numerical stability is not of concern. The representation of points in nor-
malized image coordinates allows to choose the threshold independent of the image resolution.

6.5.4 Weak Geometric Consistency Constraint

It has been shown in various works that a weak constraint based on the geometric consistency
of local feature matches improves retrieval (Jégou et al. 2009a). The intuition behind this
constraint assumes that if an object undergoes rotation and scaling, it is likely that the local
features captured on this object do change accordingly in orientation and scale. Such desirable
behavior obviously depends on the capabilities and the quality of the feature detector, which
must be both rotation- and scale-invariant in this case. In practice, the weak geometric consis-
tency (wgc) assumption allows to discard false correspondences by checking if the local feature
orientations and scale changes are consistent across images.

In this spirit, we introduce a wgc-constraint in our ransac scheme, which (1) imme-

109



6.5 1P-WGC-RANSAC

diately discards false local feature correspondences and (2) speeds up the error function as
non-consistent feature matches are directly treated as outliers. Only correspondences from fea-
tures with orientations and scales that are consistent with the estimated transformation may
be scored as inliers. We found that this constraint has little impact on the quality of the re-
ranking, it is neither significantly better nor worse. However, it acts as filtering that can be
employed before the inliers are determined. If a feature correspondence violates the WGC con-
straint it is directly treated as outlier. Thus, the error function within the ransac framework
is potentially speeded up as there is no need to compute the perspective mapping for these false
correspondences.

It is important to note that such constraint based on the weak-geometric consistency is
possible for all ransac variants. However, to derive the orientation and scale change for an
arbitrary homography, a costly homography decomposition into scaling and rotation matrices is
required. In contrast, our 1-point ransac directly obtains the rotation and scale factor derived
from the feature correspondence being used to estimate H.

WGC Constraint: A local feature correspondence x ↔ x′ is only consistent accord-
ing to the wgc constraint if their induced rotation θx↔x′ = angle_diff (ori(x), ori(x′)) and
their induced scaling fx↔x′ = σ(x′)

σ(x) is consistent with the estimated scaling fH and rota-
tion θH of the currently evaluated hypothesis H. That is, the correspondence is consistent iff
|angle_diff (θx↔x′ , θH)| < τangle and sminfH < fx↔x′ < smaxfH. If a correspondence violates
this wgc-constraint, it is directly discarded as the participating local features do not reflect
the estimated scaling or rotation of the image content.

In other words, the contribution to the overall error of the homography by a particular
correspondence is only evaluated if the wgc-constraint holds. Otherwise we set the error of the
correspondence directly to ρ(∞). The wgc-constraint accelerates ransac especially in case of
many false correspondences and small inlier ratios - a desirable behavior for re-ranking search
results on large datasets.

Throughout this work we used τangle = 30◦, smin = 0.5 and smax = 2.0 as these values gave
empirically good results. Obviously, tighter thresholds potentially discard more false correspon-
dences at the risk of losing inliers. We observed that the re-ranking with the proposed wgc-
constrained ransac takes about 30% less time compared to a non-wgc-constrained ransac
(see the Experiments in Section 6.6) as the re-ranking may be stopped earlier. Most important,
it is also significantly more robust for small vocabularies as the WGC-constraint discards false
visual word correspondences immediately.

6.5.5 Impact of Local Optimization

In our ransac scheme each feature correspondence yields a hypothesis for the transformation
between images. The 10 best hypotheses with the lowest error are kept for further refinement. If
a hypothesis has more than 15 inliers these are refined by a local optimization (LO) step: Given
the set of almost outlier-free point correspondences determined by our 1p-wgc-ransac, a fully
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Query image RANSAC with LO step RANSAC without LO step

Query image RANSAC with LO step RANSAC without LO step

Figure 6.4: Comparison of estimated homographies with and without projective re-estimation.
The left image shows the query image. The top 10 homography hypotheses are shown as colored
rectangle (best hypothesis is green) determined by the bounding box of all inliers. The middle
columns shows these hypotheses on the candidate image after projective re-estimation. The right
column shows these hypotheses without projective re-estimation.

projective transformation between images is estimated via Least-Median-of-Squares (Rousseeuw
1984) and a subsequent non-linear minimization of the projection error via the Levenberg-
Marquardt method. The final homography is that transformation that has the smallest error
among all the old and refined transformations.

While ransac is in general considered as slow and costly this is not entirely true. In fact
we found that most of the time was spent for projective re-estimation. Moreover, while this
refinement improves the visual quality of the estimated transformation it has little effect on the
induced ranking. To illustrate this, Figure 6.4 shows the top 10 hypotheses without projective
re-estimation. The similarity of these hypotheses indicates that for re-ranking the re-estimation
maybe omitted. Thus, we propose a new variant 1p-wgc-ransac without subsequent LO
step that is much faster than a variant estimating a fully projective transformation between
images. We argue that the projective re-estimation is necessary for applications such as 3-D
reconstruction or panorama stitching.

However, the re-ranking of image search results does not benefit from a precise image regis-
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tration. One reason is that the search itself is usually constrained to discrete visual words that
are most likely less tolerant on viewpoint changes than the descriptors themselves. In addi-
tion, a precisely estimated homography can hardly be used to discard additional false positives.
Thus, for our 1p-wgc-ransac variant we can omit the subsequent LO step. The re-ranking
without projective refinement is much faster and without loss of quality in terms of mAP.

6.6 Evaluation

We compare our approach to that of Philbin et al. (2007) and Arandjelović and Zisserman
(2012b) on the Oxford5K dataset (Philbin et al. 2007) following the respective test protocol:
For each query, the top 1000 retrieval results are re-ranked with an early stop if 20 images in a
row could not be verified successfully. Images are scored by the sum of the IDF weights of all
inliers. Verified images (≥ 4 inliers) are placed above unverified images in the result list.

All search results were obtained with either SIFT or RootSIFT features, visual words from
an approximate k-means vocabulary and tf-idf weighting. The results for our approach are
shown in Table 6.1. Here, both “SP” and “ransac” denote that the subsequent spatial re-
ranking of the former initial result list was performed. One can see that our implementation,
using SIFT descriptors computed from Difference-of-Gaussian interest points1, yields slightly
higher (1M visual words) or even significantly higher scores (100K words) than that of Philbin
et al. (2007) where SIFT descriptors computed from Hessian-affine interest points were used.
Quite surprisingly, the performance after re-ranking with the smaller vocabulary of 100K words
is close to the one with 1M words. This demonstrates that our proposed scheme is able to deal
with a small vocabulary, its less discriminative correspondences and small inlier ratios.

When re-ranking the entire result list (see Table 6.1, bottom two sections) one can see a
slight improvement over the re-ranking with early stop criterion. The highest score among the
re-ranking results is a mAP of 0.753 obtained with a vocabulary of 100K visual words and wgc-
constrained re-ranking. This stresses the importance of the wgc constraint and also shows that
there are still a few relevant images located at the very end of the original result list.

We obtain similar and consistent results for our re-ranking approach on the FlickrLogos-32
dataset (see Table 6.2). Here, the retrieval by bag-of-words (with tf-idf and burstiness weighting,
denoted as “tf-idf-sqrt”) computed from RootSIFT features serves as baseline. This setup is
described more extensively in Section 7.2.5 in the next chapter. Similar to the Oxford dataset
we perform the re-ranking on the 200 top-ranked images with an early stop if 20 images in a
row could not be verified successfully. The results demonstrate that the geometric re-ranking
further improves the result as well. As for the Oxford dataset, the projective re-estimation does
not improve the performance but does take more time. It further refines the homography but

1 Note that for this comparison we trained the vocabulary on the Oxford dataset itself and used a magnifier
of 9 for the region described by the SIFT descriptor (see Section 2.1.1). The relatively high scores – especially
those of the large vocabularies – are definitely caused by overfitting the visual vocabulary on the Oxford dataset,
which also holds for the results of Philbin et al. (2007) and Arandjelović and Zisserman (2012b).
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Method Voc. mAP Time #img

SI
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

Philbin et al. (2007), bow 100K 0.535 − −
Philbin et al. (2007), bow+SP 100K 0.597 − −
bow, tf-idf, SIFT 100K 0.571 − −
1p-ransac, +lo 100K 0.678 133s 47,442
1p-ransac, 100K 0.680 50s 47,442
1p-wgc-ransac, +lo 100K 0.692 115s 30,885
1p-wgc-ransac, 100K 0.691 38s 30,885
Philbin et al. (2007), bow 1M 0.618 − −
Philbin et al. (2007), bow+SP 1M 0.645 − −
Arandjelović and Zisserman (2012b) SIFT, bow 1M 0.636 − −
Arandjelović and Zisserman (2012b) SIFT, bow+SP 1M 0.672 − −
bow, tf-idf, SIFT 1M 0.647 − −
1p-ransac, +lo 1M 0.712 47s 8,753
1p-ransac, 1M 0.711 11s 8,753
1p-wgc-ransac, +lo 1M 0.704 45s 5,501
1p-wgc-ransac, 1M 0.703 9s 5,501

R
oo

tS
IF

T



Arandjelović and Zisserman (2012b) RootSIFT, bow 1M 0.683 − −
Arandjelović and Zisserman (2012b) RootSIFT, bow+SP 1M 0.720 − −
bow, tf-idf, RootSIFT 1M 0.675 − −
1p-ransac, +lo 1M 0.729 52s 9,520
1p-ransac, 1M 0.729 11s 9,520
1p-wgc-ransac, +lo 1M 0.723 49s 5,813
1p-wgc-ransac F 1M 0.723 10s 5,813
1p-ransac, no early stop: top 1000 1M 0.741 33s 54,537

 N
o
ea
rly

st
op

pi
ng1p-wgc-ransac, no early stop: top 1000 1M 0.747 33s 54,537

1p-ransac, no early stop: all images 1M 0.742 90s 201,934
1p-wgc-ransac, no early stop: all images N 1M 0.749 90s 201,934
bow, tf-idf, RootSIFT 100K 0.610 − −
1p-ransac, no early stop: top 1000 100K 0.721 54s 55,000
1p-wgc-ransac, no early stop: top 1000 100K 0.736 52s 55,000
1p-ransac, no early stop: all images 100K 0.733 141s 264,094
1p-wgc-ransac, no early stop: all images 100K 0.753 136s 264,094

Table 6.1: Comparison of spatial re-ranking results for the Oxford5K dataset following the
protocol of Philbin et al. (2007). The upper part shows results obtained with SIFT, the lower part
these from RootSIFT. #img. denotes the number of image re-ranked summed over all queries.

is not able to discard additional false positives. We assume that a simple geometric verification
based on 4 degrees-of-freedom is sufficient to filter out false positives. Unlike for the Oxford
dataset the wgc constraint does not improve the re-ranking yet it accelerates it by allowing
earlier stopping. Yet, when re-ranking the entire result list the wgc constraint slightly improves
the results. This underlines that re-ranking does not require to estimate fully affine/projective
homographies and due to its speed 1p-wgc-ransac is beneficial for spatial verification.

To measure the time we performed all the experiments for both datasets on the same machine
(Intel Xeon X5550, see Appendix D for details) using a single thread for execution of our C++

program. All timings in Tables 6.1 and 6.2 measure the wall time in seconds for re-ranking all
the queries of the respective dataset. Each timing was obtained as the median of the wall time
from 10 runs and captures I/O, the determination of the correspondences from pre-computed
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Method Voc. mAP Time Images re-ranked
bow, tf-idf-sqrt, RootSIFT 100K 0.448 − −
1p-ransac, +lo 100K 0.513 849s 169,273
1p-ransac 100K 0.513 295s 169,273
1p-wgc-ransac, +lo 100K 0.510 635s 129,251
1p-wgc-ransac 100K 0.510 257s 129,251
bow, tf-idf-sqrt, RootSIFT 1M 0.545 − −
1p-ransac, +lo 1M 0.565 458s 89,579
1p-ransac 1M 0.565 110s 89,579
1p-wgc-ransac, +lo 1M 0.568 416s 55,226
1p-wgc-ransac 1M 0.568 90s 55,226
1p-ransac, no early stop: all images 1M 0.566 1264s 3,137,060
1p-wgc-ransac, no early stop: all images 1M 0.580 1258s 3,137,060

Table 6.2: Evaluation: Spatial re-ranking results for the 960 queries of the FlickrLogos-32 dataset.
All retrieval and re-ranking results were obtained with RootSIFT descriptors.

visual words and ransac itself. In summary the 1-point-ransac without local optimization
is between about 2.5 and 4.5 times faster than with the costly projective refinement. The
wgc constraint further accelerates the re-ranking: it is slightly faster and allows to stop the
re-ranking earlier once no more images can be verified. In practice, this yields another speed-up
by a factor of 1.05 to 1.3.

The throughput of our 1p-wgc-ransac is high: For instance see the re-ranking run F

in Table 6.1: Here, 5,813 images were re-ranked with a throughput of ≈ 606 images/s or a
time consumption of about 1.6 ms per image. Note that we heavily optimized our application
towards stream-like re-ranking. Thus re-ranking twice the number of images is much cheaper
than performing the re-ranking for twice the number of queries. Furthermore, image with low
rank in the original result list returned by bag-of-words tend to share fewer visual words with
the query image. Thus, compared to the re-ranking mentioned above, re-ranking the full result
set for every query does take longer but the average time per query actually decreases. For
example, run N in Table 6.1 takes 9 times longer than the formerly mentioned run but re-ranks
34 times more images with a throughput of 2, 243 images/s or a time consumption of about 0.4
ms. These results clearly indicate the strength of our re-ranking approach and its suitability
for real-time applications.

We also would like to stress the fact that this ransac variant is actually much faster
than other methods not based on ransac, which were explicitly designed for fast re-ranking.
For example, Tolias and Avrithis (2011) propose a “speeded-up re-ranking” method based on
hierarchical hough voting. They report a time consumption of roughly 7.7ms per image for the
re-ranking on the Oxford dataset, almost five times higher than ours.
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6.7 Summary

In this chapter we have presented a ransac variant that estimates similarity transforms be-
tween images based on 1-point correspondences. Using a single correspondence for hypothesis
generation allows to enumerate all possible hypotheses resulting in a deterministic procedure.

First, we have shown that a projective re-estimation – after an initial estimation of a trans-
formation with four degrees of freedom – does not improve the spatial re-ranking results. While
this refinement improves the visual quality of the estimated projection, it does neither change
the ranking significantly nor discards additional false positives. Thus, for geometric re-ranking a
plain similarity transform is sufficient, which significantly accelerates the re-ranking procedure.

Second, we employed a weak geometric consistency constraint on the inliers that speeds up
the hypotheses evaluation. Feature correspondences that do not undergo the same change in
rotation and scale as the evaluated transformation are directly discarded without computing
their contribution to the actual error of the projection. As the wgc constraint can be tested
quickly the hypotheses evaluation is further accelerated.

We extensively compared our approach to existing approaches and demonstrated its state-of-
the-art performance. Especially for small vocabularies our approach significantly outperforms
that of Philbin et al. (2007) by a large margin. Moreover, our 1p-wgc-ransac is extremely
fast, making it suitable for real-time applications.
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Figure 6.5: Several examples of estimated transformations with 1p-wgc-ransac on the Oxford
dataset. The top 10 hypothesis are projected as colored rectangles into the images. The top-left
corner shows the corresponding scores. Top row: Easy cases, the top 10 hypotheses almost
converged and are hard to distinguish. 2nd to 5th row: More challenging cases. There are more
variations but still the top 10 hypotheses are in most cases quite similar. Bottom row: Failures.
The hypotheses are invalid as the underlying buildings are different yet have similar structure.
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Bundle min-Hashing

It has been observed several times that the retrieval performance of bag-of-words based methods
improves much more by reducing the number of mismatching visual words than by reducing
quantization artifacts. Popular incarnations of this insight are extremely large vocabularies of
millions of visual words, or signatures such as Hamming Embedding (Jégou et al. 2009a) to
discard false correspondences. In other words, the precision of the visual description seems
to be more important than its recall, because low recall may be recovered by doing a second
retrieval round, i.e., by query expansion.

In this chapter we present a robust feature bundling technique, previously described in
Romberg et al. (2012), Romberg and Lienhart (2013a) and Romberg and Lienhart (2013b). It
allows for approximate similarity search of sparse sets of visual words. It builds on visual words,
but does not describe each visual word individually. Instead, it aggregates spatial neighboring
visual words into feature bundles. A search technique for such bundles based on min-Hashing
allows for similarity search without requiring exact matches. Compared to individual visual
words these bundles carry more information such that fewer false positives are retrieved. This
leads to a much smaller and cleaner result set.

We summarize our contributions as follows: We discuss and evaluate our retrieval technique
based on feature bundles and extensively compare its performance to existing approaches on
three different datasets, each of them representing a specific application scenario. In addition
we demonstrate that the recall of a system targeting high precision for object retrieval can be
increased by exploiting synthetically generated images in combination with query expansion
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and database augmentation. Finally, the former techniques are combined and exploited for
scalable logo recognition in a system that significantly outperforms the current state-of-the-art.

The remainder of this chapter is organized as follows: Section 7.1 describes related work
relevant in the context of this paper. The proposed feature bundling approach is described and
evaluated extensively in Section 7.2. The method for boosting recall by generating artificial
variants of images is presented in Section 7.3. In Section 7.4 we describe our logo detection
system that exploits the former techniques, followed by the conclusions in Section 7.5.

7.1 Related Work

In this section we briefly survey the existing literature on image and object retrieval. The related
work on logo retrieval already presented in Section 5.1 also applies here. We focus on retrieval
techniques and further highlight the related work relevant in the context of min-Hashing.

Visual Words and Bundling We would like to emphasize the fact, that in contrast to our
work most existing approaches to feature bundling are indeed post-retrieval verification steps
where the internal geometry of a bundle is used to discard false correspondences after retrieval.

An early approach in this spirit by Sivic and Zisserman (2003) exploited the number of
matching neighboring features to discriminate true feature matches from random matches. Wu
et al. (2009) proposed to bundle multiple SIFT features that lie in the same MSER region into
a single description. However, this work uses individual visual words for retrieving candidate
images, the bundles are only used together with a weak geometric similarity criterion for post-
retrieval verification. Cao et al. (2010) propose to learn the most informative projections that
map the visual words from the 2-D space into feature histograms termed “spatial bag-of-words”.
Jégou et al. (2009c) present a similar approach, which is more unbiased to certain image layouts.
Here, the original feature histograms is split by random projections into multiple smaller “mini
bag-of-features”. The most similar images in an image database are determined by separate
lookups and an aggregating scoring. Zhang et al. (2009) mine descriptive visual phrases by
analyzing the local neighborhood of local features in order to obtain a more discriminative
visual description than single visual words.

Min-Hashing (mH) Min-Hashing is a locality-sensitive hashing technique for approximate
similarity search of sparse sets. Originally developed by Broder (1997) for the detection of
duplicate text documents, Chum et al. (2007) adopted it for the visual domain. Here, min-
Hashing was used for near-duplicate image detection. Later, Chum et al. (2008) extended
it further to the approximation of weighted set overlap as well as histogram intersection. In
each of these settings an image is modeled as a sparse set of visual word occurrences. As the
average number of visual words per image is much smaller than the vocabulary size for large
vocabularies, the resulting feature histograms are sparse and are converted to sets representing
whether a visual word is present or not. Min-Hashing then allows to perform a nearest-neighbor
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search among all such sparse sets within an image database. This approach is described more
detailed in Section 7.2.1.

Geometric min-Hashing (GmH) A conceptually similar approach to ours is Geometric
min-Hashing of Chum et al. (2009). However, its statistical preconditions regarding the sparsity
of feature sets are totally different to our setting. There are two major differences: (1) GmH
samples central features by min-Hash functions from the set of all features of an image. Thus,
there is no guarantee that a small object is actually captured by the visual description. (2) For
each randomly drawn central feature the local neighborhood is described by a single sketch that
incorporates the central feature as well as the min-Hashes of the neighboring features. In the
end, this makes GmH very memory efficient, but not suitable for generic image retrieval because
of low recall. Consequently, the authors use it to quickly retrieve images from a large database
in order to build initial clusters of highly similar images as in (Chum and Matas 2010). These
clusters are used as “seeds”; each member image is then used as query for a traditional image
search to find more cluster members that could not be retrieved by GmH.

Partition min-Hashing (PmH) Lee et al. (2010) introduce a scheme that partitions the
image into regular grid cells. Unlike for normal min-Hashing, the min-Hashes and sketches are
computed for each partition independently. The search proceeds by determining the sketch
collisions for each of the partitions. This procedure is conceptually similar to a sliding window
search as partitions may overlap and are processed step by step. The authors show that Partition
min-Hashing is significantly faster than standard min-Hashing and also has identical collision
probabilities for sketches as min-Hashing in the worst case, but theoretically better recall and
precision if the duplicate image region only covers a small area. However, in our experiments
we found that Partition min-Hashing is not significantly better than min-Hashing on different
datasets.

7.2 Bundle min-Hashing

We build our bundling technique on min-Hashing mainly for two reasons: (1) Feature bundles
can be naturally represented as sparse sets and (2) min-Hashing does not imply a strict ordering
of the participating local features or a hard matching criterion to find similar bundles – such as
requiring identical visual words for all participating local features. Due to image noise, view-
point and lighting changes, the individual local features, their detection, and their quantization
are rather unstable and vary across images. If a strict matching criterion like the identity of
two sets was used, a single addition or deletion of a local feature within a bundle would yield
mismatching descriptions. We therefore exploit the min-Hashing scheme for the description of
feature bundles as it allows to search for similar, yet not identical bundles.

To summarize, Bundle min-Hashing is an efficient approximate search method for images
that have similar bundles. It has higher memory requirements than pure near-duplicate search
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methods, but at the same order of magnitude as bag-of-words. Most important, its search
accuracy is close to bag-of-words, but with orders of magnitudes lower response ratio and much
higher precision.

7.2.1 Min-Hashing

Min-Hashing (mH) is a locality-sensitive hashing technique that allows for approximate simi-
larity search of sparse sets (Broder 1997). It models an image as a sparse set of visual word
occurrences. As the average number of visual words per image is much smaller than the vocab-
ulary size for large vocabularies, the resulting feature histograms are sparse and are converted
to binary histograms. These binary histograms are compactly represented by the set of visual
words of an image – describing which visual words are present at least once.

If a linear search over all sets in a database was feasible, the overlap ovr(I1, I2) of two such
sets I1 and I2 – also known as Jaccard similarity – could be used to determine the similarity of
those sets. The overlap is given as the intersection of these sets over the union of those:

ovr(I1, I2) = |I1 ∩ I2|
|I1 ∪ I2|

. (7.1)

For instance, a linear search could search for sets in a database and rank them according to
the overlap. However, in most cases a linear search over a database is infeasible. Fortunately,
the min-Hashing scheme provides an efficient way to index these sets based on this overlap
criterion. Given the set I = {v1, ..., vl} of visual words of an image I, the min-Hash function is
defined as

mh(I) = argmin
vi∈I

h(vi) (7.2)

where h is a hash function that maps each visual word vi deterministically to a random value
from a uniform distribution. Thus, the min-Hash mh itself is a visual word, namely that word
that yields the minimum hash value – hence the name min-Hash. The probability that a min-
Hash functionmh will have the same value for two different sets I1 and I2 is equal to the overlap
of the two sets I1 and I2:

P (mh(I1) = mh(I2)) = ovr(I1, I2) = |I1 ∩ I2|
|I1 ∪ I2|

(7.3)

Note that an individual min-Hash value not only represents a randomly drawn word that is
part of the set, but each min-Hash also implicitly “describes” the words that are not present
and would have generated a smaller hash - because otherwise it would have been a different
min-Hash value.

The approximate search for similar sets is then performed by finding sets that share min-
Hashes. As single min-Hashes yield true matches as well as many false positives or random
collisions, multiple min-Hashes are grouped into k-tuples, called sketches. This aggregation
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Figure 7.1: Collision probabilities in min-Hashing with sketches of size 2 (left) and 3 (right).

increases precision drastically at the cost of recall. To improve recall, this process is repeated
n times. Thus, independently drawn min-Hashes are grouped into n tuples of length k. The
probability of two different sets having at least one of these n sketches in common is then given
by

P (collision) = 1− (1− ovr(I1, I2)k)n. (7.4)

This probability function depends on the set overlap and is shown for two exemplary sketch
sizes k and varying number of sketches n in Figure 7.1. In practice the overlap between non-
near-duplicate images that still show the same object is small. In fact, the average overlap for
a large number of partial near-duplicate images was reported to be 0.019 in Lee et al. (2010).
This clearly shows that for applications which target the retrieval of partial-near-duplicates
e.g., visually similar objects rather than (pure) near-duplicates, the most important part of
that probability function is the behavior close to 0.

The indexing of sets and the approximate search are performed as follows: To index sets
their corresponding sketches are inserted into hash tables by hashing the sketches itself into
hash keys. This turns the exact search for a part of the set (the sketch) into a simple lookup. To
retrieve the sets similar to a query set, one computes the corresponding sketches and searches
for the sets in the database that have one or more sketches in common with the query. A
lookup of each query sketch determines whether this sketch is present in the hash table, which
we denote as "collision" in the following.

The lookups can be done efficiently in constant time as hash table offer access in amortized
O(1). If there is a query sketch of size k that collides with a sketch in the hash table, then
the similarity of their originating sets is guaranteed to be > 0, because at least k of the min-
Hash functions agreed. To avoid collisions resulting from unrelated i.e., independent min-Hash
functions, the sketches are put into separate hash tables: the m-th sketch is inserted into the
m-th hash table (m ∈ {1, ..., n}).

7.2.2 Bundle min-Hashing

The idea of our bundling technique is simple: We describe the neighborhoods around local
features by bundles, which aggregate the visual word labels of the corresponding visual features.
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Figure 7.2: Bundle min-Hashing: The neighborhood around a local feature, the central feature
(red), is described by a feature bundle. Features that are too far away or on scales too different
from that of the central feature are ignored during the bundling (yellow). The features included in
such a bundle (blue) are represented as set of visual word occurrences and indexed by min-Hashing
(see Section 7.2.2).

The bundling starts by selecting central features, i.e., all features in an image with a sufficient
number of local features in their neighborhood. Analogous to the feature histogram of a full
image, the small neighborhood surrounding each central feature represents a “micro-bag-of-
words”. Such a bag-of-words vector will be extremely sparse because only a fraction of all
features in the image is present in that particular neighborhood. Since the features of a bundle
are spatially close to each other, they are likely to describe the same object or region of interest.

More specifically, given a feature xi its corresponding feature bundle b(xi) is defined as the
set of spatially close features for a given feature xi:

b(xi) = {xj |xj ∈ N(xi)} (7.5)

where N(xi) is the neighborhood of feature xi, which is described at the end of this section. We
further assume that for all features xi in an image the descriptor vectors have been quantized
to the corresponding visual words vi = q(xi).

The bundle b(xi) is then represented by the corresponding set of visual words of all features
included in that bundle:

Wi(b(xi)) = { q(xj) | xj ∈ b(xi)} (7.6)

The resulting set Wi is then subsequently indexed by regular min-Hashing and represents a
“micro”-bag-of-words as it only contains very few items.

In extensive experiments we observed the following: First, sketches of size 2 perform much
better than larger sketches. Second, we found that the performance increases drastically if the
first sketch element is not determined by min-Hashing but rather set to the visual word of the
central feature itself. That is, for each bundle the m-th sketch is given as 2-tuple

(vi, mhm(Wi(b(xi))) ) (7.7)

where vi denotes the visual word label of the central feature and mhm denotes the min-Hash
returned by the m-th min-Hash function from the set of all visual words Wi present in bundle
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Figure 7.3: Collision probabilities given the set overlap between bundles. Left: Collision prob-
ability of a single min-Hash as used by Bundle min-Hashing. Right: Collision probability of
sketches of size 2.

b(xi). The full process is illustrated in Figure 7.2.
The major advantage can be seen when comparing the collision probabilities of a single min-

Hash and sketches of size 2 as shown in Figure 7.3. With our approach (using the central feature
plus a single min-Hash) two bundles that have an overlap of only 0.2 of their corresponding
visual word sets, have a 59% chance that one of 4 sketches collide (see Figure 7.3, left plot). This
means, while there are multiple feature bundles that need to be described, each with several
sketches, only very few sketches are needed per bundle to achieve a high probability to retrieve
similar sets. This keeps the memory requirements for the indexing low. Further redundancy
is added as images contain multiple bundles that may overlap. If some bundles do not match
(collide) across images, there is the chance that other bundles in the same images collide.

Bundling Strategy Just like Geometric min-Hashing (Chum et al. 2009) or napsac (Myatt
et al. 2002) we assume that local features, which are spatially close to each other likely describe
the same object. Therefore, our bundling strategy N(xi) is as follows: Given a central feature
we bundle it with its direct spatial neighbors. We require that at least two other features are
present in its neighborhood and that these must be on a similar scale (see Figure 7.4). This is in
line with the observation that true feature correspondences are often at the same scale (Jégou
et al. 2009a).

Thus, each feature that is closer to a given central feature xi than a given cut-off radius rmax
is included in the respective bundle b(xi): The radius rmax is chosen relative to the scale or
patch size of the central feature si. The minimum and maximum scales smin and smax control
the scale band considered for determining the neighbors relative to the scale of the central
feature. Figure 7.2 illustrated the bundling criterion for smin = 0.5, smax = 2.0 and rmax = 1.0
(red circle, in this case equivalent to the radius of the central feature).

This bundling strategy has the following implications: First, the number of bundles is
bounded by the number of local features within an image. Moreover, the bundling process
ignores features that have no spatial neighbors within their neighborhood. This effectively
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Figure 7.4: A bundle aggregates those features within radius σr and within the scale range
[σsmin, σsmax] as given by the location and scale σ of the central feature.

decreases the number of bundles below the number of features in an image. In turn fewer
sketches need to be stored in the hash tables resulting in smaller memory consumption.

Bundling Implementation The features within a certain distance to a central feature can
be efficiently determined by orthogonal range search techniques, which allow sub-linear search.
In our application we used a 3-dimensional kd-tree to index local features by their location and
scale. For bundling we determine all features that are within a “cylinder” given by the radius
and the scale interval (see Figure 7.4).

Min-Hash Functions A min-Hash function is a mapping of a visual word v ∈ N to a hash
value h(v) ∈ R. For statistical correctness, the min-Hashes and thus the hash functions must be
independent from each other. However, computing the min-Hashes may be expensive, especially
as min-Hashing requires several hundreds to thousands of sketches and therefore min-Hashes.
In early publications (Chum et al. 2007; 2008) the min-Hash values were re-used: individual
min-Hashes were part of multiple different sketches. Addressing the efficiency, Chum and Matas
(2012) recently proposed a technique of computing min-Hashes in advance and assigning them
to all images that contain the respective min-Hash word at the same time.

One possibility to compute min-Hashes is by generating multiple random permutations on
the range of all visual words and storing them in a lookup table. Given such permutation
the hash for each visual word in a set could be obtained by a simple lookup. However, for
large vocabularies and thousands of hash functions this lookup table is large. For instance, the
permutation table for a vocabulary of 1M visual words and 1000 hash functions would require
approx. 3.7 GB of memory – rendering this method rather undesirable for min-Hashing. While
our particular Bundle min-Hashing variant only requires up to 4 hash function the lookup tables
are still larger than CPU caches and lookups get slow.

Therefore, we use randomizing hash functions instead of precomputed permutation tables
to compute the hashes (see Appendix C for details). These hash functions return a uniformly
drawn random value deterministically determined by the given visual word and a seed that is
kept fixed. This implementation is both substantially more memory efficient and faster than
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lookup tables. There is no guarantee that all visual words will produce different values but
this approximation seems “good enough” while being much faster than a lookup table. We use
this memory-friendly way to compute min-Hashes for all methods that use min-Hashing despite
that for Bundle min-Hashing the permutation table could be pre-computed as only a very small
number of permutations is needed.

Adjustable Search The representation of bundles – and also of min-Hash based methods
in general – by multiple independent sketches has an advantageous side-effect: it facilitates a
search tunable from high precision to high recall that can be adjusted at query time without
post-retrieval steps or redundant indexing. Once bundles have been indexed with n sketches per
bundle, the strictness of the search may be changed by varying the number of sketches at query
time from 1...n. As the m-th sketch was inserted into the m-th hash table, querying sketches
from 1...m will yield only bundles were the corresponding sketches and hash functions in tables
1...m agreed at least once. As the sketch collision probability is proportional to the set overlap,
bundles that have a high overlap with the query will be retrieved earlier than bundles with
smaller overlap. Thus, by varying the number of query sketches one can adjust the strictness
of the search. This can be seen from Table 7.1: with an increasing number of sketches used for
querying the mean precision mP decreases and the corresponding mean recall mR increases.

7.2.3 Ranking and Filtering

Once the images which share similar bundles with the query are determined, they may be
ranked by their similarity to the query. One possibility is to compute a similarity based on
the number of matching bundles between these images. However, it is difficult to devise a
meaningful similarity measure since the number of bundles found in images is usually very
small. In preliminary experiments we evaluated several ways to compute a similarity score
between query and retrieved images, based on the number of sketch collisions or number of
matching bundles, either as absolute or normalized values in various ways. It turns out that
the simple absolute count of sketch collisions was always on par with more complex similarity
measures between images and their bundles.

However, a ranking based on the cosine similarity between the full bag-of-words histograms
of the query image and the retrieved images performs significantly better than a ranking based
on the sketch collision counts, as it is difficult to derive a good measure for image similarity
based on a few collisions only. Thus, in our experiments we rank all retrieval results by the
cosine similarity between the bag-of-words histograms describing the full images.

In other words, the retrieval by feature bundles is effectively a filtering step: The bundles are
used to quickly fetch a small set of images that are very likely relevant. These images are then
ranked by the cosine similarity between bag-of-words histograms obtained with a vocabulary of
1M words (see Section 7.2.5). We also address the problem of visual word burstiness by taking
the square root of each tf-idf histogram entry as proposed by Jégou et al. (2009b). This is
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crucial for logo recognition as logos often contain text and text-like elements, which are known
to be prone to yield repeated visual words termed “visual words bursts”.

7.2.4 Influence of Parameters

For techniques based on min-Hashing there are several parameters that influence the collision
probability of sketches and therefore the performance of our bundling approach. In the following
we describe common trade-offs.

Visual Vocabulary The quantization of high-dimensional descriptors to discrete visual words
is a lossy quantization. The vocabulary size usually depends on the application, i.e., there is
no simple rule of thumb to choose the number of visual words. For near-duplicate retrieval but
also for the retrieval of similar objects it has been shown that large vocabularies are beneficial
despite the larger quantization error. This suggests that for retrieval it is more important to
suppress false correspondences than obtaining a large number of tentative correspondences.

Sketch Size The number of min-Hashes that are aggregated into k-tuples directly control
the collision probability. With a larger sketch size the collision probability of random collisions
decreases drastically but also leads to lower recall. In practice mostly sketches of size 2 and 3
are used (Chum et al. 2008; 2009, Lee et al. 2010) as larger sizes have impracticable low recall
and a single min-Hash just represents a single visual word. For Bundle min-Hashing we use
sketches of size 2 but set the first component to the value of the central visual words.

Number of Sketches In contrast to the sketch size, increasing the number of sketches in-
creases the collision probability. In other works, a few dozen up to a few thousand sketches are
used depending on the representation. In our work, we compute multiple bundles for multiple
features in the image and therefore we want to minimize the memory needed to store them. We
observed that 2 sketches are sufficient for reasonable performance and 3 or 4 sketches slightly
improve it further.

Locality The features that are eventually bundled into a single description are sampled from
a region which size depends on the central feature. Thus, the region size implicitly influences
the number of features and therefore the "noise ratio" when min-Hashes are computed for that
region. Intuitively, features close to each other (e.g., with overlap) are correlated, while features
lying far from each other may be treated as approximately independent. In the same manner
the used interest point detector also has a major influence. Detectors that fire on blob-like
regions usually yield more distributed interest points than a corner detector that fires on every
peak of corner-like structures.
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7.2.5 Experiments

In the following we describe the setup of our experiments and their results. As we focus
on the retrieval of small objects we test and optimize our approach on the FlickrLogos-32
dataset (Romberg et al. 2011). Then we further demonstrate its performance on the Uk-
Bench dataset (Nistér and Stewénius 2006) consisting of near-duplicate images and the Oxford
dataset (Philbin et al. 2007) targeting object retrieval.

Visual Features

For our experiments we used SIFT descriptors computed from interest points found by the
Difference-of-Gaussian (DoG) detector. For the evaluation on FlickrLogos dataset, as well as
for our logo recognition system (Section 7.4) we used the improved RootSIFT descriptors. On
the Oxford and UkBench dataset we used the traditional SIFT descriptors – unless mentioned
otherwise – in order to make our results comparable to those in the literature.

We used an interest point detector that yields circular feature patches. If the bundling
scheme was used with features from affine covariant regions, the elliptic regions determine the
features to be included into a bundle.

The bundling parameters we show are tuned for a particular detector (DoG) and therefore for
its detection characteristics. It is likely that bundling parameters need to be specifically adapted
to the employed interest point detector as each detector varies in the number of detections,
the distribution of interest points (e.g., blob-like, corner-like) and the behavior of the non-
maximum-suppression. Therefore one has to adjust the bundling parameter to the sparsity of
the neighborhoods depending on the interest point detector.

For the visual vocabulary creation we used approximate k-means (see Section 2.2.3). Vocab-
ularies and IDF weights were computed from the training and validation set of FlickrLogos-32.

Evaluation

Bag-of-words First we compare the performance of various approaches based purely on the
cosine similarity between bag-of-words on the FlickrLogos-32 dataset. Thus, we evaluate the
retrieval performance of a plain bag-of-words search with varying vocabularies and varying
patch sizes of the descriptors. We are especially interested in the impact of extremely large
visual vocabularies on the performance. Thus, we vary the vocabularies from 10,000 (10K) to
4,000,000 (4M) words.

The results are shown in Figure 7.5. In a previous work (Romberg et al. 2012) we have
already shown that IDF-weighting is always beneficial in the bag-of-words framework, even for
large vocabularies greater than 1 million words. Thus tf-idf weighting was used in all cases.
As found in prior works, large vocabularies show significantly better performance. The peak is
consistently at 500K/1M words.

The patch size that is described by a SIFT descriptor linearly depends on the scale and a
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Figure 7.5: Retrieval score (mAP) for several bag-of-words variants on the FlickrLogos-32
dataset.

magnification factor m. We further test how this magnifier changes the performance. Larger
patches carry more discriminative information but are less repeatable and also unable to describe
very small objects. This might be the reason why the standard magnification factor of 3
performs best. In the following we perform all experiments with features computed with this
specific magnification factor.

In addition we compare the performance of bag-of-words based on standard SIFT with that
of the relatively new RootSIFT variant (Arandjelović and Zisserman 2012b). Clearly, the bag-
of-words based on RootSIFT consistently outperforms the SIFT-based bag-of-words. Finally,
we compare the tf-idf weighing to the burstiness measure proposed in Jégou et al. (2009b)
where the square root is taken for each element of the tf-idf weighted histogram (denoted as
“tf-idf-sqrt”in Figure 7.5). This burstiness measure further improves the retrieval performance
as it down-weights repeating and thus less informative visual words (“bursts”).

For further experiments on FlickrLogos-32 we therefore use visual words computed from
RootSIFT descriptors and re-rank the results retrieved by feature bundles by the cosine sim-
ilarity between bag-of-words histograms with square-rooted tf-idf weights. In order to make
our results comparable to others in literature we use regular SIFT descriptors for evaluating on
UkBench and Oxford and omit the burstiness measure (plain tf-idf instead). In all cases the
best-performing vocabulary of 1M words is used for re-ranking, disregarding which vocabulary
was used when building the feature bundles.

Feature Bundles We evaluate the performance of our bundling strategy with regards to
mAP and response ratio and compare it to a retrieval with bag-of-words and tf-idf weighting.

In order to find the best bundle configurations we have performed extensive evaluations on
the parameters of the bundle configuration. Due to limited space, we cannot show a detailed
evaluation for all parameters. Instead, we report several well-performing bundle configurations
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(with respect to mAP) in Table 7.1. For further experiments we use the bundle configuration
with smin = 0.5, smax = 2.0 and rmax = 1.0 as it has the best mAP and moreover a smaller
memory footprint than other configurations.

Similar to bag-of-words the bundles profit from large vocabularies, but the peak is consis-
tently across configurations at 200K-500K words. Most important, the bundles roughly have
equal performance as bag-of-words, but have a two orders of magnitude lower response ratio
(RR) as shown in Table 7.1 and also in Figure 7.6.

Note that we re-rank the result lists determined by bundle min-Hashing by the cosine
similarity as given by the bag-of-words model. As the bundling is by definition only able to
find correspondences between images that share visual words, the result set of the retrieval by
feature bundles is a true subset of the result set obtained with bag-of-words retrieval. This
clearly demonstrates the discriminative power of feature bundles for efficient filtering before
more expensive post-retrieval steps are applied to the result set.
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7.2 Bundle min-Hashing

Min-Hash, Partition min-Hash, Geometric min-Hashing We extensively compare our
approach to min-Hashing (mH) as well as Partition min-Hash (PmH) and Geometric min-
Hashing (GmH) on three different datasets. While these approaches were originally specifically
meant for (partial) near-duplicate image search, this comparison shows how well these methods
are suited for object retrieval or logo retrieval when used with typical parameters. For all
experiments the sketch size was set to 2; n denotes the number of sketches. In case of Partition
min-Hash 4 × 4 and 10 × 10 denote 16 and 100 overlapping partitions whereas np denotes
the number of sketches per partition. The overlap was set 50% in all runs. For Geometric
min-Hashing we follow the setup of Chum et al. (2009).

As already mentioned, we re-rank each preliminary result set of all approaches by the cosine
similarity (see Section 7.2.3). We would like to point out that min-Hash, Partition min-Hash
as well as Geometric min-Hashing significantly benefit from this. Bundle min-Hashing benefits
as well but the effect is less pronounced.

In Figure 7.6 the results for the previously selected Bundle min-Hashing configuration is
compared to the former approaches and bag-of-words. For retrieval of near-duplicate images
there is little difference between most approaches. However, for object search on Oxford and on
FlickrLogos-32 the differences are pronounced. Bag-of-words has high scores in every settings at
the cost of a huge response ratio i.e., a single query still retrieves 80%+ of the whole database.
On the other hand, min-Hashing, Partition min-Hash and Geometric min-Hashing have a de-
sirable low response ratio but also low recall which in turn leads to low mAP. In contrast to
the former min-Hash-based approaches (with high precision and low recall) and bag-of-words
(with low precision and high recall) Bundle min-Hashing seems as an intermediate approach
combining the best of both worlds: It has low response ratio, high precision and also high mAP.

Speed The computational performance of Bundle min-Hashing of indexing or searching de-
pends linearly on the number of sketches and the number of local features in that image. The
overall application speed seems mostly I/O and memory bound. In fact, choosing the right
hash table implementation has a major impact on the overall performance.

To determine the performance of Bundle min-Hashing in terms of speed, we measured the
wall time (single-threaded) of our C++ application on a machine with Intel Xeon X5550 CPU
(see Appendix D for details). The timings include all operations such as bundling, min-Hashing
and insertion into hash tables. This explicitly includes all I/O operations but excludes feature
computation and quantization. For instance, with the configuration with smin = 0.5, smax = 2.0
and rmax = 1.0 and 4 sketches, indexing of the FlickrLogos-32 dataset (4280 images) takes about
96.8s (≈23ms per image) while processing the 960 queries takes about 13.4s (≈14ms per image).

Scalability We further test how the retrieval is affected once 100,000 distractor images –
randomly chosen Flickr images – are added to the database (denoted as “+100K” in Figure 7.6).
For this scenario we used the more memory-conservative scheme with 2 sketches per bundle
that performs almost as good as 4 sketches per bundle but requires only half the hash tables.
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7.2 Bundle min-Hashing

10K 20K 50K 100K 200K 500K 1M 2M 3M 4M

Vocabulary size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
A

P

FlickrLogos-32: Retrieval Performance (mAP)

10K 20K 50K 100K 200K 500K 1M 2M 3M 4M

Vocabulary size

0.0

0.2

0.4

0.6

0.8

1.0

re
s
p

o
n

s
e
 r

a
ti

o
 (

R
R

)

FlickrLogos-32: Response Ratio (RR)

10K 20K 50K 100K 200K 500K 1M 2M 3M 4M

Vocabulary size

0.5

1.0

1.5

2.0

2.5

3.0

m
A

P

UkBench: Retrieval Performance (Avg.Top4 score)

10K 20K 50K 100K 200K 500K 1M 2M 3M 4M

Vocabulary size

0.0

0.2

0.4

0.6

0.8

1.0

re
s
p

o
n

s
e
 r

a
ti

o
 (

R
R

)

UkBench: Response Ratio (RR)

10K 20K 50K 100K 200K 500K 1M 2M 3M 4M

Vocabulary size

0.0

0.1

0.2

0.3

0.4

0.5

m
A

P

Oxford Buildings: Retrieval Performance (mAP)

10K 20K 50K 100K 200K 500K 1M 2M 3M 4M

Vocabulary size

0.0

0.2

0.4

0.6

0.8

1.0

re
s
p

o
n

s
e
 r

a
ti

o
 (

R
R

)

Oxford Buildings: Response Ratio (RR)

Figure 7.6: From top to bottom: Retrieval results on FlickrLogos-32, UkBench and the Oxford
buildings dataset. The left column shows the mAP, the right columns shows the corresponding
response ratio of each approach. The performance of Bundle min-Hashing (BmH) is on par
with bag-of-words (BoW) and outperforms min-Hashing (mH), Partition min-Hashing (PmH)
and Geometric min-Hashing (GmH). Its response ratio is an order of magnitude lower than bag-
of-words and comparable to the former min-Hash-based methods.
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7.2 Bundle min-Hashing

Figure 7.7: Impact of varying the vocabulary sizes when quantizing central and secondary
features with different visual vocabularies.

Once distractor images are added to the database and its size increases, one can see a drop
in performance consistently for of all retrieval methods. This behavior is well-known and has
been shown several times in the literature before (Philbin et al. 2007, Jégou et al. 2009a). As
in previous works we also observe a consistent drop of performance for both bag-of-words and
Bundle min-Hashing across all datasets. However, Bundle min-Hashing seems less affected,
especially because Bundle min-Hashing with two sketches per bundle already outperforms or is
on par with bag-of-words. This suggests – in line with Zhang and Chen (2009) – that higher-
order descriptions that combine multiple features into their representation, and as such Bundle
min-Hashing as well, are less affected than first-order descriptions like bag-of-words once the
database grows. The visual representation seems more distinctive and thus deteriorates slower.

Varying Vocabularies There are popular object recognition schemes that model objects
by a root template and several part templates at twice the resolution of the root template.
Inspired by these, we test whether we can improve the bundle description in a similar manner.
In that sense, we treat our central features as root features and the secondary features within
the neighborhoods as part features. Instead of varying the image resolution, we use different
vocabulary sizes to encode the visual appearance of central and secondary features.

We evaluate the retrieval performance with our best-performing bundle configuration when
using varying vocabularies from 10K to 2M visual words to quantize central and secondary
features. The results on the FlickrLogos-32 dataset are shown in Figure 7.7. One can see a
slight improvement when combining vocabularies of 200,000 and 500,000 visual words instead
of a single vocabulary. However, there is no clear preference for a larger vocabulary for the
central vs. the secondary features and the improvements are rather small. As the quantization
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7.3 Warping

Figure 7.8: Warping: Applying affine transformations to images yields new images with syn-
thetically introduced variation. Images taken from the FlickrLogos-32 dataset.

with different vocabularies may have a significant computational burden and memory overhead,
we do not use this scheme in the following but rather stick to a single vocabulary.

7.3 Warping

While current local features are by design scale invariant and also somewhat robust to changes
in lighting and image noise, it is well-known that local features such as SIFT are particularly
susceptible to changes in perspective. With increasing vocabulary size this effect gets more
severe: descriptors computed from image patches that are actually identical but seen from a
different perspective are quantized to different – and therefore unrelated – visual words.

There exist several partial solutions to this problem. The most popular is query expansion
(QE) where the top-ranked retrieved images are exploited to augment the original query. The
augmented query is then re-issued in order to retrieve images that have not been found in the
first round. Consequently, query expansion fails – and causes the results to be worse than
without – if the top-retrieved images are false positives. This may happen if the query is
actually challenging or only few true positives are contained in the database.

We propose a different method to overcome this problem, especially suited for small objects
where it is crucial to find the few true matching visual words. It is a purely data-driven
approach that synthesizes new images from existing images by applying transformations to the
image itself, a process also termed “warping” (see Figure 7.8 for examples).

We explore three different ways to exploit image warping:

1. Synthetic Query Expansion (SynQE): Multiple versions of the query image may be synthe-
sized simulating the query as it may be seen under different conditions and perspectives.
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Figure 7.9: Top: Synthetic query expansion. Bottom: Synthetic database augmentation.

Each image is then treated as an individual query; their corresponding result lists are
then merged into a single list. This method is illustrated in the upper half of Figure 7.9.

2. Synthetic Database Augmentation (SynAUG): The database is augmented by adding new
generated images synthesized from each original database image. This is especially use-
ful if it is desired that a query containing certain predefined objects – such as logos –
should find the true results with high probability from a limited set of manually managed
reference images. This is method is illustrated in the lower half of Figure 7.9.

3. Synthetic Query Expansion + Synthetic Database Augmentation SynQE + SynAUG:
The combination of (1) and (2). This can be seen as counterpart to ASIFT (Morel and
Yu 2009) working with discrete visual words and an inverted index or another database
instead of comparing raw descriptors between two images.

We choose the following simple transformations to synthesize new images: Sx(α), Sy(α),
Sx(α)R(45◦)Sx(α) and Sx(α)R(−45◦)Sx(α). Sx(α) denotes the matrix for scaling by factor α in
x-direction, Sy(α) analog in y-direction and R(45◦) denotes the matrix for rotation by 45◦. The
last two transformations are opposed shearings along x direction. Note that the two shearings
along y-direction are equivalent. The inverse transformations of the former four are added as
well, resulting in a total of eight transformations. Examples of the first four transformations
are shown in Figure 7.8.

Intuitively, the synthesizing of images creates variations from a single image. The more
variation is captured within the index the more likely the retrieval of an arbitrary query will
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7.3 Warping

Figure 7.10: Visualization of the image patches described by visual words computed from warped
images back-projected into the original image. The original image patch is shown as black circle.
Left: α = 0.7. Right: α−1 ≈ 1.43. Images to scale.

succeed. To illustrate the effect of such warping on an individual local feature the used trans-
formations are visualized in Figure 7.10. The original patch described by a local feature is
shown as black circle. Once images are warped with a scaling factor of α < 1 the image is
effectively down-scaled such that the actual described image region is larger than the original
patch. Similar, if the images are up-scaled (α > 1) the actual described image patch is smaller
than the region described by the original local feature. The elliptic shape depends on the trans-
formation, and while obtained differently it reminds one of affine covariant regions as obtained
by Hessian-affine or Harris-affine feature detectors (Mikolajczyk and Schmid 2004). In fact, our
technique effectively simulates a global affine transformation applied to the whole image while
affine covariant detectors estimate an affine transformation per local feature.

In practice, the following issue needs to be addressed: We observed artifacts when computing
local features from warped images. The feature detector often fires close to or directly on the
boundaries of transformed images. Even while detections on edge-like structures are suppressed
during feature detection, due to image noise these still occur on those boundaries. Moreover,
placing the transformed images within an empty background (black) implicitly yields local
contrast extrema between the image corners and that background. Examples of the resulting
artifacts are visualized in Figure 7.11.

To the best of our knowledge there is no clear way to avoid this issue directly during interest
point detection. Thus, we discard features closer to the boundary of the transformed image
than half of their radius in a separate step. Obviously, images that have been stretched in x-
or y-direction only (with R(0◦)) do not need post-processing.

For our synthetic query expansion and database augmentation scheme it is important and
for the combination of both it is mandatory to discard such detections. The corresponding
visual words do not carry useful information as they mostly describe black background. As a
consequence, these lead to spurious false visual word correspondences between unrelated images,
which in turn deteriorate the retrieval. Once these detections are discarded the retrieval with
features from warped images behaves, as one would expect.

For SynQE multiple queries are issued to the index yielding multiple separate result lists.
These are merged subsequently: images contained in multiple result lists get the maximum
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7.3 Warping

Figure 7.11: Left: Local feature patches (orange circles) with their associated orientation (green
line) as extracted from warped images. The detector often fires on the boundaries and introduces
artifacts (marked red). Right: Features retained after eliminating those too close to the boundary
(green contour).
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Figure 7.12: FlickrLogos-32: Impact of synthetic query expansion and database augmentation
on BoW retrieval performance.

of each individual cosine similarity score as proposed by Arandjelović and Zisserman (2012a).
Similar for SynAUG: once a synthetic image is found it votes with its score for the original
image and the maximum of all votes is taken as final similarity measure.

We test these techniques with a bag-of-words retrieval as described in Section 7.2.5 (Root-
SIFT, tf-idf-sqrt) and vocabularies of 1M, 2M and 3M words. The scaling parameter α is
varied from 0.95 to 0.5 to determine which group of transformations works best for simulating
the perspective change in practice.

The corresponding results on the FlickrLogos dataset are shown in Figure 7.12. Both SynQE
and SynAUG improve the retrieval performance with a maximum at α = 0.7/0.8. The combina-
tion of both, i.e., SynQE+SynAUG slightly increases the performance further. An even larger
visual vocabulary of 2M visual words increases the performance significantly over its baseline
(11.6%) but somewhat surprisingly only slightly above those of the vocabulary with 1M words.
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Figure 7.13: Oxford5K: Impact of synthetic query expansion and database augmentation on
bag-of-word retrieval performance.

The results on the Oxford5K dataset are shown in Figure 7.13. Here, SynQE and SynAUG
also improve retrieval performance though less pronounced. Consistently SynAUG performs
slightly better than SynQE. Again, the performance of the vocabularies with 2M and 3M words
increases significantly over their baselines (bag-of-words without SynQE/SynAUG). While these
do not perform better than the 1M vocabularies the most interesting behavior is that the
performance of all vocabularies and methods seems to be “saturated” at around a mAP of
0.73. In other words, the actual choice of the vocabulary size has reduced impact. Thus, larger
vocabularies that scale better with larger image databases can be used with little loss of mAP.

To summarize, the results on both datasets underline that discrete visual descriptions benefit
from synthetic image generation - especially for small object retrieval such as logos. In the
following we refer to the transformation group with α = 0.7 when referring to SynQE and
SynAUG.

7.4 Logo Recognition

As our feature bundling approach targets object retrieval, demonstrating its performance by
a logo recognition system seems natural. For that, we assemble the building blocks we have
discussed before (visual features, vocabularies, feature bundling, geometric re-ranking, synthetic
query expansion and database augmentation) and present our final logo recognition system.

Indexing The logo classes that our system should be able to detect are described by a set
of images showing these logos in various poses. We coin this set reference set and use the
images within the training and validation set of the FlickrLogos-32 dataset for this purpose.
Feature bundles are computed for each image in the reference set and inserted into the hash
table associated with the information to which class a reference image belongs. Optionally, we
can employ synthetic database augmentation: Artificially generated transformed versions of the
original images are used to augment the reference set.
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7.4 Logo Recognition

Figure 7.14: Logo detection by searching for similar bundles via Bundle min-Hashing. Left: Lo-
cal features (blue circles) of an image showing the Shell logo. Middle: The bundles where Bundle
min-Hashing (without SynQE, SynAUG or spatial re-ranking) found similar bundles associated
with a certain class (color-coded) in the index. A few false positives are found in the background.
Right: The heat map shows the bundle hits visualized with a multi-scale multi-bandwidth Kernel
Density Estimation incorporating both the scale of the bundles as well as the respective number
of collisions. Due to the latter the false positive detections have negligible impact.

Testing An image is being tested for the presence of any of the logo classes by computing
feature bundles and performing lookups in the hash table to determine the reference images
that share the same bundles. The retrieved list of images is then re-ranked as described in
Section 7.2.3. Optionally, synthetic query expansion may be applied: Multiple transformed
versions of the original query image are used to query the database multiple times or the
database as described in Section 7.3. Afterwards the fast spatial re-ranking with 1p-wgc-
ransac without projective refinement (see Section 6.5) is applied to the retrieved list. Finally
an image is classified by a k-nn classifier: A logo of the class c is considered to be present if the
majority of the top k retrieved images is of class c. In our experiments we empirically chose
k = 5.

Experimental Setup We follow the evaluation protocol as a given in Romberg et al. (2011).
That is, training and validation set including non-logo images are indexed by the respective
method. The whole test set including logo and logo-free images (3960 images in total) is then
used to compute the classification scores.

Results Table 7.2 shows the obtained results for various approaches. The first system we
compare to, is our own approach (Romberg et al. 2011) that performs logo detection by detecting
spatial configurations of local feature triples as described in Chapter 5. Revaud et al. (2012)
use a bag-of-words-based approach coupled with learned weights that down-weight visual words
that appear across different classes.

It can be seen that a bag-of-words-based search as described in Section 7.2.5 followed by
5-nn majority classification already outperforms these two approaches significantly. In fact, our
approach using bag-of-words to retrieve the logos and performing a majority vote among the
top 5 retrieved images already outperforms the best results reported in the literature so far.

One can see, that Bundle min-Hashing also significantly outperforms the former two systems
out of the box. The difference between a ranking based on sketch collision counts (“collision
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Method Precision Recall
Romberg et al. (Romberg et al. 2011) 0.98 0.61
Revaud et al. (Revaud et al. 2012) ≥ 0.98 0.73
bag-of-words, 100K 0.988 0.674
bag-of-words, 1M 0.991 0.784
bag-of-words, 1M, SP 0.996 0.813
bag-of-words, 1M, SP+SynQE 0.994 0.826
bag-of-words, 1M, SP+SynAUG 0.996 0.825
BmH, 200K, collision count 0.688 0.411
BmH, 200K, CosSim 0.987 0.791
BmH, 1M, collision count 0.888 0.627
BmH, 1M, CosSim 0.991 0.803
BmH, 1M, CosSim+SP 0.996 0.818
BmH, 1M, SP only 0.996 0.809
BmH, 1M, CosSim+SP+SynQE 0.999 0.832
BmH, 1M, CosSim+SP+SynAUG 0.996 0.829

Table 7.2: FlickrLogos-32: Logo recognition results.

count) and a ranking based on cosine similarity ("CosSim") makes clear that the result lists
obtained by BmH needs to be re-ranked to ensure that the top-most images are indeed the
most similar ones. We compared Bundle min-Hashing with a vocabulary 200K words (having
the highest mAP, see Table 7.1) to Bundle min-Hashing with a larger vocabulary of 1M words
(slightly lower mAP). In case of our logo recognition system, we are only interest in the top 5
results. The vocabulary of 1M words slightly improves the results but moreover it also reduces
the complexity of the system as it eliminates the need for two different vocabularies for bundling
and re-ranking. In addition, the response ratio of this system is 100 times smaller (response
ratio = 0.0096) than that of bag-of-words.

It can be further seen that both synthetic query expansion (SynQE) and synthetic database
augmentation (SynAUG) consistently improve the classification performance for both bag-of-
words and Bundle min-Hashing. Compared to the retrieval setting (see Section 7.3), the effect
is less pronounced as we only measure its impact on the 5 top-ranked results.

Finally, we demonstrate how Bundle min-Hashing accurately localizes the logos in Fig-
ure 7.14 and 7.16. For completeness, the true positives per class for our best system are further
shown in Figure 7.15.

Failure cases While Bundle min-Hashing works remarkably well for a wide range of object
types and object sizes, it is by definition dependent on the performance of local features. Thus,
the chance of capturing the visual appearance of an object by aggregating multiple features
decreases with decreasing number of detected features on the object. This is especially true
for low-contrast or low-structured objects (e.g., the apple or pepsi logo) were only a few local
features are detected at best.

A further issue in practice is the non-distinctiveness of local features on image content such
as text characters. Text usually generates many non-informative visual words yielding spurious
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Figure 7.15: True positives per class for the best performing system from Table 7.2 (BmH, 1M,
CosSim+SP+SynQE).

matches and random collisions in the hash table. An example for this issue can be seen in the
right-most image of Figure 7.16. While Bundle min-Hashing is much less affected than e.g., a
regular bag-of-words voting scheme it is still not completely unimpaired giving raise to future
improvements.

Index pruning When analyzing the key-value distributions of the hash tables in our index
we found that there were only ≈ 1.04 values stored per sketch on average. In other words,
most of the sketches were generated only once. As the hash table lookup assumes that similar
images share similar bundles and therefore sketches, we can further assume that if a sketch was
generated only once from all images in the training+validation set, it will likely not have an
impact when unknown images are tested for the presence of logos. Consequently, we remove
those entries from our index resulting in significantly less items stored within the index. Our
results show a striking advantageous effect of the highly distinctive image search with Bundle
min-Hashing and a subsequent re-ranking with the cosine similarity (Section 7.2.3).

The mAP after removing those keys from the hash table that have less than m bundles
is shown in Table 7.3. The results are rather surprising: the performance slightly improves
even though the hash table contains approximately 30 (m = 2) or 140 times (m = 3) fewer
entries. Note that the number of remaining keys is even smaller than the visual vocabulary
itself. Therefore, the Bundle min-Hashing seems to serve as feature (pre-)selection technique;
the features are then selected by their occurrence frequency. Bundle min-Hashing thus acts as
a highly effective pre-filter for retrieval. In the end, this scheme is a lossy yet highly effective
index compression.

To give an idea of the implications we measured the rough actual memory consumption
of our application before and after index pruning shown in columns “memory” in Table 7.3.
With 4 sketches the memory usage decrease from 1.5 Gigabytes to a fourth (m = 2) down to
about 15% with m = 3. Note that we measured the total memory consumption containing all
allocated memory1 of our application and the hash tables may not have been perfectly shrunk

1The memory consumption was measured as “Private Bytes” in Sysinternals Process Explorer on the same
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es original index pruning

m=2 m=3
mAP keys memory mAP keys memory mAP keys memory

4 0.554 20,311,553 1,544 MB 0.558 749,303 390 MB 0.559 147,382 239 MB
3 0.545 15,234,817 1,198 MB 0.549 561,755 380 MB 0.549 110,143 213 MB
2 0.527 10,156,293 852 MB 0.529 374,437 254 MB 0.528 73,609 190 MB
1 0.478 5,078,358 484 MB 0.475 187,228 155 MB 0.471 36,577 135 MB

Table 7.3: Impact of index pruning: mAP on FlickrLogos for BmH configurations as shown in
Table 7.1 when sketches occurring less than m times are removed from hash tables. The total
number of sketches stored in hash tables is denotes as keys.

to fit the actual number of keys after the pruning. The large savings in memory consumptions
are interesting for further investigations for scalability on large databases and may also enable
to run Bundle min-Hashing efficiently on devices with little memory, such as mobile phones.

7.5 Summary

In this chapter we described a robust feature bundling technique for image-, object- and logo
retrieval. We extensively evaluated our approach on three different datasets. In addition, we
presented a method that uses synthetically generated variations of images to increase recall, by
either querying the index multiple times or by indexing multiple variants of each image.

Finally, we demonstrate a relatively simple but highly effective logo recognition system
assembled from the presented components. It uses Bundle min-Hashing as underlying retrieval
technique to find highly distinctive local feature bundles in a database of reference images.
Synthetic query expansion and synthetic database augmentation are used to further increase
recall. The 1p-wgc-ransac subsequently re-ranks the retrieval results with respect to their
spatial consistency to the query. Finally, the top-ranked images from the set of reference images
are used to decide whether the query image actually shows a logo.

The bundle representation is highly effective; future work may adopt it for new applications.
Potential improvements could be the incorporation of the internal geometry, such as the relative
spatial layout of the local features. This may be either encoded into the bundle description
itself or used within post-retrieval verification step.

That in mind, we would like to point out that Bundle-min-Hashing shares close resemblance
with napsac due to the sampling of features from local neighborhoods. One may imagine that
these two methods are fused into a holistic geometry-aware retrieval system. The promising
results of the index pruning procedure give raise for future optimizations for scalability.

machine as described in Appendix D. One MB denotes 10242 bytes (a Mebibyte).
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7.5 Summary

Figure 7.16: Examples of detections by Bundle min-Hashing for various logos. The heat map
shows the bundle hits visualized with a multi-scale multi-bandwidth Kernel Density Estimation
incorporating both the scale of the bundles as well as the respective number of collisions.
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8
Conclusion

8.1 Summary

In this thesis, we presented several retrieval techniques for content-based image retrieval. We
used publicly available real-world databases for the evaluation of various scenarios.

First, we have presented a framework for deriving a multimodal representation for images.
Here, the information from different modalities or domains are fused into a single description.
This description is obtained by learning and inferring a hierarchy of topic distributions in a fully
unsupervised manner by the multimodal multilayer pLSA. As a result, the unified representa-
tion not only represents multiple modalities but also acts as a data reduction method projecting
the high-dimensional input vectors into a latent topic space with much fewer dimensions. We
thoroughly evaluated the multimodal multilayer pLSA on two large-scale databases by combin-
ing visual features and tags as well as two visual features. We showed that the combination of
multiple modalities in our mm-pLSA model consistently improves the results significantly over
the baseline that uses just a single modality.

As the global optimization of the model due to multiple modalities and layers is computa-
tionally demanding, we proposed a fast initialization strategy. This strategy can be easily and
quickly computed in a step-wise forward procedure computing one model at a time. Moreover,
the fast initialization strategy alone already outperforms the baseline significantly and may
serve as a technique of its own. Once the mm-pLSA is initialized by the outcome of the fast
initialization strategy, the model can be further optimized across all modalities and layers.

147



8.1 Summary

The second part of this thesis focused on object retrieval – in particular on the retrieval and
detection of small objects such as logos.

We presented a logo detection system based on retrieval techniques. By choosing retrieval
techniques over learning-based classifiers we are able to scale the systems up to potentially
thousands of classes. Our approach is based on a highly distinctive signature capturing both
the visual appearance and the spatial layout of local features. Logos are modeled by distinctive
configurations of local features. We described a method to automatically derive feature pairs
and feature triples from training images. In addition, we proposed a specialized data structure
– the cascaded index – for efficient testing whether the spatial configurations of an unknown
image do belong to a logo of one of the known brands. This approach was evaluated on a newly
created dataset of logos and tuned for high precision showing that the representation of local
feature triples is highly distinctive. Therefore, this scheme effectively prevents false positives.

The second major contribution is a novel ransac variant. Based on 1-point correspondences
it estimates similarity transformations between images and further employs a weak geometric
constraint for a more robust yet faster re-ranking. We also show that a costly refinement of the
estimated transformation is not necessary for re-ranking and can be omitted. We demonstrate
that this approach outperforms non-wgc-constrained variants – especially when used with small
vocabularies as the wgc-constraint effectively discards false correspondences. To summarize,
our 1p-wgc-ransac variant has state-of-the art performance while being extremely fast.

In addition, we present a novel feature bundling technique based on min-Hashing. In our
proposed Bundle min-Hashing scheme local features within the neighborhood around central
features are aggregated into bundles. Subsequently, the bundles are encoded with min-Hashing
and their representation is stored in hash tables. Our approach by min-Hashing makes our
bundling technique suitable for retrieval as we can efficiently query hash tables for similar
bundles without requiring exact matches. We perform extensive experiments on three datasets
and demonstrate that Bundle min-Hashing has equal performance in terms of mean Average
Precision but has orders of magnitude lower response ratio and also deteriorates slower than
bag-of-words in the presence of noise. In addition, its precision is high and even tunable at
query time depending on the application needs. It outperforms several other min-Hash based
approaches in the literature by having both higher mean average precision and better recall.

Finally, we use our Bundle min-Hashing scheme as retrieval technique within a logo recog-
nition framework. Here, an image is tested for the presence of logos by querying a database
of reference images. Once the query image shares similar bundles with reference images, a
majority vote among the most similar reference images is used to decide which logo is present.
The proposed scheme is simple, fast and highly effective. We show that it outperforms other
existing approaches while having desirable properties such as high speed due to constant-time
lookups, high precision and a very low response ratio.
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8.2 Outlook

There are several possible directions for future work originating from the work in this thesis.
Some of those are sketched in the following.

Our multimodal multilayer pLSA presented in Chapter 4 may be adopted or serve as inspi-
ration for future multilayer models. The incorporation of geometry into the model is likely to
improve the visual description. We expect similar reward when removing the hardly tenable
independence assumption between individual visual words.

The cascaded index we proposed in Chapter 5 may be of further use in various applications.
In general, its underlying concept and the corresponding search strategy is applicable to higher
order features of any kind – whenever an “is part of” relationship links the combinatorial spaces
of lower and higher order descriptions.

One can further imagine employing our 1p-wgc-ransac variant we described in Chapter 6
in a cascade-like manner. A ransac based on 1-point correspondences with wgc-constraint
could be used to discard false correspondences in a first step. The subsequent estimation of
a affine and projective transformations may then be performed on almost outlier-free samples.
Combining it with further pre-tests as in the randomized ransac framework may eventually
lead to a cascade over multiple stages.

We believe the Bundle min-Hashing scheme presented in Chapter 7 is applicable to a wide
range of settings and may deserve further research. The bundle representation naturally in-
creases the distinctiveness of a visual representation compared to individual features. Due to its
ability for robust approximate similarity search, it may be used to increase the distinctiveness
of features that are not as strict as traditional local features. Especially the bundling scheme
may be extended to encode the internal geometry of feature bundles to increase the precision
even further.

Besides that, we feel that gradient representations such as SIFT or HOG alone are not
capable to describe all kinds of objects. Especially objects with little texture – such as the Pepsi
or Apple logo – may benefit from visual descriptions capturing their shape and color. While such
descriptions have been studied extensively since decades, these have not been as successful as
gradient-based descriptions. One problem is that these descriptions are often not as distinctive
as the latter. That in mind, the Bundle min-Hashing framework may be exploited to aggregate
features of different types into bundles. Due to the combined representation and the min-
Hashing scheme, Bundle min-Hashing offers good opportunities to capture visual appearances
of different modalities into a highly distinctive signature. Such bundles may improve object
retrieval especially for objects without distinctive texture or colorful appearance.
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B
Branchless angle_diff()

angle diff (α, β)
α
β

angle diff (α, β)

α

β

Figure B.1: The difference of two angles is the smallest enclosed angle.

We define the difference of angles as the smallest angle enclosed by the two vectors α and
β (see Figure B.1). The difference is anti-symmetric (angle_diff (α, β) = −angle_diff (β, α))
where negative angles mean clock-wise rotation. It follows that its output range is in [−180◦, 180◦[.

While a naive implementation of angle_diff () to compute the difference of angles as used
in Section 5.2.2 and Section 6.5 is easy, its performance is not satisfying especially if this basic
operation is invoked frequently. By analyzing different variants we were able to derive an
optimized branchless version. Originally angle_diff (α, β) = mod((α − β) + 180, 360) − 180,
which shifts the difference, takes the modulo, and shifts it back to the desired range. This
seemingly disadvantage of shifting and back-shifting is indeed handy and canceled out later.

Here, the mod function denotes the modulo operation in the mathematical sense. That is,
−2 % 5 = 3. In many programming languages the mod() function or simply the % operator
will not handle negative values as in the mathematical sense (e.g., −2 % 5 yields −2). How-
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ever, a modulo operator xmod that handles negative values correctly can be implemented as
xmod(x, y) = x − y · floor(xy ). Putting this into the original equation (and fixing y = 360)
results in angle_diff (α, β) = x− 360 · floor(x · 1

360 )− 180 where x = α− β + 180. This can be
further rearranged to angle_diff (α, β) = x − 360 · floor((x + 180) · 1

360 ) now with x = α − β,
i.e., effectively 1 subtraction less.

The key observation is that floor((x+ 180) · 1
360 = floor( x

360 + 0.5). Thus, this particular
expression is effectively a “round to nearest” operation, which can be replaced by the corre-
sponding hardware instruction. Additionally this saves one add and one set instruction. The
final expression then is angle_diff (α, β) = ((α− β)− (360 · round((α− β) · 0.0027).

Using SSE intrinsics this can be coded in C as sequence of instructions that are close to
pure assembler but more portable (see Listing B.1). At least SSE 4.1 is required for the
_mm_round_ss intrinsic.

1 # include <smmintrin .h> // For SSE 4.1
2

3 /// Computes the difference of two angles * angle0 * and * angle1 *
4 /// ( degrees ) such that the resulting angle is in ‘[-180, 180[ ‘.
5 inline float angle_diff (float angle0 , float angle1 )
6 {
7 __m128 a = _mm_set_ss ( angle0 );
8 __m128 b = _mm_set_ss ( angle1 );
9 __m128 x = _mm_sub_ss (a, b);

10 b = _mm_set_ss (0.0027777777778 f);
11 a = _mm_mul_ss (x, b);
12 a = _mm_round_ss (a, a, _MM_FROUND_TO_NEAREST_INT );
13 b = _mm_set_ss (360.0 f);
14 a = _mm_mul_ss (a, b);
15 a = _mm_sub_ss (x, a);
16 return _mm_cvtss_f32 (a);
17 }

Listing B.1: Fast branchless angle_diff() function using SSE intrinsics.

This function is branchless and between 3 and 10 times faster than other variants we have
tested. Moreover, this scheme can be easily extended to compute four angle differences in
parallel.
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C
Hash Function for min-Hashing

The following hash function (see Listing C.1) was used to compute the min-Hashes for the
min-Hash-based retrieval methods as described in Chapter 7.

It is based on a random number generator that uses the Multiply-With-Carry scheme. The
state of the generator is initialized by a seed that is different for each hash function and kept
fixed. The output of this hash function thus only depends on the fixed seed and the visual word
label v.

The seed and the visual word label are first combined into a single integer number by a
pairing function. We used the doubled cantor pairing function because it produced significantly
better results than a simpler scheme. The multiplication of the two numbers spread the resulting
numbers over a large range even when the seeds are chosen from a contiguous range.

The resulting 64-bit number is multiplied by a large constant number. This multiplication
causes overflow (depending on the current value) and introduces pseudo-randomness in the
lower 32 bits. These and the upper 32 bits of the former value are then mixed and returned as
final 32-bit hash value.

The hash function can then be used for min-Hashing as follows: The min-Hash mh of the
hash function seeded with n is determined by finding the visual word vi of a set I that produces
the smallest hash value:

mhn = argmin
vi∈I

hash(n, vi) (C.1)
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1 /// Returns the hash value for input *v* given a fixed *seed *.
2 uint32_t hash( unsigned int seed , unsigned int v) const
3 {
4 // combine seed and v into single number with
5 // doubled cantor pairing function
6 uint32_t z = v + seed;
7 uint64_t temp = z * (z + 1) + ( seed << 1 );
8

9 // spread outcome over entire range
10 temp = ( uint64_t )( uint32_t ) temp *4164903690 U + (temp >> 32);
11 return ( uint32_t ) temp;
12 }

Listing C.1: Hash function for min-Hashing
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D
Machine Specifications for Timing Benchmarks

The following Table D.1 shows the specifications of the machine that was used for measure the
timings as presented in Sections 6.6

Operating System Windows 7, x64
CPU Name Intel Xeon X5550 (Gainestown)
Specification Intel(R) Xeon(R) CPU X5550 @ 2.67GHz
Number of cores 4 (+Hyperthreading: max 8)
Number of threads 8 (+Hyperthreading: max 16)
Clock Speed 2.66 GHz
Max Turbo Frequency 3.06 GHz
Instructions sets MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, EM64T, VT-x
L1 Data cache 4 x 32 KBytes, 8-way set associative, 64-byte line size
L1 Instruction cache 4 x 32 KBytes, 4-way set associative, 64-byte line size
L2 cache 4 x 256 KBytes, 8-way set associative, 64-byte line size
L3 cache 8 MBytes, 16-way set associative, 64-byte line size
Mainboard Model Mac-F221BEC8
Northbridge Intel 5520 rev. 13
Southbridge Intel 82801JR (ICH10R) rev. 00
Memory DDR3, 12278 MBytes, Triple Channel, 532.0 MHz

Table D.1: Machine Specifications for Timing Benchmarks
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