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Optimal control of surface acoustic wave
actuated sorting of biological cells

Thomas Franke, Ronald H.W. Hoppe, Christopher Linsenmann,

Lothar Schmid and Achim Wixforth

Abstract. The sorting of biological cells using biological micro-electro-
mechanical systems (BioMEMS) is of utmost importance in various
biomedical applications. Here, we consider a new type of devices fea-
turing surface acoustic wave (SAW) actuated cell sorting in microfluidic
separation channels. The SAWs are generated by an interdigital trans-
ducer (IDT) and manipulate the fluid flow such that cells of different
type leave the channel through designated outflow boundaries. The op-
eration of the device can be formulated as an optimal control problem
where the objective functional is of tracking type, the state equations
describe the fluid-structure interaction between the carrier fluid and the
cells, and the control is the electric power applied to the IDT.

Mathematics Subject Classification (2010). Primary 65K10 ; Secondary
49M05, 74F10.

Keywords. optimal control, biological cell sorting, surface acoustic waves,
finite element immersed boundary method.

1. Introduction

We consider the optimal control of surface acoustic wave (SAW) actuated high
throughput sorting of biological cells in microfluidic channels which has signif-
icant applications in basic cell biology, cancer research, clinical diagnostics,
drug design in pharmacology, tissue engineering in reproductive medicine,
and transplantation immunology [3, 4, 9, 13, 14].

The authors acknowledge support by the German National Science Foundation DFG within
the DFG Priority Program SPP 1253 ‘Optimierung mit partiellen Differentialgleichungen’.
The second author also acknowledges partial support by the National Science Foundation
NSF (DMS-0914788 and DMS-1115658), the German Federal Ministry for Education and
Research BMBF within the collaborative research projects ’FROPT’ and ’MeFreSim’, and
the European Science Foundation ESF within the program ’OPTPDE’..
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According to [6], the experimental setup consists of a separation channel
with three inlets and two outlets. The cells are injected through the middle
inlet on the left and can be hydrodynamically focused by the inflows through
the other two inlets. SAWs are generated by an Interdigital Transducer (IDT)
close to the lateral wall. The IDT features fingers substantially parallel to
one another. A static electric field is applied to generate a strain which varies
across the aperture of the IDT. The electric field is either perpendicular or
parallel to the fingers and created by applying an AC voltage between two
correspondingly positioned conductors. If the IDT is active, the SAWs enter
the fluid filled channel and lead to a distortion of the fluid flow that induces
acoustic streaming. Let us assume that we have cells of type A and B such
that cells of type A should leave the channel through the lower outlet, whereas
cells of type B are supposed to leave the channel through the upper outlet.
Cells of different type can be distinguished by fluorescence. Without SAW
actuation, the inflow velocities are tuned in such a way that a cell of type
A leaves through the lower outlet. However, if a cell of type B is detected,
the IDT is switched on and the flow is manipulated such that the cell leaves
through the upper outlet (cf. Figure 1). In an optimal control setting, the
objective is to achieve the sorting as described above, the state equations
are given by the fluid-structure interaction between the carrier fluid and the
cells, and the control is the time-dependent power applied to the IDT.

Figure 1. Surface acoustic wave actuated cell sorting
(SAWACS) in a microfluidic channel: without SAW actu-
ation (top) and with SAW actuation (bottom).

For the mathematical modeling and numerical simulation of the fluid-
structure interaction between the carrier fluid and the cells we will use the
finite element immersed boundary (FE-IB) method [1, 2, 8] which is the finite
element version of the classical immersed boundary (IB) method originally
developed by Peskin (cf., e.g., [11, 12]). The FE-IB method relies on the varia-
tional formulation of a coupled system of partial differential equations consist-
ing of the incompressible Navier-Stokes equations and the equations of motion
of the boundaries of the immersed cells. As far as the spatial discretization is
concerned, we use Taylor-Hood P2/P1 elements for the Navier-Stokes equa-
tions and periodic cubic splines for the equations of motion of the immersed
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boundaries. The discretization in time is taken care of by the backward Euler
scheme for the semi-discretized Navier-Stokes equations and the forward Eu-
ler scheme for the semi-discretized equations of motion. This results in a semi-
implicit scheme (Backward Euler/Forward Euler FE-IB method) which has
to satisfy a CFL-type condition for stability reasons. We consider a control
constrained optimal control problem for the fully discretized FE-IB method
featuring an objective functional of tracking type where we prescribe desired
positions of the immersed cells. Based on the necessary optimality condi-
tions, the optimal control problem is solved by a projected gradient method
with Armijo line search. Numerical results illustrate the performance of the
suggested optimal control approach.

2. The finite element immersed boundary method

The IB method comprises three groups of equations:

• the Navier-Stokes equations describing the motion of the incompressible
viscous carrier fluid,

• the material elasticity equations responsible for the total elastic energy
and the resulting forces exerted by the immersed cells,

• the interaction equations translating Eulerian into Lagrangian quanti-
ties and vice versa.

We denote by Ω ⊂ R
2 the Eulerian domain representing the separation chan-

nel wit boundary Γ = ΓD∪ΓN,ΓD∩ΓN = ∅, and by v(x, t), p(x, t) the velocity
and the pressure of the carrier fluid in (x, t) ∈ Ω× [0, T ], T > 0. We further
refer to Λ = [0, L] ⊂ R as the Lagrangian domain such that the vector valued
function X(λ, t), λ ∈ Λ, represents the closed, non self-intersecting boundary
of an immersed cell at time t ∈ [0, T ], T > 0.
The classical formulation of the IB equations then reads as follows: Find a
triple (v, p,X) such that the incompressible Navier-Stokes equations

ρ

(
∂v

∂t
+ (v · ∇)v

)

− 2 η∇ ·D(v) +∇p = fE in Ω× (0, T ] (2.1a)

∇ · v = 0 in Ω× (0, T ] (2.1b)

v = vD on ΓD × (0, T ] (2.1c)

(−pI+ 2 η D(v)) ν = 0 on ΓN × (0, T ] (2.1d)

v(·, 0) = v0 in Ω (2.1e)

are satisfied. Here, ρ and η are the density and viscosity of the carrier fluid,
D(v) stands for the rate of deformation tensorD(v) = (∇v+(∇v)T )/2, fE is
a source term that will be specified in (2.3a) below, vD is a prescribed velocity,
ν denotes the exterior unit normal vector on the Neumann boundary ΓN, and
v0 refers to the initial velocity. The Navier-Stokes equations are coupled with
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the equations of motion of the immersed boundary

∂X

∂t
(λ, t) = v(X(λ, t), t) =

∫

Ω

v(x, t) · δ(X(λ, t)− x) dx, (2.2a)

X(λ, 0) = X0(λ), (2.2b)

where δ stands for the Dirac delta function and X0 is the initial configuration
of the immersed boundary. The source term fE in (2.1a) is a global force
density according to

fE(x, t) =

∫

Λ

FL(λ, t) · δ(X(λ, t) − x) dλ, (2.3a)

FL(λ, t) = − E′(X(·, t))(λ), (2.3b)

where E′ is the variational derivative of the elastic energy of the immersed
boundary as given by

E(t) := E(X(·, t)) :=

∫

Λ

Ee
(∂X(λ, t)

∂λ

)

dλ+

∫

Λ

Eb
(∂2X(λ, t)

∂λ2

)

dλ. (2.4a)

Here, Ee and Eb stand for the local energy densities

Ee
(∂X(λ, t)

∂λ

)

=
κe
2

(∣
∣
∣
∂X

∂λ
(λ, t)

∣
∣
∣

2

− 1
)

,

Eb
(∂2X(λ, t)

∂λ2

)

=
κb
2

∣
∣
∣
∂2X

∂λ2
(λ, t)

∣
∣
∣

2

,

with κe > 0 and κb > 0 denoting the elasticity coefficients for elongation-
compression and bending.

The FE-IB method relies on the variational formulation of the coupled sys-
tem. We introduce the function spaces

V(0, T ) := H
1((0, T ),H−1(Ω)) ∩ L

2((0, T ),H1(Ω)),

W(0, T ) := {v ∈ V(0, T ) | v|ΓD×(0,T ) = vD},

Q(0, T ) := L2((0, T ), L2(Ω)),

and

X(0, T ) := H
1((0, T ),L2(Λ)) ∩ L

2((0, T ),H3
per(Λ)),

H
3
per(Λ) := {Y ∈ H

3(Λ) | ∂kY(0)/∂λk = ∂kY(L)/∂λk, k = 0, 1, 2}

The FE-IB method amounts to the computation of a triple

(v, p,X) ∈ W(0, T )×Q(0, T )×X(0, T )
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such that for almost all t ∈ [0, T ] and all test functions (w, q,Y) ∈ H
1
ΓD,0(Ω)×

L2(Ω)×H
3
per(Λ) it holds

〈∂v

∂t
,w

〉

H−1,H1
ΓD,0

+ a(v,w) − b(w, p) = ℓ(w), (2.5a)

b(v, q) = 0 (2.5b)

v(·, 0) = v0, (2.5c)
(∂X

∂t
,Y

)

0,Λ
−

∫

Λ

v(X(λ, t), t) ·Y(λ) dλ = 0, (2.5d)

X(·, 0) = X0, (2.5e)

where 〈·, ·〉H−1,H1
0
stands for the dual pairing between H

1
0(Ω) and H

−1
ΓD,0(Ω)

and a(·, ·), b(·, ·), as well as the functional ℓ(·) are given by

a(v,w) := (ρ(v · ∇)v,w)0,Ω + (η∇v,∇w)0,Ω (2.6a)

b(p,v) := (p,∇ · v)0,Ω , ℓ(w) := 〈FL,w〉H−1,H1
0
. (2.6b)

For the numerical solution of (2.5) we use Taylor-Hood P2/P1 elements for
the spatial discretization of (2.5a)-(2.5c) with respect to a quasi-uniform sim-
plicial triangulation Th(Ω) of Ω that aligns with the partition of Γ and peri-
odic cubic splines for the spatial discretization of (2.5d),(2.5e) with respect
to an equidistant partition

T∆λ(Λ) := {0 = λ0 < λ1 < · · · < λR = L}

of Λ into subintervals Λr := [λr−1, λr], 1 ≤ r ≤ R, of length ∆λ = L/R. We
note that the discrete immersed cell occupies subdomains B∆λ,t ⊂ Ω with
boundaries ∂B∆λ,t that are C

2 curves described by the periodic cubic spline.
We introduce the finite element spaces

Vh := {v ∈ C
0(Ω)

∣
∣ v|T ∈ P2(T ) , T ∈ Th(Ω)}

VΓD,h := {vh ∈ Vh

∣
∣ vh|ΓD

= vh,D}

V0,h := {vh ∈ Vh

∣
∣ vh|ΓD

= 0}

Qh := {q ∈ L2(Ω)
∣
∣ q|T ∈ P1(T ) , T ∈ Th(Ω)},

where vh,D is a piecewise polynomial approximation of vD, and

S∆λ := {X∆λ ∈ C
2(Λ)

∣
∣ X∆λ|Λr

∈ P3(Λr) , 1 ≤ r ≤ R,

dkX∆λ/dλ
k(λ0) = dkX∆λ/dλ

k(λR) , k = 0, 1, 2}.

The semi-discretization of (2.5) in space requires the computation of a triple

(vh, ph,X∆λ) ∈ C
1((0, T ),VΓD,h)× L2((0, T ), Qh)×C

1((0, T ),S∆λ)
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such that for all t ∈ [0, T ] and all test functions wh ∈ V0,h, qh ∈ Qh, and
Y∆λ ∈ S∆λ it holds

(∂vh

∂t
,wh

)

0,Ω
+ a(vh,wh)− b(wh, ph) = ℓ(wh), (2.7a)

b(vh, qh) = 0 (2.7b)

vh(·, 0) = Πhv0, (2.7c)
(∂X∆λ

∂t
,Y∆λ

)

0,Λ
−

∫

Λ

vh(X∆λ(λ, t), t) ·Y∆λ(λ) dλ = 0, (2.7d)

X∆λ(·, 0) = Π∆λX0, (2.7e)

where Πh and Π∆λ are the L2-projections onto Vh and S∆λ, respectively.
For the algebraic formulation of (2.7) we equip V0,h, Qh, and S∆λ with

canonical bases {φi}
N1

i=1, {ψi}
N2

i=1, and {Bi}
N3

i=1. Accordingly, we write

vh =

N1∑

i=1

viφi, ph =

N2∑

i=1

pi ψi, X∆λ =

N3∑

i=1

Xi Bi.

Here, the Bi are the B-splines with respect to the partition T∆λ(Λ) and
X1, . . . , XN3 are the de Boor points. As an important assumption we state
that the Lagrangian force density FL gets discretized by means of {Bi} as well
in order to gain a useful transpose property (see (2.8a) below). Furthermore,
we denote by ML and ME the Lagrangian and the Eulerian mass matrix,
respectively, by C(v) the advection matrix, by A the stiffness matrix, by B
the matrix associated with the divergence operator, and by K(X) ∈ R

N1×N3

the matrix with components
∫

Λ
φi(X∆λ(λ)) ·Bj(λ) dλ. We assume that all

(Eulerian) matrices and right-hand sides are manipulated appropriately in
order to enforce the Dirichlet conditions from (2.1c). Then the algebraic for-
mulation of (2.7) reads: Find (v, p,X) : [0, T ] → R

N1 ×R
N2 ×R

N3, such that
for almost all t ∈ [0, T ]

ME
dv

dt
(t) + C(v(t)) v(t) +Av(t) +B⊤p(t) = K(X(t))⊤FL(X(t)) (2.8a)

B v(t) = 0 , (2.8b)

N1∑

i=1

vi(0)φi = Πhv0, (2.8c)

ML
dX

dt
(t) = K(X(t)) v(t), (2.8d)

N3∑

i=1

Xi(0)Bi = Π∆λX0. (2.8e)
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3. The semi-implicit Backward Euler/Forward Euler FE-IB
method

For the discretization in time we first consider the Backward Euler/Forward
Euler FE-IB method from [8] in the sense that we discretize the Navier-Stokes
equations by the backward Euler method in time and the equation of motion
of the immersed boundary by the forward Euler scheme. In particular, we
consider an equidistant partition

T∆t := {0 =: t0 < t1 < · · · < tM := T }, M ∈ N,

of the time interval [0, T ] into subintervals of length ∆t := T/M and set

v
(m)
h := vh(·, tm), p

(m)
h := ph(·, tm), X

(m)
∆λ := X∆λ(·, tm).

We refer to

D
+
∆tv

(m)
h := (v

(m+1)
h − v

(m)
h )/∆t, D

−
∆tv

(m)
h := (v

(m)
h − v

(m−1)
h )/∆t

as the forward and backward difference operator. We further define the total
discrete energy by means of

E∆λ(tm) := Ee
∆λ(tm) + Eb

∆λ(tm),

where the discrete elastic energy Ee
∆λ(tm) and the discrete bending energy

Eb
∆λ(tm) are given by

Ee
∆λ(tm) =

κe
2

∫

Λ

(∣
∣
∣
∂X

(m)
∆λ

∂λ
(λ)

∣
∣
∣

2

− 1
)

dλ

Eb
∆λ(tm) =

κb
2

R∑

r=1

∫

Λr

∣
∣
∣
∂2X

(m)
∆λ

∂λ2
(λ)

∣
∣
∣

2

dλ .

Observing that ∂3X
(m)
∆λ (λ)/∂λ3 is constant on Λr, the discrete force density

takes the form

(F
(m)
L,∆λ,wh(X

(m)
∆λ ))0,Λ = −κe

∫

Λ

∂X
(m)
∆λ (λ)

∂λ
· ∇wh(X

(m)
∆λ (λ))

∂X
(m)
∆λ

∂λ
dλ

+ κb

R∑

r=1

∂3X
(m)
∆λ

∂λ3

∣
∣
∣
Λr

·

∫

Λr

∇wh(X
(m)
∆λ (λ))

∂X
(m)
∆λ

∂λ
dλ . (3.1)

The Backward Euler/Forward Euler FE-IB reads as follows:

Given v
(0)
h = Πhv0 and X0,∆λ = X

(0)
∆λ = Π∆λX0, for m = 0, . . . ,M− 1 we

perform the following two steps:

Algorithm 3.1.

(i) Compute (v
(m+1)
h , p

(m+1)
h ) ∈ Vh,ΓD

×Qh such that for all wh ∈ Vh,0

(ρD+
∆tv

(m)
h ,wh)0,Ω + a(v

(m+1)
h ,wh)− b(p

(m+1)
h ,wh) = ℓ

(m)
h (wh), (3.2a)

b(wh,v
(m+1)
h ) = 0, (3.2b)

where ℓ
(m)
h (wh) := (FL,∆λ,wh(X

(m)
∆λ ))0,Λ is given by (3.1),
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(ii) Compute X
(m+1)
∆λ ∈ S∆λ according to

D
+
∆tX

(m)
∆λ = v

(m+1)
h (X

(m)
∆λ ). (3.3)

Referring to ∂B
(m)
∆λ as the boundary of the immersed cell at time tm which

consists of C2 segments ∂B
(m,r)
∆λ connecting material points X

(m)
∆λ (λr−1) and

X
(m)
∆,λ(λr), 1 ≤ r ≤ R, one can deduce the estimate

‖∇v
(m+1)
h ‖2

0,∂B
(m)
∆λ

≤ Ccell h
−1‖∇v

(m+1)
h ‖20,Ω (3.4)

with a positive constant Ccell depending on the triangulation Th(Ω) (see (3.8)
in [7]). A stability analysis reveals that the Backward Euler/Forward Euler
FE-IB requires the CFL-type condition (cf. Theorem 3.1 in [7])

∆t

h
≤

η

8Ccell (κeΛ1 + κeΛ2)
, (3.5)

where Λ1 and Λ2 are given by

Λ1 := max
0≤m≤M

max
λ∈Λ

∣
∣
∣
∣
∣

∂X
(m)
∆λ

∂λ

∣
∣
∣
∣
∣
, Λ2 := max

0≤m≤M
max

1≤r≤R

∣
∣
∣
∣
∣

∂3X
(m)
∆λ

∂λ3
|Λr

∣
∣
∣
∣
∣
.

The CFL-condition (3.5) for the semi-implicit scheme means a restriction of
the time-step size ∆t in particular depending on the amount of deformation
of the immersed membrane as reflected by the quantities Λ1 and Λ2. For prob-
lems characterized by large values of Λ1 and Λ2, the time increments need to
be chosen very small, leading to a high computational effort. As a remedy,
a fully implicit time-stepping scheme can be used based on the application
of the backward Euler scheme in time for both the Navier-Stokes equations
and the equation of motion of the immersed boundary. This Backward Eu-
ler/Backward Euler FE-IB method is unconditionally stable at the expense
that at each time-step a nonlinear algebraic system has to be solved. We
refer to [10] for details including a predictor-corrector continuation strategy
featuring an adaptive choice of the time-step size.

4. Optimal control of the surface acoustic wave actuated cell
sorting

In this section, following the strategy ’discretize first, then optimize’, we will
formulate the optimal control problem for the surface acoustic wave actuated
cell sorting. The objective is to steer the immersed cells to desired positions
by controlling the electric power applied to the IDT. The semi-implicit Back-
ward Euler/Forward Euler FE-IB method from section 3 serves as the state
constraints.
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For z := (v, p,X), consider the following optimal control problem






min
z∈Z,u∈U

J(z, u)

s.t. S(z) = b(u)

u ∈ Uad

(4.1)

The objective functional J is given by

J(z, u) := J(X[1], X[2]) :=

2∑

i=1

1

2

∥
∥
∥X

(M(i))
[i],∆λ −X

des
[i],∆λ

∥
∥
∥

2

0,Λ
, (4.2)

where 1 ≤ i ≤ 2 are the cell indices of two different biological cells and
the functions X

des
[i],∆λ ∈ S∆λ(Λ) mark desired final positions close to the

respective outflow boundaries. The time instants tM(i) are chosen such that
the x1-components of barycenters of the immersed cells X[i],∆λ(Λ, t) and

X
des
[i],∆λ(Λ) coincide. The state operator S reads

S(z) :=









v0 − v(0)

(ME +∆t A) v(m) +∆tB⊤p(m) −∆t fE(X
(m−1))−ME v

(m−1)

B v(m)

X0 −X(0)

MLX
(m) −MLX

(m−1) −∆tK(X(m−1)) v(m)









and

b(u) = (0,∆t g(u(m−1), 0, 0, 0)T , 1 ≤ m ≤ M.

The volume force term g(u(m)) ∈ R
N1 comprises components

g(u(m))i :=

∫

Ω

fvol(u
(m)) · φi dx , 1 ≤ i ≤ N1 ,

where the volume force density fvol generated by the IDT is modeled by

fvol(u
(m))(x) :=

{
(0, β u(m) e(−(x2−y0)/d) k(x1, x0, D))⊤ , x ∈ ω
0 , x ∈ Ω \ ω

,

k(x, x0, D) =
sin2(2π(x− x0)/D)

(2π(x− x0)/D)2
.

Here, ω ⊂ Ω denotes the subdomain where the SAW is effective, β stands
for a transmission coefficient, d for the decay length, (x0, y0)

⊤ refers to the
center position of the segment at the lower lateral boundary where the SAWs
enter the domain, and D/2 is the half width of this segment (marked green
in Figure 2 below). The function k is known as a Kirchhoff function and
describes the refraction pattern of the SAW intensity.
We define the set of admissible controls by

Uad := {u ∈ U := R
M

∣
∣ umin ≤ u(m) ≤ umax , 1 ≤ m ≤ M} , (4.3)

where the control u(m) is the power applied to the IDT at time tm and umin,
umax ∈ R

M are given bounds. As numerical optimization scheme we use
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the well-known projected gradient with Armijo line search. To this end, we
introduce the reduced objective functional

Jred(u) := J(z(u), u) ,

where z(u) = (v(u), p(u), X(u)) is the solution to S(z) = b(u). Then problem
(4.1) can be reformulated as the state-reduced optimal control problem

{

min
u∈RM

Jred(u)

s.t. u ∈ Uad

(4.4)

being equivalent to (4.1). Problem (4.4) can be solved by the following scheme
where ΠUad

denotes the projection operator onto the admissible set:

Algorithm 4.1.

(o) Let u0 and a tolerance ε > 0 be given.

for k = 0,1,2, ...

(i) Compute the descent direction dk = −∇jred(uk) via adjoint approach.

(ii) If ‖ΠUad
(uk + dk)− uk‖ < ε, stop: u∗ := uk.

(iii) Compute a step length αk by Armijo line search.

(iv) Update uk+1 = uk + αk dk, project it onto Uad and go back to (i).

The computationally most challenging part is the evaluation of∇Jred(uk)
which is taken care of by the adjoint approach:
For the optimization problem (4.1) we consider the Lagrangian

L(z, u, λ) = j(z, u) + 〈λ, S(z)− b(u)〉Y ∗,Y , L : Z × U × Y ∗ → R .

The associated state equations and adjoint state equations are

0 = L′
λ = S(z(u))− b(u) (4.5a)

0 = L′
z = J ′

z(z(u), u) + (S′
z(z(u)))

∗ λ(u) . (4.5b)

It is easy to prove the following lemma:

Lemma 4.2. Assume that S(z) = b(u) has a unique solution z(u), ∀u ∈ U ,

and that λ(u) ∈ Y ∗ is the unique solution to (4.5b). Moreover assume that

the mappings (z, u) 7→ j(z, u), z 7→ S(z), u 7→ z(u), and u 7→ b(u) are

Fréchet-differentiable. Then there holds

J ′
red

(u) = L′
u(z(u), u, λ(u)) . (4.6)

In more detail, one has to perform the following steps to compute the
reduced gradient ∇Jred(uk) (for notational simplicity, only one cell is consid-
ered):
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Algorithm 4.3.

(i) Compute the state (vk, pk, Xk) := (v(uk), p(uk), X(uk)):

v
(0)
k := v0, X

(0)
k := X0 and for 1 ≤ m ≤ M

(ME +∆t A) v
(m)
k +∆t B⊤p

(m)
k = ∆t

(
fE(X

(m−1)
k ) + g(u

(m−1)
k )

)
+ME v

(m−1)
k

B v
(m)
k = 0

MLX
(m)
k = MLX

(m−1)
k +∆tK(X

(m−1)
k ) v

(m)
k .

(ii) Compute the adjoint state (wk, qk, Yk) := (w(uk), q(uk), Y (uk)) back-

ward in time: w
(M)
k := 0, Y

(M)
k := Xdes−X(M) and for M−1 ≥ m ≥ 1

MLY
(m)
k = MLY

(m+1)
k +∆t

[
f ′
E(X

(m)
k )⊤w

(m+1)
k +(K ′(X

(m)
k )v

(m+1)
k )⊤Y

(m+1)
k

]
.

(ME +∆t A)w
(m)
k +∆t B⊤q

(m)
k = ∆tK(X

(m−1)
k )⊤Y

(m)
k +ME w

(m+1)
k

Bw
(m)
k = 0

(iii) Set ∇Jred(uk) := ∂j(zk, uk)/∂u+∆t
∑M−1

m=1 (w
(m)
k )⊤∇⊤g(u

(m−1)
k ).

The derivatives showing up in the adjoint system represent the nontriv-
ial terms of the adjoint differential operator (Sz(z(u)))

∗ from (4.5b).

Let us state the optimality conditions associated with (4.1).

Theorem 4.4 (Necessary optimality conditions). Assume the set Uad is given

by (4.3) and the assumptions from Lemma 4.2 are fulfilled. Then there exists

an optimal solution (z∗, u∗) to (4.1) with associated Lagrange multiplier λ∗

such that: (z∗, u∗) solves (4.5a), λ∗ solves (4.5b) and

(∇Jred(u
∗))i







≤ 0 , u∗i = umax
i

= 0 , umin
i < u∗i < umax

i

≥ 0 , u∗i = umin
i

. (4.7)

(4.7) can be written in short form as ΠUad
(u∗ −∇jred(u∗)) = u∗. This

justifies the termination criterion from Algorithm 4.1, step (ii).

5. Numerical results

As a numerical example, we consider the sorting scenario ’up – down’, mean-
ing that the first cell (i = 1) is supposed to take the upper outflow channel
and the second cell (i = 2) the lower one.

The separation channel Ω is shown in Figure 2 featuring three inflow
boundaries at the left and two outflow boundaries at the right. The main part
has a length of 300µm and a width of 180µm. The maximal inflow velocities

v
(left)
in , v

(top)
in , and v

(bottom)
in have been chosen according to

v
(left)
in = 10 mm/s, v

(top)
in = 12.5 mm/s, v

(bottom)
in = 10 mm/s,
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(x0, y0)
⊤

︸︷︷︸

D/2

Figure 2. Paths of two different cells under the influence
of the computed optimal control. The desired positions are
depicted in magenta.

guaranteeing that without SAW actuation a cell leaves the channel through
the lower outflow boundary. As the density ρ and the dynamic viscosity η we
have chosen

ρ = 1000 kg/m3, η = 7.0 mPa · s

both for the carrier fluid and the fluid enclosed by the membrane of the
two cells. We note that in practice this can be achieved using density and
viscosity matching by adding suitable chemicals to the carrier fluid. We have
considered initially spherical cells of diameter 16µm and moduli

κe = 5.0 · 10−5 N/m, κb = 1.0 · 10−16 Nm.

The sorting task is complicated by setting the initial distance between the
cells to 25µm only. For the spatial discretization of the Navier-Stokes equa-
tions we have used a finite element mesh with mesh size h = 7.5µm, whereas
for the spatial discretization of the equations of motion of the immersed
boundaries we have used a partition of Λ with ∆λ = 3.6µm. The time-step
size ∆t in the semi-implicit Backward Euler/Forward Euler FE-IB method
has been chosen according to ∆t = 1/100ms making sure that the CFL-
condition (3.5) is satisfied.

Figure 2 shows the computed paths of the cells in the separation channel
along with their designated positions at final time, whereas Figure 3 displays
the computed controls during the projected gradient method.

Finally, Table 1 reflects the decrease of the reduced objective functional
Jred(uk) as a function of the iteration step k of the optimization algorithm.

6. Conclusions

We have presented an optimal control approach to the sorting of different
biological cells by surface acoustic wave (SAW) manipulated fluid flow in a
microfluidic separation channel. The mathematical modeling and numerical
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time tm iter
atio

n k

01
5

10
15
umin

umax

Figure 3. Evolution of the controls uk arising in the opti-
mization algorithm.

Table 1. Decrease of the reduced objective functional
Jred(uk) as a function of the iteration step k of the opti-
mization algorithm

Iteration k 0 1 5 10 15

Jred(uk) 8.18e+01 2.53e+00 1.42e+00 1.09e+00 9.40e-01

simulation of the fluid-structure interaction has been taken care of by the
finite element immersed boundary (FE-IB) method. The feasibility of the
approach has been documented by numerical results.
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