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Abstract

Model-driven technologies influence today’s software engineering more and more. Dur-
ing the last decade, a multitude of so-called meta models (or modeling languages) were
developed to lift the level of abstraction from textual programming languages to the more
conceptual level of models, which can be processed (e.g., by using model transformation,
model validation, or simulation), and from which code can be generated automatically.
Beside many benefits, which arose using this new technology, other drawbacks came up.
Especially, the multitude of domain-specific and complex meta models, the relationship
between different meta models, and unfamiliar design principles, still hamper effective
application of model-driven technologies. This situation, for example, becomes obvious
in automotive industry, where meta models, such as AUTOSAR, EAST-ADL, or TADL,
were developed to enable the effective design of different concerns in automotive soft-
ware development. Although, a lot of documentation in textual form is available, there is
a gap between informal documentation and formal meta-model specification. Especially,
matching complex meta models with the overwhelming number of documentation to ap-
ply meta models correctly proves sometimes difficult and causes a gap between research
and the application of new technologies in real industrial development projects.

Therefore, the basic idea behind this thesis is to provide an integrated process model,
which enables the execution and enactment of model-driven development processes in
form of an effective guidance system. On the one hand, this requires the extension of
conventional control-flow semantics of today’s software development processes, which
are modeled for management and simple documentation purposes only. On the other
hand, our approach integrates more detailed information about guidelines, roles, or work
products, which is normally distributed across different informal documents. We put all
these information into a comprehensive and computer-interpretable model, which is af-
terwards interpreted to guide developers” work automatically. Based on this, the process
model not only allows us to determine a sequence of actions, which have to be executed
to produce particular output, but it also enables us to generate new artifacts, such as
activity-specific editors to support respective development activities. This works as fol-
lows:

While generated editors can exactly provide developers with needed capabilities, using
an all-purpose standard editor allows for the application of all capabilities at any time
of the development process. Because of the increasing number of large meta models or
domain-specific languages, this could be a confusing task for most of the time. Therefore,
our approach proposes the generation editors, that restrict the capabilities and the avail-
able set of design elements, i.e., language elements of a meta model, to the situational
needs of a respective development activity only.

In addition, the process model links each development activity with an individual set of
computer-interpretable guidelines, which are relevant for the activity only, in contrast to
the global set of “constraints” or guidelines as used in standard editors. These guidelines
are evaluated in the context of a specific development activity and provide developers



with situational guidance information.

As the process model is interpreted and monitored all the time, we are enabled to log
all modeling actions. These logs are either used to improve the process afterwards in
doing conventional reviews, or to analyze these logs to derive traceability information at
process execution time, and to identify potential inconsistencies between work products.
This information is used to decide on the repetition of individual development activities
to correct the inconsistencies.

Finally, as it proves difficult to design complex process models for each project situa-
tion from scratch, we combined the general approach with process line engineering tech-
niques to enable reuse of already available information and to combine these information
with additional computer-interpretable design artifacts. Therefore, a so-called method
repository is used to store all interpretable development activities as variants for varia-
tion points designed in a reference process, which can be compared with the reference
product (aka. platform) as used in product line engineering. The final process is gen-
erated by matching project-specific requirements with available variants and combining
these variants with relevant variation points of the reference process.
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1 Introduction

In the past, organizations of the embedded sector, in particular, in the automotive do-
main, discovered the benefits of realizing more and more functionality in software in-
stead of hardware or mechanics. Due to lightweight, more favorable, and easy repeat-
able solutions, software becomes more and more important, and provides new opportu-
nities for innovative products. For example, within only 30 years, the number of soft-
ware in modern premium cars increased from 0 to more than 10.000.000 lines of code,
which are distributed across up to 70 Electronic Control Units (ECUs) to provide more
than 2000 individual functions exchanging up to 2500 signals between different bus sys-
tems [Bro06, Kes09]. That way, 90% of all innovations are driven by electronics and soft-
ware and 50-70% of the development costs of the software/hardware systems are soft-
ware costs in today’s vehicles [Bro06, HMG11].

This rapid change from hardware and mechanic development to software related
development activities strongly influences software engineering and causes new chal-
lenges. The increasing number of control units hosting a multitude of distributed soft-
ware functionality increases the complexity and efforts of system development [NSSLWO05].
In particular, cost, flexibility, extensibility, and integration efforts are changing the funda-
mental paradigms for the definition of large embedded architectures [FK06,.T09]. There-
fore, for efficient development of embedded systems, well defined processes, powerful
tools, and techniques must be provided. In order to meet these and other challenges, con-
ventional software development is more and more replaced by model based (or model
driven) approaches [HMG11].

The model based paradigm is not new for the software engineering area to conceptu-
alize information in the form of models, which are used as primary artifacts to raise the
level of abstraction at which developers create and evolve software [GSCT04]. An evo-
lution of this paradigm, is Model Driven Engineering (MDE) [B05], whereof approaches,
such as Model Driven Software Development (MDSD) [SVC06] or Object Management
Group (OMG)’s Model Driven Architecture (MDA) [OMGO03], are representatives from.
That model driven paradigm provides techniques to automate the propagation of do-
main information in the form of models between different abstraction levels, i.e., from a
high user-specific level down to the platform-specific, operational level. As a result, the
complexity of the software artifacts can be drastically reduced by separating concerns
and aspects of a system under development [HT06].
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CHAPTER 1: INTRODUCTION

Therefore, the advantages of creating and processing models to face the new chal-

lenges, which arise from growing complexity, were discovered by the embedded sector
and led to a range of initiatives to establish models. In the automotive sector, for ex-
ample, various projects, such as AUTomotive Open System ARchitecture (AUTOSAR),
TIMing MOdel - TOols (TIMMO), Model-based Analysis & Engineering of Novel Ar-
chitectures for Dependable Electric Vehicles (MAENAD), or Safe Automotive soFtware
architEcture (SAFE), aim at providing meta models, i.e., modeling languages, tools, and
other techniques, by which different concerns of system and software development can
be handled more efficiently. Additionally, to apply the new techniques in a correct man-
ner, a multitude of reference processes and documentation is another essential outcome
of these projects.
However, the powerfulness of developed modeling languages and the new ways of
thinking, hamper developers to keep track of the application of these new technologies.
Indeed, many reference processes and associated documentation are defined to provide
guidance, but the mostly informal explanations are often too complex and must be en-
abled by additional means.

Therefore, following Osterweil’s statement, that “software processes are software too”
[Ost87], this thesis introduces a new approach, which aims at an effective application of
computing power and model-driven technology to support the execution of develop-
ment processes. Although, the approach is applicable to different domains, this thesis
focuses on the model-driven development of embedded systems, and, in particular, of
automotive systems. This is due to a strong cooperation with our industrial partner from
automotive, that supports us in understanding and identifying challenges, which are rel-
evant in practice.

Therefore, the focus of this thesis is on how to provide developers with guidance
support in their daily work, which, in particular, means, that we face challenges, such as

e Provision of effective means to manage and to evolve process descriptions for the
situation at hand.

e Support of developers in designing sound process descriptions, which enable effec-
tive guidance.

e Support of the enactment and execution of sound process descriptions using com-
puter power.

e Provision of a continuous tool chain and environment.

The remainder of this chapter is organized as follows: In Section 1.1, we introduce
identified problems and challenges, which we will face in this thesis. The main contribu-
tions of this thesis are summarized in Section 1.2. Finally, we detail the structure of the
overall thesis in Section 1.3.

14



CHAPTER 1: INTRODUCTION

1.1 Problems and Challenges

This section describes concrete problems of using new paradigms in today’s embedded
systems development, which were initially identified in [Hon08] and discussed inten-
sively with our industrial partner. Based on this, we derive the different challenges,
which we face, when aiming at the guidance of developers of embedded systems using
innovative technologies.

Situational and Project-dependent Development Processes

Although, many reference processes are available for different application scenarios in
various domains, they can not be applied one to one to actual projects. Projects depend
on situational characteristics, such as customers, employees, or the product to be de-
veloped. Therefore, processes must be customized, i.e., tailored to meet actual circum-
stances. Furthermore, situational processes consist of various building blocks, which
represent information sources containing more or less information about how to conduct
particular tasks of the development. As many processes for even more situations are con-
ducted, as more building blocks become available and must be managed for conducting
and optimizing future projects.

Problems

Support for managed variability and situational configuration of process knowledge is a
critical precondition to enable flexible guidance based on a multitude of information.

e Out of the box processes are not applicable to match project-specific requirements
and process tailoring is a time-consuming and error-prone task, which requires
high expertise.

e Although, processes are defined to provide a general workflow of what has to be
realized, they do not consider support of how to conduct a particular task.

e Processes are generally perceived from an abstract business-oriented point of view
and do not consider the technical or operational level, which supports the develop-
ment, likewise.

Challenge 1

Provide a lightweight, easy to use framework, which enables the situational design of process de-
scriptions, which considers automation, reuse, adaptation, and evolution of existing and upcoming
process information.

Design of Sound Process Descriptions Enabling Automated Guidance

Normally, processes are only used as “paperware” documents, which are required to be
available for certification purposes or organizational reasons. Although, modern pro-
cess management systems are available to organize process knowledge, developers are
used to realize their tasks based on their skills and experiences. However, skills and

15



CHAPTER 1: INTRODUCTION

experiences of individuals, is only one part of effective development. A lot of informa-
tion, which would enhance the quality and efficiency of software development, results
from many parties, such as colleagues, inter- and intra-organizational research projects,
or academia. This knowledge, though, is mostly distributed across various information
sources and can not be used by developers in an efficient manner. This distribution of
information and the overwhelming number of mostly textual information sources, ham-
pers processes to be conducted and to exploit available knowledge, as defined by some
organization.

Problems

Software development guidance, which directly influences developers” work without
large efforts, requires a comprehensive, integrated, contextual view on available infor-
mation.

e Available information, such as specifications, documentation, guidelines, or best
practices is only informally available in form of, for example, natural language text,
and can not be processed automatically.

e Due to high-level process definitions, there is no support for the assignment of ac-
tivities and guidance on the concrete level, on which developers are working at
project runtime.

e Available information is integrated insufficiently with the process or, in particular,
with individual development activities, and can not be provided with developers
automatically.

Challenge 2

Enable the comprehensive design of processes and constituent parts, which incorporate various in-
formation sources in form of computer-interpretable contextual knowledge, that suits developers’
guidance needs and enables them to focus creative parts of their work.

Development Process Execution and Automated Guidance

Once developed, defined process descriptions and all associated information should di-
rectly influence the performance of actual work. However, software process models are
processed seldom, but used for documentation only. Additionally, error-prone and time-
consuming tasks, such as the validation of design guidelines or the appropriate usage of
modeling formalisms, change impact analysis across development artifacts, or the assign-
ment of individual development steps, are done manually or supported insufficiently.
Therefore, mechanisms are missing to bridge the gap between process documentation
and process execution on operational level, whereby the proper performance of processes
and the correct application of guidance information to real projects can be ensured. In
parallel, as many advantages as possible, which are associated with computer-supported
guidance of development processes, should be exploited.

16



CHAPTER 1: INTRODUCTION

Problems

Today’s software development processes are for documentation purposes, while the in-
formation encoded in these processes is used insufficiently. As a result, developers are
confronted with simple standard activities more than focusing essential and creative de-
velopment activities.

e There is a gap between process descriptions and current project performance.

e The coordination of tasks, which have to be conducted during a development pro-
cess, as well as, an appropriate application of information associated with a task
proves to be difficult.

e During the development, the change of intermediate products may cause unknown
or negative impacts on dependent products. Actually, such influences must be con-
sidered by developers themselves, which are not supported in an appropriate way.

e In order to prove the compliance with standards and regulations, the traceability
and processing of relevant intermediate products, such as documents or specifi-
cations, must be ensured. Actually, this is part of time-consuming manual tasks,
which are conducted without efficient computerized support.

Challenge 3

Enable the automated processing of development process design information, in order to guide de-
velopers through process activities, while providing contextual information and conducting gen-
eral administrative tasks, such as traceability and consistency management between artifacts,
automatically.

1.2 Objectives, Approach and Contributions

This section identifies objectives to deal with the problems and challenges in modern
software development processes, as outlined in Section 1.1. Therefore, we provide an
overview of identified objectives, as illustrated in Figure 1.1, and list the main contri-
butions of this thesis. To achieve these contributions, our approach follows the design-
science paradigm of information systems research [[IMPPR04], by creating new and inno-
vative artifacts to extend the boundaries of human and organizational capabilities.

Situational and Project-dependent Development Processes

Figure 1.1 depicts the design and situational configuration of development processes on
stakeholder-specific abstraction levels. On business level, abstract process descriptions
are (re-)used to be refined on technical level with automation support. On each level and
in between, appropriate information management is enabled by adequate techniques and
tools in order to overcome Challenge 1.

17
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Figure 1.1: Objectives overview

Objective 1

Enable a reuse-based and scalable management of project-specific development processes, that faces
the individual needs of business and technical experts in equal shares.

Contributions

To enable Situational and Project-dependent Development Processes, we developed the
following artifacts:

e We adopt the paradigm of Software Product Lines and Model Driven Software De-
velopment to software development process design in order to provide managed
variability and reuse capabilities with software processes on different abstraction
levels. The resulting software process line approach considers business-oriented
and technical process design needs, and is combined with techniques known from
the method engineering research area, in order to deal with the assembly of differ-
ent process-relevant information sources in a flexible way.

e For software development process tailoring, we provide a planning-based transfor-
mation between the stakeholder-specific abstractions, which uses situational char-
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acteristics of process constituent parts and feature modeling techniques, to bind
variabilities in a technically-enhanced, i.e., computer-interpretable, process.

e In order to enable and simplify the realization of a software development process
line, adequate tools and transformations are developed, and integrated into a pro-
totypical environment.

Design of Sound Process Descriptions Enabling Automated Guidance

As today’s process descriptions are mainly business-centered and for documentation
purposes, we provide means by which process information is complemented by addi-
tional computer-interpretable information on technical level. On that level, we provide a
sound control-flow semantics, which enables an automated assignment of activities, that
are associated with processable information models, which enable automated guidance
capabilities and the automation of time-consuming or error-prone standard activities to
overcome Challenge 2.

Objective 2

Close the gap between process models and other information sources in a way, that enables provi-
sion of appropriate information with specific activities and developers at project execution time.

Contributions

To enable the design of sound process descriptions, which allow automated guidance,
we developed the following artifacts:

e We introduce a new control-flow semantics for software development process mod-
els, which satisfies the flexible needs, which are required for the execution of cre-
ative software development activities.

e We combine method engineering techniques with an aspect-oriented mechanism,
by which process-related information can be complemented with additional rele-
vant information sources.

e We apply model-driven development techniques in order to integrate information
about the content of work products, tooling capabilities, and guidelines with pro-
cess information in computer-interpretable way.

Development Process Execution and Automated Guidance

Information, which is incorporated with software process design models, should influ-
ence the work of developers more efficiently on operational level to overcome Challenge
3. Therefore, means are provided to interpret that information automatically. This con-
cerns the generation of process-enabling tools from process models, the interpretation of
workflow models for the assignment of development activities and contextual informa-
tion, as well as, the analysis of monitored runtime information for efficient development
process management.
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Objective 3

Close the gap between process descriptions on design level and current process execution on opera-
tional level, and exploit additional benefits, which come from computer-interpretable development
processes.

Contributions

To enable development process execution and automated guidance, we developed the
following artifacts:

e Software development process information is made explicit for developers by the
means of a prototypically implemented workflow interpreter, that enables a flex-
ible, model-driven workflow management in form of the assignment of activities,
associated Computer-aided Software Engineering (CASE) tools, relevant guidelines
and other contextual information.

e We develop a model-driven CASE tool generator, which uses software process
model information in order to provide activity-specific editor capabilities.

e We develop a model-to-model transformation in order to provide modeled guide-
lines with a translational semantics, which enables them to be ensured in the con-
text of respective development activities, as defined by the process model.

e We develop a mechanism, by which work product-specific process model infor-
mation is used to assign performed modeling activities and affected design infor-
mation with work products at process runtime. By using monitored information,
enhanced workflow management based on change impact analysis is introduced to
avoid inconsistencies between artifacts.

Overall Objective

In order to efficiently support developers in their daily work, our overall objective is
to provide a comprehensive approach, which faces all challenges within one integrated
environment. Therefore, we have to align all abstraction levels from business to tech-
nical down to the operational level with appropriate tool support. Secondly, since we
aim at facing the challenges, which arise from model-driven technologies in the embed-
ded sector, we particularly have to provide developers with support for the appropriate
application of that paradigm at project runtime. Therefore, we aim at the provision of rel-
evant information for product development in form of domain-specific languages, which
are restricted to process-relevant needs, i.e., we aim at a process-centric domain-specific
language.

1.3 Outline

The overall structure of this thesis is illustrated in Figure 1.2, whereby the arrows indicate
a suggested reading sequence. Readers, which are familiar with the technical background
may skip chapter 2 or parts of it. While chapter 4 and chapter 5 are strongly related to
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each other and should be read in sequence, chapter 3 can be read separately. After the
main parts of our approach are described, they are evaluated in chapter 6 and compared
in detail with related work in chapter 7. Finally, chapter 8 concludes our thesis by sum-
marizing the contributions and providing an outlook for further research.

\/ Chapter 1: Introduction >
Background /
( Chapter 2: Foundations )
Principles ¢
and Design Support /
v [ Chapter 4: Computational Method Engineering
Chapter 3: Software Process Line Engineering ¢
‘/ Chapter 5: Method-driven Guidance of
Development Processes
I
e -
( Chapter 6: Evaluation
Realization and
Evaluation ¢
e
( Chapter 7: Related Work
_ \ 4
Ve

( Chapter 7: Conclusion and Outlook >

Figure 1.2: Overview about the chapters of this thesis

Chapter 1 provides an introduction and motivates our thesis. It details our aimed
application environment, for which we identified problems and challenges. Based on
that, we derive objectives to be faced in this thesis and list our contributions.

Chapter 2 first describes the actual research activities in the automotive industry, as
an reasonable representative of the embedded software development, to sketch a pic-
ture of upcoming challenges. Subsequently, it provides necessary background informa-
tion about technologies and research areas, which are relevant to this thesis. Thereby,
the model-driven engineering paradigm, business process management technologies,
method engineering, and software product lines are described.

Chapter 3 describes our software process line approach to overcome the complexity of
process-related information management on stakeholder-specific abstraction layers and
situational tailoring. We introduce a methodology for setting up and managing a process
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line. We further discuss, how situational processes can be derived from the process line
using a planning based approach.

Chapter 4 details the technical design of software development processes. Therefore,
we first identify requirements, which must be met by such a model, before we describe
developed meta models and other information, to complement process models with rele-
vant information, which is sufficient to our requirements. Additionally, we introduce an
innovative control-flow semantics to meet an identified need of flexible workflow man-
agement.

Chapter 5 details the realization of technical software process models on operational
level. Therefore, we describe how individual design information on technical level is
interpreted or transformed to achieve relevant means, which supports the guidance of
developers at project runtime.

Chapter 6 provides an overview about realization and implementation of our ap-
proach and evaluates the approach by different means.

Chapter 7 presents in detail different work, which is related to our approach. Thereby,
we discuss characteristics of individual approaches and compare their advantages and
disadvantages with respect to our approach.

Chapter 8 summarizes our contributions and concludes with an outlook on future
research possibilities, that can be continued based on the results of this thesis.
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2 Foundations

To overcome the complexity of development projects a lot of standards, frameworks,
and guidelines were developed in the past. For example, the V-Model XT [FHKS09]
or maturity models, such as Capability Maturity Model Integration (CMMI) [ACTO08]
or Software Process Improvement and Capability Determination (SPICE) [Dor93], of-
fer well documented process references. Additionally, there are cross-domain de facto
standards, such as Unified Modeling Language (UML) [SB07], Systems Modeling Lan-
guage (SysML) [OMGO8b], or Advancing Traffic Efficiency and Safety through Software
Technology (EAST-ADL) [ATE08] serving as design standards, which integrate several
domain specific information models on the product side. Moreover, domain specific
standards, such as AUTOSAR [AUT12] aim on simplification of information exchange,
collaboration, and integration. Other standards, such as XML Metadata Interchange
(XMI) [OMGO7] or STEP [ISO02], support tool interoperability by common data exchange
formats.

On the other side, Situational Method Engineering (SME) [SW94, Har97a, BSH98, MRO05,
SHKO09] is a discipline, which provides strategies and techniques for building situational
methods and processes following the above standards, while considering special require-
ments on individual products, domain specific processes, disciplines, and other required
resources. Contrasting SME, which enables the customization of methods and processes,
Product Line Engineering [CNO1, PBV05, CAF04, Fam05] enables customization of, e.g.,
software products, based on commonalities and variabilities. By combining SME with
Product Line Engineering to Process Line Engineering, where a process line of simi-
lar processes uses a common factory, that assembles and configures parts designed to
be reused across the varying development processes in the process line, highly tailored
processes can be generated to enable realization of above standards, frameworks, and
guidelines best. The development processes can be modeled using standard process def-
inition tools and further refined by computer-interpretable information to enable auto-
mated guidance, traceability, activity based validation, and best practice capabilities.
This section presents the necessary background on technologies used in the context of
our approach, namely Model-driven Engineering, Process Management, Method Engi-
neering, as well as Product Lines. However, before detailing this research areas, we first
provide insights to current research initiatives of the automotive sector, to sketch a pic-
ture of current challenges motivating our approach.
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2.1 Automotive Modeling Initiatives

This thesis focuses on the improvement of model-driven engineering processes and was
particularly motivated from the challenges in the automotive software development sec-
tor. This domain is influenced by various initiatives, standards, and specifications, and
the following introduces the most relevant ones to better understand faced challenges
and the examples used in the subsequent chapters.

2.1.1 AUTOSAR

Automotive software development is characterized by a widespread landscape of dif-
ferent Original Equipment Manufacturers (OEMs) and suppliers. A global distributed
development of components, as well as, a missing standard for development leads to in-
dividual solutions of different suppliers. However, individually created solutions are not
able to interact with other components or they are hard to be integrated into one vehicle
in a first attempt. Furthermore, the exchange or the upgrading of components turned out
to be difficult.

Having these problems in mind, an initiative called AUTOSAR [AUT12] was founded
in 2003 to establish a standard modular software infrastructure for application and ba-
sic software. This enables exchanging parts of the system’s software and describing an
embedded automotive system on a technical level close to implementation [RHERO7].
The standard allows to describe facets of the software and the hardware of an embedded
automotive system by a common format, which is defined in form of a meta model.
AUTOSAR enables modularity, scalability, transferability and re-usability of software
among projects, variants, suppliers, customers, etc. In general, the main objectives of
AUTOSAR are:

e to manage increasing Electric/Electronic (E/E) complexity associated with growth
in functional scope

e to improve flexibility for product modification, upgrade and update
e to improve scalability of solutions within and across product lines

e to improve quality and reliability of E/E systems

e to enable detection of errors in early design phases

To reach these objectives and in order to control complexity at the same time, AUTOSAR
defines several self-contained description documents. These documents precisely de-
scribe individual parts of the architecture and affect relevant properties of a general com-
ponent based system. Dependencies between these descriptions, as well as, a form of
guide line for building these documents are described by the AUTOSAR methodology.
The descriptions themselves, i.e., the language and rules for building specifications, are
defined by AUTOSAR by the means of a meta model. The AUTOSAR architecture, the
methodology, and the meta model are discussed more closely below.
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2.1.1.1 AUTOSAR Architecture
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Figure 2.1: AUTOSAR refined layered software architecture from [AUT12]

Figure 2.1 depicts the software architecture specified by AUTOSAR. It is a layered
and component based architecture. Above the concrete hardware of micro-controllers or
ECUs, AUTOSAR specifies three Abstraction Layers: Basic Software Layer, AUTOSAR
Runtime Environment (RTE) and Application Layer.

The Basic Software Layer, which is situated below the AUTOSAR Runtime Environ-
ment, abstracts from hardware and provides services to AUTOSAR Software Compo-
nents by standardized and ECU specific software components. To enable exchangeability
of services and for customization of different supplier specific ECUs, the Basic Software
Layer is further detailed into three abstraction layers (Service layer, ECU Abstraction
Layer, Microcontroller Abstraction Layer), plus the possibility to implement Complex
Device Driver, which cannot be mapped into a single layer. Figure 2.1 shows that there
are different abstraction layer stacks, whereas each stack stands for an individual func-
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Figure 2.2: Basic AUTOSAR Approach from [AUT12]

tion, such as memory, communication, I/O or device driver functionality.

The next level of the AUTOSAR architecture is the RTE layer. This layer is realized
twofold: As RTE and as Virtual Functional Bus (VFB). The RTE realizes the VFB on a con-
crete ECU and is explicitly generated for each ECU, as depicted in Figure 2.2. The figure
shows the relation between VFB and RTE aligned with the basic AUTOSAR approach.
In order to fulfill the goal of relocatability, AUTOSAR Software Components are imple-
mented independently from the underlying hardware. This independence is achieved by
providing the VFB. The VFB provides a virtual hardware, mapping independent system
integration, and abstraction of the AUTOSAR Software Components interconnections.
Hence, communication between different software components and between software
components and their environment (e.g., hardware driver, operating system, services of
the basic software layer, etc. ) can be specified independently of any underlying hard-
ware (e.g., BUS systems or microcontrollers). Thereby, communication is realized via
standardized AUTOSAR interfaces, which encapsulate each component. The interfaces
enable a much earlier integration of AUTOSAR Software Components.

Upside the RTE the Application Layer contains application software components. Ap-
plication software components use the services of the Basic Software Layer and commu-
nicate with other components over the RTE or VFB exclusively.
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2.1.1.2 AUTOSAR Meta Model

In order to represent the information describing the aforementioned architecture and its
components via a standardized and machine readable format, AUTOSAR defines a meta
model according to the MDE paradigm, which enables additional advantages, such as
model transformation and automated code generation in the automotive software devel-
opment. AUTOSAR is defined as a Domain-specific Language (DSL), which satisfies spe-
cial requirements of an automotive system. By the means of its meta model, AUTOSAR
defines an abstract syntax, which provides all relevant language elements, which are nec-
essary for the specification of an automotive system. The meta model is described using
the UML, whereas a special UML Profile was created, which can be applied to almost
any UML tool in order to use the AUTOSAR syntax.

Furthermore, the meta model and its language elements are subdivided into pack-
ages, as depicted in Figure 2.3. The packages, called AUTOSAR Templates, describe
information about software components, ECU resources, or the general system. These
Templates are detailed in the following.

Figure 2.3 depicts an overview of the templates and relationships among them. The
template, which holds all parts together is the system template. As the name implies,
it describes properties of the entire system. Generally, a filled template defines the re-
lationship between the pure software view on the system and a physical system archi-
tecture with networked ECU instances. By means of the system template, five major ele-
ments can be defined: Topology, Software, Communication, Mapping and Mapping Con-
straints. The topology part of the system template describes the physical System Topol-
ogy of a vehicle modeled in AUTOSAR. This is formed by a number of so called ECU
instances which are interconnected to each other in order to form ensembles of ECUs.

Furthermore, the system template composes software elements, which are specified to
run on a particular ECU. Each software component is defined more closely by the means
of the software component template. In order to distribute the software over distributed
ECUs, the system template defines a so called system mapping which maps application
software components to certain ECUs. Beyond the software to ECU mappings the sys-
tem mapping also maps the data exchange between software component signals, as well
as, the way a signal should take between software components. However, the system
mapping also contains further relevant mappings and elements to describe the commu-
nication using signals, frames and PDUs, which are explained more closely in the system
template specification of AUTOSAR.

Another important template to describe an AUTOSAR system is the ECU resource
template. It provides syntax for describing and checking the consistency of characteris-
tics and features of automotive ECUs. This template is used to specify the hardware of
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Figure 2.3: AUTOSAR: Package Overview from [AUT12]

ECUs in detail. Hardware ports, memory, processing unit, peripherals and other elec-
tronics of an ECU are described by the means of the ECU resource template, which also
depends on the system template.

The above mentioned templates build the core of the meta model. The core is comple-
mented by other templates to describe other facets of an AUTOSAR system. They are
called generic structure, common structure, ECU description template, BSW module
template, and ECUC parameter def template. The dependencies among these docu-
ments or templates are prescribed by the AUTOSAR methodology, as described in the
following.

2.1.1.3 Methodology

The AUTOSAR methodology [AUT12] does not define a concrete proceeding or develop-
ment process. It defines a recommended process, which specifies when certain informa-
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tion has to be available for further processing. The process describes independently from
concrete responsibilities or a detailed schedule the dependencies between documents or
artifacts, which have to be produced. In this context, AUTOSAR uses the term work-
product for such an information object. Additionally, the methodology describes, which
work-products have to be brought together in order to generate new work-products out
of several input work-products by specified activities. These steps can partly be auto-
mated. The processing of several work-products passes different activities until, at last,
all necessary information, which describe the general system, are arranged by the means
of multiple descriptions. This means, that the methodology describes dependencies be-
tween different information for building a system and steps for generating new work-
products inside a workflow. The workflow spans all development phases, from system
design to executable ECU-specific code.

Figure 2.4 depicts a simplified view of the AUTOSAR methodology. While the blue
circles represent complex engineering tasks or generation steps, the yellow rectangles
represent the methodology’s main work-products. These work-products are specified
by the means of the AUTOSAR template components. Using a schema generator, XMI
format can automatically be generated from the meta model or rather from the model
itself. For this reason, AUTOSAR specifies so-called model persistence rules for XML to
enable the exchange of all models by the established standard Extensible Markup Lan-
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guage (XML). Further work products may be object code, header files or others. On
the other side, the arrows between work-products define process steps for transforming
or gathering of necessary information. Details on the AUTOSAR methodology, i.e., fur-
ther process steps, work-products, and dependencies, may be found in the AUTOSAR
Methodology specification [AUT12].

2.1.2 MAENAD

This section describes the MAENAD project, which aimed at the complementation of
AUTOSAR on system level and the refinement of a specific Architecture Description
Language (ADL) developed for the automotive domain. This ADL, called EAST-ADL,
has been developed by multiple agents in the automotive domain for several years, in-
cluding both OEMs and suppliers. In a previous version, EAST-ADL was developed
within the scope of the EAST-EEA ITEA project. Beyond the objective of EAST-ADL to
define a standardized Architecture Description Language for modeling all aspects of an
(automotive) system, it also targets documentation and a methodology. A resulting ar-
chitecture ensures interoperability between software and hardware to enable re-usage
and exchangeability of distributed components. The ITEA project finished 2004 and was
further developed within the ATESST, Advancing Traffic Efficiency and Safety through
Software Technology, IST-project. The current version of EAST-ADL is version 2.1 and
results from MAENAD, which was an FP7 project funded by the European Commission.

2.1.2.1 EAST-ADL Meta Model
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Figure 2.5: EAST-ADL Overview from [MAE12]
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EAST-ADL is an UML based solution and an UML profile captures the ADL in a XML
file. This enables using well-known tools for tool interaction and model exchange, as well
as, open use and standardization. While AUTOSAR focuses implementation-specific de-
tails on software level, EAST-ADL complements AUTOSAR on system level with aspects,
such as vehicle features, functions, requirements, variability, software components, hard-
ware components and communication. Therefore, EAST-ADL defines language elements
to specify characteristics of a system architecture, which can be classified into the follow-
ing main concerns:

¢ Requirements: The elements of EAST-ADL’s requirements language base on SysML
constructs and are used to specify two types of requirements: functional require-
ments, which focus on the “normal” functionality, that a system has to provide,
and quality requirements, which focus on non-functional properties of the system.

e Functional Abstraction: This part of the specification defines language constructs
to capture the functional decomposition and behavior of the embedded system and
the environment. The structural view of a model focuses on the static structure of
components of the system and its environment and their static relationships. This
includes the internal structure and external interfaces. Furthermore, EAST-ADL
provides an own simple algorithmic behavior model and enables to reference ex-
ternal defined behaviors, likewise. This makes it possible to reference behavior def-
initions, which may be specified by the means of other tools and/or mechanisms
(e.g., Statemate or Simulink).

e Behavior Constraints: the EAST-ADL enables the annotation of requirements, ap-
plication modes and functions, implementation and resource deployment, and anoma-
lies with different categories of behavior constraints to analyze the dependability
and performance of various system aspects.

e Timing Modeling: To specify the timing of automotive functions, EAST-ADL en-
ables the design of timing requirements and timing properties by the means of the
Timing Augmented Description Language (TADL), which was developed in the
TIMMO project, as detailed in the subsequent section.

¢ Functional Safety Modeling: Functional safety modeling is considered through-
out the architecture design process for developing a safety critical system, in com-
pliance with the Standard ISO 26262 [ISO10]. Therefore, EAST-ADL provides lan-
guage constructs for, e.g., vehicle-level hazard analysis and risk assessment, the
definition of safety goals and safety requirements, the Automotive Safety Integrity
Level (ASIL) decomposition and the error propagation.

e Verification and Validation: This area concerns the possibility to describe Testing
and Verification strategies or methods.

e Variability: Language elements of the variability package are used to enable the
description of various variants of architecture’s artifacts in, e.g., a product line.
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2.1.2.2 Methodology

Similar to AUTOSAR, EAST-ADL provides a methodology to guide the usage of the lan-
guage for the construction, validation, and reuse of models for automotive embedded
software, without considering a specific development process. As depicted in Figure 2.6,
the methodology defines a core part, which is complemented by extensions. The core part
describes the central activities in using a top-down approach: During the vehicle phase
external requirements are analyzed, before a technical feature model is constructed. The
technical feature model is used to derive the Functional AnalysisArchitecture during the
analysis phase. This is a logical representation of the system, which neglects the distinc-
tion between hardware or software. During the design phase the Functional AnalysisAr-
chitecture is refined into the FunctionalDesignArchitecture, which details sets of (struc-
tured) hardware and software components and their interfaces, a hardware architecture,
and a mapping from functional components to hardware or software. The implementa-
tion phase of EAST-ADL is mainly a reference to the concepts of AUTOSAR, to provide
an implementation and configuration of the final solution.

Each of these phases, is extended by validation and verification activities and a set
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Figure 2.6: EAST-ADL Methodology Overview from [MAE12]

of methodological extensions, such as Environment Modeling, Safety Assurance, Tim-
ing, Variability Modeling, or Behavior modeling. After the first version of EAST-ADL’s
methodology was defined using Software Process Engineering Metamodel (SPEM) to de-
fine a set of elementary work tasks, which produce a set of output artifacts from a set of
input artifacts, the current version was restructured to follow a Generic Methodology
Pattern, which splits each phase of the EAST-ADL core part and each relevant extension
into one extensible set of generic default activities.
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2.1.3 TIMMO-2-USE

TIMMO-2-USE stands for TIMing MOdel - TOols, algorithms, languages, methodology,
and USE cases and was an ITEA2 project, which started in October 2010 for a duration
of two years. The main objective of TIMOO-2-USE was the development of different
types of timing constraints for the design of distributed real-time automotive systems.
Beside that, the project focused on the development and validation of tools, algorithms,
languages, and a methodology, based on the results of its predecessor project TIMMO.

2.1.3.1 TADL Meta Model
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Figure 2.7: Basic TADL2 elements, from [tim09]

In TIMMO-2-USE, version two of a meta model, called TADL, was developed to for-
malize timing constraints of a system specified by the means of, e.g., EAST-ADL and
AUTOSAR. An overview of the meta model is given in Figure 2.7. Generally, a Timing
element represents a collection of timing descriptions, which are composed of events and
event chains, and the timing constraint to indicate that the corresponding TimingCon-
straint is only valid when the specified mode is active. These can roughly be grouped
into restrictions on the recurring delays between a pair of events, restrictions on the repe-
titions of a single event, and restrictions on the synchronicity of a set of events. Addition-
ally, the meta model specifies various concrete realizations of events and constraints to
concertize timing information according to the various levels of abstractions, as defined
by EAST-ADL and AUTOSAR.

2.1.3.2 Methodology

The methodology is strongly related to previous projects, such as TIMMO and ATESST2
(the predecessor project of MAENAD), which considered timing aspects, as well. In con-
trast, while the methodology of TIMMO-2-USE considers a top-down and a bottom-up
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development, it focuses on a certain set of use cases related to timing, that are mapped
to the Generic Methodology Pattern (GMP) mentioned above. The pattern is applied
on all levels of abstraction, as defined by the EAST-ADL: Vehicle, Analysis, Design, and
Implementation. While TIMMO-2-USE also sketches the idea of transforming timing in-
formation from one level to another, the GMP is applied on each level according to its
corresponding level of detail. The GMP consists of the following 6 generic tasks:

1. Create Solution: During this task, an architecture has to be defined without any
timing information.

2. Attach Timing Requirements to Solution: During this task, timing requirements
have to be defined with regard to the current architecture.

3. Create Timing Model: During this task, a formalized model for the calculation of
specific timing characteristics based on properties of the current architecture has to
be developed.

4. Analyze Timing Model: During this task, the timing model has to be evaluated and
results have to be described.

5. Verify Solution against Timing Requirements: During this task, the obtained analy-
sis results have to be compared with the specified timing requirements.

6. Specify and Validate Timing Requirements: During this task, mandatory timing
characteristics have to be identified as timing requirements, which are propagated
to the next development phase.

2.1.4 Conclusions from above Initiatives

Previous section have exemplified, that various efforts were made during the last years to
manage the various concerns of the development of the complex embedded system of a
vehicle. Similar to e.g., AUTOSAR, MAENAD, or TIMMO-2USE, a multitude of different
initiatives, such as Automotive SPICE, the ISO26262, ASAM, MSR, etc. , were established
to develop new means in form of meta models or DSLs, guidelines, best practices, and /or
reference methodologies. However, not only the automotive sector faced such challenges,
but other domains make similar efforts to overcome similar challenges.

All these efforts result in a overwhelming mass of information, which is organized in
a plenty of “paperware” documents to aim at the support of even more development
projects. However, it is nearly impossible for any party, which is involved in develop-
ment, to be compliant with all specifications, at the same time. It is even more difficult
for responsible roles to keep all the fast moving information in mind. This, particularly,
influences the correct application of language elements, which were defined by some
meta model and its evolutions, as well as, an appropriate order of required development
activities to produce corresponding output.

Therefore, to support, in particular, humans in doing their daily work, i.e., providing
them with situational information following a predefined methodology, the following
approach was developed. By combining process-related with product-related informa-
tion from various sources into one framework, an integrated information management is
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enabled. Furthermore, we not only combine information, but also refine the for the most
time textual information on a technical level, to automate guidance capabilities on opera-
tional level. As a result, training periods will be reduced and up-to-date information are
applied accordingly.

2.2 Model-Driven Engineering and Semantic Technologies

In this section, we describe Technical Spaces (TSs), which are relevant for this thesis.
According to Kurtev et al. [KBAO2b], an TS is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities. Initially, five technological
spaces were identified by Kurtev et al. : abstract syntax TS, XML TS, Data Base Manage-
ment Systems (DBMS) TS, Ontology engineering Ontological Technical Space (OTS), and
MDA as defined by the OMG. As some operations may be performed easier in one space
than in another, bridges are needed between them to combine the different facilities, as
demonstrated e.g., in [GDDDO04]. Our approach was realized based on two of these TSs,
namely the OTS and Meta-modeling Technical Space (MMTS), whereas the main parts
were realized in the latter TS. These two technical spaces are detailed in following:

2.2.1 Meta-modeling Technical Space
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Figure 2.8: Meta modeling layers, from [Lid11]

MDE [Ken02], MDSD [BBGO05b], or OMG’s MDA [OMGO03] approach are prominent
exponents of the software engineering paradigm in the MMTS, which promotes the cre-
ation and processing of models as a simplified abstraction of real world phenomena.
Models are described by the means of modeling language, which is defined by the means
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of a meta model. The meta model defines the abstract syntax, i.e., the relevant vocabu-
lary and a set of construction rules, to create a valid set of models. Additionally, because
of each model is represented using a particular modeling style, an abstract syntax must
be complemented by a concrete syntax, which specifies the concrete representation (e.g.,
textual or graphical) of defined language elements. Beside that, models must provide a
semantics to make the language (computer-)interpretable, understandable, and analyz-
able. Following the classification of programming language semantics from [SK05], we
distinguish four types of semantics:

1. the translational semantics definition translates concepts of the vocabulary to con-
cepts with a well-defined semantics in another language

2. the extensional semantics definition extends the semantics of existing concepts,
which already provide semantic information

3. the operational semantics definition uses the language itself to specify the opera-
tional behavior of vocabulary concepts explicitly (see also [Mos92])

4. the denotational semantics definition specifies a declarative mapping to semantic
domain concepts

Figure 2.8 illustrates MMTS’s basic philosophy of modeling on four different meta mod-
eling layers: while real world phenomena, such as a book, a vehicle, or a concrete person,
belong to the real world MO layer, a user model abstract relevant real world entities, on
the next layer M1. This user model corresponds to its meta layer specification, which is
situated on the next higher layer M2 to define all language elements. This principle is
demonstrated in Figure 2.8, where a book of the real world, is modeled on meta layer M1
using the concepts and relationships between them, as defined on meta layer M2, i.e., a
book is a class, which has an attribute to indicate a book’s name. The final meta layer
M3, again abstracts the concepts used to define a meta model on meta layer M2. On meta
layer M3, the meta-meta model defines the abstract elements, such as classes, properties,
and relations, for the definition of meta models in general. The meta-meta model on the
M3 layer is self-describing, i.e., all elements of the meta-meta model are described using
already defined elements of the same meta layer. A prominent example of a meta-meta
model is Meta Object Facility (MOF) [OMGO06b], which is a standard published by the
OMG.

During the software development process, a number of different meta models can
be applied to create various models and to refine them on different abstraction levels.
Thereby, each model is written in the language of a corresponding meta-model’s abstract
syntax using its concrete syntax. Various meta models are available for different areas,
such as the general-purpose language UML, the automotive-specific AUTOSAR, or the
Common Warehouse Meta model (CWM). The models are grouped into abstraction lev-
els or packages to provide particular views on the system being built and to satisfy var-
ious stakeholder needs. Finally, models provide information to enable the generation of
platform-specific application code.
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2.2.1.1 Model Transformations

Beside models and meta models, model transformations play a major role in the MMTS.
Basically, two types of model transformations are distinguished: Model-to-Model (M2M)
transformations and Model-to-Text (M2T) transformations. Both types use information
of one or more input models to produce new information in form of a model or text.
While an M2M transformation is called horizontal, if it maps between two models of the
same abstraction level, an M2M transformation is called vertical, if it defines a mapping
between models of different abstraction levels, e.g., in form of a refinement. In particular,
a transformation is called M2T, if it uses the input models to produce text-based output,
such as code of a programming language or other text. M2T transformation is also called
code generation.

To support model transformation, various frameworks are available for M2M and
M2T. A prominent example for M2M transformation is the Query View Transforma-
tion (QVT) [OMGO5] specification, which is part of MOF 2.0 and defined by the OMG.
QVT defines three model transformations languages: QVT-Operational, which is a im-
perative language for unidirectional transformations, QVT-Relations, which is a declara-
tive language enabling bidirectional transformation, and the declarative QVT core, which
is a more simple but less expressive language than QVT-Relations. Another popular
transformation framework and toolkit is ATLAS Transformation Language (ATL), which
initially was developed by the INRIA ATLAS group. Meanwhile, it is released and pub-
lished as an M2M component of the Eclipse Modeling project. On the other side, various
frameworks, such as Java Emitter Template (JET) or XPAND, are available to transform
models into code. There is an exhaustive number of model transformation frameworks,
which would go beyond the scope of this thesis. However, a very detailed list of available
frameworks, as well as, their strengths and weaknesses, can be found in [Ros08].

2.2.1.2 Meta Model Extension Mechanisms

Although, there are many predefined meta models available out of the box, such as the
general-purpose modeling language UML, which can be used immediately, sometimes
they are not sufficient to support a planned project best. Therefore, basically, three ap-
proaches exist to customize or extend meta models for a domain-specific needs:

e Meta model-based Extension: To extend a meta model, this type of extension mech-
anism, uses language elements of the next higher meta layer, i.e., language elements
of the meta meta model, which originally defined the meta model to be extended.
For example, to extend UML, which is situated on meta layer M2, this mechanism
would apply language elements from meta layer M3 (MOF). This kind of extension
is stable, frozen, and more formal.

e Stereotype-based Extensions: Extensions based on stereotyping is a specific UML
mechanism, which provides a flexible and lightweight means for extending the
UML meta model. By the means of UML-Profiles, stereotypes, constraints, and
tagged values, existing language elements can be restricted to establish a new mod-
eling language.
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e Aspect-oriented Extensions: the aspect-oriented mechanism is similar to stereotyp-
ing, since it does not change the original meta model or modeling tool. In contrast,
some external aspects are defined and automatically woven into the existing meta
model in a defined way.

In this thesis, we mainly applied the meta model-based extension mechanism to develop
new meta models, which we used for the creation of additional design models to ex-
tend existing process models. Beside that, we also applied the aspect-oriented extension
mechanism to weave the additionally created models with existing process models as
aspects. The mechanisms, which was developed in [Laul0], is based on aspect-oriented
modeling (e.g., [SRF']), which distinguishes between positive and negative model vari-
ability to add or remove elements from a given core model. In the approach, which is
shown in Figure 2.9 from its conceptual viewpoint, positive variability weaves externally
defined aspects into a given core meta model. This works as follows: a configuration
model (ConfModel) links the meta model to be extended with a relevant set of defined
profiles (Profile). Similar to UML-Profile, a profile defines various aspects representing
additional properties, which have to be woven with target meta model elements (Class)
of the enriched meta model. Concrete implementations of a defined aspect (AspectIn-
stance) are associated with the configuration model.

=] Profile
El ConfModel - profiles | Ggurl: String
g enrichedMadel : Object 5 name L 5tring
g useEmbeddedConf : Boolean | 1 * | Egversion : String
[Eg author: String
1 [Eg description : String
1
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=i AspectInstance
[Eg targetModelElerment : Object * | - aspects
Egid : String =
= Aspect
Eg aspectlnstanceEType @ Classifier
[Eg defaultValue : String
Eg multiple : Boolean
Eg autocreated : Boolean
g id ! String
1
= Property

[T value : Object

L.* | - targethModelElements
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Figure 2.9: Aspect-oriented base model
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2.2.2 Ontological Technical Space

The second TS, which is relevant to thesis, is the Ontological Technical Space. In this TS,
which can be considered as a subfield of knowledge engineering, standards and tech-
niques are provided to represent data and to reason about expressed data. In general,
entities and relations in a specific domain [UG96] are described using a formalized lan-
guage (e.g., logic), by which an ontology is created. Following the most cited definition
from [Gru93], an “ontology is a explicit specification of a conceptualization”, whereas
conceptualization refers to an abstract, simplified representation of a real world phe-
nomenon, similar to a model in the MMTS. However, while all ontologies are models,
not all models are ontologies, as outlined in [AGK06]. The main difference is, that ontolo-
gies are built upon logical structures, such as Description Logic (DL) [BHS04], on which
specialized reasoning software can be used to automatically process modeled knowledge
to check for consistency and to infer new facts (cf. [BLO4]).

The Semantic Web [BLO1] is one initiative, which provides accepted standards and
techniques in the OTS. Most of the Semantic Web languages are standardized through the
World Wide Web Consortium (W3C) and are based on XML, which is a standardized for-
mat to structure data. However, XML is not interpretable per se. Therefore, Semantic Web
languages, such as Resource Description Framework (RDF) [BM04], RDF Schema [BG04],
and Web Ontology Language (OWL) [BHH " 04] underpin XML with the required formal
model, which enables machine interpretation and reasoning. By the means of RDF, data
are represented in form of triples or statements, which consist of a subject (a resource), a
predicate (a property of the subject), and an object (the value of the predicate). While RDF
only provides means to specify ontological information on instance level [GDD09], RDF-
Schema extends RDF by the capability to create taxonomies and ontologies. Therefore, it
additionally provides language constructs, such as Class, subClassOf, and subPropertyOf.
OWL [BHH"04] and the subsequent version OWL 2 [MPSHO08] are more powerful lan-
guages to describe knowledge in the OTS. The ontology language, which we used in
Section 3.5.4, is OWL 2, which is based on the logic SROZ QP+ [HKS06]. In addition to
OWL 1 and RDF Schema, OWL 2 provides the concepts of disjoint roles, own data types,
and the definition of types, when restricting cardinalities.

A number of popular modeling tools, such as Protege, the NeOn Toolkit, or KAON
are available to enable the definition of information and relations by the means of an
ontology. Furthermore, related technologies, standards, and tools for this knowledge
representation quickly emerged, and established this branch of research area as a well-
recognized area of computer science over the past years.

2.2.3 Guidelines, Best Practices, and Validation

Regardless from a concrete technical space, effective information management and de-
sign requires experiences and expert knowledge, which evolves over time. Therefore,
knowledge about identified challenges and approved solution strategies often is recorded
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to avoid repetitive inefficient working. In particular, for software engineering or pro-
gramming, the term software pattern was established to provide means for efficient so-
lutions of recurring and complex problems. According to [RWO05], software patterns can
be further categorized into three groups:

e Architectural Style (cf. [GEM10]) expresses a fundamental structural organization
schema for software systems. It provides a set of predefined element types, specifies
their responsibilities, and includes rules and guidelines for organizing the relation-
ships between them. Examples of an architectural style are client-server, pipes and
filters, or peer-to-peer.

e Design Pattern (cf. [GH]94]) provides schema for refining the elements of a soft-
ware system or the relationships between them. It describes a commonly recurring
structure of interconnected design elements, that solves a general design problem
within a particular context. Examples of a design pattern are the observer pattern,
the singleton pattern, or the visitor pattern.

e Idiom (cf. [Laf96]) is a low-level pattern specific to a programming language. An
idiom describes how to implement particular aspects of elements or the relation-
ships between them by the using the features of a given language. Examples of an
idiom are the Java naming conventions or parameter classes.

Furthermore, general guidelines, which guide an engineer in achieving an intention
in a given situation, programming style guidelines, such as Misra C [MIS98], and naming
conventions provide organizational rules to reduce efforts and to improve the appearance
and readability, when writing program code. All over, patterns, guidelines, and conven-
tions, can be subsumed as best practices defined as a management or technical practice, that
has consistently demonstrated to improve one or more of: Productivity, Cost, Schedule, Quality,
User Satisfaction, Predictability of Cost and Schedule [Wit00]. Practices either impact single
tasks of an engineering activity, or they provide general advices for managing a concrete
problem spread across various tasks. As the name implies, a best practice also must
evolve with innovations and new insights.

Likewise, in the MMTS best practices are applied to enhance the quality of models
and to avoid recurring problems. Similar to the programming technical space, patterns,
styles, conventions, and guidelines are available for efficient modeling. Information
about best practices, often is encoded in standards, literature, or organizational docu-
ments using natural language text. Other guidelines concerning, for example, the valid-
ity of models (i.e., the abstract syntax), is encoded in meta models, whose compliance is
ensured as basic functionality of modern modeling environments. On the other side, to
validate the static and dynamic semantics of design models, guidelines often are encoded
using more formal notations. While dynamic semantics refers to the runtime behavior of
models, which can be validated, e.g., by simulation, static semantics concerns the rea-
sonableness of valid models, which can be validated before runtime. Therefore, different
formalisms were proposed in literature using, for example, model transformation [BJ06]
or graph transformations [ALSS08] to encode guidelines, which ensure the favored static
semantics in design models. The most prominent formalism to ensure the static seman-
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tics, though, is Object Constraint Language (OCL) [OMG06a] or an ECLIPSE-specific ex-
tension Epsilon Validation Language (EVL) [KRPP10]. OCL is a textual language, which
is based on the MOF, which enables the association of MOF based models with con-
straints, invariants, and conditions. These invariants and conditions may realize guide-
lines, which are evaluated automatically, using an OCL interpreter.

2.3 Business Processes Management

Software development processes, as focused on in this thesis, are a special form of a
business process. Therefore, the following section details the main concepts in this field,
before Section 2.4 will go into details of software development processes and methodolo-
gies.

According to [Dav93] and [HC93], a business process is characterized by five elements:
(1) a business process has customers; (2) a business process consists of activities; (3) these activities
create value for the customer; (4) activities within a business process are carried out by humans
or machines; (5) business processes often involve several organizational units. That means, that
in order to fulfill individual business goals, a business process consists of various activi-
ties and sub-activities, which are conducted either by humans or automatically. Hereby,
by processing input, an activity creates new value as output, which is delivered to other
stakeholders or customers. Activities are carried out by distinct roles with different re-
sponsibilities and skills. The performed activities roughly can be categorized into core
processes, which directly conduce to the business success, and supporting processes. De-
pending on an enterprise’s strategic direction, software development is considered as a
core process or a support process. In either case, different processes must be aligned to
enable work and collaboration of IT and human resources efficiently. Therefore, Business
Process Management (BPM) extends traditional workflow management [JB96], and pro-
vides methods, techniques, and tools to support the design, enactment, management and analysis
of operational business processes [AHWO03]. A Business Process Management System (BPMS)
is a generic software system that is driven by explicit process representations to coordinate the
enactment of business processes [Wes07]. Various organizations, such as the Workflow Man-
agement Coalition (WfMC), the OMG, or the Organization for the Advancement of Struc-
tured Information Standards (OASIS) are affected in the standardization of process tech-
nologies. In 2006, the European Association of Business Process Management (EABPM)
was founded as an association of national and European organizations to promote BPM.
It is in close collaboration with its American pendant, the Association of Business Process
Management Professionals (ABPMP), and published the “Guide to the Business Process
Management Common Body of Knowledge” [ABB*09], in 2009.

To capture business process knowledge, normally, a process model is used. A process
model is a formalized view of a business process, represented as a co-ordinated (parallel and/or
serial) set of process activities that are connected in order to achieve a common goal [WfM99a]. In
general, a process model consists of nodes and directed edges to define an order between
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nodes. Hereby, nodes either are activity models to represent work conducted by an en-
terprise, events to control the behavior of an activity model, or other nodes, which enable
individual workflow patterns, as discussed in detail below. Accordingly, a business pro-
cess model consists of a set of activity models and execution constraints between them [Wes07].
To describe business processes, various Process Definition Languages (PDLs) exist, which
can be categorized into activity-oriented, object-oriented, role-oriented or speech-act ap-
proaches on the one side [KKB96], and descriptive or prescriptive approaches on the
other side [Lon93].

Based on a (business) process model, a concrete case in the operational business of a com-
pany, consisting of activity instances [Wes(07] is called a business process instance. A work-
flow is the automation of a business process (instance), in whole or in part, during which doc-
uments, information, or tasks are passed from one participant to another for action, according
to a set of procedural rules. Likewise, a workflow model is defined through a directed graph
consisting of nodes and edges, which show the control flow of the workflow [SOSF04]. A work-
flow management system is a software system that defines, creates, and manages the execution of
workflows through the use of software, running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants, and, where required, invoke
the use of IT tools and applications [Wes07].
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Figure 2.10: Lifecycle of Business Process Management

To achieve BPM, different related activities must be performed. These activities are
strongly related to each other and can be organized in a cyclic structure, which is often
called the business process life-cycle. Although, many authors, such as Georgakopoulos
etal. [GT98], van der Aalst [AHWO03], or Weske [Wes07], provide different life-cycle def-
initions, they basically mean the same on different levels of granularity. In this thesis, we
mostly follow the definition of Lautenbacher [Laul0], which is illustrated in Figure 2.10.
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e During the analysis phase, stakeholders and business goals are identified to derive
relevant business processes. Identified processes are core processes and supporting
processes, which are conducted within or across organizations.

e The design phase deals with the specification of identified business processes. Us-
ing a given PDL, required activities and responsibilities are defined for each busi-
ness process, before the order is defined, in which the activities should be per-
formed. Optionally, for each activity, it must be decided, which data or applications
are required and whether or not an activity is conducted manually or automatically.

e During the transformation phase, a business process model, which abstracts from
technical details, is implemented to fulfill individual technical requirements. These
technical requirements can depend on an organization’s IT landscape, or technical
resources, which are required to automate the process model.

e The execution phase is responsible to process the result of the transformation phase,
i.e., the technical process definition. This phase can be subdivided into process
enactment, which focuses on human execution by preparation of task specific artifacts or
other contextual task variables [LOA "], and process execution, which focuses on fully
automation of tasks.

After a business process is completed, it has to be analyzed with regard to its potential
for optimization and reuse in subsequent projects. Therefore, existing processes pass the
business process life-cycle several times.

The life-cycle phases indicated, that the business process life-cycle satisfies various
needs of involved stakeholders by the means of different perspectives or viewpoints. In
literature, a multitude of perspectives was defined [CKO92,]B96, ASJW05], while there is
no consensus about a mandatory set of perspectives on business processes. This depends
on the organizational context and its needs. An overview about established perspectives
is given in [JB96], from which the most relevant are summarized in the following;:

e Functional perspective: The functional perspective decomposes an inter- or intra
organizational process landscape (or parts from it) into processes and constituent
parts, i.e., subprocesses. Normally, that kind of perspective follows a particular
structure, such as an organization’s structure, which is given by the organizational
perspective.

¢ Organizational perspective: The organizational perspective organizes an enterprise’s
responsibilities and roles, and assigns them to the specific tasks of a process or sub-
processes from it.

e Behavioral perspective: The behavioral perspective describes the control-flow, i.e.,
the dependencies and the execution order, of processes, subprocesses, and/or tasks.
It defines the start and the end of a control-flow, and it defines, for example, whether
parts can be executed in parallel or alternatively.

e Informational perspective: The informational perspectives defines relevant infor-
mation objects and the data flow, by which information objects are passed. The
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information objects, such as documents, parameters, models, are consumed and
produced by different processes and activities. One way to define the data flow of
these objects, is to follow these dependencies.

e Operational perspective: The operational perspective defines the application pro-
grams, which are used during workflow execution. In addition, it defines relevant
application interfaces, used technologies, such as Web-Services, JAVA RM], etc. ,
and relevant dependencies between applications.

From above perspectives, the behavioral perspective is particular to our thesis (cf. Sec-
tion 3.5.3). To adequately represent the control-flow in the behavioral perspective, so-
called control-flow patterns ( [VITKBO03, RH06]) are used. Originally, 20 control flow pat-
terns were developed and continuously extended. The basic control-flow patterns se-
quence, parallel split, synchronization, exclusive choice, and simple merge, practically
are realized in almost any modern PDL. While the sequence pattern is used to indicate a
consecutive order of tasks in linear order, the parallel split pattern is used to indicate, that
two or more branches are meant to be executed concurrently. In contrast, the exclusive
choice pattern is used to indicate a decision-based branch of various alternative control-
flows. The synchronization pattern and the simple merge patterns are the counterpart
patterns to bring split branches together.

In addition to the control flow patterns, data patterns [Nic], resource patterns [RHE04],
exception handling patterns [RAHO06], and presentation patterns [RWM 11, RHW"11]
have been defined.

Furthermore, our approach, particularly, distinguishes the organization or business
level from the technical level, as depicted in Figure 2.10: While the organizational level
serves as a business-oriented perspective, which enables project management indepen-
dent from technical details, the technical level complements the business perspective
with technical details. These technical details, not only address an organization’s IT in-
frastructure needs, but also information, which are required to guide the activities of a
software development process on operational level. Subsequent chapters will show, that
we further subdivide the technical perspective into four perspectives in order to repre-
sent guidelines, applications, data element, and roles on technical level.

2.3.1 Business Process Management Architectures

As already mentioned, a workflow management system is a software system, that de-
fines, creates, and manages the execution of workflows. Therefore, a workflow manage-
ment system consists of build-time functions to define workflows, and runtime control
functions, which enable the administration of activities and dependencies in between
(aka. coordination [MC94, CHW96]), as well as, interactions between humans and the
computer system. To provide a common view on workflow management systems, the
Workflow Management Coalition defined a reference model, which is depicted in Fig-
ure 2.11. The figure shows the main components and interfaces of a workflow architec-
ture.
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Figure 2.11: Workflow Reference Model - Components & Interfaces from [Hol95]

The Workflow Enactment Service, is the central part of the architecture, which consists
of one ore more workflow engines, that provide the runtime execution environment for
a workflow instance [Hol95]. A workflow engine provides interpretation of process def-
initions, which normally are defined in external environment using a graphical notation
(cf. Section 2.3.2) and stored in an interpretable format, such as XML Process Definition
Language (XPDL) [WfMO05], jBPM Process Definition Language (jJPDL) [Bae04], or Web
Service Business process Execution Language (WSBPEL) [JEA07]. Beside an interface,
which enables the import and export of process definitions from external components,
the enactment service has to provide other enactment services from different involved
parties with interfaces to monitor and administrate running processes. Additionally, the
enactment service should enable workflow client applications (e.g., a worklist handler,
which interacts with the end-user) and external applications (e.g., a database) to interact
with the workflow engine.

Traditional workflow management, as described above, deals with the strict execu-
tion of predefined process models, which is well suited to support business process with
static control structures. However, there are different types of business processes, such
as a software development process, which are characterized through a highly dynamic
environment. Therefore, in [Wes07], Weske discusses the idea of flexible workflow man-

45



CHAPTER 2: FOUNDATIONS

agement. Thereby, to face situations, which can not bee foreseen at build time, a dy-
namic adaptation of workflow models at runtime is proposed. Following this idea, in
Section 5.6, we develop a mechanism to flexibly manage a software development pro-
cess.

2.3.2 Business Process Modeling

In this section, we give an overview about most popular PDLs for business process mod-
eling, namely UML, Java Workflow Tooling (JWT), SPEM, and Business Process Mod-
eling Notation (BPMN). While the meta models of BPMN, SPEM and UML are stan-
dardized by the OMG with a differing focus on business processes and system/soft-
ware development processes, the proprietary meta model JWT, was developed to pro-
vide a lightweight meta model for process modeling in general. A more comprehensive
overview about existing PDLs and a comparison of their supported language features
can be found in [SAJ02] and [Laul0].

2.3.2.1 Unified Modeling Language

The Unified Modeling Language is a MOF-based meta model, that allows for graphical
modeling of static and dynamic structures of software and other systems. It is devel-
oped by the OMG and actually available in version 2.4.1. UML is subdivided into an
infrastructure part [OMG11a] and a superstructure part [OMG11b] to define the abstract
syntax and the static semantics of UML language elements. While the infrastructure part
refers to basic language constructs, the superstructure part defines the concrete language
elements used in the context of specific diagram type.

Actually, UML supports 7 diagram types to model static structures and 7 diagram types
to model the dynamic behavior of a system. Thereby, activity modeling, which is orga-
nized in UML’s activity packages, emphasizes the sequence and conditions for coordinat-
ing lower-level behaviors and provides means to model the flow of a process. Basically,
an activity diagram organizes different actions and control nodes, which are connected
via activity edges to define the process flow according to a distinct set of control flow pat-
terns. Actions can have inputs and outputs, by which the data flow of the process model
can be defined. The completion of the execution of an action, as well as, the occurrence
of an external event enable the execution of a set of successor nodes or actions, that take
their inputs from the outputs of the predecessor action.

2.3.2.2 Java Workflow Tooling Metamodel

The Java Workflow Tooling meta model, is developed in the context of Eclipse SOA’s
Java Workflow Tooling project [[WT10]. The meta model is consists of several packages:
Core, Processes, Events, References, Organizations, Application, Data and Functions. It
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enables the design of nested activities, atomic actions and a distinct set of control nodes,
whereof a control flow is defined. Each action is complemented by information about
inputs and outputs, as well as, roles and Web-Service Application in addition to general
applications, such as a JAVA executable. Furthermore, JWT provides an extension mech-
anism, that allows to extend the basic meta model with additional features. In [HRO07],
we demonstrated the transformation of graph-based JWT process models into the block-
structured language Business Process Execution Language (BPEL) to be executed using
a workflow management system.

2.3.2.3 Business Process Model and Notation

The Business Process Modeling Notation [BPM09Y] is a standard for business process
modeling defined by the OMG. It is similar to UML activity diagrams, and beside a
meta model and an exchange format, it provides additional graphical means to describe
business processes for technical users and business users. Furthermore, it enables the def-
inition of organizational structures, functional breakdowns and data models, as well as,
inter- and intra organizational collaboration and conversation. In particular, BPMN 2.0
defines its own execution semantics, by which a clear and precise understanding of the
operation of the elements is described. Additionally, BPMN defines a mapping between
process models and WS-BPEL [JEA " 07], which enables BPMN models to be executed by
the means of a workflow engine.

2.3.2.4 Software Process Engineering Metamodel

The Unified Method Architecture (UMA) is an evolution of SPEM 1.1, which was de-
veloped by the OMG in order to provide a meta model, which particularly supports
the design of system and software development processes. Based on UMA, in 2005, the
OMG started the further development of SPEM, which is actually available in version
2.0 [OMGO08a]. The SPEM 2.0 meta-model is structured into seven main meta-model
packages, as depicted in Figure 2.12:

1. Its Core package contains those meta-model classes and abstractions, that build the
base for classes in all other meta-model packages.

2. The Managed Content package provides language elements to manage the various
textual descriptions comprising a development activity. These concepts can either
be used standalone or in combination with process structure concepts.

3. The Method Content package is used to define fundamental methods and tech-
niques for software development. It provides the concepts for defining life-cycle
and process-independent reusable method content elements. Therefore, it provides
a base of documented knowledge of software development methods, techniques,
and concrete realizations of best practices.
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Figure 2.12: Structure of the SPEM 2.0 Meta-Model from [OMG08a]

. The Process Structure package defines the base for all process models, from which
the core data structure is a breakdown or decomposition of nested activities.

. The Process Behavior package provides concepts to extend the static breakdown
structure with externally-defined behavior models. Therefore, the meta model de-
fines the ability for implementers to choose a generic behavior modeling approach,
that best fits their needs. For example, BPMN or UML activity diagrams.

. The Process with Methods package integrates processes defined with the Process
Structure package with instances of the Method Content package to define new and
to redefine existing processes. Processes place these methods, which were defined
by the means of the Method Content package, into the context of a life-cycle model
comprising, for example, phases and milestones.

. The Method Plug-in package introduces concepts for designing and managing
maintainable, large scale, reusable, and configurable libraries or repositories of
method content and processes.

One of the most important features of SPEM is the separation between method con-

tent elements, i.e., work products, tasks, roles or guidance elements, and processes, i.e.,

Delivery Processes or reusable Capability Patterns. This separation, which is depicted

in Figure 2.13, enables adaptivity and variability of processes, since method content, as
well as, processes are reusable for various project-specific processes in different ways.
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Figure 2.13: Separation of Method Content and Processes from [Hau05]

Therefore, an SPEM 2.0 usage scenario is, that organizations provide reusable process
and method libraries, which can be selected and tailored to the specific needs of a re-
quired process or method. As illustrated in Figure 2.14, this is realized using an SPEM
Method Configuration, which is deployed to teams for enactment.
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Figure 2.14: SPEM 2.0’s conceptual usage framework from [OMGO08a]

Although, a graphical representation, as provided by all of the above modeling ap-

proaches, is understood by familiar stakeholders well, Business Process Models benefit
from a formal foundation to increase potential for analysis and to reduce the risk of am-
biguities [AHWO03]. For example, Petri nets [JR91] are one way to express state-based
process models in a formalism, which is associated with analysis techniques to check
particular characteristics of the model, such as liveness, reachability, or boundedness.
Subclasses of Petri nets, such as Colored Petri Nets [Jen03] and Workflow nets [Aal98],
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process algebras [Bae05], or the w-calculus [Mil99] are other formalisms, which are used
as underlying basis for high level modeling languages, such as BPMN or UML activity
diagrams.

2.4 Methodology Engineering

As we focus on software (development) processes, it is important to determine the char-
acteristics of such processes and to differentiate them from other types.

The probably most important characteristic of software processes is, that while general
process models are important to provide a general guidance, they are seldom followed
exactly in software engineering. In [MDO06], the authors explain, that developers often
have different, personal views on what roles they are supposed to play. Furthermore,
as contingencies and breakdowns occur in actual systems development, software engi-
neering is critically dependent on the unique abilities of the creative people involved in
those processes. Thus, although a process focus is important for obtaining coherence in
the organization, the creativity of an organization’s people bring processes to life. Beside
the essentiality of creativity, different techniques are conceivable to achieve a particu-
lar goal, to foster the individual qualities of an engineer, or to consider the individual
needs of a product under development. Furthermore, software processes are not exe-
cuted straightforward, as, e.g., a simple purchase order business application. Instead,
they are distinguished by iterative and/or incremental cycles, which are influenced by
external and internal factors, such as change requests, identified design drawbacks, or
functional adaptations.

Therefore, before introducing a discipline, which faces relevant needs, called Method
Engineering, we first clarify the terminology in the field of software development pro-
cesses and methods. This terminology often is confusing ( [M02]) due to parallel devel-
opments of different modeling notations, the strong influences from other disciplines, as
well as, a multitude of standards in this area, such as SPEM, BPMN, or CMMI. In par-
ticular, the terms process, method, and methodology are used ambiguously and must be
distinguished.

2.4.1 Terminology of Methods and Processes

In [BBO1], the authors explain, that there are different types of processes with a distinct
orientation. For example, business processes monitor business applications, such as fi-
nancial, banking or administrative processes, manufacturing processes manage the pro-
duction of materials, workflows define processes to be enacted by a workflow engine, or
Enterprise Application Integration defines batch processes controlling the routing of data
between applications.

However, independent from a concrete process type or its orientation, a process can be
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defined as a set of partially ordered steps intended to reach a goal [HF92], and, in gen-
eral, it can be compared to the (usually predefined or often repeated) way you relocate
yourself from home to the work environment [HSR10]. Most process definitions like
this are generic, but the most common consent definition is, that a process at least is a
means, that may be used in different situations at different granularities for facilitating
human understanding and communication, supporting process improvement, support-
ing process management, providing automated process guidance, and providing auto-
mated execution support [AMB'04]. In particular, a software (development) process
focuses software engineering, which requires the consideration of a coherent set of poli-
cies, organizational structures, technologies, procedures, and outcomes that are needed
to conceive, develop, deploy, and maintain a software product. According to [Fug00],
this exploits a number of contributions and concepts:

1. Software development technology: technological support, such as tools, infrastruc-
tures, and environments, used in the process.

2. Software development methods and techniques: guidelines on how to use technol-
ogy and accomplish software development activities.

3. Different stages of software development (e.g., requirements specification and de-
velopment/deployment) must be shaped in such a way to properly consider the
context where software is supposed to be sold and used.

Additionally, a process must be distinguished from a process description [Ost87]. A soft-
ware (development) process model is such a description of a software process at the type
level, i.e., it can can be instantiated several times. Similar to any other process type, a
software process model can be descriptive, to describe the history of how a particular
software system was developed, prescriptive, to define desired processes and how they
should/could/might be performed, or explanatory, to provide explanations about the
rationale of processes [Rol98,Sca01]. Independent from its aim, process models can be
classified into four groups [Dow87, Rol98]:

e Activity-oriented models focus on the activities, which are performed in producing
a product, and their ordering.

e Product-oriented process models, also focus the notion of activity but, additionally,
link activities to associated products.

e Decision-oriented models focus the successive transformations of the product based
on consequences of decisions. That way, decision-oriented process models, not only
describe how a process proceeds, but also why it proceeds.

e Contextual models are based on a specific intention, which has to be achieved in
a subjectively perceived situation. Work, that has to be done next, only depends
on the current situation and the intention, which makes contextual models flexible
and reactive, while it blows up your knowledge base, since any conceivable context
must be covered. This, especially, makes it difficult for large processes.

In either cases, to represent a software process model, a software process meta model
is required to provide a set of generic concepts, which ensure the genericity of the process
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representations (e.g., graphical, textual) [SSRG96] on different abstraction levels, such as,
e.g., the life cycle level, the development process level, or the atomic step level [Diel2].
Most prominent members of such meta models are, e.g., OPF [OPE09], the ISO/IEC In-
ternational Standard 24744 [ISO07], aka. SEMDM (Software Engineering Metamodel for
Development Methodologies), or SPEM, as discussed in detail above.

Using one of these meta models, a software process model is constructed on different
abstraction levels from bottom-up or from top-down ( [HBO94]). While in the bottom-up
approach atomic work units are aggregated into Grouping Elements (GEs), a top-down
approach consecutively refines GEs into more detailed parts and work units. As our ap-
proach follows the latter strategy, the following exemplifies the top-down decomposition
of a software development process.

e Life-cycle Level

On the life-cycle level, a general software project is subdivided into significant
time periods in a project, ending with a major management checkpoint or a set of
outcomes. Typical kinds of these so-called stages are repetitive cycles (iterations),
phases, and milestones [ZHSF05,0MG08a]. General collections of widely-accepted
phases can be found in literature, such as [Som07]. There, Sommerville suggests
the four main phases Software Specification, Software Design & Implementation, Soft-
ware Validation and Software Evolution. As high level references, which organize the
phases, that occur during a development process, so-called Life-cycle Framework
Models [AMB™04], such as the spiral model, the waterfall model, incremental/iterative
development, or the V-Model, are available on the life cycle level. In general, iterations
and phases, constitute broader collections of work, that an organization must mas-
ter to successfully carry out the essential work of software development. Therefore,
in accordance with Clements and Northorp [CNO1], we will refer to these elements
as Practice Areas.

e Development Process Level

Individual practice areas or stages, which e.g., are predefined in a life-cycle model,
are refined into sub-stages and activities. While practice areas and activities, basi-
cally, are GEs, which organize a development project according to different check-
points, durations and disciplines, often an activity is also seen as an unit of work,
that relies on a specific worker, as well as, on distinct input information to produce
new output [OMGO08a]. However, from our point of view, such vague distinction
between GEs and units of work, may lead to confusion, when talking about pro-
cesses, activities, or methods, as discussed below. Therefore, in this thesis, we refer
to an activity only as GE, which in contrast to a practice area must have a more
clear purpose of creating or updating one or only a small number of artifacts. The
granularity of an activity should be no more than a few hours to a few days, while
phases may take longer periods in time.

That way, practice areas and activities constitute a software process on the devel-
opment process level. On this level, various standards and frameworks, aka. Soft-
ware Process Models, such as, CMMI [cmmO08], (Automotive) SPICE [Aut10], or
ISO/IEC 12207 [ISO08b], are available as reference frameworks or bodies of knowl-
edge to complement the life-cycle model with a description of relevant activities
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and an associated set of outcomes.

e Atomic Step Level

Activities are refined by atomic work units, aka. tasks or practices, to concrete the
work that must be performed on the more detailed atomic step level. For exam-
ple, an activity software requirements engineering may be refined into the more con-
crete atomic work units called requirements elicitation, requirements documentation,
and requirements validation in order to provide developers with guidance informa-
tion about how to perform the requirements engineering activity.

Similar to GEs (phases, iterations, and activities), by which a particular order be-
tween practice areas and activities is defined, atomic work units are also organized
in a network, which represents a non-linear sequence of actions, that structure and
transform available computational objects (resources) into intermediate or finished
products [Sca0O1]. This network, which is referred to as process likewise, can be
composed using the same control flow patterns, as discussed for business processes
in the last section. Contrasting the GEs, which provide an abstract temporal ordered
description of what has to be performed, atomic work units must be further detailed
in order to provide an idea about how to perform individual work units.

Although, the term software development process refers to a coordinated set of pro-
cess activities, it often is used as synonym for methodology, which, originally, means
“the systematic study of methods that are, can be, or have been applied within a disci-
pline” [def13]. Additionally, in literature the terms methodology and method are mostly
used synonymously as an approach to perform a software/systems development project
[HSR10]. Therefore, to avoid confusions, this thesis uses the terms methodology and
method synonymously.

From our point of view, a method refers to the in-depth coverage of an atomic work
unit only. Thereby, we agree on that each method bases a specific way of thinking,
which consists of different parts, such as guidelines, rules and heuristics with corre-
sponding development work products and developer roles (played by humans or au-
tomated tools) [HSR10]. However, to avoid confusions, when talking about methods and
processes [HBO94], in this thesis, we clearly distinguish the two concepts. Therefore,
contrasting the above definition, we refer to a method as an atomic entity, which comple-
ments atomic work units of a process with information, that a software developer must
be cognizant of: in particular, the work products, involved people, tools, and individual
guidance to realize a particular way of thinking. Various methods can be combined into
a contingent way of thinking in form of a complex method or a systematically structured
set of methods, but we call such a combination of different methods a software develop-
ment process.

The software process meta model, which we use in this thesis, looks as illustrated
in Figure 2.15. The meta model organizes components of a process into Method Com-
ponents and Grouping Elements. While Grouping Elements are used to structure the
various stages and activities of a development process, single work units are realized by
methods or so-called Method Chunks. A method or Method Chunk (MC), basically, con-
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sists of a product part and process part [HBO94]. As depicted in the meta model, our
notion of an MC refers to multiple product parts, representing relevant input and output
information of an MC, and one process part, which is considered as a guideline provid-
ing rules, heuristics, and practices. A Process is defined by aggregating multiple MCs
into GEs.

Therefore, we also distinguish the disciplines of Method Engineering and Process En-

gineering: Process Engineering (PE) provides means and techniques to describe common
properties of a class of processes, that have the same nature [Rol98], and to manage ab-
stract activities and tasks to produce project-specific life-cycle models [RPR98, MKP98],
i.e., it is located on the life-cycle level and the development process level. In this context,
PE relies on activities and techniques, which are similar to business process management
activities, as discussed in the last section. Therefore, business process management per-
fectly matches the needs of PE in the software engineering domain.
Contrasting usually descriptive approaches in PE, Method Engineering (ME) attempts
to provide prescriptive models [RSM95]. Thereby, it provides techniques to develop a
contingent collection of means, which help to accomplish a specific task in software engi-
neering and complements PE with relevant information about how to perform individual
work units. ME focuses the construction, modification, and combination of methods. The
following section details the discipline of method engineering.

2.4.2 (Situational) Method Engineering

A large number of methods was developed for information systems development, dur-
ing the last decades. Amongst others, there are structured approaches, prototyping ap-
proaches, systemic approaches, object-oriented, agile approaches, or formal approaches.
As methods must be well-suited to the needs of their users, i.e., developers, and, in par-
ticular, due to the necessity to change methods from one business situation to another
[HSR10], Method Engineering and the more specific discipline of Situational Method En-
gineering have established during the last years.

According to [KW92], ME provides means and techniques to improve the useful-
ness of system development methods by creating an adaptation framework, whereby
methods are created to match specific organizational situations. The definition of Ku-
mar was extended in [Bri9%], where Brinkkemper refers to ME as an engineering dis-
cipline to design, construct and adapt methods, techniques and tools for the develop-
ment of information systems. That means, in a more comprehensive view, ME provides
contingent ways of thinking in order to efficiently realize concrete products, artifacts,
or other deliverables, which are required during the overall software development life-
cycle [KW92, Har97b, MKP98].

Contrasting the general organizational needs focused by ME, SME focuses on the con-
struction of methods, which are tuned to specific situations of actual development projects
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[KWO92]. Some of the challenges for SME include the creation of method bases, tools to
support method construction, theory and tools to support quality evaluation of the con-
structed method, the availability of SME tools and their interface to other tool-sets, and
knowledge of what works in what situation and why [HSR10].

Figure 2.16 gives an overview about the different facets of SME. In the depicted meta
model, the term methodology is the main concept, i.e., the overall software development
process, which is characterized by different process and product aspects. Methodolo-
gies (or processes) either can be tailored, constructed, or fixed, whereby so-called meta-
processes describe relevant tasks to achieve tailoring and construction efficiently. The fig-
ure also depicts, that in ME/ SME, each method is made up of smaller constituent parts
(for example, method chunk and method fragment). To detail the various facets of SME,
the following describes different research activities and relevant questions discussed in
literature.

2.4.2.1 Components of a Method

SME/ME is based on the fact, that each method is composed of different smaller parts.
The most common terms, which are used by many authors to describe parts of a method
are: Method component, Method Chunk, or Method Fragment.

The term Method Fragment was coined by Harmsen [HBO94] as building block of a
situational method. These Method Fragments (MFs) can further be classified according
to the dimensions perspective, abstraction level, and layer of granularity, as discussed
in [Brio6]:

Perspective: The first dimension already is mentioned by Harmsen, when he distin-
guishes the process and the data perspective of methods, by introducing product frag-
ments, which are the products and sub-products to be delivered by a method, such as de-
liverables, milestone documents, models, diagrams, etc. , and process fragments, which
represent the stages, activities and tasks to be carried out in order to produce product
fragments. However, various authors ( [Har97b, MDK99, BB01, BPKJ07]) have recog-
nized the need for additional fragment types or perspectives to detail a method con-
sidering its required resources, such as roles (i.e., human-related factors) and tools (i.e.,
infrastructure-related factors). In this thesis, four specific perspectives become relevant
to comprise a method with the following information:

o Artifact: The artifact perspective defines the product-specific part of a method. By
the means of artifacts, aka. work-products, it defines, what has to be produced,
modified, or used by a method. Artifacts are the tangible products of the project,
which are consumed by distinct roles as input to produce individual output. Ar-
tifacts have different forms: a model, a model element, a document, source code,
executable code, or the final product are examples of an artifact.
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e Role: The role perspective of a method defines a human-related factor, which is re-
sponsible and capable to perform a specific unit of work. Therefore, a role defines
the behavior, responsibilities, and capabilities of an individual, or a group of indi-
viduals working together as a team. One individual may have different roles in the
course of the development process. Roles, for example, are: requirements engineer,
software architect, timing specialist, or test manager.

e Tool: The tool (or application) perspective refers to the infrastructure-related factors
of a method. It describes the capabilities of an automation unit, that supports the
associated roles in performing the work defined by a method. A tool can be a fully-
automated, or it can be a general purpose tool, which enables the the processing of
artifacts.

e Guideline: The guideline perspective represents the process-related facet of a method.
It is a set of indications on how to proceed to achieve an objective or to perform a
method [RPB99]. It is a specific type of guidance, that provides additional details,
rules, or recommendations on artifacts and their properties. Additionally, it can
include details about best practices, to provide proven ways or strategies of do-
ing work to achieve a goal, that has a positive impact on work product or process
quality [OMGO08a]. For us, a guideline embodies method knowledge to guide the
developers in achieving an intention in a given situation.

Abstraction: The second dimension of MFs, which was proposed in [Bri%6], is the ab-
straction dimension, which distinguishes the conceptual level and the technical level.
While MFs on the conceptual level are descriptions of information systems develop-
ment methods or part thereof, the technical dimension refers to the operational parts
of a method. This distinction strongly influences our approach, that distinguishes the
business level to represent the conceptual perspective and the technical level to represent
operational information.

Granularity: The third dimension of an MF is determined by the granularity layer,
which means the decomposition level of a method. For example, a method from a process
perspective consists of stages, which are further decomposed into activities and individ-
ual steps [Bri96]. A similar decomposition, for example, can be made in the product-
related perspective, where a final product is subsequently decomposed into milestones,
deliverables, models, and model components. In our approach, which, particularly, fo-
cuses on the operational part of a method on technical level, decomposition is situated
on the conceptual level, i.e., on business level. On that level, our approach allows for the
application of different ME or PE techniques to decompose stages, activities, and prod-
ucts.

Different types of relationships exist to combine MFs. A general overview is given
by Brinkkemper in [Bri96], where he distinguishes two general types of relationships
between fragments of the same type, such as product refinements or precedence rela-
tionships between process fragments, and relationships between fragments of different
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types. The latter kind of relationships is subdivided into support relationships, such as a
relationship between a tool and a depending product fragment, and input/output rela-
tionships, expressing the fact that product fragments are consumed /produced by process
fragments.

Contrasting Method Fragments, other authors prefer the term Method Chunk [RPP96b,

RPR98, MR0O5], aka. Method Component [WKO04], which can be seen as a more meaning-
ful combination of different MFs. Although, originally defined as a pre-determined link-
age of only one process-oriented component (aka. guideline) with one product-oriented
component, i.e., a one-to-one relationship [HSGP08], individual meta models, such as
OPF [OPE09], SPEM, or the new ISO/IEC 24744 [ISO07], allow for more complex rela-
tionships between product and process parts, as well as, the incorporation of different
MEF types, such as human- or infrastructure- related ones.
This is also depicted in the meta model shown in Figure 2.17. The meta model, which
was defined in [RR01a], defines a method (or process in our terminology) as complex
structure, which consists of different chunks on various abstraction levels. A Chunk, i.e.,
an MC, appears under its synonym of guideline, which is based on one or more product
parts in combination. Each guideline has an interface to describe the usage scenario of
a guideline (chunk), and an intention to describe the goal of the chunk, i.e., the product
to achieve. Additionally, the guideline is associated with a descriptor, which describes
the reuse situation, e.g., the application domain or the supported design activity, and
reuse intention, e.g., the objective which can be achieved by using the chunk in a given
situation. This idea of a chunk interface inspires our idea of a Method Chunk interface,
which we are introducing in chapter 3 in order to link variation points with variants in
our process line. Similar to a software program, a variation point is an interface, for
which a corresponding body (the variant) provides detailed information about how to
achieve a chunk’s intention in a process line. Moreover, the approach distinguishes three
kinds of a guideline: a simple guideline, which provides advices to master an individual
engineering activity in narrative form, a tactical guideline, which is used to compose dif-
ferent guidelines, and a strategic guideline, which is used to structure different kinds of
sub-guidelines.

While the linkage of MFs in form of MCs speeds up the usage of methods by reducing
the number of components, which have to be identified during configuration, the defini-
tion of predefined complex fragment combinations may lead to redundant method frag-
ment information [HSR10]. However, regardless whether Method Fragments or Method
Chunks are preferred, it is well established, that they should be stored in a method-base
or repository [SIWyS93, Bri9%, Har97b, RPR98, RR0O1b], to provide a database from which
parts can be copied out for situational method construction based on specific project char-
acteristics.
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2.4.2.2 Identification and Construction of Methods

As many meta models are proposed by various authors to address the structure of meth-
ods, as many authors address a meta process, which guides users in the application of
these meta models [GP01,RDR03,PGO07]. In [NRO8], for example, they extract the follow-
ing generic activities, which cover most relevant method engineering activities:

1. Method Requirements Analysis: During this activity, important features of the
method under construction should be identified, before they are defined in a formal
way to describe the method’s needs.

2. Method Design: Based on the identified requirements, a blueprint for the method
is defined, during this activity.

3. Method Implementation: During the method implementation activity, suitable meth-
ods are constructed. The result of this activity can be a set of CASE tools providing
means to support the processing of a method’s products, and/or process support
environments to guide the developers.

4. Method Test: The final activity focuses on the verification and validation for de-
termining whether a newly developed method realizes the predefined method re-
quirements or not.

In contrast to that generic method engineering process, in [RR01a], they suggest dif-
ferent more concrete strategies to achieve efficient method engineering. The strategies
are described using a so-called map [RPB99], which is a popular notation in the ME com-
munity not only to describe a meta process, but also the resulting method.
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A map, in general, is a directed graph, which consists of intentions (nodes) and strate-
gies (edges). An intention represents a task, which has to be accomplished, while a strat-
egy suggests a distinct way to achieve a particular intention. A map consists of different
so-called sections, which are defined as a triplet consisting of a source intention, a target
intention and a strategy, i.e., an intention can be achieved applying different strategies.
Within a map an intention is a starting point, from which one has to decide, which in-
tention must be achieved next. Each strategy to reach a selected intention can be further
decomposed into more detailed sub-maps, whereby on each level a strategy is enacted to
provide advice on how to perform. For the enactment of a strategy, different guidelines
are associated with the parts of a section: an Intention Selection Guideline (ISG), associ-
ated with the source intention to support the selection of an appropriate target intention;
a Strategy Selection Guideline (SSG), associated with a pair of intentions to provide the
set of alternative strategies to get from the source intention to the selected target inten-
tion; and an Intention Achievement Guideline (IAG), associated with a section (node pair
plus strategy) to provide real advice on how to achieve the selected intention.

The chunk identification approach proposed in [RR01a] uses the map notation to de-
scribe the meta process for the definition of MCs. This meta process is illustrated in
Figure 2.18 and consists of four intentions linked by different strategies to achieve these
intentions. The first two intentions (Define a section and Define a guideline) allow the
method engineer to restructure an existing method or to define new ones by the iden-
tification of sections and associated guidelines. The subsequent intentions (Identify a
method chunk and Define a method chunk) correspond to the identification and defini-
tion of MCs from sections and guidelines. To achieve the individual intentions, i.e., to
create a MC from scratch or from existing methods, various strategies were identified.
While in [HSR10] a good overview about the strategies is provided, details can be found
in [RRO1a] and [Ral04].

Beside the identification and construction of method constituent parts, other approaches
focus on the construction and tailoring of methods from identified parts stored in some
method base. General kinds of construction patterns have been defined in [RP96a], where
Rolland identifies general method construction patterns, such as Identify, Describe, Con-
struct, Define, Check and Refine, which guide the construction of different methods. How-
ever, the most prominent method development strategies are classified, as follows:

e Ad-hoc: Ad-hoc Method development creates a new methodology from scratch.
This, for example, is described in [Ral04].

e Paradigm-based: The paradigm-based method development instantiates, abstracts
[Rol02] or adapts [Tol98] an existing meta-model in order to produce a methodol-

ogy.
e Extension-based: Method development through reuse of an existing methodology

to enhance it by new concepts and properties, whereby patterns can be used, as
originally described in [DS98].
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Figure 2.18: Method reengineering process model from [RR01a]

e Assembly-based: The assembly based method development uses repository stored
method components to construct or enhance existing method. This strategy was
originally described in [RRO1b] and extended, e.g., in [KDS07].

o Architecture-based: The architecture-based method development is realized dur-
ing a life-cycle, where common properties are abstracted in a method architecture,
which is configured with concrete methods by situational needs. This is discussed,
e.g., in [PGO7].

e Method-oriented Architecture (MOA): The most recent strategy is MOA. The MOA-
based method development adapts the Service-oriented Architecture (SOA) [Erl05]
paradigm for the needs of method engineering by describing methods as services
in parallel with service discovery principles. Details can be found in [DIKS09].

A different approach, which is provided by Niknafs et al. [Ali07], uses ontologies for
an assembly-based approach to support Method Engineering. They propose a seman-
tic data-model, which provides concepts to define semantics of method fragments, the
associations between them, and the method base. By describing Method Fragment as
complete and unambiguous as possible, semantic search of method fragments, check-
ing semantic consistency of fragments, and other checks, such as semantic completeness,
semantic conformity with the meta-models of product and process models is enabled.
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CASE Part

2.4.3 Tool Support for Methodology Engineering

To provide software support to ME activities, the term Computer-aided Method Engi-
neering (CAME) tool/environment was coined. In general, CAME aims at supporting
the development of methods, similar to the so-called CASE tools, which support the de-
velopment of information systems. In [Rol97], Rolland suggests the following function-
ality of a CAME tool:

e Definition and evaluation of contingency rules and factors or descriptors to enable
an appropriate choice of the method components.

e Storage of method components, method construction knowledge, past experience,
heuristics, etc. in a repository called the method base.

e Retrieval of the contents of the method base by the means of a query language for
accessing the contents of the method base.

e Composition of method components by providing the knowledge permitting the
development of a new method.

e Validation and verification of the constructed method. The CAME tool should not
only support the selection and assembly tasks, but also check the resulting method.
The tool, therefore, should incorporate guidelines to ensure the correctness of the
method.

e Adaptation facilities for modification of the contents of the method base as a result
of the experience gained.

e Support and guidance of the method engineering task.

The listed capabilities show, that the software process domain not only encompasses the
domain of method or process modeling, but also an enactment and a performance do-
main [Dow93]. While the modeling domain encompasses the definition and maintenance
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of software process models or methods, the performance domain concerns current tasks,
that are performed by human or non-human agents during a performed software pro-
cess. These two domains are connected through the process enactment domain, which
supports and controls the process performance domain through process models.
Therefore, in order to enable enactment and performance capabilities, an CAME environ-
ment’s capabilities, normally, are complemented by a so-called application engineering
part, as, for example, proposed in [Rol97] or [NRO8]. An architectural overview about
such a more comprehensive CAME environment is given in Figure 2.19. The figure
shows, that a complete CAME environment can be subdivided into two parts: a core
part, which provides mere method engineering functionality, and an CASE part, which
offers means for application engineering, i.e., for the generation of CASE tools and pro-
cess support.

Once a method is obtained from the CAME core part, it will be fed as input to the CASE
part, which generates a project-specific CASE tool from the product part of a method. In
parallel, process support is generated based on the process part of methods. Depend-
ing on the CASE part’s focus, i.e., the product model or the process model of a method,
CAME environments are classified into product-oriented or process-oriented environ-
ments. Most of the existing CAME environments fit into the first class, due to their
emphasis on modeling a method’s product part and the generation of various CASE
tools to enable the construction and modification of method-specific products [NROS].
These product-oriented environments use the product-related parts, which result from
the method engineering activity, and their associated product meta-models, to derive
method-specific user interfaces, i.e., editors or CASE tools, which provide relevant capa-
bilities only.

The process-oriented environments go by different names: Process Support Systems
(PSS), Process Sensitive Environments (PSE), Process Centered Environments (PCE), or
Process-Centered Software Engineering Environments (PSEE) are some of the alternative
terms used in the literature [MR12]. Although, many requirements for such an envi-
ronment are discussed in literature [ACF97, Zam01, Gru02, DO05, MR12], the most gen-
eral and widely accepted set of requirements, which should be fulfilled, are summarized
in [ADOV02]. Here, Arbaoui et al. state, that an PSEE at least provides the following
functionality:

e It should support enactment to enable the automating of human and non-human
activities.

e It should support the dynamic management of software process activities. There-
fore, in [DF94] they distinguish four different styles: passive guidance, where in-
formation is provided to developers only on request; active guidance, where the
process model specifies when and how information is provided; process enforce-
ment, where agent have to perform process parts in a specific way; and process au-
tomation, where process parts are under the control of the enactment mechanism
completely.

e It should support the software process distribution to enable communication, co-
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ordination, cooperation and negotiation between both user performers and auto-
mated process elements.

e It should support the software process evolution to manage the redesign and ad-
justment of processes.

Furthermore, Matinnejad et al. expose, that PSEE Technology should be distinguished
from related technologies, such as Workflow Management (WFM) and Computer-Supported
Cooperative Work (CSCW). While PSEEs are software systems, that assist in the model-
ing and automation through enactment of software development processes [ADOV02],
WEM systems are mainly concerned with modeling and automation of business work-
flows and industrial processes, and CSCW systems merely provide assistance for groups
of developers in collaborating and coordinating their activities. In particular, according
to [Gru02], an PSEE-enabled CAME environment provides essential advantages, such as:

o the enforcement of consistency between documents,

o the guidance of software developers,

o the knowledge of the state of the software process, and

e the automation of process parts (e.g., in configuration assembly, testing).

In literature, many prototypes have been proposed to illustrate the concepts of flexible
CAME environments. Due to their particular relevance to this thesis, where we introduce
a hybrid CAME environment, which considers process and product facets likewise, we
provide a comprehensive overview and discussion about related work in chapter 7.

2.5 Software Product Line Engineering

In the beginning of the software area, a software product was small and each product
variant either included all possible features one might ever need, or it was developed
from scratch for individual customers, which made software products rather expensive.
Due to the increasing complexity of modern software and the increasing diversification of
software products induced by individual customer needs, a new approach was required
very quickly. Therefore, inspired by the notion of a production line, as initially invented
by Henry Ford to enable more cheap production for a mass market in the automotive
market, the term product line was established in the software domain to achieve various
benefits. While a detailed overview about benefits and efforts, which arise from product
line engineering, is given in [CNO01], Pohl et al. summarize the most essential benefits, as
follows [PBVO05]:

¢ Reduction of Development Costs through reusing of predefined artifacts from an
asset base

¢ Enhancement of Quality through more extensive quality assurance of reusable ar-
tifacts

64



CHAPTER 2: FOUNDATIONS

e Reduction of Time to Market through assembly-based combination of new prod-
ucts from an asset base in contrast to individual solution

¢ Reduction of Maintenance Effort through the propagation of single artifact changes
to the overall product portfolio

e Coping with Evolution through the influences of innovative improvements in the
asset base on all products

e Coping with Complexity through systematic management of software products
and reuse of common product parts

e Improving Cost Estimation through reduced risks in asset assessment

¢ Benefits for the Customers through reduced prices for consistent quality and a
stable look & feel

According to Clements and Northorp [CN01], a product line or product family is de-
fined as a set of software-intensive systems sharing a common, managed set of features,
that satisfy the specific needs of a particular market segment or mission and that are de-
veloped from a common set of core assets, aka. as platform, in a prescribed way. Thereby,
the term core assets is a generic term, which includes various artifacts relevant for prod-
uct development, such as requirements, design documents, software components, tests,
budgets, schedules, or process descriptions. The probably most important core asset,
though, is a reference architecture, aka. domain architecture, which determines the struc-
ture and the texture of a specific application, aka. product family member, in the software
product line [PBV05]. It provides common rules guiding the design, realization, and the
combination of core assets to form product family members.

To efficiently achieve benefits as mentioned above, various initiatives and projects,
such as the AMPLE Project, the Cafe Project, the Families Project, or the SEI Framework
for Software Product Line Practice were conducted during the last decades, to further
software product line engineering, which is a paradigm to develop software applica-
tions using platforms and mass customization, i.e., the large-scale production of goods
tailored to individual customers’ needs [Dav87, PBV05]. In general, this paradigm pro-
vides high reusability through the management of commonalities and variabilities of core
assets in a family of software systems in a common way. In [PBV05], this kind of man-
agement is referred to as the concept of managed variability.

An essential vehicle in software product line engineering is the development process,
which is commonly separated into two parts [WL99,Van02,PBV05]: a Domain Engineering
part (aka. core asset development [CNO1]), which concerns the development for reuse;
and an Application Engineering part (aka. product development [CNO1]), which concerns
development with reuse. Additionally, a cross-cutting part can be identified to support

management activities considering technical and organizational concerns of a product
line [CNO1].
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2.5.1 Variability Engineering

As already mentioned, a software product line is affected with the management of vari-
abilities in a family of software products. Contrasting general variability, which can be
defined as the ability to change or customize a system [VBS01], software variability refers
to the ability of a software system or artifact to be efficiently extended, changed, cus-
tomized or configured for use in a particular context [SVB05]. This may concern, for
example, features, processes, data, policies, user interfaces, system interfaces, or vari-
ous quality attributes of a software system. In [PBV05], they, additionally, distinguish
between variability in time (cf. [EBLSp10]) and variability in space, as well as, between
external and internal variability. While the latter refers to variability, which either is vis-
ible (external) or invisible (internal) to customers, the former refers to different versions
of an artifact, which are valid at different times (time), or to different shapes of an artifact
(space) at the same time.

2.5.1.1 General Variability Model

In general, variability can be defined either as an integral part of development artifacts
or in a separate variability model [PBV05, MP07]. Although, various approaches exist,
which integrate variability into development artifacts directly, such as use case models,
feature models, message sequence diagrams, or class diagrams [VBS01, KLD02, BFG 702,
BHPO3], this causes different drawbacks concerning, e.g., consistency relationships be-
tween the various variable elements spread across various artifacts. Therefore, to over-
come these and other drawbacks, as discussed in literature (cf. [GB02, MA02, BGL 04,
BLP04]), some approaches propose the notion of a comprehensive variability model,
which stores variability information in a separate model. Such a so-called orthogonal
variability model, as, e.g., presented by Pohl et al. in [PBV05], defines the variability of a
software product line by relating the defined variability to other software development
artifacts. The meta model presented by Pohl et al. specifies the main concepts of an or-
thogonal variability model, as depicted in Figure 2.20.

The main concepts of the model are variation points and variants. While a variation
point answers the question of what does vary, a variant answers the question of how
does an element vary and why. A variation point either can be internal or external in
order to indicate the relevance of variability to internal or external stakeholders, as dis-
cussed above. In order to relate variable elements with potential realizations, variation
points must be related to at least one variant.

This relationship, or variability dependency, is specialized differently: either as manda-
tory variability dependency, which defines that a variant must be selected for an appli-
cation if and only if the associated variation point was selected before, or as optional
variability dependency, which states, that a variant can (but does not need to) be a part of
a product family member. Additionally, to define the minimum and the maximum num-
ber of optional variants to be selected from a given group of variants, the meta model
provides the alternative choice class, which groups a set of optional variants of the same
variation point and defines the range for the number of optional variants, which have to
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Figure 2.20: Variation point, variant, and the variability dependency in the variability
meta model according to [PBV05]

be selected from this group.

To additionally consider particular dependencies between variants and variation points,
the variability model can be complemented by so-called variability constraints. These
constraints can be defined between variants, variation points, or between a variant and
a variation point to exclude or require a dependent element based on the selection of
another. For example, the selection of a variant V; may exclude/include a variation point
V Py, a variant V; may exclude/include a second variant V3, or a variation point V P; may
exclude/include a second variation point V' P,. That way, variation point constraints,
variant constraints, and variant to variation point constraints are defined.

To relate the variability defined in the variability model to software artifacts specified
in other models, textual documents, and code, variants in the variability model must be
related with software artifacts, such as requirements, design, realization, and test. This
can be made at different levels of granularity by introducing a dependency between vari-
ation point or variants and a concrete representation of a development artifact.

The moment, when variability is resolved to derive a product family member, often is
called the binding time of the variability. Different binding times or configuration mech-
anisms are conceivable to bind variants before, during, or after an individual process
step [PBVO5]:

e Before Compilation: This mechanisms is applied to resolve variability before source
code is compiled by using, for example, code generation techniques and param-
eterization, aspect-oriented programming, model-driven approaches, or software
factories.

e AtCompile Time: This mechanism is based on the used compiler functionality itself
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and uses pre-compiler makros or conditional compilation statements.

e At Link Time: A resolution at link time is based on sequences of compilations and
linkages activities. Depending on the situational parameters, different sets of com-
pilations and linkages are performed.

e At Load Time: When several executables and dynamic link libraries are combined
into one system, a configuration file is used to locate and initiate all files that should
be loaded.

e At Run-Time: Runtime variability concerns the target system, which hosts a central
registry, in which a component registers individual information about interfaces.
By querying for that information, components interaction can be defined variably.

2.5.1.2 Feature Modeling

The described orthogonal variability model, basically, conforms to the notion of feature
diagrams, as initially developed by Kang [KCH90] as means to capture commonalities
and variabilities at the requirements level. Due to their particular relevance to this thesis,
we discuss this formalism in more detail in the following.

Feature models are one of the most commonly employed modeling and represen-
tation techniques in software product line engineering, that are used to capture both
variability and commonality. They provide a tree-like structure, whose root feature rep-
resents a domain application and other nodes represent the features of products of the
domain. Basically, a feature model allows different types of features and various relation-
ships between them, from which the most relevant ones are detailed in the following;:
There are mandatory features, which must be included in the description of its parent
feature, and optional features, which may or may not be included in its parent descrip-
tion. Additionally, alternative feature groups are used, if one and only one of the features
from the feature group can be included in the parent description. In contrast, an Or-
feature group is used, if one or more features from the feature group can be included in
the description of the parent feature. Similar to the above orthogonal variability model,
feature models define cross-tree dependencies between features referred to as integrity
constraints. Two widely-used integrity constraints are: includes — the presence of a given
(set of) feature(s) requires the inclusion of another (set of ) feature(s) ; and excludes — the
presence of a given (set of) feature(s) requires the exclusion of another (set of) feature(s).

Furthermore, there are various alternative approaches for feature diagrams available,
which extend the initial semantics defined in the context of Kang’s FODA (Feature Ori-
ented Domain Analysis) [KCH"90] method. In [KKL"98], they extended the scope of
feature diagrams from requirements engineering to software design by applying features
on different abstraction layers and by introducing relationships for generalization or spe-
cialization. The FeatureRSEB approach [GFD98], is a combination of FODA and a use-
case driven reuse process, where variability is captured by structuring use cases and
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object models with variation points and variants. Van Gurp et al. [VBS01] specialized
feature diagrams with regard to binding times and external features to refer to technical
possibilities offered by the target platform of the system. The Generative Programming
paradigm was adapted by Czarnecki et al. [CE00,CHEO04] to provide staged configuration
and distinguishing between group and feature cardinalities. Furthermore, to provide a
high level view of a product family, in [EBB05], they combined feature diagrams with
use case diagrams, and, in [BAGS10], they extended feature diagrams with capabilities
for capturing business oriented requirements or preferences in the form of fuzzy linguis-
tic variables. Beside these approaches, a multitude of different approaches can be found
in literature: [VKO02], [Rie03] [CHEO05], [Bat05], or [BTRCO5].

2.5.2 SPLE Development Process

The software product line engineering paradigm separates two processes: Domain engi-
neering, which is the process phase in which the commonality and the variability of the
product line are defined and realized; and application engineering, which is the process
phase in which the applications of the product line are built by reusing domain artifacts
and exploiting the product line variability [PBV05]. Both phases consist of different sub-
processes, which can be performed in appropriate order to match organizational needs.
Thereby, product line engineering activities must be aligned with already existing orga-
nizational business processes. Although, many reference frameworks are proposed for
software product line engineering in literature [BFK+99, CN01, KLDO02, Van02, KKSB06],
some activities are essential to it. Therefore, by following the framework introduced
in [PBV05], we discuss the most common activities in software product line engineer-
ing. That framework is illustrated in Figure 2.21 and distinguishes the two main phases
domain engineering and application engineering. The figure shows the distinct activi-
ties, which must be performed in respective phases, as well as, the separation between
domain artifacts and application artifacts, which both are discussed in the following.

2.5.2.1 Domain Engineering

The upper part of Figure 2.21 depicts the Domain Engineering sub-process or phase of
the software product line engineering process. During this phase, basically, a family ref-
erence model is designed and implemented by identifying variability and commonalities
in the domain of interest. Therefore, appropriate and reusable artifacts, that accomplish
the desired variability, must be defined and subsequently constructed as part of an asset
base. Domain engineering consists of five sub-activities and associated outcomes, which
go by different names or compositions in various approaches.

Product Management

A product management activity deals with economic concerns in a product line. It ana-
lyzes an organization’s strategy and defines the product scope for a company or business
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Figure 2.21: The software product line engineering framework from [PBV05]

unit. Therefore it uses scoping techniques (cf. [CN01,LKL10]) to define the boundaries of
the product line. The output of that activity may be a product road map, which defines
variability in features provided in existing and future products.

Domain Requirements Engineering

A domain requirements engineering activity deals with general tasks, which must be
accomplished to elicit and document common and variable requirements and features
in the product line. Therefore, it uses textual or model-based techniques, such as fea-
ture modeling, scenarios/use cases, state machines, or class diagrams for capturing the
functional, structural, and behavioral domain requirements. In each formalism, vari-
ability must be documented in an unambiguous and systematic way. Therefore, vari-
ous extensions to existing approaches were proposed in literature to integrate variabil-
ity (cf. [KLDO02, BHP03, PBV05]). In contrast, the aforementioned orthogonal variability
model can be used for that purpose, likewise.

Domain Design

Based on identified requirements, a domain design phase deals with the technical defi-
nition of a reference architecture, which provides the common structure for all product
line applications. For architecture design, various views, which concern, for example,
the decomposition of processes, structural entities, or code, are used to satisfy individual
stakeholder needs. Any applied view or representation must provide adequate variabil-
ity mechanisms or it must be associated with the orthogonal variability accordingly to
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provide a viable reference architecture, aka. domain architecture.

Domain Realization

A domain realization phase uses the reference architecture to derive a detailed design
and an implementation of all identified architectural parts. This, in particular, concerns
interfaces, components, algorithms, protocols, resources and their variabilities. The out-
put of this activity is a set of design and implementation assets documenting reusable
software components in the asset base.

Domain Testing

During a domain testing phase, test artifacts are created to validate and verify reusable
components and to reduce the efforts for application testing. These test artifacts, at least,
should contain test plans, test specifications, and test results, which cover variable sce-
narios.

2.5.2.2 Application Engineering

The lower part of Figure 2.21 depicts the application engineering sub-process or phase,
that captures the requirements of a target application and derives applications from the
reference architecture based on identified requirements. Thereby, an as high as possible
degree of reuse of the domain assets should be achieved by exploiting the commonality
and the variability of the software product line and binding the variable components ac-
cording to the application needs from requirements to test cases. Application engineering
consists of four sub-activities and associated outcomes, as discussed in the following.

Application Requirements Engineering

The application requirements engineering activity reuses the results from the the domain
requirements engineering activity to define the application requirements artifacts, which
serve as a basis for application design. By analyzing the differences between application
requirements and domain requirements, reusable platform assets and additional require-
ments for the new application are identified. By determining the gap between platform
requirements and aimed product, additional adaptation efforts and their impacts are es-
timated. The application requirements activity is essential for the communication with
internal and external stakeholders, which are interested in an application and its individ-
ual features.

Application Design

An application design activity uses the application requirements to derive the application
architecture, wherein the required parts of the reference architecture are selected and
application-specific adaptations are incorporated. This activity requires to take care of a
consistent selection of variants and variation points, which do not influence each other
negatively.
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Application Realization

During the application realization activity, the desired product or application is cre-
ated. Therefore, reusable software components are selected from the asset repository
and application-specific artifacts are created separately. Finally, a running application
together with all requirement and design artifacts is created.

Application Testing

An application testing activity verifies and validates a realized application against its
specification. Therefore, the test artifacts, which are provided by domain testing activity,
are used in combination with application specific tests.

2.5.3 Tool Support for Software Product Line Engineering

The operation of product line engineering not only requires the introduction of new ac-
tivities, but also must be incorporated with existing organizational standard processes
regardless of whether development, management, or support. The transition process to
change individual solution development to software product line development requires
time, budget, and expert knowledge, before return on investment can be expected. How-
ever, even if product line engineering is established, new challenges must be mastered, as
discussed, e.g., in [BFG 02, DSB04]. In particular, due to the high complexity of variation
points and variants spread across different abstraction levels, avoidance of human errors,
asset management, or consistent product derivation, must be supported by automation
and tool support. In [GS07], indeed, they propose an approach for automating individ-
ual software product line engineering activities and product derivation, but, in general,
comprehensive tool support for managing variability across all development artifacts is
very weak [PBV05]. Therefore, it is one of the key challenges for future research.
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Figure 3.1: Objectives overview

C

Organizations are required to effectively manage their processes. Therefore, Process
Engineering and Method Engineering are popular techniques to design and customize
processes and associated information in form of methods, techniques, guidelines, or best
practices. However, there is no integrated technique, which considers both, the vari-
ability of the process life-cycle and the situational needs of associated information. In
particular, there is no approach, which considers the variability of executable develop-
ment processes, at the same time. Therefore, since execution of development processes
(one main objective of this thesis, which is discussed in subsequent chapters) increases
conventional process design efforts to a considerable degree, an effective management of
process information and their variabilities is needed to minimize these efforts. Therefore,
this chapter focuses on objective 1, as illustrated in Figure 3.1 and sets up the necessary
prerequisites to enable effective design, reuse, and configuration of executable develop-
ment processes.
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3.1 Motivation

Today’s process variability techniques support prescriptive adaption of business project
plans or other static process models and methods. However, there is no technique, which
considers structural variability of a process life-cycle in parallel with behavioral vari-
ability of contained methods, which are more affected by qualitative and situational de-
velopment concerns. Popular PDLs, such as SPEM or BPMN, do not provide mech-
anisms to support variability, which go beyond manual adaption or re-creation. Sim-
ilar to other approaches, SPEM’s process variability is based on reusable process pat-
terns and variability elements, which support variability types, such as replacement, ex-
tension, contribution, extension-contribution [OMGO08a]. Therefore, reuse, extension, and
adaption of already available GEs (cf. Figure 3.4) are more enabled, than an effective sup-
port for managed variability, as known from Product Line Engineering (PLE). However,
well-established product line engineering techniques can be combined with situational
method engineering techniques (cf. Section 2.4) to manage a family of processes and
methods enabling more than “paperware” capabilities. Therefore, the process variabil-
ity management must consider structure-driven, behavior-driven, and resource-driven
dimensions, as discussed in the following:

3.1.1 Structure-driven Dimension

The structure-driven dimension concerns the variable composition of processes and meth-
ods from smaller building blocks.

Process Structure Variability

Structural process variability mainly concerns structural decisions on necessary or dis-
pensable process activities and their general order. The variability mechanism must con-
sider, that multiple stakeholders, such as project partners, regulations, standards, such as
15026262 [ISO10] or RTCA DO-178B [Rad92], and particular project situations influence
the process structure, i.e., practice areas, activities, as well as, their logical or temporal
order.

Method Structure Variability

The basic structure of methods is defined by the means of an MC, as described in Sec-
tion 2.4. An MC is composed of fragments, such as input/ output information, respon-
sible roles, and applications. Method structure variability concerns variability of MCs
and a situational combination of different fragments, as addressed by a multitude of ME
techniques.

3.1.2 Behavior-driven Dimension

The behavior-driven dimension concerns the variable realization of processes and meth-
ods at runtime, i.e., on operational level.
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Process Behavior Variability

Process behavior variability refers to the different characteristics of a process at run-
time. It concerns unforeseeable environmental effects, such as deferred project schedules,
change requests, or other underestimated project risks, which influence the performance
of a process. Such effects strongly influence the decisions on, e.g., the number of itera-
tions, the duration of development phases, or the functionality of one release. The effects
cannot be anticipated and must be handled at process runtime. Therefore, appropriate
monitoring information must be provided to support humans in making correct deci-
sions. For example, process mining techniques help to analyze such decisions and to
incorporate this kind of knowledge into future processes.

Method Behavior Variability

The structure of an MC is realized by different ways of thinking, which we refer to as
the technical realization of an MC. By the means of this separation, the structural char-
acteristics of an MC are complemented by computer-interpretable information enabling
the performance of an individual method at runtime. Similar to the structure-driven
variability of an MC, which mainly concerns the composition of MFs on business level,
fragments and MCs vary on technical level, as follows:

e Artifacts: On technical level, artifact-centric MFs differ in their data format, the
concrete representation format, the degree of detail, or quality aspects.

e Roles: As the execution of a development activity requires different skills, respon-
sibilities, and access rights, abstract role descriptions are refined by computer-
interpretable information, on technical level depending on organizational rules and
IT platforms.

e Applications: Applications differ in provided functionality, used data, and exchange
formats, which must be detailed on technical level for the situation at hand.

e Guidelines: A method’s behavior is strongly influenced by used guidelines, such
as naming conventions, product validation rules, or quality design patterns. Al-
though, guidelines are documented on business level informally, for automated
evaluation and support, guidelines have to be detailed on technical level. These
guidelines depend on the project situation at hand, which concerns IT platforms,
customer relations, project schedules, and company specific standards.

3.1.3 Resource-driven Dimension

Concrete development projects depend on factors, which concern environmental effects
and available resources. The factors influence the structural and behavioral dimensions
of methods and processes, equally. Affected resources, for example, are:

e Timing resources: depending on contractual obligations, project timing restrictions
vary from project to project. This also influences the time, which can be spent for
individual development activities.
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¢ Quantitative human resources: depending on the importance of the project and the
actual company specific situation, the number of employees differs from project to
project.

¢ Qualitative human resources: the execution of development activities depends on
developer skills. As each method requires individual knowledge, the developers’s
knowledge determines the feasibility of activities.

e Budget resources: financial restrictions constrain the man-months and sometimes
the infrastructure used during the project. Consequently, the feasibility of develop-
ment activities depends on the budget.

e Infrastructure resources: especially the availability of tooling to support develop-
ment or project management activities influence the process and feasibility of activ-
ities.

As the individual characteristics of a process and associated development activities de-

pend on project resources, this kind of variability has to be factored into the process
variability management, as well.

3.2 Overview: Software Process Line Engineering

Our approach, as discussed in subsequent sections, faces above dimensions in a model-
driven architecture. The structure-driven dimension of methods and processes is faced
by the proposed Software Process Line Engineering (SPLE) approach, where we set up a
variable reference process, which is configured for the situation at hand using ME tech-
niques, product line techniques, and Artificial Intelligence (Al) planning. Especially,
method behavior variability is faced by the introduction of an additional design level
and a repository, which consists of a variety of method variants (each realizing an in-
dividual behavior), which are selected based on an annotated usage scenario and situa-
tional needs. In contrast, process behavior variability is discussed in subsequent chapters
due to missing runtime information at process design time. Finally, the resource-driven
dimension is considered, when situational processes are derived from the process line.
Herby, we validate situational process family members with respect to their feasibility.

Typical (Situational) ME (cf. Section 2.4) starts by analyzing situational requirements,
e.g., through goals, and refines them to high-level methods, which are refined to more de-
tailed methods. Afterwards, methods are integrated with processes, which are tailored
by using similar techniques. As method engineering does consider the variability of the
process life-cycle or the configuration of situational processes with different methods in-
sufficiently, we distinguish between structural variability and behavioral variability.
While structural variability concerns the composition of processes and methods from
smaller building blocks, behavioral variability concerns the realization of methods. In
general, structural variability is handled on an abstract business-oriented design level
by applying general ME and product line engineering techniques. Additionally, to face
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Figure 3.2: Overview: Software Process Line Engineering

behavioral variability and project-specific characteristics, a situational process is config-
ured by combining structural information from a business level with behavioral informa-
tion, which is defined on a technical design level. Thus, situational characteristics, which
describe the usage scenario of individual features of a process, and available resources
provide the basis for interconnecting the two levels and finding an optimal configuration.

Asillustrated in Figure 3.2, our proposed approach encompasses three main processes
namely 1) Process Family Engineering, 2) Feature Model Generation, and 3) Situational
Process Engineering. During the Process Family Engineering phase (Section 3.3), we start
on an abstract business-oriented level without technical details, by which commonali-
ties and variabilities of (domain-specific) development processes are captured to define
a Reference Process (RP), which is composed of GEs and so-called MC interfaces to face
structural variability. The reference process is basis for project management activities and
defines the static workflow of development processes represented by process modeling
techniques, such as SPEM, BPMN, or JWT. Thereby, it includes Variation Points (VPs),
which are variable places in design, that have to be bound with situational variants. Vari-
ants realize MC interfaces as concrete MCs, which are detailed by technical details for
a particular application scenario, i.e., a situation in which a variant should be selected,
using situational characteristics. We employ feature models for encapsulating the knowl-
edge of the reference process and also for visualization, which caters combined view of
VPs and variants. During the Feature Model Generation phase, feature models are gen-
erated as an intermediate model to represent the configuration space of a process fam-
ily (Section 3.4). Next, during the Situational Process Engineering phase, (Section 3.5),
Hierarchical Task Network (HTN) planning, an Al planning technique, is leveraged to
configure the feature model, i.e., to bind variabilities, automatically. Therefore, appropri-
ate technical variants (MCs) are selected from the variant repository by analyzing their
annotated characteristics with regard to available resources within the respective organi-
zation. Afterwards, selected variants are bound to VPs of the reference process to realize
a concrete behavior. Finally, the generated process is validated regarding structural or
resource-driven hazards, before platform-specific code is derived for deployment.

77



CHAPTER 3: SOFTWARE PROCESS LINE ENGINEERING

The work, which is presented in this section, was developed in collaboration with
our partners from the Athabasca University and the Simon Fraser University in Canada.
While some ideas also were seized in a master thesis [Sol12], other ideas are discussed
in [AHM™13], which is under review at the time this thesis was printed.
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Figure 3.3: Software Process Line Engineering: Process Family Engineering

Process family engineering analyzes and sets up a process family, from which a dis-

tinct situational member is derived to enable an individual project. Similar to software
product families, for software process families there are also various information types,
which distinguish members of the family from each other. Basically, product family mem-
bers differ in their provided functionality, which a product can have or not. Additionally,
software products, which are derived from one product family, may also differ in control-
flows, used data formats, dedicated access rights and user interfaces, or individual non-
functional properties of functional features or the complete product.
For software process families, similar distinctions can be made: Primarily, process family
members differ in functional characteristics, which may represent individual develop-
ment concerns, such as Requirements Engineering (RE), functional design modeling, or
testing. In addition, processes and contained methods differ in control-flows, i.e., the se-
quence of process actions, in data formats, i.e., data structures of processed artifacts, in
access rights, i.e., process responsibilities, in user interfaces, i.e., supportive tools, and in
non-functional properties of functional features, i.e., qualitative characteristics of meth-
ods, which are used during a process. Table 3.1 contrasts the distinguishing features of
products and processes.

To enable these types of process variability, we basically distinguish two levels: the
level of the abstract process design (business level) and the detailed method design (tech-
nical level). On both levels, relevant process line assets, as illustrated in the meta model
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shown in Figure 3.4, are identified and implemented. The abstract process design level
(Section 3.3.1) defines a variable basic structure of the process life-cycle and contained
methods. Therefore, a set of reusable GEs is defined and used to set up a process skeleton,
the RP. The RP defines the structural boundaries of the process family. It is hierarchically
structured and consists of common and variable sets of abstract practice areas, activities,
and methods, which are used as VPs, i.e., as proxy objects for variants.

The detailed design level characterizes technical details, which are necessary to exe-
cute the development process on operational level. It complements the structural, eco-
nomic information given by the RP on business level with the variants, named MCs.
MCs provide the abstract process skeleton with detailed technical information to enable
the computer interpretation of method-specific data, which will support developers in
their daily work, when the process is automated. In Figure 3.6, the correspondence be-
tween structural and behavioral assets is shown. It shows, that VPs define a workflow
and are associated with a set of behavioral variants. To derive a situational member of the
process family, VPs and variants are characterized by a particular usage scenario, which
is defined by a set of configuration criteria. On the one hand, the scenario determines,
if an individual VP must be fulfilled or not. On the other side, the scenario enables the
selection of one proper variant from the set of available variants, which match the actual
situation best.

This section describes the set up of a process family, from which concrete process
family members are achieved for the situation at hand. Therefore, the following describes
the three main activities, as illustrated in Figure 3.3: Process Family Definition, Variant
Design, and Configuration Criteria Definition.

3.3.1 Process Family Definition

The Process Family Definition activity defines the problem space, for which a process line
has to be established. While the problem space defines a dedicated domain at large, its
counterpart, i.e., the solution space, refers to individual sub-problem of that domain.
Therefore, various information sources are used to abstract several isolated domain-
specific process solutions and to analyze and define the process family problem space.

Product Type Variability | Process Type Variability
Functional Feature Engineering Aspect
Workflow Action Sequence

Data Format Artifact data structure
System Access Responsibility /Role /Skill
User Interface Tool Functionality
Non-functional Properties | Method Characteristic

Table 3.1: Variability Comparison: Product and Process Components
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Figure 3.4: Process Line Engineering Assets

Exemplary information sources, from which information can be taken to define the prob-

lem space, are:

Process Domain: Most companies provide a specific product range, which repre-
sents an independent domain. Normally, the domains require specific knowledge
and focus on special product requirements which also influence respective devel-
opment processes and activities.

Product Domain: Besides the differences in process domains, there are also differ-
ences concerning the concrete product. As each product has individual character-
istics, a respective process or method must consider this variability by providing
adequate guidelines and product information for development, configuration and
integration.

Finalized projects: A multitude of past projects provide a good base for variability.
By analyzing the differences in past strategies, criteria, which indicate the situa-
tional needs for individual activities, can be identified.

Process Assessment Standards: Standards, such as CMMI or SPICE, recommend
the usage of best practice activities. These practices consist of development activi-
ties or artifacts to be produced. To be conform with one of these standards means
to implement respective practices as proposed. Depending on the respective stan-
dard, which must be fulfilled, some practices must be considered or not.

Standards & Regulations: There are a lot of internal or external standards and regu-
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lations, which standardize the accomplishment of individual activities or artifacts.
Additionally, depending on a required compliance level, processes must or must
not follow these standards and/or regulations.

e Customer Relationships: As most of the companies have multiple customer rela-
tionships, every single relationship causes other requirements concerning the ex-
changed data, such as individual information needs, data formats, or required tool-
ing. Therefore, variability is caused through customizing the development process
with respect to produced and consumed project specific information. This variabil-
ity concerns artifacts and corresponding information content to be produced/con-
sumed, the data format, and used tooling for seamless integration between collab-
orating parties and tools.

According to software product lines, where a common, managed set of features satisfy the

specific needs of particular mission are developed from a common set of core assets in prescribed
way [CNO01], a process family uses a common set of process building blocks to specify the
particular, situational mission of software product development. Therefore, the Process
Family Definition activity identifies and implements all relevant components, i.e., assets,
of a process domain. Afterwards, the assets are correlated to define an RP. The RP defines
the temporal and/or logical order of variable and mandatory assets to set up a process
family from the structural point of view, and ensures a member of the process family to
comply with particular structural dependencies or correlations.
By defining the assets, an evolutionary repository, which aggregates various process and
method related assets, is created. Thereby, new assets or ,lessons learned” can simply
be integrated into the repository by adapting the reference process or assets themselves.
Executable processes are prepared by building up the reference process business assets
and providing proper technical assets, which are configured during the situational pro-
cess engineering phase (cf. Section 3.5).

The tasks, which have to be performed during the Process Family Definition activity,
are illustrated in Figure 3.5. The figure shows, that this activity is subdivided into scop-
ing tasks to identify building blocks (left part of the figure) and design tasks to define
building blocks (right part of the figure). Both parts and the relationships between them
are discussed in the following.

3.3.1.1 Process Base Analysis and Design

The Process Family Definition phase starts with an analysis of the process domain, where
parts of the process family are identified to be logically integrated into a coherent entity
in a subsequent step. The main task of this analysis is the identification and definition
of GE and MC interfaces, as depicted in Figure 3.4. Therefore, we follow a top-down
approach, as proposed in [B]] 7 01], and distinguish the following three scoping activities:
process portfolio scoping, domain scoping, and asset scoping.

81



CHAPTER 3: SOFTWARE PROCESS LINE ENGINEERING

/- . . A
Process Family Definition
,// Process Base : ,/ Reference Process :
Analysis and Design Definition
4 4
Process Portfolio j Reference Process
Scoping ‘ Design
=)= =
- e o
Domain Scoping H Activity Design
- \
= =
4 / .
Asset Scobin NN Method Chunk
ping ‘ Interface Definition

Figure 3.5: Overview: Process Family Definition Phase

Process Portfolio Scoping During process portfolio scoping, relevant practice areas,
which the process family must consider, are identified. Aligned with Clements et al.
( [CNO1]) a practice area is ,,a body of work or a collection of activities that an organi-
zation must master to successfully carry out the essential work [..]” of a development
process. Similar to feature-oriented domain analysis [KCH90], various information
sources, such as an enterprise product portfolio, affected domains, other reference pro-
cesses (V-Model, RUP...), assessment standards (CMMI, SPICE,..), existing processes or
domain experts may help to define the scope of the process family. Thereby, complete
processes and definable sub-processes, which vary in qualitative product and process
characteristics, are identified. For example, within the automotive domain, processes to
develop basic software, application software, hardware, systems, or software configura-
tions can be identified. Furthermore, to enable a large number of process family mem-
bers, as much as possible practice areas and processes should be identified to cover as
much as possible situations. Identified practice areas and processes are used for further
analyses in subsequent steps, i.e., they are decomposed into components, which after-
wards are used to set up the all-encompassing RP in a well structured manner.

Domain Scoping Domain scoping systematically analyzes the identified practice areas
and processes with regards to contained development activities. Activities are defin-
able, short-dated, and constituent parts of a software development process, which are
composed of a collection of closely-related methods relevant for individual product de-
velopment. For example, timing analysis or software architecture design are different
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development activities of a development process, whereas each activity is realized by
an appropriate set of methods. Beside an unique identifier for an identified activity, the
required development phase, such as RE, analysis, design, or implementation, and the af-
fected modeling concern, such as requirements, function design, safety analysis, timing,
or test, must be defined. That way, the domain scoping phase allows an easier identifica-
tion of activities, which are redundant in different practice areas.

Asset Scoping During asset scoping, available activities are analyzed in detail to iden-
tify assets, which are necessary to realize development activities of a process. Contrast-
ing the two phases before, where we identified abstract hierarchical structural building
blocks or GEs, such as practice areas and activities, here we are interested in concrete ac-
tions, which must be realized by humans or technical resources. That means, we analyze
identified activities with regard to contained methods, i.e., concrete actions, and associ-
ated MFs, such as (input and output) artifacts, roles, or applications, which are required
for a method’s enactment. For example, an RE activity could be decomposed into three
de facto methods: elicitation, documentation, and analysis. Each method requires ad-
ditional information about affected input and output, responsibilities, and tool-support.
Therefore, following situational method engineering techniques (cf. [RBK]J06]), methods
and associated method fragments are identified, to set up a method base, from which
methods are assembled and evolved. Since asset scoping focuses on the general structure
of methods, i.e., Method Fragments, we refer to the resulting description of a method as
an MC interface.

Until now, the three scoping activities have identified a comprehensive set of struc-
tural or functional requirements in form of the GEs, methods and Method Fragments.
During the derivation of situational process instances (Section 3.5), it must be decided,
which functions are relevant for the process or not. Therefore, characteristics are required
to detail the usage scenario of a particular asset, by which the process family is config-
ured. To prepare the characteristics, during the three scoping phases it is necessary to
identify all criteria, which caused the decision to define a new GE or MC interface. Each
information source for the scoping phases, such as reference processes, a standard, a
modeling aspect, or an individual development phase represent potential characteristics,
which the process family must face. For example, the requirement that some processes
must comply with an assessment standard, such as CMMI or SPICE, leads to particular
development activities, which must be considered by the process family. In that case,
CMMI and SPICE are candidates for functional characteristics of the process family and
associated assets. Identified characteristics must be substantiated and recorded appro-
priately for later application.

3.3.1.2 Reference Process Definition

Similar to the V-Model XT or the Rational Unified Process (RUP), a reference process
allows us to define a basic structure of a process, which considers multiple project sit-
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uations on an abstract level. It is an ordered sequence of potential GEs, which may be
indicated either as mandatory or optional to set up development aspect variability. Dur-
ing the Reference Process Definition activity, we order GEs, methods, and MFs, which were
identified during the Process Base Analysis and Definition activity. However, while con-
cepts are identified top down (from processes to methods), the RP is build from bottom
up (from methods to process). Therefore, we firstly define methods, which are com-
posed of identified method fragments. Secondly, we group the methods into activities
and define a logical order (workflow) of MCs. Finally, we group the activities according
to relevant practice ares, i.e., phases and iterations, of the process family, whereupon we
define a workflow between practice areas to set up the overall RP. To reduce the com-
plexity of the reference process design, we do not require complex control flow patterns.
Instead, a happens-be fore relation to indicate the predecessor of an asset is sufficient.
During the final process derivation phase (Section 3.5.3), we demonstrate the automated
derivation of essential control-flow patterns (cf. [WfM99b]) from that happens-be fore re-
lation. That way, we are in line with most of existing reference methodologies defined,
e.g., by AUTOSAR, TIMMO, or MAENAD, and we are enabled to simply integrate their
process as an RP into our approach.

The RP to be defined is disconnected from concrete realizations of the process and
establishes a business-oriented perspective on the process. It defines the abstract work-
flow of the process family from a functional and structural point of view. To let the RP
cover as much as possible project situations, the main objective on this level is to define
the complete process domain faced by the process line without considering their concrete
behavior. While the structure of the RP is adapted during the situational process engi-
neering phase, contained structural method definitions serve as variation points, which
are bound to a concrete behavioral method realization (or variant), which matches the
situation at hand best. Therefore, as depicted in Figure 3.4, we distinguish MC interfaces,
i.e.,, VPs, and MCs (realization), i.e., variants. The basic idea is to detach a well-proven
basic process from the large set of applicable methods, which must be distinguished with
regard to their usage scenario and behavior. Therefore, to achieve an RP, the Reference
Process Definition is subdivided into three tasks, as discussed in the following;:

Method Chunk Interface Definition To manage structural and behavioral variability
of methods, we distinguish the interface level and the implementation level of methods.
During the Method Chunk Interface Definition activity, we define MC interfaces to express
required structural information of a method by combining the MFs identified during the
Asset Scoping activity. The fragments, which are classified into input artifacts, output
artifacts, roles, tools, and tasks, are combined using the relationships discussed in Sec-
tion 2.4.2. Furthermore, MFs are detailed by individual business-oriented information,
which may support management activities. Therefore, natural language text can be used
to explain the purpose of the respective element and the asset’s relevance. For individual
cases, particular Key Performance Indicators (KPIs) or metrics are related with MFs to
define their qualitative characteristics, such as an artifact’s level of completion, the dura-
tion of a task, or the required tool compliance with a particular certification authority.
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Activity Design During the activity design phase, MC interfaces are integrated into
activities, as identified during the Domain Scoping activity. In parallel, a network showing
the sequence of MC interfaces is defined to show precedence of work. We abstract the
design from a concrete PDL, and only require the usage of a general happens-be fore
relationship to logically order MCs. The happens-before dependency is simplified in
Figure 3.6, where the control-flow relationship indicates, that V Px happens-be fore V Py .

Reference Process Design To complete the RP, we define practice areas by aggregat-
ing defined activities and dependencies between them. For practice areas, we distinguish
phases and iterations. While phases indicate a large stage of the overall process, iterations
are used for long-lasting repetitive development cycles. Similar to the steps before, a sim-
ple happens-be fore relation between practice areas and activities is sufficient to define a
control-flow on this level of abstraction.

The so far modeled RP only manifests the ordered sequence of functionalities in a
process family. Finally, the functional variability of the RP is defined by identifying vari-
able parts of the process family, which are relevant for particular process members only.
Therefore, all components are analyzed with regard to common, i.e., mandatory, and
variable, i.e., optional, development activities. If the RP contains activities, phases, or
iterations, which are relevant for any member of the process family, the component must
be indicated as mandatory. In contrast, optional components are allowed to be removed
from individual process instances depending on situational requirements. However, as
GEs aggregate other assets (cf. Figure 3.4), the defined variability of an asset influences
contained assets. While the mandatory characteristic of an asset does not influence con-
tained mandatory and optional assets, optional assets must be developed with respect
to situational characteristics and potential conflicts. Since an optional asset is allowed to
be removed from the process at configuration time, a contained optional or mandatory
asset would be removed, too. Therefore, one has to decide about the proper hierarchical
arrangement of optional assets.

3.3.2 Variant Design

The structure of the RP and VPs in form of MC interfaces is defined, during the Pro-
cess Family Definition activity. The MC interfaces, were defined by combining the tasks
with other method fragments, which describe product-related information (artifacts), re-
sponsibilities, and tool features. As discussed earlier, the interfaces describe the basic
characteristics of a development activity from business-oriented point of view. They rep-
resent abstract classes of situational methods, which are realized during the variant de-
sign phase on a technical design level. On this level, different situational variants, i.e.,
concrete MCs, are defined for each MC interface, as indicated by the implemented_by as-
sociation of Figure 3.4. We follow this approach, since each development activity can be
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realized differently by applying particular techniques, which support different ways of
thinking and other qualitative concerns. Hence, VPs are analyzed by considering project
characteristics and other potential situations. The correlation between VPs and variants
is also depicted in Figure 3.6, where VPs are associated with a set of variants V.

3.3.2.1 Method Chunk Design

Similar to MC interfaces, MCs are composed of method fragments by using well-known
SME techniques, as before. The difference, though, concerns the information content,
which is provided with fragments on the respective level. As depicted in Figure 3.4,
while MF interfaces are associated with business-oriented information, MFs are refined
by technical information. Although, technical design is detailed in chapter 4, the follow-
ing gives a brief overview about fragments from the technical point of view, whose main
goal is to extend the business-oriented level, with computer-interpretable information,
which make processes executable. On technical level, we extend four basic fragment

types:

o Artifact: For the definition of data formats, which are relevant for a particular de-
velopment activity as input and output data, meta model information is provided
with artifact fragments. This enables us to effectively provide developers with ap-
propriate data, which can be manipulated at execution time.

e Role: For detailing responsibilities and relevant skills, which are necessary to exe-
cute a method, access rights, required capabilities and skills of developers are pro-
vided with the role fragment.

e Tool: To support developers and the execution of a method best, tool support is
required. Therefore, features, which are required from the tool, are annotated with
a tool fragment to either identify tools out of the box, or to derive customized pro-
prietary tools (automatically).

86



CHAPTER 3: SOFTWARE PROCESS LINE ENGINEERING

e Task: For the definition of necessary best practices or guidelines, which guide de-
velopers in using input information to produce required output of a method, in-
terpretable constraints to evaluate the produced output and recovery strategies are
provided with the task fragment. This supports developers in doing their work
by enabling the evaluation of guideline or best practice in the context of a specific
method.

MCs on technical level are combined from above fragment types, either from scratch
or by reusing already defined fragments stored in a repository. Therefore, fragments are
combined into new MCs using specific relationships or existing MCs are extended by
using techniques, as discussed earlier (replacement, extension,..). Furthermore, complex
MCs can be defined from MCs, as illustrated in Figure 3.4. A complex MC is composed of
multiple MCs and other complex MCs. On technical level, this enables us to define MCs
with a complex control-flow semantics to detail the logical and temporal order of several
more simple MCs, using control-flow nodes explicitly, in contrast to the simple hapens-
be fore relation applied on business level. Since complex MCs are small, self-contained
units, whose control-flow behavior can be defined with more reasonable expenditure
than the overall process, an explicit definition of the control-flow can be realized with-
out large efforts, and resulting complex MCs can be applied in resulting process family
member one to one.

3.3.2.2 Variant binding

Finally, a binding mechanism between VPs and variants must be defined. As VPs are
proxy objects, it must explicitly be defined which variant realizes a specific VP, before
a subsequent analysis can identify the optimal variant from the overall set of variants.
We call this variant binding, and identify two ways for defining which variant belongs
to a specific VP: the explicit and the implicit bindings. Explicit binding is implemented by
an explicit 1-1 association between an VP and a respective variant, and must be realized
manually by a method engineer at design time. In contrast, for implicit binding, MC in-
terfaces are matched with the fragment structure of MCs automatically, as demonstrated,
e.g., in [RPR98] or [MR05]. As depicted in Figure 3.4, we apply the explicit binding strat-
egy by providing the implemented by association, which binds each variation point to a
set of potential variants.

3.3.3 Configuration Criteria Definition

The variabilities identified so far only manifest the existence of variability within the RP
in form of optional and mandatory GE and variants. The model does not provide reasons,
which cause variations or mutual conditions between variable elements. To distinguish
variants from each other and to decide about the usage scenario of VPs or GEs, all assets
are annotated with configuration criteria, i.e., situational characteristics, as depicted in
Figure 3.6. Characteristics are qualitative properties, which concern e.g., a method’s de-
pendencies, feasibility, applicability, or behavior at process runtime. They are identified
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in parallel with the Process Family Definition activity, as discussed above. Since the deci-
sion for the creation of an asset is based on individual reasons, the reasons are recorded
and subsequently used to derive meaningful concepts for the diversification of usage
scenarios. This holds for GEs, VPs, and variants equally. For example, if the RP must
enable process members to be SPICE compliant, SPICE requires individual practice ar-
eas (process groups) and activities to be added to the RP. Since SPICE is the reason for
the creation of individual assets, it should be used as requirement for process members
and evaluation criteria for the selection of associated assets. While the process family
definition phase identifies concepts informally, the concepts are organized, during the
Configuration Criteria Definition activity.

As depicted in Figure 3.7, we identified three types of characteristics, which enable
our evaluation mechanism to match the usage scenario of applicable variants and the re-
quired VPs with situational characteristics: Integrity Constraints, Facts, and Concerns.

To define mutual conditions between variants, we use the term Integrity Constraint.
Integrity constraints are applicable to variants and define, whether one selected variant
requires or excludes other variants. Based on a preliminary decision about the necessity
of one component, it is a logical implication on the availability of other components. For
example, a variant V1, could require a variant V2,i.e., V1 = V2, or V1 could exclude
another variant V3,ie., V1l = V3.

The other types of characteristics, i.e., Flacts and Concerns, are more generic and can-
not be defined without knowing the application domain of the process line. Instead, a
general characteristics framework is provided, which can be reused for refinement in dif-
ferent domains. The following details the basic characteristics, as depicted in Figure 3.7,
and provides examples to set up domain-specific characteristics, which can be annotated
with assets to detail their usage scenarios.

Both characteristic types influence the ranking of process line assets during situational
process engineering. The main difference between facts and concerns is that while facts
can be decided in a binary way (i.e., a fact is either fulfilled or not), concerns are fuzzy
properties, which should be factored optimally regarding the actual situation and the
overall process context. Figure 3.7 shows that facts are further split into hard facts and
soft facts.

Hard facts are mandatory characteristics, which must be factored during the process
configuration phase, if they are required for the actual situation. That way, hard facts
perfectly match the need to decide if a GE, a VP, or a variant, which was indicated as
optional, is required or not. Hard facts, for example, ensure that a particular variant
complies with a specific standard, such as International Organization for Standardiza-
tion (ISO), Institute of Electrical and Electronics Engineers (IEEE), or International Elec-
trotechnical Commission (IEC), or a reference process, such as CMMI or SPICE. Another
example for hard facts are process-related characteristics, that provide assets with infor-
mation about a particular process phase, for which it has been developed explicitly (e.g.,
analysis or design), or a covered design concern (e.g., timing, safety, or verification).
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Figure 3.7: Characteristics framework

Soft facts can be either product-specific facts that mark variants, which are specialized
for the development of a particular product from the product portfolio of a company,
or situational facts, which may concern the application domain, or particular customer
relationships. These soft characteristics should be considered during the process config-
uration phase where possible. Variants, which fulfill soft fact characteristics, can strongly
improve the process, but their absence has almost no negative impact.

In contrast to facts, a concern represents a characteristic, which cannot be fully ob-
served. This matches the semantics of variants only, since we are searching for variants,
which best support dedicated situational criteria. We perceive concerns as non-functional
properties, either concerning a process-oriented or product-oriented quality of a variant.
The process-oriented quality aggregates properties to determine an enactment and exe-
cution behavior of process components, such as their time consumption or the required
infrastructure prices. On the other hand, the product-oriented quality aggregates proper-
ties to determine the impact of a specific variant on the product under development. For
example, to determine if a variant observes verifiability, scalability or other criteria re-
garding the product under development. In contrast to hard fact characteristics, it makes
sense to weigh up concerns and soft-facts against each other, as in most of the cases the
complete set of characteristics cannot be fulfilled at the same time. Therefore, to distin-
guish the level of detail, by which a variant fulfills an individual concern, we incorporate
so-called qualifier tags for concerns, as described in [BAGS10]. For example, we can de-
fine Low, Medium, and High qualifier tags to qualify the costs of a specific variant. This is
described in Section 3.5.

3.4 Feature Model Generation

Feature models are not only used to represent variabilities in different application sce-
narios, such as product line engineering. They are also a good means to represent the
variability of a process family, in contrast to work breakdown structures or large-scale
process models. Therefore, we apply feature modeling to represent process variabilities,
which subsequently are resolved to derive situational members of the process family.
Additionally, by using the feature model we integrate distributed information into one
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Figure 3.8: Software Process Line Engineering: Feature Model Generation

model, i.e., we combine the functional RP information with behavioral variants and situ-
ational characteristics. As a result, each time a data source changes, the feature model is
generated as a stable intermediate data format between the definition domain of process
family engineering and the planning domain of situational process engineering. As dis-
cussed in the following, the feature model is generated, automatically.

We defined an abstract mapping between process line assets and a cardinality-based

feature model, which conforms to the definition of Czarnecki et al. [CHEO05]. Similar
to Feature-Oriented Domain Analysis (FODA)-based feature models [KCH90], the pro-
cess feature model is a tree, which hierarchically groups features and sub-features of the
process family. Since any asset of the RP is required on feature model side, we use a
structural relationship consists_of to re-organize the aggregated set of process line as-
sets in the feature model domain one to one, i.e., if an asset aggregates other assets of
the process, the corresponding feature model uses the consists_of relationship to relate
a feature (asset) with sub-features (aggregated assets). Figure 3.9 exemplifies the map-
ping between parts of the RP and the corresponding counterpart in a feature model. The
left part shows process patterns, which follow our process line engineering meta model,
as depicted in Figure 3.4. The right part shows the mapping result based on the feature
model notation. The first mapping rule (RULE 1) demonstrates the scenario, when an GE
aggregates mandatory process assets. In the process line domain, one can see, that GE 1
aggregates four assets, i.e., the two GEs 1.a and 1.b, and the two VPs 1 and 2. On feature
model side, the rule shows, that GE 1 consists_of four assets, alike.
Furthermore, feature modeling enables the indication of optional or alternative features
on each hierarchical level of the feature model. To represent optional GEs and VPs, the
feature model uses optional features, as demonstrated in Figure 3.9 (RULE 3). In contrast,
optional variants are not considered, as we require that for one VP exactly one variant
must be selected from the overall set of bound variants based on situational project char-
acteristics. This makes variants alternative implicitly.
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However, four different aspects of alternative variability and its resolution must be
considered:

e Alternative design-time assets: this type of variability concerns alternative activi-
ties, i.e., GEs or VPs, inside of the RP, whose application depends on situational
characteristics, which are already known during the process configuration phase.
To reduce complexity of the feature model, we face this type of variability by op-
tional assets and their annotated usage scenario. Alternative assets are resolved by
the elimination of unnecessary optional assets by evaluating their usage scenario
during the configuration phase.

e Alternative run-time assets: this type of variability concerns the different ways of
thinking, which are applicable to realize a particular goal or development activity
of a process at runtime. It is realized by the implemented_by-association between
an VP and its associated variants. It is resolved by using the alternative feature
notation, as depicted in Figure 3.9 RULE 2.

e Alternative design-time control-flows: this type of variability concerns alternative
paths of an RP, which can be decided before run-time. To specify a control-flow of
the RP at design-time the happens-be fore relationship is used to define logical and
temporal dependencies. At configuration-time, the usage scenario of individual
GEs and VPs is analyzed, whereupon some of them are eliminated depending on
situational needs. The remaining components and their dependencies are used to
derive basic control-flows based on particular transformation patterns, as described
in Section 3.5.3, to derive a situational workflow.

e Alternative run-time control-flows: this type of variability concerns decision-based
alternative paths, which are represented by an exclusive choice pattern (cf. [VTKB03])
within a process. The decision depends on information, which is only available at
process execution time, such as artifact states or individual produced data. As this
information is not available at design-time, we neglect this type of variability dur-
ing process line engineering.

Finally, we must consider integrity constraints, which are annotated with assets to
define the effect of the selection of one asset on other assets. Since there is no standard
formalism for integrity constraints, RULE 4 of Figure 3.9 only indicates the transforma-
tion of integrity constraints into the feature model, as required from a respective feature
model formalism. An example is given in the following, where we describe a general
transformation of an RP and associated variants into a feature model:

1. First of all, the RP, which aggregates any other assets, is the basis for the mapping
and maps to the root feature of the feature model;

2. Similarly, GEs inside the reference process are mapped to features and sub-features
following the containment relationships given in the RP. As a result, a hierarchy of
features and sub-features is produced;
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3. For all features, except for the root feature, the optional or mandatory characteristic
of an GE or an VP is mapped to the corresponding cardinality value of the respec-
tive feature. Cardinality values of 0 to 1 for optional and 1 to 1 for mandatory
features;

4. VPs within the RP are mapped to a feature, which contains a mandatory feature to
represent a group of available variants, which are identified in the following step;

5. For an identified feature group element, the associated variants, which are con-
tained in the variant repository, are queried. This set is applicable as a realization
of a specific VP (i.e., a feature group of the feature model);

6. Finally, the integrity constraints (i.e., requires and excludes) are mapped to con-
straints of the feature model. For example, using the notation introduced in [AC04],
the following templates express exemplary integrity constraints of a feature model:
Let f1 and f2 be two variant features. To specify that variant f1 requires variant
f2, the following syntax is used: if (//f1) then (//f2) else true(). Otherwise, if
we want to express, that f1 excludes f2 the following is used: if (//f1) then not
(//f2) else true(). In both cases, the template allows to replace f1 and f2 with
actual variants.

Following this methodology, process models based on general meta models, such as
SPEM or BPMN, can be transformed into a tree-based feature model and subsequently
be integrated with our approach. While leaf nodes (atomic features) of the tree are MC
variants, inner nodes are GEs or VPs, i.e., practice areas, activities and MC interfaces of
an RP.

3.5 Situational Process Engineering
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Figure 3.10: Software Process Line Engineering: Situational Process Derivation
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Situational process engineering aims at deriving a target process from a process fam-
ily, based on characteristics of the project at hand. Hence, project characteristics are cap-
tured, which form the requirements of the target process. According to the project charac-
teristics, a method engineer decides on hard facts, which need to be satisfied. Moreover,
soft facts and concerns are decided and their relative importance is indicated by a method
engineer using qualifier tags. We assume, that a method engineer can decide about rel-
ative importance of soft facts and concerns based on requirements of the target project.
For example, a method engineer could specify that scalability of the process is important
more, than development time. After deciding the requirements, a situational method is
generated through configuring the feature model, instantiating a reference process, and
populating it with proper variants. Therefore, situational process engineering encom-
passes feature model configuration and situational process generation phases.

For realizing these two phases and, in particular, for planning situational processes
using a feature model, we closely collaborated with researchers from two partner insti-
tutes in Canada. Thereby, we adopted the work of Asadi et al. for feature model config-
uration using Al planning to our needs of software process lines and exemplified it in a
case study. As details about the applied planning approach can be found in [BAH"11],
the following shortly sketches the main idea behind our planning approach.

3.5.1 Feature Model Configuration

At project start, project managers together with method engineers identify project-specific
process requirements or goals. They either concern interim-goals of individual develop-
ment stages or global goals of the final process. As any process is composed of functional
process components and specialized behavior of different methods, both, i.e., functional
and non-functional aspects, must be taken into account.

The configuration process starts with ranking atomic features (i.e., variants or leaf nodes
of the generated feature model) based on their annotations and followed by selecting
features, which satisfy hard requirements and optimize overall ranks of features. Fea-
ture ranks are calculated by employing a ranking process called Stratified Analytical
Hierarchy Process (S-AHP) [BAGS10], which is based on Analytical Hierarchy Process
(AHP) [Saa80]. We selected S-AHP because it enables the handling of preferences for-
malized in terms of relative importance and it is easy to use. S-AHP performs a pair-wise
comparison between the characteristics (i.e., soft facts and concerns) by considering their
relative importance indicated by method engineers. As a result, the absolute ranks of re-
quired characteristics are calculated, which is a value greater than or equal to 0 and less
than or equal to 1. Next, the rank of each feature is computed based on the rank of soft
facts and concerns, which are assigned to the feature. The rank of features is calculated

based on the following utility function: Z w; X M;(QT(f)), where w; is the weight of a

characteristic 7 calculated in the first stage of S-AHP, and QT'(f) is the mapping function,
that maps soft facts or qualifier tags of the concern, which are assigned to feature f to real
numbers greater than or equal to 0 and less than or equal to 1. For example, if scalability
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and cost concerns are qualified into high, medium, and low qualifier tags, the following
mapping functions can be defined by method engineers:

Mscativatity(QT) = {Low: 0.2, Medium: 0.6, High: 1.0}
Meost(QT) = {Low: 1.0, Medium: 0.4, High: 0.1}

Similarly, for soft facts, method engineers can define a mapping function which maps
a soft fact to a numeric value between 0 and 1. Hence, if a feature contains some facts,
the mapping function returns a numeric value, which is used in the utility function for
calculating an overall rank of the feature. After calculating the rank of the features, we
transform the feature model into the planning domain, and the configuration problem
into the planning problem. To find an optimal plan and select features based on the
returned plan, we employed the Simple Hierarchical Ordered Planner 2 (SHOP2) plan-
ner [NCLMA99] in our case-study . We chose HTN planning because it fits well with
hierarchical domains, such as feature models, and planners in this domain are able to
find optimal plans in a reasonable time [NCLMA99].

3.5.2 Generating planning domain

The planning domain encompasses operators, methods and tasks. Before transforming
the feature model into the planning domain, we need to perform some pre-processing
steps. First, we define a dummy feature f; and then replace every optional feature f,
with a feature f?, which is decomposed into two alternative features f; and f,, i.e., f4
XOR f,. We should note, that the rank of the dummy feature is set to 0. Furthermore, we
invert the feature ranks for finding a minimal solution. Therefore, we find the maximum
rank in the feature model, and replace all the feature (including dummy feature) ranks
with their difference from the maximum rank. For example, if the maximum rank is 5 and
the rank of feature f is 3, then the rank of feature f is replaced with 2. After these two pre-
processing steps, we generate the planning domain using the following transformation
rules [BAH "11]:

e Hard facts are translated into domain predicates. For example, for the four hard
facts CMMI and SPICE (to indicate that a variant is required to ensure the compli-
ance with the standard reference process of CMMI or SPICE), as well as, STRUC-
TURE and BEHAVIOR (to indicate that a variant is required for structure or behav-
ior modeling), the domain predicates CMMI, SPICE, STRUCTURE, and BEHAV-
IOR are generated. Moreover, one domain predicate is created for every atomic
feature in the feature model. A propositional formula (called attainment formula)
is created for each non-atomic feature according to the relations, which are located
between the sub-features of the non-atomic features.

e An atomic feature f is translated into the operator o;. Hard facts, which are as-
signed to a feature f (e.g., CMMI) are translated into a pre-condition of the corre-
sponding operator oy — precondition = C MM . The rank of a feature f (i.e., R(f))
is translated into a cost property of operator oy — cost = R(f). A post-condition
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(i.e., effect) of the operator receives the value of the domain predicated correspond-
ing to the feature (i.e., oy — ef fect = vy).

e An intermediate feature f is converted to a task t¢. According to the feature type
(i.e., AND- decomposition and XOR-decomposition), one or more methods may
be created. For an intermediate feature f = AND(f1,---, fn), one method my,
is generated, where all the tasks which correspond to sub-features are added to
a list of the method subtasks (i.e.,, m;, = ty,, -+ ,15,). For an alternative feature
f=XOR(f1, -, fn), n methods m} R ,m?f are generated. Next, task ¢y, which
corresponds to feature f; is assigned to the subtask list of method m¢ ..

e Constraints (i.e., requires and excludes relations) are translated into preconditions
of methods or operators depending on the type of a feature (i.e., intermediate or
atomic features). We assume, that both features are atomic features; however, the
general translation works for all combinations of atomic and intermediate features.
If feature f; requires fo, we add domain predicate v, to the preconditions of oper-
ator oy, . When a feature f; excludes f>, the negation of the domain predicate vy, is
added to the precondition of operator oy, .

After generating the planning domain, we generate the planning problem, which in-
cludes initial states S and initial tasks 7. For the initial states, we set the domain pred-
icates corresponding to hard facts as true. For example, if a method engineer asks for
CMMI and STRUCTURE modeling, we assign the following values to domain predicates
corresponding to qualifier tags of CMMI and STRUCTURE: CM M1 = STRUCTURE =
true; SPICE = BEHAVIOR = false. We also add a task corresponding to the root fea-
ture into the initial task set.

Having defined a planning domain and a planning problem, we employ the SHOP2
planner with required inputs (i.e., planning domain and planning problem). The SHOP2
planner returns a plan with minimum cost, that satisfies hard facts determined by method
engineers. Afterwards, we select features corresponding to operators in the returned plan
and their ancestors.

3.5.3 Final Process Derivation

Once a feature model is configured using the result of the SHOP2 planner, a process in-
stance is generated directly from that feature model configuration, during the process
derivation phase. The RP is adapted, by removing unnecessary features (i.e., GEs and
VPs), and by eliminating unqualified variants, i.e., MCs. Afterwards, a workflow with an
explicit control-flow is generated from qualified assets by clarifying the happens_be fore
relation semantics, as described below. This results in a situational process, which subse-
quently is validated and deployed.

As already mentioned, for documentation purposes, it is sufficient to model logical
and temporal dependencies between components of the RP using the happens-be fore
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Figure 3.11: Basic Adaption Rules

relationship. While this modeling-style represents a network showing sequence of ac-
tivities, which suffices most of the management activities, it is not suitable to define a
explicit process execution semantics, as required for development process execution us-
ing a workflow management system, as discussed in chapter 5. For example, as the
happens-be fore relationship only supports simple dependencies to correlate functional
assets, no clear statement can be made about how to proceed (e.g., in parallel or choice-
based) after the finalization of an activity, which has more than one successor. There-
fore, we developed some simple adaption patterns for a process, which is based on a
common happens-be fore semantics, to derive an explicit control-flow, as depicted in Fig-
ure 3.11. This pattern-oriented transformation is based on a configured feature model
and the correlated RP. While the feature model provides information about relevant as-
sets, the respective RP provides information about dependencies between these assets.
In combination, these two information sources allow the application of adaption rules to
generate the situational process with an explicit control-flow.

The previous step of (automated) process family feature model configuration sim-
plifies this activity significantly. As the main goal of this configuration was to identify
relevant practice areas and development activities, we can assume, that no alternative or
optional paths, which would be caused by eliminated alternative/optional GEs and VPs
of the RP, must be considered during the transformation. In other words, as variabili-
ties were bound during feature model configuration, remaining assets and relationships
indicate obligatory dependencies between development activities. From that point of
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view, the three basic control flow patterns sequence, parallel split, and synchronization
(cf. [VTKBO03]) substantiate our control-flow behavior.

To derive an explicit control-flow from a process model, which is based on the happens-
be fore relationship, Listing 3.1 shows an algorithm in pseudo-code. This algorithm ap-
plies different rules, as depicted in Figure 3.11, to create an appropriate control-flow. Each
rule matches a particular constellation of ingoing or outgoing relationships on the side
of an happens-be fore based graph, i.e., process, and creates a corresponding control-flow
pattern on workflow side. As depicted in Figure 3.11 (RULE 2), two single nodes, which
are connected via happens-be fore, correspond with a sequence on workflow side. In con-
trast, if a node has more than one ingoing or outgoing relationships, a control-flow node
must be introduced. This is demonstrated in Figure 3.11 (RULE 3), where a node (Node
3) with more than one ingoing relationships has multiple obligatory predecessors (Node
1 and Node 2), which all must be synchronized in Node 3. Therefore, a JOIN node, which
synchronizes the finalization of all predecessor nodes, is introduced. On the other side, if
a node (Node 1) has more than one successors, as depicted on the left side of Figure 3.11
(RULE 4), Node 1 must be followed by any of these successor actions without priority.
That means, that all succeeding actions can be executed in parallel, which is indicated by
the parallel split node, named FORK.

input: happens-before graph g
deriveControlFlow (g){
removeDirectBypasses (g)
set actualNodeSet := nodes without outgoing arcs
for each Node n in actualNodeSet do
//Start node
if(n.ingoingEdges.size () = 0){
continue;
}
else if(n.ingoingEdges.size() > 1){
//Create synchronization
Join join = createJoinNode
setEdgeFromTo (join ,n)
for each Edge pre in n.ingoingEdges do
setEdgeFromTo (pre.source, join)
actualNodeSet.add (pre)
od
}
//Sequence
elsed{
setEdgeFromTo(n.ingoingEdges .first.source ,n)
actualNodeSet.add(n.ingoingEdges.first.source)
}
//%if a mnode aggregates a sub-process
if(n instanceof GE){
deriveTechnicalProcess (n)
}
od
}

setEdgeFromTo (Node source, Node target){
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boolean forks = doesFork(source)
boolean mustFork = hasNormalOutgoingEdge (source)
if(forks){
//Find parallel split
Fork fork = source.outgoingEdges.first.target
edge .source = fork;
edge.target = target;
}
else if(mustFork){
//Create parallel split
Fork fork = createForkNode

edge.source = fork;
edge.target = target;
by
else{
//Create sequence
edge .source = source;
edge.target = target;
X

Listing 3.1: Generate workflow semantics

The algorithm in Listing 3.1 applies these adaption rules to a happens-be fore process

to derive a process with an explicit control-flow. As input it takes a directed graph (the
process), which we assume to be acyclic. Before the algorithm starts, some simplifications
are made on the graph:
Basically, there can be multiple paths of different length between two nodes. Although,
as the semantics of the edges on each respective path is an obligatory happens-be fore
relationship, we are not allowed to shorten the process by bypassing individual nodes.
For example, if there is an edge between node 1 and node 2 (I — 2) and another edge
between node 2 and node 3 (2 — 3), the path (1 — 2 — 3) states, that 2 must precede 3
and 1 must precede 2. Another edge, which directly connects node 1 and node 3 would
shorten the path, but it would neglect the obligation, that node 2 must be visited (or exe-
cuted) before node 3. That way, direct edges between nodes, which bypass other nodes,
can be removed from the graph, before the algorithm starts to match adaption rules. This
is realized in Listing 3.1 by calling the removeDirectBypasses function.

After simplifying the graph, the algorithm initializes a node set with all final nodes
(i.e., nodes without outgoing edges) of the process, and traverses the graph backwards
for matching the rules. The algorithm takes one node out from its actual node set and fol-
lows its ingoing edges to identify preceding nodes, by which the node set is actualized.
The algorithm introduces new edges and control-flow nodes, as shown in the listing. At
the same time, all visited happens-be fore relationships become obsolete. If the algorithm
identifies a node, which contains a sub-workflow (i.e., applies for GEs), it uses the GE as
container node and processes the sub-workflow using the above algorithm recursively.
The algorithm stops, when the node set is empty, i.e., it has reached start nodes, which
must not be further processed. The resulting control-flow consists of multiple parallel
paths, which are composed of nested split and synchronized control-flow sequences.
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Besides the above basic transformation rules, which we demonstrated in Listing 3.1,
more complicated control flows can simply be taken into account based on the individual
semantics of certain GEs. According to Figure 3.4, different types of GEs are possible,
which depend on the applied PDL. Using the example of an Iteration, i.e., a practice
area which can be repeated several times, we demonstrate the concept of an advanced
adaption rule in Figure 3.12. On the left side of the rule an GE is indicated to be an
Iteration. During the algorithm, which is given in Listing 3.1, such a node can be handled
as container node, for which a sub-workflow is created separately. Only the iterative
characteristic of that container node must be considered by introducing proper control
flow nodes, which can be connected with other nodes, as described above. Figure 3.12
shows, that the resulting decision-based pattern on the right side has one ingoing edge
and one outgoing edge. For that reason, it simply can be combined with rest of the
control-flow on one level.

3.5.4 Resource-oriented Process Analysis

After the derivation of a situational process, various characteristics must be validated to
ensure successful process execution. Some basic characteristics of the process are:

e Completeness: The process must be complete with respect to activities and artifacts.
That means, that not only any required features, i.e., development activities, which
were required during the process configuration phase must be fulfilled, but it also
requires, that the final and intermediate products are produced.

e Reachability: The reachability of a process concerns the generated control-flow of
the process. Since the control-flow was derived automatically, it must be ensured,
that starting from an initial node a final node can be reached. Therefore, the process
is required to have at least one start and at least one final node. Additionally, it must
be ensured, that there are no unreachable or dead nodes.

e Decidability: This concerns the validity of decision nodes within the control-flow.
As decision nodes must enable to make explicit statements for selecting exactly one
alternative path from a set of paths, they must be annotated with conditions split-
ting the decision space into disjunct parts, where each part represents an alternative
path.

Different techniques, such as simulation [JVIN06], flow analysis [SB10], or graph-
based algorithms [KKGL10], are available to identify and/or eliminate above drawbacks
and can be implemented to meet the specific requirements of an individual PDL.

In contrast, Sadiq et al. [SOSF04] identified several conflicting situations, such as
missing, mismatched, or inconsistent data, whose availability must be ensured before
process enactment, as well. Therefore, this section focuses on the validation from a dif-
ferent point of view, which is often neglected, when talking about workflow validation.
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As the realization of a workflow significantly depends on available resources, the follow-
ing sketches basic ideas of an approach, which we developed for validating the feasibility
of a workflow regarding the available resources of an enterprise or other involved par-
ties. While details about the approach can be found in [BEFH12], most relevant parts
from the published paper were directly integrated with this section.

In a nutshell, our approach for analyzing the feasibility of processes is the following;:
given a model of the process and a semantic model of the available resources within a
company or department, we utilize semantic technologies, especially logical reasoning,
in order to come up with infeasible MCs and the respective missing resources. There-
fore, both MMTS and OTS need to be integrated via a mapping. Figure 3.13 depicts an
overview of the concept with its three building blocks: Process Model (PMod), Resource
Ontology (ROnt), and a mapping between these two worlds.

3.5.4.1 Method Chunk Resources

Beside product and process-related method fragments, MCs are also composed of Resource
Fragments (RFs), which state the requirement for individual human or technical capabil-
ities, which are required to realize an activity. On the other hand, an RF may provide
a cardinality attribute to indicate the required quantity of the respective resource. For
example, an MC, such as double-blind review, needs two roles of the same type to realize
the four-eyes principle.

The left part of Figure 3.13 shows the PMod, which represents a concrete process
model. The process is realized by using MCs, which are composed of different types of
method fragments. The figure only illustrate resource-oriented method fragments (RF),
such as e.g., tools and roles, which are assigned to the respective MC via a requires rela-
tion. The RF symbols show both, the cardinality as a hash symbol # on top and the name
of the resource below. Note that, for clarity reasons, we are distinguishing between roles,
i.e., employees with specific skills, and tools, i.e., infrastructural capabilities. However,
since the approach presented here is generic regarding the concrete PDL, this is not a
requirement for a potential method definition approach.
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Figure 3.13: Concept of the resource-oriented analysis of processes.

3.5.4.2 Resource Ontology

The right part of Figure 3.13 depicts the ROnt, i.e., a model of the resources within a com-
pany or department represented in the OTS. On the one hand, this model conceptualizes
company-internal resources, and builds up a resource taxonomy of skills and infrastruc-
tural capabilities of interest. On the other hand, it also comprises the resource pool of the
company, i.e., concrete employees and infrastructure. By putting both in one ontology, it
is possible to assign each employee to the skills he or she has, and to assign each tool to
the capabilities it provides, respectively.

The resource taxonomy is a hierarchical definition of the skills, and the capabili-
ties which are available or interesting within a company. Thereby, skills refer to con-
crete knowledge, capabilities, or access rights which an employee can have, e.g., tax law
knowledge, project management skills, or access rights to particular design documents.
In order to come up with a reasonable taxonomy of the skills, they should be categorized
and aggregated to umbrella terms. For instance, the skills Java programming and C pro-
gramming are classified under the skill programming languages. The same ideas apply
to the taxonomy of the capabilities. A capability refers to a functionality of infrastructure
components within the company. The information for building the resource taxonomy
can be gathered from experiences or knowledge of experts, or from bodies of knowledge,
such as [AMB™04].

The resource pool is a collection of concrete members of staff and instances of tools
(depicted as hexagons in Figure 3.13) within the company or department. For instance,
there can be a representation of the real employee Bob and the Laboratory X. Each mem-
ber of staff and tool is linked to the skills and capabilities it provides via a hasSkill or has-
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Feature relationship, respectively. This allows the concrete specification of the abilities of
the company’s resources. Furthermore, there can be concepts, which define a specific set
of skills or capabilities, respectively. They are called Predefined Property Sets (PPSs) and
depicted as ellipses in Figure 3.13. For instance, a concept software architect can define
that an assigned employee has both a programming language skill and project manage-
ment skill. This way, it is possible to represent company-specific job titles. Actually,
PPSs can be seen as shortcuts for skill assignment by assigning a member of staff to them
instead of single skills.

All in all, the ROnt acts as a skill database for human resources and, additionally,
contains equipment and tools including their respective capabilities. This knowledge
base is developed for a company once, and has to be kept up to date. Subsequently, it
can be exploited in our approach to validate the feasibility of processes from a resource-
oriented point of view.

3.5.4.3 Mapping

In order to exploit the ROnt for a feasibility analysis of a process, a translation between
the RFs in the PMod and the skills and capabilities in the resource taxonomy is necessary.
This is provided by the mapping depicted in the middle of Figure 3.13. It is a separate
ontology and, therefore, technically belongs to the OTS. The basic idea of the mapping is
to define an RF as an aggregation of concepts from the resource taxonomy, i.e., skills or
capabilities.

A mapping between a concrete RF and concrete skills or capabilities is represented as
an ontological equivalence. Each RF is represented as a distinct concept in the mapping.
Thereby, the matching between RFs in the OTS and in the MMTS can be based on, e.g.,
name equality. Now, the ontological RF is defined to be equivalent to either an employee
with a set of skills or a tool with several capabilities. An example of a mapping is:

software architect is equivalent to Staff
and hasSkill software__architecture
and hasSkill project_management .

To enable the usage of the resource taxonomy in the mapping, it imports the whole ROnt.
Hence, no specific matching between skills and tools in the mapping, and in the resource
taxonomy is necessary because both reside in the OTS.

In general, the set of skills and capabilities for an RF is interpreted as a conjunction,
i.e., the employee or tool has to have all stated skills or capabilities. However, depending
on the expressiveness of the utilized ontology language, this simple semantics can be
extended by more complex structures, such as disjunctions. This would allow to express
a logic like a requirements engineer has a skill in use cases or user stories. Note, that the
mapping defines a translation for RFs, hence, the cardinalities for the RFs are neglected.

The mapping can be seen as the definition of a matching between the RFs, of a spe-
cific process definition language and the resource taxonomy of a company. Hence, the
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approach of decoupling both PMod, and ROnt allows reusing the company’s body of
knowledge for analyzing the feasibility for processes independently from the used pro-
cess definition language. It is solely necessary to define the mapping once for each combi-
nation of process definition language and resource taxonomy. Note that, however, it has
to be ensured that the names of the RFs in the language are unique, i.e., no two different
RFs have the same name.

3.5.4.4 Ontology-based Resource Analysis

Once, the ROnt and the mapping are defined as outlined above, this knowledge can be
exploited to analyze the feasibility of a specific PMod or process family member w.r.t.
the required resources given the available resources within a company or department.
Thereby, the definition of the ROnt and the mapping in the OTS turns out to be an enor-
mous advantage, since this allows utilizing reasoning which enables the automation of
this task, as detailed in [BEFH12]. In a nutshell, it checks whether each and every MC
in the process definition can be executed, i.e., whether there are enough resources in the
resource pool for the RF assigned to the MC. Specifically, the feasibility is analyzed by
querying all resources from the resource pool, i.e., staff or tools, which match the required
RFs and comparing their count with the cardinalities. This results in a set of infeasible
MCs, that cannot be fulfilled by the resources in the resource pool. This information can
be utilized by the user to either re-plan or adapt the process by, e.g., replacing the infea-
sible MCs, planning a training program for developing the missing skills, or purchasing
new tools.

3.5.5 Deployment

The final deployment means the transformation of situational process instance on opera-
tional level. This is detailed in chapter 5.

3.6 Case Study

We employ RE to demonstrate and validate our approach. During the Process Definition
Phase, we apply an iterative process, which is composed of four VPs, i.e., four abstract RE
activities [KS98]: elicitation, documentation, analysis, and management. The model serves
as a reference process, whose concrete realization must be configured with variants sup-
porting the current situation.

During Variant Design Phase various variants are identified as potential realizations of
the aforementioned VPs. For example, requirements documentation can be realized by
using prose, use case modeling, or activity diagrams or traceability and change manage-
ment may support the abstract management task of RE.

104



CHAPTER 3: SOFTWARE PROCESS LINE ENGINEERING

Legend: Concerns Hard Facts Soft Facts
Low Medium _[High Behavior 1|Automotive | 4
./ Mandatory Cost A B C Structure 2
Optional Analysis_Phase Detailing D E F SPICE 3
A Alternative Distribution| G H |
Abstract Duration J K L

Concrete

Requirements_Engineering

Documentation | _ —-excludes— — _ _ Ana\_ysis Management
> ---requires.. T~ A

PARRRNS

Elicitation
.

- P

i 5
Interview | | Survey | Workshop Prose | Use Cases Acﬁvitnyia’grams VFM | | Review | | Simulation Tracé-ability Chang;eMgmt
‘ B,F,G,) ‘ ‘ CELK ‘ ‘ A F,H ‘ ‘ D ‘ ‘ E 2 ‘ ‘ E 1 ‘ ‘ E 2,4 H D ‘ ‘ E ‘ ‘ 3,4 ‘ ‘ 3,4 ‘

Figure 3.14: Requirements Engineering Feature Model

After variants are bound to their respective VP, configuration criteria are defined.
For the documentation and management VPs, the variants provide hard facts to describe
situations, where the variant is mandatory for the result process. For example, trace-
ability and change management are mandatory tasks for processes, which must conform
to the SPICE reference process, and use cases must be incorporated if structure mod-
eling is important. The Vehicle Feature Model (VFM), which is an automotive-specific
variant for documenting requirements, is annotated by the soft fact automotive. This in-
dicates that the variant should be preferred, if the process should be applicable to the
automotive domain. In contrast, if there is no support for the VFM modeling in the
repository, other variants are allowed to satisfy the requirement, as well. Besides hard
and soft facts, all variants are annotated with concerns and their relative importance. As
described in [BAGS10], concerns, which are annotated with variants, are qualified using
high, medium, and low values, to describe how good a variant fulfills a concern. For
example, as the level of detail for the interview variant is high, the variant is applicable
to projects, where the level of detail plays a major role. On the other hand, the interview
variant provides little support for situations, where the project lacks time and project
partners are globally distributed. Finally, the dependencies between variants indicate,
that a particular variant excludes or requires some other variant, if it is selected. For ex-
ample, if Activity Diagrams are used to document the requirements, then a survey must
not be selected for the elicitation step.

Figure 3.14 exemplifies the corresponding feature model, which is generated from the
reference process and the variant repository, as described before. For all VPs, i.e., refer-
ence process activities, various variants are available. The features annotated with char-
acteristics, as introduced in Section 3.3, and obligations are transformed in constraints
into the respective feature model syntax.

In order to derive a situational requirements analysis process, requirements for the pro-
cess are defined. We assume, that a method engineer requires the process to be compliant
with SPICE, and defines relative importance between soft facts and concerns, as shown in
Table 3.2. For our example, we apply the S-AHP method and compute the ranks of char-
acteristics which are as follows: Automotive = 0.10, Distribution = 0.33, Duration =
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Automotive | Distribution | Duration | Cost | Detailing
Automotive | 1
Distribution | 5 1
Duration 7 3 1
Cost 1 z z 1
Detailing 3 z 1 1 1

Table 3.2: Relative importance of characteristics for the current situation

0.41,Cost = 0.06, Detailing = 0.10. Next, we calculate the rank of each feature through
the utility function defined in Section 3.5, considering the mapping functions for con-
cerns and soft-facts, as defined by the method engineers. In our example, we consider
the mapping function similar to the function as defined for scalability in Section 3.5 for
distribution, duration, and detailing as well. If a feature has the Automotive soft-fact,
then we replace it in the utility function with 0.5. Next, by applying the transformation
rules, we generate the planning domain and the planning problem. The SHOP2 plan-
ner returns (an) optimal plan(s) and consequently corresponding features are selected.
For the defined requirements, two optimal plans were returned by the planner: Plan 1
(Survey, Use-case, Review, Traceability, and Change Management) and Plan2 (Survey, VFM,
Review, Traceability, and Change Management). Accordingly, corresponding atomic features
and parent features are selected. From existing configurations, a method engineer selects
the final configuration. Afterwards, based on the configuration, a reference process is
instantiated and proper process variants are bound to the process.
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After introducing our approach for the situational design of processes and methods
on different abstraction levels in chapter 3, the following details the design on technical
level to face Objective 2 of this thesis, as illustrated in Figure 4.1. Therefore, we com-
plement the management-related process information on business level, with computer-
interpretable information, which particularly considers the realization of MC interfaces
in combination with a flexible control-flow design. To realize this, we extend the MFs
comprising an MC with a model, which enables the definition of computer-interpretable
data structures, guidelines, and editor information. This chapter faces relevant design
challenges and provides solutions to make development processes alive and to guide
developers more effectively.
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4.1 Motivation

Many quality norms, such as ISO15504 [ISO08a], IS026262 [ISO10], ISO9000 [ISO05],
CMMI [ecmmO08], or the IT Infrastructure Library (ITIL) [OGC07], require, that process-
related information is captured by documents. To show an enterprise’s standard com-
pliance, today’s development processes are documented by using either informal tex-
tual documents (cf. the OPEN Process Framework [OPE09]), or the syntax of an PDL,
which more focuses general business processes, than the creative needs of a develop-
ment process. More often than not, the circle is complete, when process models result
in a set of documents, which summarize all the information using natural language text
and illustrative figures. Indeed, CAME environments, such as IBM’s Rationale Method
Composer (RMC) [IBM10] or the Eclipse Process Framework (EPF) [EPF10], may provide
means to enact modeled processes (i.e., they provide predefined project-specific develop-
ment artifacts, such as templates or checklists), but further applications, such as process
coordination or situational guidance beyond the provision of documents, are not enabled
using a today’s PDL. Especially, as development processes are creative and flexible more
than general business processes, automation is a critical and unpopular task. Most peo-
ple compare automation with control and restriction. However, automation can also be
used to support the creativity and efficiency of developers by shifting a developer’s focus
from trivial or time-consuming tasks to real creative activities.

To realize this, process models must provide additional information. Therefore, the
following requirements describe, what we expect from a framework to support the de-
sign and automation of development processes.

4.1.1 Process-centric Requirements

Today’s development process models are more relevant for documentation, than for ex-
ecution. They, indeed, provide simple indications about how to proceed in certain situ-
ations, but a preferable more sophisticated coordination and automated control of tasks
and developers is hardly possible. This is due to the fact that most development process
models do lack explicitly defined control-flows.

Therefore, our design must provide adequate interpretable process models, which en-
able us to coordinate and to monitor development activities. Such process model must
enable

e Process coordination to define a flexible way, by which sequences of required ac-
tivities can be managed

o Traceability of tasks and artifacts to ensure consistent data and to coordinate cre-
ative processes

e Process validation to check control and information flow of processes regarding
their consistency and validity

e Process deployment to simply transform extended design models into platform-
specific and executable units
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4.1.2 Method-centric Requirements

Today’s development tools are all-purpose tools and do not sufficiently affect developers
work with respect to methods to be accomplished. Especially, for model-driven devel-
opment it is difficult to differentiate method-specific information, i.e., artifacts, from the
global information storage, the model. Additionally, the automation of situational guid-
ance, artifact-specific data consistency, contextual failure analysis, or the management of
responsibilities is out of scope for most of the cases.

Therefore, our design must focus the methodological and context-specific aspects of a
development process, i.e., it must enable

o Identification artifacts and their actual content to provide situational guidance
and validation for the development of artifacts, the

e Provisioning of method-specific tooling support, to not provide developers with
unnecessary and confusing capabilities, the

o Activity-specific guidance and product validation, to shelter developers from care-
less mistakes, and the

e Resource related information in the form of roles, to shelter developers from mis-
use

As process definition, in general, is a regular project management task, we think, that
resulting process models must influence development activities more efficiently than to-
day. However, conventional PDLs and large-scale textual documents are not sufficient
for this. Considering development processes, process models only set up an order of ac-
tivities. In rare cases, this order is used to automatically assign activities and associated
documents to a developer, which is considered to become familiar with the provided
documents. As this is a time-consuming and complex task, we aim at the integration of
additional, formalized knowledge into the process model. Therefore, in our layered pro-
cess modeling approach, we complement the business layer information with additional
information on a technical level. To support developers” work, the refined model pro-
vides an integrated view on computer-interpretable information. This section describes
the design of interpretable process models and relevant information, by which platform-
specific code is generated afterwards to shift the enactment of processes to real execution
on operational level and to provide an efficient guidance system for developers.

4.2 Overview: Computational Method Engineering

Our approach keeps existing knowledge by (re-)using existing process models. How-
ever, as process models lack a detailed computer-interpretable information concerning
process-, product-, and human-centric information, models must be extended by this ad-
ditional concerns.
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First, for process automation, we complement business-oriented process models with
explicit control-flow semantics. As detailed in Section 3.5, this is prepared by transform-
ing the business-oriented view into the technical view, which introduces additional con-
trol nodes. In this section, a new process execution paradigm is developed to enable
the automation and coordination of creative development processes. Therefore, in Sec-
tion 4.3, we identify new requirements for development process automation and coor-
dination, and detail a mechanism for flexible workflow management. Afterwards, in
Section 4.4-Section 4.7, we detail the technical refinement of MCs and associated frag-
ments to provide developers with situational knowledge automatically. Finally, a case
study will show the application of our approach in Section 4.8.

Instead of reinventing the wheel and building a new process (meta) model, we enable
the extension of existing ones with additional information to centrally keep relevant in-
formation in one model. On the technical design level, this is realized by the application
of the aspect-oriented modeling paradigm [SRF "] to weave necessary information to the
given core of a process language in the form of aspects. The advantage is, that aspects
extend models without affecting or changing the original PDL semantics. In spite of ex-
tending the meta model directly, aspects represented by a third party meta model are
loosely coupled with individual target meta model elements on demand.

Based on the aspect-oriented meta model extension mechanism, which is described
in [Laul0], we developed an aspect meta model, by which a custom PDL is extended.
The meta model, which is depicted in Figure 4.2, defines aspects, which are woven with
individual product line assets, as introduced in chapter 3. By extending the general con-
cepts with technical aspects, we ensure that the extension remains applicable to most of
known PDLs.

Each extension is identified by the name and the version number of a profile, which ag-
gregates an extensible set of relevant aspects. For demonstration purposes, we defined
two aspects to combine process-centric guidelines and product-centric data with pro-
cess models. The MCGLAspect extends the process-related MF with a guideline model,
which specifically holds for one MC. The product-centric part is covered by the MF-
DataAspect, which targets product-centric MFs, i.e., artifacts. This aspect is used to ex-
tend business-oriented information of a method’s in-/output by additional information,
which describes the underlying product more formally. Further aspects, concerning e.g.,
the human-centric information, can indeed be added, but go beyond the scope of this
thesis.

In summary, we aim at the definition of an Executable Process Guidance Model, which
we define as follows: An Executable Process Guidance Model (EPGM) is a process doc-
umentation model, whose provided information is formally enriched by information
which enables computer-assisted

o Context-sensitive assistance for the application of methods and processes

e Precise artifact descriptions, which enable unambiguous identification and further
processing of relevant data

e Method-oriented user interfaces
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Figure 4.2: Aspect-oriented implementation for semantically enriched process models

e Management of method and artifact-specific data access
e Coordination of defined process activities
o Context-sensitive validation of used and produced artifacts

The following sections show process engineering on the technical level in detail. We
introduce meta models and design techniques to realize additional information models,
which enable executable process guidance.

4.3 Technical Process Design

Before introducing the design of MCs from the technical point of view, we focus on par-
ticular details of a technical control-flow design, which is required for a subsequent au-
tomation of a development process. Contrasting the business level, which is mainly used
to support management activities and documentation, processes on a technical level must
define explicit control-flows, which supports long-lasting, iterative, creative, and some-
times unpredictable processes. Control-flow semantics must enable workflow manage-
ment systems to make unambiguous decisions about the processing of a development
process and to allocate tasks with associated MCs correctly. Therefore, this section de-
tails the minimal set of syntactical and semantical requirements, which an PDL must
fulfill from a design point of view. Section 5.6 will detail the application of that require-
ments for process execution.

4.3.1 Requirements for Development Processes on Technical Level

Basically, any documented process can be used to coordinate a set of activities. Since
development processes are business processes too, established business process manage-
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ment methods and workflow patterns [VTKBO03], whose origins are workflow manage-
ment systems [JB96], can be ported to coordinate development activities. Unfortunately,
development processes introduce additional requirements, which differ from general
business processes. Therefore, well-known workflow management principles cannot be
applied one to one:

General business processes are short-dated and characterized by workflows, which can
be repeated several times in the context of a specific business scenario, such as the order
or reversal of goods. Various processes are defined for specific, isolated business case
scenarios to simplify employees” work by the sequential assignment of tasks and cus-
tomized user interfaces. Such a scenario considers the processing of standardized data,
where creativity and interleaving with other scenarios of one spanning main process, are
less important, than simple execution of an ordered set of tasks.

In contrast, development processes are characterized by long-lasting lifetime and
an iterative incremental development. Typically, one main process is subdivided into
phases, sub-phases, activities, and creative tasks, which are strongly correlated and pro-
cessed by different developers in parallel and iteratively. Therefore, a development pro-
cess can not be processed straight-forward, but must react on environmental events, such
as design decisions, change requests, project situations, and customer requirements. At
the same time, consistency of artifacts and a faultless interaction of different aspects of
the entire system must be ensured.

Therefore, the management of development processes faces different challenges caused
by a higher need for creativity and flexibility:

e Higher coordination needs because of multiple developers are working on different
dependent artifacts distributed across the long-lasting development process

e Higher need for the iterative rework of individual activities and tasks contained in
the process

e Higher needs to ensure the consistency of dependent artifacts across the overall
process

e Higher needs for flexible repetition of the overall process or sub-processes in the
case of, e.g., change requests.

To overcome the above challenges, we identify a minimal set of core constructs an
PDL must provide and introduce particular responsibilities to flexibly control and man-
age development processes.

4.3.2 Technical Process Modeling: Core Concepts

For process modeling, almost any PDL is applicable, if it provides a sufficient set of lan-
guage elements. The term “sufficient” depends on the respective application area and
enterprise-specific requirements to address particular workflow issues concerning e.g.,
branching, synchronization, events, and exceptions (cf. [VIKBO03]). According to the gen-
eral process line assets, which were introduced Figure 3.4, we focus on a most relevant
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subset of process modeling elements. Therefore, we, basically, require nodes and directed
edges to obtain a directed graph, which serves us as workflow. Additionally, we distin-
guish three types of nodes: Grouping Element nodes, Method Chunk nodes, and control
nodes. (Note, that these element are in line with the process line assets as presented in
the meta model of Figure 3.4)

4.3.2.1 Grouping Element Nodes

GE nodes are structured process components, which are composed of other nodes, sub-
processes and methods, to specify a temporal and logical order of related activities. For
our purpose, we identified a minimal set of two types of GE nodes to create and manage
processes efficiently.

e Practice Area: A root element to represent processes and sub-processes; it is a
long-lasting period of a development process, which aggregates related practice
areas, activities, MCs and control nodes. That way, structuring large processes is
enabled by building hierarchies of self-contained sub-processes. Standard devel-
opment phases, such as analysis, design, architecture definition, or integration are
examples for long-lasting practice areas.

e Activity: A particular scope of a practice area is represented by activities. Activities
mainly consist of MC nodes and represent a self-contained, time-limited workflow
of related methods, which are necessary to fulfill a particular task or to produce
one essential (intermediate) product. For example, the RE discipline, is an iterative
and short-dated activity inside of an analysis practice area. This activity aggregates
various methods, such as elicitation, documentation, or validation of requirements.

4.3.2.2 Method Chunk Nodes

In contrast to practice areas and activities, MC nodes are atomic executable units. As
detailed in Section 2.4, MCs not only detail the process part of a method, but also define
other MFs, which detail the product-related part of a method as well as its tool- and role-
specific parts. As mentioned above, requirements elicitation is a particular method of the
RE activity and is realized by an MC node.

4.3.2.3 Control Nodes

Control-flow nodes represent a set of node types, which can be used to dynamize the
flow between various GE and MC nodes in different ways by enabling the construction
of different control-flow patterns. Control-flow nodes also can be connected with other
nodes by the means of directed edges. Although, there are more control-flow patterns
available, in the following, we focus on basic control flow patterns, as initially proposed
by the WIMC [WfM99b]: sequence, parallel split, synchronization, exclusive choice, and
simple merge. To realize these patterns, we identified the following minimal set of re-
quired control-flow node types.
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e Initial Node: To model an entry point of a process an Initial node is used.
¢ Final Node: To model an end point of a process a Final node is used.

e Fork Node: To model parallel flows of a process (i.e., all subsequent paths are taken)
a Fork node is used.

¢ Join Node: To synchronize parallel process flows, which were initiated by a fork
node, a Join node is used afterwards.

e Decision Node: To model an exclusive choice (i.e., exactly one subsequent path is
taken) of different process flows a Decision node is used.

e Merge Node: To synchronize or merge flows initiated by a decision node a Merge
node is used.

4.3.3 Process Modeling Requirements

Processes on a technical level, are designed by using aforementioned node types and
standard execution semantics. However, to support the creative flow of large-scale, dis-
tributed, and parallel development processes at runtime, such processes are not suffi-
cient to express necessary flexibility. Situational rework, adaption, change requests, iter-
ative development, and human factors influence development processes more than other
process types. Contrasting general workflow management systems and PDLs, which
only support strict execution of nodes as defined by a control-flow, we distinguish Strict-
managed Process Component (SPC)s and Flexible-managed Process Component (FPC)s,
which serve as two essential design patterns to make development processes more flexi-
ble, when they are executed.

We split responsibilities for the execution of the overall process into strict units and
flexible units and combine well-known workflow management techniques with advanced
coordination capabilities. Therefore, we distinguish the correlations between practice ar-
eas with higher needs for flexible process management, from single activities or other
MCs, which are ordered by a control-flow. For the latter ones, flexible coordination
and control-flow management is less important, than high creativity of developers them-
selves. Creative and human-centric process periods do not require high-flexible coordi-
nation efforts, but require a high combination of brainpower and the application of best
practices in strict order as provided by common process management systems. In con-
trast, long-lasting global processes must be provided with flexibility to overcome chal-
lenges mentioned above. While the realization of this separation is discussed in Sec-
tion 5.6, the basic idea of Strict-managed Process Components and Flexible-managed
Process Components is described in the following.

4.3.3.1 Strict-managed Process Component

The SPC pattern corresponds to strict workflow management, as known from general
workflow management systems (cf. [VIKBO03]). This suits the automation of short-dated,
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well-known, and deterministic development activities. The respective workflows must
not consider random external events, human-based design decisions or high coordina-
tion effort between several parties, but usually supports one user in doing his job in a
correct order by providing situational information without to forget obligatory steps.

Therefore, short-dated process components, which allow for a deterministic execution,
such as activities or grouped MCs, are interpreted as self-contained parts of a superior
process conventionally. An example of such an activity is the definition of an use case
model in context of an analysis phase. The definition of use case, is subdivided into var-
ious sub-tasks, which have to be performed in a distinct order for efficient development.

4.3.3.2 Flexible-managed Process Component

In contrast, the FPC pattern is used to coordinate interrelated long-lasting process peri-
ods, whose execution depends on e.g., changing project situations, iterative/incremental
rework, unplanned and planned change requests, concurrent development or other ex-
ternal and random events.

FPCs ensure flexibility by coordinating the overall process and contained FPCs depend-
ing on situational needs and coordination strategies, which are detailed in Section 5.6.
Thereby, FPCs aggregate different SPCs. Based on the information of an SPC, which are
monitored during their execution, and the current project situation, potentially affected
FPCs can be identified and performed on demand. While on operational level SPCs are
managed by a general workflow management system, an additional component is in-
troduced to coordinate FPCs. This component evaluates information resulting from the
execution of SPCs and uses the information to decide about FPCs, which are affected and
have to be performed next. Each time an FPC is identified to be executed, contained SPCs
are initiated by executing them on a conventional workflow management system. That
way, the advantages of well-known workflow management systems are loosely coupled
with additional functionality, as required for development processes. Example for FPCs,

are long-lasting phases of a development process, such as the analysis and design phase
of the V-Model.

4.4 Artifact Design

A variety of artifacts is produced and consumed, during a development process. Espe-
cially, to automate the processing (e.g., transformations or analyses) of artifacts, view-
points (cf. [Com00]) and DSLs in the form of meta models are developed. Similar to
viewpoints, which “encapsulate partial knowledge about the system and domain” (cf.
[FKN"92]), DSLs span a domain-specific vocabulary, which covers different develop-
ment concerns for the specification of artifacts to design functional and non-functional
product properties on different logical levels.

The disadvantage of meta models is, that they are designed to support multiple steps
of a generic development process, at the same time. This results in more and more com-
plex meta models, which are applied for the definition of artifacts in various projects
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differently. Additionally, while both methods and meta models are mostly documented
informally, a combined documentation is rarely available. The more and the larger meta
models exist, the more difficult it is to understand, how individual meta model elements
must be applied for artifact design correctly. However, these are not the only reasons,
which usually cause the discrepancy between documented process specifications and
their application to real projects:

Insufficient Methodology Support

If the structure of inputs/outputs is specified insufficiently, only vague guidelines or
best practices for the application of individual methods can be defined. By the means of
a method-specific vocabulary or syntax, more specific guidelines would enable enhanced
support of individual tasks

Missing Artifact Traceability

As modeled information is assigned with respective artifacts insufficiently, it is difficult to
recognize artifact changes and associated inconsistencies or other impacts on dependent
process segments. The explicit assignment of model information with relevant artifacts
would enable traceability analysis and artifact-based change impact analysis across the
overall process.

Information Overhead

Activities, usually, are provided with an all-encompassing model, instead of task-specific
artifact information. This makes it difficult for developers to identify or extract relevant
information in a chain of multiple manipulating and creating activities. By restricting
models to individual situational views, the focus of developers can be shifted to relevant
information.

Long-lasting Training Periods

Especially, new employees have difficulties to become familiar with new meta models.
Caused by few documentation for the usage and the allocation of meta model elements
on individual fields of function, a goal-oriented training period often is difficult. By the
means of an explicit integration of relevant meta model information with individual tasks
of the process, training periods can be reduced drastically, as more contextual informa-
tion is provided.

Missing Evolution Support

Meta models, artifacts, or used methods change over the time. Through the loose cou-
pling of these elements, such changes are hard to maintain and difficult to relate, i.e.,
changes of one part may have undefined side effects on other parts of the process. A pro-
cess model as central integration point for artifact and meta model information would
enable the evolution of the overall process as well as the enhancement of future pro-
cesses.
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Missing Project Impact

As artifact descriptions are mostly written in natural language, they are not machine-
interpretable or analyzable. Thus, artifacts can be described, but an automated evalua-
tion of artifacts is not enabled. Additionally, changes within artifact descriptions have
no impact on the real application of artifacts within the actual process in progress. In-
stead, propagation of procedural changes and expected benefits is a long-lasting task. By
formalizing artifacts, meta model or artifact changes can be incorporated into an actual
process instance simply.

To overcome these challenges, the gap between the two engineering levels of process
management and product development must be closed. Therefore, we formalize a mech-
anism for linking the two worlds of product-specific meta models and process-specific
methods. We introduce Meta Model Views, which provide us with the capabilities to
define customized viewpoints on already existing meta models. These viewpoints en-
capsulate partial knowledge of meta models and are fully-integrated with the process
model, i.e., with product-specific MFs (artifacts) of an MC. In a second step, Meta Model
Views (MMYVs) are used to generate customized editors, to automate the monitoring of
development activities to ensure the consistency between artifacts, and to validate the
content of artifacts.

4.4.1 Meta Models & Views

In general, to formalize the product-specific information inside of process models, there
must be a link between the process and a relevant meta model of the product, which
has to be developed. However, in most cases, individual meta models support differ-
ent processes or parts from it, e.g., MCs, at the same time. For example, the UML meta
model is applicable to different development activities, such as RE and software design.
As a result, the correct application of the individual parts from UML to a respective de-
velopment activity depends on additional knowledge. Especially, if the meta model is
intransparent and large, such as UML or the even more complex AUTOSAR, the abun-
dance of different language elements is confusing and causes misuse and misinterpreta-
tion. Therefore, to combine these two information sources, we annotate individual MCs,
i.e., associated artifacts, with extracted segments of a meta model. We call such an extract
MMV.

In a nutshell, an MMV is a correlated extract of a meta model definition, which contains
only method-relevant elements, i.e., classes and features of the original meta model. The
idea is sketched in Figure 4.3. The original meta model on the left side provides a sim-
plified DSL for system modeling. It defines a Requirements Model for documenting the
Requirements, which are refined into Functions of a Design Architecture. Assuming that a
particular development activity is the definition of Functions and their timing behavior in
the Design Architecture, the corresponding MC and its output artifact requires no detailed
knowledge about other classes and features. By restricting the original meta model, as
indicated by the red dotted line in Figure 4.3, we remove irrelevant classes and features.
The resulting MMV information is linked with an respective artifact of the process model
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Figure 4.3: Overview: Relationship between Meta Model View and Process

(i.e., to an appropriate MF, which in this scenario would be contained in the architectural
design phase), as depicted on the right side of Figure 4.3.

Before we define the linkage between a meta model information and an MC (Sec-
tion 4.4.2), we formalize the concept of MMV (Section 4.4.1.2) based on a general defini-
tion of meta models (Section 4.4.1.1).

4.4.1.1 Meta Model

Different specifications, such as MOF [OMGO06b], UML [OMG11a], Eclipse Modeling
Framework (EMF)’s Essential MOF (EMOF) or the associated Ecore meta model [EMF11],
provide similar language constructs to define customized meta models. Therefore, we are
enabled to provide a general basic definition for meta models, which is sufficient to ex-
isting realizations and to our approach, in equal shares. The following formalization is
general enough, so that the definition of a meta model view and subsequent definitions
based on it can be applied to arbitrary meta model formalisms.

As prerequisite for subsequent definitions, we firstly introduce some general terms.
We formalize identifiers used for the naming of entities, primitive data types to provide
a classification mechanism for necessary entities, and cardinalities to make statements
about the quantity of individual entities.

Definition 1 (Identifier)

An identifier is a sequence of characters used to name individual entities. Let 3 be a

non-empty finite set of characters. A word of X is a finite sequence of characters from
Y. The set of words over X of length n is denoted X" and the set of words over X with
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any length is denoted ¥*, i.e.,

= 2" (4.1)
neN

An Identifier is defined as

IDENTIFIER :=%*\ X° (4.2)

Data types are used for classification purpose to define a set of possible values, on
which specific operations are defined. For meta models, data types are distinguished
into primitive and complex data types to type individual features, i.e., attributes or asso-
ciations (cf. definition 14). Primitive Data Types (PDTs) are generally accepted basic data
types as provided by most of existing programming languages. Based on primitive types
more complex composite types can be created. Complex Data Types (CDTs) or object
data types are used recursively to create more complex data types. Basically, complex
data types are used as domain concepts of a meta model. Therefore, they are discussed
explicitly as meta modeling elements in definition 4.

Definition 2 (Primitive Data Type)

Let BOOLEAN be a logical type, INTEGER a number type, STRING a character
type, and ENUM a selective composition of particular values typed by a Primitive
Data Type. An PDT is defined as follows

PDT := {BOOLEAN} U {INTEGER} U{STRING} U {ENUM} (4.3)

Meta models, in general, allow for the definition of numerical values or intervals to re-
strict the number of individual model elements. We call this definition a cardinality.

Definition 3 (Cardinality)

The set of cardinalities

CARDINALITY := P(Ny) (4.4)

provides a selection of possible values and value intervals, that may be used to restrict
the number of possible occurrences of a modeled entity.

Informally, a meta model is a set of interrelated Complex Data Types, aka. concepts
or classes, which are grouped into a hierarchical package structure to constitute domain
knowledge. CDTs are abstract entities, which collate associated features to detail domain-
specific properties. Features are subdivided into a set of characteristic attribute values,
which are typed with an PDT, and a set of associations to state a semantical relation-
ships between CDTs. The following formalizes the notion of a meta model by providing
general definitions and required constraints as foundation for subsequent definitions.
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We start with a definition of general meta modeling elements, before we detail relevant
properties.

Definition 4 (Meta Modeling Elements)
For meta modeling, three different main language elements can be identified, includ-
ing

an infinite set of concepts := CONCEPTS (cf. definition 6) 4.5)
an infinite set of attributes := ATTRIBUTES (cf. definition 9) (4.6)
an infinite set of associations := ASSOCIATIONS (cf. definition 11) 4.7)

Accordingly, the set of available meta modeling elements is composed of three disjoint
sets as follows

ELEMENTS := CONCEPTS UATTRIBUTES UASSOCIATIONS (4.8)

For unique identification we require, that each element in ELEM ENTS must have a
well-defined identifier.

Definition 5 (Named Elements)

Letebeanelementof ELEMENTS,i.e.,e € ELEMENTS. Then e is associated with
an identifier via the relation £ N:

EN CFELEMENTS x IDENTIFIER 4.9)

So, foreache € ELEMENTS, the function

elementName : ELEMENTS — IDENTIFIER

o (4.10)
elementName(e) := {i|(e,i) € EN}

determines its associated identifier, i.e., the name of the concept.

To structure domain knowledge, concepts are hierarchically composed into packages.
This can be provided either by explicit package language elements of the respective meta
modeling formalism, or adequate naming conventions for concepts. In the following,
we apply the latter realization. That means, packages and sub-packages are uniquely
identified by corresponding names or particular prefixes. Accordingly, we require the
uniqueness of concepts names

Constraint 1 (Uniqueness of concept names)
Let ¢p and ¢; be two named concepts from CONCEPTS. Then the following holds:

Veg,c1 € CONCEPTS : elementName(cy) = elementName(c1) = ¢g = ¢1 (4.11)
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As mentioned above, concepts are CDTs of a domain to describe an abstract set of
similar domain objects. In order to distinguish the infinite set of possible concepts from
actual domain knowledge, we introduce the notion of modeled concepts.

Definition 6 (Modeled Concepts)
Let CONCEPTS be an infinite set of concepts. Then we define

Co:={ce€ CONCEPTS|(c,i) € EN} (4.12)

as the finite set of explicitly modeled meta model concepts, which is composed of all
concepts, whose meta model membership and name is determined by an identifier.

For meta modeling, abstract concepts provide additional type system capabilities.
Since concepts, which are indicated to be abstract, lack the instantiation capability, they
only provide base characteristics, which can be extended by other concepts for a special-
ized usage scenario.

Definition 7 (Abstractness)
Let ¢ be a modeled concept, i.e., ¢ € Co. Then the relation

ABSTRACT C Co x BOOLEAN (4.13)

associates a modeled concepts ¢ with a boolean flag to indicate, whether it is abstract
(i.e., flag is true) or not.
To access the information, the function

1sAbstract : Co — BOOLEAN

4.14
isAbstract(c) := b, such that (¢,b) € ABSTRACT .14

determines for a given modeled concept, whether it is abstract or not.

Furthermore, a modeled concept must be ensured to be either abstract or not. A mix-
ing is not allowed. This is ensured by the following constraint 2.

Constraint 2 (Explicit defined Abstractness)
Let cp be a modeled concept, i.e., ¢y € Co, then the following holds:

Vep € Co: (isAbstract(co) = true) Y (isAbstract(co) = false) (4.15)

Concepts define features to detail their characteristic properties and domain-specific
relationships to other concepts. To express taxonomic relationships between concepts
and owned characteristics, generalization hierarchies can be defined. The generalization
mechanism enables a concept to inherit the features from an other concept, i.e., its super
concept.
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Definition 8 (Generalization)

To define, that a concept is super concept of another concept the relation
SC C CoxCo (4.16)

associates two modeled concepts by indicating that the first concept is super concept
of the second one, i.e., the sub-concept.

In order to simply provide all super concepts of a given concept, we define a func-
tion called superConceptsO f:

superConceptsOf : CONCEPTS — P(CONCEPTS)
superConceptsOf(c) := {c1|(c1,¢) € SC}U U superConceptsO f(s)

sesuperConceptsO f(c)

4.17)

The function not only determines direct super concepts, but also transitive related su-
per concepts.

The inverse function of superConceptsOf is subConceptsOf and provides all sub-
concepts of a given concept c. The function subConceptsO f is defined as follows:

subConceptsOf : C — P(C)

subConceptsOf(c) :={ci|(c,c1) € SC}U U subConceptsOf(s) (4.18)
sesubConceptsOf(c)

Moreover, we assume, that a concept is not super concept of itself. This is ensured by
constraint 3.

Constraint 3 (Anti-reflexivity of Generalization)

Let ¢p and ¢; be two modeled concepts, i.e., cp, c1 € Co, then the following holds:
Vep,c1 € Co: (co,c1) € SC = ¢y # 1 (4.19)

That means, that a concept’s super concept is different from itself.

A generalization hierarchy starts with the most abstract super concept and ends with
the most specialized sub-concept. Along that hierarchy the concepts provide more and
more differentiating features, which are inherited from super concepts to all of their sub-
concepts. Features are subdivided into structural and behavioral ones, which describe
dynamic and static characteristics of concepts and transitive related sub-concepts. As
only structural features are used for meta modeling for most of the cases, we only focus
on structural features in the following.

There are two types of structural features. The first feature type is represented by
attributes, which are no self-contained model elements, but simple differentiating char-
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acteristic values of a constitutive concept, such as its name or its identifier.

Definition 9 (Attributes)

Let Co be the set of modeled concepts, let ATTRIBUTES be the infinite set of at-
tributes, and let PDT the set of primitive data types. Then the relation

CAttr C Co x ATTRIBUTES x PDT (4.20)

associates a modeled concept with a characteristic attribute and its Primitive Data
Type.
For all existing tuples in C'Atttr, the function
attributesO fConcept : CONCEPTS — P(ATTRIBUTES)
attributesO fConcept(co) := {aol|(co, ao, to) € CAttr}U
U attributesO fConcept(s)

se€superConceptsO f(co)

(4.21)

determines the complete set of attributes (including inherited attributes), which are
associated with a particular concept co.

Moreover, we assume the following three constraints to ensure the well-formedness
and validity of attributes, as defined in some meta model.

Constraint 4 (Each attribute belongs to exactly one modeled concept)

Let a be an attribute and let ¢ be a modeled concept. Then the following holds:
Va € ATTRIBUTES,31c € Co: (¢,a,t) € CAttr (4.22)

That means, that an attribute must not exist without a constitutive concept, i.e., each
attribute must be associated with exactly one concept to describe a domain-specific
characteristic.

Constraint 5 (Uniqueness of attribute names)

Let ¢ be a modeled concept and let ap and a; be two attributes. Then the following
holds:

Ve € Co,Yag,a1 € ATTRIBUTES : (c,ap,t) € CAttr A (c,a1,t) € CAttr A ag # a1

= elementName(ap) # elementName(ay)
(4.23)

That means, that in contrast to global unique concept names, we require the uniqueness

of well-defined attribute names in the scope of the associated concept.

Constraint 6 (Uniqueness of Concept Attributes)

Let ¢y and ¢; be two modeled concepts, let a be an attribute, and let ¢y and ¢; be two
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PDTs. Then the following holds:

Veg,c1 € Co,Ya € ATTRIBUTES : (co,a,ty) € CAttr A (c1,a,t1) € CAttr =

co=c1Ntg=1

(4.24)

That means, that attributes are explicitly defined via their associated concept. Addi-
tionally, this constraint enables the unambiguous identification of an attribute’s PDT
using the function:

attributeType : CONCEPTS x ATTRIBUTES — PDT

4.25
attributeT'ype(c,a) :=t, such that (c,a,t) € CAttr #.25)

As we require, that attributes are only allowed to be associated with modeled con-
cepts, we are now enabled to determine the set of all modeled attributes of a meta model.

Definition 10 (Modeled attributes)

Let C' Attr be a finite set of tuples, which relate modeled concepts with their respective
attributes. Then the set At is composed of actual modeled attributes, which are used to
describe a characteristic of exactly one concept:

At :={a|(c, a,t) € CAttr} (4.26)

Moreover, meta modeling requires the definitions of associations to model relation-
ships between domain concepts. While associations may be allowed to connect two or
more concepts at the same time, we restrict our associations definition to simple directed
associations as follows.

Definition 11 (ASSOCIATIONS)

Let Co be the set of modeled concepts, and let ASSOCIATION S be the infinite set of
associations. Then the relation

CAssoc C Cox ASSOCIATIONS (4.27)

associates a modeled concept with an association, by which associated concepts can be
identified.

To receive information about domain-specific concept correlations, the function

associationsO fConcept : Co — ASSOCIATIONS
associationsO fConcept(co) := {r|(co,r) € CAssoc} U (4.28)

U associationsO fConcept(s)
sesuperConceptsO f(co)

determines the set of related associations of a given concept, i.e., the set of associations
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where a given concept ¢y or one of its super-concept participates as source concept.

Furthermore, additional constraints are required to ensure the validity of modeled
associations:

Constraint 7 (Each association belongs to a modeled concept)

Let r be an association and let ¢ be a modeled concept. Then the following holds:
Vr € ASSOCIATIONS,3ic€ Co: (¢,r) € CAssoc (4.29)

That means, that an association must not exist without a constitutive concept, i.e., each
association must be associated with exactly one concept to describe a specific domain-
specific characteristic.

Constraint 8 (Uniqueness of association names)

Let ¢ be a modeled concept and let ry and 7 be two different associations. Then the
following holds:

Ve € Co,Vrg,r1 € ASSOCIATIONS : (¢,rg) € CAssoc A (c,r1) € CAssoc Arg # 11

= elementName(rg) # elementName(r1)
(4.30)

That means, that in contrast to global unique concept names, we require the uniqueness
of well-defined association names in the scope of the associated concept.

Constraint 9 (Uniqueness of concept associations)

Let cp and ¢; be two modeled concepts and let r be an association. Then the following
holds:

Veg, e1 € Co,¥r € ASSOCTIATIONS : (¢o,r) € CAssoc A (c1,1) € CAssoc = ¢p = ¢1
(4.31)

That means, that we require, that associations are explicitly defined via their associated
concept.

Now, the set of modeled associations is defined as follows:

Definition 12 (Modeled associations)

Let C' Assocbe a finite set of tuples, which relate modeled concepts with their respective
associations. Then the set As is composed of actual modeled associations, which are
used to describe a characteristic of exactly one concept:

As = {r|(c,r) € CAssoc} (4.32)
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By now, an association is a relationship, that only defines the source of the relation-
ship. However, as associations refer to a particular number of associated target objects in
form of Complex Data Types, associations must be provided with additional properties
regarding the referenced complex data type, a containment type, and the number of ref-
erenced objects. This is defined by the means of association properties, as defined in the
following;:

Definition 13 (Association Properties)

The relation
AssocProp C ASSOCIATIONS x CARDINALITY x BOOLEAN x Co  (4.33)

refines the association information by the referenced data type, a containment type,

and the number of referenced objects.

While the source concept of an association is fixed by the association itself, cf. con-
straint 7, an association’s property relates its source concept with a target concept (the
last entry of the property relation) by indicating, that the source concept has a direct re-
lationship with the target concept. Additionally, the property links the association with a
boolean flag to indicate whether it is a containment association or not. The containment
or by-value aggregation is particularly important, as it identifies the parent or owner of
a target instance, which implies the location of the object when persisted. If the contain-
ment flag is “true”, the association’s source concept is the container class of the target
concept. Thereby, it is well-defined, whether an association is a containment or not. Ad-
ditionally, the property links an association with a numerical value, which defines the
number of target concept instances, that are allowed to participate in the relationship.
The relationship between an C Assoc and the AssocProp is illustrated in Figure 4.4.

Finally, to ensure the unambiguity of associations, the following constraint must be
fulfilled.

Constraint 10 (Uniqueness of association properties)

Let r be an association, let ¢y and ¢; be two modeled concepts, let my and m; be
two cardinality values, and let by and b; be two boolean values indicating whether an
association is a containment association or not. Then the following holds:

Vr € ASSOCTATIONS,Yeo, ¢1 € Co,¥mo, my € CARDINALITY, Wby, by € BOOLEAN -
(r,mg, by, co) € AssocProp A (r,my,b1,c1) € AssocProp = my=mi ANby = b1 Acy = 1
(4.34)

To provide concept properties with general characteristics, we finally subsume above
mentioned attributes and associations as so called features.
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Figure 4.4: Meta model associations: Relationship between CAssoc and AssocProp

Definition 14 (Features)

Features are the union set of attributes and associations, i.e.,
FEATURES C ATTRIBUTESUASSOCIATIONS (4.35)

Based on that, the function

featuresO fConcept : Co — P(FEATURES)
featuresO fConcept(cy) = {attributesO fConcept(cy) U re ferencesO fConcept(co)} U
U featuresO fConcept(s)

sesuperConceptsO f(c)

(4.36)

determines the set of features, i.e., f € FEATURES, of one single modeled concept,
i.e., co € Co, which is composed of attributes and associations. To get the overall set of
the concept’s characteristics, features, which are inherited from corresponding super
concepts, must be taken into account.

Based on the definitions 4 - 14 and associated constraints, a meta model definition
which sufficiently fulfills necessary meta modeling capabilities is defined on the three
domains of CONCEPTS, ATTRIBUTES, and ASSOCIATIONS, as follows:

Definition 15 (Meta Model)

Let EN be a relation of named domain elements, let SC' be a relationship of concepts
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and their super-concepts, let C'Attr be relationship of concepts and their attributes and
let C'Assoc be a relation of concepts and their associations to other concepts, whose
properties are well-defined vie the AssocProp relation. Then a meta model is defined
as five-tuple:

MM = (EN,SC,C Attr,C Assoc, AssocProp) (4.37)

4.4.1.2 Meta Model View

Based on the meta model definition, we introduce MMVs as instrument to restrict meta
models to artifact-specific needs. Before we formally define the view mechanism in de-
tail, we shortly introduce the common indicator function, aka. characteristic function, on
which our view mechanism is based.

Definition 16 (Characteristic Function)

A characteristic function y for a subset A of set X, i.e., A C X, indicates the member-
ship of an element from X in 4, i.e.,
XA - X = {07 1}
1 if z€ A (4.38)

xa(x) =
(@) 0 otherwise

Accordingly, we define a MMV on a meta model M M as characteristic function. That
function indicates the membership of an element or tuple from MM in a subset or view
of that meta model. In practice, the characteristic function is defined in an user-centric
task of selecting elements from the source meta model as subset for a specific view.

First of all, a characteristic function must be defined, that restricts modeled concepts
of the source meta model to concepts, which are necessary for a particular view. That
way, views may provide contextual concept information. For this purpose we define the
Characteristic Concepts Function (CCF).
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Definition 17 (Characteristic Concepts Function)

Let MM be a meta model, whose set of modeled concepts is Co. Let VC (ViewCon-
cepts) be a subset of modeled concepts, i.e., VC' C Co, which contains all modeled
concepts, which are relevant for the view. Then the characteristic concept function is
defined as

xve : Co— {0,1}
1 if ceVC (4.39)
xvel(e) =

0 otherwise

The function associates each modeled concept of a meta model with the value 1 to

indicate, that a concept is included in the view, or with the value 0 otherwise.

Regarding views, the set of relevant modeled concepts is different from the original
set of concepts. Therefore, the set of view-specific modeled concepts must be determined
differently based on the characteristic function xy¢.

Definition 18 (Set of View Concepts)

Let mmuv be a meta model view, i.e., mmv = S |,, which is based on a meta model,
whose set of modeled concepts is Co. Let xyc be the CCF of the view. Then the
function

ViewConcepts : S |,— P(CONCEPTS)

(4.40)
ViewConcepts(mmuv) := {c|c € Co A xyc(c) =1}

determines the set, which consists of all concepts, which were defined for the view.

For a more detailed contextual restriction of meta model information, we also enable
the restriction of a view concept’s features. Therefore, we define a second characteristic
function, which is called Characteristic Feature Function (CFF).
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Definition 19 (Characteristic Feature Function)

Let M M be a meta model, where Co is the set of modeled concepts and FEATURES
is the set of features. Let mmuv be the meta model view, which is defined to restrict
MM. Let VF (ViewFeatures) be a subset of FEATURES, ie., VF C FEATURES,
which contains all features, which are relevant for concepts of the view. Then the Char-
acteristic Feature Function

xvr: Cox FEATURES — {0,1}

1 if (3m € CARDINALITY,3b € BOOLEAN,3c; € Co:

f € attributesO fConcept(c) V (f € associationsO fConcept(c)A\
xvre(e f) = (f,m,b,c1) € AssocProp = ¢ € ViewConcepts(mmuv)))
N € ViewConcepts(mmuv) A (f) € VF

0 otherwise
(4.41)

associates a tuple of modeled concept and its associated features with the value 1 to
indicate, that a concept provides the view with a particular feature, or with the value 0
otherwise.

As we require, that the view concept’s features are freely configurable from inherited
and distinct features of the source concept, methods for determining the features, i.e.,
attributes and associations, of a view concept must be re-defined, likewise. Therefore, the
view-centric functions now depend on the newly defined characteristic function x ry .

Definition 20 (Set of View Attributes)

Let mmuv be a meta model view and let xy g be the CFF of the mmuv. Then for each
concept c the function

viewAttributesO fConcept : CONCEPTS x S |y— P(ATTRIBUTES)
viewAttributesO f Concept(c, mmv) := {ala € attributesO fConcept(c) A xpv(c,a) = 1}
(4.42)

determines all attributes from ATTRIBUTES which originally are associated with a
source meta model concept and indicated as necessary for the view by the characteristic
function yv g.

While the above function explicitly determines view-specific concept attributes, we also
re-define our function to determine concept associations.
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Definition 21 (Set of View Associations)

Let mmuv be a meta model view and let yy g be the CFF of the mmuv. Then for each
concept c the function

viewAssociationsO fConcept : CONCEPTS x S |,— P(ASSOCIATIONYS)
viewAssociationsO fConcept(c, mmv) 1= (4.43)
{r € R|r € associationsO fConcept(c) N\ xyr(c,r) =1}

uses the characteristic function xy ¢ to determine all associations from ASSOCIATIONS,
which originally are associated with a source meta model concept and indicated as nec-

essary for the view.

Based on that definitions above, we are now able to define a meta model view, as
follows:

Definition 22 (Meta Model View)

Let S = (EN, SC,CAttr,CAssoc, AssocProp) be a original source meta model, which
consists of named elements, the super class relationships, and concept features with an
associated set of properties. Then an MMV regarding the meta model S is defined as

S = (S, xves xvr) (4.44)

That means, a view is a triple which extends an original meta model S with two ad-
ditional characteristic functions xy ¢ and xyr to indicate the membership of relevant
concepts and features in the view.

Similar to the source meta model, the restricted target MMV provides concepts and
features. In contrast, the view mechanism only keeps information concerning individual
concepts and a subset of associated features. For elements which are contained in the
view, the identifier and the individual features, such as attributes and associations, re-
main the same. Consequently, the constraints 1 to 10 still hold. However, contrasting an
original meta model, the inheritance mechanism is restricted, so that inherited features
must be explicitly marked to be contained in an MMV (Note, that the characteristic func-
tion specifies the incorporation of features into the view, not inheritance)

For view definition, characteristic functions are essential. The function definition rep-
resents an user-centric task of the method engineer during the ME phase. In addition
to the definition of artifacts, the engineers have to decide, which meta model elements
have to be part of the MMV. During the MMV definition task, relevant elements of the
source meta model are selected. This results in a derived meta model, which restricts do-
main knowledge of the original full-blown meta model to more contextual information
as needed for specific tasks of a development process.
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For different artifacts, which are associated as input/output of a tasks, separate MMVs
are defined. To enable the combination of different views or artifacts, we define an union
operation. This union operation takes one or more MMVs and combines their character-
istic functions appropriately.

Definition 23 (Union of Meta Model Views)

Let S; |, with i = 1..n be a set of arbitrary meta model views, where S; is an original
meta model with the two associated functions xy ¢, and xyr,, by which the MMV
membership of concepts and features is defined. Then the union operation

USi xii= (USi7XUVCi’XUVFi) (4.45)

combines meta model-specific relations and associated characteristic functions, i.e., the

union of the characteristic sets VC and V' F.

4.4.2 Process Model - Meta Model Relationship
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Figure 4.5: Method chunk-specific data annotation

We use MMVs, as defined above, to extend the semantics of artifacts by restricting
the meta model for the situation at hand. Therefore, artifacts which were defined during
the variant design activity of process line engineering (cf. Section 3.3), are now combined
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with appropriate MMV information. This is exemplified in Figure 4.5, which illustrates
an MC consisting of four MFs. The product-related MFs, i.e., Input and Output, are asso-
ciated with a meta model view, as indicated by the rounded circles. When building more
complex method chunks, which consist of multiple input and output artifacts, input-
/output- parts are assembled by using the MMV union operation, automatically.

In the following, we formalize the relationship between product-oriented method frag-
ments, i.e., artifacts, and MMVs.

Definition 24 (Meta model Artifact Link)

Let Artifacts be the finite set available product fragments as defined in an asset repos-
itory of a process line and let S |, be a set of MMYVs. Then the relation

ArtifactLink C Artifacts x S |y (4.46)

associates a product-oriented method fragment, i.e., an artifact, with additional infor-
mation of an MMYV. For that relation, we require that only one MMV is linked with
one specific artifact, i.e., for artifacti, artifacts € Artifacts and Si |y,,52 |y.€ S |y
the following holds:

(artifact1, S1 |y, ) € ArtifactLink A (artifacts, St |y,) € ArtifactLink =
artifact; = artifacta/

(artifact1,S1 |y,) € ArtifactLink A (artifacti, So |y,) € ArtifactLink =
51 [a=952 |y

(4.47)

Only, if all views are associated with fragments properly, the function

MMVofArtifact : Artifacts — S |y

MMVofArtifact(artifact) := {Sme |xme |(artifact, Sme |ym.) € ArtifactLink}
(4.48)

returns the MMV, which is associated with an artifact of an individual MC mc.

As each MC provides different number of input/output artifacts, we must provide
functions to combine input and output MMYVs to get an integrated view on these in-
put/output information.

Let mc be an MC, and let inputs(mc) result in a set of input artifacts of mc, then the
function

InputPart : MC — S |y
InputPart(me) == |J ~ MMVofArtifact(a) (4.49)

a€inputs(me)

results in the aggregated input view, which is composed of all input artifacts of an MC,
using the view union operation defined in definition 23.
Similarly, let mc be a MC, and let outputs(mc) result in a set of outputs artifacts of
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mec, then the function

OutputPart : MC — S |,
OutputPart(mce) = U MMVofArtifact(a) (4.50)

a€outputs(mc)

results in the respective output view, which is composed of all output artifact MMV
information.

4.4.3 Artifact Content Propagation

Today, model-driven development uses the concept of viewpoints (cf. [{[IEEE Computer
Society}90]) to split models into concern-specific parts. Viewpoints enable developers
to organize models according to development phases, stakeholder needs, and relevant
meta model elements. However, while viewpoints are predefined by tools for most of
the times, they do not provide means to realize customized artifacts of a project-specific
development process. Due to the missing relationship between predefined viewpoints
or model elements and an artifact, it is hardly possible to trace the evolution and de-
pendencies of an artifact’s content with regard to a development process automatically.
Usually, one physically persisted model aggregates various artifacts, which are refined
during a development process. Therefore, it is difficult to define the membership of in-
dividual model elements to an artifact retrospectively. This is further complicated, since
even equally typed elements may belong to various artifacts. Standardized views or pre-
defined rules, indeed, help to better organize models with regard to generic artifacts,
but more often than not they are not in line with actual project needs and real artifacts.
Without explicit guidelines, which define the structure of the model, explicit developer
knowledge, or other means, it is impossible to identify the content of artifacts for valida-
tion or a purposeful change impact analysis.

By the means of MMYVs, data schemata of artifacts are formalized at process design
time. However, MMVs are not sufficient to assign model elements with artifacts unam-
biguously. Only in combination with the context of an MC, associated input and output
artifacts enable to overcome this drawback. As discussed in Section 5.6, a workflow man-
agement system provides information about a currently performed MC, which enables
the monitoring of MC-specific modeling events and the matching of affected model ele-
ments with respective artifacts, i.e., MMV information.

Based on an MC’s input/output artifacts and associated MMV, the following basic
rules are obligatory to enable the assignment of model elements to individual artifacts:

e Since input artifacts are read only, by default, only output artifacts must be consid-
ered for the assignment

e Knowing the actual MC enables the recognition of newly created, modified, or
deleted model elements. The matching of affected model element types with MMV
concepts of an output artifact, allows an unambiguous assignment of elements to
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one artifact. However, automated assignment only works for disjunct MMV, i.e.,
for MMVs, which do not share an equal meta model element as concept. If out-
put artifacts are not disjunct, additional guidelines, such as naming conventions or
predefined package structures, must be provided.

The above obvious rules enable a basic assignment of data elements with artifacts

using the MMVs. However, the rules neglect the assignment of elements, which belong
to an artifact, while they are never used actively. To exemplify this, we sketch some
scenarios in the following:

1. Figure 4.6 illustrates a process, which is composed of three tasks, i.e., MCs. Ba-

sically, the outcome of M C,, is a design architecture, whose components must be
refined by timing information in M C,, ;. Finally, the components of the design ar-
chitecture must be refined by safety-related information in M C), 1. Following the
above rules, we would assign all components, which are created during M C,,, with
its corresponding output artifact. Subsequently, after performing M C;, 1 based on
the results of M C,,, we would expect, that an artifact, which is called Design archi-
tecture + Timing properties, contains architecture components and associated timing
information. Due to the above rules, the artifact would lack the component infor-
mation.

All components would already have been assigned to the output of M C,,, which
means, that the output of M (), is allowed to contain timing information as well
as components, which were created in M C),11 only. Without additional informa-
tion it would not be possible to validate timing properties of all architectural com-
ponents in M C;, 1. Furthermore, since the second timing-related artifact does not
provide architectural information, it can not be used as input for M C,, 2, when it’s
purpose is to annotate the components with safety properties. This is what we call
a propagation obstacle for the assignment.

. Figure 4.7 illustrates a process, which is similar, but not equal to the propagation
scenario. Here the process is composed of three tasks. M C,, and M), each are
responsible for architecture design of two different subsystems. Subsequently, they
both use the same language, i.e., meta model elements. M C), 5 is responsible to in-

a N
SW SW SW
Architecture Architecture Architecture
+ +
Timing Safety
Properties Properties
Mcn Mcn+1 IVICn+2

\& %

Figure 4.6: Artifact Assignment Propagation Obstacle
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tegrate these two subsystems, which belong to respective artifacts of the preceding
tasks. The combined artifact is intended to hold all information from both sub-
systems, but without modifying the subsystems during M, 2, it is undecidable,
which elements belong to the integrated artifact. This is what we call a combination
obstacle for the assignment.

3. Figure 4.8 illustrates a process, which is composed of one single task. The objective
of that task is to use an abstract definition a software architecture for the definition
of an architecture on more concrete level of detail. In that scenario, the content of
the input artifact is isolated from the content of the output artifact, whereas both
artifacts are based on the same meta model elements for the design of a software
architecture. In other words, architectural elements of the input must not be as-
signed with the output artifact. For that reason, the above basic rules can not be
extended with a rule, which generally associates similar types of the input with
output artifacts. This is what we call an abstraction obstacle for the assignment.

The basic rules defined before, are not sufficient to face above obstacles. Therefore, to
consider the so far unconsidered scenarios, we make explicit use of the relationship be-
tween input artifacts and output artifacts in the context of an MC. However, to realize
this, we require the following assumption:

Except newly created elements, all elements, which are read, modified, or deleted
in the context of an output artifact, must be provided by an respective MC’s input
artifact explicitly.

This assumption aims at the definition of a mechanism to decide about the simulta-
neous assignment of elements to an input artifact and an output artifact. We call this
mechanism Artifact Propagation Mechanism (APM). The following example sketches
the main idea of that mechanism: an undefined number of elements of type x serves an
MC A as input information. The task of A is to complement input elements of type x by
missing elements of the same type in a separate output artifact. While the output artifact
should represent a combined view on input elements of type x and newly created ones,

Ve N
SW SW SW
Architecture Architecture Architecture
(subsystem 2) (subsystem 1) (combined)
MCn / MC,,+1 |v|cn+2
\_ %

Figure 4.7: Artifact Assignment Combination Obstacle
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Figure 4.8: Artifact Assignment Abstration Obstacle

the above rules would only consider newly created elements. This, in particular, would
cause negative side effects, if subsequent process steps would be based on the combined
output artifacts, which misses some concepts. Therefore, our goal is the propagation of
affected input data to output artifacts.

In a nutshell, this works as follows: In the context of each MC, all the elements of a
particular type of an input artifact, which are relevant for the output artifact as well, must
be known. To reach this, we extend the design of MMVs of one MC with additional in-
formation. Each MMV concept of an output artifact is linked with a list of input artifacts.
The list maintains all input artifacts, which provide appropriately typed elements, which
must belong to a respective output artifact, in parallel. In order to define, which concepts
of an individual input artifact are relevant for an individual output artifact, the FromTo
relationship is defined, as follows.

Definition 25 (From-Artifact-To-Artifact relationship)

Let C'o be a set of modeled concepts (cf. Definition 6), let S|, be a set of MMV, and let
MC be a set of MCs, then the relation

FromTo C Co x S|y x MC x P(S|y) (4.51)

relates a concept, which is contained in a particular MMV of an output artifact of an MC
mec, with a set of input artifacts of mc, i.e., associated MMVs. As a result, the defined
relationship identifies the input artifacts and particularly typed elements, which must
be assigned with the output artifact.

Let mc be an MC, let input; - - - input,, be the input artifacts of mc whereof rel is a
subset of MMVs, which are associated with the input artifacts of mc, i.e.,
rel C MMVofArtifact(inputy)--- MMVofArtifact(inputy). Let output; be an output
artifact of me, where ommuv; = MMV of Artifact(output;). Let ¢ be a concept, which was
defined for ommu;, i.e., ¢ € ViewConcepts(ommuv;).
Then (¢, ommu;, mc,rel) € FromTo indicates, that already assigned model elements of
type c of an artifact from rel must be assigned to output; likewise.
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Based on this, the function CopyFrom is defined.

Definition 26 (CopyFrom)

Let Co be a set of modeled concepts (cf. Definition 6), let S|, be an MMV, and let mc
be an MC, then the function

copyFrom : Co x MC x S|, — P(S|y)

copyFrom(c, me,ommu;) = {rel|(c, ommuv;, me,rel) € FromTo A ¢ € ViewConcepts(ommu;)}
(4.52)

results in a set MMVs, which formalize related input artifacts of mc, whose already
associated elements of data type c are relevant for the output artifact ommuv; of the
same MC.

The FromTo relationship enables us to decide about which elements must be propa-
gated from input artifacts to a specific output artifact during the execution phase of the
process. After we described the design in this section, the application of that information
for an automated assignment of elements is discussed in Section 5.4.

4.5 Method-specific Editor Design

To support development methods, appropriate editor capabilities must enable the method-
specific visualization, modification, and creation of output information, based on individ-
ual input information. In parallel, editors must consider the situation, that methods and
processes evolve over time. To face these two requirements, we aim at a model-driven
generation of method-centric editors from process models and contained MCs.

To reach this, MC knowledge is extended by appropriate design information. In contrast
to conventional editor generation approaches, which are provided by frameworks, such
as EMF or Xtext, method-centric editor design does not focus the realization of a meta
model in general, but aligns it according to methodological needs. To address relevant
information items, i.e., objects of model under development, and to provide situational
editor capabilities, a different design technique is needed.

Therefore, method-centric editor design mainly encompasses three main activities: in
Section 4.4, we already detailed MMVs as a binding mechanism, in which relevant meta
model information are combined with input and output artifacts of MCs. As a result,
relevant type information is provided to restrict an editor’s capabilities to individually
typed elements. Based on that, we specify the arrangement and labeling of bound el-
ements in the context of an editor. Finally, we define the way of processing individual
model elements by making their usage scenario explicit. The following details the theo-
retical background and provides general design rules, which are necessary to enable the
method-centric editor design.
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Figure 4.9: Master-Detail Meta Model Re-arrangement

4.5.1 Editor-specific Meta Model View Re-arrangement

Based on the established link between a meta model and a MC'’s artifacts, the elements
of the annotated MMYVs must be re-arranged according to methodological requirements
of an editor. For this, we separately unify the method’s input and output artifacts, i.e.,
its MMVs, to get a comprehensive view on relevant input and output information, as
detailed in definition 23. For each aggregated view, a customized editor is designed and
generated following the master-detail pattern (cf. [SN09]). The resulting editors subse-
quently are combined into one method-centric editor, whose input information can be
distinguished from output information.

Concerning the master-detail pattern, a master section represents a set of root objects,
for which relevant features, i.e., attributes and associated objects, are handled in a sep-
arate details section. This separation makes objects tangible and enables us to visualize
an element for editing associated features. To enable a method-specific navigation of
modeled objects, by which individual associated features and objects can be hidden on
individual levels, relevant navigation paths between explicit typed objects are realized by
respective interleaved master-detail sections. That means, a details section, which details
associated objects of the master object, serves as master section for subsequent details. As
a result, a tree-based hierarchy of nested sections is assembled, as illustrated in the cen-
ter of Figure 4.9. To design an editor following the master-detail pattern, we re-organize
aggregated input/output MMV in a Meta Model View Tree (MMVT) according to the
following Backus Naur Form (BNF) (cf. [Nau63]).
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Starting point of every MMVT is an Object Master (OM) node. An OM node repre-
sents a master section to visualize instances of a particular MMV concept, i.e., a meta
model class, and references one or more Feature Detail (FD) child nodes. FDs are split
into Reference Details (RDs) and Attribute Details (ADs), and establish the information
source of the OM’s details section. An RD node represents an MMV association, by which
other classes can be referenced as children OM nodes according to the respective MMV
and the abstract syntax of an underlying meta model. An AD node represents an MMV
attribute, by which attributes of a class are addressed.

As depicted in Figure 4.9, a link between the MMV and MMVT is established, by an-
notating MMVT elements (OM, RD, AD) with their MMV counterpart (Concept, Associ-
ation, Attributes). That way, the MMVT not only provides structural editor information,
but also sufficient information, which enables the generated editor to process, i.e., to iden-
tify and to extract individual model elements of a Model Under Development (MUD): An
OM node references a main object type, which serves as entry point for the identification
of referenced features. An RD feature is either a containment reference, i.e., a composi-
tion of elements, which are destroyed when the referencing object is destroyed, or it is an
aggregation reference, i.e., a simple part-whole relationship between objects without side
effects. In each instance, the referenced MMV association information of an RD provides
information about the referenced object type. As this involves super class types likewise,
the children OM node of an RD node must make the referenced object type explicit to en-
able a type-specific treatment of associated objects. Therefore, for each object type, which
must be referenced as feature in a details section of a particular OM node, a separate RD
node, which references an explicitly typed OM node, must be introduced. In contrast,
object attributes are referenced from an OM node by using an AD node, which are leaf
nodes typed with a respective primitive data type.

In addition to type information, the MMV association information of an RD node ref-
erences the cardinality value, which indicates how many object instances may be related
with the OM. This is relevant for the transformation of hierarchic master-detail design
structures into a platform-specific target language. For a cardinality with a maximum of
one, one single object must be handled within the respective editor section. Otherwise,
a list of objects of the respective type must be handled, which impacts the used target
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language constructs of the generated editor.

In summary, to define the structure of the target editor, we re-organize the flat struc-
ture of an MMV S |, (cf. Section 4.4) into a tree-based structure, for which the following
rules must be ensured:

e OM nodes are linked to a view concept C, i.e.,
C € ViewConcept(S |y)

e An AD node, whose next parent OM node is linked with type C, only can be linked
with one of its associated attribute features a, i.e.,
a € viewAttributesO fConcept(C, S |y)

¢ An RD node, whose next parent OM node is linked with type C, are linked with
one of its associated association features r, i.e.,
r € viewAssociationsO fConcept(C, S |)

e Two OM nodes must only be connected via an RD node, if this is valid regarding
to the underlying meta model information. Let ompgren: be an OM node, which
is associated with an MMV concept Cparent and let rd be an RD node, which is
associated with an MMV association r and defined as feature of Cpgrent, i€., 7 €
viewAssociationsO fConcept(Cparent, S |y). Let rd be a child node of omparent.
Then for each child OM node omcpiiq of rd, the referenced MMV concept Cepiia
must correspond to the targeted class type of 7, or one of its super classes, i.e., :

Charent € ViewConcept(S |y) A r € viewAssociationsO fConcept(Cparent, S |y )\
(r,z,y,C) € AssocProp = Cepia € ((C U superConceptsO f(C)) A ViewConcept(S |y))

The created tree-structure is best qualified for the design and persistence of editor in-
formation. Additionally, its platform-independent and generic characteristic enables the
generation of various editor layouts. For example, as presented in the left part of Fig-
ure 4.9, the structure of an MMVT can be realized as nested composites, by which master
and detail elements are edited. Composite-specific code templates, which are used to
generate working areas for particular elements, as detailed in Section 5.3, can simply be
replaced by other templates.

4.5.2 Element Usage Scenario Definition

Method-centric editors not only are required to visualize artifact elements, but also to
provide capabilities, by which elements can be modified or created, while considering
methodological needs. To realize this, the MMVT is complemented by information about
how to process individual model elements and associated features, i.e., attributes and as-
sociated objects.

For these elements, we defined the notion of an Element Usage Scenario Attribute (EUSA)
to annotate one of the following basic editor capabilities with an MMVT element: create,
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modify, and read-only. create enables the editor to instantiate or to delete/remove ob-
ject instances, modi fy allows to modify a particular feature, i.e., an attribute value or a
referencing list of objects, and read-only visualizes a feature without the possibility for
modification. The concrete EUSA semantics and its influence on the later editor depends
on the respective MMVT node type and its context or parent node, as depicted in Ta-
ble 4.1.

An EUSA either is defined for attributes, i.e., children nodes of OM nodes, which are AD
nodes, or referenced objects, i.e., children nodes of RD, which are OM nodes. In con-
trast, since no statement is given about the concrete referenced object type, an EUSA is
not defined for RD nodes, i.e., if different types or sub-types of a class are enabled by
an association, a type-specific distinction of EUSAs is enabled. Finally, the root object is
read-only by default.

As discussed earlier, an RD node either represents a containment association or an ag-
gregation association, which influences the possibilities to annotate an referenced child
OM node differently:

If the RD node is related to a containment association, potential EUSA values of an OM
child node are create or read-only. The EUSA create enables the modification of the ref-
erenced object list, i.e., new objects can be instantiated and added to the list or already
contained objects can be deleted and removed from the list. On the other side, read-only
effects the visualization of contained unmodifiable objects and enables the selection of a
navigable object as master section for a subsequent details section.

If the RD is related to an aggregation association, i.e., associated objects can not be cre-
ated, a child OM node can be annotated either with modify or read-only. The EUSA
modify implies, that the editor enables the adding/removal of already existing refer-
enced objects to/from the reference list. Similar to the containment case, read-only im-
plies an unmodifiable list of referenced objects, which can be processed in a subsequent
details section.

Since attributes are instantiated using a default value, when their containing object is
created for the first time, AD nodes are handled differently. Attributes either are unmod-
ifiable, i.e., read-only, or they can be modified as part of the modification of some object
instance, i.e., they are annotated with modi fy.

Besides the usage scenario, which concerns editor capabilities, the MMVT must pro-

Context create | modify | read-only
- Object Master - - X
Object Master | attribute - X X
Object Master | reference - - -
Object Master | containment - - -
Containment | Object Master X - X
Reference Object Master X X

Table 4.1: EUSA Annotation Alternatives
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vide labeling information to visualize objects, which commonly are composed of more
than one feature. For most of the cases, this information is managed by a Label Provider,
which processes an explicit feature as representative of the object. Therefore, we require,
that each OM node at least provides one Attribute Node (AN), which is indicated as
object label to enable a later Label Provider generation.

Considering the MMV, which was defined in definition 22, the annotation of the
EUSA information is formalized as follows:

Definition 27 (EUSA Basic Structure)
An EUSA relates a data element on type level with an usage scenarios, i.e., create,modi fy,
read-only, and an additional boolean flag, which indicates, whether or not the data ele-
ment, i.e., a feature, provides label information. This is realized by the following tuple:

EUSA C {create,modify,read — only} x BOOLEAN (4.53)

As an EUSA is associated with concepts and features of an MMV, the following for-
mally defines these two relationships. We start with a definition of the relationship be-
tween a concept and a respective EUSA.

Definition 28 (EUSA Annotation with Concepts)

Let C'o be a set of modeled concepts, let ev be an EUSA value (ev € EUSA), let MC be
a set of method chunks, and let S|, be a set of MMVs, then the relation

EUSAtoConcept C Co x MC x S|y, x EUSA (4.54)

relates each concept of an individual MMV of an MC’s artifact with an EUSA.

Consequently, to query a given concepts for its EUSA, the function getEUSAFrom-
Concept can be defined as follows:

getEUSAFromConcept : Co x MC x S|y, - EUSA

get EUS AFromConcept(c, me, ommu;) :=

{ev|(e, ommu;, me, ev) € EUSAtoConcept A ¢ € ViewConcepts(ommuy;)

A Frartifact € {inputs(mc) V outputs(me)} : ommuv; == MMVofArtifact(artifact)}
(4.55)

Given a concept ¢, which is contained in an MMV ommuv; of an MC’s (mc) output

artifact. The function results in the EUSA, which is specified for concept c.

Finally, a definition of the relationship between a concept’s feature and a respective
EUSA is given.

143



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING

Definition 29 (EUSA Annotation with Features)

Let FEATURES be a set of features (cf. Definition 14), C'o be a set of modeled concepts
(cf. Definition 6), let ev be an EUSA value (ev € FEUSA), let MC be a set of method
chunks, and let S|, be a set of MMVs, then the relation

EUSAtoFeature C FEATURES x Cox MC x S|, x EUSA (4.56)

relates a concept’s feature of an individual MMV of an MC’s artifact with an EUSA

Consequently, to query a given feature for its EUSA, the function getEUSAFromFea-
ture can be defined as follows:

getEUSAFromFeature : FEATURES x Co x MC x S|, = EUSA)

getEUS AFromFeature(f, c, me, ommu;) :=

{ev|(f, c,ommu;,mc,ev) € EUSAtoFeature A f € featuresO fConcept(c)

A ¢ € ViewConcepts(ommu;)

A Jhartifact € {inputs(mc) V outputs(mc)} : ommu; == partitionO f Artifact(artifact)}
(4.57)

Given a feature f of a concept ¢, which is contained in an MMV ommu; of an MC’s (mc)
output artifact. The function results in the EUSA, which is specified for feature f.

4.6 Guideline Design

Previously, we introduced MMVs to combine formal product information with a process-
centric MF into one MC. Now, that the contextual knowledge about input and output
artifacts of an MC is defined, it can further be used for the specification of Situational
Method-centric Guidelines (SMCGs), which must be observed for individual develop-
ment activities. Typical examples for guidelines guide the design of, e.g., UML class
diagrams (cf. [Amb05]), as follows:

1. Indicate visibility only on design models.
2. Name interfaces according to language naming conventions
3. Always indicate the multiplicity of an association

4. Do not model Implied relationships

Unfortunately, such guidelines are preferentially available as natural language text
and are hard to match with individual activities of a development process. In contrast
to general guideline repositories, where the assignment of that guidelines to a relevant
application scenario is difficult, we provide guidelines with a computer-interpretable se-
mantics and explicitly combine them with their application scenario, i.e., the MC. There-
fore, we re-use annotated MMV for the definition of rules, which are evaluated as guide-
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lines or best practices in the context of an individual MC, or for the derivation of other
helpful information for reaching a particular objective.

In the following, we first discuss typical guideline characteristics. Afterwards, we
detail the requirements, which led us to the need for introducing a guideline formalism,
which faces the needs of method-centric and executable guidelines. Finally, the main part
of this section introduces a meta model and design principles for the design of Situational
Method-centric Guidelines.

4.6.1 Guideline Characterization

“There exist various general strategies to help guide the [development] process. In con-
trast with general strategies[, such as divide-and-conquer or iterative and incremental
development], methods are more specific in that they generally suggest and provide a
set of notations to be used with the method, a description of the process to be used when
following a method, and a set of guidelines in using the method.” [AMB™04]

Accordingly, a guideline is an optional part of an MC to provide means in executing
some method. On a more detailed level, a guideline can further be defined as “..a specific
type of guidance that provides additional detail on how to perform a particular task [..],
or that provides additional detail, rules, and recommendations on work products and
their properties. Among others, it can include details about best practices and different
approaches for doing work, how to use particular types of work products|..], discus-
sions on skills the performing roles should acquire or improve upon, measurements for
progress and maturity, etc. ” [OMGO08a]

The imperative or recommending characteristic of a guideline is similar to a rule,
which restricts (or rectifies) development tasks. Due to this similarity, we were inspired
by the rule classification schema of [Mil10] to identify the following five types of guide-
lines:

e Integrity guidelines are known as (integrity) constraints or rules. There are deon-
tic integrity guidelines to express mandatory obligations and alethic guideline to
express optional regards. Both types consist of a constraint assertion, which is a
sentence in a logical language, such as first-order predicate logic or OCL. For ex-
ample, the wake-up time of a SW-component must be lower than 10 milliseconds
is a deontic integrity guideline.

e Derivation guidelines are rules, where conditions result in conclusions, which can
be used for subsequent evaluations. For example, there is a safety-critical system,
if the wake-up time of a SW-component must be lower than 10 milliseconds.

e Reaction guidelines answer to individual events by the application of particular ac-
tions. They consist of a mandatory triggering event expression, an optional condi-
tion, and a produced action or a post-condition (or both). An example of a process-
related reaction rule is, when an artifact was changed in a first task, and this artifact
is used by a second task, then the product of task two must be checked for consis-
tency, i.e., it should be repeated.
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e Production guidelines have a condition and a produced action, where condition
is a logical formula. By the means of this guideline type derivation or reaction
guidelines can be expressed alternatively. Regarding artifacts these guidelines may
require the creation of obligatory output information implied by individual input
information. For the focused model-based artifacts, this may concern:

— creating new classes initially or the decomposition/refinement of other classes
- setting individual attributes of available classes
- setting individual associations of available classes

While production guidelines can basically be used to guide human tasks by recom-
mending conditional actions, they can be used as model transformation guidelines
to adapt or prepare output artifacts, automatically.

e Transformation guidelines define the change of state of individual model elements.
During the software development process, individual artifact elements are used
and possibly adapted by different activities. To ensure individual states of the en-
tire system or subsystems, allowed state changes could be described by state trans-
formation guidelines. For example, the wake up time of an SW-component may be
decremented but not incremented.

In this thesis, we focus on the above guideline types, which describe different appli-
cation scenarios of what a guideline accomplishes and how a guideline works. However,
a second dimension of guidelines is, that they all share an equal set of characteristics.
From our point of view, regardless of its type, each guideline is characterized by four
interrelated basic facets, as illustrated in Figure 4.10. Similar to an MC, which is charac-
terized by various fragment types, a product-oriented facet of guideline characterizes data
entities, for which the guideline is relevant for. They are further characterized by a pro-
cess-oriented facet, which define the scope of a guideline’s application from a procedural
and temporal perspective. In parallel, guidelines are also influenced by a role or human,
which has to observe the guideline. Finally, a guideline is characterized by the effect of its
application, which either influences the product-oriented facet (i.e., the product itself) or
the further course of development (i.e., the process-oriented facet). In summary, a guide-
line specifies, that something (What?) has to be analyzed in a specific situation (When?),
provides somebody or something with relevant information (Who?), and causes an indi-
vidual change (How?). While MCs compose method knowledge, guidelines re-organize
the available knowledge from MFs to compose rules, which guide developers in using
method knowledge. These facets are detailed in the following.

4.6.1.1 Product-centric Facet

Primarily, a guideline is characterized by the affected model or product. A guideline af-
fects static and dynamic model qualities, whereof dynamic qualities can further be sub-
divided into qualities regarding the abstract syntax and the static semantics.
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Guideline
Type

Figure 4.10: Guideline Facets

The validity of a model’s abstract syntax is mainly ensured by the means of a meta
model. As mentioned in Section 2.2, meta modeling deals with the formal specification of
(modeling) languages by the means of concepts, associations and necessary construction
rules, determining e.g., that only one association is allowed between class A and class
B. Similar to the syntax analysis, as used in compiler construction [VSSU06], parsers au-
tomatically check whether a model is in accordance with the grammar and contained
construction rules, i.e., the meta model.

While abstract syntax mainly concerns the minimal set of obligatory production rules
of meta models, static semantics concerns the correctness of models and provides global
restrictions with regard to effectively modeled elements and their relationships. For ex-
ample, identifiers of individual model elements have to be distinct, or a concept must
have an appropriate number and type of attributes. Such restrictions are hard to ex-
press using standard syntactic constructs, and are normally realized by the means of an
additional /extensional formalism, which provide the overall meta model with a set of
validation rules. As shown in [SB10], for behavior models, especially, an abstract inter-
pretation is useful to gain information about static semantics concerning e.g., control or
data flow by a partial execution of the model, i.e., without performing all calculations.

In contrast to static information, dynamic semantics concerns integrity of a model and
focuses the behavior of a product at runtime, i.e., how an instantiated model transforms
random input data via conditionally executed statements. For this reason, dynamic se-
mantics more concerns product requirements, which must be validated using accepted
testing strategies, than method-centric modeling guidelines or best practices.

While checking the abstract syntax is a standard function of todays” modeling envi-
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ronments, checking dynamic semantics requires runtime data, which are not available at
design time. Hence, they are both out of scope for this thesis.

In contrast, checking the static model semantics is a more crucial task, which can be
enhanced by providing Situational Method-centric Guidelines. Therefore, we focus on
the definition of validation rules for models under development from the static seman-
tics point of view. As a result, we enable to enhance the model quality by providing a
method-centric interpretable rule set (cf. Section 4.6.3) of restrictions and best practices
concerning the creation, modification and adjustment of models and contained elements.

4.6.1.2 Process-centric Facet

Beside the product-oriented facet, guidelines can be characterized with regard to proce-
dural and temporal properties. While the procedural property refers to the impact of an
evaluated guideline on dependent process scopes, such as GEs and MCs, the temporal
property refers to the impact of a guideline’s evaluation time. For development process,
the scope and the evaluation time of a guideline are important for the interpretation and
the effect of a guideline.

Guideline Scope Guidelines are basically defined in the context of one MC to guide
a development task. However, by composing various MCs into large-scale GEs, larger
scopes of guideline application are created. While the scope of guideline application
in the context of one MC clearly is defined by associated MFs, the scope of a guideline
in the context an GE is defined by the sum of all contained MCs and their associated
MFs. In contrast to MC guidelines, an GE guideline must hold for all contained GEs and
MCs, likewise. For evaluation, an GE guideline can be evaluated once for the overall
GE, or each time a contained MC guideline is evaluated. In the latter case, the set of MC
guidelines is merged with superior GE guidelines.

Guideline Evaluation Time Basically, a guideline can be evaluated before, after, or
while an activity is executed, whereas each alternative may influence method’s execu-
tion differently.

If a guideline is evaluated before executing the activity, the correctness and completeness
of all input information is validated. Based on a positive result, the activity is allowed
to be performed. A negative evaluation result, though, implies, that preceding activities
have produced incorrect or inconsistent output and must be repeated before the actual
activity can be started.

In contrast, if a guideline is evaluated after the activity was performed, information,
which was newly produced in the course of the respective activity, can be ensured to be
valid for sub-sequent activities. Otherwise the activity immediately can be repeated to
fix potential conflicts.

Guidelines, which are validated while the activity is performed, are triggered each time
a single action was performed by a developer. This type of so-called “online” evaluation
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triggers the overall set of specified guidelines and provides the disadvantage of uncom-
fortable information overload.

4.6.1.3 Effect-centric Facet

Guidelines are rules or policies, which are evaluated to accomplish an individual effect.
If a condition is evaluated positively, i.e., a guideline is fulfilled and no conflicts were
detected, the workflow can be continued normally. Otherwise, various strategies can be
initiated. Depending on its severity, a detected guideline violation may influence:

o the further proceeding of the workflow. For example, by repeating the actual method
or initializing a recovery workflow.

e the productitself. For example, by adapting the product automatically or manually.

In general, restricting, activating, or proposing human or automated activities are possi-
ble.

4.6.1.4 Role-centric Facet

Finally, we mention the role or human specific evaluation semantics. Since activities
are normally executed by different developers, guidelines can also focus their individual
skills, knowledge, permissions, and (technical) language. Although, such specializations
are conceivable, the following will not consider the role-specific evaluation semantics in
more detail.

4.6.2 Requirements for Situational Method-centric Guideline Design

Today’s model validation formalisms are neither process- or method-centric nor support
the definition of guidelines according to above facets. Instead, they provide an overall
meta model with validation capabilities in a textual or script-based way. Indeed, such
formalisms provide model validation mechanisms, but also generic and non-situational
solutions. These solutions are normally global to one modeling environment and are not
connected with any process model, which leads to hundreds of tasks covered by one sin-
gle rule set. Such a global rule set is always active and can not be restricted to relevant
tasks. That way, also irrelevant rules must be checked, by what falsified or confusing
information under-/over-load is provided to the developers. Especially, management
and side-effect-free adaption of such universally valid guideline sets is difficult without
knowing underlying meta models and affected methods in detail.

To face that challenges, the following introduces an approach to eliminate drawbacks
of today’s validation languages, and to enable the definition, adaption, and management
of Situational Method-centric Guidelines. Therefore, our approach must provide essen-
tial capabilities of a model validation language, i.e., :
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e Mechanisms to navigate models and comprised elements for identifying the ele-
ments to validate

Mechanisms to distinguish classes and respective instances

Mechanisms to express conditions on sets of model elements

Mechanisms to express complex boolean expressions on instance-specific model
features

Additionally, in [DKHO08] the authors state, that there are four essential questions,
which any guideline framework must answer. Therefore, we first discuss these questions,
before we introduce the guideline meta model in the next section.

1. How to share and represent various types of guidelines using a formal unambigu-
ous representation?
Section 4.6.3 introduces the guideline meta model, which is represented by an in-
tuitive graphical concrete syntax in contrast to common text or script based syntax.
And as modeled guidelines will be fully integrated with the process model via the
aspect-oriented extension mechanism, it can also be shared between different par-
ties by the means of a central process model.

2. How to acquire, verify, localize, execute and evaluate formalized guidelines and
support systems in daily practice?
Inspired by the idea of a continuous process improvement, our guidelines are in-
tended to be developed in an iterative way, i.e., guidelines are (re-)designed and
checked syntactically during the method engineering phase. During the process
execution time, they can be localized by the means of corresponding relevant tasks
which are under control of a process engine as shown in chapter 5. While the model,
which has to be validated, is determined by actual variables of a running process,
a concrete evaluation depends on the selected target evaluation language, which is
generated from our guideline model. This will be shown in detail in Section 5.5.

3. How to interface guideline-based decision support systems with external meta model
data?
Guidelines are strongly connected with the the process model and other associated
information, which enable sound decision making. The automated processing of
development process models, which is discussed in chapter 5, enables processing
of meta model information, which are annotated in form of an MMV, and the eval-
uation of guidelines.

4. How to provide decision support to developers in daily practice?

Our system does not aim at suppressing developers’ creativity. It rather supports
developers in finding appropriate work units based on the underlying process.
Therefore, while developers may further use familiar tooling environments ap-
plying familiar practices, each task is allocated by a process management system,
which validates the modeled output subsequent to a finalized modeling task. (cf.
Section 5.5) Thereby, the set of annotated validation rules or guidelines is evalu-
ated to decide about proceeding the process. As a result, most relevant errors or
problems can be recognized and consequently avoided where they occur.
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4.6.3 The Generic Guideline Meta Model

Similar to MMYVs, the guideline meta model, which is introduced in the following, is
linked with a process model by using the aspect-oriented mechanism (cf. Figure 4.2).
That way, MCs can simply be extended by guidelines and best practices. The aspect,
called MCGLAspect, extends task-specific MFs with an aspect instance annotation, called
MCGuidelineAnnotation. That annotation references a guideline model (GLModel), which
details best practices and guidelines only in the context of one specific MC. Although,
this section focuses on MC-specific guidelines, the aspect simply can be adapted to cover
GEs, as well.

Although, there are well-known formalisms to validate an MUD, such as policy- or
constraint-based languages, in the following, we introduce a guideline meta model to
demonstrate the capabilities of an approach, which is integrated with the process model.
In contrast to, e.g., OCL or EVL, the meta model enables a procedural combination of
various statements (constraints) to be evaluated and conditional actions into a complex
guideline. To focus the actual process context of an MC, complex guidelines use artifact
information and combine different interacting statements either to initiate individual ac-
tions or to influence the course of a development process.

The guideline meta model is composed of two parts, which enable the design of com-
plex guidelines from a set of more simple guidelines. Figure 4.11 depicts the main part
of our guideline meta model. It, basically, consists of edges and different node types to
define the process of a complex guideline. While most of the nodes are used for process
definition, a StatementNode, which is detailed in Figure 4.13, is a particular node, which
serves as a simple guideline, whose result can be used by other StatementNode nodes.

4.6.3.1 Abstract Syntax for Complex Guidelines

A complex guideline enables the definition of a logical ordered sequence of various state-
ments and associates them with conditional reactions. In contrast to OCL or EVL, where
the context of a statement is defined by one element and one result, complex guidelines
combine the results of various statements in the context of different elements of the MUD.
Basically, each element of the guideline meta model, which is depicted in Figure 4.11,
is a ModelElement, which provides a name and an unique identifier. A guideline model
(GLModel) is linked with a scope, i.e., a MC, and aggregates multiple Guidelines, which
consist of nodes (GLNode) and edges (GLEdge).
GLEdges are used to associate a source GLNode with a target GLNode, by which a directed
guideline graph logically orders GLNodes. The GLEdges propagate the result, which was
evaluated in the source node, to the target node for subsequent processing and to enable
the design of derivation guidelines.
GLNodes are more complex than the GLEdges. Basically, there are three types of nodes:
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Figure 4.11: Guideline Structure

control nodes (ControlNode) for controlling the evaluation order, action nodes (ActionN-
ode) for initiating actions, and statement nodes (StatementNode) for the specification of
statements, which will be detailed in Section 4.6.3.2.

Control Nodes

Principally, a complex guideline is an ordered process of statements and actions. Similar
to process models, more complicated control-flows between nodes can be enabled by
introducing control nodes to detail the evaluation order. Therefore, we introduce four
basic control-nodes, whose semantics is defined as follows:

e Init-nodes determine the beginning of a complex guideline. Only one Init node is
allowed per guideline.

e Final-nodes determine the end of a complex guideline. Only one Final node is al-
lowed per guideline.

e OR-nodes have exactly one ingoing and multiple outgoing edges. It initiates alter-
native paths in statement evaluation, whereof at least one alternative path, i.e., out-
going edge, must be processed. While complex expressions are possible to decide
about which alternative path should be taken, for simplification, we only distin-
guish two alternatives to cover positive and negative results. Therefore, outgoing
edges provide a conditional value, which either can be SUCCESS or FAILURE. An
OR node, which either receives a logical true or a non-empty set of objects from a
preceding node, propagates this message to all outgoing edges, whose condition is
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set to SUCCESS. On the other side, the incoming logical value false or an empty set
is propagated to all outgoing edges, whose condition is set to FAILURE.

e MERGE-nodes have multiple ingoing and one outgoing edge and are the counter-
part of OR nodes to synchronize paths, which were introduced by an OR node.
Therefore, it waits for a minimal number, which is indicated by the min attribute,
of ingoing messages, before it evaluates ingoing messages and sends one message
to its successor node. The concrete behavior of a MERGE-node depends on the
type of ingoing messages. One must take care of the message type of all preceding
nodes, which can be logical values or object sets. A MERGE node combines ingo-
ing results. Therefore, it must be ensured at design time, that all ingoing messages
have the same type, i.e., either logical values or object sets. For ingoing logical val-
ues (b1, .., by) all ingoing values are combined by using the logical operator OR, i.e.,
b1 V ..V b,. In contrast, if multiple sets (s;..s;,) arrive in an MERGE-node, the sets
are aggregated by using the intersection operation, i.e., s N .. N s,,. Afterwards, the
aggregated set or the combined logical value is sent to the successor node.

e AND-nodes initiate multiple outgoing paths, whereof each must be processed in
parallel and independent from an edge’s condition. Therefore, it propagates an
incoming messages to all outgoing edges.

e JOIN-nodes are the counterpart of AND nodes and synchronize paths, which were
introduced by an AND node. Similar to MERGE-nodes, their concrete behavior de-
pends ingoing message types: In the case of incoming logical values, a JOIN-node
synchronizes the results (b1, .., b,) by using the logical operator AND, i.e., by A..A\by,.
On the other side, for object sets, a JOIN-node synchronizes the result sets (s1..s;,)
by applying an union set operation, i.e., sy U .. U s,,. To trigger the behavior of the
Join-node, all ingoing edges must have provided exactly one message. They syn-
chronize parallel paths by waiting for exactly one message on each ingoing edge,
before triggering subsequent nodes.

Action Nodes

To face the effect-centric facet, as discussed in Section 4.6.1.3, we introduce means to re-
pair detected model inconsistencies and/or to show meaningful advices. This is realized
by Action nodes, which are intermediate nodes with exactly one ingoing and one outgo-
ing edge. Based on the ingoing message, which could be an empty message, a logical
value, or an object set, different action types can be initiated. Presently, we differentiate
three different types of ActionNodes, which can be spread across the complex guideline:

e A message action provides developers with textual guidelines based on the specific
evaluation of a statement at specific stages of the complex guideline. In the case
of an ingoing edge, which provides an object set, the message e.g., can refer to
individual faulty model elements contained in the set.

e Similar to message actions, reference actions provide developers with guidelines.
In contrast to message nodes, they do not provide customized textual advices, but
link to additional documents with more context information or documented best
practices.
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¢ Individual objects which result from evaluated StatementNodes, can be modified /rec-
tified by providing the ActionNode with code fragments or an M2M transformation.
As the type of a pattern node’s result set can uniquely be defined at design time, a
typed transformation or program code, which is provided and executed during the
guideline evaluation, enables the automated reparation of faulty model elements,
i.e., it realizes production guidelines.

To indicate the relevance of a particular action and to realize the deontic and alethic char-
acteristic of integrity guidelines, the priority values ERROR, WARNING, and INFORMA-
TION are defined. While ERRORs have a high priority and represent mandatory action
as well as some kind of “knock-out” criterion for the finalization of the validated task,
medium prioritized WARNINGs can be neglected if possible. INFORMATION actions
have a low priority and have informative character to log basic or statistical information.

Figure 4.12 depicts a complex guideline which demonstrates the most essential con-
structs for guideline modeling. The guideline starts with an Init-node, which leads to
a StatementNode to realize a statement, as detailed in the next section. Based on the re-
sult of the statement’s evaluation, an OR-node switches between two alternative paths to
proceed. For the SUCCESS case (i.e., the statement’s result is true or a non-empty set of
objects), the guideline defines no further action, meaning that the OR path can be final-
ized by sending a message to the MERGE-node, which synchronizes the two OR paths.
Otherwise, if the StatementNode results in the logical value false or an empty set of objects
the FAILURE path is taken. On that path, the OR-node calls the message action node on
the left side. After the message was processed, the MERGE node is triggered to synchro-
nize the alternative block. Finally, the guideline interpretation is finalized by calling the
END node.

This, indeed, is a simple example to demonstrate basic elements of our meta model. More
complex guidelines, though, can be specified by combining more StatementNodes, which
are connected by control nodes and adequate set of intermediate or final actions.

4.6.3.2 Abstract Syntax for Statements

Statements are used to evaluate particular information of a model, which serves as an ar-
tifact of an activity, and provide other nodes with their result. Basically, such statements
can be formulated using state-of-the-art languages, such as OCL or EVL. However, since
the definition of statements is mostly a complex and confusing task using the standard
textual notation, we introduce a more intuitive graphical notation, which abstracts from
the formal characteristic of SOTA languages and enables the consideration of MMV data
to design more method-oriented statements.

Therefore, we introduce the meta model for statement modeling, which is part of the
general guideline meta model and presented in Figure 4.13. In parallel, we detail the con-
textual statement modeling, which considers artifact information (cf. Section 4.4) during
statement design.
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Basically, we define a statement as a directed acyclic graph leading from a start model
element to other reachable model elements via nodes and edges. (Reachable means, that
the navigation path from one element to another follows the abstract syntax, as defined
by some meta model) This provides us with a concept to navigate in models, similar
to OCLs” dot-Notation. A graph defines multiple paths, which are composed of two
types of nodes (Node) and two types of edges (Transition) to navigate between meta model
classes (NavigationNode) and modeled instances (InstanceNode). InstanceNodes enable the
evaluation of attribute properties (AttributeProperty) of instances and the definition of
conditional relationships (Relation), which must hold for attributes of different instances.
That way, multiple simple statements can successively be combined into one complex
statement. In the following, we detail the abstract syntax for the definition of statements
and introduce a concrete syntax, which supports the visual design of guidelines.

Statement Node

A StatementNode is a particular GLNode. It is a composite node for Nodes and Transitions,
which both are necessary for statement definition. To simplify the definition and under-
standing of guidelines, a modeled statement serves as an abstraction of a rule on technical
level, which must normally be modeled by using a more complex validation language,
such as OCL. To be open to a broad range of platforms or languages, a StatementNode
provides the toStatement() method, which can be realized differently, to derive particu-
lar platform-specific validation code from the statement model. In Section 5.5, we will
demonstrate such a transformation of a statement model using the example of OCL.

Meta Model Information Element

To face the product-centric facet of a guideline, as discussed in Section 4.6.1.1, i.e., to ad-
dress relevant entities of an MUD, statement design must be provided with a vocabulary,
which is basically provided by the elements of the MUD’s meta model. Therefore, to real-
ize the product-centric facet of a guideline, the MetaModelInformationElement is an abstract
class, whose objectRef attribute enables a linkage between a statement element and its
counterpart element in some meta model. To reduce the general meta model vocabulary
to a method-relevant subset, contained statements exclusively must address the MMV el-
ements of an artifact, which is associated with the respective MC, for which the statement
must hold. Depending on the concrete realization of the MetaModelInformationElement, it
references a classifier, an association, or an attribute, as defined by some meta model and
referenced by an associated MMV.

Node

A Node is an abstract MetaModelInformationElement and base class for the two node types
of a statement: a NavigationNode to address a class of a meta model and an InstanceNode
to address instances of a class.

Navigation Node

A NavigationNode is a Node, which represents a meta model class. It provides the isSelf
property, which is a logical value to indicate whether the node provides the context of

157



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING

the statement, i.e., the starting point for evaluation. One statement must define exactly
one node, whose isSelf attribute is true.

Instance Node

An InstanceNode is a Node, which represents a typed object, by which instances of a meta
model class can be addressed. It aggregates a set of attributes to enable the validation of
particular instance properties. Beside simple expressions, by which an attribute can be
compared with a fix value (e.g., name == “WatchdogManager” or delay <> 5), attributes
also can be source (IstParameter) or target (2ndParameter) of a Relation to interrelate
two AttributePropertys of the same or different InstanceNodes (e.g., instanceA.delay <= in-
stanceB.delay). That way, conditions or constraints are defined for individual typed model
instances and their attributes. Again, the associated MM Vs restrict the vocabulary of ref-
erenceable classes and attributes.

Transition

A Transition is an abstract base class for directed edges between a source Node with a
target Node. There are two types of Transitions: a NavigationTransition to navigate between
meta model classes and a instanceTransition to link InstanceNodes with their respective
type, i.e., a NavigationNode.

Association Transition

An AssociationTransition is a Transition between either a NavigationNode (source) or an In-
stanceNode (source) and a NavigationNode (target), to follow an association property of
a particular meta model class or one of its instances. Basically, the AssociationTransition
reproduces a meta model association and enables the meta model conform navigation
from one typed statement Node to another. Therefore, an AssociationTransition likewise
provides the objectRef property to reference its meta model counterpart and to document
the transition type. As meta model elements can only be referenced, if they are defined
by an associated MMV of the respective MC, two benefits can be achieved: First, only
method-relevant associations can be used for statement modeling, which makes state-
ment definition less confusing. Second, statement nodes, i.e., classes and instances, are
only navigable via a transition according to the underlying meta model.

ation <Navigation Node> instance <Instance Node>

25505 Class B -

<Navigation Node> instance <Instance Node>
Class A -—= > al Ay
<Navigation Node> <Instance Node>
ASSoa ——=>
Oc’atlon Class C instance cl

Figure 4.14: Statement Modeling I: association Transition
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NavigationNodes, unless its isSelf property is set to true, must have exactly one ingoing
AssociationTransition, whose source node defines the meta model type of the referenced
node. In contrast, any Node may have multiple outgoing AssociationTransitions, whereof
each transition spans one sub-statement in the context of the source node’s type. The
resulting set of sub-statements is combined by default using the logical operator AND.
This is sketched in Figure 4.14, where an InstanceNode is starting point for two statements.
Both statements are defined in the context of an instance of type A, i.e., al, for which a
meta model defines two associations: the first between class A and class B, and the sec-
ond between class A and class C. That way, the first statement is defined for referenced
objects of type B in the context of a1 and the second statement is defined for referenced
objects of type C in the context of al.

Finally, referenced associations with multiplicity 0 or 1 and associations, which refer-
ence a collection of objects, must be distinguished. Associations with a maximum mul-
tiplicity of 1 at most reference one object and can be processed immediately. On the
other side, collection associations must define how to process contained objects. For that
reason, an AssociationTransition provides the iterationType property to indicate how the
collection must be processed. According to the collection operations of OCL [OMGO06a],
the meta model in Figure 4.13 presents a selection of potential ITERATORS to define the
iterationType of an AssociationTransition.

Instance Transition

An instanceTransition is a Transition between a NavigationNode (source) and an InstanceN-
ode (target) to address and to distinguish named instances of a class, which can be used
for further processing. InstanceNodes must exactly have one ingoing instanceTransition,
whose source, the NavigationNode, defines the type of instance, via the inherited objectRef
attribute. In contrast, a NavigationNode may have multiple outgoing instanceTransitions,
whereof each transition spans one sub-statement about a named instance of the same
type. The resulting set of sub-statements is combined by default using the logical opera-
tor OR.

This is sketched in Figure 4.15, where a NavigationNode typed with B is starting point for
two statements. Both statements are defined in the context of an instance of type A, i.e.,
al, for which a meta model defines an association between class A and class B (cf. Associ-

<Instance Node>
ce
'\(\S‘aﬂ — 1 bl

<Navigation Node> instance <Instance Node> | association /~ <Navigation Node> _ -
Class A —==> 1 Class B -~ <OR>
a ~
<Instance Node>

;@ ~
Ins tan \>
ce cl

Figure 4.15: Statement Modeling II: instance Transition
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ationTransition). That way, the first statement is defined for b1 in the context of a1 and the
second statement is defined for b2 in the context of a1.

Attribute Property

An AttributeProperty is a MetaModellnformationElement to address an attribute of an in-
stance, for which a boolean expression can be defined and validated. An expression re-
lates an attribute value of an instance with an expression value via a predefined OPERA-
TOR. For example, a delay (property) is “lower than”(operation) 5 (value), i.e., delay < 5.
Multiple expressions of the same instance are connected by the logical operator AND by
default.

Instance Relation

The InstanceRelation relates two AttributePropertys to enable boolean expressions with two
variables. It is a directed edge between two InstanceNodes, where the source references
an AttributeProperty of an InstanceNode as 1stParameter and the target references an At-
tributeProperty of an other InstanceNode as 2ndParameter. A selectable binary operation
relates the two parameters.

The objectRef attribute of MetaModellnformationElements enables referencing any meta
model element, which is provided by an associated MMV. However, to design state-
ments, whose navigation paths and attribute constraints are in line with a meta model’s
abstract syntax, the element’s application context must be considered, as well. Therefore,
the following three restrictions for a MetaModellnformationElement’s objectRef attribute
were defined, to clarify the allowed context in which classifiers, attributes, and associa-
tions are referenceable. The guarantee of these restrictions is part of the statement editor’s
functionality, and saves statement designers from misuse and information explosion.

First, the allowed set of referenceable classes must be restricted. As guidelines exclu-
sively are defined for an MC, this set is defined through concepts, which are provided
by the MMVs of an MC’s input an output artifacts. This is ensured by the following
restriction.

Restriction 1 (Referenceable statement classes)

Let g be a guideline model GLModel, which is referenced by a guideline MF of an
MC (mc). Let Input Part(mc) be the union set of all MMVs, which are associated with
input artifacts of mc, and let Output Part(mc) be the union set of all MMVs, which are
associated with output artifacts of mc.

Then for each Node, i.e., InstanceNode or NavigationNode, of g, the set of referenceable
meta model classes is restricted to the following set of concepts, which are contained

160



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING

in an associated MMV:

{c € CONCEPTS|c € ViewConcepts(v),v € InputPart(mc) U Output Part(mc)}
(4.58)

Second, an InstanceNode must not state expressions about attributes, which are not
defined by a referenced classes or one of its super classes. This is ensured by restriction
2.

Restriction 2 (Referenceable attribute properties)

Let g be a guideline model GLModel, which is referenced by a guideline MF of an MC
(mc). Let I, be a class, which is set as objectRef of an InstanceNode, for which an At-
tributeProperty is defined.

Then the set of the set of referenceable meta model attributes is restricted to the follow-
ing set of attributes, which are contained in an associated MMV:

{a € ATTRIBUTES]|a € viewAttributesO fConcept(I.,v),

(4.59)
v € InputPart(me) U Output Part(mc)}

Third, a NavigationTransition must not connect two Nodes, which reference classes, for
which no association was defined in the underlying meta model. This is ensured by
proposition 3.

Restriction 3 (Referenceable association properties)

Let g be a guideline model GLModel, which is referenced by a guideline MF of an
MC (mc). Let s; be a Node, whose objectRef attribute references class .S, and let ¢; be
Node, whose objectRef attribute references class 7. Then the set of referenceable MMV
associations, which are applicable to the objectRef attribute of a NavigationTransition,
which connects s; (source) with ¢; (target), is restricted to the following set:

{r € ASSOCIATIONS|3m € CARDINALITY,3b € BOOLEAN :
(rym,b,y) € AssocProp,r € viewAssociationsO fConcept(x,v), (4.60)
v € InputPart(mc) U Output Part(mc), x € superConceptsO f(s1), '

y € superConceptsOf(t1)}

4.6.3.3 Modeling Statements

The last section has introduced the abstract syntax for statement design. We now de-
fine the concrete graphical syntax. Thereby, our approach implicitly makes use of MMV

161



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING
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Figure 4.16: Guideline Navigation
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information, as specified for the artifacts of an MC. The MMVs are used to restrict the
guideline vocabulary, as follows: A statement is defined for a specific meta model. The
meta model’s vocabulary, though, consists of all features, i.e., attributes and associations,
and classes. However, as guidelines are defined for a specific MC, which normally refers
to individual meta model parts, only a subset of that vocabulary is required. This meta
model subset can be derived from the associated MMVs of an MC’s artifacts, to restrict a
guidelines vocabulary.

In the following, we inductively define the construction of statements starting from sim-
ple basic forms to identify instances right up to complex statements to validate particular
characteristics of a model.

Instance ldentification

instance a

i Class A <instance> 3
1 ———» 3

Figure 4.17: Instance Identification

The access to instances of a model class, looks as follows: First, a NavigationNode,
as indicated as rounded rectangle in Figure 4.17, is required to identify the meta model
class and to define the type of the instance of interest. The instance of a model class itself
is made addressable by the means of a separate InstanceNode, as realized as cornered
rectangle in Figure 4.17. This separation is required to distinguish different instances
of the same model class, as needed, for example, for comparing various instances of
the same set of instances (cf. x1.name != X2.name)). To indicate, that a NavigationNode
determines the type of an instance node, the instance transition relates a class with an
instance, as illustrated as directed dashed line. Thus, we can address multiple instances
of a model class and use that instances for further processing, as demonstrated in the
following.

Attribute Property

Figure 4.18 demonstrates the identification of an attribute of an instance for evaluation
purposes. An AttributeProperty is realized as an additional entry in the context of an
InstanceNode. Thereby, valid attributes are predefined by the type of the instance and
respective MMV restrictions. For defined InstanceNode attributes, additional fields define
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instance a
attribute;

attribute,
attribute, .,

Figure 4.18: Attribute Property

the operation and value (e.g., delay < 5), as defined in the statement meta model (cf.
Figure 4.13).

Association Expressions |

irg;catement Node

) instance b
<instance>
instance a 5502807 Class B — = ~ ™ attribute,,
attribute .
attribute,
attribute ., . instance c
<instance>
Class C —— > attribute,

attribute .«

Figure 4.19: Statement navigation via associations

After the identification of instances and attributes is enabled, we discuss the naviga-
tion between instance objects of a model, as illustrated in Figure 4.19. To navigate from
one instance to another one, the AssociationTransition is required first, as illustrated in the
figure by a non-dashed line connecting an InstanceNode with a NavigationNode. The Asso-
ciationTransition is required to identify the associated model class, from which particular
instances are addressed secondly using the instance transition, as discussed above. Due to
the objectRef attribute of the abstract meta class MetaModelInformationElement, as defined
in the statement meta model (cf. Figure 4.13), we are provided with type information of
respective nodes, which enables to associate the two nodes according to the meta model’s
rules, i.e., setting the AssociationTransition’s objectRef attribute accordingly. As shown in
the figure, the AssociationTransition ends in a NavigationNode and does not relate two in-

164



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING

stances directly. This is required to address various instances of the associated type, as
briefly discussed earlier and detailed in the following.

Association Expressions ||

Statement Node

instance b,
<instance>
: Class B it g attribute,,
instance a r\ .
20N attribute .
. N
attribute, &\ instance b,
attribute ., AN '
attribute,,

attribute .«

instance c

<instance>

Class C attribute,

attribute

Figure 4.20: Multiple instance variables and iterators

Basically, Figure 4.20 looks very similar to Figure 4.19. The difference is, that the Nav-
igationNode for ClassB associates multiple instances. The figure demonstrates the design
of iterator expressions in order to iterate a set of instances. For meta model associations
with a cardinality of more than one, the association results in a set of referenced instances.
To iterate over all instances, an AssociationTransition (the non-dashed line), defines the it-
erationType property, as defined in the statement meta model illustrated in Figure 4.13.
The property defines a way for iterating a set of instances, similar to languages, such
as OCL, EVL, or, in general, predicate logic. Since iterator expressions allow for pair-
wise comparison of contained elements, a navigation node, such as ClassB allows the
association of several instance nodes to address a required set of iterators.

Crossing Attribute Relations

Finally, in addition to boolean expressions to evaluate attributes of one instance, also
attributes of different instances can be related into one expression, as depicted in Fig-
ure 4.21. To relate the values of two different attribute of different instances in a boolean
expression, the InstanceRelation is used. The relation is indicated as non-dashed blue line
between instance b and instance c and references the two attribute properties of interest.
The two related attribute values are compared via a logical operation (e.g., ==,! =, <, >,
etc. ).
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Figure 4.21: Instance attribute relations

4.6.3.4 Modeling Complex Guidelines

The presented meta model for statements misses some of the expressiveness, which is
known from other languages, such as OCL [OMGO06a], EVL [KRPP10], or Visual OCL
[KTWO02]. Due to the graphical syntax, which was developed to facilitate the design and
readability of statements, the full set of features cannot be integrated without loosing the
advantage of an easy design. From our point of view, a concrete graphical syntax, which
provides all features of OCL'’s abstract syntax, would be even more confusing, than its
textual counterpart. Especially, the multitude of relationships and interleaved nodes in-
fluences readability, usability, and evolution negatively.

Instead, most restrictions can be qualified by arranging multiple statements into a
guideline. As multiple statements with different context elements can be combined into
more complex guidelines, the power of guideline modeling compensates most restric-
tions, while introducing additional features. Furthermore, as a modeled statement is
transformed into an textual counterpart automatically, the generation of constraint skele-
tons enables the manual adaption of constraints in a respective language, which is much
easier for most of the cases, than development from scratch. This is detailed in Section 5.5.

4.7 Role-centric Workflow Management

Although, role or user management is out of scope for this thesis, this section sketches
some basic ideas on how to consider user and role management within process models.
Basically, as developers differ in their skills and rights across the project and organiza-
tion structure, process models should integrate this information with process models, i.e.,
resource related MFs, in order to allocate tasks and tooling functionality more adequately.
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4.7.1 User Skills

Role-specific MFs normally are identified by their name and provide information about
necessary skills using natural language text. This complicates the automated matching
of roles with human capabilities, which are needed to perform a particular task.

As many developers are subsumed by abstract role descriptions, this approach neglects
capabilities and skills of individual developers. The situation can be enhanced by intro-
ducing a skill database for storing particular data on employee’s expertises. Required
skills are linked with role-specific MFs and respective developers. Thereby, roles can still
be identified by abstract textual descriptions, but also by matching required with pro-
vided skills.

A workflow management system can use this information to allocate tasks to available
users with sufficient skills according to the task’s priority. Thereby, as appropriate de-
velopers can be found via skills instead of role descriptions, unnecessary delays of time-
critical tasks can be avoided.

4.7.2 Data Access

Not only user skills, but also rights might be relevant for process execution and contained
methods. To protect intellectual property or sensitive data, fine-granular or task-specific
access privileges complement exclusively annotated user skill information. User- and
activity-specific privileges could be applied to restrict unauthorized developers to view
or modify individual data.

User management capabilities, cf. [ZCO07, DPS03, SCFY96,5594], can be an useful add-
on, which can be integrated into process models. However, this would go beyond the
scope of this thesis.

4.8 Case Study

To demonstrate the application of Computational Method Engineering (CME), as dis-
cussed above, a case study is presented, which is inspired by the automotive sector.
Therefore, we developed a meta model, which provides a required subset of data types
to support our automotive software development process. The meta model is inspired
by the MAENAD project and serves us as a simplified version of the herein developed
EAST-ADL meta model. Asillustrated in Figure 4.22, it provides a System element, which
aggregates various models, which belong to the different phases (or abstraction levels)
of system development, i.e., analysis, design and implementation. On the analysis level,
Requirements Engineering activities are conducted. Therefore, the meta model provides
elements to create functional (Functional_RQ) and non-functional (NonFunctional_RQ)
requirements. On the design level, a functional design is created using functions and
connectors. Additionally, the meta model provides elements to define function-specific
timing constraints. Finally, on the implementation level, the functional design of the
design level is refined into an implementation-specific software architecture, which we
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Figure 4.22: Case Study: Meta model

require to be composed of software_components, ports, and connectors.

In our development process, which is illustrated in Figure 4.23, individual parts of
the meta model are applied to different development activities. The development pro-
cess consists of three phases (Analysis, Design, and Implementation), composed of eight
MCs to support the following tasks: On the analysis level, it starts with CreateFunc-
tionalRequirements to derive functional requirements from external stakeholder require-
ments, followed by CreateNonfunctionalRequirements to specify non-functional require-
ments for each of the identified functional requirements. The analysis phase ends with
the CompleteRequirements activity, to validate the complete set of functional and non-
functional requirements. Subsequently, the design phase starts using the combined set
of requirements in order to derive a functional design from the results of the analysis
phase. Therefore, during the MC DefineFunctions functions are derived from identi-
fied requirements. To specify the interaction between functions, ConnectFunctions pro-
duces a Functional_Architecture. The Functional _Architecture’s functions are refined by
timing information, during the subsequent MC DefineFunctionTiming. During the final
development phase (Implementation), the functional architecture has to be refined into
a software architecture by using the results of previous phases. Therefore, the artifact
FA_refined_by_timing is input to DefineSWCs, which derives software components from
functions of the functional design. The final step, DefineSWArchitecture, has to connect
software components using port and connector elements of our meta model.
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Figure 4.23: CME Case Study Process
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MCs are realized using the SPC semantics, i.e., the sequence of MCs within one phase
is executed in a strict order, as defined by the process model. In contrast, phases are
realized using the FPCs semantics in order to enable the flexible control of individual de-
velopment phases using validation results and introduced traceability strategies. In the
following, we demonstrate the technical refinement of the constituent parts of our devel-
opment process, i.e., the MCs and their MFs. We will discuss, the definition of MMVs to
detail the semantics of artifacts, the annotation of EUSAs to enable the editor generation,
the definition of From-Artifact-To-Artifact relations, and the definition of method-specific
guidelines. Thereby, we aim at the design of an executable process, which subsequently
provides developers with situational guidance, validation and customized editors.

4.8.1 Artifact Design

Specialize - -
Package Search AMetaModel

Class Search

Select Language Element A

Class: Port - Package: aMetaModel *
Class: Connector - Package: aMetaModel
[7] Class: RefinementArchitecture - Package: aMetaModel
| Class: System - Package: aMetaModel
Class: Identifiable - Package: aMetaModel
Class: Connection - Package: aMetaModel

| i larrs CAA L R P Jrul—ah-!-nAnl

Result Meta Model View: B
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4 [ ] Class: System - Package: aMetaModel. AMetaMadelPackage (name aMetaMadel] (nsURL de.aMetaModel, nsPref =
|| Attribute: name -> Type: EString(0..1)
4 [ | Reference: vfm -> Type: VFM(1.1)
a4 [ Class: VFM
| Attribute: name -> Type: EString(1.1)
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|| show_label
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Figure 4.24: Meta Model View Designer

We start with an excerpt of annotated MMVs, which explicitly specify the data struc-
ture of an individual artifact based on the meta model illustrated in Figure 4.22. Due
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to the large number of artifacts, we focus on a subset of artifacts, while for the real
case-study all artifacts were annotated with a respective MMYV. For the definition of
an artifact-specific meta model, we developed an editor, which is depicted in Figure 4.24.
This editor, which is based on the eclipse platform, is connected with the eclipse-specific
meta model registry to access any relevant meta model and to select relevant language
elements to add them to a MMYV. While section A of the editor, provides the set of avail-
able language elements as originally defined in some meta model, section B shows the
restricted set of elements, i.e., the MMV implicitly organized in the form of an MMVT, as
described in Section 4.5. Additionally, the section C of the editor illustrates the possibil-
ity to define the EUSA for a specific element. The figures, which we are discussing in the
following, represent the result MMV, which were created using our developed editor.

Figure 4.25 depicts the MMV as specified for the output artifact of the MC Create-
FunctionalRequirements. The artifact Functional_Requirements only focuses on functional
requirements associated with the VFM container element of the overall System. Other el-
ements of the base meta model are masked out. It can be seen, that inherited attributes are
incorporated with the MMV elements, likewise, to integrate relevant characteristics, such
as an element’s name name or an required association, with the view. However, while
the identifier attribute of elements typed with Functional_RQ is relevant for the view, the
VFM element does mask this attribute out, since this type of information is not relevant
for the respective artifact.

Functional_R
El system vfm = vim E Functional RQ

reqs | [cg name
— = o
[Eg name 1 1 Eg name 1 * | g identifier

Figure 4.25: MMV of the Artifact Functional _Requirements

The second MMV is illustrated in Figure 4.26 and shows the output MMV associated
with the artifact combined_requirements. In contrast to the MMV discussed before, it addi-
tionally considers both types of requirements defined in the base meta model. However,
this task aims at the validation of requirements. Therefore, the MMV particularly ne-
glects the identifier attribute of requirements, since the information is not relevant in this
context.

Q Functional_RQ

E system vfm Hvem ,eqsg Requirement
5§ name Eg name

1 1 1 * [E name
Q NonFunctioanl_RQ

Figure 4.26: MMV of the Artifact Combined_Requirements
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In Figure 4.27, the output MMV of the task DefineFunctionTime is depicted. It masks
out any language element, except the Functions contained in a System’s FAA. Addition-
ally, it considers the Timing information of a Function, such as its Delay or [itter. Some
attributes and associations are masked out, while others are used, as predefined in the
meta model. For example, while each element requires a name for identification, the
only element, for which an identifier attribute is relevant during the task, is the Timing
element.

Figure 4.28 depicts another MMV specified for the output of MC DefineSWArchitecture.

Q Delay

Q System
[Eg name
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Figure 4.27: MMV of the Artifact FA_refined_by_timing

For this artifact the software components (SWC) and connections between associated
ports are relevant. Likewise, the MMV neglects irrelevant attributes and associations,
which are not required for defining a software architecture.
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connections £ connection
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Figure 4.28: MMV of the Artifact SW_Architecture

After defining the MMVs for all artifacts, the artifact content propagation, as dis-
cussed in Section 4.4.3, is considered. For example, the output artifact of the MC Com-
pleteRequirements (combined_requirements) aggregates a complete set of artifacts, i.e., all
requirements, which were defined in the context of previously defined artifacts, are prop-
agated to the artifact. Therefore, we define a FromTo relationship between a NonFunc-
tional_RQ concept of the output MMV element of CompleteRequirements and the input
artifact NonFunctional_Requirements. Moreover, a FromTo relationship is defined between
a Functional_RQ concept of the output artifact and the Functional_Requirements input arti-
fact. That means, at process execution time the framework is enabled to associate defined
elements of the input artifacts with the output artifact automatically.

172



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING

4.8.2 Editor Design

Based on the specification of relevant artifact data structures, the required editor behav-
ior is defined, i.e., for each element defined within the MMV of an artifact, the EUSA
annotation is defined to specify, if the element can be created, is modifiable, or if it is
read-only. This is realized in parallel with the MMV definition. As illustrated in section
C of Figure 4.24, our prototypical MMV designer enables the EUSA annotation in parallel
with the selection of elements of the MMV.

For the above defined MMV, Table 4.2 to Table 4.5 exemplify the EUSA annotation,
as it was realized for each MMV, i.e., artifact, in our case-study process. For example, Ta-
ble 4.2 shows the EUSA annotation of the artifact Functional_Requirements. While the first
column references a class of the MMV, the second column addresses one or more features
of the respective class. The type of the feature, i.e., attribute or association, is represented
in the third column. In the subsequent column, for each element the respective EUSA
annotation is given. The last column indicates whether or not the feature is used as label
provider.

4.8.3 Guideline Design

After defining all MMVs and EUSAs, guidelines can be defined. In the following, we
describe the design of individual guidelines, as specified for the above process (cf. Fig-
ure 4.23).

Figure 4.29 illustrated a guideline, which was specified for the MC CreateFunctionalRe-
quirements. This guideline consists of two checks to ensure, that each functional require-
ment, which is created in the context of that task, has a name, which starts with the simple
indicator characters “FRQ_" and ends with a random number of characters and digits.

Class Name Feature Name | Feature Type | EUSA use as label
System read-only

name attribute read-only | x

vim association | read-only
VEM read-only

name attribute read-only | x

reqgs association read-only
Functional_RQ create

name attribute modify X

identifier attribute read-only

Table 4.2: EUSA Annotation of the artifact Functional_Requirements
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Class Name Feature Name | Feature Type | EUSA use as label
System read-only
name attribute read-only | x
vim association | read-only
VEM read-only
name attribute read-only | x
reqs association read-only
Functional_RQ create
name attribute modify X
NonFunctional _RQ create
name attribute modify X

Table 4.3: EUSA Annotation of the artifact combined_requirements

Class Name | Feature Name | Feature Type | EUSA use as label
System read-only
name attribute read-only | x
faa association | read-only
FAA read-only
name attribute read-only | x
funcs association read-only
Function create
name attribute modify X
time association | read-only
Jitter create
id attribute read-only | x
value attribute modify
Delay
id attribute read-only | x
value attribute modify

Table 4.4: EUSA Annotation of the artifact FA_refined_by_timing
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Class Name Feature Name | Feature Type | EUSA use as label
System read-only
name attribute read-only | x
impl association | read-only
Implementation read-only
name attribute modify X
SWcs association | read-only
connections
SWC read-only
name attribute read-only | x
ports association read-only
InPort create
identifier attribute read-only | x
name attribute modify
OutPort
identifier attribute read-only | x
value attribute modify
Connection create
identifier attribute read-only | x
source association modify
target association | modify

Table 4.5: EUSA Annotation of the artifact SWArchitecture

The regular expression, which realizes this naming conventions is (F'RQ_)[a — zA— Z0 —
9]+. The guideline starts at the init node. Following the outgoing edge, a statement node
is called to check first, whether or not each requirement has a name, at all. The statement
is modeled using the techniques introduced in Section 4.6.3.3 and addresses the instances
of a functional requirements (FunctionalRQ) to define, that their name attribute must not
be null. Based on the result of this check a conditional branch either provides developers
with the message, that names must not be null (FAILURE) or the next statement node is
executed (SUCCESS). The second statement addresses functional requirements to define
the above regular expression ((FRQ_)[a — 24 — Z0 — 9]+) for their name attribute. Sub-
sequently, the result of this check is evaluated and either results in a warning message, if
the naming convention is not hold, or the guideline is finalized.

This simple example demonstrates the basic control flow of a guideline using the alterna-
tive control nodes OR/ORMerge and statement nodes. In Figure 4.30 another statement
node is illustrated to demonstrate a guideline, which we specified to guide the Define-
Functions MC. The statement expresses, that the number of functional requirements,
which are defined on VFM level must be equal to the number of functions, which are
defined on the level of the Function Analysis Architecture (FAA). Note, that this exam-
ple statement demonstrates a guideline, which is specific to a particular method, so that
it would not make sense to integrate it as general meta model constraint via, e.g., OCL.
Due to simplicity, we mask out the control flow of the guideline and focus the interesting
statement node. The statement addresses a System instance and the associated VFM and
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Requirement name attribute must not be null

FunctioanlReq x;

<self>
FunctionalReq

name

Requirement name
attribute must not be
null

<positive>

Merge

Requirement name attribute must start with ,FRQ_“

FunctioanlReq x;

<self>
FunctionalReq

name

Requirement name
attribute must start with

#FRQ_

<positive>

Merge

Figure 4.29: Case Study Guideline: Functional requirements must have a name, which
corresponds to a particular naming convention

176



CHAPTER 4: COMPUTATIONAL METHOD ENGINEERING

FAA container elements, to identify the two distinct sets of contained functional require-
ments of the VEM and the Function elements, which are contained in the FAA. The size of
these two sets is compared using the InstanceRelation language element of the statement
meta model. This is indicated in Figure 4.30 by the blue directed edge (Relation) between

the two instance nodes.

Statement Node

<self> <instance>
- = >
System

System x;

VFM y;

wim VFM ——— >

FunctionalRe
requirements . <instance>
d FunctionalReq — — — — P

J, Relation

. FAA z,
fag
——— >

: <instance>, -
functions — — =M Functionr

i

Figure 4.30: Case Study Pattern: The number functions must be equal to the number of
functional requirements

A last example of a guideline, which we defined for the case-study process is de-

picted in Figure 4.31. The guideline validates the range of a particular value attribute.
To demonstrate it, we use the example of the Delay class associated with each Function.
Therefore, the statement of Figure 4.31 addresses instances typed with Function and nav-
igates to the associated Delay instance. For each identified Delay the statement checks the
value attribute to be lower than 100, i.e., the delay of the function must be lower than 100
milliseconds. While a successful check finalizes the guideline, the failure case results in a
warning message provided to a responsible developer to correct the value immediately.
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Requirement name attribute must not be null

Functioan x, Delay y;
<instance> time <instance>,
-—— —_—— _>
P Delay value

<self>
Functional

Function timing must be
greater than ,,100“

<positive>

Figure 4.31: Case Study Guideline: a function’s timing value must not be lower than 100
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Figure 5.1: Objectives overview

C

The previous chapters have described the possibilities for complementing software
development process models with computer-interpretable information and managing
that information in a process line. To face Objective 3, as illustrated in Figure 5.1, this
chapter describes how the specified development process can be refined from technical
design level to operational level.

5.1 Motivation

As today’s software development process models are mainly used for process documen-
tation purposes, there is a gap between prescriptive process modeling and subsequent
descriptive process evaluation. Between the process design and a final project review,
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the multitude of documents and large-scale processes complicate developers’s life, since
they are lost in the middle of a myriad of information. As a result, it is nearly impos-
sible for individual developers to always consider all rules, standards, and guidelines,
which are specific to a software project. However, since the design of processes, tem-
plates, checklists and other documents is a time-consuming task, defined process models
and associated information must affect developers work actively. Contrasting a passive
database of information, where developers must search for relevant information, pro-
cesses actively have to support developers during their work. Therefore, processes must
provide developers with a vehicle, which enables them to be creative in a coordinated
and assisted way. A framework, which realizes the required support for development
processes, must be aware of the following challenges.

5.1.1 Task-centric Challenges

MCs and composing MFs are information sources, which are defined to support develop-
ers in doing a specific job. The challenge is to interpret the information automatically and
to provide interested parties with relevant information, which is required to accomplish a
job successfully. Therefore, the computer-interpretable formalization of MF information,
as introduced in chapter 4, plays a major role to face the following challenges:

e Provide developers with task-specific editors and design capabilities, as required
from an MC’s artifact information.

e Monitor the progress of products, as specified in an MC’s artifact model, and iden-
tify potential conflicts between artifacts and development activities.

e Provide supportive information and recognize problems, e.g., the violation of guide-
lines, during the development process, as specified in an MC’s guideline model.

e Manage authorization for particular artifacts and products, as specified in a MC’s
role model. As stated already before, this is out of scope of this thesis.

5.1.2 Workflow-centric Challenges

The support of individual tasks, requires the managed assignment of tasks to developers.
Therefore, another challenge is to enable an automated process coordination. A frame-
work, which manages the activities of developers, monitors active tasks, and provides
context information, must face the following challenges:

e Efforts for workflow management and guidance must be in proportion to the efforts
of actual product development, i.e., the framework must not increase efforts for
doing a job.

e Process mining and subsequent reviews can improve future projects sustainably.
Therefore, workflow management must enhance gathering of information through-
out the process.
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e Synchronize the development process with actual needs of the product under de-
velopment, i.e., enable situational assignment of development activities.

e The framework must interpret the process to guide the activities of developers and
to ensure compliance with standard processes, while not restricting their creativity.

The described challenges are faced in the following by describing the realization of tech-
nical process design information, as introduced in chapter 4, on operational level.

5.2 Overview: Method-driven Guidance of Development
Processes

In chapter 4, we introduced an approach to detail the information of a workflow and
the particular fragments of an MC, such as artifacts, editors, and guidelines. In combi-
nation with our SPLE approach (chapter 3), we are now enabled to configure computer-
interpretable process models for the situation at hand. That way, the chapters faced ob-
jective 1 and objective 2, as introduced in Section 1.2. In this chapter, we focus on objective
3 and discuss the application of the designed process information on operational level.

We start with MF information, where we use model transformations to transform
computer-interpretable MF information into a platform-specific/operational format. In
Section 5.3, we describe an M2T transformation to generate method-specific editors, which
are capable to provide developers with relevant information and method-specific capa-
bilities, using MMVs and associated EUSA information. In Section 5.4, we introduce
an observer mechanism, which monitors performed design activities to establish a his-
tory of an artifact’s content, using MMVs and other method-specific context information.
The information about an artifact’s content is reused in Section 5.5, where we describe
an M2M transformation and the interpretation of guidelines to enable a purposeful val-
idation of artifacts during the development and to provide developers with adequate
information. Finally, in Section 5.6, we detail a flexible workflow management, which
considers the consistency between artifacts. Thereby, monitored artifact information and
particular consistency rules are used to automatically control the process in a flexible
way. We conclude the section with a case study in Section 5.7.

5.3 Method-driven Editor Generation

From the process model extended with technical information, method-specific user in-
terfaces with editing capabilities can be generated automatically. Although, it is possible
to use Commercial off-the-shelf (COTS) editors and to adapt their functionality using,
e.g., MMV information, we describe a generic transformation to achieve completely cus-
tomized editors based on the defined process, i.e., contained MC information. There-
fore, we use the platform-independent information of an MMVT, as annotated with an
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MC’s input and output artifacts (cf. Section 4.5), to generate editors for different platform-
specific target languages. An MMVT restricts a meta model to relevant elements and de-
fines rules for a correct application of that elements. As a result, a generation is enabled
to provide a resulting editor with the following capabilities:

1. The visualized part of the meta model is restricted according to the information
provided with the MMVT.

2. An appropriate action set is provided to realize the annotated EUSAs.

3. The Editor considers the MMV T-specific navigation of model elements.

= [

Details Part

Master Part CommunicationConnector
Instance_1

Instance_2 nmAiddress |
Instance_3

Instance_4

eculnstance =

channel

commController

Figure 5.2: Example of a Generated Master-Detail Editor

The following section deals with the automated generation of such an editor using the
MMVT in combination with platform-specific code templates. We describe the general
generation using the example of XML Widget Toolkit (XWT), by which we generate ed-
itors realizing the master-detail pattern, as discussed in Section 4.5. A resulting editor is
exemplified in Figure 5.2. After, we discussed the generation of structural code to visu-
alize relevant elements in a master-detail structural relationship, we describe how func-
tionality is added to the editor by generating so-called behavioral code. Structural code
generation and behavioral code generation result in the editor for one MC. As all MCs,
which are contained in a process, are provided with an individual editor, the generation
runs repeatedly to provide editors for the whole process. Finally, we discuss some of the
arisen challenges and identified solutions.
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5.3.1 Generation of Structural Editor Code

A generated editor’s structural code consists of various so-called Basic Structural Ele-
ment to organize the different model elements according to underlying meta model rela-
tionships. Basic Structural Elements (BSEs) visualize individually typed model elements,
which either are embedded into superior (master) or inferior (detail) Basic Structural El-
ements. The BSEs are grouped into two categories: Visual Structural Elements (VSEs),
which enable the visualization of typed model information, such as a list viewer, and
Functional Structural Elementss (FSEs), which enable the realization of an action, such
as a Button. For the generation of BSEs following an MMVT’s master-detail design, the
MMVT is traversed top-down, while a declarative M2T transformation generates nested
master and detail parts to aggregate the BSEs correspondingly, as exemplified in listing
5.1.

createMasterDetailHierachy (MMVT tree){
//A4 variable to store modes to be visited
//and assoctated BSE information
Dictionary <MMVT_Node ,BSEInformation> currentMaster i =
new Dictionary<MMVT_Node ,BSEInformation>();
//Create Basic Structural Element for the root node
BSE masterBSE =createBSE(tree.root);
//Add the root node and associated BSE information to visitable node
currentMaster.add(tree.root ,masterBSE) ;
while(currentMaster .notEmpty ()){
for (MMVT_Node master : currentMaster.next ()){
//get all children node of a visited node of the MMVT
for (MMVT_Node child : master.getChildren){
//Create BSE information for the children node,
//as detail for the wvisited master mnode
BSEInformation detail := createBSE(child);
//Related detatils with a master part
master .addDetail (detail) ;
//Next, children nodes must be visited
currentMaster.add(child,detail);
}

currentMaster.remove (master) ;

Listing 5.1: Master Detail Definition

Due to the tree-structure of the MMVT the traversal can start from a root node to gen-
erate BSEs in a master part, which is refined into an inferior details part to realize the
BSEs of its children nodes in a second step. Depending on the depth of the MMVT this is
repeated several times until a leaf node is reached. Each time an MMVT node is visited,
BSEs to be generated depend on a node’s EUSA: while read-only-annotated nodes force
the generation of a VSE exclusively, other EUSA-annotations force the generation of an
additional FSE.

By traversing the MMVT, a visited MMVT-Node provides an BSE with relevant meta
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model information, such as type information, attributes, associations, or cardinalities.
This information is required to provide a so-called Databinding, which enables an BSE to
process a respective model element. Therefore, we provide each BSE type with a generic
template, which is completed using meta model information provided during the traver-
sal.

<ListViewer Name=<ListViewerName>
DataContext=<ContextObject >
ItemsSource={Binding Path=<ItemsPath>}
IsEnabled=<!IsReadOnly>

/>

Listing 5.2: ListViewer Template

For example, while listing 5.2 illustrates an XWT-specific template, which is associ-
ated with an VSE to represent a list of objects, i.e., to visualize a set of associated objects,
listing 5.3 exemplifies the completed template. The completed template realizes a list
viewer to visualize objects typed with the meta model class Function. These objects are
aggregated by an Functional Analysis Architecture (FAA) object, following the meta model
introduced in Figure 4.22.

Depending on the current node in the MMVT the variable parts of the template
(<ListViewerName>, <ContextObject>, <ItemsPath>, and <!IsReadOnly>) are replaced
by values provided by the MMVT-Node. The ListViewer Name variable is used to assign
the generated behavioral code to the VSEs it is responsible for. The DataContext variable
refers to the object, which aggregates the data, that are visualized by the means of the list
viewer. The ItemsSource specifies an optional path within the DataContext to the displayed
data. The isEnabled variable indicates, whether or not visualized data can be modified or
not.

<ListViewer Name=FAAListViewer
DataContext=FAA
ItemsSource={Binding Path=Function}
IsEnabled=True

/>

Listing 5.3: Example: Completed ListViewer Template

5.3.2 Generation of Behavioral Editor Code

By now, editors only visualize artifacts according to MMV information. To provide the
visualizing parts of the editors,i.e., BSEs, with relevant functionality (or modeling capa-
bilities) they must be complemented with that functionality. Therefore, handler parts
add capabilities to FSEs, which are associated with an individual BSE to process con-
tained model elements. The capabilities can be categorized into three different types of
actions:
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o Attribute Modify is the modification of an object’s attribute typed with a primitive
type, such as String or Integer. Every time, a change is made in the attribute’s VSE,
the action changes its associated object’s attribute in the same way. For example,
the deletion of text in a text box leads to the deletion of its associated object’s string
attribute.

o Reference Modify adds/removes appropriately typed objects to/from a list of asso-
ciated objects of another object.

o Containment Create/Delete initializes a new object, or deletes an existing one within
the context of a parent object. If the action creates a new object, then it is added
to the parent object’s containment association, vice versa, if the action deletes an
object, it is removed from the parent object’s association.

Similar to VSEs, every action, i.e., an FSE, needs to be associated with affected meta
model information. Therefore, individual FSEs realizing a specific EUSA are provided
with generic templates, likewise. The action templates are completed using information
from a respectively visited MMVT-Node. For example, to customize an Attribute Modify-
Template, the relationship to the parent object of the attribute it is modifying has to be
identified. In contrast, Reference Modify- and Containment Create/Delete-Templates need
more efforts to customize. Therefore, the customization of a Reference Modify-Template is
exemplary depicted in listing 5.4 and listing 5.5.

public void addReferenceTemplate (){
<ReferencedElementType > toAdd = <ReferenceVSE>.getSelectedElement ();
<CurrentElementType > addedTo =

<CurrentElementVSE>.getSelectedElement () ;
if (<ReferenceCardinality> != 1){

addedTo.<ReferenceName >.add (toAdd) ;
}
elsed{
addedTo .<ReferenceName> = toAdd;

Listing 5.4: ReferenceAdd Handler Template

A Reference Modify action needs information about different VSEs and associated meta
model information. Therefore, the respective template has variable parts to bind relevant
information. This is exemplified in listing 5.4. While the <ReferencedElementType> is a
type information to identify the object type, which has to be referenced, the <CurrentEle-
mentType> provides type information to identify the referencing object. Additionally, the
<ReferenceName> refers to the association name, which relates the <CurrentElement-
Type> with the <ReferencedElementType>. Finally, <ReferenceCardinality> represents
the cardinality of the reference, commonly INFINITY if the reference is a list or ONE,
otherwise. As illustrated in listing 5.5, the variable parts are replaced by the respective in-
formation of the MMVT-Node, such as class names, e.g., Function or FAA, or VSE names,
e.g., FunctionListViewer or FAAListViewer. Depending on an association’s cardinality the
template manages a single associated object or a list of associated objects.
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public void addReference (){
Function toAdd = FunctionListViewer.getSelectedElement();
FAA addedTo = FAAListViewer.getSelectedElement ();
if (CINFINITY !'= 1){
addedTo.functionList.add (toAdd);
}
elsed{
addedTo.functionlList = toAdd;
}

Listing 5.5: Example: Completed ReferenceAdd Handler

Customizing a Containment Create/Delete-template is similar to the customization of a
Reference Modify template. The Containment Create/Delete-template also needs type infor-
mation about referenced objects and about the referencing object. Adding and removing
of objects is handled the same way as in reference templates, depending on the contain-
ment cardinality.

5.3.3 Challenges and their Solutions

When realizing our editor generation framework, we faced different challenges, which
we discuss in the following to reason the way of the above approach.

First, we started without having the concept of the MMVT and a model transforma-
tion was directly applied to the MMYV. As the algorithm strictly followed the paths given
by associations between meta model elements to generate BSEs, it sometimes ended up in
an infinite loop, when it came to cyclic associations between meta model elements. The
MMVT resolves this cyclic associations with its hierarchical structure. A former cyclic
association is now resolved to a linear succession of meta model elements. As the trans-
formation now works on MMVT, the algorithm only loops as long as it does not hit a leaf
node within the MMVT. Therefore, the execution time of the algorithm is determined by
the depth of the MMVT.

Second, before introducing the MMVT, it was impossible to independently annotate
different meta model classes, that derive from one common super meta model class, with
different EUSAs. Therefore, if a super-type class was annotated with read-only, all derived
sub-classes were read-only, as well. On the one hand, by introducing the additional in-
direction of the RD, the MMVT enables the explicit annotation of inheriting meta model
classes. On the other hand, the MMVT made it possible to restrict the inheriting meta
model classes to a particular subset.

With all the benefits that come with a MMVT, there is also drawback. The declarative
model transformation approach proved to be more complicated, when it comes to the
root of the MMVT. As the MMVT only describes a cutout of the original meta model, an
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artificial root node is created. Defined actions, such as Reference Modify or Containment
Create/Delete can not be implemented for the root node as realized for children or leaf
nodes. As root elements do not have a defined parent node, to which new objects can
be added to or removed from, we restricted root elements of the MMVT to be annotated
with the EUSA annotation read-only exclusively.

5.4 Artifact-specific Information Management

As discussed earlier in Section 4.4.3, having information about an artifact’s content, would
enable a more detailed validation, change impact analysis and traceability on data ele-
ment level, as well as, a more flexible workflow management.

The challenge is, that an elements’s data type, as annotated with artifacts using MMV,
is not sufficient to decide about an element’s unambiguous membership to an artifact. For
example, given two artifacts, called middleware design architecture and application design ar-
chitecture, which were both created using the same data type, called SoftwareComponent.
In that case, it is not possible to query the physical model for SoftwareComponents, which
exclusively are assigned to either the middleware architecture or the application architecture.
Instead, querying the model would result in a general set of SoftwareComponents, unless
we would have additional context information about the SoftwareComponent’s member-
ship. This can be avoided by providing explicit design guidelines, which prescribe the
structure of the overall models considering the artifacts’ needs. However, the definition
of these guidelines is a time consuming task and the manual association of model ele-
ments to affected artifacts proves to be difficult, likewise.

Therefore, the following deals with automated assignment strategies to associate ele-
ments of physical models with virtual artifacts. However, since model elements are used
in a specific context of the development process, this kind of membership relationship
can only be derived at process runtime, i.e., a process model can not be provided with
this kind of information at design time. Therefore, we identified the following two alter-
native strategies to derive necessary information at process runtime:

1. Modeled elements manage the knowledge about their artifact membership
2. Artifacts manage the knowledge about associated modeled elements

The first alternative has two drawbacks: To identify an artifact’s content, all elements
must be queried for their membership, which is very inefficient. Furthermore, the identi-
fication of artifact content would require, that meta model elements are extended with an
additional property to reference a respective artifact. As this proves difficult for existing
or standardized meta models, such as UML or AUTOSAR, we rejected the first alterna-
tive.

Instead, the second alternative is a more promising approach. Using this strategy,
an artifact must be provided with information about member model elements. There-
fore, at process runtime, a workflow management system allocates development tasks
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in the form of MCs, which in turn provide detailed artifact and editor information via
associated MFs, and so determines the actual process context. That way, the monitor-
ing of editor commands in combination with available context information, in particular,
associated MMV of the artifacts, provides sufficient information to observe the instanti-
ation or modification of model elements and to assign this information with responsible
artifacts. The membership indications available at process runtime, are:

e The data type of the model element instance to be assigned
e The unique identifier of the model element instance to be assigned

e The editor’s action command performed to read, modify, or create the respective
model element instance

o The restricted set of artifacts and associated MMV influenced by a touched model
element instance.

The monitored information enables the assignment of elements to artifacts, as detailed in
the subsequent section, which is the prerequisite, that enables the extraction of an arti-
fact’s content to validate contained information, as discussed in Section 5.5, and to trace
dependent artifacts and tasks of a development process, as discussed in Section 5.6.

We start with the introduction of the Artifact-Observer-Pattern developed to provide
a lightweight communication mechanism between artifacts and respective generated or
third-party editors. Afterwards, we detail generic strategies to assign model elements to
responsible artifacts.

5.4.1 Artifact Observer Mechanism

The artifact observer mechanism is based on the conventional observer pattern, as in-
troduced by Gamma et al. in [GHJV95]. Its general structure is depicted in Figure 5.3,
where a subject and a set of observers are defined. Inspired by the approach applied
in [CHCCO03], we adapted the pattern as follows:

The subject, which represents the object of interest, is the command, which is per-
formed in the context of an editor to process a model element instance. Because of the

Q Artifact_Subject_Dispatcher
Eg observerCollection : Artifact_Observer

lEI Artifact_Observer Eg interestLookUpTable : Hashtable
- artifact_Observer - artifact_Mediator_Subject &2, registerObsenver ()
&3 notify () * &2 unregisterObserver ()
i determinelnterests () &2 notifySubject ()
& lookUpInterestedObserver [ )
&2 notifyObservers ()

Figure 5.3: Artifact Observer Mechanism
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overhead, to provide editors with the information of interested artifacts (in particular for
third-party editors), we introduce an intermediate Dispatcher component, which serves
us as subject in the context of our Artifact Observer Pattern. The Dispatcher provides ed-
itors with a light-weight central communication interface to notify interested observers,
i.e., artifacts, about performed modeling events.

An artifact used during the process, is considered as an observer object, that indicates
interests in particular modeling events. These interests, basically, are defined by the asso-
ciated MMVs and associated EUSA information. Therefore, an artifact object implements
the Artifact_Observer interface, by which it can be notified about a particular modeling
event using the notify method. The Notification Event must provide a six-tuple composed
of the following information entries:

e Command: The type of the action accomplished by using an editor. Therefore, we
extend the EUSAs, as defined in Section 4.5.2, and differentiate four types of mod-
eling actions, namely the element read-only, modi fy, create, and delete (a derivate
of modification).

e DataType: The name of a model element’s data type, which is affected by a model-
ing event (i.e., the command).

e ElementID: An unique identifier of the model element instance, which was pro-
cessed by the current modeling event.

e MethodID: An identifier, which allows to relate modeling events with a responsible
MC. As generated editors exclusively support a specific MC, as discussed above,
an editor’s identifier allows to identify an MC unambiguously, as well.

e GroupingElementID: Since methods can be applied in the context of different sce-
narios, a unique identifier must be transmitted to assign a method to its correspond-
ing GE (cf. Section 3.3) uniquely.

e TimeStamp: Each notification must provide a time stamp. The time stamp is used to
bring various events into an order, which is convenient for traceability and change
impact analyses, as discussed in Section 5.6.

A Notification Event containing above information, must be assigned with an artifact fol-
lowing the strategies as discussed next. To realize this assignment, we introduce a rela-
tion, which assigns an event to an artifact, as follows:

Definition 30 (Assignment of Notifications to Artifacts)

Let mc be an MC, the current method in which a notification was created, and let
ArtifactID be an identifier of the artifact, which is interested in a notification. Let n
be the Notification Event to be assigned. Then n is associated with the corresponding
artifact of an MC via the relation Noti fication Assignment:

Noti ficationAssignment C NotificationEvent x MC x ArtifactI D (5.1)
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Based on this relation, the function

artifactHistory := ArtifactI D — P(Notification Event) 52)
artifactHistory(artifact) := {n|(n, me, artifact) € NotificationAssignment}

results in the history of artifact-specific notifications, which subsequently can be used
to trace an artifact’s content during the development.

While editors provide the Dispatcher with Notification Events, artifacts register their
interests for particular modeling events at the Dispatcher. Based on this, the dispatcher
analyzes received messages with regard to registered observers and their interests, be-
fore it distributes the editor events to interested observers, i.e., artifacts. This interaction
between observer, dispatcher, and editors is illustrated in Figure 5.4 and works as follows:

1. If a workflow continues and switches from a Task, to a subsequent T'ask, 1, a
former subscription for interests of arti fact observer, becomes obsolete. Therefore,
arti fact observer, unregisters all of its interests by calling the respective Dispatcher
method. The figure outlines it in 1. (Note, that this first step is not required, if no
preceding task is defined, e.g., at the beginning of the development process.)

2. Before T'ask,, 1 is performed by an user using an associated editor, all context infor-
mation of the corresponding MC must be made available to the dispatcher. There-
fore, the output artifacts (artifact observer, 1) of Task, 1 are queried for associ-
ated MMVs. To realize this, the function M MV of Artifact(artifact observery1)
results in S |, i.e., the associated MMV of artifact observer, 1.

ViewConcepts(S |y) is subsequently used to extract a list of contained view con-
cepts ¢y - - - ¢, which are assigned with particular EUSA values, as discussed in
Section 4.5. For the resulting concepts the artifact registers an EUSA-specific inter-
est by calling the dispatcher’s function

registerObserver(c;, get EUS AFromConcept(c,, mc, S |y), artifact observer, 1)
(with z € 1..n), as outlined in the figure at 2. After all concepts (c; - - - ¢,) are reg-
istered, the dispatcher is provided with all interests of arti fact observery 1, which
enables the dispatcher to assign performed editing events with the corresponding
artifact. Therefore, for each relevant artifact observer, the dispatcher stores the nec-
essary interests in a look-up-table.

3. The third step in the scenario, is the subject’s notification from the editor. Therefore,
an editor uses the notifySubject method of the dispatcher and passes information
about an affected model element (i.e., its unique instance identifier and its instance
type name) and the executed action (i.e., read, modify, delete, or create). (Note,
that for generated editors (cf. Section 5.3), we can simply integrate this notification
functionality during the generation phase. For other COTS editors, we must extend
the editor’s functionality manually).

4. The dispatcher is aware of the currently performed MC and associated context in-
formation. By querying the look-up-table of interests for a notified element type,
the dispatcher is enabled to decide, which observer gets informed about a notified
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modeling event. As a result, in step 4, the observer notifies all artifacts according
to their interests, as registered in step 2. However, there are additional challenges
influencing the association of modeling events to an artifact’s history, as discussed
in the following section.

5.4.2 Artifact Element Assignment Strategies

Basically, an MMV’s concept, for which an artifact indicates an interest at the dispatcher,
corresponds to the data type of an element processed by an editor. Therefore, the as-
signment of notifications is based on matching the DataType of an editor’s notification
message with registered interests. Based on the matching, the assigned notifications set
up an artifact-specific history of modeling events. However, to realize this, the following
assumptions must be ensured:

e All artifacts must be uniquely distinguished from other artifacts. Otherwise, it
is not possible to assign an element to an artifact unambiguously and to retrieve
artifact-specific information for further analyses. This property can be fulfilled by
unique artifact names.

e Each model element must provide an unique identifier, by which it is related to an
artifact’s identifier.

e All MMVs connected with output artifacts of the same MC, must be disjoint re-
garding their contained meta model elements. (Input artifacts do not influence this
property.) Otherwise, if there is more than one output artifact referencing the same
meta model element, we are not able to assign an instance of that element unam-
biguously.

However, since some model elements are relevant to different artifacts, elements can
not be assigned to an artifact exclusively. To face that challenge and the obstacles, which
were discussed in Section 4.4.3, we define strategies for a clear assignment of elements
to artifacts. In addition to the assumptions made above, the strategies depend on three
criteria:

e the MMV concept, i.e., the meta model class, which defines the type of model ele-
ments, which have to be assigned. This is the element type, for which the artifact
registers an interest. By default, as input information are read-only, the output arti-
facts of a currently performed MC register their interests exclusively. However, the
interests can be adapted to elements of an individual input artifact using the FromTo
relationship.

e the FromTo information, as described in Section 4.4.3. Using the FromTo relationship
allows to relate a concept of an MC’s output artifact with an equally typed concept
of an input artifact (equally means, that the two MMV concepts refer to the same
meta model class). As a result, an output artifact indicates an exclusive interest for
notifications, which concern the data elements of the related input artifact. Relating
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Figure 5.4: Artifact Observation

artifacts using a FromTo relationship means, that (in addition to newly created ele-
ments) only those notifications are relevant for the output artifact, which concern
the elements already assigned with the input artifact. In parallel, this causes a syn-
chronization need between the output artifact and the related input artifact, i.e., the
output artifact and the input artifact register an equal interest.

e the ELISA, which is annotated with the artifact’s concept to specify the editor com-
mand an artifact observer is interested in. However, there is one exception, if a
concept’s EUSA is read-only, while one of its features is modifiable. The feature’s
EUSA applies to the superior concept, since the modification of a single feature
affects the overall object.

We distinguish strategies for the initialization phase of an MC, i.e., when a context
switches from a task,, to task, 1, from strategies, which are applied during the perfor-
mance of an MC. For both phases, we further distinguish two scenarios: While the first
scenario refers to a defined FromTo relationship between an element of an MC’s input and
an output artifact, the second scenario addresses unrelated output artifacts. Both phases
are detailed and respective strategies are explained in the following. We start with the
initialization phase, whose strategies are summarized in Table 5.1.

Some model elements belong to an artifact regardless whether or not they are mod-
ified or created during an MC. They are part of an artifact, as they provide the artifact
with contextual or structural information, which can not be derived from performed ed-
itor commands only. For example, if the scope of an MC is to refine elements, which
are provided by an input artifact, not only the elements, which are modified during the
MC, may belong to the output artifact, but the complete set of potentially modifiable el-
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Output Type FromTo EUSA | Assignment @ Initialization
1 | mmv:concept::x | from :: input, | read only the elements from input,
typed with mmv:concept::x
2 | mmv:concept:x | from ::input, | create only the elements from input,
typed with mmv:concept::x
3 | mmv:concept:x | from ::input, | modify | only the elements from input,
typed with mmv:concept::x

4 | mmv:concept:x | - read all available elements
typed with mmv:concept::x
5 | mmv:concept::x | - create | all available elements

typed with mmv:concept::x
6 | mmv:concept:x | - modify | all available elements
typed with mmv:concept::x

Table 5.1: Artifact Element Assignment Strategies @ MC’s Initialization

ements. Thus, if a workflow continues and the context switches from one MC to the next
one, some preparing steps are required in order to assign individual elements of an input
artifact to the respective output artifacts. This is realized before any notification is sent
from an editor to the dispatcher.

The required assignments depend on the information specified for respective MCs
during the design phase (cf. chapter 4). In particular, it depends on the optional FromTo
relationship between an input and an output artifact, and the EUSA attribute of MMV
concepts. To demonstrate the strategy, we discuss the two scenarios with regard to a
specific EUSA:

1. For the first scenario, an output artifact, i.e., one of its associated concepts typed
with, e.g., mmuv:concept::x, is related to an input artifact input, via the FromTo rela-
tionship. As a result, since the output refers to elements of the related input artifact
exclusively, all elements of input, typed with mmuv:concept::x belong to the refer-
encing output artifact regardless of the annotated EUSA. This is summarized in
Table 5.1 (row 1-3).

2. In the second scenario, the output artifact, i.e., one of its associated concepts typed
with mmu:concept::x, does not define a relationship to a particular input artifact. This
implies, that all available model elements typed with mmuv:concept::x are assigned
with the output artifact. This is summarized in Table 5.1 (row 4-6).

After existing objects are assigned correspondingly, we detail the strategies for the
assignment of notifications caused by performed modeling events, i.e., when an MC is
performed and the dispatcher gets notifications from an editor. This is summarized in
Table 5.2:

If a developer performs an MC to produce an intended output, data or model ele-
ments are changed using a method-specific editor. Existing elements are modified or
deleted, while new ones are created and modified. This changes the content of an indi-
vidual artifact and has to be assigned accordingly. Therefore, an artifact observer has to
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Output Type FromTo EUSA | Interested Assignment Events

X

1 | mmv:concept::x | from :: input, | read cf. initialization

2 | mmv:concept:x | from ::input, | create | the input artifact input, and the
output artifact indicate interests

for the creation & modification of
elements typed with mmv:concept::x,
which belong to the output artifact

X

3 | mmv:concept:x | from ::input, | modify | the input artifact input, and the
output artifact indicate interests
for the modification of elements
typed with mmv:concept::x, which
belong to the output artifact

4 | mmv:concept:x | - read cf. initialization

e
1

5 | mmv:concept: create creation & modification of elements
typed with mmv:concept::x

6 | mmv:concept:x | - modify | modification of elements
typed with mmv:concept::x

Table 5.2: Artifact Element Assignment Strategies @ Runtime

register additional interest, as discussed in the follwoing.

1. For the first scenario, the assignment depends on the FromTo relationship and the

EUSA of an output artifact’s concept typed with, e.g., mmuv:concept::x. Read-only el-
ements by default must not be modified or created during the performance of an
MC. Therefore, no editor command is expected to be assigned at runtime, and the
only relevant elements are assigned during the initialization phase of the MC.
Elements, whose data type or concept is annotated with EUSA modify, are modifi-
able. During the initialization phase, relevant elements of an input artifact (input,)
were assigned with the output artifact according to the FromTo relationship. At
runtime, no new elements must be assigned, but modifying notifications concern-
ing elements of typed with mmuv:concept::x are assigned exclusively, i.e., only input
artifact elements referenced by the FromTo relationship are relevant for the assign-
ment. As modified elements belong to both artifacts, i.e., the input artifact and the
output artifact, they are notified about modification events by registering a respec-
tive interest, in parallel.
In contrast, elements, whose concept is annotated with the EUSA create, can be cre-
ated and modified. Due to the FromTo relationship, the notifications concern both
elements, i.e., existing elements of the input artifact and newly created elements,
and must be assigned with the input and the output artifact by registering a respec-
tive interest. This is summarized in Table 5.2 (row 1-3).

2. In the second scenario, no FromTo relationship is defined between the concepts of an
output and an input artifact. That means, elements of an artifact are not restricted
to the elements of an input artifact. Instead, depending on a concept’s EUSA, a re-
spective output artifact indicates interests for all elements of a particular data type
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of the corresponding MMV concept, in general.

For read-only elements, only the initialization phase is significant, i.e., no interests
are registered, since no editor commands are expected. If an element is annotated
with create, the creation of such elements and the modification of accordingly typed
elements are relevant for the assignment. Therefore, an output artifact registers
two interests. One for modification events on elements typed with the concept data
type, and another one for creation of respectively typed elements.

For concepts annotated with the EUSA modify, the output artifact registers an inter-
est concerning the modification respectively typed output elements. This is sum-
marized in Table 5.2 (row 4-6).

We discussed, for which modeling event an artifact may indicate an interest depend-
ing on particular MC information. If a notification is assigned with an artifact, the af-
fected element belongs to that artifact implicitly. This information subsequently can be
used to identify the concrete content of an artifact, e.g., for artifact-specific evaluation
of a guideline. Additionally, the above strategies enable us to monitor method-specific
artifact changes and the usage of contained elements. Thus, we monitor the context of
an element’s reading, modification, or creation. These information can subsequently be
analyzed to derive the impact of particular events on distinct artifacts and workflows,
and to possibly take proper actions.

5.5 Situational Model Validation - Guideline Application

Common CAx Tools support developers in providing mechanisms to define customized
constraints to validate their models or other development artifacts. However, all these
tools manage one global set of constraints to validate particular data formats without
considering any relationship between method-specific guidelines on associated artifacts.

In contrast to a global set of constraints, local validation applies an appropriate set of
guidelines/constraints, i.e., individual constraints are only applied in a context of rele-
vant methods and their associated data (artifacts). This results in miscellaneous advan-
tages:

Enhanced guideline management: While general constraints are managed within a
global set, they are normally difficult to adapt. Therefore, we propose to connect guide-
lines directly with the affected method in the process model. Thus, adoptions can be
made local for specific methods or sections of the overall process. As guidelines are spe-
cific to some process part, the number of guidelines, which are required to a specific
process period, can be reduced to a manageable and minimum set.

Advanced compliance & traceability capabilities: By applying particular guidelines
at specific points of a managed development process, the accomplishment of required
tasks and associated rules can be ensured more effectively. For example, if mandatory
constraints are ensured before continuing the process, negative or inconsistent states of a
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product can demonstrably be prevented. Additionally, if constraints are associated with
the particular steps of a development process, the traceability of individual product states
and sources of errors can be identified.

Automated constraint (re-)generation: Although, developers are capable to define
constraints using languages, such as Java, OCL or EVL, the produced code is often dif-
ficult to read or hard to manage. Thus, adapting constraints afterwards can be a time-
consuming task. Based on the more comprehensible constraint design, which we de-
scribed in Section 4.6, code can be generated for a specific target language. As the graph-
ical constraint abstraction is more understandable, also the model can be adapted more
simple to re-generate constraint code and to save time.

Contextual validation: Current practices using global constraints do not consider, that
in certain situations particular constraints are more reasonable than in other ones. The
result of a constraint can provide information, which is not necessary for the moment
when it is evaluated. For example, if a function designer aims at evaluating a design
architecture composed of different functions he is working on, he would be interested in a
validation of functions he is responsible for. However, if there is a context-free constraint,
which implicitly requires the role of a timing analyst to associate functions with timing
information, this constraint is also validated and results in an error provided to the role
of the function designer. Thus, if constraints are context-specific, it not only reduces the
number of constraints to be checked, i.e., it saves processing power and memory, but it
enhances the result of the respective validation and makes it more usable for developers’
situation.

Such local constraints perfectly match with guidelines and statements of MCs, which
were introduced in Section 4.6. Therefore, in Section 5.5.1, we define a translational se-
mantics using the semantics of OCL to evaluate modeled graphical statements. Based on
this, the interpretation (Section 5.5.2) and the effects (Section 5.5.3) of a guideline evalua-
tion in the context of an MC is described.

5.5.1 Guideline Realization

In Section 4.6, we introduced a graphical notation for the definition of statements and
complex guidelines. A guideline is a directed graph or control-flow, which consists of
statement, action and control nodes. Statement nodes represent a constraint, which is
evaluated to ensure individual properties of an MUD. To interpret and to evaluate mod-
eled statements, a concrete statements semantics is required. To formally define the se-
mantics, we adopt a translational definition of the statement. In a nutshell, since the
statement syntax corresponds with a subset of the syntax of well-known constraint lan-
guages, such as OCL or EVL, we are enabled to follow a statement’s navigation paths and
transform edges and visited nodes into the respective semantics of the target language.
In the following, we first detail required basic concepts of OCL’s abstract syntax. After-
wards, we define the translational semantics of statements using the example of OCL.
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5.5.1.1 The Object Constraint Language

As basis for the translational semantics for statements, we first introduce relevant con-
cepts of the abstract syntax of OCL. OCL specifies different expression types, whereof
various complex constraints are combined to evaluate individual model characteristics.
Basically, OCL defines a set of primitive types as depicted in Figure 5.5 and more spe-
cific OCL expressions to represent types <ITypeExp>, variables <VariableExp>, Literals
<LiteralExp>, and expressions, such as <FeatureCallExp> and <LoopExp>, to evaluate
model characteristics or to address individual model elements. The basic structure of
OCL expressions is illustrated in Figure 5.6, that also depicts expression types, such as
<IfExp>, <MessageExp>, and <StateExp>, which can be neglected in the following.

By the means of OCL’s call expression <CallExp>, the particular features of a model
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OrderedSetType SequenceType | | BagType SetType

Figure 5.5: Abstract Syntax Kernel Meta Model for OCL Types from [OMG06a]

element can be addressed. Therefore, a source property is an <OCLExpression>, that
represents the context element on which the <CallExp> is evaluated. On the other other
side, a target <OCLExpression> specifies a constraint, which has to be evaluated for the
source element, or a feature, i.e., attribute or association addressed by the source expres-
sion. To relate source and target, the <CallExp> expression provides some of operation,
which depends on the concrete realization:

While a <LoopExp> iterates on a set of objects to evaluate multiple objects of com-
posite relations inside of meta models, a <FeatureCallExp> refers to features of a meta
model element and enables to call a respective property to provide its value for further
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processing. <FeatureCallExp> either are <PropertyCall> expressions to extract a specific
feature of a meta model class, i.e., association or attribute, or <OperationCall> expres-
sions to relate the result of a source expression with another expressions’ result using one
of the predefined operations, such as =, <>, first, +, -. To call attribute or association fea-
tures of a meta model class, a <PropertyCall> expression is used in the context of a meta
model class, that targets the respective feature. For <LoopExp> expressions, the source
is defined as a <PropertyCall> expression, that calls the association property of a meta
model element to provide the set of relevant objects.

TypedElement
+body _'_
1 = QOclExpression | - +initExpression
0.1 -~ 0.1
+source
+appliedElement
0.1 0
CallExp LiteralExp IfExp VariableExp | | TypeExp | | MessageExp StateExp
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Figure 5.6: The basic structure of the abstract syntax kernel metamodel for Expressions
from [OMGO06a]

An <LoopExp> iterates over a set of objects and consist of four parts: The source,
which is starting point to identify the relevant object set, some iterator variables to address
objects from the set, an iteration type, such as forAll, exists, select, or collect, to determine
the way objects should be processed and a body expression. The body (target) uses it-
erator variables to express conditions or to define more complex expressions using the
iterator variable as context element or source for a nested OCL expression.

To demonstrate OCLs” abstract syntax, we use the example meta model, which is de-
picted in Figure 5.7: A system model element aggregates an architecture element, which
aggregates some characterized components. To express, that all components inside the ar-
chitecture of a system must provide a characteristic property, whose value is greater than 0,
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the following OCL statement is defined:

sel f.arch.components—> for All(vl|vl.charateristics.value > 0). For this statement, Fig-
ure 5.8 depicts an abstract syntax tree to exemplify the composition of OCL expressions
and the correlation of a source expression with its target expression.

The main expression, i.e., root node, is an iterator expression to iterate all the compo-
nents within the architecture of a system. To address a specific component, the expression de-
fines an iterator variable, which is not depicted. The iterator is split into a source part and
a target part, which is called body here. While the source part <self.arch.components>
determines the actual context with the meta model as start for the encompassing itera-
tor expression, i.e., it determines the set of components over which the expression has to
iterate, the body expression < vl.characteristics.value > 0 > represents the condition
part, which hast to be applied for each component during the iteration. The same prin-
ciple is applied for a PropertyCall expressions, as shown in the upper left part, i.e., the
source of the iterator expression. The expression defines a source, i.e., the context of the
called property, which is a system’s architecture. To get all components of that architecture
the target expression, i.e., the referred property, calls the association property components
of the architecture class.

A similar principle is applied to graphical constraint design, where we use concept
nodes and navigation edges to navigate within a meta model to identify instances of a
particular object by using the instance transition and instance nodes. For each instance,
constraints can be defined which represent the target of the encompassing OCL expres-
sion. Thus, as the structures of the OCL expressions and graphical constraints are very
similar, we can use it to define a translational semantics, as detailed in the following.

5.5.1.2 Guideline Semantics

To formalize a translational semantics for graphical constraints in the form of statements,
as discussed in Section 4.6, we use an inductive way. We start with some simple basic
structures, whereof more complex structures can be composed of. The complete defini-
tion of the translational semantics is given in appendix B, where we used QVT to trans-
form a statement model into OCL’s abstract syntax.

Basically, there are two types of nodes: concept nodes and instance nodes. The first
node type serves as context element to identify an object of a specific type to reference its
features. The second node type is needed to address and also distinguish individual in-
stances of an respective class. Which instance refers to which class is determined by the
instance-transition, that relates a concept with various instances, for which constraints
can be defined.

Individual constraints either refer to an attribute or an association feature. Attribute
features are contained in an instance node to constraint the attribute value of a particular
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instance. Association features are represented by a navigation edge between an instance
node and a navigation node to address an associated class.

The set of features which is allowed for a particular instance node is determined by the
meta model, which forms the basis of a statement. To establish the link between statement
elements and particular meta model elements, all nodes, attributes, and edges, except the
instance relation, are annotated with a respective meta model element. The information
is used during design phase to avoid constraints, which are not conform with the meta
model. During the transformation phase, it provides meta model-specific type informa-
tion about classes and their features.

Instance ldentification

Statement Node

instance a

| A <instance>
Class —

Figure 5.9: Instance Identification

The simplest case is shown in figure 5.9. To address an instance of a class, we use
the NavigationNode (rounded rectangle) to identify the context of the statement and the
InstanceNode (cornered rectangle) to identify the instance. In Figure 5.9, the variable
instance a is identified as instance of C'lass A, which is referenced by the NavigationNode.
The figure also depicts the root or start node, which is characterized by no ingoing edges.
The root node is the entry point for each transformation.

Attribute Expressions

§Statement Node

instance a
attribute;
attribute,
attribute,,;

Figure 5.10: Attribute Property Calls

After an instances was identified, its attribute features can be called as prescribed
by the underlying meta model. This is depicted in figure 5.10, where an instance vari-
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able instance a refers to attribute;..attribute,;1. For each feature, the PropertyCallExp
is used in the context of the source variable instance a to address the attribute target,
ie., a.attribute;.. a.attribute, 1. The context, which is provided by that new expression,
is a specific attribute feature, which can be used as source variable for another expres-
sion. For example, knowing that context, we can further process the condition, which is
associated with attributes of an instance node.

Conditions either can be relational operators for String or Integer attributes, such as
<, <=,>,>=,==, <>, or an operation, which matches String attributes with a regular
expression. In either case, an OperationCall expression is applied. The source of that
expression is the attribute context, e.g., a.attribute,, and the argument of that expres-
sion is the value, which was specified as reference for the respective attribute. Finally,
the operator is set as referredOperation of the OperationCall expression, as specified
by the AttributeProperty. All modeled attribute properties result in multiple expressions
a.attribute; <operation> value....a.attribute,; <operation> value, which afterwards are
combined by using an OperationCall expression and the Boolean operator <and>. This
results in an expression
A := (a.attribute; <operation> value;) <and>....<and> (a.attr, 1 <operation> value, 1)

Association Expressions |

Statement Node

instance b
b <instance>
-~ _——— o
instance a ss0c2U== Class B > attribute,,
attribute .
attribute,
attribute . . instance c
<instance>
Class C —— P attribute,

attribute .,

Figure 5.11: Association Property Calls

Beside the definition of attribute features, also association features are defined us-

ing the AssociationTransition of the guideline meta model, as depicted in figure 5.11. The
handling of association features is different from handling attribute properties, as the re-
sulting expression depends on the multiplicity of the associated objects. In particular, a
multiplicity greater than 1 requires to set an appropriate iterator function, such as forAll,
exists, or collect, which defines the mechanism by which the resulting set of associated
objects must be processed.
For each outgoing association feature, i.e., association_a_to_b and association_a_to_c,
which relates an instance with an associated class (NavigationNode), we apply the Proper-
tyCall expression using instance a as source to call its association feature as target. Similar
to attributes, we get the following PropertyCall expressions:
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a.association_a_to_b....a.association_a_to_c. As a result, we get a new context, which
is represented by the respective NavigationNodes, i.e., ClassB and ClassC. To express a
constraint for a specific instance of that class, the instance transition allows us to address
a particular instance and to make statements for the features of that instance. For exam-
ple, if the class, which is referred by association_a_to_b in the guideline defines attribute
features, e.g., attribute,,....attribute,, ., a PropertyCall expression can be generated to call
that property. This results in multiple expressions, which are combined via the Boolean
operator <and> in an OperationCall expression

B := (a.association_a_to_b.attribute,, < operation > value,,) <and>
(a.association_a_to_b.attribute,, +, < operation > valuen, 1)

Association Expressions Il

Statement Node

instance b,
<instance>
_ Class B il attribute,,
instance a D .
7\ attribute .
. AN
attribute, N\ | instance b,
attribute . 4
attribute,,

attribute .

instance ¢

<instance>

Class C attributey

attribute .

Figure 5.12: Iterator expressions

The more complicated case refers to association properties with a multiplicity greater
than 1, as they are implemented as Collection type in contrast to the above demonstrated
single object semantics, which is implemented as field. This is illustrated in figure 5.12.
The collection or set semantics of such associations implies, that all contained elements
must be processed. To iterate over a set of objects, OCL provides an iterator expression,
which allows different iteration modes <iterMode>, as defined with the respective Associ-
ationTransition of a statement. Basically, all OCL-specific iteration modes, such as forAll,
exists, select, collect, or include, can be supported for collection-based associations, like-
wise.

As said earlier in this section, collection-based navigation associations must be han-
dled differently from the case of single referenced objects. After a PropertyCall expres-
sion switches the context from an instance a to an associated collection of objects, i.e.,
association_a_to_b, we cannot refer to features of one of its instances directly. Instead,
we create an iterator expression for the navigation edge, whose source will be the actual
context, e.g., a.association_a_to_b, and the iteration mode is set as specified by the navi-
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gating association. By now, we have the following statement to identify the collection of
objects and the iteration mode: a.association_a_to_b < iterMode >

As navigating associations reference the object type of the collection, concrete instances
of the collection are addressed via the instanceTransition. Each instance, which is re-
lated with the same navigation node becomes a free variable in the context of an itera-
tor expression. One iterator expression is created for each outgoing AssociationTransition
association_a_to_b....association_a_to_c, whose upper bound is greater than 1. After pro-
cessing all instance variables of one NavigationNode, e.g., ClassB, we get the following
expressions, which still miss the body expression to detail the statements for a specific
iterator variable: a.association_a_to_b < iter Mode > (b1, bal).

The end of an AssociationTransition represents the new context, wherein instances
can be addressed to define the body of the iterator expression, i.e., to define statements
for the selected instance. Instance variables provide attribute and association features,
which are handled as described above. In contrast, the context from which features are
called has switched from the initial context a to the respective iterator variables b; and
by to create the body expressions body_expression_by and body_expression_by for each
instance. The resulting body expressions are combined in the respective navigation node
a.association_a_to_b using the OperationCall expression and the Boolean operator <OR>
to create the final set of body expressions
C' := a.association_a_to_b < iter Mode > (by, b2|
body_expression_b; <OR> body_expression_bs)

This kind of OCL expression directly corresponds with navigation associations, which
are typed with an iteration mode, such as exists, forAll, collect, reject, and select.
For other modes, which refer to the semantics of navigation edges, such as includes,
inlucdesAll, isEmpty, not Empty, or size, slightly different strategies were applied.

‘ <source;> ‘ <iteration_mode;> ‘ (‘ <vars;> ‘ | ‘ <body;> ‘ )‘
‘ <source,> ‘ <iteration_mode,> ‘ (‘ <vars;> ‘ | ‘ <body,> ‘ )‘
‘ <sourcep> ‘ <iteration_mode,> ‘ (‘ <vars,> ‘ | ‘ <body,> ‘ )‘
Prenex
‘ <source;> ‘ <iteration_mode;> ‘(‘ <vars;> ‘ | ‘
‘ <source,> ‘ <iteration_mode,> ‘(‘ <vars,> ‘ | ‘
‘ <source,> | <iteration_mode,> ‘ (‘ <vars,> ‘ | ‘

<body;> ‘ <AND> ‘ <body,> ‘ <AND> ‘ <body,> ‘ )‘ )‘ )‘

Figure 5.13: Conversion to prenex normal form
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Multiple navigation transitions starting from the same instance node result in differ-
ent iterator expressions. The resulting iterator expressions are combined by converting
all iterator expression to prenex form, as exemplified in Figure 5.13. If we have n itera-
tor expressions, all source- and variable-related parts are nested in one single hierarchic
iterator expression, where we recursively define the body of an iterator expression as the
subsequent iterator expression. In parallel, we gather all bodies of each single iterator ex-
pression and combine them with the Boolean operator <and>. The resulting OperationCall
expression is used as body expression for the innermost nested iterator expression. The
result is an expression D:=
a.association_a_to_b < iterMode > (b1, bsl(---)a.association_a_to_c < iterMode >
(c|body_expression_by <and> body_expression_b. < and > body_expression_c))

That way, all variables are bound before one of the body expressions is evaluated, so
that each body expression refers to all relevant variables, which are needed for crossing
attribute relations, as described in the following.

After we processed all properties, we combine all properties of the same instance node
by using the Boolean operator <and> and get an OperationCall expression E := A <and>
B <and> D.

Crossing Attribute Relations

Statement Node
. instance b
v <instance>
g %0 I ]
instance a souetion= Class B > attribute,,
attribute .y
attribute, \l/ Relation
attribute . . instance ¢
<instance>
Class € —— M attribute,
attribute .

Figure 5.14: Crossing attribute relations

A crossing attribute relation, as depicted in Figure 5.14, is special to the handling of
attribute properties. The blue arrow (Relation), which connects the instance of instance b
with the instance c relates the two variables attribute,, and attribute, by some comparing
operation relx, i.e., attribute,, <rel,,> attributey. It expresses a statement, whose first
part, the source, depends on the context, which is determined by association_a_to_b and
a second part, the target, which depends on another navigation path association_a_to_c.
During the transformation, either association_a_to_b or association_a_to_c are processed
at first. In both cases, the context of the source instance node is different from the con-
text of the referred instance node. However, as only the context of the source node is
known, we cannot create an expression from the information provided with the target
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node directly. Instead, after the source node and its known context is used to create the
source expression to call attribute,,, the referred property attribute_k must be called, as
described in the following and related by an OperationCall expression using the respective
operator.

As stated before, the prenex form, which is created to combine various iterator ex-
pressions, allows us to evaluate one encompassing body expression, for which all free
variables are bound. As a result, we may assume that all instance nodes, i.e., variables,
can be used for the OperationCall expression without modification.

In contrast, if the related target instance is not part of an iterator expression, we must
derive its context by backtracking the guideline graph to a node, that represents the con-
text for this node. We do this by iteratively tracing backward all ingoing navigation and
instance transitions, until we reach the root node. Thereby, we use the instance variable
as starting node to derive the context from all visited nodes and association properties
in reversed order. This backtracking can be done deterministically, since all nodes must
have at most one ingoing navigation or instance edge.

5.5.2 Guideline Application

Guideline application faces the process-oriented facet, as discussed in Section 4.6.1.2, to
control the procedural and temporal interpretation of a guideline. The application must
clarify the point in time when a guideline is evaluated and, in particular, how guidelines,
which are composed of several statements, are interpreted to achieve an expected result.
There are two strategies to initiate the evaluation of guidelines: During the execution of
a method to validate each design step, or before/after the method starts/ends.

The first strategy has several drawbacks, as it provides an overhead of information all
the time and hinders creative work through too much intervention from the framework.
As the second strategy is less invasive and as the finalization of one method implies the
start of a subsequent method, our approach is based on the guideline evaluation after a
method is finalized, i.e., validation can be initiated by developers actively, after complet-
ing the task of a method.

After a developer has finalized a method, the set of guidelines, which is associated
with the actual method, is used to ensure defined statements and the correct state of
associated development artifacts. Therefore, all guidelines are interpreted, as discussed
in the following.

In a nutshell, nodes and edges of the guideline, cf. Figure 4.11, are interpreted by us-
ing tokens similar to petri nets [Pet81]. The directed edges of a guideline transport tokens
and evaluation results from a source node to a target node. Whether a node sends tokens
to outgoing edges depends on the individual nodes” semantics and available tokens re-
ceived from ingoing edges.

There are three types of nodes: statement nodes, action nodes, and control nodes. Each
node type waits to receive one token from each of the ingoing edges. If a node has re-
ceived all tokens, the node executes an associated task. After a node has completed the
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task, the node sends exactly one token to each of its outgoing edge to trigger a subse-
quent node and to proceed the guideline workflow. As described in Section 4.6, only
control nodes may have more than one ingoing or outgoing edge, i.e., statement and ac-
tion nodes are activated as soon as a token arrives.

5.5.2.1 Statement Nodes

If a statement node receives a token, the contained statement is evaluated in the context
of the actual method. First, a query is created to select relevant model elements from the
underlying artifact model. As the statement defines a root element, all elements with the
respective type of the root element are queried. For our purpose, we use EMF Query
as framework to query the model for specific elements. Afterwards, the received set of
objects may be further restricted to evaluate only elements, which are relevant to output
artifacts of the actual processed method. This step is necessary, as individual model
objects may belong to different artifacts even if they have the same type. In Section 5.4,
we discussed, that this restriction is enabled through an observer mechanisms, which
monitors modeling actions and assigns them with a respective artifact.

Afterwards, the restricted set of artifact-specific model elements is evaluated by the
statement using an interpreter, which corresponds to the defined translational statement
semantics, e.g., OCL. The result of the evaluation is a Boolean value or a set of objects,
which fulfill the respective statement. For further processing and to combine the results
with other results of other statements of the guideline, this result together with a token
is passed to the subsequent node, to activate the next node whose execution depends on
the previous result.

5.5.2.2 Action Nodes

If an action node receives a token, the associated behavior is started. As said earlier,
possible actions are to provide messages to the developers, to provide situational access
to supporting documentation, or to call program code to modify or rectify the artifact/
model.

All actions depend on the received input. For Boolean values, a message informs devel-
opers if an artifact is in a particular state or not. For a set of objects, the message action
can provide more detailed information about affected objects within the artifact.

A Boolean value reaching the action node may initiate some code fragments to modify
the underlying artifact or not. For an ingoing set of objects, the snippet which is de-
posited for the action node may modify all contained objects.

In either case, i.e., Boolean or Collection-based inputs, an action which provides addi-
tional information in form of documents is called in exact the same manner.

After the action was executed a token together with the initial input parameter is send
via the outgoing edge.
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5.5.2.3 Control Nodes

As control nodes can have more than one ingoing or outgoing edge, their main task is
to aggregate or combine parameters and to synchronize and control the workflow of a
guideline. An initial node has no ingoing edges, thus, it provides an empty parameter set
and starts the workflow interpretation by sending a start token to its predecessor node.
In contrast, a final node has no outgoing edges and only waits for a token to indicate the
end of interpretation.

The AND node has one ingoing edge and multiple outgoing edges. The node passes
an ingoing token and the associated parameter through to all of its outgoing edges to
activate multiple parallel paths. These parallel paths must be synchronized by using the
JOIN node, which allows multiple ingoing edges, but only one outgoing edge. Thereby,
the JOIN node aggregates ingoing parameters with the Boolean operator AND for Boolean
values and with a union operation for multiple collections. The guideline designer has
to ensure, that all ingoing results are compatible. Afterwards, the JOIN node sends one
token together with the aggregated result.

OR and MERGE nodes are inverse to AND and JOIN nodes. An OR node allows
one ingoing edge and multiple conditional outgoing edges. Therefore, the conditional
attribute property of a GLEdge is relevant. For each GLEdge one of the binary values
SUCCESS or FAILURE canbe set. An OR node propagates an input parameter, which
either is an ingoing non-empty collection or a true-valued parameter to all outgoing
edges whose condition attribute is set to SUCCESS. For a parameter whose value is
false and for an empty collection, the OR node propagates all outgoing edges whose
condition is Failure.

The MERGE node is a counterpart of the OR Node to synchronize the parallel se-
quences, which were initiated by an OR node. Therefore, a merge node has multiple
ingoing edges and one outgoing edge to propagate a result, which is aggregated from in-
put parameters. To aggregate ingoing parameters, a merge node provides an additional
attribute. The min attribute defines the minimal number of ingoing edges, which must
provide a token to activate the task of the MERGE node. By default its value is 1. How-
ever, if there is more than one ingoing parameter the OR node combines them by using
the Boolean operation OR for Boolean values and the intersection operation for collec-
tions. Again, the guideline designer has to ensure that ingoing types are compatible.

5.5.3 Guideline Effects

During the guideline interpretation, all executed action nodes produce an entry for a val-
idation report to inform developers about critical and questionable states and to provide
an additional means to consider the effect-oriented facet, which we introduced in Sec-
tion 4.6.1.3. The validation report is based on the meta model, which is depicted in figure
5.15. One general report is used during the development process to gather information,
warnings, and critical errors, which were identified during the evaluation of a guideline.
Whether a specific action node provides an information, a warning, or an error, depends
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Figure 5.15: Validation Report

on the priority attribute, which is associated with each action node.

As a result, a detailed report is generated for developers at work to provide recom-
mendations to enhance or even rectify a produced artifact. Furthermore, as the overall
report is created and detailed continuously, information is evaluated to improve the pro-
cess, after the project has been finished. That way, e.g., repeated design errors or other
problems can be identified and avoided through selective trainings.

5.6 Engineering Process Coordination

Former sections detailed the technical design of process models and constituent MCs, as
well as, the interpretation of MCs on operational level. However, to coordinate the pro-
cess and to guide developers efficiently, an execution semantics must be defined in order
to organize the runtime behavior of modeled processes. In [PGR99], they say, that “pro-
cess coordination is not process control. Rather than a process being tightly or centrally
controlled, process coordination allows individual agents to make good decisions and be
notified of changes. Process coordination is more than simple workflow management,
that determines to whom the document should be next routed. Process coordination is
the runtime determination of who should be notified of what effect of the last change
in the project.” Therefore, general business processes are realized by a workflow man-
agement system, which determines the assignment of process activities or documents to
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individuals or a group in the predefined order. The system uses, e.g., a directed graph
of a process models, to follow the edges of that graph to get from one node representing
an activity to another one. In either case, the system starts at an initial state and follows
restricted set of alternative paths to reach a final state.

While this behavior perfectly meets the needs of general business processes, such as a
flight reservation or a purchase order, this semantics is too restrictive for creative devel-
opment processes. As the control-flow of development processes is influenced by strict
dependencies between activities and the outcome of individual activities likewise, gen-
eral execution semantics does not fit development processes. In particular, an execution
semantics for a more flexible process management faces challenges, as discussed in the
following.

Basically, we can not assume, that when software is developed all activities are per-
formed at 100% in a first attempt. Such a material order, indeed, corresponds with most
of today’s process documentations, but it does not describe real chronological order of
a performed process and its constituent parts. We name this the deviation of material and
chronlogical orders. Generally, this results from the fact, that based on the current project
situation, i.e., the status of individual artifacts, decisions, which influence the control-
flow, must be made. The deviation mainly is influenced by the following development
paradigms:

e Iterative Development: For development processes, it is difficult to decide automat-
ically, whether or not a sub-workflow has to be repeated. At process design time,
there are no criteria to express such conditions in general. Therefore, it must be
possible to simply influence the workflow behavior at runtime, which induces a
control-flow deviation.

e Incremental Development: Especially, software is developed incrementally to refine
software and intermediate work products stepwise, i.e., work products are modi-
fied, which induces control-flow deviation.

o Interactive Outcomes: The produced output of a method influences other artifacts
and methods. Especially, the modification of information, which is consumed at
various phases of a development process, induces the interactivity of artifacts, i.e.,
the modification of an artifact influences the information content of related artifacts
and induces control-flow deviation.

In summary, development processes must consider data, which change during the
process, more than general business processes. Such information can not be modeled at
process design time. Instead, in order to ensure the quality and consistency of artifacts
as well, we must provide possibilities to monitor and to analyze the data processing at
runtime.

To enable the flexible control of a development process, which overcomes the above
challenges, we combine general control-flow semantics of a procedural PDL with a rule-
based coordination mechanism. Therefore, we provide a mechanism, which analyzes
monitored design information to cause a relevant set of predefined control-flow strate-
gies. In our approach, different strategies are used to identify inconsistencies between
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artifacts. Based on an identified inconsistency, a strategy influences the control-flow to
fix inconsistencies, as discussed in the following. As a result, a strategy serves as a re-
action rule, which influences the control-flow behavior to ensure consistency between
artifacts. Additionally, other strategies or rules can be developed to face other coordina-
tion challenges.

5.6.1 Overview: Flexible Workflow Management

For enabling flexible workflow management, we developed the consistency production
line, as illustrated in Figure 5.16. Therefore, we identified four sequential phases, which
must be processed to extract relevant information required for controlling process be-
havior more flexibly. The four phases are called setup, monitor, evaluation, and control.
During the setup phase, static data structures, which specify relevant relationships be-
tween process components, are prepared using static process model information. During
the monitor phase, relevant runtime data are gathered and analyzed during the evalu-
ation phase. Finally, analysis results and prepared dependency information are used to
manage the process properly during the control phase. Before detailing the four activ-
ities, we explain the basic concepts, which enable the flexible management of process
activities. We explain the difference between FPC and SPC and we explain the notion of
a Rule-based Coordination.

5.6.1.1 Strict and Flexible Managed Components

In Section 4.3.3, the two generic concepts of SPCs and FPCs were introduced. While
an SPC is restricted by its predefined control-flow, a control-flow connecting various
FPCs has a recommending character. The recommending control-flow is a best case sce-
nario, which can be controlled based on an additional set of rules and perceived process
knowledge. The following example will demonstrate the difference between that two
paradigms: In general software engineering, RE, Analysis, Design and Implementation de-
fine a sequence of four abstract process periods. Since we defined an FPC as a long-lasting

Traceability Production Line

Setup i‘\/ Monitoring i‘\/ Evaluation i‘\/ Control

Figure 5.16: Consistency Production Line
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process period, whose execution depends on e.g., actual project situations, iterative/in-
cremental rework, unplanned and planned change requests, concurrent development or
other external and random events, the four periods perfectly match with the semantics of
an FPC. Now, we assume, that the Analysis period consists of an activity, which consists
of a distinct set of MCs to construct an analysis architecture. We further assume, that
the Design period consists of another activity to refine the existing analysis architecture
with additional information in order to construct a logical architecture. Additionally,
both activities, which are only parts of the respective Analysis and Design periods, are
defined as an SPC. The SPC semantics effects, that both activities, i.e., contained MCs,
are performed and finalized following the defined control-flow in strict order and it can
not be interrupted through potential events. However, after an activity is finalized, flex-
ible workflow management takes control to decide about further proceeding depending
on the current project situation. For example, if no indicators can be identified after the
logical architecture was created, the workflow management will continue the process
following the defined default control flow. In contrast, if conflicts would be identified
between logical architecture developed during the Design period and the analysis archi-
tecture developed during the Analysis period, the workflow management is allowed to
execute an FPC on demand. In our example, the workflow management would re-start
the Analysis period, if elements of analysis architecture are in conflict with the logical ar-
chitecture, i.e., the validity of the analysis architecture can be ensured on demand. This
simple example demonstrates, that FPCs enable us to start other FPCs as induced by the
current process situation and underlying rules.

5.6.1.2 Rule-based Coordination Mechanism

While common control-flows follow a predefined sequence of activities in a strict order,
FPC nodes and contained SPCs can be started independently from a predefined order
and based on situational needs. To decide about the necessary deviation from a default
control-flow between FPCs as defined by a process model, each time an FPC is finalized,
we check specific criteria and start affected FPCs. The following will introduce the pro-
cess of managing the FPC control-flow and criteria, which can be used to analyze the
impact of activities, which were performed during an FPC, on artifacts of other FPCs.
However, to analyze the impact between artifacts of different or the same FPCs, we first
require a specialized notion of traceability.

In general, the IEEE Standard Glossary of Software Engineering Terminology [{IEEE
Computer Society}90] defines traceability as “the degree to which each element in a soft-
ware development product establishes its reason for existing.” A very similar definition
can be found in [GF94], where traceability is defined as “the ability to describe and follow
the life of a requirement, in both a forward and backward direction; i.e., from its origins,
through its development and specification, to its subsequent deployment and use, and
through periods of ongoing refinement and iteration in any of these phases.”

Although, mentioned definitions require the traceability over all phases of the devel-
opment life-cycle, traceability still lacks support for development activities, which are
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different from requirements engineering, i.e., traceability of requirements [SR09]. In this
field, well known traceability relationships with a particular semantics, such as Refine,
Satisfy, Verify, Realization, DerivedRequirement, and Derived are set between design ele-
ments manually. However, in [TZD09], they identified the following factors, that compli-
cate the establishing and maintenance of trace dependency links, in general:

e There are no explicit links between process design and implementation languages.
This lack of dependency links is caused by not only syntactic and semantic differ-
ences, but also the difference of granularity as these languages describe a process
at various levels of abstraction.

e A substantial complexity is caused by tangled process concerns. Either the pro-
cess design or implementation comprises numerous tangled concerns, such as the
control, data processing, service invocations, transactions, fault or event handling.
As the number of services or processes involved in a business process grows, the
complexity of developing and maintaining the business processes increases along
with the number of invocations, data exchanges, and cross-concern references, and
therefore, multiplies the difficulty of analyzing and understanding the trace depen-
dencies.

e There is a lack of adequate tool support to create and maintain trace dependencies
between process designs and implementations.

To overcome these challenges, and in contrast to other approaches, which focus on
artifacts and manually defined links between individual elements, we focus on the estab-
lishment of an automated traceability between elements, which are contained in artifacts.
Therefore, for our purposes, we define traceability as follows:

Definition 31 (Traceability)
Traceability is a capability to link and follow artifacts based on contained elements.
With respect to artifacts of a development process, traceability must establish a back-
ward and a forward link between artifact elements and their changes during the de-

velopment.

Based on this definition of traceability, we developed a sophisticated traceability mech-
anism, which enables a detailed change impact analysis on artifacts across the overall
process. Traceability is based on the set of artifact histories, which were introduced in
Section 5.4. We follow the history of model type instances, which are spread over various
artifacts, and identify potential conflicts. Based on the characteristic of a specific conflict,
we enable the automated derivation of actions to manage the control flow in order to
solve or validate the potential conflict. This is, what we call Rule-based Coordination.

For example, when an element x is produced in the context of an artifact A and x is
modified in the context of an artifact B, the element x belongs to two artifacts A and B.
We can derive, that the modification of B influences A and dependent activities. Based
on such information and the identification of such impacts, general rules are defined to
decide about the automated or controlled initiation of corresponding FPCs, which are
influenced by B and A. The case of a controlled initiation means, that impact analyses
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must not be seen as obligatory for performing an action. Instead, they can provide some
hints for potential conflicts and the final decision about what to do can be dedicated to
the developer.

The following describes the four phases of the consistency production line, as illus-
trated in Figure 5.16.

5.6.2 Consistency Check: Setup Phase

MC2 > MC3

A\ A 4

A
> MC 1
( j A

Legende

|:| mc ————»  Workflow

Artifact ~———— c';L‘::E/t

Figure 5.17: Simple Workflow Example

To avoid long-lasting operations at runtime, we prepare a distinct data structure from
the process model. The data structure serves as a traceability look-up table and provides
us with information about the influence of individual artifacts on MCs spread across the
process.

The data structure, which is prepared before runtime, is called Artifact Influence Table.
For each artifact, this table assigns a list of MCs, whose execution is influenced by the re-
spective artifact. The influence table allows to identify the tasks, which are influenced (or
must be validated), when a specific artifact has changed. Listing 5.6 shows the algorithm
to set up the Artifact Influence Table. To identify the dependencies between MCs and asso-
ciated artifacts, we use backwards traversal to reach all nodes of a process model. A node
is handled, as illustrated in listing 5.7. An initial node of the process provides us with a
termination criteria and control nodes can be ignored by handling only its predecessor
nodes. For MCs, which specify input artifacts, an input artifact influences the execution
of the MC and we put the MC in an artifact-specific list of dependent MCs. For exam-
ple, based on the process model, which is depicted in Figure 5.17, Table 5.3 exemplifies a
corresponding influence table. For each artifact, the table shows a list of influenced MCs.
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1 Hashtable<Artifact, List<MC>> influenceTable :=
new Hashtable<Artifact, List<MC>>();

2
3

4 void createInfluenceTable (ProcessModel process){

5 //backwards traversal

6 List<FinalNode> finalNodes = process.getFinalNodes ();
7 if(!finalNodes.isEmpty ()){

8 return null;

9

}
10 for(FinalNode finalNode : finalNode)<{
11 traverseNode (finalNode) ;
12 }
13}

Listing 5.6: Artifact Influence Table

[

private void traverseNode (Node node){
//handle all predecessor nodes of the actual parameter node
for (Edge edge : node.getInEdges ()){
Node preNode = edge.getSource();
//end condition
if(preNode instanceof InitialNode)({
break;
}
//normal case - relate outputs with inputs of an MC
if(preNode instanceof MC){
MC actualMethodChunk = (MC) preNode;
//Insert the influenced MCs in the hashtable
for(Data artifact : actualMethodChunk.getinputs ()){
List<MC> mcs = influenceTable.get (artifact);
influenceTable.put(artifact, mcs.add(actualMethodChunk));
}
//handle next node
for (Edge preNodeEdge : preNode.getIn()){
traverseNode (preNodeEdge.getSource ());
}

O ® N U ke W N

T S
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}
//Control node case - handle predecessor nodes
if(preNode instanceof ControlNode){
for (Edge preNodeEdge : preNode.getIn()){
traverseNode (preNodeEdge . getSource ());

28 BRERRBR
()
()

(o)

(-}

Listing 5.7: Handle node for the influence table creation

After the artifact influence table is prepared, a corresponding workflow can be started
and modeling events are monitored, as discussed in the following.
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Influence Task List
Artifact A | MC1; MC2
Artifact B MC2
Artifact C MC3
Artifact D MC1

Table 5.3: Example: Artifact Influence Table

5.6.3 Consistency Check: Monitoring Phase

After all static information are set up and prepared to be available at runtime, the mon-
itoring and logging of modeling events can be started. Since this was already discussed
in detail in Section 5.4, we here revisit the basic idea shortly: We log modeling actions
for each data element in the context of an MC and associate the monitored event with
a time stamp. This is required to order the set of events afterwards. Subsequently, we
assign virtually each event with an affected artifact to establish an artifact history. The
monitored artifact history is analyzed in the next phase to trace the artifact evolution and
its influence on other artifacts or individual MCs.

5.6.4 Consistency Check: Evaluation Phase

After modeling events were monitored, an FPC serves us as checkpoint for the evaluation
of monitored information and a subsequent decision making to influence the control-flow
of a process by starting relevant FPCs. Therefore, we developed a set of strategies to iden-
tify potential consistency conflicts between artifacts. A strategy analyzes a particular set
of modeling events, which describe a time-based constellation of modeling events spread
across various artifacts and/or MCs. A modeling event is composed of the information,
as introduced in Section 5.4.1. Therefore, we extract relevant information from the notifi-
cations and define an event as an 5-tuple, which is composed of a specific MC MC),, an
output artifact arti fact, of MC,, a time-stamp ¢ of the corresponding modeling action,
the model element instance inst, which was influenced by the modeling action, and the
type of the modeling action. The following discusses the identified strategies in detail:

Conflict Identification Strategy 1

Event(MC,,, artifacty, t,inst, create V modi fied) A

— no conflicts
Event(MC,,artifact,,t + x,inst, modified V delete)

In strategy 1, one element (inst) of an artifact, is created, modified, and/or deleted
during one working step, i.e., MC,, several times. Since multiple modification of one
element has no more influence, than an unique modification, this scenario causes no
conflicts.

216



CHAPTER 5: METHOD-DRIVEN GUIDANCE OF DEVELOPMENT PROCESSES

Conflict Identification Strategy 2

Event(MC,,, artifact,, t,inst, create V modi fied) N

—> potential conflicts
Event(MC 4y, artifacty, t + ,inst, modi fied V delete)

depending on artifact,

In strategy 2, a model element (inst) is created or modified in the context of an artifact,
during M C,,, and the same element of the artifact, is modified or deleted, in a second
different working step (M C),4,). Due to the modification of artifact, in the context of
two different MCs, other MCs could use the modified content of artifact, between t
and t + x inconsistently, i.e., after modifying the artifact in MC,,,, other MCs could
base their design decisions on inconsistent information from M C;,. This is a hint for a
potential conflict, which causes the repetition of M C,,.

Conflict Identification Strategy 3

Event(MC,, artifact,, t,inst, create V modi fied)\

— potential conflicts
Event(MCyy, artifacty, t + x,inst, modified V delete)

depending on artifact,

In strategy 3, one model element is created or modified in the context of an artifact,,
and the same model element is modified or deleted in another artifact artifact, during a
second different working steps, i.e., both artifacts are influenced. Due to the modification
of model element inst in the context of two different MCs, other MCs could use the
modified content of artifact, between t and t + z. After modifying the artifact, in
MC,,+y, other MCs based their design decisions on inconsistent information of arti fact,.
This is a hint for a potential conflict, which causes the repetition of M C,,.

Conflict Identification Strategy 4

Event(MC,artifact,t,inst, create V modi fied)\ .
—> no conflicts
Event(MC,artifact,t + x,inst, read)

In strategy 4, a model element is created or modified, before it is read in the context of
another MC. Since a simple reading of available information does not influence other
artifacts or the execution of MCs, no conflicts can arise.

Conflict Identification Strategy 5

Event(MCy, artifact, t,inst, read)\
Event(MC,,, artifacty,t + z,inst, modified V delete)

—> no conflicts

In strategy 5, a model element of an artifact is read and subsequently modified or deleted
in the same task and artifact. Since all modifications of an element in the context of the
same MC do not influence itself, no conflicts are caused.
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Conflict Identification Strategy 6

Event(MCy,, artifact,, t,inst, read)

—> potential conflicts
Event(MC 4y, artifacty, t + x,inst, modi fied V delete)

depending on artifact,

In scenario 6, a model element of an artifact is read and subsequently modified or deleted
in the context of another MC. Since the first MC’s outcome is based on modified data,
this situation causes a potential conflict in artifact,.

Conflict Identification Strategy 7

Event(MC,,, artifact,, t,inst, read)\

—> potential conflicts
Event(MCh,4y, artifacty, t + x,inst, modified V delete)

depending on artifact,

In strategy 7, a model element of an artifact is read and subsequently modified or deleted
in the context of another MC and another artifact. Since the first MC’s outcome is based
on modified data, this situation causes a potential conflict concerning artifact,.

Conflict Identification Strategy 8

Event(MC,,, artifact,, t,inst, create)\
Event(MC,, artifacty, t,inst, create)\ —> potential conflicts
artifact, ¥ artifact, € inputsMC., depending on artifact,

The last strategy 8, faces a situation, when a set of similar typed model elements,
which are already associated with an artifact, is extended in the context of another arti-
fact. For example, if an arti fact, inputs model elements of type X toan MC, e.g., M C),, to
refine arti fact, by additional elements of type X in a new arti fact,. Hereby, the adding
of an element of type X to the output arti fact, also influences arti fact,, since elements
added to artifact, belong to both artifacts, at the same time. This is indicated by a cor-
responding FromTo relationship between the respective input and output artifacts, which
causes the relevant interest registration for artifacts in the context of our observer mecha-
nism. Both artifacts, i.e., artifact, and artifact,, would be notified about the creation of
the same element. However, while the produced output only does influence subsequent
MCs, the change in the consumed artifact, may influence MCs, which use artifact, as
input in parallel with M C,,. This indicates a potential conflict, caused by artifact,.

Contrasting an analysis of static artifact dependencies, we make use of predefined
MMVs and monitored modeling actions. During the change impact analysis, the above
rules consider the specific elements of the artifacts. Therefore, dependent artifacts, which
are not affected by a modification of specific element are neglected for change impact
analysis. Through the knowing of influenced MCs, only relevant MCs can be triggered
purposefully, to enable the validation of artifacts, which potentially are in conflict or in-
consistent with another artifact.
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To reason about monitored information in order to coordinate development tasks is a
critical task. Based on the reasoning, the evaluation result identifies possible conflicting
artifacts associated with particular MCs of a process. As a result, process entry points are
identified to resolve the conflict, and to guide developers in doing the required tasks to
validate or rectify the potential inconsistent outcomes. This is described in the following.

5.6.5 Consistency Check: Control Phase

The control phase uses the prepared artifact influence table and analyzed runtime in-
formation to control FPCs as required for the current project situation. Therefore, all
conflicting artifacts, which were identified during the evaluation phase are looked up in
the artifact influence table. Querying the table results in a set of MCs, whose execution is
influenced by these artifacts, i.e., the artifacts are the input artifacts of respective MCs.

The resulting set of MCs is the set of activities, which must be performed in order to
ensure, that a conflicting artifact does not have negative side effects on other outcomes.
However, since our approach of flexible process management is based on FPCs, ie., a
MC can not be executed beside the predefined control flow, for each influenced MC,
the encompassing FPC has to be identified. Since FPCs are container nodes to structure
MC and other FPCs hierarchically, this can be achieved by using the transitive parent
relationship between MC, SPCs and respective FPCs.

After all FPCs were identified, they are put into an execution queue, which manages
the normal flow of FPCs and identified conflict resolving FPCs in parallel. The manage-
ment of FPCs, can be realized by a priority based queue, which initiates relevant FPCs
and contained SPC workflows using a general workflow engine.

5.7 Case Study

Using the case-study from Section 4.8, we show how the process model and technical MF
information enable the application of CME on operational level. Therefore, the MMVs,
which we introduced in Section 4.4 in combination with the artifact observer mechanism
(cf. Section 5.4.1) enables the identification of an artifact and its contained information. Fur-
thermore, the MMVs, which are associated with the input and output artifacts of an MC,
in combination with the annotated EUSA information enable the generation of method-
specific CASE support. Likewise, the guidelines, which were specified for a particular MC,
enable the application and evaluation of method-specific constraints, while the workflow,
appropriate control nodes, and the semantics of strict and flexible managed process com-
ponents enable the automated assignment of activities to individual roles in the correct or-
der. Additionally, monitored information and known relationships, which are given by
the process model, are used for further enhancements, such as consistency management,
traceability between artifacts, and the application of process mining techniques. All this is
demonstrated realizing the design example of our case-study, as described in Section 4.8.
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5.7.1 Guidance Preparation

To set up our execution environment, i.e., the step before a process is executed, four
general tasks are performed to generate operational artifacts from the process model:

1. method-specific editors are generated using the MMV information in combination
with annotated EUSA values.

2. the interests of artifacts are registered at the observer automatically. Similar to the
editor generation, this task uses MMV and EUSA information.

3. the graphical guideline models are translated into an operational format using the
translational semantics.

4. the artifact consistency management is prepared by generating the artifact influence
table.

5.7.1.1 Editor Generation

The input and output artifacts of an MC on the technical level were extended by MMVs
to define their internal data structures. As these data structures define the relevant vocab-
ulary, which has to be provided with an editor to support the execution of a development
activity, we use this information to generate the editor part automatically, as discussed in
Section 5.3. Some of the generated editors, which were derived from the process model
automatically to support individual task, are illustrated in the following.

For example, in Figure 5.18 one can see the generated editor, which supports the anal-
ysis phase of our case-study process and, in particular, the MC CreateNonFunctionalRe-
quirements. The editor was generated based on the MMV, which is associated with the
input artifact Functional_Requirements (cf. Figure 4.25), and the MMV, which is associated
with the output artifact NonFunctional_Requirements. As one can see on the left side of
Figure 5.18, the partition between input and output information is realized in the gen-
erated editor. In the section A of the illustrated editor, the root element of the input’s
MMV is depicted. Since MMVs, in general, are represented hierarchically, this perfectly
matches the master-detail pattern, which we applied for the generation of editors (cf.
Section 5.3). In section B of the editor, the output artifact is represented. The root ele-
ment of the artifact is of type System, whose instance element TheSystem is selected as
actual master element. For this element, its details are depicted in section C of the editor.
This section is split into two sections: the attribute section to represent relevant attribute
features, and the containments section D to represent relevant objects, which are part of
a containment association of the master object, i.e., TheSystem. While the original meta
model (cf. Figure 4.22) requires a System element to have an identifier attribute and a
name attribute, the generated editor neglects the identifier attribute, as specified in the
MMV of the MC’s output artifact. Additionally, since the name attribute was associated
with the EUSA read-only, the generated editor also does not permit to change the value
of that name attribute during this process step. Instead, the editor provides an exclusive
context menu in section F, which enables to add (and remove) elements to (from) the list
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- ™

CreateMonfunctionalRequirements | CompleteRequirements |

Input A Details
TheSystem - System

Attributes
name TheSystem

Containments

Crverview Details

theVFM - VEM Attributes

name theVFi

Containments
Owverview | Details

NFRQ_a Attributes
MFRQ_b
MFRQ ¢ name MFRQ 4

Figure 5.18: Generated Editor to support the MC: CreateNonFunctionalRequirements
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of non-functional requirements, which are contained in theVFM.

Next, while the original meta model specifies a System element to have the three con-
tainments vfm, faa, and impl, the editor neglects elements, which are not specified as part
of the respective MMV. Therefore, the only element, which is represented as contained
by the System is theVFM, which is typed by VFM. Due to the selection of the element
theVFM, it becomes a master for a subsequent details section (E/F). E is a Basic Structural
Element, that represents the VFM’s name attribute feature as read-only. Within the re-
spective containment section F, only elements typed by NonFunctional_RQ are visualized
to enable the modification of their name attribute value, as specified in the MMV.

The same principles are realized in the editor, which is depicted in Figure 5.19. The
shown editor supports the MC CompleteRequirements and produces a combined and val-
idated view on functional and non-functional requirements as its output. Therefore, in
the details view of the VFM (section G), functional (FRQ_) and non-functional (NFRQ_)
requirements are represented.

Another example for an editor, which results from the case-study process, is illus-
trated in Figure 5.20. It demonstrates the treatment of references. On the one side, one
can see, that the shown label of a Connection element is the identifier attribute in contrast
to its name attribute (section H). On the other side, as referenced InPorts and OutPorts
are contained by a software component (SWC), the source and the target reference must be
added from the set of already available Port elements. Therefore, the editor extracts ref-
erenceable elements from the model and allows to set/unset the reference feature value
via the add /remove button (section I).

5.7.1.2 Artifact Interest Indication

The generated editors use the dispatcher interface, as introduced in Section 5.4.1, to no-
tify interested artifacts about performed modeling activities. To register their interests,
artifacts use strategies, as introduced in Section 5.4.2. For example, the output artifact of
the MC CreateFunctionalRequirements registers its interest according to the EUSA annota-
tions, as illustrated in Table 4.2: As the concept of a Functional_RQ is annotated with the
EUSA attribute create, the artifact registers an interest for the creation and modification
of such elements in the context of that task.

A more complex example for the registration of interests is given in the context of the
CompleteRequirements MC. The output of that MC, i.e., its MMV and associated EUSA val-
ues, is summarized in Table 4.3. Here, the interests of the artifact combined_requirements
are registered according to the EUSA attribution, as described above. However, since we
defined a FromTo relationship between the MMV concepts functional and non-functional
requirements of that artifact and individual input artifacts (cf. Section 4.8.1), related in-
put artifacts are required to register their interests correspondingly. Therefore, before the
MC CompleteRequirements is performed, the input artifact Functional_Requirements regis-
ters an interest for creation events concerning instances typed with Functional_RQ, and
the input artifact NonFunctional_Requirements registers an interest for creation events con-
cerning instances typed with NonFunctional_RQ. That way, not only the output artifact is
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Figure 5.19: Generated Editor to support the MC: Complete Requirements
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Figure 5.20: Generated Editor to support the MC: Define SW Architecture

influenced by the creation of new elements, but also the respective input artifact, which
initially provides the MC with corresponding input elements.

5.7.1.3 Guideline Translation

In parallel, for all the modeled guidelines, the statement nodes are prepared to be eval-
uated in the context of a specific MC. Therefore, each MC is queried for guidelines to
transform contained statements into an interpretable format, as discussed in Section 5.5.
For example, the statement nodes which are illustrated in Figure 4.29, are transformed
into the following OCL statements according to our translational semantics. Hereby, the
structures of both statements look very similar: first, an instance of the meta model type
FunctionalReq, which is the context element of the statement, is identified via the instance-
Transition. This is translated into the following OCL sub-statement:
self.oclAsType(aMetaModel::FunctionalReq). The defined AttributeProperty, subsequently, is
used to identify the relevant attribute feature of the respective instance object, i.e., the
name of a FunctionalReq. By the means of OCL’s PropertyCallExp expression, both parts
are concatenated and represented using OCL’s textual syntax as follows:
self.oclAsType(aMetaModel::FunctionalReq).name. Finally, the defined operation value of the
AttributeProperty specifies the concrete constraint for a functional requirement in this sce-
nario. While for the upper statement node in Figure 4.29 the operation is UNEQUAL and
the value is null, for the lower statement, the operation is defined as regexMatch and the
value is defined as the following regular expression: '(FRQ_)[a — zA — Z0 — 9]+'. Us-
ing OCL'’s OperationCall expression, we can set its parameter using the information about
operation and value and concatenate the former PropertyCall expression with the Opera-
tionCall expression. That way, the illustrated statement nodes result in the following two
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OCL statements:

1 self.oclAsType (aMetaModel::FunctionalReq) .name <> (null)

Listing 5.8: OCL statement: attribute operation

1 self.oclAsType (aMetaModel::FunctionalReq) .name
2 .regexMatch(’~(FRQ_)[a-2zA-Z0-9]+’) <>(null))

Listing 5.9: OCL statement: regular expression

To exemplify the derivation of a more complex OCL statement from our graphical
syntax, we use the example, as illustrated in Figure 4.30. The statement expresses, that
the number of functional requirements of an VFM must be equal to the number of func-
tions defined in the functional analysis architecture (FAA). The root element of this state-
ment is an element of type System, where we identify an instance using the instanceTran-
sition first. To identify the systems’s VFM, which is the container element for all types
of requirements, the AssociationTransition was applied to navigate the meta model. Af-
terwards, the instanceTransition is applied for a second time to address a specific instance
of the VFM, which is contained in the System, as identified before. Using OCL’s CallExp
expression, this results in the following OCL statement: self.vfm. This works similar for
the identification of instance of an FAA, which results in the OCL statement: self.faa
In the context of an VFM instance, the graphical statement uses an AssociationTransitions
to address functional requirements, while another AssociationTransition is used to address
the functions of an FAA. As we aim at the comparison of the number instances of these
two sets, the iterationType attribute of both AssociationTransitions is set to size, which im-
plicitly is related with the select operator of an iterator expression in the context of sets, as
considered in this scenario. Next, to address individual instances of functional require-
ments and functions, an instanceTransition is applied in either case. Based on that, each
of the split paths results in one IterateExpression, which results in the following two OCL
statements:

1 self .vfm.requirements ->
2 select(110|0clIsType (aMetaModel::FunctionalReq))->size ()

Listing 5.10: OCL statement: iterator expression la

1 self.faa.functions->
2 select (110 0clIsType (aMetaModel::Function))->size ()

Listing 5.11: OCL statement: iterator expression 1b

Now, to compare the two sets, i.e., the number of contained instances, the InstanceRelation,
which relates the two instance variables representing the members of respective sets, is
translated accordingly. Therefore, the InstanceRelation is translated into an OperationCall
expression, where the operator is set according to the InstanceRelation operation attribute
EQUAL. This results in an OCL expression, which corresponds to OCL’s textual syntax
as follows:

1 self .vfm.requirements ->
2 select(ql|oclIsType (aMetaModel::FunctionalReq))->size ()
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self.faa.functions->
select(r1]loclIsType (aMetaModel::Function))->size ()

Listing 5.12: OCL statement: operation call expression

Similar to the above translations, other statements are transformed into platform-
specific code to be interpretable at runtime and to provide validation results for indi-
vidual guidelines of performed MCs.

5.7.1.4 Traceability Setup

Finally, in order to trace dependencies between artifacts and to identify potential impact
between artifacts, the artifact influence table is prepared according to the algorithm in-
troduced in Section 5.6.2. Based on our process (cf. Figure 4.23), for each artifact the
algorithm provides a list of influenced MCs, as illustrated in Table 5.4. In particular, note,
that the artifact Functional_Requirements influences the two MCs: CreateNonFunctionalRe-
quirements and CompleteRequirements.

5.7.2 Guidenace Application

After the environment is prepared through the creation of editors with method specific
editor capabilities, the registration of artifacts interests, the generation of interpretable
guidelines, and the creation of tracing dependencies, the process is ready to be executed.
To demonstrate the behavior and the guidance capabilities at process runtime, we follow
the sequence of MCs, which is defined in our process, and describe a random sequence of
modeling events. Using the example of the analysis phase of our case-study process, we
demonstrate the essential guidance capabilities, i.e., method-specific editing capabilities,
artifact observation, guideline evaluation, and workflow coordination.

Influence Task List
external_requirements CreateFunctionalRequirements
Functional_Requirements CreateNonFunctionalRequirements
CompleteRequirements
NonFunctional_Requirements CompleteRequirements
combined_Requirements DefineFunctions
Functionality_Design ConnectFunctions
Functional_Architecture DefineFunctionTiming
FA_refined_by_timing DeriveSWCs
SWC_description DefineSWArchitecture
SW_ Architecture -

Table 5.4: Case Study Influence Table
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Figure 5.21 to Figure 5.24 exemplify the sequential execution of the analysis phase
according to the process, as defined in Figure 4.23. The editor depicted in Figure 5.21
supports the first MC in our process, i.e., CreateFunctionalRequirements. According to our
process definition, this MC supports the creation of functional requirements, why the
only represented model elements are the functional requirements contained in an VFM
container element of the meta model’s root elements System. As we defined the EUSA
value create for functional requirements, the editor capability is manifested in a context
menu of a list viewer, which illustrates available functional requirements. Due to the
EUSA value create, a developer is allowed to create new elements and to delete existing
elements, which are typed with Functional_RQ. Note, while the meta model specification
provides functional and non-functional requirements to be contained in VFM, the edi-
tor only provides relevant information by neglecting non-functional requirements in this
view.

Next, we create a functional requirement, using the context menu, as depicted in Fig-

Details

Attributes

name TheSystemn

Containments

Cwerview Details

[thevim-vEM [V

name theVFM

Containments

Overview Details
FR(} 1 - FunctionalReq Attributes
FR 2 - FunctionalReg
s Bt id _QgOUwLwaEeCO0volgXiZw
e lame FRQ 2

Delete

Figure 5.21: Execution of “Create Functional Requirements”

ure 5.21. Subsequently, an instance of Functional_RQ is created and added to list of
existing functional requirements, as depicted in Figure 5.22. As we defined the EUSA
value modify for a functional requirement’s name feature, we are allowed to modify the
name of the just created element, while it is forbidden to modify the shown identifier
attribute feature. In this scenario, we want to change the name of the just created func-
tional requirement to “aFunctionalReq”. Subsequently, we finalize this MC to perform
a following design activity. However, each time we want to proceed from one MC to
another, a validation is performed. As described in Section 4.8.3, the MC CreateFunc-
tionalRequirements is associated with the guideline, as depicted in Figure 4.29, in order to
ensure, that each functional requirements follows a particular naming convention. The
guideline is interpreted following the guideline’s edges starting from its init node. If the
first statement node is reached, the statements context element type (FunctionalRQ) is
identified in order to allow for querying the model for corresponding model elements.
Afterwards, the OCL statement, which was derived during the preparation phase using
the translational semantics, is forwarded to a standard OCL interpreter. The translated

227



CHAPTER 5: METHOD-DRIVEN GUIDANCE OF DEVELOPMENT PROCESSES

statement (listing 5.8) is evaluated for any identified functional requirement. This re-
sults in a positive result,i.e., each guideline has a name unequal to “null”, and triggers
the guideline’s OR-node, which triggers the ORMerge-node. Subsequently, the following
statement, which is illustrated in listing 5.9, is validated. Therefore, the model is queried
for functional requirements, on which the constraint is evaluated. However, this time,
the result of the validation is negative,i.e., there are functional requirements, which do
not follow the defined naming convention. As a result, the editor provides a developer
with an error message, as depicted in Figure 5.22. The error message provides us with a
hint to correct the model, whereupon we change the initial characters of the functional
requirement’s name to “FRQ_". Subsequently, due to the absence of failures, the process
can be continued switching the process context from the actual MC to the next MC.

| RequirementsAnalysis l=l®] = |
CreateFun qui CreateNonfun quirements | C ements
Input Details
Attributes
m TheSystem
Containmen it
Ovenview Details
thevim - vEM [
neme  theVFM
Output Containments
UBESYSIE S yiem Ovenview Details
FRQ.L - FunctionalReq p bt
FRQ 2 - FunctionalReg
id _d_0¥QCWIEEKARIRSqFE
nzme aFunctionalRequ
@% Proceeding not allow
¥ @ Names of functional require;

Figure 5.22: Validation of “Create Functional Requirements”

Now, the actual MC CreateNonFunctionalRequirements, is guided by another editor,
which provides a developer with different capabilities, as illustrated in Figure 5.23. Con-
trasting the first editor, now a developer is enabled to derive non-functional requirements
from functional requirements, which can be displayed using the editor’s input master
section in section J. The master section K enables to display output information, which
are non-functional requirements in the context of the actual MC. According to the MC’s
specification, only non-functional requirements can be instantiated, modified or deleted.
Furthermore, Figure 5.23 shows an MC-specific restriction of the meta model to relevant
data. While the meta model specifies any requirement, i.e., functional and non-functional
ones, to have an identifier attribute, the editor neglects this attribute due to its irrelevance
in the context of this activity (section L).

After non-functional requirements are defined, and if all specified guidelines validated
positively, the process proceeds with the MC CompleteRequirements. This MC is guided by
the editor, which is depicted in Figure 5.24. One can see, that the editor, provides a view
on both types of requirements (functional and non-functional ones) in order to validate
potential correspondences between them. The EUSA attribution, which was made for
this MC, enables the creation of additional requirements during this activity. We assume,
that an additional functional requirement is defined during the CompleteRequirements ac-
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Figure 5.23: Execution of “Create Non-Functional Requirements”

tivity, in order to demonstrate the coordination and change impact resolution capabilities
of our framework in the following.
After the MC CompleteRequirements is completed, the Analysis phase, which we defined
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FRQ_3 - FunctionalReq

Figure 5.24: Execution of “Complete requirements”

as FPC, is finalized as well. The finalization of an FPC initiates the execution of a con-
sistency evaluation, as described in Section 5.6.4. By analyzing the notification events,
which were monitored during the actual finalized FPC, potential inconsistencies can be
identified using the discussed strategies, whereupon the control-flow is coordinated flex-
ibly. To demonstrate this, we use the example of two events for the creation and modifi-
cation of a functional requirement in the context of two different MCs. We assume, that
the first event occurs during the CreateFunctionalRequirements MC, when an additional
functional requirement is created. Let the functional requirement’s name be “FRQ_4".
A corresponding event is sent to the observer and communicated to the artifact Func-
tional_Requirements, which registered a respective interest before. According to the event
structure, as introduced in Section 5.6.4, the concrete event looks as follows:

Event(Create Functional Requirements, Functional_Requirements, t,, FRQ_4, create),
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(with x>0)

If the created functional requirement FRQ_4 would be modified during the subsequent
MC CompleteRequirements, then the following second event would be communicated to
the artifact combined_requirements according to its interests:

Event(Complete Requirements, combined_requirements, ty4n, FRQ_4, modify),

(with x>0 and n>0)

According to the conflict identification scenario 3, that second event would indicate a po-
tential conflict with the artifact Functional_Requirements, as one of its contained elements
is affected. Looking up the artifact influence table, which was prepared in Table 5.4, re-
sults in two affected MCs CreateFunctionalRequirements and CompleteRequirements. Based
on this information, the encompassing FPC is identified and can be initiated for a second
time to check for the absence of conflicts or to resolve them. That way, the overall Anal-
ysis phase is performed for a second time. Subsequently, if no conflicts have been arisen
during the second execution of the Analysis phase, the framework enables to continue
with the default control-flow of the process and starts the Design phase, where the MCs
are guided and monitored likewise. If no conflicts are produced during this phase, a de-
veloper is guided through the implementation phase finally.

After the complete process is performed, it can be analyzed by evaluating particular
characteristics, such as the duration of individual MCs, as well as, the duration of the
overall execution time of the process. Additionally, arisen conflicts can be analyzed for
the identification of recurring pitfalls and the derivation of best practices, which can meet
such conflicts. These best practices can be incorporated as additional guidelines within
corresponding MCs, to guide future processes and projects.
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6 Evaluation

6.1 Motivation

In this work, we followed the design-science paradigm of information systems research,
“which seeks to extend the boundaries of human and organizational capabilities by creat-
ing new and innovative artifacts” [HMPR04]. Following the two base research activities
of design science research, as mentioned in [TK08], we described construction details of

our approach first. Now, that we demonstrated that our system can be constructed,, we

will show how it was realized and evaluate our approach from different viewpoints, as
proposed by Hevner et al. [HMPRO4].

1.

Architecture Analysis: To demonstrate the feasibility of our approach, we devel-
oped a prototype in an iterative way. In cooperation with our industrial partners,
we designed a modular architecture, which satisfies required features of an CAME
environment, as discussed in Section 2.4. For evaluation purpose, we first describe
the resulting architecture in detail and analyze it using the Hazard Analysis of Soft-
ware ARchitectural Designs (HASARD) method, in Section 6.2.

Scenario-based Evaluation: In Section 6.3, we use a scenario-based analysis [Zhu05]
to evaluate our approach considering different stakeholder perspectives and chal-
lenging situations for the application of our CAME environment.

Dynamic Analysis: To analyze a further facet of our approach, we evaluate the
runtime behavior of our approach in Section 6.4. After discussing the computa-
tional complexity of most critical components in our architecture, we discuss poten-
tial bottlenecks and solutions strategies to overwhelm the enormous data volume,
which must be handled.

Descriptive Evaluation: In Section 6.5, we evaluate our approach with regard to
most prominent process assessment standards and the capabilities, which come
along with our approach. Using the examples of CMMI and Automotive SPICE,
we describe, which parts of the respective standard can benefit from our approach.
We conclude this section with a checklist for organizations, which enables them to
decide whether or not our approach is reasonable in their environment.

Case Study: Finally, in Section 6.6, we demonstrate all facets of our CAME en-
vironment in a comprehensive case study. Starting from a set of loosely-coupled
processes taken from industry, we demonstrate the setup and application of a soft-
ware process line. We also show the technical design of required variants, which
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subsequently enables us to exemplify the enactment of a member of the developed
process line.

6.2 Architecture Analysis

In this section, we evaluate our framework from the architectural point of view. There-
fore, we first describe its conceptual architecture, before we go into detail about the re-
alized implementation, developed plugins, and used frameworks. Finally, we use the
HASARD method to evaluate our architecture.Therefore, we describe potential prob-
lems, that could come up, and show how to prevent these problems.

6.2.1 Conceptual Architecture

Design Time Runtime

&

External
Workflow
Management
System

Process and Method Engineering Toolsuite Development Guidance Tool

Process Line
Configurator

Control || Monitor || Generator Validator

MC Designer

Business-View
Method Repository

Method Repository

Figure 6.1: Conceptual Architecture

Our architecture is driven by the need to support the design time and the runtime
of a development process. Therefore, our framework is subdivided into two parts, as
illustrated in Figure 6.1. To enable SPLE capabilities and the extension of MFs on tech-
nical level, the left side of the figure shows a generic process and method engineering
tool suite, by which a method engineer can interact to establish relevant design time in-
formation, as discussed in chapter 3 and chapter 4. The tool suite allows users to define
processes and methods on business and on technical level, likewise. The tool suit is ex-
tended by additional components, which provide capabilities to configure, i.e., setting
up and planning, the process line, and to extend basic MC information with computer-
interpretable models. These components are not visible for the end user, since they are
fully-integrated with the tool suite. All design artifacts are persisted in two distinct parts
of a repository, by which business level information can be managed independently from
information on technical level, i.e., all stakeholders are supported adequately.
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On the other side, runtime support (the right part if the figure) is provided by the de-
velopment guidance module, which provides an interface for end users and third party
tools to communicate with the framework and to implement capabilities, as discussed in
chapter 5. The development guidance module, as core module, basically realizes a work-
flow management system, by which a workflow, which is composed of various FPCs,
is executed and coordinated. Additionally, an external workflow engine is used for the
management of SPCs. To enable the development guidance module for interpreting for-
malized MC accordingly, various sub-modules were developed. These sub-modules are
used by the guidance module autonomously to validate artifacts, to generate editors,
to monitor development activities, and to analyze monitored information, by which the
workflow is controlled flexibly.

6.2.2 Prototypical Implementation
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] smedpcl-spl-eval-HTN
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Figure 6.2: Plugin structure of the SME4PCL approach

We implemented our framework as a set of plugins on top of the open source eclipse
platform, where we reuse various plugins of the eclipse Helios simultaneous release, such
as EMF and Graphical Modeling Framework (GMF) among others. For the modeling of
software development processes on business level, we reuse EPF. Although, other ed-
itors would be possible likewise, this part of our framework is based on EPF, to reuse
already existing reference processes from current projects in the software development
domain, such as AUTOSAR and MAENAD. In contrast, on technical level, we use the
capabilities of the JWT framework, which provides us not only with sufficient process
modeling capabilities, but with an aspect-oriented extension mechanism, which enables
us to integrate additional information, such as guidelines or MMVs. The extension of the
JWT meta model is provided by an abstract extension plugin, smedpcl-mc-extender. This
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plugin is the basis for any extension plugin and enables other plugins to simply retrieve
modeled information.

For SPLE, the smedpcl-spl-transformation plugin provides main functionality. It uses
the smedpcl-spl-repository plugin to access existing information from business level and
technical level. In more detail, the repository plugin stores process models modeled on
the level of EPF and JWT and makes them accessible. During situational process engi-
neering, the transformation plugin allows the selection of a reference process modeled
with EPF on a business level. Based on the reference process, the repository is queried
for potential variants on technical level modeled with JWT. The relation between VPs
and variants, is realized by the sme4pcl-spl-mc-relation plugin. It realizes an aspect of the
JWT meta model to link MCs in form of an JWT activity with an VP, which was defined
in EPF. The transformation plugin uses the reference process and available variants to
generate a feature model, which is realized by the sme4pcl-spl-fm plugin. Afterwards,
the feature model is configured using an evaluation component, which is abstracted by
the smedpcl-spl-eval plugin to simply apply various planning algorithms. In our concrete
case, we realized the evaluation using HTN and concertized the evaluation plugin with
the smedpcl-spl-eval-HTN plugin. This evaluation uses characteristics defined for each
process line asset, as discussed in Section 3.3.3. The annotation of characteristics is real-
ized through an additional aspect of the JWT meta model. Therefore, we implemented
the sme4pcl-spl-characteristics plugin.

Beside plugins, which are relevant for SPLE, we implemented different plugins to
extend the JWT meta model with required technical information models. The sme4pcl-
spl-guidelines plugin extends action elements of JWT with capabilities to add guidelines,
as discussed in Section 4.6. To extend artifact element of the JWT meta model, we de-
veloped the sme4pcl-mc-artifacts plugin to annotate meta model information, as discussed
in Section 4.4. The annotated meta model information is used by the smedpcl-mc-tracing
plugin to establish the FromTo relationships between an element type of an MC'’s output
artifact with an element type of the relevant input, as detailed in Section 4.4.3.

While the above plugins realize the design time part of our conceptual architecture,
the smedpcl-tca plugin realizes the architecture’s runtime part, i.e., the process control, as
discussed in chapter 5. It provides an interface to other tools and controls the control-flow
of the development process. Therefore, it uses aspect information of the situational pro-
cess to interpret them accordingly. To generate and execute editors, it uses the sme4pcl-tca-
xwt plugin. This plugin uses MMVs and EUSAs information, as discussed in Section 4.5,
to generate editor forms and individual editor capabilities based on the XWT framework
of the eclipse e4 project.

This modular architecture was chosen to simply enable the exchange and modifica-
tion of single modules and to enable the validation of distinct functionalities without the
need to set up the overall framework in critical environments.
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6.2.3 Evaluation with HASARD
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Figure 6.3: Notation of HASARD quality models according to [ZZHG]

To evaluate our framework’s architectural design different approaches, such as
Architecture Tradeoff Analysis Method (ATAM) [BCKO03] or Software Architecture Anal-
ysis Method (SAAM) [BCKO03], are available. However, to particularly focus on unknown
problems of our software architecture, i.e., to discover quality features of our design with-
out pre-specified requirements, we apply a method called HASARD [Zhu05].

HASARD is model-based analysis technique based on a safety analysis technique called
hazard analysis. To evaluate software architectural designs the method makes use of
quality models, which are represented by a diagrammatic notation, as illustrated in Fig-
ure 6.3. A quality model is a directed graph, which consists of nodes and two types of
links. Each node is composed of three information specified in three compartments: the
component which represents a system element, a quality-carrying property of the ele-
ment, and an observable phenomenon of the property.

In contrast, links are directed edges between nodes. Basically, a link between a node A
and a node B means, that the occurrence of A’s phenomenon implies the occurrence of
the phenomenon associated with B. Additionally, each node may have an optional anno-
tation to give a rationale for that implication.

For the construction of quality models, HASARD provides a methodology, which
consists of four steps. Before we detail our framework evaluation, where we applied
HASARD, we shortly introduce the four steps of the method we performed.

1. Hazard identification: For the software development domain, a hazard can be de-
fined as a condition, event, or circumstance, that could lead to an undesired or
unplanned behavior of the software. During hazard identification, potential haz-
ards of a system are identified. A prominent method to identify hazards is the so
called Hazard and Operability Studies (HAZOP) method. HAZOP was developed
in the 1960s as a method, which relies on determining questions of what-if nature.
To determine relevant questions, the method provides a set of guide words, which
can be applied to study features of the system of interest. HAZOP proposes the
following guide words, whereas not all of them are applicable to any domain or
property: No, More, Less, As well as, Part of, Reverse, Other than, Early, Late, Before,
After. The questions result in potential misbehavior of the system. Such a failure
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mode is considered as possible hazard, for which causes, consequences and rec-
ommendations are documented. All identified hazards are then utilized for the
subsequent cause-consequence analysis.

2. Cause-consequence analysis: This kind of analysis progressively selects the haz-
ards identified in the last step and investigates their causes and consequences until
the analyst is satisfied with the coverage of the most threatening hazards. Thereby,
potential interdependencies between consequences, which were identified in 1, are
analyzed and documented. This might also bring up new hazards, that have not
been recognized in the first step. The cause-consequence analysis can be performed
forward (from a hazard to search for potential effects) and backwards (from observ-
able hazard to the causes).

3. Model assembling: The identified hazards and interdependencies, which were
identified during the last two steps, now are translated into a graphical representa-
tion, according to the notational elements, as discussed before. Each hazard (failure
mode) becomes a node and each identified interdependency becomes a link with
an optionally annotated cause.

4. Quality concern analysis: Finally, the property slot of the quality model’s nodes
must be filled. To do so, for each node the observable phenomenon is analyzed
considering a list of quality attributes in order to identify the affected quality of the
system, such as reliability or usability.

Following these steps, we performed HASARD as follows: first, we identified po-
tential hazards with regard to our framework’s main sub-systems, i.e., SPLE, CME, and
runtime guidance. All potential hazards (failure modes) and corresponding guide words
are summarized in table 6.4 to table 6.6. While table 6.4 summarizes all hazards, which
belong to SPLE approach, such as what happens if no variants are defined, table 6.5
summarizes the identified hazards, which can occur during CME, such as a malformed
statement model. Table 6.6 summarizes all hazards, which are relevant to the guidance
or execution phase, such as the disability of the monitoring of modeling events.

Using the identified hazards, we performed a cause-consequence analysis and assem-
bled a quality model from it. The resulting quality model is illustrated in Figure C.1. The
quality model also includes the result of the quality concern analysis, where we iden-
tified the following quality attributes: Acceptance, Availability, Functionality, Usability,
Comprehensibility, Reliability, and Correctness.

The quality model is used to identify the contribution factors for specific quality con-
cerns. For example, a bad user acceptance results from an unavailable workflow engine,
incorrect guidance, the necessity to wait for a long time until a situational process is
planned, process re-planning, or to the disability to generate (correct) editors. Hereby, the
latter factor depends on the correctness of annotated MMVs and corresponding EUSAs.
The quality model is used to derive quality features of our design, such as the quality at-
tributes that are affected by a design decision or the consequences of a particular failure
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SPLE1 No Connection to repository does not exist
SPLE2 No variants are available
SPLE3 No charcteristics are annotated
SPLE4 No correct planning result during situational process engineering
SPLES Variants are not linked with variation points
SPLE6 More Too much planning results
SPLE7 More variants match with the needs of one variation point
SPLES8 The repository provides huge number of variants
SPLES Each variant is annotated with a lot of characteristics
There are not enough variants to fullfill all variation points of the
SPLE10 Less reference process
SPLE11 Variants are not provided with enough characteristics
SPLE12 After Repository changes after a process was configured
SPLE13 A planned process must be re-planned

Figure 6.4: Hazards belonging to SPLE components

Designl |[No No meta model information is available
Design2 An artifact is not annotated with an MMV
Design3 An action is not annotated with any guideline
Meta model information can not be used to restrict the statement
Design4 vocabulary
Design5 |More More guidelines defined than required
Designé |Less Not enough guidelines defined
Design7 |Part of Only parts of a MC's fragments are refined on technical level
Designg [|Other than |MMV are modeled without considering methological needs
Design9 Guideline statements were modeled incorrectly
Design10 Statement Code can not be generated correctly
Design11 The EUSAs of an MMV are not set accordingly
Design12 |Before Statement design is performed before MMV definition

Figure 6.5: Hazards belonging to CME components
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Execl |No No guidelines available

Exec2 No MMV available for individual artifacts
Exec3 No workflow engine available

Execd Customized editor can not be generated

Exec5 No connection between editor and framework
Exect No modeling events are monitored

Exec7 |More There were too much events monitored
Exec8 |Less Less modeling events mointored than required

Exec9 |Otherthan |The guidelines have a different format than expected
The framework provides guidance, which is not correct or different from

Execl0 expected guidance

Execll Generated editor behaves different from expected behavior

Exec12 The framework is not enabled to detect inconsistencies between artifacts
After After process is deployed, some MCs change

Figure 6.6: Hazards belonging to Guidance components

on other system components. Furthermore, we evaluate whether or not our introduced
framework is capable to face all the objectives, as introduced in Section 1.2. For objective
1, where we demanded, that executable development processes must be constructed in
reasonable time, our SPLE component provides support. After a considerable initial ef-
fort to set up the method repository, situational process engineering drastically reduces
process engineering activities for up-coming projects. Of course, a meaningful repository
takes a lot of time, but from our point of view, such a repository not only minimizes fu-
ture design efforts, especially in combination with a planning tool, but also simplifies the
management of methodological knowledge.

Considering objective 2, where we required to close the gap between various information
sources, which are relevant to some development process, the CME component provides
support and is a good starting point for further research. We demonstrated, that the in-
formation content of various MFs and today’s control-flow semantics can be enhanced
significantly. The extension of (textual) process model documentation with additional
computer-interpretable information about statements, the allocation of meta model, or
editor information in the context of MCs improve process knowledge more purposefully.
Indeed, technical design is a very time-consuming task for method engineers, but in com-
bination with the SPLE component and the associated repository, reuse and future return
of this investment can be ensured.

Finally, our architecture also fulfills objective 3 by its guidance component. Through
its capabilities to interpret MF information and to control the development process by
considering traceability concerns, it definitely enables a process to be more than “paper-
ware” only.

The HASARD analysis shows, that many factors influence the correct behavior of
our framework. Therefore, a detailed analysis of the organizational process landscape is
essential, before realizing the discussed concepts. Although, this is a time-consuming and
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error-prone task, our approach accommodates the increasing complexity of knowledge
management in today’s enterprises providing a sustainable solution.

6.3 Scenario-based Evaluation

In this section, we apply a scenario-based evaluation to discuss individual properties of
our framework to react on changing environments and conditions. In various realistic
scenarios, we discuss the modifiability of the framework (Section 6.3.1), the reusability of
design artifacts (Section 6.3.2), and the maintainability of design artifacts (Section 6.3.3).

6.3.1 Scenario-based Modifiability Evaluation

The following four scenarios were identified, to evaluate the modifiability of our frame-
work. Thereby, we particularly focus on changing environmental characteristics.

Scenario 1: The actual platform, on which our framework is based on, is the eclipse Helios
release and various simultaneous releases of other plugins and frameworks, such as EMF, GMF,
JWT, and EPF. Quer time, different components can change, while the framework must be com-
patible with new components.

During the prototypical implementation, we were required to deploy our framework
on various eclipse-based platforms, to demonstrate the applicability of our approach in
industrial context. Each platform was characterized by different releases of relevant plu-
gins and frameworks. In some environments, even some components were missing at
all. In spite of these different platforms, each time we were able to make our framework
work. This is due to our industrial partner requires high flexibility from the framework
and a high degree for integration ability from the very beginning of our joint project.
From the technical point of view, this results from the usage of mature and well-known
frameworks, such as EMF, GMF, and OCL. Since these technologies actually are used in
the context of various industrial applications and since all the used technologies are char-
acterized by a good compatibility, our framework is prepared to face various changed
platform requirements.

Scenario 2: Due to a change of an enterprise’s tool landscape, there could be a need to change
the process modeling tools from current tools, i.e., EPF and JWT, to other process modeling envi-
ronments. The functionality of the general framework could be not compatible with the underlying
process modeling tool.

For this scenario, we must distinguish the change of the process modeler on business
level from the change of the modeler on technical level. On business level, almost any
process modeler can be used in combination with our framework without great efforts.
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The only challenge, which must be mastered for this situation, is to adapt or to create a
generation of the feature model in the context of situational process engineering, as dis-
cussed in Section 3.4. We discussed relevant process components on business level from
a conceptual point of view. The conceptual view enables an easy adaption to a different
PDL, such as BPMN, SPEM, or Architecture of Integrated Information Systems (ARIS).
In our prototypical implementation, we exemplified a transformation of a reference pro-
cess on business level, which was modeled using EPF (i.e., SPEM), and MCs modeled
using the JWT into a feature model. When the business process modeler changes, the
generation of the feature model must be adapted to the corresponding meta model of the
respective modeler. Furthermore, a link between variation points on business level and
variants on technical level must be established, as demonstrated in our prototype.

The change of the modeler on technical level is a more complex task. On technical level,
we used JWT due to its excellent extension capabilities, which is provided by the aspect-
oriented mechanism. An alternative modeler on that level, must likewise provide the
capability to extend MFs, as discussed in chapter 4. Since other process modeling envi-
ronments do not provide an as simple extension mechanism for most of the time, it would
be more complex to integrate all additional information with the model. However, it is
possible to change the technical process modeler, as well.

Scenario 3: An increasing need to integrate more information with process models requires
the framework to incorporate even more details. This induces the introduction of additional types
of MFs, which must be annotated with technical and computer-interpretable information.

This scenario is faced very simple due the extension mechanism of JWT. For each ad-
ditional MF (given that the meta model of JWT does support this MF), which should be
supported, the aspect-oriented mechanism easily enables the extension of the fragment,
with additional information. Therefore, one has to extend the meta model with a new
model to represent the desired information. Additionally, the guidance component of
our architecture must be extended by a corresponding interpreter component. The de-
velopment efforts of such an interpreter depend on the characteristics of the additional
model.

Scenario 4: For planning a situational process, various planning techniques are available.
Different pros and cons of alternative techniques lead to the decision to exchange the planner for
SPLE, which actually is HTN, by a different planner.

To change the concrete planning technique for SPLE, it is sufficient to provide a new
component, that interprets the generated feature model, which we introduced as inter-
mediate model. In our future research, we plan to exchange the HTN planner with an
Planning Domain Definition Language (PDDL) planner. That means, that we must write
a transformation between the generated feature model and the PDDL. Afterwards, the
planning result must be interpreted accordingly to configure the feature model, but other
components are unaffected.
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6.3.2 Scenario-based Reusability Evaluation

Subsequent scenarios focus the reuse capabilities of our framework. We discuss scenar-
ios, in which particular process line assets are changed or must be changed due to envi-
ronmental changes.

Scenario 5: Although, an enterprise’s reference processes are stable for most of the time, they
can change from time to time due to changing product or customer requirements. For example, a
reference process is enhanced through more agility and agile development phases in order to come
up with shorter development cycles. Another example for changing reference processes is the shift
from the waterfall style to a V-Model.

The exchange of a reference process in our framework is not a complex task. After a
new reference process is defined, some variation points could be reused, which means,
that also the relationship between the VP and corresponding variants is still established.
If the reference process introduces new variation points, the relationships to already ex-
isting variants and new variants, which face the particular needs of an VP must be estab-
lished. Afterwards, SPLE works as usual without side effects to other components.

Scenario 6: Customer requirements or standards and regulations change over time, so that
the process behavior is influenced. This induces changing compliance requirements regarding re-
quired artifacts, analyses, and techniques.

If process requirements change, one can simply re-plan the process with changed con-
figuration criteria. Having a sound repository of MCs, which fulfill the requirements of
the changed situation, enables to create and deploy an adapted process on the fly. Of
course, running processes are obsolete and must be terminated, before a new process
is started. Artifacts, which were created during the obsolete process, can be reused for
modeling and traceability analyses, as before.

Scenario 7: The application domain of our framework changes from, e.g., automotive to a dif-
ferent one, such as avionics, finance, or a general RCP application.

Changing the application domain probably is the most time-consuming scenario. Al-
though, some artifacts, such as individual GEs, VPs, and MCs, can be reused depending
on the new domain, most artifacts must be created from scratch. In detail, this means,
that all activities of process family engineering must be applied, as discussed in chapter 3.
Therefore, a new reference process, which matches the needs of the new domain, must be
defined, and the repository must be extended by missing MCs applying CME techniques
from chapter 4. In parallel, distinguishing configuration criteria for process line assts
must be defined considering the new domain requirements, before they are combined
with the existing ones. The effort to set up the environment for a new domain, depends
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on the differences between the two domains and the re-use factor of existing artifacts. As
larger the overlap between the domains, as more artifacts can be re-used.

Scenario 8: Individual parts of the guidance component are changed to other technologies or
frameworks. For example, guidelines could be based on a language, which is different from OCL,
or editors must be generated based on Standard Widget Toolkit (SWT) instead of XWT.

Changing a guidance component does not influence existing design artifacts from
business and technical level. The existing repository information, as well as configured
processes can still be used, if the new guidance part is able to interpret respective infor-
mation accordingly. Due to the modular architecture of our framework, single compo-
nents can by exchanged simply without side effects. For example, to change the editor
generation functionality from XWT-based editors to, e.g., SWT, the new generator only
has to interpret existing MMVs accordingly. Furthermore, the generation must consider
the communication interface of the framework to use relevant features, such as monitor-
ing modeling events, validation and control. In contrast, when the validation is changed
from, e.g., OCL, to a different language, such as EVL, the translational semantics, as dis-
cussed in Section 5.5.1.2, must be adapted correspondingly.

6.3.3 Scenario-based Maintainability Evaluation

To evaluate the maintainability of framework artifacts, the following four scenarios dis-
cuss situations, when individual circumstances induce a change of individual artifacts.

Scenario 9: Guidelines, which are annotated with individual MCs, evolve over time. Due to
changing requirements and lessons learned, guidelines must be kept in-line with processes per-
formed in the future.

Our approach enables a more easier management of guidelines and validation rules,
than general modeling environments. Due to the locality of guidelines to a relevant MC,
only a small set of guidelines must be considered for each development activity. New
information or lessons learned, which concern an individual MC, can be realized pur-
posefully. By adapting the graphical model of a guideline in the context of an MC, asso-
ciated statements can be (re-)generated on the fly. Likewise, new guidelines can simply
be added or removed to an existing MC. Hereby, the graphical representation of state-
ments and guidelines, simplifies the understanding and adaption of guidelines. This also
holds for employees, which have less technical knowledge.

Scenario 10: The editors, which support the development process, are strongly connected with
methodological needs. Therefore, also the capabilities of an editor change in parallel with the fur-
ther development of individual methods.
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The increasing complexity of modern software systems, also causes improvements
and further development of existing methods, which must be supported through edi-
tors. Since our approach provides capabilities to generate editors for the situation at
hand based on MC information, such as MMVs and EUSAs, it becomes more easier to
react on methodological evolution. By changing the meta model information and chang-
ing the associated EUSAs, situational editors can be generated more efficiently and are
in-line with state-of-the-art methodological requirements. Itis also possible, to integrated
COTS tools with our framework, if their capabilities exceed the capabilities of standard
generated editors. 3rd-party tools can implement the framework interface to notify mod-
eling events and to use the other capabilities of the framework, such as validation and
control. This only involves few extensions to be made in the COTS functionality: Model-
ing events must be notified, the framework must be enabled to initialize the editor, if it is
required by some method, and it must be possible to send a command, which indicates
the completion of an activity.

Scenario 11: Changing product requirements cause changing design documents, which in-
volve the change of underlying meta models. Changed meta model information must be aligned
with the processes, that apply the changed meta model.

A changed meta model influences the artifacts and the guidelines of individual MCs.
If a meta model changes, two sub-scenarios can be identified. First, the meta model
evolves to a new version, i.e., at least the name space of the meta model’s elements
changes. Therefore, to keep affected MMVs in-line with the new meta model, all elements
in already designed MMVs must adapted adequately. If the new release of meta model
provides additional elements, they can be added to existing MMVs. Second, if a meta
model is changed, e.g., from UML to SysML, relevant artifacts, which use UML, must
be provided with a new MMV, which provides respective artifacts with SysML-specific
meta model elements. Since MMVs directly influence the statements of a guideline, i.e.,
they define the vocabulary, the statements must be adapted to follow the new vocabulary.

Scenario 12: Lessons learned, project reviews, assessments, and new process requirements
lead to the need to change the method repository.

Lessons learned simply can be integrated with the framework, i.e., the repository, by
the construction of additional MC or the adaption of existing ones. A detailed definition
of the application scenario of a new MC by the means of annotated configuration criteria
enables a correct involvement of lessons learned during the situational process engineer-
ing phase of SPLE. For subsequent projects, the planning considers the changed state of
the method repository and uses the most recent lessons learned.

Summary of the Scenario-based Evaluation The discussed scenarios demonstrated
the capabilities of our framework to be re-used, modified, and maintained. On the one
hand, this results from abstraction levels, where a more abstract level only influences the
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level below (e.g., the business level only affects the technical level). On the other hand,
this results from the modular software architecture of our framework. Furthermore, since
CME enables a high integration of various information sources into one target, maintain-
ability of knowledge becomes more easier.

6.4 Dynamic Analysis

In this section, we discuss the complexity and runtime behavior of our approach. Due to
missing objectivity in manually performed design activities, we first focus on the auto-
mated planning of a situational process in the context of SPLE. Afterwards, we discuss
the runtime behavior and potential overhead of method-driven guidance.

6.4.1 Performance Evaluation of Software Process Line Engineering
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Figure 6.7: Evaluation Results for different process models

By the means of the case-study, as discussed in Section 3.6, we already evaluated the
applicability of the SPLE approach in general. Additionally, in order to evaluate scala-
bility and performance of SPLE, we conducted three experiments with a different num-
ber of VPs for a reference process and a various number of variants. In our tool chain
support, three main automated activities are involved, which include the generation of
feature models from reference process and variants, calculating ranks of concerns from
relative importance (i.e., weight w in utility function), and finding an optimal configu-
ration during the planning process. Generating feature models and executing S-AHP
require polynomial time. Hence, we ignore them for the evaluation and only concentrate
on finding optimal configuration for different situations.

To evaluate the derivation of situational processes from the process family, we gen-
erated six reference processes with 15, 25 and 50 abstract activities (i.e., VPs), where ei-
ther 25% or 50% of activities were optional. Table 6.1 shows the descriptive information
about these reference processes, including a total number of activities, the percentage of
optional activities, as well as a number of variants for each process model. These pro-
cess models are considered based on the analysis of our case study. We used between
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1 to 4 variants for each VP in the reference process. Additionally, we considered 4 facts
and 4 concerns. For each concern, 5 qualifier tags were defined. We defined obligations
between variants in the reference process. All the variants within the repository are ran-
domly annotated with 0 to 4 facts. Additionally, all the variants are annotated with 4
concerns.

We applied our process and method engineering tool suite, as well as the process line
configurator, i.e., the planner, for generating the feature model and deriving situational
processes based on random relative importances between soft-facts, concerns, and con-
straints over hard-facts. We used a computer with an Intel Pentium 4 CPU 3 GHz, 2GB
of RAM, Windows XP, an up-to-date Java Runtime Environment6, and SHOP2 v2.8.

In our experiments, the independent variables are the total number of VPs (i.e., ab-
stract activities) and variants for reference processes (40, 50 and 100), the percentage of
optional activities in the process models (25% and 50%), the percentage of obligation
(15% and 30%), and the number of hard-facts (2 and 3). The dependent variable in our
experiment is the execution time for deriving situational processes.

Figure 6.7 shows results for the processes with 25% (a) and 50% (b) optional activi-
ties. As shown in the figure, our approach returns a situational process in feasible time.
Results reveal that all factors (i.e., independent variables), i.e., size of process, number of
obligations, number of selected factors, and the percentage of optional activities or VPs,
influence process derivation. Generally, an increasing number of VPs and variants in the
process models, as well as, the number of obligations has direct impact on increasing
execution time. The former is because it forces the tool to evaluate more combinations
of configurations and the latter is because it adds more complexity to the selection of
variants. Interestingly, the results show, that the number of VPs and variants have larger
impact on execution time than obligations. On the other hand, adding more constraints
(selecting more hard facts) leads to a decreasing execution time. This was expected, since
the increase of hard facts causes filtering more variants, which decreases the configura-
tion space.

Comparing the results in part (a) and part (b) of Figure 6.7 shows, that with the same
number of activities and variants in a process model, increasing the percentage of op-
tional activities generally leads to higher execution time for finding the situational pro-

No. of activities | Pct. of optional | No. of Variants
Process Model 1 | 15 25% 40
Process Model 2 | 15 50% 40
Process Model 3 | 25 25% 50
Process Model 4 | 25 50% 50
Process Model 5 | 50 25% 100
Process Model 6 | 50 50% 100

Table 6.1: Process models detail descriptions
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cesses. However, as planning is independent from process execution, duration of plan-
ning is not a critical obstacle for large problem spaces, as well.

6.4.2 Runtime Complexity of the Application of Computational Method
Engineering

Basically, the runtime overhead, which is induced by the application of information as
annotated with MCs on technical level, is very low. As most data structures and platform-
specific code is generated before the project is started, a developer’s work is nearly not
affected by the application of our framework.

In general, the coordination of short-dated SPCs is under the control of a workflow en-
gine, which assigns activities in a procedural linear way. Only the coordination of FPCs,
requires a more complex analysis of monitored design activities by applying the rules,
as introduced in Section 5.6.4. This is influenced by the consistency evaluation phase
(cf. Section 5.6.4) more, than the setup phase, which creates the influence table in linear
time. The discussed evaluation of performed modeling events and their respective influ-
ence on individual artifacts must be performed by a pairwise comparison of all events.
This means a runtime complexity of O(n?) with n being the number of all modeling
events, which were performed during the project. However, this unwanted complexity
can be reduced by ordering the events considering the associated time-stamp, as well as
the affected data type. The sorting of events, which comprises a worst-case complexity
of O(n) x log(n), results in a time-line of data type specific events, which reduces the
number of relevant events drastically. An additional optimization can be reached by the
introduction of individual strategies, which are restricted to the events of a particular set
of FPCs.

Contrasting the control of FPCs, the complexity of the application of technical MF infor-
mation is negligible. The generation of editors, as discussed in Section 5.3 is performed
before runtime, and does not influence the developers’s work negatively.

Our observer mechanism likewise does not bring negative effects. The sending of no-
tifications between an editor and the dispatcher is restricted through manual activities,
which must be stored in the context of an artifact. Although, this requires more memory,
we think, that nowadays this is a reasonable situation. On the other side, the retrieval
of individual elements for validation depends on the applied model query language, but
this should be realized with a acceptable complexity of O(n), where n is a model’s num-
ber of instance elements.

As statements of a guideline are likewise transformed into platform-specific code before
runtime, the evaluation of them at runtime does not take more time, than conventional
validation frameworks. In contrast, the application of statements, which are relevant to
the actual method exclusively, reduces the number of statements to be validated drasti-
cally. Furthermore, the interpretation of a guideline is performed in linear time.
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6.5 Descriptive Evaluation

In this section, we evaluate the reasonableness of introducing our approach. Therefore, in
Section 6.5.1, we first describe the main characteristics of process assessment or improve-
ment standards, using the example of CMMI and Automotive SPICE. In accordance with
process management requirements to achieve different maturity levels, we discuss the
main challenges, which enterprises can face by establishing our approach. Beside that,
we discuss our approach with regard to its possibilities to improve an enterprise’s pro-
cess landscape. Finally, we provide a checklist for enterprises, which enables them to
decide about the approach’s reasonableness and discuss potential pitfalls (Section 6.5.3).

6.5.1 Process Improvement Standards and Maturity Levels

Although, our approach in general would be applicable to any kind of software devel-
opment, there are some prerequisite characteristics, which an enterprise should fulfill to
reasonable set up such a complex project. Therefore, since process assessment models,
as discussed in the following, provide characteristics to attest the process-related level of
expertise of an enterprise, we compare these characteristics with contributions and needs
of our framework. We describe CMMI and Automotive SPICE as prominent members of
process assessment models, as well as relevant characteristics, which an enterprise must
fulfill to reach a particular level of expertise. Based on the expertises of an organization,
we subsequently will discuss, how individual levels can be reached or supported using
our approach.

6.5.1.1 Capability Maturity Model Integration

CMMI [CMM10] was developed by the Software Engineering Institute (SEI) at the Carnegie
Mellon University to provide organizations with the essential elements for effective pro-
cess improvement. Best practices are published as so called models, which focus on a
particular area of interest. Actually, version 1.3 of CMMI supports three areas of interests
(development, acquisition, and services), whereas development is most relevant to our work.
The model refers to five process area categories, which are relevant to achieve an individ-
ual maturity level of an organization. These categories are support, project management,
process management, and engineering. For each of these categories various process areas
were identified, to provide best practices considering relevant activities, outcomes, and
other generic practices. To achieve a particular maturity level, the achievement of the
specific and generic practices associated with each predefined set of process areas must
be measured. The five maturity levels of CMMI are defined in [CMM10] as follows:

e At maturity level 1 (Initial), processes are usually ad hoc and chaotic. The organi-
zation usually does not provide a stable environment to support processes. Success
in these organizations depends on the competence and heroics of the people in the
organization and not on the use of proven processes. In spite of this chaos, matu-
rity level 1 organizations often produce products and services that work, but they
frequently exceed the budget and the schedule documented in their plans.
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e Atmaturity level 2 (Managed), the projects have ensured that processes are planned
and executed in accordance with policy; the projects employ skilled people who
have adequate resources to produce controlled outputs; involve relevant stake-
holders; are monitored, controlled, and reviewed; and are evaluated for adherence
to their process descriptions. The process discipline reflected by maturity level 2
helps to ensure that existing practices are retained during times of stress. When
these practices are in place, projects are performed and managed according to their
documented plans.

e At maturity level 3 (Defined), processes are well characterized and understood,
and are described in standards, procedures, tools, and methods. The organization’s
standard processes, which are the basis for maturity level 3, are established and
improved over time. These standard processes are used to establish consistency
across the organization. Projects establish their defined processes by tailoring the
organization’s standard processes according to tailoring guidelines.

e At maturity level 4 (Quantitatively Managed), the organization and projects estab-
lish quantitative objectives for quality and process performance and use them as
criteria in managing projects. Quantitative objectives are based on the needs of the
customer, end users, organization, and process implementers. Quality and process
performance is understood in statistical terms and is managed throughout the life
of projects.

e At maturity level 5 (Optimizing), an organization continually improves its pro-
cesses based on a quantitative understanding of its business objectives and per-
formance needs. The organization uses a quantitative approach to understand the
variation inherent in the process and the causes of process outcomes.

6.5.1.2 Automotive Software Process Improvement and Capability
Determination

Automotive SPICE [Aut10] is property of the German Association of the Automotive In-
dustry (VDA) and was developed by the Automotive Special Interest Group (AUTOSIG)
since 2001 as an automotive-specific variant of the original SPICE, aka. ISO/IEC 15504.
Similar to CMMI it defines a model for the assessment and the improvement of develop-
ment processes with a particular focus on the assessment of the performance of control
unit manufacturer in the automotive domain. The model mentions 3 assessable life-cycle
processes: Primary processes, such as acquisition, supply, or engineering, supporting pro-
cesses, such as configuration management or change request management, and organiza-
tional processes, such as management, process improvement, or reuse.

For the assessment, SPICE defines 5 capability levels, which are analyzed considering
particular process attributes on each level. The capability levels of SPICE are defined
in [Aut10] as follows:

e Level 0 (Incomplete process): The process is not implemented, or fails to achieve
its process purpose. At this level, there is little or no evidence of any systematic
achievement of the process purpose.
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e Level 1 (Performed process): The implemented process achieves its process pur-
pose.

e Level 2 (Managed process): The previously described Performed process is now
implemented in a managed fashion (planned, monitored and adjusted) and its
work products are appropriately established, controlled and maintained.

e Level 3 (Established process): The previously described Managed process is now
implemented using a defined process that is capable of achieving its process out-
comes

e Level 4 (Predictable process): The previously described Established process now
operates within defined limits to achieve its process outcomes.

e Level 5 (Optimizing process): The previously described Predictable process is con-
tinuously improved to meet relevant current and projected business goals.

To assess the achievement of an individual capability level, level-specific process at-

tributes must be proven using associated generic practices, which are defined in the stan-
dard alike.

6.5.2 Process Improvement with Situational Method Engineering for
Process-Centric Languages

In general, assessment standards provide enterprises with a set of standard work prod-
ucts and activities, which must be conducted to support various process areas best. Con-
ducting the main activities to produce required outcomes, thereby, bases the minimal
level of maturity, on which further improvement activities can be achieved. Therefore, to
ensure a standard-compliant execution of the primary process area of engineering, our
approach enables the guaranteed compliance with required activities and work products,
as defined in some standard. Automated support for workflow management not only en-
sures the accomplishment of relevant development activities, but also the construction of
required work products. As a result, especially, the achievement of a standard’s initial
level for the engineering process area is enabled by our framework.

To achieve more mature levels, more and more measurement and optimization capa-
bilities as well as an institutionalization of knowledge management are required from an
enterprise to realize controlled and managed processes in all areas. Therefore, standards
require the realization of an additional set of process attributes grouped into capabil-
ity levels. The process attributes are features of a process, that can be evaluated on a
scale of achievement, providing a measurable characteristics of process capability. Due
to their generic characteristic, they are applicable to various process areas in most cases.
The following lists generic practices, which are used for Automotive SPICE and defined
in ISO/IEC 15504-2, to determine a distinct level of process maturity. From 36 practices,
which are introduced by SPICE, we here focus on the 17 practices, which benefit from our
approach. We refer to the respective practices by referencing a supporting component or
technique, which we introduced in our approach:
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GP1.11

GP21.2

GP21.3

GP214

GP 215

GP221

GP 222

GP3.1.1

GP3.1.2

GP3.1.3

GP3.14

GP3.21

GP3.2.2

GP3.24

GP 3.2.5

The guidance of a development process using a workflow management system, as
discussed in Section 5.6, supports the achievement of the process outcomes

The configuration (cf. chapter 3) and execution (cf. chapter 5) of situational and
project-specific processes, supports planning and monitoring of the process perfor-
mance

Monitored information about modeling activities (cf. Section 5.4) and processing
times of individual tasks, which are provided by the workflow management system
(cf. Section 5.6), enable an analysis of these data to subsequently adjust the process
performance

The design of methods using role-oriented MFs, as discussed in Section 4.7, ensures
the definition of responsibilities and authorities for performing the process.

By linking the process model and methods with computer-interpretable guidelines
(cf. Section 4.6) and documents, resources are identified and made available to per-
form the process according to the plan.

The definition of MMV (cf. Section 4.4) and associated guidelines (cf. Section 4.6)
clearly allows to define the requirements for the work products.

Computational Method Engineering, as described in chapter 4, defines the require-
ments to document and control the work products.

The definition of a reference process, as described in chapter 3, is a standard process
that enables the deployment of a defined process.

The design and configuration of process line assets to achieve a situational pro-
cess life-cycle based on a reference process (cf. chapter 3), implicitly determines
the sequence and interaction between processes, so that they work as an integrated
system of processes.

The design of methods using role-specific MFs, as discussed in Section 4.7, enables
the identification of the roles and competencies for performing the standard pro-
cess.

By the definition of required editor capabilities (cf. Section 4.5), the identification of
required infrastructure and work environment for performing the standard process
is supported.

By applying SPLE principles, as discussed in chapter 3, the deployment of a defined
process, that satisfies the context-specific requirements of the standard process, is
ensured.

By the definition of a role-specific MF, which is annotated with skills and additional
policies (cf. Section 4.7), the assignment and communication of roles, responsibili-
ties, and authorities is enabled for performing a defined process.

By the generation of customized editors (cf. Section 5.3), resources and information
to support the performance of the defined process can be provided automatically.

Situational processes with computer-interpretable information provide an adequate
process infrastructure to support the performance of the defined process.
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GP 3.2.6 Monitoring of modeling events and cycle time information from a workflow man-
agement system, enable to collect and analyze data about performance of the pro-
cess to demonstrate its suitability and effectiveness.

GP 4.1.5 Monitoring of modeling events and cycle time information from a workflow man-
agement system, enable to collect product and process measurement results through
performing the defined process.

However, our approach not only supports to achieve a more mature level in auto-
motive SPICE, but it also can be applied to different domains, which is demonstrated in
Table D.1. The table summarizes the potential support for generic practices (GPs) and
specific practices (SPs) of the domain-independent CMMI in accordance with its defined
process areas and maturity levels in its staged representation.

6.5.3 Checklist for Organizations

Beside the realization of individual practices of a specific assessment standard to prove
high maturity, our approach is likewise applicable to more general organizational sce-
narios. However, the setup of a process line with technically annotated MCs to execute
development processes requires huge initial efforts, which only make sense, if individual
characteristics are given. Therefore, to enable an organization to decide whether the setup
of such a detailed process knowledge base is meaningful or not, the following provides a
checklist of most important indicators, for which our approach provides an organization
with an added-value:
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Checklist

= Defined Processes: Most organizations already define a reference process. SPLE can
directly be built on available processes to link a reference process with technical MCs
and to bring processes into life. Setting up the overall process landscape from scratch, of
course, can be a rather time-consuming task.

= Many processes: The efforts for setting up a process line, does not pay off for
organization with only few processes.

= Complex processes: Simple projects which do not define a process with artifacts
and guidelines in detail, are realized more easier without setting up a complex method
repository. The reuse of defined MC and explicitly defined computational method
engineering information, only pays off for organizations with rather complex processes,
which are difficult to manage due to several information sources which must be observed
during the development.

= Processes change: For domains with frequently changing product requirements and
changing compliance requirements, which influence the process model, setting up a
process line reduces efforts considerably. In parallel, situational processes are in line
with approved practices all the time.

= Multiple Collaborations: When different experts are involved in the development
of interrelated artifacts, introduced traceability capabilities and change impact analyses
reduce inconsistencies and time-consuming artifact reviews.

= Guideline available: If an organization already has defined guidelines and best
practices, they can be moved from repositories or databases to the process model simply,
i.e., automated guidance can be provided in reasonable time.

= Large-scale meta models: Our approach mainly focuses on model-based software
development processes. In particular, for a large number of complex meta models, which
must be observed during the development process, the correct application of defined
language elements can be ensured using our approach.

= Compliance requirements: Many products and domains are influenced by the
requirement to be compliant with a particular standard or law. The configuration of a
situational process based on characteristic criteria, which cover these standards, and the
execution of configured process ensures the compliance.

= Measurement and Optimization: The usage of a workflow management system for
development processes meets the requirement to monitor relevant process performance
parameters. An organizational plan to optimize development processes benefits from
controlling the process using our approach.
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Especially, for large organizations with a huge number of defined processes, which
frequently must be adapted to product-specific and regulatory needs, our approach fits
well. Additionally, if the complexity of guidelines, best practices, and documentation
about the correct application of meta models exceeds the capabilities of individual devel-
opers and if the development process has to be improved, our approach provides means.
Beside that, the approach is independent from any domain, i.e., it is reasonably applicable
to various domains, as long as some of the above criteria are given.

6.6 Case Study

As a second case study, we demonstrate the versatile applicability of our approach. There-
fore, we use an example, which is different from the automotive sector. To enable domain-
specific development of namely service oriented architectures, enterprise applications,
and embedded systems, the three distinct process frameworks M3SOA [MID09b],
M3EJB [MID09a], and M3EE [MID09c] were established by a German enterprise. Us-
ing the example of these three different methods, our case study will demonstrate the
establishment of a process line (M3), from which situational processes can be derived
to support the situation at hand, i.e., to provide a domain-specific process, which fits
project-specific needs. Beside the business-oriented design of our process line, we demon-
strate the design of variants on technical level, which subsequently enables us to enact
resulting process family members.

6.6.1 Setting up the process line for M3 and Situational Process
Engineering

The loosely-coupled processes M>SOA (Figure E.1), M3EJB (Figure E.2), and M3FE
(Figure E.3) are characterized by a similar structure, which predestines them to be ag-
gregated into one process line, from which situational processes can be configured for
the situation at hand. The figures E.1 to E.3 depict the similar base structure of each
single process on business level. One can see, that regardless of the application area,
each process starts with an Initiation phase and a System Evaluation phase to elicit the re-
quirements and an overall system specification. Likewise, in each process an architecture
projection phase details the system under construction. The final phases depend on the
concrete type of the system to be developed, i.e., the goal of the process. This either is
the development of a service-oriented architecture, which targets the useful composition
of services, the development of an enterprise software using EJB technology, or the de-
velopment of an embedded system, which is characterized by hardware and software
components. Independently, each process ends in a final construction phase, which is
followed by the implementation of the system.

By comparing and analyzing the commonalities and differences of these three pro-
cesses, we defined a reference architecture, which integrates main constituent parts on
business level. Therefore, to meet the requirements of a process line, we simply merged
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equal parts, such as the initiation phase or the system evaluation phase, while we com-
bined other parts, such as the architecture projection and system deployment phase of
the SOA process, or software architecture projection and software construction phases of
the EE process. The resulting reference architecture is illustrated in Figure E.4. It repre-
sents the common structure for all process members of the M3 process line and provides
five variation points, which can be fulfilled by situation-specific variants for SOA devel-
opment, EJB development, or EE development.

Although, the process line defines the main phases of each process family member, the
actual process realization depends on concrete methods, which support the development
of either an SOA, an EJB application, or an embedded system best. Regarding methods,
all three process frameworks follow the idea of MDA [Fra03], which proposes the step-
wise refinement of models from an abstract stakeholder-specific level down to a platform-
specific model. Therefore, the methods, models, and techniques to be used cause the vari-
ability in our process line. The variability is realized on technical level, where we created
various variants, which enable the design on respective abstraction levels following the
original method specifications. Thereby, regardless of M3SOA, M3EJB, or M3EFE each
development phase requires three outcomes: a first artifact, which defines a level-specific
system overview, a second artifact, which defines its dynamic behavior, and a third ar-
tifact, which defines the static structure of the system. During the development phases,
these three artifacts are refined from one abstraction level to a more concrete level down
to implementation. In accordance with this pattern, for each abstraction level, which
for most of the time corresponds with a variation point in our reference architecture, we
created scenario-specific process variant.

In this case study, we realized each variant as a sequential process, i.e., a complex
MC, which consists of three MCs to produce relevant outcome and a fourth MC to com-
bine and validate the results. For example, following the defined specification for EJB
development during the initiation phase, Figure E.5 shows the corresponding variant.
It shows the three activities to define the Business_Context (general overview), the Busi-
ness_Activities (dynamic behavior), and the Business_Entities (static structure). Finally, the
last MC of the sequence is used to release produced artifacts and to combine them into
one required artifact or milestone.

Another example of the application of that pattern is given in Figure E.6. The fig-
ure shows the initiation-specific variant for supporting EE development. In contrast,
the sequential process produces different output: Initial_Requirements defining the gen-
eral overview, System_Context defining the static structure, and System_States defining the
dynamic behavior.

Basically, we followed this pattern for the definition of each variant. However, we
already mentioned, that some activities have to be combined to meet our process line
requirements. An example is given in Figure E.7. As the reference architecture, does not
distinguish between software and system architecture specification, as applied for the
original embedded system process, we combined the two required abstraction levels into
one variant. Therefore, the variant consists of six MCs in sequential order and it ends
with seventh step to release the produced output. That way, we combine the two M3 E E-
specific abstraction levels (Software Architecture Projection and Software Construction)
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as follows: First we put the three predefined methods of the software architecture pro-
jection level of EE development in sequential order to define a base software architecture
(general overview), the system interactions (dynamic behavior), and the decomposition
of software units (static structure). Afterwards, the same variant is used for the refine-
ment step. That means, that additional three succeeding methods are defined to produce
a refined set of design software components (general overview), software states (dynamic
behavior), and a detailed domain model (static structure). (Note, that in this scenario it
will not affect the resulting process, whether a variant aggregates more methods, or if
various methods are split into more variants to realize a connected sequence of variation
points.)

After we created our reference architecture and corresponding variants, we define our
configuration criteria, which is very simple for this scenario. As our process line, basi-
cally, was developed to enable either SOA development, EJB development, or embedded
system development, the definitions of three hard facts is sufficient for that approach. Of
course, during the course of time, various other variants would complement the process
line for different scenarios. However, for now, we only have to annotate a respective
hard fact (SOA, EJB,EE) with a variant. Finally, we link our variants with corresponding
variation points of our reference architecture, from which we can derive a feature model,
which is depicted in Figure 6.8. The feature model corresponds to our reference architec-
ture and shows the dependencies between variants and variation point. Subsequently,
a situational process can be generated automatically by binding appropriate variants to
variation points considering selected hard facts.

4 g5 M3Family
a A M3 (FEATURE)
4 # Construct SoftwareVarPoint (FEATURE]
a A
g SoftwareConstructiondEJB (FEATURE)
8 SoftwareSpecificationdEE (FEATURE)
4 #® Create System EvaluationVarPoint (FEATURE)
a
O EvaluationdEE (FEATURE)
o EvaluationdEIB (FEATURE)
o Evaluationd S04 (FEATURE)
4 #® Create ImplementationVarPoint (FEATURE)
a B
g ImplementationdEE (FEATURE)
g ImplementationdEJB (FEATURE)
g Implementationd504A (FEATURE)
4 @ Create InitiationVarPoint (FEATURE)
a
o Intitiation4S0A (FEATURE)
o Initiationd EE (FEATURE)
o Initiation4 EJB (FEATURE)
4 #® Create Architecture ProjectionVarPoint (FEATURE)
a A
8 ArchitectureProjectiond SOA (FEATURE)
g ArchitecureProjectiond EJB (FEATURE)
g SystemArchitectureProjectiondEE (FEATURE)

Figure 6.8: Feature Model for the M3 Process Line
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Finally, we discuss adaption capabilities of our process line using the example of
the SOA engineering process. The original SOA process only focuses the definition of
a service-oriented architecture based on already available services. That means, that the
process focuses on the orchestration and choreography of existing services more, than the
development of services from scratch. To take the development of a new service into ac-
count, as well, the original method refers to the application of various technologies, such
as, for example, EJB. As the SOA process ends in a System Architecture, which is likewise
consumed by the Software Construction phase of the original EJB process (M3E.JB), we
simply can combine the two processes by passing the result of the SOA process as input
to the Software construction phase of the EJB process. To reach this, we can follow two
different ways: The most simple way, is to adapt the resulting process for SOA develop-
ment by adding missing E]B-specific process steps manually. That means, that we would
select the E]B-specific variant for software construction from the variant repository and
append it with the end of the already configured SOA process. For automation, the ref-
erence architecture could be extended by an additional variation point, likewise. By the
means of an additional variation point, a respective EJB variant can bound if the set of
annotated facts is adapted correspondingly. In both ways, we would be able to use the
results of the SOA architecture projection phase, as input for the software construction of
an EJB-based service.

6.6.2 Variant Design for M3

After we demonstrated the setup of our process line, the general design of variants, and
the definition of configuration criteria, the following will focus the technical viewpoint
of variants. Using the example of the Initiation phase of an SOA development, we will
show a more detailed variant description, which subsequently is executed. The overall
process of the variant is illustrated in Figure 6.9.

One can see, that this variant differs from our standard pattern, to provide a more
detailed insight in technical design. To specify the tasks, which must be performed for
SOA initiation, on a more fine-granular level, this variant is composed of ten MCs, which
are performed in sequential order.

The first four MCs detail the individual steps to specify the general overview by the def-
inition of use case diagram. The first step (CreateActors) focuses on the identification of
stakeholders in form of actors. Subsequently, the system use cases have to be identified
(CreateUCs), before stakeholders are assigned to use cases in which they are interested
(RelateActorsWithUCs). Finally, inclusion and extension relationships have to be defined
between individual use cases (DefineUsecaseRelationships).

The following four MCs detail the the definition of the dynamic behavior. Based on the
previously defined use cases, activities are created to detail their behavior in the follow-
ing (DefineActivities). Next, each activity is refined by relevant actions (DefineActions)
and edges (DefineEdges). Finally, the control-flow of an activity is defined by relating
actions via edges (DefineControlFlow).

The next MC details the definition of the static system structure in form of a class diagram
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Figure 6.9: SOA-specific Variant: Initiation Phase
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(DescribeBusinessEntities), before the general requirements artifact is validated and re-
leased for subsequent phase in the SOA development process (ReleaseRequirements).
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Figure 6.10: Artifact-specific Meta Model Views for SOA Initiation

Next, for each artifact of an MC, a corresponding MMV with annotated EUSA values
is created, as illustrated in Figure 6.10 and Figure 6.11. For the SOA initiation phase,
we decided to use the standard UML2.1 meta model for MMV definition. Therefore, for
each artifact, which has to be created during the first eight MCs, Figure 6.10 depicts a
corresponding MMV, i.e., an extract of the the UML meta model, which is relevant for
a respective MC’s output. The figure illustrates the eight artifact-specific MMVs and re-
spective EUSA values (indicated by the dashed line). (Note, that the read-only EUSA is
not indicated, as each element is read-only by default). For example, the artifact in the
upper left part (Stakeholders), uses UML’s Model element to identify elements of type
Actor via the packagedElement association. By the means of EUSA values, we defined, that
elements of type Actor can newly be created and the name of an actor can be modified.
Any other elements or features are defined as read-only.

The definition of the other MM Vs is realized equally. However, a particular case is given
by the final MC (“ReleaseRequirements”), which not only releases and validates indi-
vidual artifacts (general overview, dynamic behavior, and static structure), but it also
aggregates the three artifacts into one artifact (“Requirements”), which is input to the
subsequent design phase. To achieve, that all elements, which originally belong to the
input artifacts, also belong to the output artifact “Requirements”, FromTo relationships
between elements of the output artifact and its input artifacts are defined, as discussed
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in Section 4.4.3.

E UseCase
- - packagedElernent | = r= =
= Model = | Egname : String | \=/ ControlFlow T {=! OpaqueAction
Eg name ; String - packagedElement = - ingoing| 5§ name : String i 1 [Eg name : String
1 - = Activity - node = OpaqueAction 1 1
] [Eg name : Strin | Eg name : Strin . =
= 2 1 * |—H 2 - outgoing | [ ControlFlow - target = opaqueAction
— 1 1 | [Eg name : Strin [Eg name : Strin |
] Class e Fo1 1= 2

- packagedElement |
+ | Egname; String |

Figure 6.11: MMV for Requirements Artifact created during the SOA Initiation phase

Finally, method-specific guidelines were defined to ensure particular naming conven-
tions, as demonstrated in Section 4.8. By the means of the graphical guideline notation,
different statements in the form of the graphical statement notation or the textual syntax
of OCL, can be combined and simply adapted when the need arises.

6.6.3 M3 Enactment

Using the above example of a process model on technical level, the following demon-
strates the enactment of a situational process for SOA development. In our prototypical
environment, we demonstrated the enactment of the overall M3 process family. How-
ever, this would go beyond the scope of this thesis.

Figure E.8 to Figure E.11 illustrate the results, which are generated by our editor genera-
tion part. The figures show the various generated editors, which were derived from the
method-specific MMVs, providing the capabilities as defined by the means of the EUSA
annotation. However, the figures do not only show the order of editors, in which they
become active to enable the individual methods of the process, but also the integration of
third-party editors. In the process model, which is depicted in Figure 6.9, we referenced
a third-party tool explicitly to enable the MC DescribeBusinessEntities. Thereby, we relin-
quished the definition of an MMV. Instead, we provided our framework with an editor
identifier (“simpleuml.presentation.SimpleumlEditorID”), which enables our framework
to run an external editor using standard services of the eclipse platform. The external ed-
itor, which we required to be used for class diagram design, is a simple UML editor, as
depicted in the upper part of Figure E.11.

The final method of the initiation phase has to validate and release produced artifacts.
Therefore, the generated editor (lower part of Figure E.11) enables to view and modify
most relevant elements (use cases, actions, and classes) of respective artifacts.

During the execution of the methods, the creation and modification of model elements
is notified by the editors and stored in the history of respective artifacts, as discussed in
Section 5.4. The following scenario, will demonstrate the identification of potential ar-
tifact inconsistencies and subsequent process coordination activities: during the second
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MC (CreateUCs) (cf. Figure 6.9), we created the four use case elements “SellProduct”, “Ac-
ceptOrder”, “TransactOrder”, and “DeliverProduct”. Therefore, in the context of that
MC, four notification events were stored in the history of the MC’s output artifact “Use-
Cases” to indicate, that the four use cases belong to that artifact. Now, we assume, that
one or more uses cases would be modified (e.g., by changing their “name” feature) in
the context of the final MC “ReleaseRequirements”. A notification about such an event,
would be assigned to the history of the output artifact “Requirements”. After the work-
flow of our case study process is completed, the inconsistency identification strategies,
as discussed in Section 5.6.4 would be processed. In this case, scenario 3 would reveal a
potential conflict depending on the artifact “UseCases”. Based on this information, the
workflow management would restart the workflow to check for consistency and to val-
idate all guidelines, which were defined for UseCase elements in the affected MC, i.e.,
“CreateUCs”.
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7 Related Work

Previous work already exists to enable continuous tool chains, as well as, flexible and
dynamic process execution. In EDONA [OT08], an actual research project of the pole
of competitiveness System@tic Paris-Area, the objective is the construction of an open
platform facilitating the realization of chains of development by providing an interop-
erability and interchange architecture for automotive development processes and tools.
EDONA'’s principle of the integration platform is to provide access to a common storage
space accessible by any tool chain. Therefore, its goal is to provide a common meta model
to define the data exchanged and integrated between the partners, a common technical
architecture based on the Eclipse Equinox platform, and a set of more generic tools and
tool inter-operation bridges.

In Aldazabal et al. [ABN'08], the authors suggest a service oriented middleware,
called ModelBus, connecting model-based development tools and the services they of-
fer. Thereby, process enactment and process orchestration tools can be used to create/
orchestrate /monitor composite services by combining the different services from the dif-
ferent tools into a workflow described in a language, such as BPMN [BPM09]. Similar to
EDONA, the focus is on model exchange and not on method engineering or enactment.

The SHAPE project [SHA10] investigates the development and realization of enter-
prise systems with ideas of model-driven engineering. As proposed by the MDA con-
cept, it separates the modeling into the three abstraction levels Computation Independent
Model (CIM), Platform Independent Model (PIM) and Platform Specific Model (PSM)
and tries to fill the gap between them with model transformation. From this approach
we borrow the idea of distinguishing the business domain from the IT domain.

Burmeister et al. follow an approach of applying multi-agent based technologies,
namely BDI-agents, for business processes modeling and execution [BACR08]. Mainly,
the usage of agent technology with its ability of flexibility and pro-activity shall provide
agile behavior of the entire business process management system, whereas the “process
plan” is described in terms of project goals, subgoals, and associated plans, which shall
achieve the respective goals. We adapt the notion of business process modeling in the
area of method engineering and enactment.

Contrasting the above strategies, in this thesis, we created an MDE based CAME en-
vironment to support method engineering, process enactment and execution capabilities,
which enable flexible guidance for situational development processes. As CAME envi-
ronments basically consist of the two parts (CAME part and CASE part) (cf. [NR08]) and
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since automated tailoring is neglected by most of the existing CAME approaches, the
following discussion distinguishes relevant approaches, which are related to these two
parts:

Since SPLE, as described in chapter 3, is an essential part of our complete CAME envi-
ronment, we first describe work, which is related to our automated process tailoring ap-
proach (Section 7.1). Subsequently, we discuss various complete CAME environments,
as well as, some approaches, which focus particular parts of an CAME environment (Sec-
tion 7.2). Finally, we summarize and compare most relevant approaches in Section 7.3.

7.1 Related Work on Method Engineering

As an one-size fits-all approach does not work for software development processes [Fir04],
a multitude of strategies was developed to face the design and tailoring of development
processes. Beside the idea of software process lines, as introduced by Rombach [Rom06]
and realized as a configuration-based approach in chapter 3, various approaches have
been proposed in the literature. Existing method engineering approaches, such as the
assembly-based, the extension-based, and the paradigm-based approach (cf. [RDRO3])
are distinguished in literature [HSR10, ABO11, GD12] from other approaches, such as
configuration-based approaches [BE96,BPK]J07], instantiation-based approaches [KSP09],
generic-based approaches [RPP96b,GP01], architecture-based approaches [MHAKO08,PG08],
and recovery tailoring approaches [HHBO1, Xu05, PNPS06]. Among existing approaches,
configuration-based approaches focus on creating a target method by adding/removing
elements from the base methods. In the following, we focus on the comparison of our
approach with other configuration-based approaches.

Henninger et al. [HB01] adopt a case-based approach for tailoring the software pro-
cess, where configuration (i.e., tailoring) is performed by specialization through an incre-
mental set of antecedently tailored processes. Xu et al. [Xu05] define software process
configuration as a knowledge-intensive activity, and analyze the benefits of knowledge
management in this task. In this context, we encapsulate the knowledge by the means of
feature models specifying the configuration space for situational methods.

Karlsson et al. [Kar04] describe a method to enable method configuration (i.e., method
tailoring) using reusable configurations of a base method suitable for a particular char-
acteristic of a development situation. The proposed method introduces Configuration
Packages and Configuration Templates that predefine a combination of development
tracks to facilitate reuse across commonly occurring situations. The process is preformed
manually and the authors did not consider situational characteristics in the development
process. In [WKO04], Wistrand and Karlsson discuss the use of method components in a
general way as building blocks for method engineering. The method engineer can use
interfaces which are available for each method component to construct and configure
situational methods.

SPEM [OMGO08a] is a prominent member of modern process definition languages,
which provides means for variability modeling and an assembly-based configuration of
engineering processes. SPEM’s meta model defines capabilities to manage libraries of
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method content, i.e., different types of MFs and assembled MCs, and processes. Variabil-
ity is added by the capabilities of variation and extension of particular SPEM elements
to customize variability elements without directly modifying their original structures.
Instead, variability enables a method engineer to describe the differences (additions,
changes, omissions) relative to the original. The approach mainly encompasses struc-
tural variability without considering situational characteristics or automated assembly
support.

In [BBG'05a], they present the results of the PESOA project, which developed a
methodological foundation for process family engineering considering the variable be-
havior of application software in the e-business and automotive domain, following well-
known product line engineering principles. They introduce a conceptual model to define
variant-rich processes and a methodology called the PESOA process for developing, us-
ing, and maintaining families of processes. The methodology mainly is guided by the two
parallel phases domain engineering and application engineering, as likewise applied in
our approach and widely-accepted in product line engineering.

Washizaki [Was06] proposes another technique for establishing process lines by ex-
tending SPEM to express the commonality and variability of the process using UML
activity diagrams. The approach is based on building a process line architecture or ref-
erence process, which is configurable via variants. The reference process is composed
of a set of interrelated (variable) activities and conditional branches, which are resolved
using project characteristics represented in, e.g., a feature model. New project-specific
processes are enabled by selecting appropriate features, i.e., project characteristics, which
are associated with an corresponding variant in the reference process.

In [GP07], Gonzalez-Perez describes how the major advantages of ISO/IEC Interna-
tional Standard 24744 can be applied for the implementation of method engineering so-
lutions. Ahroni et al. [ARBO8] proposed a holistic approach by enriching the ISO/IEC
24744 with the aim of enabling situational method engineering approaches to support
method component representation, and tailoring them for situational methodologies.
The presented approach enables the specification of both structural (product-related) and
behavioral (process-related) aspects as well as procedural relationships between them.
The proposed methodology layer defines the tailoring information properties, that are
used in the endeavor layer to support the definition of situations to which a particular
method component suites and the tailoring by the means of a stage concept.

The authors of [SCO07] first characterize a process family and propose a formal ap-
proach based on the Little-JIL process definition language. In their approach they distin-
guish 3 process definition concerns, namely the process steps, the performing roles, and
the produced and consumed artifacts. Based on these concerns, they suggest the defini-
tion of a fixed process on which varying augmentations with elaborative steps are made
to tailor the process. To generate process instances, additionally, they identified different
process instance generating techniques.

Alegria et al. [ABO11] studied modeling process variability for further tailoring soft-
ware process lines. Feature models are used to represent the variability within process
models implemented using SPEM 2.0, whereas situational processes are resolved using
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a context model and a particular transformation rule set. The authors discuss an MDE-
based tailoring strategy, which helps to achieve a separation between the process mod-
eling and process enactment, and reduce the complexity by reusing tailoring knowledge
intensively. It is shown that adopting software product line engineering has potential to
improve the project’s productivity and quality, as well as the resulting software products.

Recently Method-oriented Architecture (MOA) [DIKS09,Rol09] was proposed, which
empowered the assembly-based ME principles with a standard for describing methods as
services in parallel with service discovery principles for finding distributed method com-
ponents. Our approach also utilizes MOA principles to describe and discover methods
corresponding to situational needs of a reference process. Furthermore, in [AMGB11],
they introduced the concept of Families of Method-Oriented Architectures for addressing
two major challenges of assembly-based method engineering for publication and sharing
method components as well as management of variability within software methods. To
this end, they proposed the idea of leveraging Service-Oriented Architecture (SOA) and
SPLE principles for dealing with these challenges.

Alexeio et al. [AFSK11] describe a model-driven approach, which uses techniques
from software product lines, to enable automatic variability management for software
processes and their subsequent execution. Similar to our approach, they use the feature
model notation in order to explicitly indicate variability within software processes mod-
eled in UMA (an evolution of SPEM). Resulting feature models are configured using a
product derivation tool, which resolves constraints between features to create the situa-
tional processes. Finally, tailored process models are transformed via model to text trans-
formation into interpretable language. Unlike our approach, Alexeio et al. only focus
process variabilities and the automated allocation of individual process activities. They
do not consider the design on different levels of detail (business vs. technical), PSEE
capabilities, or situational characteristics of particular methods.

In [JMO05], a domain-specific process line is proposed for process tailoring and subse-
quent process refinement. In their Emergent Process Acquisition method, they discuss
relevant steps for setting up and tailoring a process line.

In [MPRCO08], they discuss an alternative interpretation of the feature model seman-
tics in order to derive business processes more efficiently. They extend Process Family
Engineering from [SP06] to automate the derivation of business processes from a process
line, where variability is represented using a feature model. Therefore, they define a map-
ping between feature models and process models, which can be applied automatically to
create the basic structure of a business process based on a feature model configuration.

In [CATP11], Cervera et al. introduce the basic idea of the MOSKitt project, which
is, to the best of our knowledge, the only approach, which faces all the required com-
ponents of an CAME environment, i.e., method design and configuration, as well as the
CASE generation, at the same time. While the method design phase in MOSKitt is similar
to the creation of our reference process on business level, method configuration is differ-
ent. While in our approach configuration means to automatically link situational MCs on
technical level with variation points of the RP, the configuration in MOSKitt means to link
a generic process with available technical information, such as meta models, transforma-

264



CHAPTER 7: RELATED WORK

tions, or editors. This enables the generation of CASE-specific parts. Hereby, Cervera
et al. overcome the complexity of the CAME environment development by the means
model-driven techniques, i.e., they use models and model transformation similar to our
approach. However, while a process model is instantiated without considering variabili-
ties explicitly to guide the development process, the main benefit of their model transfor-
mation is a static binding between process activities and already existing technical assets,
such as meta models and editors.

In [AB12], Alegria and Bastarrica define a meta-process to produce a project-specific
software process model in a planned way. The meta-process, which is called Context
Adaptable Software Process EngineeRing (CASPER), is subdivided into the two main
phases: domain engineering and application engineering. During the domain engineer-
ing phase, the context of a process line is defined. Afterwards, the variabilities and com-
monalities within the process line are identified and defined using a feature modeling
approach, where entities or features are characterized by their application scenario. A
process line architecture organizes a reference process for identified features and deals
with variation points and variants as defined in the feature model. Finally, a model to
model transformation resolves variability according to project-specific characteristics and
a predefined transformation rule set.

7.2 Related Work on Computer-aided Method Engineering
Environments

As initially discussed in Section 2.4.2, an CAME environment is composed of two parts:
the basic CAME part, which supports ME activities, and an CASE part, which sup-
ports decision making and workflow management at process runtime. Unfortunately,
the CAME approaches which came up during the past decades, do not focus CAME in
all of its facets, as discussed e.g., in [NRO8]. This drawback also was analyzed in vari-
ous reviewing papers, which were published since the first CAME environments came
up [GLB 86, ACF97, ADOV02,Gru02,NR08, MR12]. Most of them either focus the ME re-
lated part, the CASE part, or individual sub-parts. Following this distinction and due to
the difficulty to contrast approaches with different orientations, we split our discussion of
related work into these two main parts of an CAME environment, as well. Therefore, af-
ter we discussed various work, which is related in particular to ME and the assembling of
situational methods from a method repository in the last section, we now focus on work,
which is related to the CASE part of an CAME environment and split into the design and
execution of an PSEE component and an CASE generator component (cf. [NROS]).

We start by giving a general overview about work, which supports individual parts of
the CASE part of an CAME environment. Subsequently, we describe various approaches,
which focus on the PSEE, before we describe individual approaches of holistic CAME
environments.
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7.2.1 Overview about Computer-aided Method Engineering constituent
Parts

Beside ME activities, a holistic CAME environment, amongst others, should enable the
design and execution of the following tasks: workflow management or control of the
development process, generation of CASE tools, provisioning of guidelines or constraint
evaluation, and traceability across the overall process model outcomes. For all of these
tasks individual approaches, which though, are unrelated for most of the times, do exist.

Already in 1995, Kraut et al. [KS95] discussed characteristics of coordination in soft-

ware development, such as scalability, interdependence, or uncertainty. To overcome
these and other process-specific challenges, various evolutions of PDLs, such as APEL
[DEA], JIL [Jaz97], UML4SPM [BGBO6], or SPEM [OMG08a], were proposed and multi-
ply discussed in literature (cf. [ZL.01, BJF09]). While all these languages exclusively fo-
cus either the design or the enactment of development processes, they lack other CAME
needs, such as the generation of CASE tools. To face this need of creating customized
and method-specific user interfaces or editors, various other unrelated approaches were
introduced during the last years, as well (cf. [ES97,Dav03,CCT 03, Van05,SMV07,Gro09,
YLZX10]). However, they are completely detached from other relevant capabilities. This
also holds for most of the known guideline or constraints formalisms, which were de-
veloped to ensure individual characteristics, qualities, or facts of process artifacts on var-
ious levels of abstraction. Indeed, in the area of computer-interpretable clinical guide-
lines (cf. [CKHO08, PTB*03]), they intend the development of a guideline formalism. This
approach, though, more conforms to a process definition, which guides clinical staff
in required activities efficiently, similar to most PDLs as discussed before. Other ap-
proaches, such as OCL [OMGO06a] and Visual OCL [KTWO02], or similar academic ef-
forts, such as [BJ06], [ALSS08], or [GRE10] particularly focus on the specification and
the automated evaluation of constraints on design documents. Likewise, various ap-
proaches were developed to follow tracing dependencies, i.e., to enable traceability (cf.
[CHCCO03, ARNRSG06, GG07, BMMMO8]).
All these isolated applications, though, do not fulfill the needs and requirements of an
CAME environment, as they do only focus one concern, i.e., they are not integrated with
each other. This disables them to support development processes efficiently for the sit-
uation at hand and brings us to the need of a Process-Centered Software Engineering
Environments, a prestage or at least essential part of an CAME environment.

7.2.2 Approaches for Process-Centered Software Engineering
Environments

As discussed in Section 2.4.2, an PSEE is an environment, which provides manifold
support for software developers by the enactment of process models. Such environ-
ments include various services, which, amongst others, concern tasks, as discussed in
the last section. Contrasting CAME environments in general, they neglect ME and/or
CASE generation facilities, while they particularly focus the enactment of process mod-
els. A first generation of PSEE prototypes, where a process model is interpreted at run-
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time to manage interaction and enforce consistency between documents, is given by,
e.g., Melmac [Gru90], Merlin [PS92], ADELE [BEM93], ALF [DG94], Serendipity [GH98],0r
SPADE [Wes99]. In parallel, other approaches with different qualities, features and con-
texts, such as social interaction ( [AAO94]), scalability ( [BSK98]), analysis ( [DG98]),
method guidance [PWD"99], process evolution ( [Cun00]), or the incorporation of do-
main knowledge ( [DZR"04]), have been proposed in the field of PSEEs.

Although, many efforts have been spent to create an PSEE, which is accepted in var-
ious domains, especially, in industry, none of the mentioned approaches has reached a
meaningful level. This is not only due to the high complexity and difficult usability of
respective approaches, but also due to the restriction of a developer’s creativity, which
particularly is important in the area of software development. Therefore, lessons learned
lead to newer approaches with trimmed functionality in order to focus today’s needs
more. In the following, we describe individual approaches, which came up during the
recent years:

In [BGB05], Bendraou et al. introduced the UML4SPM meta model for software pro-
cess modeling, which extends a subset of UML2.0 concepts without influencing the stan-
dard. Due to the restricted expressiveness of the former version of SPEM 1.0, they pro-
posed an executable action semantics within activities using the expressiveness of the
well-known and widely-accepted UML2.0. Based on UML4SPM and the executable meta-
programming language Kermeta [MF]05], the authors introduced a framework to enable
process modeling, simulation and execution. Providing an adapted version of UML2.0
activity diagrams with an execution semantics using Kermeta enables the design and en-
actment of software development processes in terms of an PSEE. The great advantage of
using UML4SPM, though, is to use the well-known standard UML2.0, which most com-
munities are familiar with. That is also the reason, why we used the mature version of
SPEM 2.0 for process modeling on business level.

The Transforms environment [MSMR09] was proposed by Maciel et al. to address an
integrated approach for process modeling and enactment based on specializations of in-
dividual SPEM 2.0 concepts. They focus the design and the enactment of an MDA pro-
cess, as well as, the execution of model transformations. Therefore, they extend SPEM’s
work product definition by four specializations: an UMLModel, which is produced or
generated during the process execution; a TransformationRule, which contains the trans-
formation rules to automatically process models during the process execution; an Ex-
traModel, which is used for documentation and additional information; and a Profile,
which bases the modeling on each phase. By relating the specialized work product types
with tasks, which are organized in a work breakdown structure, they are interpretable
for a process-conform application. Similar to our approach, they focus on an MDA de-
velopment process by detailing work products or artifacts of the development process
with meta model or profile information.

Weber et al. propose a semantic process- and artifact-oriented collaboration environment
(SPACE) to tailor and follow organization-specific process models in [WEB09]. In the
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wiki-based platform, collaborative creation of processes and artifacts is enabled through,
e.g., visual templates and editors. Additional semantic annotations enable consistency
checks, traceability between various process fragments to provide insights to the effects
of individual changes, and personalized views to enable stakeholder-specific perspec-
tives on information. Beside the process model, which specifies the default flow of ac-
tivities, an artifact model, which comprises the internal structure of artifacts, i.e., data or
relationships to other artifacts, is associated with the process model. Base on the artifact
model, concrete templates are generated, that actively support developers in the defini-
tion of artifact instances following previously defined data structures.

The ADvanced Artefact Management System (ADAMS) [DFOT10] is a web based sys-
tem, that integrates project modeling, resource allocation, and scheduling capabilities
with artifact management features, such as configuration management, traceability, and
artifact quality management. In contrast to traditional PSEESs, it is conceived for the def-
inition and cooperative production of software artifacts, which is achieved in ADAMS
by a fine-grained management of artifacts. A project management subsystem enables
the definition of a schedule and allocates human resources to the artifacts. By the means
of checklists, which are associated with artifacts, guideline functionality is supported as
quality management capability. Contrasting our artifact design using MMV to define
the concrete data structure, ADAMS provides composition links between abstract arti-
fact descriptions and each of the contained sub-artifacts to define fine-grained hierarchy
of artifacts.

In [ABN108], the authors describe a service-oriented middleware called ModelBus,
which is another idea to enable automated model-driven development processes. Mod-
elBus is an environment, which connects services and allows clients to invoke those ser-
vices. In collaboration with particular enactment tools, composite services can be cre-
ated, orchestrated, and monitored within a single workflow. A workflow orchestration
is realized by a transformation of SPEM-based models to the Business Process Execution
Language (BPEL), as described in [SA09]. Using the ModelBus and the associated work-
flow orchestration tooling enables the modeling of a process, which subsequently can be
executed in a distributed environment to use different modeling services (automated or
human-based) according to a defined workflow. In parallel, the ModelBus makes models
and meta models transparent to the individual modeling services.

From 2008 to 2011 the European research project MOST - Marrying Ontology and Soft-
ware Technology [MOS11] developed an ontology-aware modeling environment, which
provides means for semantic model validation, semantically-rich tracing, and software
process guidance. Combining the meta modeling technical space with the ontology tech-
nical space (cf. [KBAOQ2a]), it enables to compute next steps in a particular software de-
velopment process. Therefore the guidance engine must be configured by a so-called
SW-Process Guidance Ontology, which organizes knowledge about tasks, their precondi-
tions and postconditions and how they are related to the modeling artifacts. Based on the
actual process state, i.e., already defined model-based artifacts, accomplished tasks, and

268



CHAPTER 7: RELATED WORK

the currently logged user/role, the guidance engine is enabled to compute open tasks,
which are displayed to the user. The environment distinguishes between design time
to model processes in the ontology and meta modeling technical spaces, and enactment,
which guides the engineering process based on reasoning at runtime.

7.2.3 Approaches for Computer-aided Method Engineering
Environments

As shown in the last section, PSEEs only address sub-parts of an CAME environment
and do not provide a complete set of features, which support engineers in planning,
design, enactment, and automation of development processes. Therefore, CAME envi-
ronments complement PSEE with missing capabilities, as discussed in Section 2.4.2. One
of the earliest representative of an CAME environment was the Methodology Representa-
tion Tool (MERET) [HO92]. MERET is a product-oriented approach, where methodolog-
ical knowledge is specified and tailored using a semantic data-model called ASDM. Al-
though, MERET is understood as CAME environment, it misses process enactment and
CASE generation support. In parallel with MERET, a first academic prototype, called
MethodBase [Har97b], was introduced. In MethodBase, they focus on the customization
of complete methods, which enable process enactment and CASE generation, in contrast
to e.g.,, MERET. Likewise, Decamerone [HB95] is another environment of the early days,
which provides CAME and CASE capabilities in parallel. It consists of a repository con-
taining method fragments and assembled methods, which are specified by the means of
the Method Engineering Language (MEL) [BSHO1]. Beside CASE generation for the en-
actment, Decamerone also considers means for configuration management and project
scheduling. All of these earlier approaches, are rarely applied outside academia, but
base the development of most recent CAME environments. As until today, to the best of
our knowledge, almost no commercial tool does exist, which provides full capabilities,
while different groups consistently attempt to provide new environments, this shows the
reasonable importance of CAME. The most meaningful approaches, which came up dur-
ing the last years are described in the following.

By restricting their focus on the requirements engineering domain, Si-Said et al. in-
troduced a Computer Aided Requirements Engineering (CARE) environment named MEN-
TOR [SSRGY6]. Its core component is a guidance engine, which guides the design and ap-
plication of process models for existing requirements engineering methodologies. MEN-
TOR basically consists of four components: a method engineering environment for sup-
porting method engineers in the modeling of product and process fragments of a method,
an application engineering environment to support the enactment, the guidance engine,
which guides method and application engineering in their work likewise, and a repos-
itory to organize and store methods. Enactment is based on a set of so-called ways-of-
working, which is a tree representing goal-specific process knowledge using the contex-
tual paradigm, which was developed as part of the NATURE process theory [JP]793].
That way, given the context of a product under development, the guidance system sup-
ports decision making during the creation of products, which are based on ER [Che76]
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and static OMT [RBP90] paradigms.

MERU is another CAME environment, which is described in [GP01]. The Method
Engineering Using Rules (MERU) tool is based on a product model driven Method Re-
quirements Specification (MRS), which subsequently is used for a technical instantia-
tion. Similar to our distinction between the business level and the technical level, an
implementation-independent MRS only describes the nature of a method and provides
an additional abstraction, which is translated into an instantiation of a technical meta
model called MVM, automatically. From this instantiation, the method is generated, and
subsequently given as input to their CASE tool environment called RAPID [PS96]. The
MRS in MERU is based on a meta model called MVM, which provides a generic view on
product elements, links to connect product elements, and constraints to specify properties
on links and product elements. Unlike other CAME environments, MERU does not pro-
pose the definition of a process model or method components, which must be combined
by an method engineer manually. Instead, only the requirements of a method have to be
specified using the generic Method Requirements Specification Language (MRSL). This
exclusively bases the generation of a plan of instantiation, from which method fragments
are generated automatically by matching predefined rules to get appropriate method
fragments from the method base.

In 2003, Saeki [SAE03] introduced an CAME environment, which combines an assembly-
based method engineering approach with an editor for specifying meta models and a
generator for diagram editors. Similar to our approach, they propose an easy to learn,
powerful language to describe the product and the process part of a method in a computer-
interpretable way. While product descriptions specify the structure and the data types of
a work product, process descriptions are used as guidelines for navigating developers
through their activities. Contrasting our approach, where the MMV mechanism restricts
existing meta models to needs of outputs and inputs of an MC, Saeki proposes the usage
of class diagrams for the specification of activities” output data structure from scratch.
For a product definition, OCL constraints can be defined to enable an artifact-centric
validation mechanism, which is similar to the MC-specific guidelines in our approach.
Similar to our approach, the result of evaluation of a specific constraint does influence
the continuation of the overall process. For modeling the process, activity diagrams are
used to guide the application of generated, method-specific editors, as well as, situational
constraint evaluation. However, contrasting our approach, they neglect variability man-
agement as well as the individual facilities, such as consistency management, traceability,
or monitoring. Recently, they enhanced their method repository component by version
control and change management [Sae06].

MetaEdit+ [Tol06] was introduced in 1994. It is an CAME environment, which pro-
vides a meta modeling language to generate CASE support from high level models, and
a tool suite for defining the method concepts, their properties, associated rules, sym-
bols, checking reports, and generators. For meta modeling, MetaEdit+ uses the GOPPRR
(Graph-Object-Property-Port-Role-Relationship) language [TK08] as conceptual data model,
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which specifies the product part of a method on meta level. For these product parts,
rules and guidelines can be defined to guide the correct usage of manifold editor types,
which are generated from the models defined in GOPPRR. MetaEdit+ provides a couple
of Method Management Tools [CMV96] to enable CAME capabilities, such as a Method
Base, which organizes predefined method fragments and symbols needed for their repre-
sentation, a Method Assembly System to edit and validate methods, and a environment
generation system for delivering CASE tools. MetaEdit+ is a product-oriented environ-
ment, which does not provide explicit enactment or process-related capabilities. Never-
theless, due to its simple application and the powerful design, validation, and reporting
facilities, it is the only tool, from which a commercial version does exist until today.

In Section 7.1, we already mentioned the method engineering capabilities of the Eclipse-
based modeling platform named MOSKitt [CATP11], which is also a complete CAME en-
vironment, since is enables the automated generation of CASE tools for a method’s prod-
uct part and the execution of a method’s process part. A methodological framework,
which consists of three phases is provided to realize this: During the method design
phase an implementation-independent method specification is build using the SPEM
standard, similar to our reference architecture on business level. During the method
configuration phase, the resulting model is instantiated by linking the product and the
process part of a method with specific technology-specific assets, that will be used for
enacting the methods. That means, for example, that artifacts are linked with predefined
meta models, and tasks are associated with existing editors or transformations. Finally,
tool support is generated, during the method implementation phase. In this phase a
process engine enables the execution of the process part modeled in SPEM, whereby ed-
itors, which were linked with individual tasks during the previous phase, are used for
the creation and modification of artifacts. Contrasting our approach, where enactment is
supported by an automated generation of editors and validation mechanisms, only pre-
defined assets can be re-used and linked with the process model.

Beside process modeling, tool management, data management, and process execu-
tion, Polgar et al. particularly focus the certification of processes, in [PRSHO09]. Similar
to MOSKitt and our approach, process modeling is realized on two levels: the platform-
independent level, which specifies the basic fragments of the methods, and the platform-
specific level, which links the fragments with available technical assets. The platform-
specific model, subsequently, is translated into computer-interpretable workflow model
and a storage model, which contains information to connect tools and artifacts. For pro-
cess certification, criteria, which are required by some standard, are formalized first. By
linking the criteria with a representation of the process model in the ontology technical
space, standard conformance can be checked using a reasoning tool.
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7.3 Discussion and Comparison of the Approach with
Related Work

The last sections have shown, that many related work on ME, PSEE, and CAME was de-
veloped during the last years. In the following, we discuss all these approaches in com-
parison with our approach namely Situational Method Engineering for Process-Centric
Languages (SME4PCL). Due to the different focuses of the manifold approaches intro-
duced above, we decided to follow these focuses in our comparison. Therefore, to evalu-
ate the qualification of SME4PCL with regard to its ME facilities, we first compare the ME
capabilities of our approach and other comprehensive CAME environments with capa-
bilities of described ME approaches. Secondly, to evaluate the qualification of SME4PCL
with regard to its PSEE facilities, we compare our approach and CAME environments
with capabilities of described PSEE approaches. Finally, we focus the CAME environ-
ments themselves and evaluate our approach with regard to its general applicability as
an CAME environment.

For each comparison, we discuss the underlying criteria and capabilities, which are partly
inspired by categories from [NRO8]. We use them for the comparison in a summarizing
table to discuss strengths and weaknesses of our approach. While some criteria were an-
swered by v'(meaning, that the approach provides means to support this capability) or
X(meaning, that the approach provides no means to support this capability), other criteria
are answered by a concrete technique to support an individual feature or capability.

7.3.1 Comparison of Method Engineering Approaches

Table 7.1 illustrates a comparison of ME approaches (cf. Section 7.1), comprehensive
CAME environments (cf. Section 7.2.3), and SME4PCL. The used criteria are described in
the following:

1. Method Requirements Analysis (MRA): It is a generic phase of an ME process,
which focuses on the identification of important features of the method which
should be developed. During the MRA phase, the requirements, which a method
should fulfill, should be defined in a formal way:.

2. Method Design (MD): It is a generic phase of an ME process, which focuses on
the specification of a general architecture of methods or processes, based on the
requirements defined during the previous phase.

3. Method Implementation (MI): It is a generic phase of an ME process, which focuses
on the assembly of a situational process from suitable methods or method frag-
ments. The result of this phase is a set of products, which enable the enactment of
the process to guide a developer.

4. Method Test (MT): It is a generic phase of an ME process, which focuses on the
verification and/or validation of a newly developed process or method. Various
characteristics, such as the conformance with requirements of the MRA phase, cor-
rectness, or feasibility can be tested during this phase.
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5. SME Approach: As introduced in Section 2.4, there are several alternative ways to
produce a method. This criteria is used to compare approaches with regard to their
method building process.

6. Multi-Level Architecture (MLA): Methods and processes can be described on differ-
ent levels of detail to fulfill the specific needs of individual stakeholders. Therefore,
this criteria is used to indicate, whether or not an approach enables a design on
different abstraction levels.

7. Automated Component Configuration (AutoConf): This criteria states, whether
methods/processes must be configured by a method engineer manually or if an
automated support for the configuration of situational methods and/or processes
is available. Due to the growing number of methods, which are developed over
time, we mean, that this must be a major criteria for future applications.

8. Situation Matching: To address the situational facet of a method, methods must
be identifiable with regard to their situational applicability. Therefore, this criteria
states, whether or not situational needs are considered by the approach. We refer
to the respective mechanism if situation matching is supported.

9. Variability Handling: To prevent method engineers from reinventing the wheel,
reuse and adaption of available methods is important. To reach this, variabilities
and commonalities between methods and processes must be managed. We refer to
this capability as variability handling and indicate, whether or not this feature is
supported.

All the approaches, which are illustrated in Table 7.1, stress the significant impor-
tance of a sound decision making processes leading to situated methods. However,
there are hardly ME approaches, which address and facilitate decision-making to achieve
an automated or semi-automated configuration of situational methods following the re-
quired characteristics of a situation. Hence, our approach aims at providing automated
decision-making for deriving effectively situated methods from process lines based on
characteristics of a project. Moreover, one strong point of our approach with respect to
other approaches is considering project characteristics as decision criteria and annotating
process line assets with these characteristics. Hence, every situational process, which is
created using our technique, ensures the satisfaction of hard facts and the optimization
of soft-facts and concerns. Unlike traditional methods, feature models are generated in
our approach and provide a basis for subsequent steps for building situational processes.
Therefore, we introduced feature models in the role of an intermediate helper in our ap-
proach.

7.3.2 Comparison of Process-Centered Software Engineering
Environments Approaches

While some of the presented approaches only do focus the ME part of an CAME environ-
ment, other approaches do only address process modeling and the subsequent enactment
of the modeled process, i.e., they only represent the process support of CAME. Therefore,
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Table 7.2 illustrates a comparison of PSEE approaches (cf. Section 7.2.2), comprehensive
CAME environments (cf. Section 7.2.3), and SME4PCL. The used criteria are described in
the following:

1.

Process Definition Language (PDL): This indicates the notation, which is used for
process modeling.

Guidance: Guidance is referred to a capability, which helps developers in doing
their work right or producing a valid outcome. Therefore this criteria states, whether
or not an approach provides guidance facilities to a developer.

CASE Generation: CASE generation refers to the capability to create editors or other
tooling, which allows for editing process artifacts, based on the information given
in a process model.

. Monitoring: This is a capability, which allows for the recording of activities per-

formed during a process.

Consistency: This is a capability, which ensures the consistency between artifacts.
As artifacts share information, modifications may cause negative impacts, which
must be managed through a consistency management facility.

Data integration: This criteria concerns the capability to integrate product-specific
information into the process model. Hereby, we distinguish the design of input (in)
and output (out) artifacts of a method. While some approaches allow for the defi-
nition of artifacts using proprietary languages, some approaches support standard
languages, such as UML. Alternatively, artifacts are referenced by static links in the
file system, or artifacts are considered as black box representatives, without taking
into account a method’s product part in detail.

Execution: Whether an PSEE environment supports the execution feature or not, is
determined by its capability to guide users through different activities defined in a
process model in a correct order, i.e., to provide users with appropriate tasks.

Product-oriented: A classification means for PSEE strategies. Approaches, that fo-
cus on modeling the product-related part of methods, while they neglect process-
specific parts and their enactment, are classified as product-oriented PSEE environ-
ments.

Process-oriented: Approaches, that deal with the process-related issues of methods
and support the enactment of the process model.

Various alternative approaches are proposed to enable basic features of an PSEE en-

vironment, such as process modeling, CASE generation, and process execution. While
some approaches focus individual parts more than others, there are hardly approaches,
which provide meaningful support to each PSEE part. In particular, special features,
such as guidance in form of a method-specific decision support system, or other specific
benefits, which become possible if a workflow engine controls activities, are out of scope
for most of available approaches. Therefore, in our approach, we focused on a more
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compressive environment, which enables additional features in a process-centered envi-
ronment. By an explicit definition of expressive guidelines, which are associated with
individual methods, a strong guidance mechanism is provided to developers to support
their decision making and to prevent them from careless mistakes. Additionally, the
monitoring of artifacts and modeling activities ensures consistency between artifacts and
enables continuous process improvement through the analysis of monitored data.

7.3.3 Comparison of comprehensive Computer-aided Method
Engineering Approaches

Finally, we compare our approach with regard to existing approaches, which consider
themselves as a comprehensive CAME environment taking into account the CAME part
and the CASE part likewise. Therefore, Table 7.3 illustrates a comparison of compre-
hensive CAME environments (cf. Section 7.2.3) and SME4PCL. The used criteria are de-
scribed in the following:

1. ME Support: This concerns the general capability of an CAME environment to sup-
port ME activities.

2. Process Support: This concerns the general capability of an CAME environment to
support process enactment or execution.

3. CASE Tool Generation: This concerns the general capability of an CAME environ-
ment to support the process-model-based generation of tools, which actively sup-
port a development process.

4. DSL-Integration: This concerns the capability of an CAME environment to link
product-related information with the process model. While we consider the spec-
ification of meta-models from scratch as ad-hoc DSL-integration, we consider the
integration of already existing meta models within the process model as reuse-based
DSL-integration.

5. Traceability: This concerns the capability of an CAME environment to interrelate
information spread across various artifacts of a development process for further
analyzes, such as dependency analyses and change impact analyses.

6. Standard-based: This refers to the application of standards in respective approaches,
in contrast to proprietary languages and formalisms.

As depicted in Table 7.3, our approach fulfills the main requirements to be an com-
prehensive CAME environment. To ensure the acceptance in an as large as possible com-
munity, we based our approach on standards, such as SPEM or OCL. Furthermore, to
the best of our knowledge, our approach is the only one, which considers monitoring of
modeling activities, by which an artifact history is established to enable automated trac-
ing and artifact consistency management. Furthermore, the reuse and customization of
available meta models or DSLs to use them according to a predefined process, is novel
to this area. Although, other approaches integrate data alike, they either define a meta
model from scratch or they reference relevant artifact using a static link in a file system
(cf. Table 7.2).
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ME Process | CASE Tool DSL- Traceability | Standard-

Approach | Support | Support | Generation | Integration based
[CATP11] v v X ad-hoc X v
[SSRGI6] v v v X v X
[GPO1] v v v X X X
[SAE03] v v v ad-hoc X v
[Tol06] v X v ad-hoc X X
[PRSH09] v v X X X v
SME4PCL v v v reuse-based v v

Table 7.3: Comparison of CAME environments
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8 Conclusions and Outlook

In this thesis we have shown, that the design and execution of software development
process models can be achieved with manageable efforts by integrating additional in-
formation with process models and combining principles of model-driven engineering,
method engineering, and software product lines. Thus, we addressed the objectives, that
we raised in the introduction and are especially answering challenges, such as:

e Provision of effective means to manage and to evolve process descriptions for the
situation at hand (by the application of our approach for software process line en-
gineering),

e Support of developers in designing sound process descriptions, which enable ef-
fective guidance (by enabling general process information to be complemented by
innovative computer-interpretable information on technical level),

e Support of the enactment and execution of sound process descriptions using com-
puter power (by the interpretation of process model descriptions on the operational
level), and

e Provision of a continuous tool chain (as demonstrated by the developed prototypi-
cal environment and the case studies).

In Section 8.1, we first summarize the achievements and contributions of this thesis. Af-
terwards, in Section 8.2, we describe future research possibilities that could be build upon
this thesis.

8.1 Summary of Thesis

We developed solutions, that address the identified challenges and derived objectives by
providing the following artifacts.

Software Process Line Engineering

In chapter 3, we successfully demonstrated the combination of method engineering tech-
niques with software product line engineering, in order to establish a software develop-
ment process line. We provided a methodology, which covers domain engineering, i.e.,
process family engineering, and application engineering, i.e., situational process engi-
neering, in equal shares.

Therefore, we demonstrated the construction of an evolutionary process line repository,
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which simply adopts existing process descriptions, while enabling the definition of new
ones, for process family engineering. The assets stored in the repository are annotated
with situational characteristics describing their application scenario, and used for the de-
sign of variable processes satisfying the needs of business-oriented and technical stake-
holders.

The approach is enabled by automating the configuration and variability binding of a
process family to derive situational members. Therefore, we developed a transformation,
which associates business-centric process information with technical information into an
intermediate feature model. The feature model is the input to the developed situational
configuration mechanism, which is based on situational, priority-based characteristics
of assets in the feature tree and HTN planning. Finally, we sketched our approach for
validating the feasibility of derived processes with respect to available organizational
resources.

Computational Method Engineering

In chapter 4, we detailed the modeling of software development processes on technical
level. The additional technical information, which is required to subsequently provide an
automated guidance system for software developers, concerns the control-flow seman-
tics of these processes and contained activities, or method chunks.

We introduced a new control-flow semantics, which enables the flexible coordination of
development activities based on work products’ content and validation results. Further-
more, we introduced new meta models in order to integrate various information sources
with a process model by the means of an aspect-oriented mechanism. Thereby, we com-
plemented process knowledge by computer-interpretable product-specific information,
tooling capabilities, and guidelines.

We introduced Meta Model Views, which enable the restriction of domain-specific lan-
guages, or meta models, to work product-specific needs, and allow for the definition
traceability dependencies between the content of work products. Additionally, we pro-
vided a mechanism, which enables the specification of tooling capabilities with respect
to individual activities and associated work products. Finally, we introduced a meta
model and an associated graphical notation for the definition of context-specific guide-
lines. The guideline formalism enables the process-driven combination of various state-
ments, which have to be ensured for the various output products of a development pro-
cess.

Method-driven Guidance of Development Processes

In chapter 5, the automated processing of development process design models was de-
scribed. We explained the generation of new artifacts and interpretations of process
model information, which is provided with the technical design level to support guid-
ance on operational level. Thereby, we developed a generic code generation, which de-
rives platform-specific editor code from process models to provide development activi-
ties with relevant editor capabilities only.

In the context of each generated editor, we further demonstrated the application of de-
fined guidelines on the operational level. Therefore, we described an execution semantics
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of the process-centered guidelines, and provided a translational semantics for processing
contained statements using OCL.

To monitor performed development activities and to assign affected model elements with
respective work products, we developed the artifact observer mechanism. This mecha-
nism provides editors with a standardized interface for information exchange and uses
MMV information, as annotated with work products of the technical design level, for the
assignment of model elements to corresponding artifacts. Finally, we demonstrated the
usage of monitored information and validation results of guidelines, to enhance work
product quality, to ensure the consistency between artifacts, and to assign development
activities automatically.

8.2 Future Research

This thesis provides a sound overview about techniques and artifacts, which are required
to enable complex model-driven development processes more efficiently. Although, we
have demonstrated a working application of our approach, it bases further development.

Software Process Line Engineering

At the moment, our process line engineering approach statically links variation points
and variants. To provide more flexibility and automation, the notion of method signa-
tures or chunk descriptors (cf. [MR05, RPR98]) has to be further evaluated for matching
the application scenario of variants in the context of the reference process. Thereby, the
processing of predefined method chunks can be extended by additional means to config-
ure method chunks from method fragments, as well.

Furthermore, different planning mechanisms have to be considered for process deriva-
tion in the future. While we have demonstrated the general applicability of planning
techniques for the binding the variabilities in a software process line, other techniques
could be more appropriate to face that challenge. Especially, if continuous process im-
provement becomes relevant to optimize the process line results, analysis data from past
projects may influence the planning process and the quality of resulting processes con-
siderably. Therefore, metrics are defined in the future, which are used for the analysis of
monitored data available from performed projects. This information, for example, is used
to perform trade-off analyses on planned processes, i.e., alternative process realizations
using different methods.

Based on the results of this thesis, a national funded research project was initiated in co-
operation with an industrial partner in 2012. The project aims at the development of a
Process Framework & Data Model based on a layered V-Model method. Thereby, our future
research will focus on more sophisticated mechanisms to customize development pro-
cesses considering various process- and product-related standards, and other relevant
needs to achieve a final product. Therefore, the introduced process line approach will
be integrated with product line engineering in order to incorporate the product-related
part of development on instance level, as well. A further goal of this project is the devel-
opment of a mechanism to perform gap analyses to identify the discrepancies between
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an enterprise’s current processes and standard-conform processes, as provided by the
framework automatically.

Computational Method Engineering

The presented approach focuses on individual method fragments to be extended by ad-
ditional, computer-interpretable information. In the future, further method fragments
will become more relevant, as well. For example, as sketched in Section 4.7, a detailed
role-specific information model, which is associated with the process model, would en-
able user skill-specific assignment of activities, and the definition of activity-specific data
access.

Furthermore, existing information models and transformations can be extended to face
additional situational needs. For example, editor generation can be extended by addi-
tional transformations to support table-, tree-, or graph-based editors, by which work
products can be processed in a more user centric manner. Likewise, the guideline for-
malism can be extended by additional operators and concepts, which enable further val-
idation capabilities, or by an additional translational semantics to be compliant with val-
idation frameworks or technical spaces, which are different from OCL or MDE.

Method-driven Guidance of Development Processes

In the future, it has to be evaluated, whether the applied activity-centric approach matches
the needs of software development processes best. The procedural management of sin-
gle activities, as discussed in this thesis, is easy to handle, and available technologies can
be adopted simply. In the industrial context, though, often product-centric approaches
are preferred. Therefore, it has to be evaluated, whether there are more appropriate ex-
ecution mechanisms, or if different mechanisms must be combined to achieve optimal
results. For example, in [SVHB05], we already sketched an idea of using agent technol-
ogy for this. Especially, since agile development has more and more become of particular
interest in most software development domains, we plan to evaluate the application of
our ideas to this development paradigm, as well as the extension of introduced process
execution mechanisms to enable agile development processes. In parallel, we plan the
extension of traceability and consistency mechanisms to refine the management of mul-
tiple different concerns spread across various artifacts more efficiently.

Another objective, which we plan to face in the future, is the support of distributed devel-
opment, where multiple developers are guided by one complex process model in order
to process the same or different work products. Therefore, a more sophisticated model
management must be established, which supports transaction concepts and multi-user
access on models and artifacts.

The presented approach forms an appropriate foundation for the aforementioned en-
hancements of model-driven development environments and thus, serves as a suitable
basis for further research.
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B Translational Statement Semantics

transformation NewTransformation(in gl : GL, out oclout: OCL);
main () {
//the root element, i.e. self must have only one outgoing edge
gl.rootObjects ()[GL:: PosClass ]. outReferences —>forEach (ref){
ref.oclAsType(GL:: InstanceTransition).
handlelnstanceTransition (null , null);
b
}

—Helper function to pass through only
helper GL:: InstanceTransition :: handleInstanceTransition (InputSrc:

OCL:: expressions :: OCLExpression, inputVars:OrderedSet(String)):
OCL:: expressions :: OCLExpression {

}

var srcTMP:=InputSrc.deepclone (). oclAsType(OCL:: expressions ::
OCLExpression );

—InstanceTransition

return self._end.oclAsType(GL:: NegClass).handleNegClass
(srcTMP, inputVars);

—Handle association from individual to navigation concept
helper GL:: AssociationTransition :: handleAssociationTransition
(InputSrc:OCL:: expressions :: OCLExpression,
inputVars:OrderedSet(String)): OCL:: expressions :: OCLExpression |

—Handle set asssociations —>Must be transformed to an
—IteratorExpression
if (self.oclAsType(GL:: AssociationTransition ). objectRef.upperBound
<> 1)then{
—Case: Association makes iterator expression over set of
—objects with forAll, exists , reject , collect , or select
if (self.iterationType.repr() = "forAll" or
self .iterationType.repr() = "exists" or
self .iterationType.repr() = "select" or
self .iterationType.repr()="collect “or
self .iterationType.repr()="reject’)then |
—Make the resulting IteratorExpression
var res :OCL::expressions::IteratorExp =
new OCL:: expressions :: IteratorExp ();
—Make all iterator variables, i.e. for all
—associated individuals
var iterators :OrderedSet(OCL::expressions:: Variable);
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self._end.outReferences —>forEach(iterator |

iterator.ocllsTypeOf(GL:: InstanceTransition)){
iterators += iterator._end.makeVariable();

¥

—Set body expression

res.body := self._end.oclAsType(GL:: NavigationNode).

handleNavigationNodeForSet(null ,inputVars);
—Set source expression

if (InputSrc= null or InputSrc.ocllsKindOf
(OCL:: expressions :: NullLiteralExp)) then {

res.source := self.reference2PropCallExp ();

}

else{
var srcTMP:=InputSrc.deepclone ().

oclAsType(OCL:: expressions :: OCLExpression);

Yendif;

—Set iterator variables
iterators —>forEach (iter ){
res.iterator += iter;

b

//Set name of the iterator, i.e. the type of iteration

—(forAll , exists , collect , select ,..)
res .setName(self.iterationType.repr());

—Determine whether iterator expression result will be set or

—— Boolean wvalue

if (self.iterationType.repr()="select or
self .iterationType.repr()="'"collect or
self .iterationType.repr()="reject’)then{
//Iterator result is a set
res.setType (makeSet ());
}

else {
//Iterator result is a boolean value
res .setType (makeBoolean ());

Yendif ;

return res;

}

—Case: Association makes iterator expression over set of

—objects with includes.

—For this a specific element must be selected from the set

else if(self.iterationType.repr() = "includes"

self .iterationType.repr() = "includesAll")then{

—An OperationCall expression must be used
—OCL for includes and includesAll

—The operation is used the actual context as source and
— an iterator expression to “select” the element(s)

—which should be checked
var res :OCL::expressions:: OperationCallExp
new OCL:: expressions :: OperationCallExp ();

in

or

332



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

TRANSLATIONAL STATEMENT SEMANTICS

—Make the Selection iterator expression

var argument :OCL::expressions::IteratorExp =

new OCL:: expressions :: IteratorExp ();

—Make all iterator wvariables , i.e.

—for all associated individuals

var iterators :OrderedSet(OCL::expressions:: Variable);

self. _end.outReferences —>forEach(iterator |

iterator .oclIsTypeOf(GL:: InstanceTransition )) {
iterators += iterator._end.makeVariable ();

b

—Set iterator wvariables

iterators —>forEach (iter ){

argument. iterator += iter;

b

—Set body expression for the selection part of

—the includes operation

var expressions :Sequence(OCL:: expressions :: OCLExpression);

expressions += self._end.oclAsType(GL:: NavigationNode).

handleNavigationNodeForSet(null ,inputVars);

—Combine the expression with a type check

expressions += self._end.outReferences—>first ()._end.

oclAsType (GL:: NegClass ). maketypeValidationExpression ();

var combinedExpressions := expressions—>
makeCompositeOpCallAND () ;
argument.body := combinedExpressions;

—Set source expression

if (InputSrc= null or InputSrc.ocllsKindOf

(OCL:: expressions :: NullLiteralExp)) then {
argument.source := self.reference2PropCallExp ();

}

else{
var srcITMP:=InputSrc.deepclone ().
oclAsType (OCL:: expressions :: OCLExpression);
argument.source := self.reference2PropCallExp (srcTMP );
Yendif;

—Set name of the iterator expression,

—i.e. the selection part of the includes operation

argument . setName (" select ");

//Iterator result is a set

argument. setType (makeSet ());

—argument expression looks like the following:

—-context —>select (varltypeCheck AND elementConstraints)

—combine the argument with the result expression to get
——context —>includes (All)(context —>select (var|typeCheck AND
—elementConstraints)(—>first ()))
if (self .iterationType.repr() = "includes")then{
var firstFromSelect :OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
firstFromSelect.referredOperation :=
makeOperation (" OrderedSet(T) _Class", "first");
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firstFromSelect.source:= argument;
res.argument += firstFromSelect;}

—Case: for includesAll not only the first element is needed

else{
res.argument += argument;
}
endif;
res.referredOperation :=
makeOperation (" OrderedSet(T) _Class", "includes");
res.setType(Boolean);
var src:= argument.source.deepclone ().
oclAsType(OCL:: expressions :: OCLExpression);
src.setType(makeSet ());
res.source :=SIcC;
return res;
}
—Case: Association makes boolean expression over the
—set with notEmpty or isEmpty
else if(self.iterationType.repr() = "isEmpty" or
self .iterationType.repr() = "notEmpty") then
{
var res :OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
—~check whether the context is calculated
—or is alkready avalaible
if (InputSrc= null or InputSrc.
oclIsKindOf (OCL:: expressions :: NullLiteralExp)) then|{
res.source := self.reference2PropCallExp ();
}
else |
var srcTMP:=InputSrc.deepclone ().
oclAsType(OCL:: expressions :: OCLExpression);
res.source := self.reference2PropCallExp (stcTMP);
Yendif;
res.source.setType (makeSet());
——make the operation of the result expression
if (self .iterationType.repr() = "isEmpty") then {
res.referredOperation :=
makeOperation (" OrderedSet(T) _Class", "isEmpty");
}
else if(self.iterationType.repr() = "notEmpty") then {
res.referredOperation :=
makeOperation (" OrderedSet(T) _Class", "notEmpty");
Yendif endif;
res.setType(Boolean);
return res;
}
—Case: Association makes boolean expression
—over the set with size
else if(self.iterationType.repr() = "size")then{
if (self ._end.outReferences —>isEmpty () or
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self._end.outReferences = null)then{

—For this kind of expression the size

—of a set is compared with another size.

—as a comparison operator is the encompassing
—operation an OperationCall expression is used
var res :OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
—Create the expression to determine the size of
—a set of objects

var src :OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();

if (InputSrc= null or InputSrc.
oclIsKindOf (OCL:: expressions :: NullLiteralExp)) then {
src.source := self.reference2PropCallExp ();
}
else{
var srcTMP:=InputSrc.deepclone ().
oclAsType(OCL:: expressions :: OCLExpression );
src.source := self.reference2PropCallExp (stcTMP);
Yendif;
src.source.setType(makeSet());
src.referredOperation :=
makeOperation (" OrderedSet(T) _Class", "size");
src.setType(Integer);

——compare the result with a value

res.source := SIC;
res.referredOperation := makeOperation (" OclAny", "=");
—set wvalue with which size should be compared

var argument := self._end.expression.makeVariable ();

argument. setType (Integer);
res.argument += argument;
res.setType(Boolean);

return res;

}

—Special Case: Association makes boolean expression
—over a CONSTRAINT set with size

else{

var sizeResult :OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();

—Make the resulting IteratorExpression

var res :OCL::expressions::IteratorExp =

new OCL:: expressions :: IteratorExp ();

—Make all iterator variables , i.e. for

—all associated individuals

var iterators :OrderedSet(OCL::expressions:: Variable);
self. end.outReferences—>forEach

(iteratorliterator.ocllsTypeOf(GL:: InstanceTransition)){

iterators += iterator._end.makeVariable ();
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¥
—Set iterator variables
iterators —>forEach (iter ){
res.iterator += iter;
}i
—Set body expression
res.body :=self._end.oclAsType(GL:: NavigationNode).
handleNavigationNodeForSet (null ,inputVars);
—Set source expression
if (InputSrc= null or InputSrc.ocllsKindOf
(OCL:: expressions :: NullLiteralExp )) then {
res.source := self.reference2PropCallExp ();
)
else
var srcTMP:=InputSrc.deepclone (). oclAsType
(OCL:: expressions :: OCLExpression );
res.source := self.reference2PropCallExp (srcTMP);
Yendif;
—Set name of the iterator , i.e. the type of iteration
—(forAll , exists, collect , select ,..)
res .setName (" select");
//Iterator result is a set
res.setType(makeSet ());
sizeResult.source:=res;
sizeResult.source.setName (" select");
res.iterator —>forEach (iter){
sizeResult.source.oclAsType
(OCL:: expressions :: IteratorExp ). iterator += iter;
}i
sizeResult.source.setType (makeSet());
sizeResult.referredOperation :=
makeOperation (" OrderedSet(T) _Class", "size");
sizeResult.setType(Integer);
return sizeResult;
Yendif;
}
endif endif endif endif;
)
—Handle object associations , i.e. upper bound is 1—>
—Must be transformed to an CallOperation
else{
var src:= self.reference2PropCallExp ();
var expressions :Sequence(OCL::expressions :: OCLExpression);
expressions += self._end.oclAsType(GL:: NavigationNode).
handleNavigationNodeForField (src ,inputVars);
var res:= expressions—>makeCompositeOpCallOR ();
return res;
}endif;
)

296 —Handles a concept node which is referenced as set
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27 helper GL::NavigationNode :: handleNavigationNodeForSet
298 (InputSrc:OCL:: expressions :: OCLExpression,inputVars:OrderedSet(String)):
299 OCL:: expressions :: OCLExpression {

300 var expressions :Sequence(OCL::expressions :: OCLExpression) ;
301 var vars : OrderedSet(String);

302 —calculate the sub—expressions for each outgoing association
303 self . outReferences —>forEach (outgoing){

304 var srcITMP:=InputSrc.deepclone (). oclAsType

305 (OCL:: expressions :: OCLExpression);

306 var iteratorRefExp=outgoing.oclAsType(GL:: InstanceTransition).
307 handlelnstanceTransition (stcTMP, vars);

308 expressions += iteratorRefExp;

309 iteratorRefExp .oclAsType(ocl:: expressions :: IteratorExp).
310 iterator —>forEach(v){vars += v.getName()};

311 };

312 —if there are more than one variable it must be

313 —ensured that the compared one are different

314 var impliesClause :OCL::expressions :: OCLExpression ;

315 if (self —>outReferences—>size()>1 and

316 self.inReferences —>first (). oclAsType

317 (GL:: AssociationTransition ). objectRef.upperBound <>1)then {
318 var variables : Sequence(String);

319 self . outReferences —>forEach (outgoing){

320 variables += outgoing._end.name.substringBefore ("_");
321 };

32 impliesClause := variables —>makelmpliesSource ();

323 }

324 endif ;

325 —combine expression results from outgoing

326 —individual associations

327 var combinedExpressions := expressions—>makeCompositeOpCallOR () ;
328 —if only one individuals are referenced a

329 —implies clause is mnecessary

330 if (impliesClause=null) then {

331 return combinedExpressions;

33 }

333 —if more than one individuals are referenced a

334 —implies clause is mnecessary

335 else

336 combinedExpressions:=

337 impliesClause . makelmplies (combinedExpressions);

338 return combinedExpressions;

339 }endif ;

340 }

341

s —Handles a concept node which is referenced as single object

3 helper GL::NavigationNode :: handleNavigationNodeForField

4 (InputSrc:OCL:: expressions :: OCLExpression ,inputVars:OrderedSet(String)):
us Sequence (OCL:: expressions :: OCLExpression ) {

346 —Handle outgoing individual associations

347 var expressions :Sequence(OCL:: expressions :: OCLExpression) ;

3
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var vars : OrderedSet(String);
—calculate the sub—expressions for each outgoing association
self .outReferences —>forEach (outgoing ) {
var srcTMP:=InputSrc.deepclone (). oclAsType
(OCL:: expressions :: OCLExpression );
var iteratorRefExp:=outgoing.oclAsType(GL:: InstanceTransition).
handlelnstanceTransition (srcTMP, vars );
expressions += iteratorRefExp;
iteratorRefExp .oclAsType(ocl:: expressions :: IteratorExp).
iterator —>forEach(v){vars += v.getName()};
¥

return expressions;

—Handles an individual node be aggregating all of its property
—constraints in one Boolean expression

helper GL::instanceNode :: handleinstanceNode

(InputSrc:OCL:: expressions :: OCLExpression ,inputVars: OrderedSet(String)):
OCL:: expressions :: OCLExpression {

var expressions :Sequence(OCL:: expressions :: OCLExpression) ;
—only for individual relation between objects , e.g.
—o01 <>02 in contrast to ol.name <> 02.name
self .individualOuts —>forEach (individualRelationOUT |
(individualRelationOUT. firstParameter= null and
individualRelationOUT .secondParameter=null)or
(individualRelationOUT . firstParameter= "" and
individualRelationOUT .secondParameter="")){
var relationOut :=
individualRelationOUT . handlelndividualRelationTarget (inputVars);
if (relationOut != null)then{

expressions += relationOut;
}
endif ;
¥

—only for individual relation between objects , e.g.
—o01 <>02 in contrast to ol.name <> 02.name
self.individuallns —>forEach (individualRelationIN |
(individualRelationIN . firstParameter= null and
individualRelationIN .secondParameter=null) or
(individualRelationIN . firstParameter= "" and
individualRelationIN .secondParameter="")) {

var relationIn :=

individualRelationIN . handleIndividualRelationSource (inputVars);

if (relationIn != null)then{
expressions += relationlIn;
Yendif;

};
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—Handle all attributes

self.attributes —>forEach (ar){

var srcITMP:=

InputSrc.deepclone (). oclAsType(OCL:: expressions :: OCLExpression );
var attr = ar.handleAttribute (stcTMP,inputVars);

if(attr !'= null)then |

expressions += attr;

}

endif ;
¥

—Handle the expression field to refer the object itself

nn

if (self .expression <> null and self.expression <> and
not(self.isInSetContext ())) then{
var srcTMP:=
InputSrc.deepclone (). oclAsType(OCL:: expressions :: OCLExpression);
var exprTMP :=
self . makeExpressionFromString (srcTMP, self . expression );
if (exprTMP<>null) then {
expressions+= exprTMP;
}endif;
Yendif;

—Handle outgoing navigating associations
var vars : OrderedSet(String);
var refs :Sequence(OCL:: expressions :: OCLExpression) ;
self . outReferences —>forEach (outgoing){
var srcTMP:=
InputSrc.deepclone (). oclAsType(OCL:: expressions :: OCLExpression );
var iteratorRefExp = outgoing.oclAsType(GL:: AssociationTransition).
handleAssociationTransition (srcTMP, vars);
if (iteratorRefExp .oclIsTypeOf(OCL:: expressions :: IteratorExp )) then {
refs += iteratorRefExp;
}
else {
expressions += iteratorRefExp;
Yendif;
iteratorRefExp . oclAsType(ocl:: expressions:: IteratorExp ).
iterator —>forEach(v){vars += v.getName()};
¥
——combine different Iterator Expressions
—received from different paths
var combinedIteratorExp : OCL:: expressions :: OCLExpression;
if(refs <> null or refs—>size()>0)then |
if (refs —>size ()>1)then{
combinedIteratorExp:= refs —>combineExpressions ();
expressions+= combinedlIteratorExp;

}

else{
if (refs—>first ()!= null)then
expressions += refs >first ();
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endif ;

Yendif;
Y endif ;
var combinedExpressions:= expressions —>makeCompositeOpCallAND ();
return combinedExpressions;

}

—Helper function to combine a sequence of OCL expression
—Distinguishes different types of expressions and is responsible

—to create prenex form from a set of iterator expressions

helper Sequence(OCL:: expressions :: OCLExpression):: combineExpressions( ):

OCL::

var

expressions :: OCLExpression {

resultExpression: OCL:: expressions:: OperationCallExp :=

new OCL:: expressions :: OperationCallExp ();

var
var
var

booleans :Sequence(OCL:: expressions :: IteratorExp);
sets :List(OCL:: expressions::IteratorExp);
bodyParameter :List(OCL:: expressions:: OCLExpression);

//group the iterator expressions by type
self —>forEach (e){
if(e.ocllsTypeOf(OCL:: expressions :: IteratorExp)) then {

if (e.oclAsType(OCL:: expressions :: IteratorExp ).getName()="forAll")
then{
booleans += e.oclAsType(OCL:: expressions :: IteratorExp);
}
else
if (e.oclAsType (OCL:: expressions :: IteratorExp ).getName()="exists ")
then{
booleans += e.oclAsType(OCL:: expressions :: IteratorExp);
}
else
if (e.oclAsType (OCL:: expressions :: IteratorExp ).getName()="isUnique")
then {
bodyParameter += e.oclAsType(OCL:: expressions :: IteratorExp);
}
else
if (e.oclAsType(OCL:: expressions :: IteratorExp ).getName()="collect")
then {
sets += e.oclAsType(OCL:: expressions :: IteratorExp);
}
else
if (e.oclAsType(OCL:: expressions :: IteratorExp ).getName()="select")
then{
sets += e.oclAsType(OCL:: expressions :: IteratorExp);
}
else {
bodyParameter += e.oclAsType(OCL:: expressions :: OCLExpression);

}
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endif endif endif endif endif;
}
else{
bodyParameter += e.oclAsType(OCL:: expressions :: OCLExpression);
} endif;
¥
var actualExpRes : OCL:: expressions:: IteratorExp ;
if (booleans—>size () >1)then {
—combine the bodies of all iterator expressions
var bodies : Sequence(OCL:: expressions :: OCLExpression);
booleans —>forEach (blb.body <>null){
bodies += b.body;
b
var bodylnput : OCL:: expressions :: OCLExpression;
if (bodies—>size ()=1) then{
bodylnput := bodies—>first ();
}
else {
bodylnput := bodies—>combineBodiesAND ();
}endif;
—build prenex form
actualExpRes =booleans—>combineBooleans (bodylnput);
}else
actualExpRes := booleans—>first ();
}
endif;
return actualExpRes;

}

—Helper function to combine a sequence of expressions

—with the boolean connector "AND” in one OperationCall expression
helper Sequence(OCL:: expressions :: OCLExpression ):: combineBodiesAND ():
OCL:: expressions :: OperationCallExp {

var res : OCL::expressions :: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
res.source := self—>first ();
res.setType(Boolean);
res.referredOperation:= makeOperation ("Boolean", "and");
self —>forEach (arglarg<>self —>first ()){
res.argument += arg;
b
return res;

}

——Helper function to combine iterator expressions in prenex form.
—Finally , the body input paramter is set
helper Sequence(OCL:: expressions :: IteratorExp )::
combineBooleans (bodylnput:OCL:: expressions :: OCLExpression ):
OCL:: expressions :: IteratorExp {
var res :ocl::expressions::IteratorExp =
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552 new ocl::expressions::IteratorExp ();

553 res.source := self—>first ().source;

554 res.setType(self —>first (). getType());
555  res.setName(self —>first ().getName());
556 self —>first()—>iterator —>forEach(iter){

557 var newlter := iter;

558 res.iterator += newlter;

559 };

560 if (self —>size()>1)then{

561 self —>reject (ala=self >first())—>

562 combineBooleansRecursive (res ,bodylnput);
563 }

564 else{

565 res.body := bodylnput;

566 }

567 endif;

s return res;

560 )

570

s —Helper function to combine iterator expressions in prenex form.
s —Finally , the body input paramter is set

s helper Sequence (OCL:: expressions :: IteratorExp )::
s+ combineBooleansRecursive (inout input

57 OCL:: expressions :: IteratorExp ,

576 in bodylnput:OCL:: expressions :: OCLExpression ) {
577 var res :ocl::expressions::IteratorExp =

s new ocl::expressions::IteratorExp ();

s79  res.source := self-—>first ().source;

ss0 res.setType(self —>first (). getType());

581 res .setName (self —>first ().getName());

s2 self >first()—>iterator —>forEach (iter){

583 var newlter := iter;
584 res.iterator += newlter;
585 };

s  input.body := res;
587 if (self —>size ()>1)then{

588 self —>reject (ala=self >first())—>

589 combineBooleansRecursive (res ,bodylnput);
590 }

591 else{

592 res.body := bodylnput;

593 }

504 endif;

595}

506 — Return whether an individual is used in the

sy —context of a set of objects(containment/composite)
s helper GL::instanceNode ::isInSetContext (): Boolean {

9 if (self.inReferences —>first (). start.inReferences—>
eo first (). objectRef.upperBound<>1)then {

601 return true;

5

)

5

o

=3

602 }
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603 else{

604 return false;
605 Yendif;
606 }

607

608 —Map a Feature attribute which consists of a value,

60 —to its corresponding condition which consists of

60 —a property call expression(source) and a value to compare

o1 helper GL:: FeatureAttribute :: handleAttribute

612 (InputSrc:OCL:: expressions :: OCLExpression,

613 inputVars:OrderedSet(String)) : OCL::expressions:: OperationCallExp {

os —Attribute is target of an individual relation condition , i.e
615 ——not to process

616 if ((self.value = null or self.value = ") and

617 self .isParameterAttributeCall () = null)then |

618 logme (" unneccessary ", self);

619 }

620 —Attribute must be handled

621 else{

622 // Attribute property value is related with a null object value
623 if (self.value = "null’)then{

624 var res : OCL::expressions:: OperationCallExp :=

625 new OCL:: expressions :: OperationCallExp ();

626 //Source

627 res.source := self.attribute2PropCallExp (InputSrc ,inputVars);
628 res.setType (Boolean);

629 //Operation

630 res.referredOperation:= makeOperation (" String", self.expression);
631 //Argument

632 res.argument += self.variable2NullLiteral ();

633 return res;

634 }

635 //Attribute integer value is related with a Integer value

636 else if(isInteger(self.objectRef))then|

637 var res : OCL::expressions :: OperationCallExp :=

638 new OCL:: expressions :: OperationCallExp ();

639 //Source

640 res.source := self.attribute2PropCallExp (InputSrc ,inputVars);
641 res.setType (Boolean);

642 //Operation

643 res.referredOperation:= makeOperation (" String", self.expression);
644 //Argument

645 res.argument += self.variable2IntLiteral ();

646 return res;

647 }

648 —Attribute property value is related with another

649 —attribute property value

650 else if ((self.value = null or self.value = '’ or self.value = ")
651 and self.isParameterAttributeCall ()!=null)then {

652 var res : OCL::expressions:: OperationCallExp :=

653 new OCL:: expressions :: OperationCallExp ();
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//Source

res.source := self.attribute2PropCallExp (InputSrc,inputVars);
res.setType (Boolean);

var rel : GL::IndividualRelation :=
self.isParameterAttributeCall ();

res.referredOperation:=

makeOperation (" String", rel.relationType);

var attr : GL:: FeatureAttribute;

if(rel.firstParameter = self)then{

attr:= rel.secondParameter;
}
else{

attr:= rel.firstParameter;
}
endif ;
//Argument

res.argument += attr.attribute2PropCallExp (null ,inputVars);
return res;
J
—Attribute String property must be matched with a
—regular expression
else if(isString(self.objectRef) and
self .expression.repr() = ’‘regexMatch’)then {
var res : OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();

//Source

res.source := self.regexAttribute20pCallExp (InputSrc ,inputVars);
res.setType(Boolean);

//Operation

res.referredOperation:= makeOperation (" String", '<>");
//Argument

res.argument += self.variable2NullLiteral ();

return res;
}
// Attribute String value is related with a String value
else if(isString(self.objectRef)) then|

var res : OCL::expressions:: OperationCallExp =

new OCL:: expressions :: OperationCallExp ();

//Source

res.source := self.attribute2PropCallExp (InputSrc,inputVars);
res.setType (Boolean);

//Operation

res.referredOperation:= makeOperation (" String", self.expression);

//Argument

res.argument += self.variable2StringLiteral ();
return res;

}

else{
return null;

Yendif endif endif endif endif;

}
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TRANSLATIONAL STATEMENT SEMANTICS

endif;
}

—Makes a variable if no individuals of a concept
—are provided , normally ’self’
helper GL:: Class:: makeVariable () :OCL::expressions:: Variable{
var res : OCL::expressions:: Variable :=
new OCL:: expressions :: Variable ();
res .setName (self .name.substringBefore("_"));
return res;

}

—Makes a variable if no individuals of a concept
— are provided , normally ’self’
helper String:: makeVariable() :OCL::expressions:: VariableExp {
var res : OCL::expressions:: VariableExp =
new OCL:: expressions :: VariableExp ();
res.setName(self);
var variable : OCL::expressions:: Variable :=
new OCL:: expressions:: Variable ();
variable .setName(self);
res.referredVariable := variable;
return res;

}

//Makes an Null Literal Expression, i.e. null
helper GL:: FeatureAttribute :: variable2NullLiteral ()
OCL:: expressions :: NullLiteralExp {

var res : OCL::expressions:: NullLiteralExp:=

new OCL:: expressions:: NullLiteralExp ();

res .setName (" null ");

return res;

}

//Makes an String Literal Expression, i.e. 7123’
helper GL:: FeatureAttribute :: variable2StringLiteral ()
OCL:: expressions :: StringLiteralExp {
var res : OCL::expressions:: StringLiteralExp :=
new OCL:: expressions:: StringLiteralExp ();
res.stringSymbol:= "'+ self.value;
return res;

}

//Makes an Integer Literal Expression, i.e. 123
helper GL:: FeatureAttribute :: variable2IntLiteral ()
OCL:: expressions :: IntegerLiteralExp {
var res : OCL::expressions::IntegerLiteralExp :=
new OCL:: expressions:: IntegerLiteralExp ();
res.integerSymbol:=tolntegerObject(self.value);
return res;

345



756

7!

31

7

Ve

3]

8

7

a

9

760

761

762

763

764

765

766

767

768

7

[N

9

770

7

N

1

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

7

®

7

788

789

790

791

792

793

794

795

796

797

798

799

8

S
s

801

802

803

804

805

806
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//Calls an regex match operation on String attributes
helper GL:: FeatureAttribute :: regexAttribute20pCallExp
(InputSrc:OCL:: expressions :: OCLExpression,
inputVars:OrderedSet(String)) : OCL:: expressions:: OperationCallExp {
var res : OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
res.argument+= self.variable2StringLiteral ();
res.referredOperation:= makeOperation ("RegEx", ’'regexMatch’);
res.source := self.attribute2PropCallExp (InputSrc,inputVars);
return res;

}

//Calls the property of an individual in the case of an attribute
helper GL:: FeatureAttribute :: attribute2PropCallExp
(InputSrc:OCL:: expressions :: OCLExpression,
inputVars:OrderedSet(String)) : OCL:: expressions :: PropertyCallExp {
var res :OCL::expressions::PropertyCallExp :=
new OCL:: expressions :: PropertyCallExp ();
res.setType(self.objectRef.eType);
if (InputSrc = null or
InputSrc.ocllsKindOf (OCL:: expressions :: NullLiteralExp )) then {

res.source := self.attribute2CastedVariableExp ();
}else {

res.source := InputSrc;
Yendif;

res.referredProperty:= makeEObject(self.objectRef);
return res;

}

—Helper function to create a casted variable for a specific attribute
helper GL:: FeatureAttribute :: attribute2CastedVariableExp ()
OCL:: expressions :: OperationCallExp {
var res : OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
res.setType(self.objectRef.eContainingClass);
res.referredOperation := makeOperation (" OclAny", "oclAsType”’);
res.argument += self.attribute2CastingTypeExp ();
if (self.container (). oclAsType(GL:: instanceNode ). isForSet ()) then{

res.source := self.attribute2VariableExp ();
}
else{

res.source := self.container ().oclAsType

(GL:: instanceNode ). makeBackwardSource ();
Yendif;

return res;

}

—Helper function to decide whether an individual is referenced
—with a set or as single object
—This influences the wusage the actual context which must be
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sy —used to call its properties
sos helper GL::instanceNode::isForSet() : Boolean{

809 if (self.inReferences —>first ().oclAsType(GL:: FeatureAssociation ).
810 start.inReferences—>first ().oclAsType(GL:: FeatureAssociation).
811 objectRef . upperBound<>1)then {

812 return true;

813 }

814 else{

815 return false;

g6 Jendif;

817 }

818

819 helper GL::instanceNode :: makeBackwardSource ()

820 OCL:: expressions :: OCLExpression {

821 var res : OCL::expressions::PropertyCallExp :=

sz new OCL::expressions :: PropertyCallExp ();

823 —search for the association property which bases the individual

s4 var assoc:=self.inReferences—>first ().oclAsType(GL:: FeatureAssociation).
g5 start.inReferences —>first (). oclAsType(GL:: FeatureAssociation);

826 ——determine the source of the association property
sz  var clazz:= assoc.start;

g8 —Determine the context of the expression to call

89 —the association property

80 res.source := clazz.individual2VariableExp ();

g1 —call the referred associationproperty

g2 res.referredProperty := makeEObject(assoc.objectRef);

833 return res;

834 |}

835

836 //Makes a Type exporession for casting operation

7 helper GL:: FeatureAttribute :: attribute2CastingTypeExp ()
88 OCL:: expressions :: TypeExp {

g9 var res : OCL::expressions::TypeExp =

g0 new OCL::expressions :: TypeExp ();

ss1  res.referredType := getClassForAttribute(self);

842 return res;

8!

@

843 }

844

ss —Helper function to create a wvariable for a specific attribute
ss6 helper GL:: FeatureAttribute :: attribute2VariableExp ()

s7 OCL:: expressions :: VariableExp {

s var res : OCL::expressions:: VariableExp =

s0 new OCL::expressions :: VariableExp ();

g0 res.setName(self .name);

51 res.setType(self.objectRef.eContainingClass);

g2 res.referredVariable := self.makeVariableFromAttribute ();
853 return res;

g

854 |}
855
&6 //makes a variable, eg. "x2’

g7 helper GL:: FeatureAttribute :: makeVariableFromAttribute ()

1
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g8 OCL:: expressions :: Variable {

g9 var res : OCL::expressions:: Variable:=

sgoo new OCL::expressions :: Variable ();

861 var container := self.container ().oclAsType(GL::instanceNode);
862 var containerName := container.name.substringBefore("_");

83  res.setName(containerName );

ss  res.setType(self.objectRef.eContainingClass);

865 return res;

866 |

867

88 — checks whether a attribute is compared with another
8o ——attribute in contrast to a primitive value,

g0 — 1.e self.name = '123" wvs. self.name = self.name

g1 query GL:: FeatureAttribute :: isParameterAttributeCall ()

872 GL:: IndividualRelation {

ez self.container ().oclAsType(GL:: instanceNode ). individualOuts —>
gz forEach(individualRel){

875 if(individualRel . firstParameter = self )then|
876 return individualRel;

877 }

878 endif;

879 }

880 }

881

ss2 —Helper function to parse a String expression and create a operation
ss3 helper GL::instanceNode :: makeExpressionFromString

4 (InputSrc:OCL:: expressions :: OCLExpression,input: String)

gss OCL:: expressions :: OperationCallExp {

g6 var res : OCL::expressions:: OperationCallExp =

87 new OCL:: expressions :: OperationCallExp ();

s8¢ if (InputSrc = null) then |

8

®

889 var variable:= self.individual2VariableExp ();
890 res.source := variable;

891 }else {

892 res.source := InputSrc;

893 Yendif;

894

895 //Type

86 res.setType(Boolean);

s7  //Operation

898 if (input.startsWith ("<>") )then{

899 res.referredOperation := makeOperation ("OclAny", "<>");
900 var varName :=input.substringAfter ("=");

901 Yelse if(input.startsWith("="))then{

902 res.referredOperation := makeOperation (" OclAny", "=");
903 var varName :=input.substringAfter ("=");

904 }

905 else{

906 return null;

w7  }endif endif;
o8 var nil : OCL::expressions:: NullLiteralExp:=
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new OCL:: expressions:: NullLiteralExp ();
nil .setName ("null ");

res.argument += nil;

return res;

//Makes a variable expression
helper GL:: Class::individual2VariableExp ()
OCL:: expressions :: VariableExp {

var res

: OCL:: expressions :: VariableExp =

new OCL:: expressions :: VariableExp ();

res .setName(self .name);
res.setType(self.objectRef);
res.referredVariable := self.makeVariable ();
return res,;

}

—Combines a sequence of expressions with the

—boolean

connector "AND”

helper Sequence(OCL:: expressions :: OCLExpression)::

makeCompositeOpCallAND (): OCL:: expressions :: OCLExpression {

var i :=0;
var complexAttr: OCL:: expressions :: OCLExpression;
self —>forEach (attr |l attr <>null){
if (i=0)then |
complexAttr:= attr;

i:=

}
else
var
new

res.
.setType (Boolean);
referredOperation:= makeOperation ("Boolean", "and");

res

i+1;

res : OCL::expressions:: OperationCallExp =
OCL:: expressions :: OperationCallExp ();
source := complexAttr;

res.
res.argument += attr;
complexAttr := res;

}

endif;

b

return complexAttr;

}

//Composites a sequence of expressions with the boolean connector

helper Sequence(OCL:: expressions :: OCLExpression )::

makeCompositeOpCallOR (): OCL:: expressions :: OCLExpression {

var firstAttr:= self —>first ();

var 1 :=0;

var complexAttr: OCL:: expressions :: OCLExpression;
self —>forEach (attr| attr <>null){

"OR"
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if (i=0)then |
complexAttr:= attr;
i:= 1+1;

J

else{

var res : OCL::expressions :: OperationCallExp

new OCL:: expressions :: OperationCallExp ();

res.source := complexAttr;
res.setType(Boolean);

res.referredOperation:= makeOperation (" Boolean",

res.argument += attr;
complexAttr := res;
)
endif;
b
return complexAttr;

}

"

01‘"),‘

//Calls the property of an individual in the case of an association
helper GL:: AssociationTransition :: reference2PropCallExp ()

OCL:: expressions :: PropertyCallExp {

var res :OCL::expressions::PropertyCallExp

new OCL:: expressions :: PropertyCallExp ();

if (self.objectRef.upperBound<>1)then {
res.setType (makeSet());

}else {
res.setType(self.objectRef.eType);

Yendif;

res.source := self.start.reference2VariableExp ();
res.referredProperty:= makeEObject(self.objectRef);

return res

}

//Calls the property of an individual in the case of an
helper GL:: AssociationTransition :: reference2PropCallExp

(input:OCL:: expressions :: OCLExpression)
OCL:: expressions :: PropertyCallExp {

var res :OCL::expressions:: PropertyCallExp

new OCL:: expressions :: PropertyCallExp ();
res.setType(self.objectRef.eType);
res.source := input;

res.referredProperty:= makeEObject(self.objectRef);

return res

}

//Makes a variable expression

helper GL:: Class:: reference2VariableExp ()

OCL:: expressions :: VariableExp {
var res : OCL::expressions :: VariableExp
new OCL:: expressions :: VariableExp ();
res .setName(self .name);

association
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res.setType(self.objectRef);
res.referredVariable := self.makeVariable ();
return res,;

}

helper GL::IndividualRelation :: handleIndividualRelationTarget
(input:OrderedSet(String)) : OCL::expressions :: OperationCallExp {
if ((input—>includes
(self.individualTarget.name. substringBefore ("_")))) then{
var res : OCL::expressions:: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
res.source :=self.individualSource.individual2VariableExp ();

//Type

res.setType(Boolean);

//Operation

if (self .relationType.=(GL:: RelationType ::neq) )then {
res.referredOperation := makeOperation("OclAny", "<>");

Jelse if(self.relationType.=(GL:: RelationType::eq))then{
res.referredOperation := makeOperation (" OclAny", "=");

Yendif endif;
res.argument += self.individualTarget.individual2VariableExp ();
return res;
Yendif;
}

helper GL::IndividualRelation :: handleIndividualRelationSource
(input:OrderedSet(String)) : OCL::expressions:: OperationCallExp {
if ((input—>includes(self.individualSource .name. substringBefore("_"))))
then {
var res : OCL::expressions :: OperationCallExp =
new OCL:: expressions :: OperationCallExp ();
res.source :=self.individualSource.individual2VariableExp ();

//Type

res.setType(Boolean);

//Operation

if (self .relationType.=(GL:: RelationType ::neq) )then {
res.referredOperation := makeOperation ("OclAny", "<>");

Jelse if(self.relationType.=(GL:: RelationType::eq)) then{
res.referredOperation := makeOperation (" OclAny", "=");

Yendif endif;
res.argument += self.individualTarget.individual2VariableExp ();
return res;
Yendif;
)
—make source of an implies expression for navigation classes
—with more than one outgoing individual association
—Works only with two arguments at the moment
helper Sequence(String):: makelmpliesSource ():
OCL:: expressions :: OCLExpression {
var res :OCL::expressions:: OperationCallExp :=
new OCL:: expressions :: OperationCallExp ();
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1062 var i:= 0;

w3 self —>forEach(vIv<>null){

1064 if (i = 0)then({

1065 res.source:= v.makeVariable ();

1066 i:=i+1;

1067 }else |

1068 res.argument += v.makeVariable ();
1069 Yendif;

1070 I¥:

"

w71 res.referredOperation:=makeOperation (" OclAny",
w2 res.setType(makeBoolean ());
1073 return res;

<>");

1074}

1075

176 —Make an implies expression from two expressions

1077 helper OCL:: expressions :: OCLExpression :: makelmplies

w7s (target:OCL:: expressions :: OCLExpression):

1079 OCL:: expressions :: OCLExpression {

wso  var res :OCL::expressions:: OperationCallExp :=

1081 new OCL:: expressions :: OperationCallExp ();

1082 res.source:= self;

w3 res.referredOperation:=makeOperation ("Boolean", "implies");
1084 res.argument += target;

wss  res.setType(makeBoolean ());

1086 return res;

1087 }

1088

1080 —Make an implies expression from two expressions

1090 helper GL::instanceNode :: maketypeValidationExpression ():
1091 OCL:: expressions :: OCLExpression {

w2  var res :OCL::expressions:: OperationCallExp :=

103 new OCL:: expressions :: OperationCallExp ();

1094 res.source:= self.individual2VariableExp ();

15 res.referredOperation:= makeOperation (" OclAny", "ocllsTypeOf");
we  var type : OCL::expressions::TypeExp =

107 new OCL:: expressions :: TypeExp ();

08 type.referredType := self.objectRef;

1099 res.argument += type;

1100 return res;

101}
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CMMI ENABLED PROCESS AREAS

Process Area Category Level GPs SPs
Configuration Management (CM) | Support 2
Measurement and Analysis (MA) | Support 2 GP 2.3;,GP 2.6;
GP29
Project Monitoring and Project 2 GP 2.2;GP 2.3;
Control (PMC) Management GP2.9,GP 3.2
Project Planning (PP) Project 2 GP 2.2,GP 2.6;
Management GP29
Process and Product Quality Support 2 GP 2.6,GP 2.9
Assurance (PPQA)
Requirements Management Project 2 GpP23
(REQM) Management
Supplier Agreement Project 2 GP23
Management (SAM) Management
Decision Analysis and Support 3
Resolution (DAR)
Integrated Project Management Project 3 GP22,GP25; | SP1.1,SP1.2
(IPM) Management GP2.6,GP2.8; | SP1.3,SP 1.7
GP29,GP 3.2
Organizational Process Process 3 GP2.2,GP23; | SP1.1,SP 1.2;
Definition (OPD) Management GP2.6,GP29; | SP1.3,SP1.5
GP 3.2 SP 1.6,SP 1.7
Organizational Process Process 3 GP 2.2;GP 2.6; | SP 3.2,SP 3.3;
Focus (OPF) Management GP 3.2 SP34
Organizational Training (OT) Process 3
Management
Product Integration (PI) Engineering 3
Requirements Development (RD) | Engineering 3 Gr23
Risk Management (RSKM) Project 3
Management
Technical Solution (TS) Engineering 3 GP 2.2,GP 2.3; SP2.1
GP 2.4,GP 2.5;
GP 2.6;GP 2.8;
GP 2.9,GP 3.1;
GP 3.2
Validation (VAL) Engineering 3 GP26,GP29 | SP1.2;,5P1.3;
GP3.2 SP2.1
Verification (VER) Engineering 3 GP 2.6,GP 2.9 | SP 1.2;SP 1.3;
GP3.2 SP3.1
Organizational Process Process 4 GP22;,GP23
Performance (OPP) Management
Quantitative Project Project 4 GP 2.6,GP 2.9
Management (QPM) Management
Causal Analysis and Support 5 GpP23
Resolution (CAR)
Organizational Performance Process 5 GP 2.3,GP 2.6
Management (OPM) Management

Table D.1: CMMI-DEV process areas, associated categories, maturity levels, promoted
generic practices and specific practices

356




E Case Study

I = ‘e
Requirements Engineer Create Initiation Create System
l Evaluation
B B
Reend i Overall
equirements System

Specification

[ré; < L:_-\.‘“,
System Architect Create Architecture Create System
Projection Deployment
G G
System System
Architecture Architecture
= i
O <

Developer

Create SOA Implementation

i

G
Implementation

Figure E.1: Methodology for Service-Oriented Architectures

357



CASE STUDY

-
fo ‘o ‘o
Requirements Engineer Create Initiation Create System
L Ewvaluation
L £
Requirements Overall
System

Specification

!

i <
System Architect Create Architecture
Projection

L
System
Architecture

[
System
Specification

!

-
i ] e

SW Architect Realize Software
Construction

e
Software
Architecture

ES8
Software
Specification

!

&
P <

Developer Create EJB Implementation
=8

Implementation

Figure E.2: Methodology for Enterprise Java Beans

358



CASE STUDY

=
8 Cs ‘o

Requirements Engineer Create Initiation Create System
Evaluation

L

BN £
Requirements Owverall
System

Specification

!

<
Create System
Architecture
Projection

=
o
System Architect

o
System
Architecture

o
System
Specification

!

<
Create Software
Architecture
Projection

-
i J
SW Architect

fe»
Software
Architecture

o ‘o

Designer Realize Software
Construction

£
Software
Specification

!

-
Lo <
Developer Create ImplementationdEE
[

Implementation

Figure E.3: Methodology for Embedded Systems

359



CASE STUDY

=
S f ‘o
Reguirements Engineer Create Initiation Create System
l Evaluation
g e
Requirements Owerall
System

Specification

!

o <
System Architect Create Architecture
Projection

e
System
Architecture

B
System
Specification

i
o Lo

SW Architect Construct Software

e
Software
Specification

e
Software
Architecture

(5
System
Architecture

!

.
e o

Developer Create Implementation
BN

Implementation

Figure E.4: Methodology for M3 Family

360



CASE STUDY

O

(EIicitEuzinezzCuntext)
ae T

BusinessContext ™--.____
'-. -
} l(lj_ezcribeﬂu5in955ActivitiEED
1 e
v e =
| _....—""BusinessActivities
!| e - f’.
|=I : g o y : .! ‘_..-"ll
3 (DescrlbeEusmessEnt|t|e50rganlsatmmlndInfraﬁtructure f,x'
-"‘-\.__“ ‘-\-"'-1.._\_“.- F",.J'"f
™ T, = e T .-’f
ey i
., art —
ﬂ__‘qhﬂ e =
il ¥ o .

—om====""" BusinessEntities

@eleazeﬁequirementa

,
-
Ty
",

“uy

¥

®

Requirements

Figure E.5: M3 Initiation Variant for EJB Development

361




CASE STUDY

fod
|

@Iicit&equirementa

So—— y
l InitialRequirements

A ra

CDEScrl'beS],fztemCﬂnte:-;D '

-
T ‘i.r"-’ _,-l'r‘
L = o 5
= - &

SystemContext™ - e o 7
", r
e CD EfineS}rEtemStatez) s
3, 3

T "

s =]
H"-« - =

. o

Y ' —— ~ SystemnStates
(Helease&equirements)

-y
Tl

@] Requirements

Figure E.6: M3 Initiation Variant for EE Development

362



CASE STUDY

O

@re ateSoftwaresrchitectu rED

" Ak

g =

::;..:---' SystemInterfaceModel

(D efineSwintera r:ticm) ™

s

. -
= = =
S'H"nl'lnteractiun“--ﬂ,__h' ..~ BaseSWArchitecture
— -
([ DecomposesoftwarelUnits
e
SoftwareArchitecture - ? =
(Demgnf:c:mpanentﬂ R -
% s SWComponentDesign
o Lot ;
l‘l:'-.l " . : E e . r-'ll'l
1__l ', 2o o ."l
k% \‘\ ¥ e /
i , . : /
% N @eflnestatesFarDe5|gnCIasseg
LI'\lI | '::{-’ :i
et : /
.-""":1‘ h"\ J
- s \‘_‘ :"
I_ﬁ -~ i L /
= —‘-:r(DetaiIedDamainMcdeIDesign) /
SGfMEIECumpunentEelfilm u\‘ i |
-\.‘_“_‘ .\_\1 "_J,-' ) — )
o ‘xﬂ L DetailedDomainModel
o, x ¥ L
TN o gamtirE
~aa ¥ & e

l(ReIeaseScftwareDesign )

Ly

@ SoftwareSpecification

Figure E.7: M3 Realize Software Construction Variant for EE Development

363



CASE STUDY

CreatelCs | Definelse:

UCs

Input

Details
DasModel - Madel

Attributes

name DasModel

Containments
Overview Details
Sell Product - UseCase Attributes
Accept Order - UseCase
Transact Order - UseCase Mame
Deliver Product - UseCase

Sell Product

Create

Delete

| CreatelCs | DeflneUsecaseRelatlomhlps| CreateActors |Reia’(eAcmrsWrthUCs|

Overview
DasModel - Model

Input Details
Attributes
name DasModel
Containments

Output

Customer - Actor

Details

Attributes

name Customer

—

DefinelsecaseRelationships | RelateActorsWithUCs

Input Details
DasModel - Model Attributes
name Customer
References
Output Sell Product - UseCase
Customel

Transact Order - UseCase
Deliver Product - UseCase

Sell Product - UseCase

Accept Order - UseCase

<t

Figure E.8: SOA Initiation Guidance: Part I

364



CASE STUDY

DefincUsecaseRelationships

Input Details
Customer - Actor Attributes
name Sell Product

Containments

Ovenview Details
include - Include o
Output include - Include

Transact Orcler - UseCase name  include

Deliver Product - UseCase

References
Accept Order - UseCase Accept Order - UseCase Transact Order - UseCase
pead: Baienid
Sell Product - UseCase
Create Accept Order - UseCase
Delete

DefineActivities | DefineActions | DefineEdges | DefineControlFlow |

Input Details
Attributes

name DasModel

Containments
Output

Overview Details
DasModel - Model RS
Thehlctivity - Act Attributes

name Thehctivity

Create

Delete

DefineActions | | DefineControlFiow|
Input Details
DasModel - Model Attributes
name TheActivity

Containments

Overview Details
ConfirmOrder - OpaqueAction S
Attributes
Output TransactOrder - OpagueAction
e il name ConfirmOrder

StateAccounts - Opaquefction
ControlPayment - OpagueAction

Create

Delete

Figure E.9: SOA Initiation Guidance: Part I

365



CASE STUDY

DefineEdges | DefineControlFlow

Input
Thehctivity - Activity

Output

TheActivity - Activity

Details

Attributes

name

TheActivity

Containments

Overview

el - ControlFlow

e2 - ControlFlow

e3 - ControlFlow
ed - ControlFlow

Details

Attributes

name e2

Create

Delete

DefineControlFlow

Input
TheActivity - Activity

Qutput

ed - ControlFlow
2 - ControlFlow

el - ControlFlow

€3 - ControlFlow

Details
Attributes

name el

References

ConfirmOrder - Opaquehction

TransactOrder - Opaquelction

ControlPayment - OpaqueActior
CancelOrder - Opaquehction
ConfirmQOrder - OpaqueAction
TransactOrder - Opaquehction
StateAccounts - Opaquehction

ControlPayment - Opaquedctior
CancelOrder - Opaquehction
ConfirmOrder - Opaquehction
TransactOrder - Opaquehction
StateAccounts - Opaquedction

Figure E.10: SOA Initiation Guidance: Part III

366




CASE STUDY

File Edit Mavigate Search Project Sample Menu  Simpleuml Editor
ProcessLine  Window  Help

C-HEE|OY  K-Die es
- 0-Q- iP-FH 0o (W@
- =0

[ [ <RCP Perspective> [ Artop @ Workflow Editor ”

Run

Eﬁ Resource Set

a [{ platform:/resource/ShowCases/resultdMID; test/BusinessEntities.simpleuml
4 <4 Model Classl

4 Class CustomerInformation
< Class DeliveryAddress
< Class CustomerlD
<4 Class PersonalData
4 Class BillingAddress
| 4 Association |
4 Aszzociation
4 Association
4 Association

SelectionJ Parent| List| Tree| Table| Tree with Coiumnsl

[£0 Probl. | @ Java.. ||§% Decla... [E Prop.. &2 l & Local...| B Cons... | = lml

=J AR

Output

Property Value
MName =
Source 4 Class Customerlnformation
Stereotype (=
Target 4 Class DeliveryAddress
< | I | 3
D¢ Selected Object: Association
ReleaseRequirements.
Tnput Details
s
name DasModel

Containments

DasMadel - Model

Ovenview Details
TheActivity - Class e
Customerlnformation - Class .
DeliveryAddress - Class name TheActivity
PersonalDatz - Class
CustomerlD - Class o 5
BillingAdress - Class ik
Overview Details
i ConfirmOrder - OpaqueActic
TransactOrder - OpaqueActic
Accept Order - UseCase
CancelOrder - OpaqueAction
Transact Order - UseCase StateAccounts - OpaqueActic
Deliver Product - UseCase P

ControlPayment - OpaqueAc

Figure E.11: SOA Initiation Guidance: Part IV

367




F Curriculum Vitae

Benjamin Honke
born: November 5th, 1982 in Augsburg, Germany

Education:

since 2008: Ph.D. studies at the Software Methodologies for Distributed Systems
lab of the University of Augsburg.

2003 to 2008: Studies of Applied Computer Science at the University of Augsburg
(degree: Diplom-Informatiker (Dipl.Inf.))

2002 to 2003: Studies of Law at the University of Augsburg

1989 to 2002: School education (Leaving certificate: Abitur)

Career:

since 2008: Research assistant at the University of Augsburg, Germany

10/2008-07/2011: Ph.D. student at Continental Automotive GmbH
10/2006-09/2008: Student worker at the University of Augsburg
08/2005-09/2005: Internship at DCM Deutsche Capital Management AG, Munich

Augsburg, April 2013

368



	1 Introduction
	1.1 Problems and Challenges
	1.2 Objectives, Approach and Contributions
	1.3 Outline

	2 Foundations
	2.1 Automotive Modeling Initiatives
	2.1.1 AUTOSAR
	2.1.2 MAENAD
	2.1.3 TIMMO-2-USE
	2.1.4 Conclusions from above Initiatives

	2.2 Model-Driven Engineering and Semantic Technologies
	2.2.1 Meta-modeling Technical Space
	2.2.2 Ontological Technical Space
	2.2.3 Guidelines, Best Practices, and Validation

	2.3 Business Processes Management
	2.3.1 Business Process Management Architectures
	2.3.2 Business Process Modeling

	2.4 Methodology Engineering
	2.4.1 Terminology of Methods and Processes
	2.4.2 (Situational) Method Engineering
	2.4.3 Tool Support for Methodology Engineering

	2.5 Software Product Line Engineering
	2.5.1 Variability Engineering
	2.5.2 SPLE Development Process
	2.5.3 Tool Support for Software Product Line Engineering


	3 Software Process Line Engineering
	3.1 Motivation
	3.1.1 Structure-driven Dimension
	3.1.2 Behavior-driven Dimension
	3.1.3 Resource-driven Dimension

	3.2 Overview: Software Process Line Engineering
	3.3 Process Family Engineering
	3.3.1 Process Family Definition
	3.3.2 Variant Design
	3.3.3 Configuration Criteria Definition

	3.4 Feature Model Generation
	3.5 Situational Process Engineering
	3.5.1 Feature Model Configuration
	3.5.2 Generating planning domain
	3.5.3 Final Process Derivation
	3.5.4 Resource-oriented Process Analysis
	3.5.5 Deployment

	3.6 Case Study

	4 Computational Method Engineering
	4.1 Motivation
	4.1.1 Process-centric Requirements
	4.1.2 Method-centric Requirements

	4.2 Overview: Computational Method Engineering
	4.3 Technical Process Design
	4.3.1 Requirements for Development Processes on Technical Level
	4.3.2 Technical Process Modeling: Core Concepts
	4.3.3 Process Modeling Requirements

	4.4 Artifact Design
	4.4.1 Meta Models & Views
	4.4.2 Process Model - Meta Model Relationship
	4.4.3 Artifact Content Propagation

	4.5 Method-specific Editor Design
	4.5.1 Editor-specific Meta Model View Re-arrangement
	4.5.2 Element Usage Scenario Definition

	4.6 Guideline Design
	4.6.1 Guideline Characterization
	4.6.2 Requirements for Situational Method-centric Guideline Design
	4.6.3 The Generic Guideline Meta Model

	4.7 Role-centric Workflow Management
	4.7.1 User Skills
	4.7.2 Data Access

	4.8 Case Study
	4.8.1 Artifact Design
	4.8.2 Editor Design
	4.8.3 Guideline Design


	5 Method-driven Guidance of Development Processes
	5.1 Motivation
	5.1.1 Task-centric Challenges
	5.1.2 Workflow-centric Challenges

	5.2 Overview: Method-driven Guidance of Development Processes
	5.3 Method-driven Editor Generation
	5.3.1 Generation of Structural Editor Code
	5.3.2 Generation of Behavioral Editor Code
	5.3.3 Challenges and their Solutions

	5.4 Artifact-specific Information Management
	5.4.1 Artifact Observer Mechanism
	5.4.2 Artifact Element Assignment Strategies

	5.5 Situational Model Validation - Guideline Application
	5.5.1 Guideline Realization
	5.5.2 Guideline Application
	5.5.3 Guideline Effects

	5.6 Engineering Process Coordination
	5.6.1 Overview: Flexible Workflow Management
	5.6.2 Consistency Check: Setup Phase
	5.6.3 Consistency Check: Monitoring Phase
	5.6.4 Consistency Check: Evaluation Phase
	5.6.5 Consistency Check: Control Phase

	5.7 Case Study
	5.7.1 Guidance Preparation
	5.7.2 Guidenace Application


	6 Evaluation
	6.1 Motivation
	6.2 Architecture Analysis
	6.2.1 Conceptual Architecture
	6.2.2 Prototypical Implementation
	6.2.3 Evaluation with HASARD

	6.3 Scenario-based Evaluation
	6.3.1 Scenario-based Modifiability Evaluation
	6.3.2 Scenario-based Reusability Evaluation
	6.3.3 Scenario-based Maintainability Evaluation

	6.4 Dynamic Analysis
	6.4.1 Performance Evaluation of Software Process Line Engineering
	6.4.2 Runtime Complexity of the Application of Computational Method Engineering

	6.5 Descriptive Evaluation
	6.5.1 Process Improvement Standards and Maturity Levels
	6.5.2 Process Improvement with Situational Method Engineering for Process-Centric Languages
	6.5.3 Checklist for Organizations

	6.6 Case Study
	6.6.1 Setting up the process line for M3 and Situational Process Engineering
	6.6.2 Variant Design for M3
	6.6.3 M3 Enactment


	7 Related Work
	7.1 Related Work on Method Engineering
	7.2 Related Work on Computer-aided Method Engineering Environments
	7.2.1 Overview about Computer-aided Method Engineering constituent Parts
	7.2.2 Approaches for Process-Centered Software Engineering Environments
	7.2.3 Approaches for Computer-aided Method Engineering Environments

	7.3 Discussion and Comparison of the Approach with Related Work
	7.3.1 Comparison of Method Engineering Approaches
	7.3.2 Comparison of Process-Centered Software Engineering Environments Approaches
	7.3.3 Comparison of comprehensive Computer-aided Method Engineering Approaches


	8 Conclusions and Outlook
	8.1 Summary of Thesis
	8.2 Future Research

	Bibliography
	List of Figures
	List of Listings
	Appendices
	A Acronyms
	B Translational Statement Semantics
	C HAZARD Analysis
	D CMMI enabled Process Areas
	E Case Study
	F Curriculum Vitae

