

parMERASA Multi-core RTOS Kernel

Florian Kluge, Christian Bradatsch

Report 2013-02 January 2013

INSTITUT FÜR INFORMATIK
D-86159 AUGSBURG

Copyright © Florian Kluge, Christian Bradatsch

Institut für Informatik

Universität Augsburg

86159 Augsburg, Germany

http://www.informatik.uni-augsburg.de

--- all rights reserved ---

parMERASA | No. 287519 | Multi-core RTOS Kernel i

Table of Contents

Abstract ... 1

1 Introduction ... 1

2 Requirements .. 2

3 Kernel Library Specification ... 3

3.1 Context Management.. 3

3.2 Memory Management .. 4

3.3 Synchronization mechanisms .. 4

3.4 Interrupt Handling ... 5

List of Figures/Tables ... 5

List of References .. 5

List of Appendices ... 5

parMERASA | No. 287519 | Multi-core RTOS Kernel ii

parMERASA | No. 287519 | Multi-core RTOS Kernel 1

Abstract

The parMERASA project is the response to demands from European avionic, automotive

and automation industries for increased performance at reduced costs while maintain-

ing safety levels. Its aim is to stimulate industrial, social and environmental changes by

demonstrating the benefits of moving from embedded single core to multi-core proces-

sors which can run applications in parallel, speeding up performance and cutting costs.

This report presents requirements for a hard real-time capable multi-core Kernel Library

in embedded systems and the transfer to the parMERASA simulator. It shows details of

context and memory management, synchronization mechanisms and interrupt handling

relating to the Power PC instruction set architecture used by the simulator.

1 Introduction

Engineers who design hard real-time embedded systems express a need for significant increases in

the hardware performance over that available today, but without compromising the safety-critical

nature of their software. A breakthrough in performance is expected by parallelizing hard real-time

applications onto multi-core hardware. parMERASA will provide a timing analysable system of paral-

lel hard real-time applications running on a scalable multi-core processor. Several new scientific and

technical challenges will be tackled in the context of timing analysability: parallelization techniques

for industrial applications, operating system virtualization and efficient synchronization mechanisms,

worst-case execution times (WCET) of parallelized applications, verification and profiling tools, scala-

ble memory hierarchies and I/O systems for multi-core processors.

Hard real-time applications, such as flight management system, automotive engine and drilling ma-

chine control, will be parallelized and executed on an embedded multicore processor. The parMERA-

SA multi-core processor and system software is expected to scale up to 64 cores.

This document describes the parMERASA Multi-core Kernel Library, which builds together with do-

main specific RTEs (runtime environment) a common system architecture for a many-core processor

suitable for the three application domains automotive, avionic, and construction machinery. It also

comprises a short overview of the overall system architecture concept composed of simulated hard-

ware, kernel services, RTE services and application layer.

This report is organized as follows: Section 2 gives a short overview of the requirements of a RTOS

kernel influenced by requirements of the application domains. In section 3 the Kernel Library is speci-

fied and appendix A1 comprises the corresponding application interface.

parMERASA | No. 287519 | Multi-core RTOS Kernel 2

2 Requirements

In this section, we state the requirements for the Kernel Library for embedded systems with many-

core hardware according to the needs for the domain specific applications. It has also been taken

care of the WCET analysability of the Kernel Library components for better support of verification

tools.

The three application domains automotive, avionic and construction machinery require different

services from the particular RTE. Hence the aim of the Kernel Library is to build a common basis for

these RTEs. Table 1 highlights the requirements of the RTE services of the three application domains.

 Automotive Avionic Const. Machinery

Scheduling Strategy Fixed priority pre-

emptive

(Earliest Deadline First)

Fixed cyclic +

Fixed priority pre-

emptive

Round-robin

Communication &

Synchronization

Resources, Events,

buffered/unbuffered

Messages

Messages;

Events, Buffers, Black-

boards, Semaphores

Events, Semaphores,

Spin-locks

I/O Requirement Low latency Predictability Low latency

Protection Unit OS-Application, (Task) Partition Task

Table 1: Comparison of application domain specific RTE services

Process and thread management capabilities respectively a system scheduler are essential to all

RTEs. Since every RTE uses its own scheduling strategy, the Kernel Library supports the different RTE

schedulers by providing elementary components organized in context management services. Similar-

ly the communication and synchronization features of the application domains are supported by

basic synchronization mechanisms providing a common basis for the high level synchronization ser-

vices. Common to all three RTEs are the need for memory management/protection services in a

many-core system to further guarantee the concept of freedom of interference, which is accommo-

dated by temporal segregation (cyclic scheduling) and spatial partitioning. Likewise all application

domains need access to peripheral hardware, which is done in a uniform and simple way through

interrupt handling services. In summary the Kernel Library builds the fundamental services also used

for higher level RTE services, which together form the basement for the application software.

parMERASA | No. 287519 | Multi-core RTOS Kernel 3

3 Kernel Library Specification

The Kernel Library provides the common basis for the implementation of the RTE subsets required by

the parMERASA applications. It incorporates the four kernel services context management, memory

management, synchronization mechanisms, and interrupt handling. These are used to implement the

four RTE services (see Figure 1). The Kernel Library provides basic hardware abstractions for RTE ser-

vices. The provided Kernel Library functions are listed in Appendix A1.

Domain Specific Interface

Context
Management

Synchronisation
Mechanisms

I/O

Memory
Management

Scheduling
Communication

&
Synchronisation

Protection

Interrupt
Handling

Simulated Hardware

Kernel Library Services

Critical RTE Services

 Protection Boundary

User
Mode

Kernel
Mode

Application Layer

Non-Critical RTE Services

Figure 1: Entanglement of RTE and Kernel Services in parMERASA System Architecture

The four RTE services scheduling, protection, communication & synchronization, and I/O are depend-

ent on their corresponding kernel service, but there are also cross dependencies inside kernel ser-

vices and between kernel and RTE services. Figure 1 also shows the protection boundary between

user level and kernel mode respectively supervisor level. According to that boundary, the RTE ser-

vices are divided into non-critical/critical RTE services. A detailed description of the single Kernel

Library Services and their linkage in-between is given in the following sections.

3.1 Context Management

The main task of a scheduler is to assign processing time to processes or threads. The RTE dependent

scheduling algorithm decides which process is executed at any time. The common action for all

schedulers is to store the active process and at the same time load the next process. Therefore, a

swap of the processor context has to take place. A process’ context consists of all CPU registers nec-

parMERASA | No. 287519 | Multi-core RTOS Kernel 4

essary to continue execution from a former state. These are, amongst others, mostly general pur-

pose, link and stack pointer registers. Depending on the Instruction Set Architecture (ISA) additionally

frame, floating point and special purpose registers are also implied. Thus, the context management

must provide means to initialize a process’ context and to swap the processor’s execution context.

Since a process context has a fixed size contingent on the ISA, a context swap has a constant execu-

tion time.

3.2 Memory Management

The memory management service is responsible for access privileges and mapping of local and

shared memories, even beyond cluster boundaries. As the protection facility memory management

ensures that a certain core can only access address ranges intended for it. Physically it can be

memory only locally accessible as well as common memory shared among several cores. These

memory areas can be spread over the complete physical address space. So it is also up to the

memory management service to provide a continuous address space to each core by translating vir-

tual to physical addresses. For this purpose Translation Lookaside Buffers (TLBs) are used. TLBs sup-

port the translation of addresses by specialized hardware in a fast and efficient way. The provisioning

of shared memory areas is also required by the communication & synchronization service to imple-

ment for example message queues or buffers, which are accessed by at least two different processes.

The mapping of virtual to physical address ranges is statically assigned during boot-up phase via the

memory management service. Therefore the address mappings are placed into the TLBs. To meet

hard real-time capability all mappings have to fit into the provided number of TLBs to avoid dynamic

memory reallocation during runtime.

3.3 Synchronization mechanisms

The synchronization mechanisms provide functionalities for simple software synchronization mech-

anisms and hardware primitives to implement complex mechanisms. On software mechanism side a

hard real-time capable spin-lock is offered, i.e. ticket lock. Spin-locks belong to the category of busy-

waiting synchronization techniques, meaning that program execution is blocked until a specific con-

dition is reached. They are not intended to be explicitly used by the applications, because of the lack

of fairness, but only to implement more intricate synchronization mechanisms such as mutex locks.

On the other side there are blocking synchronization techniques, for example barriers, which need to

interact with the system scheduler to start and stop threads. Since the scheduler is located in the RTE

services the whole functionality of blocking software synchronization techniques cannot be placed in

the kernel services. Therefore supportive hardware synchronization primitives are provided by kernel

services. The key hardware primitive has a “compare and swap” semantic, which can be used by the

communication & synchronization RTE service to deliver intricate software synchronization mecha-

nisms such as barriers or semaphores. The concrete implementation of the compare and swap func-

tion is hidden from the user and can be adapted to different instruction set specific atomic com-

mands.

Both synchronization techniques have in common that two or more processes/threads either spin on

a shared variable or read/write to a shared memory location. For this purpose the corresponding

memory locations have to be accessible by the designated processes, handled by the memory man-

agement service as stated in the prior section. Publications by UAU and UPS show how these basic

primitives can be used to implement timing predictable synchronization functions [1] [2].

parMERASA | No. 287519 | Multi-core RTOS Kernel 5

3.4 Interrupt Handling

To react on internal and external events the interrupt handling service is used. It allows the imple-

mentation of a unique handler routine for any kind of event respectively interrupt service request.

Events can be distinguished between software and hardware caused interrupts. Software interrupts

imply exceptions, caused by unintentional faults e.g. division by zero, and volitional program inter-

ruptions e.g. system call. On the other side hardware interrupts can arise form core integrated devic-

es like timers or from external connected I/O devices like a CAN controller.

For each supported interrupt service request a predefined standard handler routine exists, which can

be replaced by a custom one. Except for system calls, which have to be registered to the interrupt

handling service. There is no standard handler available as it is up to the RTE implementation to spec-

ify individual system calls.

Custom interrupt handler routines should be implemented in a way that they guarantee time pre-

dictability and low latency. Time-consuming or extensive computations are delegated to RTE I/O ser-

vices. Complex operation logic for I/O devices is placed in the RTE I/O services whereas a rapid re-

sponse to events from I/O devices is controlled by an interrupt handling routine. In order to access

memory mapped I/O the RTE I/O service also needs to work together with the memory management

service, which grants read/write operations to the desired I/O.

List of Figures/Tables

Figure 1: Entanglement of RTE and Kernel Services in parMERASA System Architecture 3

Table 1: Comparison of application domain specific RTE services .. 2

List of References

[1] M. Gerdes, F. Kluge, T. Ungerer, C. Rochange und P. Sainrat, „Time Analysable Synchronisation

Techniques for Parallelised Hard Real-Time Applications,“ in Proceedings of Design, Automation

and Test in Europe (DATE’12), 2012.

[2] M. Gerdes, F. Kluge, T. Ungerer und C. Rochange, „The Split-Phase Synchronisation Technique:

Reducing the Pessimism in the WCET Analysis of Parallelised Hard Real-Time Programs,“ in Proc.

of the 18th IEEE International Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA’12), 2012.

List of Appendices

Appendix A1 – parMERASA Kernel Library

i

Appendix A1: parMERASA Kernel Library

Version 1.0

18/01/2013

ii

iii

Table of Contents

Kernel Library .. 2

Module Index .. 3

Data Structure Index ... 4

File Index ... 5

Module Documentation .. 6

Interrupt Handling ... 6

Context Management .. 19

Memory Management ... 22

Synchronization Mechanisms .. 26

Data Structure Documentation ... 30

context_t .. 30

regs .. 31

TLBentry ... 32

File Documentation ... 33

kernel_lib.h .. 33

Index .. 37

1

2

Kernel Library

The kernel library comprises functionalities to abstract from the underlying hardware. The aim is to

supersede the usage of assembly for the programmer. For this purpose the kernel library is divided into

the sections Interrupt Handling, Context Management, Memory Management and Synchronization

Mechanisms.

Version:

1.0

Author:

Christian Bradatsch

3

Module Index

Modules
Here is a list of all modules:

Interrupt Handling ... 6

Context Management .. 19

Memory Management ... 22

Synchronization Mechanisms .. 26

4

Data Structure Index

Data Structures
Here are the data structures with brief descriptions:

context_t (Structure used for context switching) .. 30

regs (Structure containing the registers involved in context switching) 31

TLBentry (Structure of a TLB entry) .. 32

5

File Index

File List
Here is a list of all documented files with brief descriptions:

kernel_lib.h (Contains type definitions, macros and function declarations for accessing hardware

dependent functionalities) .. 33

6

Module Documentation

Interrupt Handling

Macros

 #define PROGRAM_IRQ_ILLEGAL 0x8000000

Mask for exception syndrome.

 #define PROGRAM_IRQ_PRIVILEGED 0x4000000

Mask for exception syndrome.

 #define PROGRAM_IRQ_TRAP 0x2000000

Mask for exception syndrome.

 #define PROGRAM_IRQ_UNIMPLEMENTED 0x1000000

Mask for exception syndrome.

Functions

 static void enable_external_irq ()

Enable external interrupts.

 static void disable_external_irq ()

Disable external interrupts.

 void clear_external_irq ()

Activate external interrupts.

 static uint32_t save_external_irq ()

Save external interrupt status flag.

 static void restore_external_irq (uint32_t msr)

Restore external interrupt flag.

 uint64_t get_time_base ()

Get the time base measured in clock cycles.

 void set_time_base (uint64_t time)

Set the time base.

 void enable_pit (uint32_t interval)

7

Enable the programmable interval timer.

 void disable_pit ()

Disable the programmable interval timer.

 void clear_pit ()

Clear the programmable interval timer.

Custom Interrupt Handler

 void _irq_program_handler (uint32_t esr)

Defines a custom program interrupt handler.

 uint32_t _irq_sys_handler (uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t arg5,

uint32_t scno)

Defines a custom system call handler.

 void _irq_timer_handler (void)

Defines a custom programmable interval timer interrupt handler.

 void isr_pre_hook (uint32_t cause)

Declaration of ISR pre hook routine.

 void isr_post_hook (uint32_t cause)

Declaration of ISR post hook routine.

System Call Macros

 #define _syscall0(type, name)

System Call without arguments.

 #define _syscall1(type, name, type1, arg1)

System Call with 1 argument.

 #define _syscall2(type, name, type1, arg1, type2, arg2)

System Call with 2 arguments.

 #define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3)

System Call with 3 arguments.

 #define _syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, type4, arg4)

System Call with 4 arguments.

 #define _syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5)

8

System Call with 5 arguments.

Detailed Description

Interrupt Handling includes definitions to add a custom interrupt handler for different interrupt sources.

Macro Definition Documentation

#define _syscall0(type, name)
Value:type name(void) \

 { \

 { \

 register unsigned long __sc_0 __asm__ ("r0"); \

 register unsigned long __sc_3 __asm__ ("r3"); \

 \

 __sc_0 = __NR_##name; \

 __asm__ __volatile__ \

 ("sc" \

 : "=&r" (__sc_3) \

 : "0" (__sc_3), "r" (__sc_0) \

 : __syscall_clobbers); \

 } \

 return (type) __sc_3; \

 }

System Call without arguments.

Parameters:

type - type of the return value.

name - name of the system call.

#define _syscall1(type, name, type1, arg1)
Value:type name(type1 arg1) \

 { \

9

 { \

 register unsigned long __sc_0 __asm__ ("r0"); \

 register unsigned long __sc_3 __asm__ ("r3"); \

 \

 __sc_3 = (unsigned long) (arg1); \

 __sc_0 = __NR_##name; \

 __asm__ __volatile__ \

 ("sc" \

 : "=&r" (__sc_3) \

 : "0" (__sc_3), "r" (__sc_0) \

 : __syscall_clobbers); \

 } \

 return (type) __sc_3; \

 }

System Call with 1 argument.

Parameters:

type - type of the return value.

name - name of the system call.

typeX - type of the Xth argument.

argX - value of the Xth argument.

#define _syscall2(type, name, type1, arg1, type2, arg2)
Value:type name(type1 arg1, type2 arg2) \

 { \

 { \

 register unsigned long __sc_0 __asm__ ("r0"); \

 register unsigned long __sc_3 __asm__ ("r3"); \

 register unsigned long __sc_4 __asm__ ("r4"); \

 \

 __sc_3 = (unsigned long) (arg1); \

 __sc_4 = (unsigned long) (arg2); \

10

 __sc_0 = __NR_##name; \

 __asm__ __volatile__ \

 ("sc" \

 : "=&r" (__sc_3) \

 : "0" (__sc_3), "r" (__sc_0), \

 "r" (__sc_4) \

 : __syscall_clobbers); \

 } \

 return (type) __sc_3; \

 }

System Call with 2 arguments.

Parameters:

type - type of the return value.

name - name of the system call.

typeX - type of the Xth argument.

argX - value of the Xth argument.

#define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3)
Value:type name(type1 arg1, type2 arg2, type3, arg3) \

 { \

 { \

 register unsigned long __sc_0 __asm__ ("r0"); \

 register unsigned long __sc_3 __asm__ ("r3"); \

 register unsigned long __sc_4 __asm__ ("r4"); \

 register unsigned long __sc_5 __asm__ ("r5"); \

 \

 __sc_3 = (unsigned long) (arg1); \

 __sc_4 = (unsigned long) (arg2); \

 __sc_5 = (unsigned long) (arg3); \

 __sc_0 = __NR_##name; \

 __asm__ __volatile__ \

11

 ("sc" \

 : "=&r" (__sc_3) \

 : "0" (__sc_3), "r" (__sc_0), \

 "r" (__sc_4), \

 "r" (__sc_5) \

 : __syscall_clobbers); \

 } \

 return (type) __sc_3; \

 }

System Call with 3 arguments.

Parameters:

type - type of the return value.

name - name of the system call.

typeX - type of the Xth argument.

argX - value of the Xth argument.

#define _syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, type4, arg4)
Value:type name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \

 { \

 { \

 register unsigned long __sc_0 __asm__ ("r0"); \

 register unsigned long __sc_3 __asm__ ("r3"); \

 register unsigned long __sc_4 __asm__ ("r4"); \

 register unsigned long __sc_5 __asm__ ("r5"); \

 register unsigned long __sc_6 __asm__ ("r6"); \

 \

 __sc_3 = (unsigned long) (arg1); \

 __sc_4 = (unsigned long) (arg2); \

 __sc_5 = (unsigned long) (arg3); \

 __sc_6 = (unsigned long) (arg4); \

 __sc_0 = __NR_##name; \

12

 __asm__ __volatile__ \

 ("sc" \

 : "=&r" (__sc_3) \

 : "0" (__sc_3), "r" (__sc_0), \

 "r" (__sc_4), \

 "r" (__sc_5), \

 "r" (__sc_6) \

 : __syscall_clobbers); \

 } \

 return (type) __sc_3; \

 }

System Call with 4 arguments.

Parameters:

type - type of the return value.

name - name of the system call.

typeX - type of the Xth argument.

argX - value of the Xth argument.

#define _syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5,

arg5)
Value:type name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, type5 arg5) \

 { \

 { \

 register unsigned long __sc_0 __asm__ ("r0"); \

 register unsigned long __sc_3 __asm__ ("r3"); \

 register unsigned long __sc_4 __asm__ ("r4"); \

 register unsigned long __sc_5 __asm__ ("r5"); \

 register unsigned long __sc_6 __asm__ ("r6"); \

 register unsigned long __sc_7 __asm__ ("r7"); \

 \

 __sc_3 = (unsigned long) (arg1); \

13

 __sc_4 = (unsigned long) (arg2); \

 __sc_5 = (unsigned long) (arg3); \

 __sc_6 = (unsigned long) (arg4); \

 __sc_7 = (unsigned long) (arg5); \

 __asm__ __volatile__ \

 ("sc" \

 : "=&r" (__sc_3) \

 : "0" (__sc_3), "r" (__sc_0), \

 "r" (__sc_4), \

 "r" (__sc_5), \

 "r" (__sc_6), \

 "r" (__sc_7) \

 : __syscall_clobbers); \

 } \

 return (type) __sc_3; \

 }

System Call with 5 arguments.

Parameters:

type - type of the return value.

name - name of the system call.

typeX - type of the Xth argument.

argX - value of the Xth argument.

#define PROGRAM_IRQ_ILLEGAL 0x8000000

Mask for exception syndrome.

If

(esr & PROGRAM_IRQ_ILLEGAL) != 0

 an illegal instruction caused the program interrupt.

See Also:

_irq_program_handler

14

#define PROGRAM_IRQ_PRIVILEGED 0x4000000

Mask for exception syndrome.

If

(esr & PROGRAM_IRQ_PRIVILEGED) != 0

 a privileged instruction caused the program interrupt. This happens while an instruction limited to

privileged mode is executed in user mode .

See Also:

_irq_program_handler

#define PROGRAM_IRQ_TRAP 0x2000000

Mask for exception syndrome.

If

(esr & PROGRAM_IRQ_TRAP) != 0

 an trap instruction caused the program interrupt.

See Also:

_irq_program_handler

#define PROGRAM_IRQ_UNIMPLEMENTED 0x1000000

Mask for exception syndrome.

If

(esr & PROGRAM_IRQ_UNIMPLEMENTED) != 0

 an APU or FPU instruction, which is not implemented, caused the program interrupt.

See Also:

_irq_program_handler

Function Documentation

void _irq_program_handler (uint32_t esr)

Defines a custom program interrupt handler.

15

By default a standard handler is executed upon an program interrupt event. To define a custom

handler the function _irq_program_handler has to be implemented and the USER_PROGRAM_IRQ

define in file kernel_lib.mk has to be set to (y)es.

To distinguish between different causes of the program interrupt the value of esr has to be

examined.

Parameters:

esr - status of the exact exception syndrome of the program interrupt.

See Also:

PROGRAM_IRQ_ILLEGAL, PROGRAM_IRQ_PRIVILEGED, PROGRAM_IRQ_TRAP,

PROGRAM_IRQ_UNIMPLEMENTED

uint32_t _irq_sys_handler (uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t

arg5, uint32_t scno)

Defines a custom system call handler.

By default a standard handler is executed upon an syscall interrupt event. To define a custom

handler the function _irq_sys_handler has to be implemented and the USER_SYSCALL_IRQ define in

file kernel_lib.mk has to be set to (y)es.

To distinguish between different system calls a unique system call number has to be assigned to

every system call, for example:

#define __NR_sys_read 1

#define __NR_sys_write 2

 To distinguish between several system calls, the paramter scno can be used. It contains the number

of the system call. For correct usage of the arguments arg1 - arg5 they have to be explicitly casted

to the types stated in _syscallX .

Parameters:

argX - Xth argument to the system call handler.

scno - number of the system call.

See Also:

_syscall0, _syscall1, _syscall2, _syscall3, _syscall4, _syscall5

void _irq_timer_handler (void)

Defines a custom programmable interval timer interrupt handler.

16

By default a standard handler is executed upon an timer interrupt event. To define a custom handler

the function _irq_timer_handler has to be implemented and the USER_TIMER_IRQ define in file

kernel_lib.mk has to be set to (y)es.

void clear_external_irq ()

Activate external interrupts.

Activates external interrupts respectively clears the internal status register. This should be done in

the external interrupt service routine after an external interrupt was generated to reactivate the

interrupt.

See Also:

disable_external_irq, enable_external_irq

void clear_pit ()

Clear the programmable interval timer.

Clears the programmable interval timer (PIT) after a PIT interrupt occurred. This should be done in

the PIT interrupt service routine.

See Also:

disable_pit, enable_pit

static void disable_external_irq ()[inline], [static]

Disable external interrupts.

Disables and deactivates external interrupts in order that no interrupt is generated from its source.

See Also:

enable_external_irq, clear_external_irq

void disable_pit ()

Disable the programmable interval timer.

Disables and deactivates the programmable interval timer (PIT) in order that no interrupt is

generated from its source.

See Also:

enable_pit, clear_pit

17

static void enable_external_irq ()[inline], [static]

Enable external interrupts.

Enables and activates external interrupts. If an external IRQ is signaled of an external interrupt the

event is saved in an internal status register. An interrupt is only generated, if external interrupts are

enabled, the internal status register is cleared (activated) and an external interrupt event occurs.

External interrupts are automatically deactivated (internal status register value remains) after an

interrupt was generated. To activate external interrupts again activateExternalIrq has to be called.

See Also:

disable_external_irq, clear_external_irq

void enable_pit (uint32_t interval)

Enable the programmable interval timer.

Enables and activates the programmable interval timer (PIT) and sets the time for generating a PIT

interrupt to interval .

The internal counter is initialized with interval and is decremented every clock cycle. A timer event

occurs when the counter value is 1 and gets decremented (counter overflow 1-0). The event is stored

in an internal status register. A PIT interrupt is only generated, if the PIT is enabled, the internal

status register is cleared (activated) and a timer event occurs.

The PIT is automatically deactivated (internal status register value remains) after a PIT interrupt was

generated. To activate the PIT again activatePIT has to be called. Nonetheless the counter is

automatically loaded with the last interval value after every counter overflow. The PIT re-activation

only concerns the interrupt generation and not the internal counter facility.

Parameters:

interval - a value greater than 0 representing the time in clock cycles after a PIT

interrupt is generated.

Note:

To fully disable the PIT call disable_pit .

See Also:

disable_pit, clear_pit

uint64_t get_time_base ()

Get the time base measured in clock cycles.

18

The time base is incremented on every source clock cycle. The measuring begins at value 0 after

resetting the processor or at a certain value set by the user with setTimeBase .

Returns:

the time in clock cycles counted from the last value set by set_time_base or processor reset.

See Also:

set_time_base

void isr_post_hook (uint32_t cause)

Declaration of ISR post hook routine.

The hook routine has to be called at the end of interrupt service routine but before switching to

normal program execution.

Parameters:

cause - value representing the interrupt cause

See Also:

isr_pre_hook, ctx_switch_hook

void isr_pre_hook (uint32_t cause)

Declaration of ISR pre hook routine.

The hook routine has to be called after an interrupt event at the beginning of interrupt service

routine. The hook routine can be used for profiling support for example.

Parameters:

cause - value representing the interrupt cause

See Also:

isr_post_hook, ctx_switch_hook

static void restore_external_irq (uint32_t msr)[inline], [static]

Restore external interrupt flag.

Restores the status of the external interrupt flag, which was saved with saveExternalIrq before.

19

Parameters:

msr - value containing the status flag.

See Also:

save_external_irq

static uint32_t save_external_irq ()[inline], [static]

Save external interrupt status flag.

Saves the external interrupt status flag. This should be done before disabling external interrupts.

Returns:

value containing status flag.

See Also:

restore_external_irq

void set_time_base (uint64_t time)

Set the time base.

Sets the time base to the value specified by time . After setting the time base, it is incremented

starting from the specified value.

Parameters:

time - value to be set in clock cycles.

See Also:

get_time_base

Context Management

Data Structures

 struct regs

 Structure containing the registers involved in context switching. struct context_t

Structure used for context switching. Typedefs

 typedef struct regs regs_t

20

Structure containing the registers involved in context switching.

 typedef

 RTE_SPECIFIC_TASK_IDENTIFIER task_identifier_t

Type of task identifier.

Functions

 context_t * init_context (void *sp, uint32_t size, void(*func)(void *))

Initialize a context for use with context switching.

 void switch_context (context_t **oldctx, context_t *newctx)

Switch from the actual context to a new context.

 void ctx_switch_hook (task_identifier_t *task_id)

Declaration of context switch hook routine.

Detailed Description

The context management includes features to maintain in the first instance process and thread

scheduling.

Typedef Documentation

typedef RTE_SPECIFIC_TASK_IDENTIFIER task_identifier_t

Type of task identifier.

Defines the task identifier type of the ctx_switch_hook() . To support different RTE implementations

the task_identifier_t type has to be set in file kernel_lib.mk via RTE_SPECIFIC_TASK_IDENTIFIER to

the RTE specific task identifier.

Function Documentation

void ctx_switch_hook (task_identifier_t * task_id)

Declaration of context switch hook routine.

The hook routine is executed before the call of switch_context() . Therefore ctx_switch_hook() must

be called directly before switch_context() .

21

Parameters:

task_id - task id of the new context.

See Also:

isr_pre_hook, isr_post_hook

context_t* init_context (void * sp, uint32_t size, void(*)(void *) func)

Initialize a context for use with context switching.

Allocates memory for a context of type context_t and initializes its values. The function pointer func

points to the entry function of the context, which is called after first switch to this context.

A short programming example is provided under switch_context

Parameters:

sp - pointer to the top of the stack of a context. The initContext function

reserves a frame for the context on this stack.

size - size of the stack.

func - function pointer to the entry function.

Returns:

a pointer to the initialized context.

Note:

Context initialization should be done before first usage of switch_context , otherwise the

behavior is undefined.

See Also:

switch_context

void switch_context (context_t ** oldctx, context_t * newctx)

Switch from the actual context to a new context.

The current context is saved and its location is stored in pointer oldctx . Then the context indicated

by pointer newctx is restored and program execution of the restored context is resumed.

Short example for using initContext and switchContext:

context_t *procA = initContext(topOfStackA, &funcA);

context_t *procB = initContext(topOfStackB, &funcB);

22

// start process A (procA)

// process A begins execution at entry point of function A (funcA)

switchContext(&procA, procB);

// process A is stopped

// process B begins execution at entry point of function B (funcB)

// process B (procB) is running

switchContext(&procB, procA);

// process B is stopped

// process A is continued

Parameters:

oldctx - address of the pointer to the old context.

newctx - pointer to the new context.

Note:

New context must be initialized before first usage of switch_context . Otherwise behavior is

undefined.

See Also:

init_context

Memory Management

Data Structures

 struct TLBentry

Structure of a TLB entry. Macros

 #define NTLB 64

23

Defines the number of TLB entries.

 #define RO_DATA 0

Constant for TLB entry read only access for data

 #define RW_DATA 1

Constant for TLB entry read/write access for data

 #define RO_DATA_INS 2

Constant for TLB entry read only access for data and instructions

 #define RW_DATA_INS 3

Constant for TLB entry read/write access for data and read access for instructions

 #define ENTRY(_epn, _size, _rpn, _ap) {.epn = _epn, .size = _size, .rpn = _rpn, .ap = _ap}

Define a new TLB entry.

 #define CORETLB(CID, args...) TLBentry entries_##CID[] = {args, ENTRY(0, 0, 0, 0)}

Define a new TLB entry table for a specific core.

Typedefs

 typedef struct TLBentry TLBentry_t

Structure of a TLB entry.

Detailed Description

Memory management permits protection and mapping of memory areas, which are divided in so called

memory pages. Each memory page has its own access privileges for reading/writing data and fetching

instructions for execution. It also facilitates to map virtual address ranges to certain physical address

ranges.

Macro Definition Documentation

#define CORETLB(CID, args...) TLBentry entries_##CID[] = {args, ENTRY(0, 0, 0, 0)}

Define a new TLB entry table for a specific core.

Defines all TLB entries for a specific core. For each entry the ENTRY Macro shall be used. The MMU

of the corresponding core is configured during boot-up phase.

Example:

24

#include <stdio.h>

#include "kernel_lib.h"

// The following lines are provided by the developer/system integrator.

// Adds an entry for core 0: virtual address range 0x10000000 - 0x10FFFFFF is

// mapped to physical address range 0x80000000 - 0x80FFFFFF for data load and

// instruction fetch access.

CORETLB(0, ENTRY(0x10, 7, 0x80, 2));

// Adds two entries for core 1:

// 0x0 - 0xFFF to 0x40000 - 0x40FFF full access

// 0x6000000 - 0x6000FFF to 0x10000000 - 0x10000FFF read only access

CORETLB(1, ENTRY(0x0, 1, 0x40, 3), ENTRY(0x6000, 1, 0x10000, 0));

// This line is provided by the OS, so the developer has to ensure that all

// referenced entries exist!

TLBentry_t *mappings[] = {entries_0, entries_1, NULL};

int main(void) {

 int i, j;

 i=0;

 while (mappings[i] != NULL) {

 printf("Evaluating mapping table %d\n", i);

 j=0;

 while (mappings[i][j].a != 0) {

 printf("\tEvaluating mapping entry @(%d,%d): {%d,%d}\n",

 i, j, mappings[i][j].a, mappings[i][j].b);

 j++;

 }

 i++;

 }

25

 return 0;

}

Parameters:

CID - core ID specifies a certain core.

args - argument list of TLB entries for the specified core. The ENTRY Macro

is used to add an single entry into the table.

#define ENTRY(_epn, _size, _rpn, _ap) {.epn = _epn, .size = _size, .rpn = _rpn, .ap = _ap}

Define a new TLB entry.

The Macro is used inside the CORETLB Macro and can not be used stand alone. A TLB entry supports

8 different page sizes ranging from 1 KB to 16 MB.

Parameters:

_epn - effective page number together with the page size results in the start

address of a virtual address range.

_size - page size is the memory size which is mapped from virtual to physical

addresses. Legal values are:

 0 - 1 KB

 1 - 4 KB

 2 - 16 KB

 3 - 64 KB

 4 - 256 KB

 5 - 1 MB

 6 - 4 MB

 7 - 16 MB

_rpn - real page number together with the page size results in the start

address of a physical address range.

26

_ap - access privileges define how the specified address range can be

accessed. By default every address is readable by a data load. Access

for data store and instruction fetch can be granted via access

privileges. The four legal values are:

 0 - read only access for data load

 1 - read/write access for data load/store

 2 - read access for data load and instruction fetch

 3 - full access - read/write access for data load/store and read

access for instruction fetch

#define NTLB 64

Defines the number of TLB entries.

By default, there are 64 TLB entries supported. Regarding to the TLB hardware implementation this

value has to be adapted.

Synchronization Mechanisms

Typedefs

 typedef ticketlock_t spinlock_t

Type for spin-lock variable.

 typedef uint32_t barrier_t

Type for barrier variable.

Functions

 static uint32_t fetch_and_add (uint32_t *addr, int32_t val)

Atomic Fetch-and-Add operation.

 static void spin_init (spinlock_t *lock)

Initialization for spin-lock.

 static uint8_t spin_lock (spinlock_t *lock)

Spin-lock function.

27

 static uint8_t spin_unlock (spinlock_t *lock)

Spin-unlock function.

 static void barrier_wait (volatile barrier_t *barrier, uint32_t nr_of_threads)

Barrier for process synchronization.

Detailed Description

The synchronization mechanisms provide basic techniques for synchronization. They can be used to

implement more complex synchronization mechanisms such as mutex locks. The spin lock

synchronization is mapped to a ticket lock implementation, which uses an atomic fetch and add

instruction and thus is fair in the sense of access order to the critical section.

Typedef Documentation

typedef uint32_t barrier_t

Type for barrier variable.

Type definition for declaring a barrier variable.

typedef ticketlock_t spinlock_t

Type for spin-lock variable.

Type definition for declaring a spin-lock variable.

Function Documentation

static void barrier_wait (volatile barrier_t * barrier, uint32_t nr_of_threads)[inline],

[static]

Barrier for process synchronization.

Parameters:

barrier - specifies the barrier variable to which processes synchronize.

28

nr_of_threads - number of threads synchronizing to the barrier.

static uint32_t fetch_and_add (uint32_t * addr, int32_t val)[inline], [static]

Atomic Fetch-and-Add operation.

Loads the value from the specified memory location addr into a register, adds the value val and

stores the modified value back to same memory location addr . The three steps are indivisible and

executed atomically.

Parameters:

addr - specifies the memory address of the variable to be modified.

val - specifies the value to be added to the variable to be modified.

Returns:

the unmodified value loaded from memory location addr .

static void spin_init (spinlock_t * lock)[inline], [static]

Initialization for spin-lock.

Initializes the lock variable for a critical section.

Parameters:

lock - specifies the lock variable for exclusive access.

static uint8_t spin_lock (spinlock_t * lock)[inline], [static]

Spin-lock function.

The spin-lock function provides a busy waiting software synchronization technique. It gains access to

a critical section in a fair manner (i.e. FIFO order) to all participants.

Parameters:

lock - specifies the lock variable to which exclusive access is requested.

Returns:

zero on success, if the lock is acquired.

static uint8_t spin_unlock (spinlock_t * lock)[inline], [static]

29

Spin-unlock function.

Releases the lock to a critical section gained by spinLock .

Parameters:

lock - specifies the lock variable which is released.

Returns:

zero on success, if the lock is released.

30

Data Structure Documentation

context_t Struct Reference

Structure used for context switching.

#include <kernel_lib.h>

Detailed Description

Structure used for context switching.

The documentation for this struct was generated from the following file:

 kernel_lib.h

31

regs Struct Reference

Structure containing the registers involved in context switching.

#include <kernel_lib.h>

Detailed Description

Structure containing the registers involved in context switching.

The documentation for this struct was generated from the following file:

 kernel_lib.h

32

TLBentry Struct Reference

Structure of a TLB entry.

#include <kernel_lib.h>

Detailed Description

Structure of a TLB entry.

The documentation for this struct was generated from the following file:

 kernel_lib.h

33

File Documentation

kernel_lib.h File Reference

Contains type definitions, macros and function declarations for accessing hardware dependent

functionalities.

#include <stdint.h>

Data Structures

 struct regs

 Structure containing the registers involved in context switching. struct context_t

 Structure used for context switching. struct TLBentry

Structure of a TLB entry. Macros

 #define PROGRAM_IRQ_ILLEGAL 0x8000000

Mask for exception syndrome.

 #define PROGRAM_IRQ_PRIVILEGED 0x4000000

Mask for exception syndrome.

 #define PROGRAM_IRQ_TRAP 0x2000000

Mask for exception syndrome.

 #define PROGRAM_IRQ_UNIMPLEMENTED 0x1000000

Mask for exception syndrome.

 #define NTLB 64

Defines the number of TLB entries.

 #define RO_DATA 0

Constant for TLB entry read only access for data

 #define RW_DATA 1

Constant for TLB entry read/write access for data

 #define RO_DATA_INS 2

Constant for TLB entry read only access for data and instructions

34

 #define RW_DATA_INS 3

Constant for TLB entry read/write access for data and read access for instructions

 #define ENTRY(_epn, _size, _rpn, _ap) {.epn = _epn, .size = _size, .rpn = _rpn, .ap = _ap}

Define a new TLB entry.

 #define CORETLB(CID, args...) TLBentry entries_##CID[] = {args, ENTRY(0, 0, 0, 0)}

Define a new TLB entry table for a specific core.

 System Call Macros#define _syscall0(type, name)

System Call without arguments.

 #define _syscall1(type, name, type1, arg1)

System Call with 1 argument.

 #define _syscall2(type, name, type1, arg1, type2, arg2)

System Call with 2 arguments.

 #define _syscall3(type, name, type1, arg1, type2, arg2, type3, arg3)

System Call with 3 arguments.

 #define _syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, type4, arg4)

System Call with 4 arguments.

 #define _syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, type4, arg4, type5, arg5)

System Call with 5 arguments.

Typedefs

 typedef struct regs regs_t

Structure containing the registers involved in context switching.

 typedef

 RTE_SPECIFIC_TASK_IDENTIFIER task_identifier_t

Type of task identifier.

 typedef struct TLBentry TLBentry_t

Structure of a TLB entry.

 typedef ticketlock_t spinlock_t

Type for spin-lock variable.

35

 typedef uint32_t barrier_t

Type for barrier variable.

Functions

 static void enable_external_irq ()

Enable external interrupts.

 static void disable_external_irq ()

Disable external interrupts.

 void clear_external_irq ()

Activate external interrupts.

 static uint32_t save_external_irq ()

Save external interrupt status flag.

 static void restore_external_irq (uint32_t msr)

Restore external interrupt flag.

 uint64_t get_time_base ()

Get the time base measured in clock cycles.

 void set_time_base (uint64_t time)

Set the time base.

 void enable_pit (uint32_t interval)

Enable the programmable interval timer.

 void disable_pit ()

Disable the programmable interval timer.

 void clear_pit ()

Clear the programmable interval timer.

 context_t * init_context (void *sp, uint32_t size, void(*func)(void *))

Initialize a context for use with context switching.

 void switch_context (context_t **oldctx, context_t *newctx)

Switch from the actual context to a new context.

 void ctx_switch_hook (task_identifier_t *task_id)

36

Declaration of context switch hook routine.

 static uint32_t fetch_and_add (uint32_t *addr, int32_t val)

Atomic Fetch-and-Add operation.

 static void spin_init (spinlock_t *lock)

Initialization for spin-lock.

 static uint8_t spin_lock (spinlock_t *lock)

Spin-lock function.

 static uint8_t spin_unlock (spinlock_t *lock)

Spin-unlock function.

 static void barrier_wait (volatile barrier_t *barrier, uint32_t nr_of_threads)

Barrier for process synchronization.

 Custom Interrupt Handlervoid _irq_program_handler (uint32_t esr)

Defines a custom program interrupt handler.

 uint32_t _irq_sys_handler (uint32_t arg1, uint32_t arg2, uint32_t arg3, uint32_t arg4, uint32_t

arg5, uint32_t scno)

Defines a custom system call handler.

 void _irq_timer_handler (void)

Defines a custom programmable interval timer interrupt handler.

 void isr_pre_hook (uint32_t cause)

Declaration of ISR pre hook routine.

 void isr_post_hook (uint32_t cause)

Declaration of ISR post hook routine.

Detailed Description

Contains type definitions, macros and function declarations for accessing hardware dependent

functionalities.

Author:

Christian Bradatsch

37

Index

_irq_program_handler

Interrupt Handling 15

_irq_sys_handler

Interrupt Handling 15

_irq_timer_handler

Interrupt Handling 16

_syscall0

Interrupt Handling 8

_syscall1

Interrupt Handling 8

_syscall2

Interrupt Handling 9

_syscall3

Interrupt Handling 10

_syscall4

Interrupt Handling 11

_syscall5

Interrupt Handling 12

barrier_t

Synchronization Mechanisms 27

barrier_wait

Synchronization Mechanisms 27

clear_external_irq

Interrupt Handling 16

clear_pit

Interrupt Handling 16

Context Management 19

ctx_switch_hook 20

init_context 21

switch_context 21

task_identifier_t 20

context_t 30

CORETLB

Memory Management 23

ctx_switch_hook

Context Management 20

disable_external_irq

Interrupt Handling 16

disable_pit

Interrupt Handling 16

enable_external_irq

Interrupt Handling 17

enable_pit

Interrupt Handling 17

ENTRY

Memory Management 25

38

fetch_and_add

Synchronization Mechanisms 28

get_time_base

Interrupt Handling 18

init_context

Context Management 21

Interrupt Handling 6

_irq_program_handler 15

_irq_sys_handler 15

_irq_timer_handler 16

_syscall0 8

_syscall1 8

_syscall2 9

_syscall3 10

_syscall4 11

_syscall5 12

clear_external_irq 16

clear_pit 16

disable_external_irq 16

disable_pit 16

enable_external_irq 17

enable_pit 17

get_time_base 18

isr_post_hook 18

isr_pre_hook 18

PROGRAM_IRQ_ILLEGAL 13

PROGRAM_IRQ_PRIVILEGED 14

PROGRAM_IRQ_TRAP 14

PROGRAM_IRQ_UNIMPLEMENTED 14

restore_external_irq 18

save_external_irq 19

set_time_base 19

isr_post_hook

Interrupt Handling 18

isr_pre_hook

Interrupt Handling 18

kernel_lib.h 33

Memory Management 22

CORETLB 23

ENTRY 25

NTLB 26

NTLB

Memory Management 26

PROGRAM_IRQ_ILLEGAL

Interrupt Handling 13

PROGRAM_IRQ_PRIVILEGED

Interrupt Handling 14

PROGRAM_IRQ_TRAP

Interrupt Handling 14

PROGRAM_IRQ_UNIMPLEMENTED

Interrupt Handling 14

regs 31

39

restore_external_irq

Interrupt Handling 18

save_external_irq

Interrupt Handling 19

set_time_base

Interrupt Handling 19

spin_init

Synchronization Mechanisms 28

spin_lock

Synchronization Mechanisms 28

spin_unlock

Synchronization Mechanisms 28

spinlock_t

Synchronization Mechanisms 27

switch_context

Context Management 21

Synchronization Mechanisms 26

barrier_t 27

barrier_wait 27

fetch_and_add 28

spin_init 28

spin_lock 28

spin_unlock 28

spinlock_t 27

task_identifier_t

Context Management 20

TLBentry 32

