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Abstract

Existing work on multi-class object detection usually

does not cover the entire viewsphere of each class in a

continuous way: object classes from different viewpoints

are either discretized into a few sparse viewpoints [12],

or treated as entirely separate object classes [20]. In the

present work, we describe an approach to multi-class ob-

ject detection which allows sharing parts between different

viewpoints and several classes while also learning a dense

representation for the entire viewsphere of each class. We

describe three learning approaches with different part shar-

ing strategies in order to reduce the computational complex-

ity of the learnt representation. Our approach uses synthetic

training data to achieve a dense viewsphere coverage which

also allows to perform object class and 3D pose estimation

on single images.

1. Introduction

It is estimated that humans are familiar with tens of thou-

sands of different object classes [3]. In computer vision, a

long-term objective is replicating this fundamental human

ability. However, learning and recognizing multiple ob-

ject classes from arbitrary viewpoints is still in its infancy.

Several approaches address the problem of viewpoint-

independent object class detection [14, 19, 22, 23, 25] or

multi-class object detection [9, 12, 20, 24, 21, 26]. Most

of these approaches consider these two problems in isola-

tion, i.e. either a viewpoint-independent representation of

an object class is built [14, 23, 25] or multiple object classes

are trained from discrete viewpoints [12, 20, 26]. Based

on a decomposition of each object class into parts, in the

present work we propose and evaluate three novel learning

strategies to represent multiple object classes on a contin-

uous viewsphere: an independent, a joint, and a sequential

learning strategy. Our experiments show that the sequential

learning strategy achieves the best result with respect to 2D

localization performance and flexibility during the training

process and thus could be suitable for learning multiple ob-

ject classes from arbitrary viewpoints on a larger scale. All

our proposed learning strategies rely on a part-based object

class detection approach, where a database of synthetic 3D

object models serves as the only positive training source.

The 2D localization performance of our learning strategies

is evaluated on different testsets which consist of images

from the 3D Object Category dataset [22] and the PASCAL

VOC2006 dataset [7].

In general, there are three different strategies for learn-

ing to represent multiple object classes: first, an indepen-

dent learning which trains each class separately from all

other classes. Second, a joint learning [26] which trains

all classes simultaneously, and third, a sequential learning

which trains one object class after the other [20]. In [26]

multiple classes are trained jointly based on boosted deci-

sion stumps to find common features. A variation of [26]

is proposed in [20] which enables the sequential addition of

a new class without retraining the previously learnt classes.

In the context of learning object classes from a small num-

ber of training samples [1, 2, 9, 17, 24] sequential learn-

ing is also termed knowledge transfer or one-shot learning.

In [9] the priors of probabilistic models are adapted by a

few training samples to represent new classes and in [1] a

template from a previously trained class is used to regu-

larize the training of a novel object class. [2] replaces fea-

tures from known classes with ones from a new but simi-

lar class. [17] uses prior information about a novel class in

order to assist a feature selection process. [24] proposes a

shape-based model which enables full or partial knowledge

transfer. All mentioned approaches have in common that

they either learn the classes from just a few discrete view-

points [9, 24] or they perform knowledge transfer within

visually very similar classes, as in [1, 2, 17]. In contrast,

in this paper we propose three novel learning strategies to

represent multiple, potentially dissimilar object classes on

a continuous viewsphere. To this purpose, we rely on the

approach of [23] where a continuous object class represen-

tation is learnt based on a database of synthetic 3D models.

Specifically, we extend their approach and propose three

novel strategies to represent multiple object classes on a



continuous viewsphere. Our work is related to [12] where a

hierarchial framework is used to propose and compare dif-

ferent types of multi-class learning strategies. In contrast to

our work, [12] restricts possible synergies among the object

classes to a few discrete viewpoints.

In the remainder of this paper in Section 2 we first de-

scribe the approach of [23], then in Section 3 we propose

different learning strategies which are evaluated in Sec-

tion 4, and we conclude the paper with an outlook on future

work in Section 5.

2. The Viewsphere Model

For the proposed learning strategies we rely on the

synthetically trained part-based model of [23] which we

briefly summarize in this section. Further details are given

in [23]. For simplification we term this model the view-

sphere model. The following training steps are necessary

to build a viewsphere model for a specific object class c:

Training Data: The viewsphere model derives its

positive training images exclusively from a database

of synthetic 3D models and its negative images from

the VOC2006 dataset [7]. Each 3D model is rendered

from many viewpoints which cover the entire viewsphere

densely. This rendering is performed once in front of a

black background which we term the pure training images

Icpure, and once in front of randomly selected images from

the negative dataset which we term the validation images

Icval.

Generating a Pool of Parts: HOG-features [6] of

different cell layouts are computed densely on each pure

training image. Affinity propagation [13] is applied to all

features of each HOG cell layout, collected from the pure

training images. A standard bootstrapping procedure is

used to train a linear SVM, based on the features assigned

to a cluster. Finally, we obtain a pool P c of parts where

each part is represented by a linear SVM classifier.

Selecting the Most Informative Parts: The pool P c

contains a large number of non-informative or redundant

parts, due to symmetries and self-similarity. In this training

step, a subset of N c object parts is selected by ranking the

informativeness of each part w.r.t. a positive and a negative

image set with an entropy-based measure [27] as follows:

as we intend to separate an entire object class from the

background, the pure training images Icpure are chosen as

the positive image set and the negative training examples

from the VOC2006 dataset are chosen as the negative

image set. Subsequently, the optimal detection threshold

of each object part from the pool P c is determined by

maximizing the mutual information [5] of the occurrence

of a part in the positive and negative image set as follows:

an indication function p of an object part in association

with a detection threshold θ is defined as a binary variable

p(I, θ) =

{

1, if smax(I, part) ≥ θ

0, otherwise
. (1)

Here smax is the maximum score of the object part clas-

sifier (i.e. the linear SVM) in an image I . In addition, a

binary class variable K is defined where K(I) = 1 if the

image I belongs to the positive set of images and 0 other-

wise. Between these two binary variables the mutual infor-

mation MI(p(θ);K) is defined as

MI(p(θ);K) = H(K)−H(K | p(θ)) (2)

with H(x)1 and H(x | y)2 being the marginal and the con-

ditional entropy. The optimal detection threshold θopt for

each object part can be determined from

θopt = argmax
θ

[MI(p(θ);K)] (3)

which results in the maximal mutual information MImax.

After the optimal detection threshold for each object

part has been determined an optimal subset of N c parts

from the pool P c can be selected iteratively (for further

details see [23]). Such a subset contains a maximum

of information regarding the chosen sets of positive and

negative images.

Modeling a Dense Grid of Spatial Part Layouts: A

spatial layout model which describes the spatial occurrence

of a small subset of M c object parts (M c ⊆ N c) for

each defined viewpoint on the entire viewsphere is built to

provide initial object hypotheses. The occurrence of the

object parts is modeled on the pure training images Icpure
by a mixture of Gaussian distributions [4] and the resulting

spatial layout models can be efficiently evaluated [10].

Learning the Global Object Class Appearance:

The spatial layout models for all defined viewpoints on the

viewsphere allow generating a set of object hypotheses.

In order to rank these hypotheses in a consistent way, all

generated hypotheses on the validation images Icval are

resized to the training scale and converted into a spatial

pyramid representation [15]. Based on this spatial pyramid

representation which encodes the detection scores of all

N c selected parts a non-linear SVM with an intersection

kernel [16] is trained to describe the entire object class c.

3. Multi-Class and Multi-View Learning

Strategies

In this section, we propose three novel learning strate-

gies, based on the training steps of the viewsphere model

1H(x) = −
∑

x p(x) log(p(x))
2H(x | y) = −

∑
x,y p(x, y) log(p(x | y))



of Section 2, to represent C object classes on a continu-

ous viewsphere: an independent, a joint, and a sequential

learning strategy. By relying on the part-based represen-

tation of the viewsphere model, we follow common multi-

class approaches which also decompose each object class

into parts [2, 21, 26]. Pseudo-code for all three learning

strategies is given in Table 1.

3.1. Independent Learning

First, we propose an independent learning of C object

classes (see Table 1 (top)) as a standard and base strategy to

represent multiple object classes: based on the pure train-

ing images Icpure and the validation images Icval each ob-

ject class c is trained independently from all other classes.

For each object class c a pool P c
I of independent and class-

specific parts is generated and N c
I parts from P c

I are se-

lected. Based on a subset of M c
I parts (M c

I ⊆ N c
I ) a dense

grid of class-specific spatial layout models is established

and the global appearance of the N c
I selected parts on the

validation images Icval is learnt for each class.

Training each object class independently from all other

classes comes with the advantage that a new object class

can easily be added without retraining the previously learnt

object classes [12]. However, parts are not shared among

object classes which implies that the computational com-

plexity of the overall representation grows linearly with the

number of object classes, as shown in [26].

3.2. Joint Learning

The second learning strategy is a joint learning of C ob-

ject classes (see Table 1 (center)): based on the pure train-

ing images of all object classes Ipure = {I1pure, . . . , I
C
pure}

a joint pool PJ of object parts is generated and NJ ob-

ject parts, which cover all object classes at once, are se-

lected from PJ . Subsequently, a dense grid of spatial lay-

out models is established for each object class c by using

the pure training images Icpure and a subset of MJ parts

(MJ ⊆ NJ ). Finally, the global appearance of all object

classes is jointly learnt into one non-linear SVM with an

intersection kernel (cf. Section 2) using the NJ selected

object parts to encode the validation images of all object

classes Ival = {I1val, . . . , I
C
val} with a spatial pyramid rep-

resentation.

The properties of the joint learning strategy are opposed

to the properties of the independent learning strategy: for

joint learning, adding a new object class to an already ex-

isting multi-class representation is not possible without re-

training all previously trained object classes from scratch.

As shown in [26], a joint learning of multiple object classes

normally reduces the computational complexity of the over-

all representation, by finding common object parts that can

be shared across different object classes. In the following

section, we introduce a sequential learning strategy which

Independent Learning of C object classes:

for c := 1 to C

- generate a pool P c
I of parts from the pure training

images Icpure
- select the Nc

I most informative parts from P c
I with

an entropy-based measure

- model a grid of spatial layout models based on

the pure training images Icpure
- learn the global appearance based on a spatial pyramid

representation of all Nc
I parts on the validation images Icval

end

Joint Learning of C object classes:

- generate a common pool PJ of parts from the

pure training images Ipure = {I1pure, . . . , I
C
pure}

- select the NJ most informative parts from PJ with

an entropy-based measure

for c := 1 to C

- model a grid of spatial layout models based on

the pure training images Icpure
end

- learn the common global appearance based on a

spatial pyramid representation of all NJ parts

on the validation images Ival = {I1val, . . . , I
C
val}

Sequential Learning of C object classes:

- generate an initial pool P 1

S of parts from

the pure training images I1pure
for c := 2 to C

- perform knowledge transfer from P c−1

S to the

object class c in oder to determine the remaining training

images Icremain which are not covered by the pool P c−1

S

- generate a pool P
c

S of parts with the

remaining training images Icremain

- merge part pools P c
S = P c−1

S ∪ P
c

S

end

- select NS parts from PC
S

for c := 1 to C

- model a grid of spatial layout models based

on the pure training images Icpure
end

- learn the common global appearance based on a

spatial pyramid representation of all NS parts

on the validation images Ival = {I1val, . . . , I
C
val}

Table 1. Three different learning strategies based on the training

steps of the viewsphere model of Section 2: an independent (top),

a joint (center) and a sequential (bottom) learning strategy of C

object classes. For a single object class (C = 1) all learning

strategies reduce to the viewsphere model. The term knowledge

transfer stems from the machine learning literature [8] and is de-

scribed w.r.t. this work in Section 3.3.

combines the advantages of both the independent and the

joint learning strategy [12].



3.3. Sequential Learning

In this work, the knowledge of an object class can be

defined as the appearance and the spatial arrangement of the

selected object parts (see Section 2). By learning one object

class after the other, we are able to perform knowledge

transfer [8] from previously trained object classes to novel

classes. By finding common knowledge across different

object classes we reduce the computational complexity of

the overall representation. In contrast to joint learning, it is

possible to learn a new object class without retraining the

previously learnt object classes. In the following paragraph,

a knowledge transfer algorithm is proposed to transfer the

knowledge which is captured by the appearance of the parts.

Knowledge Transfer: Starting point of the knowl-

edge transfer algorithm is a pool P c−1

S of previously

trained object parts and the pure training images Icpure of

a novel object class c. We intend to transfer knowledge

from P c−1

S to c in order to reduce the number of the pure

training images Icpure and to determine the training images

Icremain of the novel object class (Icremain ⊆ Icpure) which

are not yet covered by the pool P c−1

S . We term these

images Icremain, the remaining training images. To this

purpose, we calculate for each part from the pool P c−1

S a

joint mutual information MIjoint as follows

MIjoint =
1

Cpre

MImax
all +(1−

1

Cpre

)MImax
novel ≥ α. (4)

Here MImax
all is the maximal mutual information on all

pure training images, i.e. the positive image set consists

of both the pure training images of all previously trained

object classes and the pure training images of the novel

object class. MImax
novel is the maximal mutual information

on the pure training images of the novel class. See Equa-

tions (1-3) for calculating the maximal mutual information

in conjunction with the optimal detection threshold. Cpre

is the number of previously trained object classes and α is

a threshold which we term the information threshold. The

joint mutual information of Equation 4 takes into account

that with an increasing number of previously trained

classes an object part is less likely to contain knowledge

of all classes simultaneously. However, with an increasing

number of pre-trained classes Equation 4 requires that a

part must provide at least knowledge of the novel object

class. Finally, parts which contain information above the

information threshold α are preserved. We term these

parts the transferable object parts. For each transferable

object part it is possible to determine its visibility in a pure

training image of the novel class. To this purpose, we use

the corresponding indication function (cf. Equation 1) of

MImax
all to determine if the maximum detection score of

the corresponding SVM classifier is above the optimal

detection threshold. We require that at least L3 transferable

object parts are visible in an image to remove this image

from Icpure and finally we determine the remaining training

images Icremain of a novel class c which are not yet covered

by the pool P c−1

S .

Pseudo-code for the sequential learning strategy is

given in Table 1 (bottom): based on the pure training

images of the first class I1pure an initial pool P 1

S of object

parts is generated and the following procedure is sequen-

tially performed on the remaining classes (2 ≤ c ≤ C):

knowledge transfer is performed from P c−1

S to the novel

object class c in oder to determine the remaining training

images Icremain. The remaining training images Icremain

are used to generate a pool P
c

S of parts and subsequently

the pools P c−1

S and P
c

S are merged to P c
S . Finally, NS

parts are selected from the final pool PC
S . For each object

class c a dense grid of spatial layout models is established,

by using the pure training images Icpure and a subset of MS

parts (MS ⊆ NS). Just as for the joint learning strategy, the

global appearance of all object classes is jointly learnt into

one non-linear SVM with an intersection kernel, by using

the validation images of all classes Ival = {I1val, . . . , I
C
val}

and the NS selected object parts.

4. Experimental Results

In this section, we outline the experimental results which

we achieve with the proposed learning strategies. First,

the 2D localization performance of the different learning

strategies is evaluated with the detection quality criterion

suggested by [7]. In addition, an object class estimation

approach for the sequential and joint learning strategy is

briefly explained and evaluated.

4.1. MultiClass Datasets and Training Setup

The 2D localization performance of the proposed learn-

ing strategies is evaluated on three different testsets which

consist of images from the 3D Object Category dataset [22]

and the PASCAL VOC2006 dataset [7]. Specifically, we

utilize the following multi-view testsets:

• Bicycle-Car-Dataset: This testset contains 192 im-

ages from the 3D Object Category dataset, showing

two bicycle and two car instances from 48 different

viewpoints.

• Bicycle-Motorbike-Dataset: This testset contains 96

images from the 3D Object Category dataset, showing

two bicycle instances from 48 different viewpoints. In

addition, we use the first 96 images from the VOC2006

motorbike testset which show only one motorbike (not

labeled as ’truncated’ or ’difficult’).

3We set L = 3 since this value performed best in our experiments.
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Figure 1. Precision/Recall curves for our multi-class and multi-

view learning strategies on the Bicycle-Motorbike-Dataset (top)

and the Bicycle-Car-Dataset (bottom).

• Bicycle-Car-Motorbike-Dataset: This testset con-

tains the 192 testimages from the Bicycle-Car-Dataset

and the 96 motorbike images from the Bicycle-

Motorbike-Dataset.

Our proposed learning strategies rely on training steps of

the viewsphere model where a database of synthetic 3D

models serves as training source. To this purpose, we use

25 car models, 8 bicycle models and 13 motorbike mod-

els which are available from the distributors turbosquid.com

and doschdesign.com. Azimuth is sampled from 0◦ to 360◦

in 5◦ steps and elevation is sampled from 0◦ to 20◦ in 5◦

steps to define a dense grid of viewpoints on the viewsphere.

In order to make sure that the training images for the differ-

ent learning strategies are identical, this viewpoint setup is

used to generate once for each class the pure training im-

ages and the validation images. For a fair comparison of

the three different learning strategies, two possibilities ex-

ist: either we keep the 2D detection performance constant

and compare the computational complexity (which is mea-

sured by the number of object parts to detect) of the over-

all representation or we keep the computational complex-

ity constant and compare the 2D detection performance. In

our case, we choose to keep the computational complexity

for the different learning strategies constant and compare

the detection performance. For all experiments, the fol-

lowing settings are used: M c
I = MJ

C
= MS

C
= 10 parts

for modeling a dense grid of spatial layout models and

N c
I = NJ

C
= NS

C
= 25 parts for learning the global ap-

pearance where C is the number of classes.

Our proposed learning strategies rely on the viewsphere

model of Section 2. In order to obtain a baseline perfor-

mance of the viewsphere model, its 2D detection perfor-

mance is compared with the current state-of-the-art detector

of [11], using their pre-trained object class models provided

as part of voc-release3. To this purpose, we use the 3D Ob-

ject Category bicycle dataset and follow the test protocol

of [18]. The Precision/Recall curves are shown in Figure 3

(right). With 74.4% the viewsphere model outperforms the

approach of [11] with 71.2%, despite being trained on syn-

thetically generated images.

4.2. Two Object Classes

We apply our different learning strategies to two visu-

ally very similar classes (i.e. Bicycle-Motorbike-Dataset)

and two dissimilar classes (i.e. Bicycle-Car-Dataset). Fig-

ure 1 shows the corresponding Precision/Recall curves. We

observe for both cases that the joint learning strategy (green

curves) outperforms the independent learning strategy (red

curves) and the sequential learning strategy (blue and ma-

genta curves) due to a higher precision. In order to as-

sess the influence of the transferable object parts (see Sec-

tion 3.3) the sequential learning from the bicycle to the

motorbike class and from the bicycle to the car class is

performed for two different information thresholds α (cf.

Equation 4). For α = 0.0 (magenta curves) all parts from

the previously trained bicycle class are considered as trans-

ferable object parts with the result that for both cases (bi-

cycle to car and bicycle to motorbike) the set of remaining

training images Iremain is an empty set and consequently

no further object parts for the novel classes (i.e. motor-

bike or car) are generated. As a result, for similar object

classes (i.e. bicycle to motorbike) the detection result for

the sequential learning (53.4%) is still on par with the in-

dependent learning (51.5%) and worse than the joint learn-

ing (58.2%). For dissimilar object classes (i.e. bicycle to

car) the detection result for the sequential learning (51.6%)

is worse than both the independent learning (74.0%) and

the joint learning (80.0%). With an increased information

threshold of α = 0.4 (blue curves) the situation is different.

For dissimilar object classes (i.e. bicycle to car) none of

the bicycle parts are considered as transferable object parts

which results in a non-empty set for the remaining training



Figure 2. Examples for transferable object parts: bicycle to motorbike (left) and bicycle to car (right).

images Iremain and consequently additional car parts are

generated. The increased detection performance (75.0%)

is now on par with the independent learning (74.0%). For

similar object classes (i.e. bicycle to motorbike) three of the

bicycle parts are still considered as transferable object parts.

This results in a non-empty set for the remaining training

images Iremain, additionally generated motorbike parts and

a detection result (52.8%) which is on par with the result of

the independent learning (51.5%). This shows that in both

cases (i.e. for similar and dissimilar object classes) an in-

formation threshold of α = 0.4 for the sequential learning

achieves the best trade-off between transfering knowledge

from previously trained classes to novel classes and gener-

ating additional knowledge from novel classes, and conse-

quently results in a detection performance which is on par

with or better than the detection performance of the inde-

pendent learning. Therefore, for subsequent tests the infor-

mation threshold is set to α = 0.4. Examples for transfer-

able object parts on both datasets are shown in Figure 2.

4.3. Three Object Classes

The Precision/Recall curves on the Bicycle-Car-

Motorbike-Dataset are shown in Figure 3 (left). In this case,

the joint learning (green curve) clearly outperforms the in-

dependent learning (red curve) due to a higher precision.

We observe that the order in which the classes are learnt

during the sequential learning affects the detection perfor-

mance. However, both detection results (68.4% and 74.1%)

of the sequential learning (blue and magenta curve) signif-

icantly outperform the independent learning (56.5%) and

perform better or on par with the joint learning (69.8%). In

addition, with the sequential learning strategy it is possible

to learn a novel object class without retraining the appear-

ance of the previously trained object classes.

4.4. Object Class and Pose Estimation

An additional advantage of our part representation for

multiple object classes resides in the spatial co-occurrence

of parts which can be used for both object class and 3D

pose estimation from single images [14, 18, 23, 25]. The

following experiment shows that this advantage is retained

even when the parts are shared over several object classes.

Based on the sequential (or joint) learning strategy it is pos-

sible to estimate the object class for a predicted bounding
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Figure 3. Precision/Recall curves for our multi-class and multi-

view learning strategies on the Bicycle-Car-Motorbike-Dataset

(top). On the 3D Object Category dataset bicycle a single-class

detector (viewsphere model) is compared with a state-of-the-art

detector (bottom).

box. To this purpose, it is necessary to adapt the selection

criteria in Section 2: for each object class we draw a new

subset of NS (or NJ ) parts from the final pool PC
S (or PJ )

which contains a maximum amount of information about

a specific object class. The pure training images of a spe-

cific class serve as positive set and the pure training im-

ages of the remaining object classes serve as negative set.

With the selected subsets of class-specific object parts the



common global appearance for each object class is learnt,

as described in Section 2. Finally, a predicted bounding

box obtains the class label from the corresponding spatial

pyramid classifier with the highest classification score. Fig-

ure 4 (left) shows the confusion matrix which we observe,

when classifying all positive detections of the sequential

learning strategy (learning order: bicycle-car-motorbike) on

the Bicycle-Car-Motorbike-Dataset. The matrix shows that

confusion is more pronounced between bicycles and motor-

bikes but we still obtain an average classification accuracy

(AA) of 93.7%. Based on our part representation for multi-

ple object classes it is also possible to estimate the 3D pose

for a predicted bounding box by using the 3D pose estima-

tion approach of [23]. Figure 4 (right) shows some success-

ful results of the full detection process with 2D localiza-

tion and 3D pose estimation on the Bicycle-Car-Motorbike-

Dataset.

5. Conclusion

In this paper, we propose three novel learning strategies

to recognize multiple object classes from arbitrary view-

points. The learning strategies rely on the part-based ap-

proach of [23], where a database of synthetic 3D models

serves as training source. We show that a sequential learn-

ing achieves the best result with respect to flexibility during

the training process and recognition performance. Future

work will focus on extending the proposed sequential learn-

ing strategy to train multiple object classes from arbitrary

viewpoints on a larger scale.
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