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Abstract 

 

For years, doctors have utilized the Model for End-stage Liver Disease (MELD) 

score to aid in the allocation of organs for liver transplants (LT). A major issue with 

using the MELD score to allocate organs for transplantation is that the MELD score does 

not accurately predict post-transplant survival. This research project aims to investigate 

the use of machine learning (ML) methods to predict LT survival using the newer 

Scientific Registry of Transplant Recipients (SRTR) dataset. For this project, death and 

nonfatal graft failure were treated equally as both cases result in a loss of a donated 

organ. The ML algorithms used in this project were provided by both the Weka and 

Orange software packages. Initial trials investigated a binary classification of patients 

based on whether they survived for three years post-transplant and primarily utilized a 

random forest algorithm. Later trials moved to a multi-class classification using both 

random forest and other classifier algorithms. Initial results from the three-year binary 

classification seemed promising but performance metrics failed to improve with 

continued work. All multi-class trials performed similarly using various classifier 

algorithms. Unexpectedly, the class for 12-year survival showed a promising increase in 

its area under the receiver operating characteristic curve. The results of this project help 

to create a baseline for future ML studies utilizing the SRTR dataset and will hopefully 

spur further research into liver transplant survival prediction. 

 

Keywords: machine learning, random forest, liver transplantation, Scientific Registry of 

Transplant Recipients, survival prediction, medical data  
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Chapter 1: Introduction 

 Since the Model for End-Stage Liver Disease (MELD) score was contrived as a 

method of prioritizing liver transplant recipients, its use as a predictor of liver transplant 

outcomes has been debated. Studies investigating the merit of liver transplant (LT) 

survival predictions using MELD scores are often conflicting and nearly always highlight 

the need for a better predictive model. [1], [2] Using the data from the Scientific Registry 

of Transplant Recipient (SRTR) database, it is trivial to check for correlation between 

intake MELD scores, pre-transplant MELD scores, and the number of years survived 

after transplant (TX). As seen by the Pearson correlation matrix in Table 1, the initial 

MELD scores and pre-TX MELD scores correlate strongly while neither MELD score 

shows a correlation with the number of years survived post-TX. 

 

Table 1: Pearson Correlation Matrix 

 Initial MELD 

Score 

Pre-TX MELD 

Score 

Years Survived 

Post-TX 

Initial MELD Score 1 0.896703 -0.046088 

Pre-TX MELD Score 0.896703 1 -0.016356 

Years Survived Post-TX -0.046088 -0.016356 1 

 

While there have been advances in the use of pre-TX patient data to predict short-

term LT survival, there is still a need for a method capable of producing more long-term 

LT survival predictions. [3] The goal of this project is to apply machine learning (ML) 

methods to clinically obtainable donor and patient data to generate an accurate model to 

predict post-LT survival. At the time of writing this paper, only a handful of other studies 

have applied ML methods to liver transplant survival predictions. Most studies 

investigating transplant survival prediction have focused on utilizing artificial neural 

networks (ANN) to make predictions on transplant outcomes. [4]–[6] This project utilizes 
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random forests as a baseline ML method and attempts to utilize other ML methods based 

on the initial random forest results. The use of ML techniques in transplant survival 

prediction is just beginning to grow beyond its infancy and provides this project with a 

strong opportunity to expand upon current findings.  
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Chapter 2: Literature Review 

 The use of machine learning in medicine is by no means a new development nor 

is the need for a method of accurately predicting post-LT survival. Before discussing the 

specifics of this project, it is important to look at the resources and methods currently 

available pertaining to LT survival prediction. There have been a few attempts at using 

machine learning to predict long-term LT survival at time spans greater than 3 months 

post-TX; however, these studies typically focus on a particular liver disorder rather than 

TX recipient survival of all LT types. [7], [8] Other studies that investigate more 

generalized LT survival prediction use either the smaller United Network for Organ 

Sharing (UNOS) dataset or a locally obtained dataset. [5], [6] 

A. MELD and Other Conventional LT Survival Predictors 

 Prior to the creation of the MELD score the Child-Pugh score, blood type 

compatibility, and overall wait time were used to prioritize LT candidates on the LT 

waitlist. [9] However, a study by Michael Malinchoc et al. found that the Child-Pugh 

score was not a good estimator of a patient’s 3-month waitlist mortality, and in turn the 

MELD score was developed as a far superior waitlist mortality prediction model. [10] 

The original version of the MELD score accepted by UNOS uses only creatinine, 

bilirubin, and international normalized ratio (INR) in its calculation. 

 

(1) 

 

 

The development of the MELD score led to better allocation of donor livers to LT 

candidates that would receive the most immediate benefit from transplantation. One of 

the largest flaws in the previous allocation system that was addressed by the creation of 

MELD score = 9.57 * loge (creatinine mg/dL) + 3.78 * loge (bilirubin mg/dL) 

+ 11.20 * loge (INR) + 6.43 
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the MELD score was the bias given to candidates with longer wait times. In the old 

system, wait time was directly factored into the decision to allocate an organ for LT and 

was primarily used as a tiebreaker between patients of the same score. [9] Therefore, 

waitlist time is purposefully excluded from the calculation of the MELD score. 

 Shortly after the acceptance of the MELD score for clinical use, researchers began 

investigating if the MELD score would prove equally as useful for post-TX survival 

prediction as it was for predicting pre-TX waitlist mortality. A 2003 study by Paul 

Hayashi et al. found that the pre-TX MELD scores of LT recipients did not have any 

correlation with 1-year or 2-year survival post-TX. [2] The results of that study are 

reinforced by the data presented in Table 1 which shows no correlation between MELD 

and post-TX survival at 1-year and beyond. In an analysis of using only the MELD score 

for 3-month post-TX survival, the area under the ROC curve (AUC)1 was calculated at 

only 0.54. [3] Furthermore, both the previous Child-Pugh scoring system and the more 

recently developed donor risk index performed similarly poorly at post-TX survival 

prediction. [3] 

 In 2008, a study by Rana et al. contrived the survival outcomes following liver 

transplant (SOFT) score. [3] In their study, the SOFT score was found to be able to more 

accurately predict the 3-month post-TX survival of LT recipients. However, the SOFT 

score is only able to be calculated once an allograft has been allocated to the LT 

recipient. To account for this, a variant of the SOFT score called the preallocation score 

to predict survival following liver transplantation (P-SOFT) was created. The P-SOFT 

can be applied while a LT candidate is still on the waitlist since it excludes donor risk 

 
1
 Note: From this point and forward, sources which state their performance metric as c-statistic are instead 

referred to as AUC in this paper as the two terms are generally interchangeable. See [11] for further details. 
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factors from the score calculation. When used to predict 3-month post-TX survival, the 

SOFT score was found to have an AUC of 0.70, and the P-SOFT was found to have an 

AUC of 0.69. [3] This makes both the SOFT score and P-SOFT vastly superior at 

predicting post-TX survival than using MELD alone. 

B. Existing ML Methods for LT Survival Prediction 

 One of the earliest studies on using ML to predict LT survival was conducted by 

Vicente Ibáñez et al. in 2008. This study utilized logistic regression (LR) and a multi-

layer perceptron (MLP) network to predict early LT failure at 90 days. The study used 

locally obtained data from the Liver Surgery and Transplant Unit of La Fe University 

Hospital in Valencia, Spain rather than the more common UNOS or SRTR datasets. The 

local dataset used in their study contained 701 patients that met their inclusion criteria, 

and for each LT record 19 features were considered. In the study’s evaluation of both the 

LR model and MLP network on validation sets, their models showed that the difference 

between the two AUCs were not statistically different at 0.78 and 0.81 respectively. 

However, increasing the number of patients in their validation cohort from 170 to 246 

brought the AUC to 0.69 for the MLP network and 0.68 for the LR model.[6] 

 Another study of interest was conducted in 2017, by Raji and Chandra. Their 

study focuses on using an MLP ANN for long-term LT survival prediction and utilizes 

the UNOS dataset which contained 65535 records and 389 attributes at the time of their 

paper’s publication. Out of those records, Raji and Chandra selected 383 patient records 

and 27 attributes based on their filtering criteria. Their model was trained on various LT 

survival time spans ranging from 6 months to 13 years. While a table of exact AUC 

values is not given in their paper, a figure plotting the AUC for the various time periods 
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is included. Based on that figure, the average AUC for their ANN is approximately 0.92 

between 0.5 to 10 years. For years 11, 12, and 13 the graph shows a steady decrease in 

AUC to 0.75, 0.55, and 0.45 respectively. Their study is also particularly interesting in 

that for some year values their ANN yields a near perfect accuracy. [5] However, those 

results may simply be an artifact of the small dataset used in their study. 

 Lastly, a more recent study conducted by Andres et al. in 2018, utilizes ML to 

predict survival after LT for primary sclerosing cholangitis patients. The study by Andres 

et al. is different from those previously mentioned in the fact that it is the first to utilize 

the SRTR dataset. Furthermore, the study uses a learning algorithm called Patient-

Specific Survival Prediction (PSSP) which consists of several LR functions over a set of 

time points. According to their specifications, the algorithm will always produce a 

survival probability that decreases monotonically over time for each patient. The PSSP 

model was trained to provide probabilities of survival at times ranging from <1 year to 11 

years. Their PSSP model used a dataset of 2769 eligible records with 5-fold cross 

validation for training and evaluation. [8] The authors decided to use a Hosmer-

Lemeshow test as a validation metric, so the performance of the PSSP model cannot be 

directly compared to the previously discussed methods. Regardless, the PSSP model 

scored highest on the 10-year time point at scores of 0.678 for the PSSP model with 

donor information and 0.409 for the PSSP model without donor information on their 

Hosmer-Lemeshow test (values closer to 1.0 represent better calibration). [8] 
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Chapter 3. Materials and Methods 

A. Dataset Description 

 For this study, data was sourced from the SRTR database. The SRTR database is 

operated by The Chronic Disease Research Group, which is a division of the Hennepin 

Healthcare Research Institute. [12] The SRTR database contains several datasets for 

various organ transplant recipients, candidates, and donors. The tables of interest to this 

project are the TX_LI and TXF_LI tables. TX_LI is the primary dataset used in this 

project and contains one record per transplant as well as summarized organ donor and 

transplant follow-up (TXF) information. [13] There are currently 163728 entries with 309 

attributes in the unprocessed TX_LI dataset. Out of the TX_LI records there are 137133 

unique LT recipients. The TXF_LI dataset is the secondary dataset used in this project 

and contains the complete TXF records collected at 6 months, 1 year, and then annually 

until death/TX-failure or the patient ceases to follow-up. [13] The unprocessed TXF_LI 

dataset contains 1178862 records with 97 attributes. Of the records in TXF_LI, there are 

143211 unique transplants recorded based on SRTR transplant IDs (TRR_ID). There 

appears to be a discrepancy of 20517 TX records with no matching TXF records, and 

those TX records are excluded from the model. Out of the 137133 unique LT recipients, 

89790 did not experience graft failure or death and were also excluded from the model. 

These records were excluded because the event of interest has either not yet occurred in 

the LT recipient or could be missing due to a lack of record keeping. Therefore, only 

patient records which include a failure date can provide reliable LT survival data. 

Records from the TX_LI and TXF_LI tables are linked by their TRR_IDs.  
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B. Data Preprocessing 

In order to achieve a better performance from the ML models, the data must be 

preprocessed before training. The following steps were taken to process the SRTR 

dataset, and a visual summary of this process can be found in Illustration 1. All data is 

first imported from the TX_LI and TXF_LI datasets. All entries in the TXF_LI dataset 

are then grouped by their TRR_IDs. In each group, the first entry with a date of TX 

failure is found and the failure date is copied to all entries in the group. Once the date has 

been copied, the earliest TXF record in each group is returned. The returned records are 

then merged back into one table for further processing. For each record MELD scores are 

calculated based on the given bilirubin, INR, and creatinine using the standard MELD 

score equation (1). The MELD score is recalculated here despite a MELD score attribute 

existing in the dataset due to the fact that the existing MELD score attribute contains 

incompatible data such as the deprecated Child-Pugh score. The next value that is 

calculated is the time delta between the date of LT and date of LT failure for each patient. 

Records with missing dates or invalid times are flagged. Next, entries in the TX_LI table 

without corresponding follow-ups in the TXF_LI table are removed. As with the TXF_LI 

dataset, TX_LI record waitlist and pre-TX MELD scores are recalculated with the data 

from each record. Since this project is only interested in predicting the survival of first-

time LT recipients, all TX_LI records with TRR_IDs in the re-TX list are removed from 

the dataset. Furthermore, all entries in the TXF table without a matching TX entry are 

once again dropped. In order to ensure that both deaths and graft failures were included in 

the dataset TX_LI records with missing failure dates are updated with the failure date 

from the corresponding TXF_LI entry. This is accomplished by attempting to update the 
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value with the TXF graft failure date first and then the TXF death date second, whichever 

the first available is. If no values are available, then the date remains NaN and the record 

will be removed later. Next, the time delta between LT and LT failure is calculated again 

for the TX_LI records. For the binary class models, each record is flagged according to 

whether the time delta value surpasses a given threshold or not. Likewise, for the 

multiclass version of the dataset each record is labelled according to what bin the time 

delta value falls into. Lastly, any TX_LI records which do not have a valid time delta 

value are dropped from the TX_LI dataset, and the corresponding record in the TXF_LI 

dataset is also dropped. 

 

Illustration 1: Preprocessing Stage I 

 
 

 

After the previous steps, the dataset is nearly ready for use. However, there are 

still a few adjustments needed to ensure improved ML model performance. A 
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summarized version of this process can be found in Illustration 2. First, a subset of 96 

attributes are chosen based on professional input from the original 309 TX_LI attributes. 

Next, all records with LT recipients under 18 are dropped along with any records that are 

missing > 60% of all values. Some ML algorithms require numerical values to be 

normalized during preprocessing; for this project, z-score normalization (2) was used on 

all numeric data aside from ages.  

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑥 − 𝑎𝑣𝑔(𝑎𝑡𝑡𝑟𝑖𝑏)

𝑠𝑡𝑑𝑒𝑣(𝑎𝑡𝑡𝑟𝑖𝑏)
 

(2) 

 

 

Ages were instead classified into bins ranging from 10 to 90 years. A significant portion 

of the selected attributes are nominal, and most of the nominal attributes utilize encoded 

missing values. The encoded missing values artificially increases the completeness of the 

dataset, and to correct this all encoded missing values were replaced with NaN values. In 

order to reduce the dimensionality and sparsity of the dataset further, attributes which 

were missing more than 10% of values across all records were dropped. Next, records 

with any missing values were dropped resulting in a final dataset containing 24763 LT 

records. The last items dropped from the dataset before beginning the ML training were 

all attributes containing identification numbers. The final number of attributes used for 

training the models totaled to 69, including the class attribute. The first binary class 

dataset was based on 3-year survival, and the latter binary class dataset was based on 12-

year survival. Three years was chosen initially as it was the point in the dataset which 

evenly divided the number of class members; however, after multiclass trials 12-years 

was found to provide superior model performance. The multiclass dataset utilized bins 

from 0 to 4 months, 4 to 8 months, 8 months to 1 year, 1 year to 2 years, 2 to 4 years, 4 to 
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6 years, 6 to 8 years, 8 to 12 years, and 12+ years right exclusive. The intervals of the 

multiclass bins were chosen to keep the number of class members as even as possible. 

 

Illustration 2: Preprocessing Stage II 

 
  

C. Machine Learning Software and Algorithms 

 The machine learning algorithms used in this project were provided by the 

Waikato Environment for Knowledge Analysis (WEKA) 3 and Orange software 

packages. [14], [15] The main algorithm used in this project is the random forest 

classifier algorithm provided by both software packages. The random forest algorithm 

was chosen as it proved to be the most performant in initial trials using the processed 

dataset. Other algorithms utilized from the WEKA software include the naive Bayes 

classifier and the MLP classifier. The MLP classifier algorithm was chosen since it has 
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previously demonstrated favorable performance in LT survival prediction in other 

studies. [4], [5] Furthermore, the naive Bayes classifier was chosen as it also 

demonstrated performance similar to random forest in some initial trials. The same three 

algorithms used in WEKA were also utilized in the Orange package, and each algorithm 

did not show a significant difference in performance between the software packages. 

Trials carried out in WEKA utilizing the random forest algorithm use custom settings to 

calculate attribute importance and extend the number of iterations to 200. All other trials 

in WEKA and Orange use default settings for all algorithms. Unless otherwise noted, all 

trials also used 5-fold cross validation in the training and evaluation of the model. 

Performance statistics are taken from both WEKA and Orange, whichever showed 

superior performance of the model being tested. Illustrations 3 and 4 were generated 

using the Orange software. 
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Chapter 4: Results 

 The AUC of a model represents a general performance across classification 

thresholds where values closer to 1.0 indicate a perfect model, and values closer to 0.5 

indicate a model that is no better than random chance. The F1 score of a model also gives 

an estimate of classifier performance ranging from 0.0 to 1.0 where numbers closer to 1.0 

denote superior performance. In this project, the F1 score of a classifier refers to the 

weighted average F1 score across all classes unless otherwise noted, and all scores were 

recorded directly from the toolkits’ data output. Given the results of the studies discussed 

in Chapter 2, the goal for this project is for the model to significantly surpass an AUC of 

at least 0.7. The F1 scores were used primarily for comparison between the models within 

this project and as a supplement to the other performance metrics when comparing 

against LT survival models outside of this project.  

The initial models based on the 3-year binary class dataset attained maximum 

performance using the random forest algorithm. Although the AUC reached 0.709, the 

predictive ability of the model was rather average with an F1 score of only 0.685. The 

naive Bayes and MLP classifiers performed similarly average as can be seen in Table 2. 

Table 2: 3-Year Binary Class Model Performances 

 AUC F1 Precision Recall 

Random Forest 0.709 0.658 0.660 0.663 

Naive Bayes 0.701 0.659 0.658 0.659 

MLP 0.645 0.606 0.607 0.606 

 

The next dataset used to train the models was the multiclass dataset. Models using the 

multiclass dataset showed comparatively poor performance across all classes when 

looking at their F1 scores and AUCs versus those of the binary classification models. 

Again, the random forest algorithm performed best for the multiclass dataset with an 



 

14 

 

average AUC of 0.624 and average F1 score of 0.172 as seen in Table 3. However, 

performance for the 12+ years class showed a considerable increase in AUC to 0.874 and 

an F1 score of 0.394. This spike in performance prompted investigation of a 12-year 

binary classification. 

Table 3: Multiclass Model Performances 

 AUC F1 Precision Recall 

Random Forest 0.624 0.172 0.201 0.221 

Naive Bayes 0.616 0.172 0.176 0.197 

MLP 0.563 0.159 0.159 0.159 

 

Given the increased performance for the 12+ year class in the multiclass models, a 

dataset with a 12-year binary class was created and then used to train a random forest 

model. As seen in Table 4, the performance of this model was much higher than the 

previous models. The 12-year random forest model uses a separate training and 

validation set as opposed to cross-validation in order to more accurately gauge 

effectiveness on unseen data. The training set used a randomly selected subset of LT 

patient data with the true and false classes balanced, and the validation set utilized the 

remaining data that was not included in the training set. The data in Table 4 is based on 

the model validation results.  

Table 4: 12-Year Random Forest Model Performance 

 AUC F1 Precision Recall 

True 0.870 0.248 0.144 0.905 

False 0.870 0.836 0.993 0.721 

Weighted Average Over Classes 0.870 0.807 0.951 0.730 
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Illustration 3: 12-Year Model True Class ROC Curve 

 

Illustration 4: 12-Year Model False Class ROC Curve 
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Chapter 5: Discussion 

As can be seen by the results in tables 2 and 3, the models for LT survival 

prediction at time frames less than twelve years show average performances that match 

the SOFT score or the model trained by Ibáñez et al. at best. [3], [6] Furthermore, none of 

the models matched the performance of the MLP ANN reported by Raji and Chandra 

which used the UNOS dataset. [4], [5] This difference in performance is likely due to a 

difference in skill between researchers; given that this is an undergraduate level project, 

inefficiencies and flaws in the methods used are to be expected. In retrospect, a large flaw 

exists with the processed dataset because there is still nominal data that uses numbers to 

represent encoded attributes. After investigating the algorithms used by WEKA and 

Orange, most classifier algorithms will preprocess data internally when the dataset is 

loaded for training. This likely causes inaccuracy since the nominal attributes represented 

by numeric values will erroneously be normalized by the software. A solution to this 

issue would be to convert all numerically encoded nominal values to use unique strings; 

however, many attributes have over a hundred possible values that would require unique 

replacement strings to be assigned. Due to the time constraints of this project and the 

ability to override individual attribute types in Orange, nominal constraints were left 

numerically encoded. Similarly, it was most likely unnecessary to normalize any of the 

numeric attributes in the dataset since most classifier algorithms automatically normalize 

any numeric attributes. 

Despite the poor performance for predicting transplant survival at less than 12 

years, the model for predicting 12-year survival shows some promise for very long-term 

LT survival prediction. Although the 12-year binary class model does not have 
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exceptional sensitivity, the model does possess a reasonable amount of specificity. This 

may prove useful for the purpose of organ allocation as the model is relatively good at 

determining if a LT recipient will not survive for at least 12 years. When combined with 

more accurate short-term LT survival predictors and professional input, the 12-year 

model presented in this project could help to reduce the number of organs lost to 

transplant failure. 
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Chapter 6: Conclusion 

This project has delved into various studies done to create a model that can 

predict LT survival as well as presented a new ML model for LT survival prediction 

based on the SRTR dataset. Due to the worldwide scarcity of organs for transplant there 

is a constant demand for ways to reduce organ waste due to failed transplants. [4] This 

project was started with two goals in mind, to create a model capable of accurately 

predicting LT survival and to create a LT survival prediction model using only attributes 

obtainable pre-TX or otherwise estimable pre-TX. This project began with heavy work 

on data analysis and preprocessing. A substantial amount of effort was put forth to obtain 

the largest and most complete dataset possible after preprocessing. Thanks to the large 

size of the SRTR dataset, many records with missing data could be dropped to avoid data 

imputation without reducing the size of the dataset too far. After training several models 

on the processed dataset, the random forest classifier was found to perform best with a 

binary class of 12-years post-TX survival. The final model presented its highest 

performance in its specificity where about 80% of false results were correctly classified 

as false. Given the ability of the model to determine those who will not survive at least 12 

years post-TX, this model may find use as a supplement to current short-term survival 

prediction methods. Despite the effort put into preprocessing the dataset, there is still a 

large amount of room for improvement in the preprocessing steps and the resulting 

dataset used by the models. Hopefully this project will inspire more studies related to LT 

survival prediction and lead to increased use of the larger SRTR dataset in similar 

projects.  
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