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Abstract

In this paper, we propose an automatic numerical method for solving a nonlinear partial-

differential-equation (PDE) based image-processing model. The Perona-Malik diffusion

equation (PME) accounts for both forward and backward diffusion regimes so as to perform

simultaneous denoising and deblurring depending on the value of the gradient. One of the

limitations of this equation is that a large value of the gradient for backward diffusion can

lead to singularity formation or staircasing. Guidotti-Kim-Lambers (GKL) came up with a

bound for backward diffusion to prevent staircasing, where the backward diffusion is only

limited to a specific range beyond which backward diffusion is stopped and forward diffusion

begins. Our model combines the PME model and GKL model for automatic sharpening of

blurred text-images using Nelder-Mead optimization, a derivative free optimization method

that uses n+1 test points arranged as a simplex for n-dimensional optimization. We solve

our model by discretizing the PDE in space using finite difference approximation scheme.

Then, we enhance the image in each iteration using Backward Euler time-stepping and

Minimum Residual Method (MINRES) in MATLAB. Likewise, we propose a gradient-

based sharpness metric for our text-images, which also serves as an objective function

for our Nelder-Mead optimizer. Our result shows that our proposed model is accurate in

enhancing text images and predicting the unknown value of the blurring kernel for automatic

sharpening. Numerical results show that the proposed objective sharpness measure coincide

with the subjective sharpness of the enhanced image.

Key Words: Anisotropic diffusion, Denoising, Deblurring, Forward-Backward-Forward
Diffusion, Text Images, Nelder-Mead Optimization
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Chapter 1

Introduction

Image processing is of wide interest for various applications and image enhancement 
techniques such as denoising, deblurring, encoding and image compression are widely 
used for this purpose. Denoising and deblurring are two important techniques for image 
enhancement as they deal with the noise and focus of images which arise regularly in 
everyday photography and imagery. Noise in an image is visually characterized as the 
image appearing “grainy”, where there is a small oscillation in color intensity or pixel value. 
Denoising is the process of removing this grainy characteristic from the image. Similarly, 
deblurring is the process of sharpening edges, where an edge is a region of an image 
characterized by a sudden change in pixel value [3]. In image processing, edges capture 
most image information. The Perona-Malik equation (PME) performs forward diffusion in 
time to achieve smoothing (denoising) and backward diffusion in time to achieve sharpening 
[2]. The PME was the first n onlinear d iffusion t echnique t hat i ncorporated a  forward-
backward diffusion for image enhancement allowing simultaneous denoising and deblurring. 
The PME is shown below:

ut = ∇ ·

[(
1

1+ k2|∇u|2

)
∇u

]
(1.1)

where k is the edge detection parameter and u is the image data.
However, one of the limitations of the PME is that a large value of the gradient for

backward diffusion can lead to an abrupt change in pixel value causing a “cartoonish”
effect known as indiscriminate singularity formation, or “staircasing”. Also, PME is ill-
posed or theoretically unsound, meaning that the returned solution may not necessarily be
correct. This undesirable phenomenon can be avoided by setting a bound for the gradient
to facilitate controlled diffusion [2]. This technique is called forward-backward-forward
diffusion because it performs backward diffusion only for a specified range of the gradient
and switches to forward diffusion if the gradient is too steep to prevent staircasing for
larger gradients. The Guidotti-Kim-Lambers (GKL) model that incorporates state-of-the-art
forward-backward-forward diffusion regime is shown below:

ut = ∇ ·

[(
1

1+ |∇u|2
+δ |∇u|p−2

)
∇u

]
(1.2)
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where δ and p are the regularization parameters and u represents the image data.
In our proposed model, we integrate the edge detection parameter (k) from Perona-Malik

equation and the regularization parameter δ and p from the Guidotti-Kim-Lambers model.
The integration of parameters from both equation is believed to provide more control over
the diffusion process. The proposed model is shown below:

ut = ∇ ·

[(
1

1+ k2|∇u|2
+δ |∇u|p−2

)
∇u

]
(1.3)

where k is the edge detection parameter from PME and δ is the regularization parameters
from GKL model and u represents the image data. The parameter regularization parameter
p used originally in GKL model is held constant in our model, where p = 1.05.

Among the various experiments performed using the models in (1.1) and (1.2), including
the satellite-based image enhancement by Guidotti-Kim-Lambers, the prior methods have
focused on general images without text. In our model, we want to particularly look at images
containing text as the enhancement process can significantly differ for text-based images.
Text-based images also contain distinct and prominent edges that are not typical to scene-
based images. Likewise, text-based image processing has wide applications in forensics and
law enforcement including license plate detection and hand-writing recognition and hence
the necessity to enhance text images is inevitable.

Our primary goal of the project is to detect the value of the blurring kernel for automatic
sharpening of blurred text-images. In order to solve our system in (3.12) we discretize
the PDE in space to obtain a system of ordinary differential equations. Then, we use
the Backward Euler scheme to time-discretize the system of ODEs. The resulting time-
discretized system obtained from Backward Euler is solved using the Minimum Residual
Method (MINRES). The system solved by MINRES enhances the image in each iteration.
We make use of Nelder-Mead optimization, a derivative-free optimization technique, to
optimize two regularization parameters and one blurring kernel parameter. The finished
version of this project is a MATLAB program that takes an image as input and enhances the
input image by sharpening the edges of the image and automatically detecting the unknown
initial value of the blurring kernel.
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Chapter 2

Literature Review

The accurate and consistent quantification of image sharpness is a very useful measure 
for various applications in image processing including automatic denoising and deblurring. 
Devising an accurate and consistent image sharpness measure that works for every image is 
one of the fundamental challenges in image processing. Various image sharpness algorithms 
have been used to compute the sharpness of an image, but each of these algorithms seems to 
be best suited for certain types of images or applications. Image sharpness can broadly be 
assessed in two ways. One way to assess the image quality is subjectively through human 
opinion and judgement. However, subjective assessment can lead to biased judgement 
as it is limited to human vision. Another class of technique is the assessment of image 
quality objectively through an algorithm. To become consistent in assessment for image 
quality sharpness, it is necessary that the objective measure also agree with general human 
judgement. The three types of techniques for objective image sharpness assessment are 
full-reference, reduced-reference and no-reference image quality assessment [6, 7]. The full-
reference image quality assessment compares a known reference image with a blurred image. 
A survey on full-reference image quality assessment is best described in [9]. Likewise, 
reduced-reference image quality assessment is a better practical approach to accessing the 
image quality via partial image information (such as the edges) regarding the reference 
image. Finally, no-reference image quality assessment provides a way to access image 
quality without a need for a reference image or any of its extracted features. A no-reference 
image quality assessment is highly sought after in image processing because in many 
practical applications, very little to no information about the original image is known.

One of the image sharpness measures as outlined by De and Masilamani in [6] for 
computing sharpness of blurred images deals with counting the number of frequency compo-
nents that are above the threshold frequency value, which can be classified as non-reference 
image quality assessment technique for image quality assessment as discussed above. Some 
other image assessment measures include the Kurtosis metric [10, 11], derivative-based 
metric [12], histogram threshold metric [13], frequency threshold metric [13] and variance 
metric [14]. A full review of these no-reference image quality assessment metric is also 
best discussed in [8]. Like deblurring, image denoising is fundamental to enhancing images. 
Methods such as total variation (TV) aim at minimization of the total noise present in an 
image [15, 3]
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Some image sharpness quantifiers make use of edge detection and feature extraction
from images. One of the popular edge detection techniques known as Canny Edge Detection
[5] was experimented with in our project but did not seem viable given the nature of our
project. In fact, the Canny Edge Detection was very good at detecting edges of both blurred
and sharp images and hence could not identify subtle differences in edge quantification
between a blurry and sharp image.

Another technique that was experimented with for this project for image quality assess-
ment was the Fast Fourier Transform (FFT) in which the signal in the spatial-domain was
converted into the frequency domain. However, when comparing the FFT signals of blur
and sharp image, no significant changes in the frequency component signals were seen,
making it difficult to quantify image sharpness. Accurate image sharpness quantification
is an integral part of our project in order to optimize sharpness of an image with a set of
constraints. As a result, a gradient-based technique served best for this purpose which has
been discussed in detail in Chapter 3.

4



Chapter 3 

Methodology

3.1. Software Model

Figure 3.1: Software Design Model

Our software model takes a text image as input with square dimensions, which is fed
into the PDE solver. The PDE solver consists of four major components–namely, Blurring
Kernel, PDE Discretizer, Time-Marcher and Sharpness. The Blurring Kernel module applies
Gaussian Blur to the image with a chosen value of c that controls the amount of blur to
be applied to the image. The lower the value of c, the greater is the blurring effect. The
PDE Discretizer module is responsible for spatial discretization of the PDE using a finite-
difference approximation scheme resulting in a system of ODEs. In the Time-Marcher
module, the system of equations arising from Backward Euler is solved iteratively using
MINRES. The sharpness module computes the sharpness of the image using a gradient-
based method. The image sharpness that is returned from the PDE solver module is then fed
into the Nelder-Mead optimization which first optimizes over the blurring kernel parameter
c and then performs a two-dimensional search for the optimized values of the k and δ

variables for maximized sharpness.

5



3.2. Reading the Image

Our method reads a square text image in MATLAB, which is stored in a square matrix
as double-precision floating-point numbers. Each entry of the square matrix corresponds
to the pixel value of the image that ranges over a 0 to 255 color scale, where 0 indicates
black color and 255 indicates white color. Since the image is a color image and contains
Red-Green-Blue (RGB) channels, we take a slice of the red channel to process our image
data. The user can choose to look at any segment of the image by specifying a range of
rows and columns within the image dimensions. However, the only constraint we impose is
that user must choose an even square dimension matrix which makes it easier to solve our
system. It should be noted that requiring a square segment is not an essential feature of the
method, but a convenience for implementation and exposition.

Once the 1-channel slicing of the image data is obtained, we reshape our matrix into
a vector by converting columns of data into one single column. This vector serves as our
initial data u0 at time t = 0.

3.3. Discretization of PDE

As discussed earlier, the Discretizer module is responsible for the spatial discretization
of the PDE. The first step towards discretization begins by forming a 1-D differentiation
matrix with periodic boundary conditions. The entries of the 1-D differenciation matrix
come from the finite-difference approximation scheme shown below:

∂u
∂x

=
ui+1−ui

∆x
(3.1)

where i= 1,2,3, ...,N represents the ith grid point. Using our finite-difference approximation
scheme for our first-order differential operator above, we create an N×N forward difference
Toeplitz matrix with −1 on the main diagonal and 1 on the super diagonal. Additionally,
the (N,1) entry of the matrix is also set to 1 to account for the periodic boundary condition.
The 1-D forward difference matrix is shown below:

6



D+ =
1

∆x



−1 1 0 · · · · · · 0
0 −1 1 0 · · · 0
... . . . . . . . . . . . . ...
... . . . . . . . . . 0

0 . . . . . . 1
1 0 · · · · · · 0 −1


In a similar way, we construct the 1-D backward-differentiation matrix and 1-D centered

differentiation matrix using the following relations:

D− =−
(
D+
)T (3.2)

DC =
1
2
(
D++D−

)
(3.3)

where D− is the backward differentiation matrix, D+ is the forward differentiation matrix,
and DC is the centered differentiation matrix. These 1-D differentiation matrices can be
used to construct 2-D differentiation matrices using the following relations:

Dx
+ = D+⊗ I

Dx
− = D−⊗ I

Dy
+ = I⊗D+

Dy
− = I⊗D−

(3.4)

where Dx
+ is the forward differentiation matrix with respect to x, Dx

− is the backward
differentiation matrix with respect to x, Dy

+ is the forward differentiation matrix with
respect to y, Dy

− is the backward differentiation matrix with respect to y, and I is the identity
matrix. The operation ⊗ symbolizes Kronecker product between two matrices.

The 2-D differentiation matrices are useful in the discretization of the PDE model. Let
us begin by reiterating our PDE model:

ut = ∇ ·

[(
1

1+ k2|∇u|2
+δ |∇u|p−2

)
∇u

]
(3.5)

The PDE above can be re-written in the form below:

ut = ∇ · (g(u)∇u) (3.6)

7



where g(u) is the nonlinear coefficient of the PDE given by:

g(u) =
1

1+ k2(u2
x +u2

y)
+δ (u2

x +u2
y)

p−2
2 (3.7)

where ux and uy are given by the centered differentiation matrix (DC
x ) with respect to x and

centered differentiation matrix (DC
y ) with respect to y respectively as shown below:

ux = DC
x u (3.8)

uy = DC
y u (3.9)

Our goal is to convert the PDE, which is a function of three variables in x, y and t into a
function of one variable in t using the finite-difference approximation scheme. This yields a
system of ordinary differentiation equations (ODEs) as a result of the discretization at each
grid point. The resulting system of ODEs can be expressed in the form below:

~u′ = [A(~u)]~u (3.10)

where A is the symmetric positive semi-definite matrix given by:

A = Dx
+
(
G(~u)Dx

−)+Dy
+
(
G(~u)Dy

−) (3.11)

and G is the diagonal matrix containing the coefficients g(u) evaluated at each grid point.

3.4. Backward Euler and Minimum Residual (MINRES) Method

After we discretize our PDE in space and obtain the system of ODEs, we use an
implicit time-stepping method such as Backward Euler to solve this system. This is because
explicit methods are usually not practical for solving the diffusion equation because of the
limitations that they impose on the time-step. A general Backward Euler scheme used in
time discretization of the ODE is shown below:

~un+1 =~un +∆tA(~un)~un+1 (3.12)

(I−∆tA)~un+1 =~un (3.13)

where un represents the solution at the current time-step and un+1 represents the solution at
the next time-step.

In order to aid us in detecting the unknown value of the blurring kernel, we use a fidelity
term in our model that includes the effect of our blurring kernel. This model with added
fidelity term is shown below:

8



ut = ∇ ·

[(
1

1+ k2|∇u|2
+δ |∇u|p−2

)
∇u

]
+λK′(uo−Ku) (3.14)

where K is the Gaussian blurring operator, K′ is the adjoint operator, λ is the scaling
parameter and uo is the original blurred image. Since Gaussian blur is symmetric, K = K′.

This can be proven below:

Theorem 1. Let g(x) be a function of x, f (y) be a function of y, k(x,y) be a blurring function
of x and y and k′(x,y) be the adjoint of k(x,y). If k(x,y) = ec‖x−y‖2

, then k(x,y) =k′(x,y).

Proof.

< f ,kg >=
∫

f (y)
∫

k(x,y)g(x) dx dy

=
∫ ∫

f (y)k(x,y)g(x) dx dy

=
∫

g(x)
∫

f (y)k(x,y) dy dx

=
∫

g(x)
∫

f (y)ec‖x−y‖2
dy dx

=
∫

g(x)
∫

f (y)ec‖y−x‖2
dy dx

=
∫

g(x)
∫

f (y)k(y,x) dy dx

=< g,k f >

(3.15)

But, < f ,kg >=< g,k′ f > by definition of k′. So, k = k′

As a result of the added fidelity term in our model, we derive a variant of the generalized
implicit backward Euler scheme that caters to our model:

~ut =A~u+λk′(uo− ku)

~un+1−~un

∆t
=A~un+1 +λk′(uo− k~un)

~un+1−∆tA~un+1 =~un +λ∆tk′(uo− k~un)

(I−∆tA)~un+1 =~un +λ∆tk′(uo− k~un)

(3.16)

We then use the Minimum Residual Method (MINRES) in MATLAB to solve our time
discretized system in (3.16). MINRES solves a least squares problem in each iteration to
find a minimum norm residual solution for the system. The description on how MINRES
solves this problem is shown below:

~x(k) =~x(0)+~y(k) (3.17)

9



Here,~y(k) ∈ K(~r(0), A, k)=span{~r(0), A~r(0), Ak−1~r(0) } is the Krylov Subspace such that
~r(0)=~b −A~x(0) is the initial residual and k is the dimension. In MINRES,~y(k) is chosen in
such a way that: ∥∥∥~r(k)∥∥∥

2
=
∥∥∥~b−A~x(k)

∥∥∥
2

(3.18)

is minimized over all~x(r) of the form (??), thereby solving a least squares problem in each
iteration. The choice for an iterative method such as MINRES is made in our solution
because methods such as Gaussian elimination with pivoting can destroy the sparse structure
of the matrix. Also, an iterative method has the advantage about the knowledge of the
solution from the previous time-step. These methods are not aiming for super high accuracy
and hence has much faster convergence. MINRES is also a better choice compared to slower
converging stationary iterative methods such as Jacobi, Gauss-Seidel and Successive Over-
Relaxation (SOR). Likewise, the choice for Backward Euler is made for time discretization
because it is unconditionally stable. The proof for its unconditional stability is shown below.
A general system of ODEs can be expressed as:

~y′ = A~y (3.19)

where A = QΛQT is a symmetric positive semi-definite matrix and QT Q = I = QQT because
Q is an orthogonal matrix. Let λ1,λ2, ...,λN be the eigenvalues. Then, multiplying both
sides of equation (3.19) by QT we get

QT~y′ = QT A~y

(QT~y)′ = QT AQ(QT~y)
~w′ = Λ~w [~w = (QT~y)]

w′i = λiwi

(3.20)

Then, multiplying the Backward Euler scheme in (3.12) by QT , we get

QT (~yn+1 =~yn +∆tA~yn+1)

~wn+1 = ~wn +∆tΛ~wn+1

~wi
n+1 = ~wi

n +∆tλiwn+1
i

wn+1
i =

1
1− ∆tλi

wn
i

(3.21)

Since λi < 0 it follows that
∣∣∣ 1

1− ∆tλi

∣∣∣6 1. Hence, the Backward Euler scheme is uncondi-
tionally stable.

10



3.5. Computing Image Sharpness

Our approach for computing sharpness is to use a gradient-based method. We compute
the gradient matrix of our image along each x and y direction separately. Then, we square
each corresponding entries of the gradient matrix, sum them, and take the square root. The
gradient-based approach is shown below:

G =
√

Gx
2 +Gy

2 (3.22)

where G is our gradient matrix, and Gx and Gy are the gradient matrix along the x and y

direction of the reshaped image matrix. Once our gradient matrix of the processed image is
defined, we are ready to compute the sharpness of the image as follows:

sharpness =
(−0.1∑

N
i=1 ∑

N
j=1 Gi j)

N
+ error (3.23)

where
error =

‖uo− ku‖
‖uo‖

(3.24)

such that u0 is the originally blurred image, and k is the blurring kernel applied to the
enhanced vectorized image u.

3.6. Nelder-Mead Optimization

The module that is responsible for automatic detection of the unknown value of the
blurring kernel including optimization of k and δ variables from the PDE model is Nelder-
Mead optimization. Nelder-Mead is a derivative-free optimization method and comes with
the advantage of not having to deal with computing the derivative of the objective function.
We attempt to maximize the sharpness of our image by minimizing the−sharpness function
shown in (3.23). Nelder-Mead optimization is based on the idea of a simplex, where Nelder-
Mead uses n+1 test points arranged as a simplex for an n-dimensional optimization space.
That is, to optimize two variables in 2-D space, Nelder-Mead uses three test points arranged
as a simplex (triangle) to extrapolate the behavior of the objective function measured at each
of the n+1 test points in order to find a new test-point and replace the oldest of these points
with the new test-point.

11



Chapter 4

Results

Having discussed the methods that were used in automatic detection of the parameter 
value of the blurring kernel in the previous section, we are ready to discuss the parameter 
choices used to run our numerical experiments and tabulate results obtained from several 
image runs. Let us begin by reiterating our model containing the fidelity term:

ut = ∇ ·

[(
1

1+ k2|∇u|2
+δ |∇u|p−2

)
∇u

]
+λK(c)′(uo−K(c)u) (4.1)

where K(c) is a function of blurring parameter c defined as a Gaussian blur:

K(i, j) = e

(−128wi j
N

)2

|c|

Wi j =
√
(W2x)2 +(W2y)2

[W2x,W2y] = meshgrid(w)

(4.2)

where, meshgrid returns matrices consisting of the x and y coordinates of all possible ordered
pairs of values in w, which contains the range of frequencies in the order that MATLAB
uses in its fft and ifft functions. As we already know the lower the value of the blurring
parameter c, the greater is the blurring effect and vice-versa. Since the blurring parameter c

is one of the most important variables that distorts (blurs) any given image in our experiment,
its automatic detection is crucial to automatic enhancement (sharpening). As a result, we
perform 1-D Nelder-Mead optimization on the blurring parameter c to guess the correct
value of the blurring parameter. The algorithm and constraints used to settle on its optimal
value is shown below:

c1← nelderMead( f (x, tstep, f ileName,rows,cols,blur_value),150)
c2← nelderMead( f (x, tstep, f ileName,rows,cols,blur_value),c1)
while relative_error(c1,c2)> 0.05 do

c1← c2
tstep1← tstep2
c2← nelderMead( f ,c1)

end while

Once the optimal value of the blurring parameter c is chosen by Nelder-Mead, our goal
is to focus on 2-D optimization of the edge detection parameter (k) and the regularization

12



parameter (δ ) in (4.1). The value of another regularization parameter (p) in (4.1) is held
constant at 1.05. The rationale for using this value of p comes from the fact that p ' 1 is
believed to be best at simultaneous denoising and deblurring as discussed in [2] and [4].
Likewise, the scaling parameter λ = 100 throughout our numerical experiments. Guidotti-
Kim-Lambers in their experiments for satellite image enhancement have used λ = 30. In
order to blur the original text image, two values of the blurring parameter c = 10 and c = 50
are used depending on the image and the amount of blur we want to apply. c = 10 was
chosen for most experiments because it applied a decent amount of Gaussian blur. Any other
values other than c = 10 and c = 50 can also be experimented with. However, it should be
noted that too much blurring can wreck the image and make the image recovery next to
impossible. Hence, the blurring value should be chosen cautiously.

Below, five different text-images that were used in the experimentation of our model
is shown. The images are arranged in the following order: original image, blurred image
and enhanced image. Sharpness values for each of these images have also been computed
and their relative sharpness error given by the sharpness error metric in (3.24) is reported in
Table 4.2

Figure 4.1: Original Reference Image with Sharpness Value=32.9512
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Figure 4.2: Blurred Reference Image with Sharpness Value=1.2305

Figure 4.3: Enhanced Image with Sharpness Value=3.4076
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Figure 4.4: Original Reference Image with Sharpness Value=13.5801

Figure 4.5: Blurred Reference Image with Sharpness Value=2.8709
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Figure 4.6: Enhanced Image with Sharpness Value=5.3651

Figure 4.7: Original Reference Image with Sharpness Value=12.6909
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Figure 4.8: Blurred Reference Image with Sharpness Value=1.6172

Figure 4.9: Enhanced Image with Sharpness Value=5.8053
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Figure 4.10: Original Reference Image with Sharpness Value=32.9244

Figure 4.11: Blurred Reference Image with Sharpness Value=1.9340
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Figure 4.12: Enhanced Image with Sharpness Value=3.9185

Figure 4.13: Original Reference Image with Sharpness Value=22.5562
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Figure 4.14: Blurred Reference Image with Sharpness Value=3.0452

Figure 4.15: Enhanced Image with Sharpness Value=6.7778
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For each enhanced image above, their edges are more distinct than their blurred version.
Although it is not possible to recover the original image as it is, the model is very accurate
in identifying edges and enhancing image to some degree.

The table below summarizes the initial parametric value choices for k, δ , and c along
with the optimizer-guessed automatic parametric value choices.

Figure Initial k Optimal k Initial d Optimal d Actual c Predicted c
4.3 0.001 -0.2026 0.1 -1.9759 10 11.0764
4.6 0.001 0.3297 0.1 0.0978 10 19.2430
4.9 0.001 0.3145 0.1 -0.0002 50 31.4934
4.12 0.001 1.1745 0.1 0.9189 10 -12.3092
4.15 0.001 1.4106 0.1 0.4139 10 13.8149

Table 4.1: Table summarizing the initial guess for k and δ provided to the optimizer (initial
k and δ ), including optimizer-guessed optimal values of k and δ (optimal k and δ ) for best
possible enhancement. The last two columns consists of actual values of the blurring kernel
c as compared to the optimizer-predicted values.

Likewise, the table below contains information related to solving the system during each
time-step including the total number of time-steps required to achieve the accuracy.

Figure Sharpness MINRES MINRES Time-Steps Sharpness
Value Iterations Tolerance Error

4.3 3.4076 3 10−6 10 0.4813
4.6 5.2509 21 10−6 10 0.2096
4.9 5.8053 2 10−6 10 0.3892
4.12 3.9185 24 10−6 10 0.3663
4.15 6.7778 17 10−6 10 0.1457

Table 4.2: Table summarizing the sharpness value of the enhanced image, MINRES iterations
required to solve the system, MINRES tolerance used for solving the system, total number
of time steps before arriving at maximum sharpness and relative sharpness error of the
enhanced image.

Although the number of time-steps appear to be fixed in Table 4.2, it is important to
note that the constraint actually forces the iteration to run for at least 10 time-steps until a
diminished sharpness value is encountered. The reason for choosing a minimum value for
the time-step is to avoid the algorithm to prematurely land at compromised image sharpness.
The constraint that is imposed for solving the system is shown below:

while (number_o f _timesteps > 10 or new_sharpness < old_sharpness) do
PDE Solver
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end while

It may seem that the while loop runs indefinitely if the sharpness keeps increasing.
However, it is important to note that our model prevents arbitrary growth of sharpness with
the guaranteed prevention of staircasing. This advantage comes from the regularization term
that accounts for the forward-backward-forward diffusion. That is, when image becomes
arbitrarily sharp, the model switches from deblurring (backward diffusion) to denoising
(forward diffusion). However, one of the limitations to this constraint is that the sharpness
metrics computed at smaller time-steps (less than 10) are discarded because the algorithm is
allowed to run for a minimum of 10 time-steps.
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Chapter 5

Conclusion

Through numerical experiments, we have seen that our proposed sharpness metric agrees 
with the enhanced images. The result shows that the sharpness metric is highest for the 
original reference image and least for the blurred image. The sharpness value for the 
enhanced image is between the original reference image and the blurred image. This means 
that the proposed objective metric agrees with the subjective assessment. Although the initial 
blurring value and the optimizer-guessed value do not perfectly coincide, the prediction of c 
is still produced closer to the true blur value. The automatic method certainly comes with 
the cost of having to run the Nelder-Mead optimizer until the convergence of the parameters 
k, δ and c. Likewise, the proposed model is effective in enhancing (sharpening) text-based 
images, thereby agreeing to our desired goal. However, one of the challenges during the 
2-D optimization of k and δ was that the 2-D Nelder-Mead method failed to converge. 
This problem was solved by changing the simultaneous 2-D Nelder-Mead optimization into 
multi-stage 1-D Nelder-Mead optimization.

Future research direction for this project could deal with experimentation with other 
optimization techniques to compare if they are faster than Nelder-Mead. Likewsie, it might 
also be worth investigating if fewer time steps are possible to obtain an enhanced image of 
similar sharpness.
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Appendix A 

MATLAB Code

A.0.1 Driver Function

1 function [c]=multi_iterNelMead
2

3 %Image Specifications
4 fileName='test4.jpg';
5 rows=1:300;
6 cols=201:500;
7 blur_value=50;
8

9 %Reading the Image
10 A=double(imread(fileName));
11 A2=A(rows,cols,1);
12 [p,q]=size(A2);
13 B2=blurimage(A2,size(A2),blur_value);
14

15 %Nelder-Mead Optimization for c
16 tstep1=4;
17 tstep2=10;
18 c1=nelderMead(@(x)(r0(x,tstep1,fileName,rows,cols,blur_value)),150)
19 c2=nelderMead(@(x)(r0(x,tstep2,fileName,rows,cols,blur_value)),c1)
20 while abs((c1-c2)/c2)>0.05
21 c1=c2;
22 tstep1=tstep2;
23 tstep2=2*tstep2;
24 c2=nelderMead(@(x)(r0(x,tstep2,fileName,rows,cols,blur_value)),c1)
25 end
26

27 % Nelder-Mead Optimization for k and d
28 init_k=0.001;
29 init_Delta=0.1;
30 k=nelderMead(@(x)(r2(x,10,fileName,rows,cols,blur_value,c2)),init_k);
31 Delta=nelderMead(@(x)(r4(x,10,fileName,rows,cols,blur_value,c2,k)),
32 init_Delta);
33 c2
34 optimal_x=[k,Delta]
35 r3(optimal_x,c2,fileName,rows,cols,blur_value)
36

37 %Compute and Display the Sharpness of Original Image
38 [Gx, Gy]=gradient(A2);
39 S=sqrt(Gx.*Gx+Gy.*Gy);
40 ori_sharp=sum(sum(S))./(numel(Gx))
41

42
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43 %Compute and Display the Sharpness of Blurred Image
44 [Gx, Gy]=gradient(B2);
45 S=sqrt(Gx.*Gx+Gy.*Gy);
46 blur_sharp=sum(sum(S))./(numel(Gx))
47 disp('done')

A.0.2 PDE Solver

1 function [old_sharpness]=solvePDE(x,c,fileName,rows,cols,blur_value)
2

3 k=x(1);
4 Delta=x(2);
5 p0=1.05;
6 lambda=100;
7 if (lambda>1000)
8 sharpness=0;
9 return

10 end
11

12 %Reading the Image
13 A=double(imread(fileName));
14 A2=A(rows,cols,1);
15 [p,q]=size(A2);
16 N=p;
17 B2=blurimage(A2,size(A2),blur_value);
18

19 %Display Original Image
20 figure(1);
21 surf(A2(end:-1:1,:));
22 view(0,90);
23 title('Original Image')
24 shading flat;
25

26 %Convert matrix columns into a vector
27 Avector = reshape(A2',[],1);
28 Bvector = reshape(B2',[], 1);
29 u0=Bvector; % (u0 is solution at t=0)
30

31 %Forward Difference matrix (one-dimensional)
32 e=ones(N,1);
33 Dplus=spdiags([-e,e], [0,1], N, N);
34 Dplus(N,1)=1;
35 %Backward Difference matrix (one-dimensional)
36 Dminus=-(Dplus)';
37 %Centered Difference matrix (one-dimensional)
38 Dcenter=(Dplus+Dminus)/2;
39

40 sparseI=speye(N,N);
41

42 % Create n^2xn^2 Forward Difference wrt x,
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43 Dxplus=kron(Dplus, sparseI);
44 % Create n^2xn^2 Backward Difference wrt x,
45 Dxminus=kron(Dminus, sparseI);
46

47 % Forward Difference wrt y,
48 Dyplus=kron(sparseI, Dplus);
49 % Backward differentiation wrt y
50 Dyminus=kron(sparseI, Dminus);
51

52 % Centered Difference wrt x,
53 Dxcenter=kron(Dcenter, sparseI);
54 % Centered Difference wrt y
55 Dycenter=kron(sparseI, Dcenter);
56

57 %Display Blurred Image
58 u=u0;
59 mu=min(u);
60 MU=max(u);
61 u=(u-mu)*255/(MU-mu);
62 finalA=(finalA-mu)*255/(MU-mu);
63 figure(2);
64 surf(finalA(end:-1:1,:)');
65 title('Blurred Image');
66 view(180,90);
67 shading flat;
68

69 m_ind=0:p-1;
70 n_ind=0:q-1;
71 [m2,n2]=meshgrid(m_ind, n_ind);
72 lambd=-4*sin(m2*pi/p).^2-4*sin(n2*pi/p).^2;
73 lambda_reshape=reshape(lambd, numel(lambd), 1);
74 n=0;
75 sharpness=0;
76

77 %Backward Euler and MINRES
78 while (n<10 || sharpness>old_sharpness)%atleast 10 time-steps
79

80 ux=Dxcenter*u;
81 uy=Dycenter*u;
82 uxy=ux.^2+uy.^2;
83 uxy_updated=ux.^2+uy.^2;
84 for j=1:length(uxy_updated)
85 if (uxy_updated(j)==0)
86 uxy_updated(j)=0.0001; %if the value is zero, small non-zero
87 end
88 end
89

90 %PDE coefficients
91 gu=(1./(1+k^2*uxy)+abs(Delta)*(uxy_updated).^(p0-2)/2);
92 g0=mean(gu);
93 %construct a sparse diagonal matrix from the coeffients
94 G=spdiags(gu, 0, N^2, N^2);
95
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96 %symmetric positive semi-definite matrix A
97 A=Dxplus*G*Dxminus+Dyplus*G*Dyminus;
98

99

100 I=speye(N^2, N^2);
101 %var comes from Backward Euler Time-Stepping
102 var=I-dt*A;
103 %Error Metric
104 error=norm(u0-blurimage(u,[N,N],c))/norm(u0);
105 %Fidelity Term
106 rhs=(u+dt*lambda*blurimage(u0-blurimage(u,[N,N],c),[N,N],c));
107 %MINRES with preconditioner
108 [u_new,¬,¬,¬,RESVEC]=minres(var,rhs, 1e-6, 100, ...

@(b)mfun(b,g0,dt,lambda_reshape));
109 %Update the Image
110 u=u_new;
111 %Reshape image vector into matrix
112 finalA=reshape(u, N, N);
113

114 %Scaling
115 mu=min(u);
116 MU=max(u);
117 u_scaled=(u-mu)*255/(MU-mu);
118 finalA=reshape(u_scaled, N, N);
119

120 %Update Image Sharpness
121 [Gx, Gy]=gradient(finalA);
122 S=sqrt(Gx.*Gx+Gy.*Gy);
123 old_sharpness=sharpness;
124 sharpness=0.1*sum(sum(S))./(numel(Gx))
125 if (isnan(sharpness))
126 sharpness=0;
127 end
128 n=n+1;
129 end
130 iterations=n
131

132 %Display Enhanced Image
133 figure(3)
134 surf(finalA(end:-1:1,:)');
135 view(180,90);
136 title('Enhanced Image');
137 shading flat;
138 pause(0.1)
139

140 %Compute and Display Sharpness of Enhanced Image
141 [Gx, Gy]=gradient(finalA);
142 S=sqrt(Gx.*Gx+Gy.*Gy);
143 enh_sharpness=sum(sum(S))./(numel(Gx))
144 error
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