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Institut für Mathematik, Universitätsstraße, D-86135 Augsburg http://www.math.uni-augsburg.de/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35097385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Impressum:

Herausgeber:

Institut für Mathematik
Universität Augsburg
86135 Augsburg
http://www.math.uni-augsburg.de/de/forschung/preprints.html

ViSdP:

Ronald H.W.Hoppe
Institut für Mathematik
Universität Augsburg
86135 Augsburg
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A DUAL-WEIGHTED RESIDUAL APPROACH TO

GOAL-ORIENTED ADAPTIVITY FOR OPTIMAL CONTROL OF

ELLIPTIC VARIATIONAL INEQUALITIES

M. HINTERMÜLLER, R.H.W. HOPPE, AND C. LÖBHARD

Abstract. A dual-weighted residual approach for goal-oriented adaptive fi-

nite elements for a class of optimal control problems for elliptic variational in-

equalities is studied. The development is based on the concept of C-stationarity.
The overall error representation depends on primal residuals weighted by ap-

proximate dual quantities and vice versa as well as various complementarity
mismatch errors. Also, a priori bounds for C-stationary points and associated

multipliers are derived. Details on the numerical realization of the adaptive

concept are provided and a report on numerical tests including the critical
cases of biactivity are presented.

1. Introduction

In this paper we study goal-oriented adaptive finite element methods for a
class of optimal control problems with variational inequality constraints. The
latter problem class falls into the broader category of mathematical programs
with equilibrium constraints, or MPECs for short, which, due to constraint de-
generacy, cannot be treated by qualified Karush-Kuhn-Tucker-type theory for the
derivation of stationarity systems; see [LPR96, OKZ98] in finite dimensions and
[Bar84, Mor06a, Mor06b, NST06] in function space. The associated difficulties re-
sult from so-called biactivities in a regular setting, i.e. a situation where certain
multipliers admit a pointwise interpretation, or – in the terminology of optimal
control – the fact that the control-to-state mapping is in general only directionally
differentiable. The latter fact renders the problem under investigation non-convex
and non-differentiable. This structural property is responsible not only for the
aforementioned theoretical challenges in describing stationarity, but it also causes
problems in the design of reliable solution algorithms; see, e.g., the discussion in
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2 M. HINTERMÜLLER, R.H.W. HOPPE, AND C. LÖBHARD

[OKZ98, KK02, FP03] in finite dimensions and [HIK02, HK09, HK11] in function
space.

As our underlying problem class is originally posed in function space, the need
for discretization for its numerical realization arises naturally. In this context one
is interested in obtaining a specified accuracy in the approximate solution or a
pre-defined target quantity by the least possible computational effort. Besides the
development of efficient solvers, this concerns in particular the design of adaptive
finite element methods for the discretization of the continuous problem or station-
arity system. Based on a suitable error estimator or indicator, the latter technique
aims at refining the discretization locally only in regions with large errors while
keeping elements coarse wherever possible. This procedure ideally minimizes the
degrees of freedom for computing an approximate solution to the original problem
in order to achieve a user-specified accuracy.

Over the years different approaches to adaptive finite element methods (AFEMs)
for the numerical treatment of partial differential equations have been studied. Here
we only refer to the monographs [Ver96, BR03, Rep08, BWS11] and the many refer-
ences therein. By now, a high level of sophistication has been reached. In contrast
to this development, AFEM for elliptic variational inequalities, though well inves-
tigated, has not yet reached a comparable level; see [Joh92, Vee01, NSV03, Bra05,
BCH07, BCH09, HHT11] and the references therein. This is due to the presence
of the coincidence or active set with respect to the solution of the variational in-
equality, which, in general, causes a non-smooth dependence of the solution on
the data and, thus, complicates the numerical treatment significantly. Recently,
AFEM was successfully carried over to control and/or state constrained optimal
control problems (not MPECs!); compare [LY00, VW08, HH08, HH10a, HH10b].
In particular, in [VW08, HH08, HH10a, HH10b] the dual-weighted residual (DWR)
approach to goal-oriented adaptivity, which was pioneered by [BKR00] (see also
the monograph [BR03]), was extended to the discretization of control and/or state
constrained optimal control problems with partial differential equation constraints.

In the present paper, we develop a goal-oriented mesh refinement technique in the
spirit of the DWR approach for the adaptive discretization of MPECs in function
space. Based on the notion of a modified Lagrangian function associated with the
MPEC or more precisely mathematical program with complementarity constraints
(MPCC, for short), the so-called MPCC-Lagrangian, an error estimator (indicator)
is derived which involves primal residuals weighted by dual variables and vice versa
as well as error terms covering the mismatch in complementarity. The latter error
indicators are relevant in the location of the coincidence sets which arise due to the
variational inequality constraint. Finally, we point out that the literature on goal-
oriented mesh adaptivity for MPCCs or MPECs in function space, and in particular
for the problem class under investigation, appears essentially void.

The rest of this text is organized as follows. In Section 2 we outline the problem
class under consideration in the original continuous form and also in its discrete
version, and provide basic assertions as optimality systems and a priori estimates.
Section 3 gives an error representation, which turns out to be a combination of
weighted residuals and products reflecting the mismatch in complementarity. Al-
though this representation is not an estimator, i.e., it depends on the (unknown)
solutions of the continuous problem, it guides a way to an a posteriori error indica-
tor. In Section 4, we derive fully a posteriori indicators for the error contribution on
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every element of the discretization. The last Section 5 provides the basic algorithms
used in our numerical solver and the numerical results in some examples.

Notation. Throughout this text, let Ω ⊂ Rn be a bounded domain with ∂Ω
denoting its boundary. We write (z, w)0,Ω for the canonical scalar product in the

Lebesgue space L2(Ω), and ‖·‖0,Ω for the induced norm. For n ∈ {1, 2, 3}, H1(Ω) is

the Sobolev space of L2(Ω)-functions with gradients in L2(Ω)n and H1
0 (Ω) := {y ∈

H1(Ω) | y|∂Ω = 0} endowed with the norm ‖z‖1,Ω := ‖∇z‖0,Ω.

For a function z ∈ H1(Ω) and a set ω ⊂ Ω̄, we say that z|ω ≥ 0 in the sense
of H1(Ω), if there exists a sequence (zn)n∈N ⊂ W 1,∞(Ω) such that for all x ∈ ω,
zn(x) ≥ 0 and zn → z in H1(Ω). With this definition, the relations “≤” and
“=” on subsets of Ω̄ can be defined canonically on H1(Ω) (cf. [KS80, p. 35]).
Furthermore, for a function z ∈ H1(Ω) and a point x ∈ Ω we write z(x) > 0 in
the sense of H1(Ω), if there exists a neighbourhood U(x) ⊂ Ω of x and a function

ϕ ∈ W 1,∞
0 (U(x)) with ϕ ≥ 0 and ϕ(x) > 0, such that z|U(x) − ϕ ≥ 0 in the sense

of H1(U(x)). We abbreviate, for example, {z ≥ 0} := {x ∈ Ω | z(x) ≥ 0} and, for
functions z ∈ L2(Ω), the above set is defined only up to a set of measure zero.

The dual space of H1
0 (Ω) is denoted by H−1(Ω), and for λ ∈ H−1(Ω) and

z ∈ H1
0 (Ω) the dual pairing is written as 〈λ, z〉−1,1,Ω := λ(z). For functionals

z ∈ H−1(Ω) and a subset ω ⊂ Ω, we write z|ω = 0, if ∀φ ∈ H1
0 (Ω) with φ|Ω\ω = 0,

it holds that 〈z, φ〉−1,1,Ω = 0, and we write z|ω ≥ 0, if ∀φ ∈ H1
0 (Ω) with φ|Ω\ω = 0

and φ|Ω\ω ≥ 0, it holds that 〈z, φ〉−1,1,Ω ≥ 0.

2. Statement of the Problem and Stationarity

2.1. Problem definition. We consider the optimal control problem with a varia-
tional inequality constraint given by

Minimize J(y, u) :=
1

2
‖y − yd‖20,Ω +

ν

2
‖u‖20,Ω(1a)

over (y, u) ∈ H1
0 (Ω)× L2(Ω),(1b)

such that y ≥ 0,(1c)

∀z ∈ H1
0 (Ω), z ≥ 0, a(y, z − y) ≥ (u+ f, z − y)0,Ω ,(1d)

i.e. we minimize an objective functional J(y, u) depending on a state variable y ∈
H1

0 (Ω) with homogeneous Dirichlet boundary conditions and a control variable u ∈
L2(Ω), both defined on a bounded domain Ω ⊂ Rn, n ∈ {1, 2, 3}. The given
function yd ∈ L2(Ω) is the desired state and ν > 0 is the cost of the control action.

The constraint involves on the one hand an obstacle ψ ≡ 0 which bounds the
state y from below, i.e., y ≥ 0, and on the other hand a bounded, H1

0 (Ω)-elliptic
bilinear form a : H1

0 (Ω)×H1
0 (Ω)→ R which describes the influence of forces, such

as the fixed volume force f ∈ L2(Ω) and the action of the control u, applied to the
state y.

The existence of a solution to problem (1) can be established by arguments based
on infimizing sequences; see, e.g., [Bar84, MP84].

Remark 2.1. We note that considering ψ ≡ 0 does not imply restrictions with
respect to the choice of the obstacle aside from H1

0 (Ω)-regularity.

In the formulation of the first order optimality system and in the numerical solver
for the optimal control problem, a reformulation of the variational inequality (1d)
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by means of an additional slack variable ξ is considered. For this purpose, let
y ∈ H1

0 (Ω), y ≥ 0 and u ∈ L2(Ω), and introduce the operator A : H1
0 (Ω)→ H−1(Ω)

which satisfies a(y, z) = 〈Ay, z〉−1,1,Ω for all y, z ∈ H1
0 (Ω) as well as a slack variable

ξ ∈ H−1(Ω) as follows,

ξ := Ay − u− f ∈ H−1(Ω).

Then, (1c)-(1d) is equivalent to

y ≥ 0, ξ ≥ 0 and 〈ξ, y〉−1,1,Ω = 0.

Thus, for given data f, yd ∈ L2(Ω) on a domain Ω and ν > 0, problem (1) can be
rewritten as an optimal control problem with partial differential and complemen-
tarity constraints as follows: Find a solution (y, u, ξ) ∈ H1

0 (Ω) × L2(Ω) ×H−1(Ω)
to the problem

Minimize J(y, u) =
1

2
‖y − yd‖20,Ω +

ν

2
‖u‖20,Ω(2a)

such that a(y, z) = (u+ f, z)0,Ω + 〈ξ, z〉−1,1,Ω, ∀z ∈ H1
0 (Ω),(2b)

y ≥ 0 in H1
0 (Ω), ξ ≥ 0 in H−1(Ω) and 〈ξ, y〉−1,1,Ω = 0.(2c)

Due to the complementarity structure of (2c) we call (2) a mathematical program
with complementarity constraints, or an MPCC, for short.

Remark 2.2 (Regularity of the data). In the situation of [Rod87, Thm. 5:2.2] we
have ‖Ay?‖0,Ω ≤ CR(Ω)(‖f‖0,Ω + ‖u?‖0,Ω) for the solution y? of the variational

inequality in (1d) with control variable u? ∈ L2(Ω). Thus, if for instance A = −∆
on a convex domain Ω (or a domain with boundary δΩ of class C1,1), then y? satisfies
y? ∈ H1

0 (Ω) ∩ H2(Ω) (cf. [Rod87, Cor. 5:2.3]). Moreover, in the reformulation
resulting in the linear complementarity problem (2b)–(2c) it holds that ξ? ∈ L2(Ω).

2.2. Stationarity conditions. In the error analysis in Section 3, we use stationar-
ity conditions which are weaker than those stated in [MP84], but yet much stronger
than those obtained in [Bar84]. While one can guarantee strong stationarity for a
solution of (2) according to [MP84], here we only use the weaker notion of C(larke)-
stationarity of the solution as only C-stationary points can be obtained with guaran-
tee by current state-of-the-art solution algorithms. Obviously, the available station-
arity condition is also essential for the development of a posteriori error estimators.
For a more general definition of finite dimensional variants of stationarity concepts
we refer to [SS00]. Function space versions of C-stationarity conditions in the reg-
ular case of Remark 2.2 which are more restrictive than the versions stated here
can be found in [HK09].

Definition 2.3 (Clarke or C-stationarity). A point (y, u, ξ) ∈ H1
0 (Ω) × L2(Ω) ×

H−1(Ω) is called C-stationary for problem (2), if there exist p ∈ H1
0 (Ω), λ ∈ H−1(Ω)
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and µ ∈ H1
0 (Ω) such that the following conditions hold,

Ay − u− ξ = f in H−1(Ω),(3a)

ξ ≥ 0, y ≥ 0, 〈ξ, y〉−1,1,Ω = 0,(3b)

y − λ+A∗p = yd in H−1(Ω),(3c)

νu− p = 0 in H1
0 (Ω),(3d)

−µ− p = 0 in H1
0 (Ω),(3e)

〈λ, y〉−1,1,Ω = 0,(3f)

〈ξ, µ〉−1,1,Ω = 0,(3g)

〈λ, µ〉−1,1,Ω ≥ 0.(3h)

Definition 2.4 (Strong stationarity). A point (y, u, ξ) ∈ H1
0 (Ω)×L2(Ω)×H−1(Ω)

is called strongly stationary for problem (2), if it is C-stationary and if the mul-
tipliers λ ∈ H−1(Ω) and µ ∈ H1

0 (Ω) in Definition 2.3 satisfy the sign conditions

∀ψ ∈ H1
0 (Ω), ψ|{y=0} ≥ 0 and 〈ξ, ψ〉−1,1,Ω = 0 : 〈λ, ψ〉−1,1,Ω ≥ 0,(4a)

µ|{y=0} ≥ 0.(4b)

We introduce X as the function space X := H1
0 (Ω)× L2(Ω)×H−1(Ω)×H1

0 (Ω)
with elements x = (y, u, ξ, p), and define the MPCC-Lagrangian L : X ×H−1(Ω)×
H1

0 (Ω)→ R according to

L(y, u, ξ, p, λ, µ) :=J(y, u) + a(y, p)− (u+ f, p)0,Ω − 〈ξ, p〉−1,1,Ω

− 〈λ, y〉−1,1,Ω − 〈ξ, µ〉−1,1,Ω.
(5)

Remark 2.5. We note that if (y?, u?, ξ?) is C-stationary and p?, λ?, µ? are the
associated dual variables from (3), then

L(x?, λ?, µ?) = J(y?, u?),

and for all δx ∈ X it holds that

∇xL(x?, λ?, µ?)(δx) = 0.

Remark 2.6. The functional L(·, λ?, µ?) : X → R is infinitely often Gâteaux differ-
entiable at x ∈ X. The second Gâteaux derivative ∇xxL(x, λ?, µ?) is independent
of the argument (x, λ?, µ?) which for notational convenience will be omitted in the
sequel.

2.3. A priori estimates for solutions of the optimality system. This sec-
tion is devoted to an a priori analysis of the dependence of a C-stationary point
(y?, u?, ξ?) with dual variables p?, λ? and µ? on the problem input data Ω, f , yd,
and ν. The following result states a priori bounds which are, for instance, relevant
in the study of stability of solutions with respect to data perturbations.

For its formulation we invoke the following assumption concerning the data in-
volved in (1). The coercive bilinear form a : H1

0 (Ω) × H1
0 (Ω) → R admits the

representation A ∈ L
(
H1

0 (Ω), H−1(Ω)
)

with coercivity constant ΣA > 0 satisfying

a(y, z) = 〈Ay, z〉−1,1,Ω and a(y, y) ≥ ΣA ‖y‖21,Ω
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for all y, z ∈ H1
0 (Ω). Let CA(Ω) = ‖A‖L(H1

0 (Ω),H−1(Ω)) abbreviate the norm of the
operator A, and let A∗ denote the adjoint of A. Moreover, we denote the Friedrichs
constant for the domain Ω by CF(Ω) and the constant arising from the embedding
L2(Ω) ↪→ H−1(Ω) by C−1(Ω), i.e., for all y ∈ H1

0 (Ω) and u ∈ L2(Ω), it holds that

‖y‖0,Ω ≤ CF(Ω) ‖y‖1,Ω and ‖u‖−1,Ω ≤ C−1(Ω) ‖u‖0,Ω .

Proposition 2.7. A solution (x?, λ?, µ?) of the stationarity system (3) satisfies
the following a priori bounds,

‖y?‖0,Ω ≤ ‖yd‖0,Ω +
√
ν ‖f‖0,Ω ,(6)

‖y?‖1,Ω ≤
CF(Ω)

ΣA

(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
,(7)

‖u?‖0,Ω ≤
1√
ν
‖yd‖0,Ω + ‖f‖0,Ω ,(8)

‖ξ?‖−1,Ω ≤
(
CF(Ω)

ΣA
CA(Ω) + C−1(Ω)

)(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
,(9)

‖u?‖1,Ω ≤
CF(Ω)

ΣAν

(
2 ‖yd‖0,Ω +

√
ν ‖f‖0,Ω

)
,(10)

‖λ?‖−1,Ω ≤
(
CF(Ω)

ΣA
CA(Ω) + C−1(Ω)

)(
2 ‖yd‖0,Ω +

√
ν ‖f‖0,Ω

)
.(11)

Under the additional assumptions stated in Remark 2.2 we obtain the estimate

‖Ay?‖0,Ω ≤ CR(Ω)

(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
.(12)

Proof. We start by multiplying the equations (3a) and (3c) by p? and y?, respec-
tively. Then, using the constraints (3d)-(3g), we obtain

a(y?, p?) = (u?, p?)0,Ω + (f, p?)0,Ω = ν ‖u?‖20,Ω + ν (f, u?)0,Ω ,(13)

a(y?, p?) = (yd, y
?)0,Ω − ‖y

?‖20,Ω .(14)

Subtracting (13) from (14), rearranging terms and estimating the inner products
one derives

‖y?‖20,Ω + ν ‖u?‖20,Ω = (yd, y
?)0,Ω − ν (f, u?)0,Ω

≤ 1

2
‖y?‖20,Ω +

1

2
‖yd‖20,Ω +

ν

2
‖u?‖20,Ω +

ν

2
‖f‖20,Ω ,

and thus

‖y?‖20,Ω + ν ‖u?‖20,Ω ≤ ‖yd‖
2
0,Ω + ν ‖f‖20,Ω .(15)

This yields the L2-bounds for y? and u?. Next, we multiply equation (3a) by y?,
recall that 〈ξ?, y?〉−1,1,Ω = 0 and deduce

‖y?‖21,Ω ≤
1

ΣA

(
(u?, y?)0,Ω + (f, y?)0,Ω

)
≤ CF(Ω)

ΣA

(
‖u?‖0,Ω + ‖f‖0,Ω

)
‖y?‖1,Ω .

This, together with (15), implies the bound on ‖y?‖1,Ω, i.e.,

‖y?‖1,Ω ≤
CF(Ω)

ΣA

(
‖u?‖0,Ω + ‖f‖0,Ω

)
≤ CF(Ω)

ΣA

(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
.
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The bound on ‖ξ?‖−1,Ω involves the constant C−1(Ω) arising from the embedding

L2(Ω) ↪→ H−1(Ω) and the norm CA(Ω) = ‖A‖L(H1
0 (Ω),H−1(Ω)). In fact, from (3a),

we obtain

‖ξ?‖−1,Ω = ‖Ay? − u? − f‖−1,Ω

≤ CA(Ω) ‖y?‖1,Ω + C−1(Ω)
(
‖u?‖0,Ω + ‖f‖0,Ω

)
≤
(
CF(Ω)

ΣA
CA(Ω) + C−1(Ω)

)(
1√
ν
‖yd‖0,Ω + 2 ‖f‖0,Ω

)
.

The adjoint equation (3c) tested with p? and the sign condition (3h) yielding

〈λ?, p?〉−1,1,Ω = −〈λ?, µ?〉−1,1,Ω ≤ 0

imply

‖p?‖21,Ω ≤
1

ΣA

(
(yd, p

?)0,Ω − (y?, p?)0,Ω

)
,

and in the same way as above,

ν ‖u?‖1,Ω = ‖p?‖1,Ω ≤
CF(Ω)

ΣA

(
2 ‖yd‖0,Ω +

√
ν ‖f‖0,Ω

)
.

The bound on ‖λ?‖−1,Ω is derived analogously to the respective bound on ξ?, i.e.,
one uses the adjoint equation to obtain

‖λ?‖−1,Ω = ‖A∗p? + y? − yd‖−1,Ω

≤ CA(Ω) ‖p?‖1,Ω + ‖y?‖−1,Ω + ‖yd‖−1,Ω

≤ CA(Ω) ‖p?‖1,Ω + C−1(Ω)
(
‖y?‖0,Ω + ‖yd‖0,Ω

)
≤
(
CA(Ω)

CF(Ω)

ΣA
+ C−1(Ω)

)(√
ν ‖f‖0,Ω + 2 ‖yd‖0,Ω

)
.

This proves the first part of the proposition.
In the setting of Remark 2.2, we obtain

‖Ay?‖0,Ω ≤ CR(Ω)
(
‖f‖0,Ω + ‖u?‖0,Ω

)
≤ CR(Ω)

(
2 ‖f‖0,Ω +

1√
ν
‖yd‖0,Ω

)
.

This concludes the proof. �

2.4. Discretization of the optimal control problem. We consider the dis-
cretization of the optimal control problem (1) by finite dimensional spaces Yh ⊂
H1

0 (Ω) and Uh ⊂ H1
0 (Ω) for the state y and the control u, respectively. Let NYh

and NUh
be sets with cardinality |NYh

| = dim(Yh) and |NUh
| = dim(Uh). Further,

we introduce {ϕz | z ∈ NYh
} and {ψz | z ∈ NUh

} as bases of Yh and Uh, respectively.
Then, a function yh =

∑
z∈NYh

yh,zϕz ∈ Yh with yh,z ∈ R can be identified by its

component vector

yh = (yh,z)z∈NYh
∈ R|NYh

|.

Similarly, we identify the function uh =
∑
z∈NUh

uh,zψz ∈ Uh with

uh = (uh,z)z∈NUh
.

For the ease of presentation, we assume that the basis of Yh yields yh ≥ 0 in Ω if
and only if yh ≥ 0. A particular example of a discretization satisfying the above
conditions is given in Section 4.1.
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Next we define the stiffness matrix Ah ∈ R|NYh
|×|NYh

| and the mass matrix
Mh ∈ R|NYh

|×|NUh
| representing the bilinear form a on Yh and the L2-scalar-

product of functions in Yh with functions in Uh, respectively. Hence, the elements
of these matrices are given by

(Ah)zz̄ := a(ϕz, ϕz̄) and (Mh)zv := (ϕz, ψv)0,Ω

for z, z̄ ∈ NYh
and v ∈ NUh

. Then, for all yh, wh ∈ Yh with vector representation
yh, wh and all uh ∈ Uh with vector representation uh it holds that

yh
TAhwh = a(yh, wh) and yh

TMhuh = (yh, uh)0,Ω .

Analogously, we define mass matricesMY
h andMU

h representing the inner products
in Yh and Uh, respectively.

The data vectors fh = (fh,z)z∈NYh
and ydh = (ydh,z)z∈NYh

are defined by

fh,z =

∫
Ω

fϕz dx, ydh,z =

∫
Ω

ydϕz dx.

In the same way as in Section 2, we introduce a slack variable ξh ∈ R|NYh
| as

the vector

ξh := Ahyh −Mhuh − fh.

The error representation in Section 3 requires an interpretation of the vector ξh as
an element ξh in H−1(Ω), such that for all yh ∈ Yh ⊂ H1

0 (Ω), we have

yh
T ξh = 〈ξh, yh〉−1,1,Ω.

Thus, for any ξh ∈ R|NYh
| let ξ̂h := (MY

h )−1ξh be the coefficients of the function
ξh in the basis {ϕz | z ∈ NYh

}, i.e.

(16) ξh :=
∑

z∈NYh

(
(MY

h )−1ξh
)
z
ϕz ∈ L2(Ω) ↪→ H−1(Ω).

Then it holds that

(17) yh
T ξh = yh

TMY
h

(
MY

h

)−1
ξh = yh

TMY
h ξ̂h = 〈ξh, yh〉−1,1,Ω = (ξh, yh)0,Ω .

In the following, we identify the vector ξh (rather than ξ̂h) with the function ξh
and denote the associated discrete space by Ξh.

Consider an operator Π on L2(Ω) which satisfies

(18) (Πv, vh)0,Ω = (v, vh)0,Ω for all v ∈ L2(Ω) and vh ∈ Yh.

The last step to the formulation of the discrete version of the optimal control
problem considered in this text is the definition of the discrete objective functional
JΠ : H1

0 (Ω) × L2(Ω) → R. Later, we will also use the discrete Lagrangian LΠ :
X ×H−1(Ω)×H1

0 (Ω)→ R. Thus, we define

JΠ(y, u) :=
1

2
‖y −Πyd‖20,Ω +

ν

2
‖u‖20,Ω ,(19)

LΠ(x, λ, µ) :=
1

2
‖y −Πyd‖20,Ω +

ν

2
‖u‖20,Ω(20)

+ a(y, p)− (u+ Πf, p)0,Ω − 〈ξ, p〉−1,1,Ω

− 〈ξ, µ〉−1,1,Ω − 〈λ, y〉−1,1,Ω.

At this point, we leave it open to choose Π. For instance, one may consider Π either
to be equal to the identity on L2(Ω) or the L2-projection onto Yh.
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The discrete optimal control problem finally reads: For given data f, yd and
ν > 0, find a solution (yh, uh, ξh) ∈ Yh × Uh × Ξh to the problem

Minimize JΠ(yh, uh)(21a)

such that a(yh, φh)− (uh+Πf, φh)0,Ω − 〈ξh, φh〉−1,1,Ω = 0 (∀φh ∈ Yh),(21b)

yh ≥ 0, ξh ≥ 0 and 〈ξh, yh〉−1,1,Ω = 0.(21c)

Utilizing standard techniques, one readily obtains the existence of a solution
to (21). The vector representation of the latter satisfies the following discrete C-
stationarity system (which does not depend on Π) with multipliers ph,λh and µh ∈
R|NYh

|,

Ahyh −Mhuh − ξh = fh,(22a)

ξh ≥ 0, yh ≥ 0, yh
T ξh = 0,(22b)

MY
h yh − λh +Ahph = ydh,(22c)

νMU
h uh −Mhph = 0,(22d)

−µh − ph = 0,(22e)

λh,z = 0 if yh,z > 0, ∀z ∈ NYh
,(22f)

µh,z = 0 if ξh,z > 0, ∀z ∈ NYh
,(22g)

λh
Tµh ≥ 0.(22h)

An optimal solution of (21) is strongly stationary, when it satisfies (22) and the
following sign conditions on the biactive set,

(23) µh,z ≥ 0 and λh,z ≥ 0, if yh,z = 0 and ξh,z = 0, ∀z ∈ NYh
.

The multipliers ph and µh may be interpreted as coefficient vectors pertinent to
functions in Yh, whereas λh may be interpreted analogously to ξh. Therefore, with
these multipliers, we associate a tuple of functions (ph, λh, µh) ∈ Yh × Ξh × Yh.
For the ease of notation, we abbreviate Xh = Yh × Uh × Ξh × Yh and say that
(x?h, λ

?
h, µ

?
h) ∈ Xh×Ξh×Yh is C- or strongly stationary, if its vector representation

is C- or strongly stationary.

Remark 2.8. Suppose that (y?h, u
?
h, ξ

?
h) is C-stationary for (21) with associated

multipliers (p?h, λ
?
h, µ

?
h) ∈ Yh × Ξh × Yh. Then we have

J(y?h, u
?
h) = JΠ(y?h, u

?
h) +

1

2
(‖yd‖20,Ω − ‖Πyd‖

2
0,Ω)(24)

= LΠ(x?h, λ
?
h, µ

?
h) +

1

2
(‖yd‖20,Ω − ‖Πyd‖

2
0,Ω)

= L(x?h, λ
?
h, µ

?
h),

and for all (xh, λh, µh) ∈ Xh × Ξh × Yh,

∇xL(x?h, λ
?
h, µ

?
h)(xh) = ∇xLΠ(x?h, λ

?
h, µ

?
h)(xh) = 0.(25)

3. Primal-dual-weighted error representation

In our numerics, the adaptive mesh refinement will be guided by the error with
respect to the objective functional, but other choices are conceivable. Hence, the
latter represents the target quantity in our goal-oriented mesh adaption approach.
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For this purpose, we next establish the associated error representation. Our tech-
nique is related to the one in [HH08].

Theorem 3.1. Assume that (y?, u?, ξ?) and (y?h, u
?
h, ξ

?
h) are C-stationary for (2)

and (21) with associated multipliers (p?, λ?, µ?) and (p?h, λ
?
h, µ

?
h). Then, it holds

that

J(y?h, u
?
h)− J(y?, u?) =

1

2
∇xxL(x?h − x?, x?h − x?)

+ 〈λ?, y?h〉−1,1,Ω + 〈ξ?h, µ?〉−1,1,Ω.
(26)

Proof. In view of (24), we have

(27) J(u?h, y
?
h)− J(u?, y?) = L(x?h, λ

?
h, µ

?
h)− J(u?, y?).

Taylor expansion of L(x?h, λ
?
h, µ

?
h) at x? yields

L(x?h, λ
?
h, µ

?
h) =L(x?, λ?h, µ

?
h) +∇xL(x?, λ?h, µ

?
h)(x?h − x?)

+
1

2
∇xxL(x?h − x?, x?h − x?).

(28)

For the first term on the right-hand side in (28), we use the definition of L in (5)
and the system (3) to obtain

(29) L(x?, λ?h, µ
?
h) = J(y?, u?)− 〈λ?h, y?〉−1,1,Ω − 〈ξ?, µ?h〉−1,1,Ω.

Taking again advantage of (3), for the second term on the right-hand side in (28)
we find

∇xL(x?, λ?h, µ
?
h)(x?h − x?) =〈λ?, y?h〉−1,1,Ω + 〈λ?h, y?〉−1,1,Ω(30)

+ 〈ξ?h, µ?〉−1,1,Ω + 〈ξ?, µ?h〉−1,1,Ω.

Using (28)-(30) in (27) gives the assertion. �

The following lemma provides a representation of the second order Gâteaux
derivative of the MPCC-Lagrangian.

Lemma 3.2. Under the same assumptions as in Theorem 3.1, for a tuple of discrete
functions φh = (δxh, δλh, δµh) ∈ Xh × Ξh × Yh, with δxh = (δyh, δuh, δξh, δph) it
holds that

∇xxL(x?h − x?, x?h − x?) =∇xL(x?h, λ
?
h, µ

?
h)(x?h − x? + φh)

− 〈ξ?h, µ?〉−1,1,Ω − 〈ξ?, µ?h〉−1,1,Ω − 〈λ?, y?h〉−1,1,Ω − 〈λ?h, y?〉−1,1,Ω.
(31)

Proof. Taylor expansion of ∇L(x?h, λ
?
h, µ

?
h)(x?−x?h) at the point x? and evaluation

of ∇L(x?, λ?h, µ
?
h)(x? − x?h) leads to

∇xL(x?h, λ
?
h, µ

?
h)(x?h − x?) =∇xL(x?, λ?h, µ

?
h)(x?h − x?) +∇xxL(x?h − x?, x?h − x?)

=〈ξ?h, µ?〉−1,1,Ω + 〈ξ?, µ?h〉−1,1,Ω + 〈λ?, y?h〉−1,1,Ω

+ 〈λ?h, y?〉−1,1,Ω +∇xxL(x?h − x?, x?h − x?),
which readily implies

∇xxL(x?h − x?, x?h − x?) =∇xL(x?h, λ
?
h, µ

?
h)(x?h − x?)− 〈ξ?h, µ?〉−1,1,Ω

− 〈ξ?, µ?h〉−1,1,Ω − 〈λ?, y?h〉−1,1,Ω − 〈λ?h, y?〉−1,1,Ω.
(32)

According to (25), it holds that ∇xL(x?h, λ
?
h, µ

?
h)(φh) = 0. This yields the assertion.

�
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In combination with Theorem 3.1, the previous lemma gives rise to an error
representation which will be the basis for the evaluation of the primal-dual weighted
residuals.

Theorem 3.3. In addition to the assumptions in Theorem 3.1 let δxh = (δyh, δuh,
δξh, δph) ∈ Xh. Then, it holds that

J(u?, y?)− J(u?h, y
?
h)

=
1

2
a(y?h, p

? − δph)− 1

2
(u?h + f, p? − δph)0,Ω −

1

2
〈ξ?h, p? − δph〉−1,1,Ω(33a)

+
1

2
a(p?h, y

? − δyh) +
1

2
(y?h − yd, y? − δyh)0,Ω +

1

2
〈λ?h, y? − δyh〉−1,1,Ω(33b)

+
1

2
(ν u?h − p?h, u? − δuh)0,Ω(33c)

+
1

2
〈ξ? − δξh,−µ?h − p?h〉−1,1,Ω(33d)

− 1

2
〈λ?, y?h〉−1,1,Ω +

1

2
〈λ?h, y?〉−1,1,Ω −

1

2
〈ξ?h, µ?〉−1,1,Ω +

1

2
〈ξ?, µ?h〉−1,1,Ω.(33e)

Proof. The combination of (26) from Theorem 3.1 and (31) from Lemma 3.2 reveals

J(u?, y?)− J(u?h, y
?
h) =− 1

2
∇xxL(x?h−x?, x?h−x?)− 〈λ?, y?h〉−1,1,Ω − 〈ξ?h, µ?〉−1,1,Ω

=
1

2
∇xL(x?h, λ

?
h, µ

?
h)(x? − x?h − φh)− 1

2
〈ξ?h, µ?〉−1,1,Ω +

1

2
〈ξ?, µ?h〉−1,1,Ω

− 1

2
〈λ?, y?h〉−1,1,Ω +

1

2
〈λ?h, y?〉−1,1,Ω.

Choosing φh = δxh − x?h = (δyh − y?h, δuh − u?h, δξh − ξ?h, δph − p?h) and exploiting
the structure of the MPCC-Lagrangian provides the assertion. �

Remark 3.4. The terms (33a)-(33d) in Theorem 3.3 represent the dual and the
primal error in the feasibility and optimality conditions (22a), (22c), (22d), (22e),
whereas the remaining terms (33e) reflect the mismatch in complementarity as
expressed by (22f) and (22g).

Remark 3.5. Note that in Theorem 3.1 and Theorem 3.3 one may alternatively
consider the error JΠ(y?h, u

?
h)−J(y?, u?). In this situation, the error representation

includes additional data terms pertinent to replacing yd by Πyd in the objective,
i.e.,

JΠ(y?h, u
?
h)− J(y?, u?) = J(y?h, u

?
h)− J(y?, u?) +

1

2
‖Πyd‖20,Ω −

1

2
‖yd‖20,Ω .

4. Primal-Dual-Weighted A Posteriori Estimator

Note that the representation of J(y?, u?) − JΠ(y?h, u
?
h) is not fully a posteriori,

which is, on the one hand, due to the weights x? − δxh and, on the other hand,
due to the dependence of the terms (33e) on λ?, y?, µ? and ξ?. This fact prevents
an immediate numerical realization of the representation in Theorem 3.3. In this
section we deduce a fully a posteriori and local estimator from the terms in the
error representation in Theorem 3.3.
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4.1. Detailed discretization. Subsequently, we exemplarily consider specific choi-
ces for the bilinear form a and the discrete spaces. In fact, we set a(y, z) :=∫

Ω
∇y ·∇z dx on H1

0 (Ω)×H1
0 (Ω). Let Ω ⊂ R2 be a polygonal bounded domain and

let T be a triangulation of Ω (into triangles) in the sense of [AH09, p. 394]. The
set of all edges of triangles in T is denoted by E , whereas N is the set of nodes
of triangles in T . For a subset ω ⊂ Ω, we write T (ω) := {T ∈ T |T ⊂ ω}, and,
analogously, E(ω) := {E ∈ E |E ⊂ ω} and N (ω) := {z ∈ N | z ∈ ω}.

By P1,0(T ) we denote the space of T -piecewise affine and globally continuous
functions on Ω with zero boundary conditions and the usual nodal basis

{ϕz ∈ P1,0(T ) | z ∈ N , ∀z̄ ∈ N , ϕz(z̄) = δz,z̄}.

We set Yh = P1,0(T ) as well as Uh = P1,0(T ). Then, by (22d) and (22e), the
terms (33c) and (33d) in the difference of the objectives yield zero. Indeed, MY

h =
Mh is an invertible matrix, and thus p?h = νu?h and µ?h = −p?h.

On every triangle T ∈ T we approximate y?|T (and p?|T ) by the quadratic
interpolant ỹ?h of y?h based on the (at most) six nodes of

⋃
{S ∈ T |S ∩ T ∈ T ∪ E}

and p̃?h of p?h, respectively (cf. [BR03]). The zero boundary condition guarantees
the uniqueness of the interpolant also for triangles with edges on the boundary of Ω.

We define the edge jumps of a discrete function φh ∈ Yh with the T -piecewise
constant gradient ∇φh as follows: For a triangle T ∈ T with an edge E ∈ E(T ) we
denote by νT,E the outer unit normal vector of T at the edge E. Assuming that
E = T+ ∩ T−, we note that νT−,E = −νT+,E and thus, the edge jump

[∇φh]E :=
(
∇φh|T+

−∇φh|T−

)
· νT+,E =

(
∇φh|T− −∇φh|T+

)
· νT−,E

is independent of the permutation of T+ and T−. If E ⊂ ∂Ω, we define [∇φh]E := 0.
For z ∈ H1

0 (Ω), T -piecewise integration by parts yields

a(φh, z) =
∑
T∈T

∑
E∈E(T\∂Ω)

∇φh · νT,E
∫
E

z dS =
∑
E∈E

[∇φh]E

∫
E

z dS.

Rearranging the edge terms according to triangles we obtain the identity

(34) a(φh, z) =
∑
T∈T

∑
E∈E(T )

1

2
[∇φh]E

∫
E

z dS =
∑
T∈T

1

2
[∇φh]∂T

∫
∂T

z dS.

The total error estimator, which we derive below, has the structure

(35) ηh :=
∑
T∈T

ηT ,

where ηT = η
PDE1,T

+ η
PDE2,T

+ η
CM,T

. On every triangle T , η
PDE1,T

reflects the

error contribution of the dual-weighted primal residual (33a) on T , while η
PDE2,T

contains the error contribution of the primal-weighted dual equation (33b) on T .
These estimators are derived in Section 4.2. The complementarity mismatch con-
tribution to the error is contained in η

CM,T
, which is discussed in Section 4.3.
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4.2. Primal-dual-weighted PDE residuals. For δph ∈ P1,0(T ), we use (34) and
the L2-representation of ξh due to (16) to write (33a) in Theorem 3.3 as

a(y?h, p
?−δph)−

∫
T

(u?h + f)(p?−δph) dx− 〈ξ?h, p?−δph〉−1,1,Ω

=
∑
T∈T

 ∑
E∈E(T )

(
1

2
[∇φh]E

∫
E

p?−δph dS
)
−
∫
T

(u?h+ f+ξ?h)(p?−δph) dx

 .

(36)

We set δph = νu?h, estimate p? by νũ?h (cf. page 12) and recall (17) to obtain
from (36)

η
PDE1,T

:=
1

2

∣∣∣∣−∫
T

ν(u?h+f +ξ?h)(ũ?h−u?h)dx+

∫
∂T

ν

2
[∇y?h]∂T (ũ?h−u?h)dS

∣∣∣∣ .(37)

An analogue procedure applies to the weighted residual of the adjoint equa-
tion (33b), and we obtain

ηPDE2,T :=
1

2

∣∣∣∣∫
T

(y?h−yd + λ?h)(ỹ?h−y?h)dx+

∫
∂T

ν

2
[∇u?h]∂T (ỹ?h−y?h)dS

∣∣∣∣ .(38)

As a consequence, the terms in

η
PDE1

:=
∑
T∈T

η
PDE1,T

, η
PDE2

:=
∑
T∈T

η
PDE2,T

are fully a posteriori. The integrals can be evaluated by Gauss quadrature rules
which are exact for polynomials up to a certain degree.

4.3. Complementarity mismatch. The weighted complementarity residual is
given by the sum

1

2
(〈ξ?, µ?h〉−1,1,Ω − 〈ξ?h, µ?〉−1,1,Ω + 〈λ?h, y?〉−1,1,Ω − 〈λ?, y?h〉−1,1,Ω),

and is next analyzed term by term. The resulting estimator is the sum of the
a posteriori quantities defined in (39)-(42).

We begin our analysis with the terms that can be understood as L2-products
due to (16). In fact, considering 〈λ?h, y?〉−1,1,Ω = (λ?h, y

?)0,Ω, inserting (λ?h, y
?
h)0,Ω

and replacing y? by ỹ?h we obtain the a posteriori estimator

(39) η
CM1,T

:=
1

2

∣∣∣∣∫
T

(ỹ?h − y?h)λ?h dx

∣∣∣∣ .
Further, subtracting (ξ?h, νu

?
h)0,Ω from −〈ξ?h, µ?〉−1,1,Ω and replacing µ? by −νũ?h

we find

(40) η
CM2,T

:=
1

2

∣∣∣∣∫
T

ν(ũ?h − u?h)ξ?h dx

∣∣∣∣ .
Next, the term 〈ξ?, µ?h〉−1,1,Ω which belongs to the mismatch of the continuous

and discrete strongly active sets is analyzed. Due to 〈ξ?, µ?〉−1,1,Ω = 0 following
from (3g), it holds that

〈ξ?, µ?h〉−1,1,Ω = 〈ξ?, µ?h − µ?〉−1,1,Ω.

We exploit (3a) to conclude

〈ξ?, µ?h − µ?〉−1,1,Ω = 〈Ay? − u? − f, µ?h − µ?〉−1,1,Ω

= (−u? − f, µ?h − µ?)0,Ω + (∇y?,∇(µ?h − µ?))0,Ω .
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SOLVE ESTIMATE MARK REFINE

Figure 1. The typical adaptive scheme as described in Section 5.1.

Similarly to above, we use µ? = −νu? and µ?h = −νu?h and replace u? by ũ?h
whenever it appears in the weight and by u?h in the residual, as well as we use y?h
instead of y?. For T ∈ T we obtain from (34)

η
CM3,T

:=
ν

2

∣∣∣∣−∫
T

(u?h + f)(ũ?h − u?h) dx+

∫
∂T

1

2
[∇y?h]∂T (ũ?h − u?h)dS

∣∣∣∣ .(41)

Finally, for the term 〈λ?, y?h〉−1,1,Ω, by (3c) it holds that

−〈λ?, y?h〉−1,1,Ω =〈y? +A∗p? − yd, y? − y?h〉−1,1,Ω

= (y? − yd, y? − y?h)0,Ω + (∇p?,∇(y? − y?h))0,Ω .

We replace y? by ỹ?h when it appears in the weight and by y?h in the residual, and
estimate

η
CM4,T

:=
1

2

∣∣∣∣∫
T

(y?h − yd)(ỹ?h − y?h) dx+

∫
∂T

ν

2
[∇u?h]∂T (ỹ?h − y?h)dS

∣∣∣∣ ,(42)

where we have used integration by parts as in (34).

4.4. Total Error. Summarizing our above findings, we obtain the following esti-
mator.

Theorem 4.1. Let (x?, λ?, µ?) ∈ X×H−1(Ω)×H1
0 (Ω) be a solution to problem (2)

and let (x?h, λ
?
h, µ

?
h) ∈ Xh × Ξh × Yh satisfy the conditions (22). With η

PDE1,T

from (37), η
PDE2,T

from (38) and η
CM,T

= η
CM1,T

+ η
CM2,T

+ η
CM3,T

+ η
CM4,T

from (39)-(42), we estimate the local distribution of the difference J(u?, y?) −
J(u?h, y

?
h) by

ηh =
∑
T∈T

η
PDE1,T

+ η
PDE2,T

+ η
CM,T

.

5. Numerics

We start by a brief overview of the adaptive finite element method (AFEM)
and its subroutines in Section 5.1 before establishing the optimization algorithm
yielding a C-stationary point of problem (21) on every adaptive refinement level in
Section 5.2. Finally, Section 5.3 contains numerical results.

5.1. Adaptive scheme. AFEM typically follows the scheme displayed in Figure 1.
In this context, the mesh-adaption process is guided iteratively by local error indi-
cators relying on solutions of the considered problem on the current mesh. Elements
with large local error indicators are marked for refinement, and a superset of the
marked elements is actually refined to maintain a regular mesh. The overall algo-
rithm 1 repeats this cycle until a given complexity N (e.g. the number of degrees
of freedom in the SOLVE procedure) is reached.
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Algorithm 1 AFEM for MPEC

Input: Triangulation Th, data fh,ydh, initial state and control yh,uh,
complexity N , bulk parameter θ

1: loop
2: (yh,uh, ξh,λh) = solveMPEC(Th,yh,uh, ξh, fh,ydh)
3: (ηT )T∈Th = estimate(Th,yh,uh, ξh,λh, fh,ydh)
4: if |freenodes(Th)| > N then
5: return (Th,yh,uh, ξh,λh)
6: end if
7: Mh = markbulk(Th, (ηT )T∈Th , θ)
8: (Th,yh,uh, ξh, fh,ydh) = refineRGB(Th,Mh,yh,uh, ξh, fh,ydh)
9: end loop

We briefly discuss the respective steps of algorithm 1. The solution step 2 (sub-
routine solveMPEC) is described in detail in Section 5.2. The calculation of a local
error indicator

ηh =
∑
T∈T

ηT

from the discrete solutions on the coarse mesh T in step 3 (subroutine estimate)
follows from Section 4. We use a bulk criterion (subroutine markbulk) to mark
those elements in T , which are refined to obtain the next AFEM level. In step 7
this yields the setM⊂ T of minimal cardinality |M| such that for a bulk parameter
θ ∈ (0, 1) it holds that

θηh ≤
∑
T∈M

ηT .

This criterion stops the marking procedure, relying on a greedy algorithm, as soon
as the total error on M has reached a fraction of θ of the total error on T .

In the refinement step 8 (subroutine refineRGB) one has to avoid hanging nodes
and guarantee shape regularity of the triangulation. This is achieved by applying
a closure algorithm, which marks additional triangles or edges; see also [Car04].

The AFEM level is indicated by h. In the adaptive scheme the maximum (local)
mesh size is not required to converge to zero globally, as triangles may no longer
get refined from some level h on due to the error indicator.

5.2. Optimization algorithm. The discrete optimality system (22) is solved it-
eratively through a sequence of penalized problems (Pγ). This strategy is inspired
by [ATW05]. Recalling the mass and stiffness matrices of Section 2.4, on a fixed
AFEM level h and for a penalty parameter γ > 0 the penalized problem (Pγ)
associated with (21) reads

Minimize
1

2
(y −M−1

h ydh)TMh(y −M−1
h ydh) +

ν

2
uTMhu + γyT ξ

such that Ahy =Mhu + fh + ξ,(Pγ)

y ≥ 0 and ξ ≥ 0.

Note that a feasible point (y,u, ξ) of (Pγ) satisfies yT ξ ≥ 0. Hence, (Pγ) penalizes
violations of yT ξ = 0 by γ > 0. The necessary first order optimality system of (Pγ)
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is given by

Rγ,1 :=Mhy + γξ +Ahp− λ− ydh = 0,(43a)

νMhu−Mhp = 0,(43b)

γy − p− µ = 0,(43c)

Rγ,2 := Ahy − ξ −Mhu− fh = 0,(43d)

and the complementarity conditions

λ ≥ 0, y ≥ 0, λ · y = 0,(43e)

µ ≥ 0, ξ ≥ 0, µ · ξ = 0.(43f)

We reduce the above system by eliminating the discrete adjoint state p and the
multiplier µ. Using the max{0, ·}-operator (componentwise) and an arbitrary, but
fixed constant c > 0, we reformulate (43e)-(43f) as

Rγ,3 := λ−max{0,λ− cy} = 0,

Rγ,4 := µ−max{0,µ− cξ} = 0.
(44)

The resulting system (43a), (43d), (44) is solved by a semi-smooth Newton-method
(algorithm 2); see [HIK02] for details on the latter. As an attempt towards glob-
alization of the Newton solver, we employ a residual based strategy which ad-
justs the step size τ ∈ (0, 1) in algorithm 2 such that the total residual of sys-
tem (43) decreases in each iteration. In this context, for X = (y,u, ξ,λ), the
residual residualγ(X) in step 7 is the sum of four parts belonging to the four
equations (43a), (43d), (44), that is,

resγ,1 = |RTγ,1A−1
h Rγ,1|

1
2 ,

resγ,2 = |RTγ,2A−1
h Rγ,2|

1
2 ,

resγ,3 = |Rγ,3|1,
resγ,4 = |Rγ,4|1,

residualγ(X) = resγ,1 + resγ,2 + resγ,3 + resγ,4.

In the associated step 7 of algorithm 2, we choose τ0 = ΣM , the machine precision.
Note that our globalization strategy is a simple Armijo-type backtracking which
worked well in our numerical practice. For theoretical investigations and guaranteed
convergence, however, a more complex strategy like a path search [FM99, Ral94]
would be necessary.

Algorithm 3 corresponds to step 2 of algorithm 1. Concerning its convergence in
finite dimensional spaces, we observe that MPEC-LICQ (see [ATW05, Def. 2]) is
generically satisfied in the problem class under consideration. Thus, due to [ATW05],
accumulation points of a series (yγ , uγ , ξγ)γ of solutions to the respective penalized
problems for nondecreasing γ are either not feasible for problem 2, or satisfy C-
stationarity. For completeness we also mention that under additional assumptions
one may even get a strongly stationary point.
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Algorithm 2 solvePenMPEC

Input: Data for system (43) including γ and initial values y0,u0, ξ0

1: Set k = 0, choose c > 0, ε > 0, ζ ∈ (0, 1), κ ∈ (0, 1)
2: Set initial values λ0 and µ0 according to equations (43a) and (43c)
3: loop
4: Calculate indices of active and inactive nodes

A(yk) = {z ∈ N |λk(z) ≥ cyk(z)}, I(yk) = N \A(yk)

A(ξk) = {z ∈ N |µk(z) ≥ cξk(z)}, I(ξk) = N \A(ξk)

5: Find the solution Xo
k+1 = (yok+1,u

o
k+1, ξ

o
k+1,λ

o
k+1,µ

o
k+1) to system (43a)-

(43d) and set

yok+1(A(yk)) = 0, λok+1(I(yk)) = 0,

ξok+1(A(ξk)) = 0, µok+1(I(ξk)) = 0.

6: Initialize globalization strategy τ = 1, Xk+1 = Xo
k+1

7: while residualγ(Xk+1) > (1− κτ)residualγ(Xk) and τ > τ0 > 0 do
8: τ = ζτ
9: Xk+1 = (1− τ)Xk + τXo

k+1

10: end while
11: if residualγ(Xk+1) ≤ ε(residualγ(X0) + 1) then
12: return yk+1,uk+1, ξk+1

13: end if
14: Set k = k + 1
15: end loop

The residual in step 5 of algorithm 3 is computed as follows:

R1 := Ahy −Mhu− ξ − fh, res1 = (RT1A−1
h R1)

1
2 ,

R2 :=Mhy − λ + νAhu− ydh, res2 = (R2A−1
h R2)

1
2 ,

res3 = |uξ|1, res4 = |ξ −max{0, ξ − cy}|1, res5 = |yλ|1,
residual(y,u, ξ,λ) = res1 + res2 + res3 + res4 + res5.(45)
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Algorithm 3 solveMPEC

Input: Data for Problem (21), initial values for y0,u0, ξ0

1: Choose ε, γ, δγ > 1, set γ− = 0,
2: loop
3: (yγ ,uγ , ξγ) = solvePenMPEC(DATA,yγ−,uγ−, ξγ−)

4: Set λγ according to (22c), (22d).
5: Compute rγ =residual(yγ ,uγ , ξγ ,λγ) due to (45)
6: if rγ ≤ ε(rδγ + 1) then
7: return yγ , uγ , ξγ , λγ
8: end if
9: Set γ− = γ, γ = δγ · γ, ε = ε/(δγ + .001)

10: end loop

5.3. Numerical results. Finally, we present numerical results obtained by our
AFEM approach. The bulk parameter in algorithm 1 is set to θ = 0.5 in both
examples.

Example 5.1. We tested our algorithm for solving [HK09, Example 6.1], where
A = −∆ on the square domain Ω = (0, 1)× (0, 1) and

z1(x1) = −4096x6
1 + 6144x5

1 − 3072x4
1 + 512x3

1,

z2(x2) = −244.140625x6
2 + 585.9375x5

2 − 468.75x4
2 + 125x3

2,

y∗(x1, x2) =

{
z1(x1)z2(x2) in (0, 0.5)× (0, 0.8),
0 else,

u∗(x1, x2) = y∗(x1, x2),

ξ∗(x1, x2) = 2 max{0,−|x1 − 0.8| − |(x2 − 0.2)x1 − 0.3|+ 0.35}.

The data f, yd is set to

f = −∆y∗ − u∗ − ξ∗, yd = y∗ + ξ∗ − ν∆u∗.

The parameter for the cost of the control is chosen as ν = 1. The solution
(y?, u?, ξ?) = (y∗, u∗, ξ∗) admits the regularity as stated in Remark 2.2.

On each refinement level in algorithm 1, the optimization routine in line 2 (al-
gorithm 3) is employed with ε = 10−6, γ = 10−3 and δγ = 1.5. The solver for
the penalized problem, algorithm 2, is called with the parameter choices c = 1,
ε = 10−6, ζ = 0.5 and κ = 10−4.

The solution calculated by our adaptive algorithm is shown in Figure 2. Owing
to u? = y?, we plot only y?h. For visualization purposes, the values of the multiplier
vector ξ?h = −λ?h in the nodes are plotted on a coarser mesh. The size of the circles
indicates the respective (nonnegative) value of ξ?h.

Figure 3 shows on the left-hand side the comparison of convergence of the error
estimators as a function of the number of degrees of freedom in logarithmic scale
for adaptive versus uniform refinement. The corresponding error estimators are
denoted by superscript ’A’ for ’adaptive’ (solid lines) and ’U’ for ’uniform’ refine-
ment (dashed lines). The right-hand side of Figure 3 shows the convergence of
JAh −J? := Jh(y?h, u

?
h)−J(y?, u?) for discrete solutions y?h, u

?
h on the adapted mesh

compared to the convergence of JUh − J? := Jh(y?h, u
?
h) − J(y?, u?) for solutions

y?h, u
?
h on uniform meshes.
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Figure 2. Solution graphs of the adaptive algorithm in Exam-
ple 5.1, showing the state y?h (= u?h, left) and the slack variable ξ?h
(= −λ?h, right). For the sake of clarity, ξ?h is plotted on a coarser
mesh.

101 102 103 104
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101

102
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NrDOF

ηU

100 101 102 103 104
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102

JAh − J?

JUh − J?

NrDOF

Figure 3. Comparison of convergence of the estimators for adap-
tive (solid lines) and uniform refinement (dashed lines) for Exam-
ple 5.1.

All parts of the estimators converge to zero, and in the adaptive variant of the
algorithm, the estimated error is smaller compared to the estimated error on a
uniform mesh with the same number of degrees of freedom (NrDOF). Although the
convergence speed (i.e., the slope of the graphs in Figure 3) is not improved by
adaptive mesh refinement owing to the high regularity of the solution, one can
still observe a reduction of complexity when one aims at a certain accuracy in the
objective value.

Table 1 is the convergence history of the adaptive refinement process including
effectivity indices

ηAh
|JAh − J?|

on the respective AFEM levels h. Note that the value of J? := J(y?, u?) can be
computed exactly from the solutions y?, u? in this problem. The effectivity indices
are smaller than 1 on coarse meshes, that is, we underestimate the real difference
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NrDOF ηAh JAh − J? Eff.Ind.
8 1.03e+02 2.51e+02 0.411

27 6.38e+01 1.81e+02 0.352
225 1.33e+01 2.54e+01 0.524

2806 1.11e+00 1.99e+00 0.557
28311 1.11e-01 1.92e-01 0.581

235726 1.33e-02 1.23e-02 1.08

Table 1. Convergence history of the adaptive method, AFEM
levels 2, 6, 10, 14, 18 and 22 for Example 5.1 including effectivity
indices.

of the objective values. When refining the mesh, the effectivity index increases to a
value greater than 1, which means that the error estimator becomes reliable. The
same effect occurs in test computations of [BR03] when using the DWR approach
for discretizing PDE problems or optimization problems with a PDE constraint
(but without inequality constraints).

Example 5.2. We consider again A = −∆ on the L-shaped domain Ω = (−1, 0)×
(−1, 1) ∪ (0, 1)× (0, 1) and define

yd(x) =

{
−1 if |x| >= 1

10 ,
1− 100x2

1 − 50x2
2 else,

f(x) =
1

2
+

1

2
(x1 − x2),

ν = 0.01.

On each refinement level in algorithm 1, the optimization routine in line 2 (al-
gorithm 3) is employed with ε = 10−6, γ = 10−2 and δγ = 1.5. The solver for
the penalized problem, algorithm 2, is called with the parameter choices c = 0.1,
ε = 10−6, ζ = 0.5 and κ = 10−4.

The solutions calculated by our adaptive algorithm are depicted in Figure 4.
In Figure 5, we show again the convergence of the error estimator in adap-

tive versus uniform refinement (left), as well as the convergence comparison of
Jh(y?h, u

?
h) − J(y?, u?) (right). The lack of regularity of the solution due to the

non-convexity of Ω seems to favor adaptive refinement when compared to uniform
refinement. In fact, we observe a significantly better convergence rate for AFEM
in this case.

Table 2 lists the data from the plots in Figure 5 together with effectivity indices
for different AFEM levels. The effectivity indices show once again that the error
estimators are not reliable, but converge to 1, similar to those in [BR03] for dis-
cretizing PDEs. The value of J(y?, u?) used for the plot and the table is estimated
by solutions on the adaptively generated mesh after additional uniform refinements.
Finally, the adaptively generated mesh is depicted in Figure 6. We observe refine-
ment in the non-convex corner as well as in the regions where y?h is steep. Further
refinement is found near the boundary between active and inactive sets, which is
due to the complementarity mismatch error.
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Figure 4. Solution graphs of the adaptive algorithm in Exam-
ple 5.2, first row left state y?h, right slack variable ξ?h, second row
left control u?h and right multiplier λ?h.
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Figure 5. Comparison of convergence of the estimators for adap-
tive (solid lines) and uniform refinement (dashed lines) for Exam-
ple 5.2.
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Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6,

D-10099 Berlin, Germany

E-mail address: hint@math.hu-berlin.de

Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA

E-mail address: rohop@math.uh.edu

and: Institute of Mathematics, University of Augsburg, Universitätsstraße 14, D-
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