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1. Introduction

Tungsten is a metal that is special in many respects. It has, for example, the

highest melting point of all metals and an extremely low vapour pressure even at

very high temperatures. It is an excellent electrical and thermal conductor. With

its high atomic mass and high atomic displacement energy, it is very durable

with respect to physical sputtering. Chemically, it is also very resistant (at least

at room temperature) and is not even attacked by most of the strongest acids.

Its mechanical properties, being very hard and at the same time also very brittle,

remind more of a ceramic material than a metal [23].

Its durability makes tungsten a promising candidate for the armour material in

the harsh environment of a nuclear fusion reactor despite its brittleness, especially

in intensely irradiated regions like the divertor. For this application it is only

rivalled by carbon, which can tolerate even more heat load, has more favourable

mechanical properties, and is significantly less expensive [95].

An important safety concern for future nuclear fusion power plants is the inven-

tory of the radioactive hydrogen isotope tritium inside the machine [95]. While a

deuterium-tritium mixture leads to the most efficient energy production by fusion,

the health and environmental hazards of tritium impose severe limits on the tol-

erable amount of tritium that could be mobilised in the case of an accident. Here

carbon has a severe drawback: It readily forms volatile, tritiated hydrocarbons

when bombarded by atoms and ions from the plasma. The chemistry of carbon

with hydrogen can, on the one hand, strongly increase the carbon removal rate

compared to physical sputtering alone [94] and thus lead to rapid destruction

of carbon armour [95]. On the other hand, the hydrocarbons formed by chemical

erosion can be re-deposited in regions that are shadowed from the plasma, e.g., in

gaps between armour tiles and behind the armour support structure. There they

can form thick amorphous hydrocarbon layers, which can contain large amounts

of tritium. This so-called co-deposition of tritium with carbon in hydrocarbon

layers would soon lead to an unacceptably high tritium inventory inside the re-

actor vessel [95]. Here tungsten has an advantage: It does not undergo chemical
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reactions with hydrogen and has a very low solubility for hydrogen and its iso-

topes [27]. The low solubility is, however, somewhat offset by the high diffusivity

of hydrogen in tungsten: Although local concentrations of hydrogen isotopes are

typically very small, it can diffuse far into the bulk of the tungsten armour [1, 82]

and eventually permeate through it, especially at high temperatures as they are

expected for plasma-facing components [95].

Despite decades of work by many research groups, the data base for the solu-

bility and diffusivity in tungsten, especially for defect-rich technical material, is

astonishingly uncertain: The values can vary by orders of magnitude and depend

strongly on the exact type of material as well as on the experimental conditions,

both for the hydrogen loading and the subsequent measurement of the hydrogen

retained in the specimen. Examples can be found in the review by Causey [14].

The difficulties in accurately determining the properties of hydrogen isotopes in

tungsten are due to the low solubility: On the one hand, the inventories to be mea-

sured are typically very small and require measurement techniques with a high

sensitivity. Because of that, techniques such as neutron scattering or nuclear mag-

netic resonance, which have been successfully used for detailed, non-destructive

studies of the binding states and diffusion of hydrogen particularly in metals with

a high solubility for hydrogen and in metal hydrides [68, 124], are not easily ap-

plicable for tungsten. Highly sensitive ion beam analysis techniques, on the other

hand, are strongly impaired by the high mass of tungsten and accordingly by the

short range of ions in it.

On the other hand, hydrogen typically bonds much more strongly to crystal de-

fects than to undisturbed sites in the tungsten lattice, i.e., the defects act as

“traps” [26, 82, 88]. Because the concentrations of trap sites can easily exceed the

very low equilibrium concentration of hydrogen in the undisturbed sites, most of

the hydrogen inventory that is retained in a tungsten specimen, e.g., after plasma

exposure, is usually located in the traps. Their density, in turn, is determined by,

e.g., the chemical composition and the microstructure. It is likely that many of

the discrepancies between different publications on the hydrogen isotope reten-

tion in tungsten can be attributed at least partially to differences between the

investigated tungsten materials.

The aim of this thesis is to clarify the role of the microstructure of the tungsten,

i.e., its grain structure and its dislocation density, for the deuterium retention

in tungsten specimens exposed to a low-energy deuterium plasma. To achieve

this, only specimens from a single manufacturing batch of a commercially avail-
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able powder metallurgical tungsten grade were analysed. This ensured that the

chemical composition (i.e., the impurity concentrations) as well as the mechanical

working history and therefore the initial microstructure of all specimens was iden-

tical. These specimens were then carefully polished with a procedure that ensured

that no deformation layer was present at the surface. Different grain structures

and dislocation densities were produced by annealing at different temperatures.

After these preparation steps, representative specimens of all types were then

thoroughly characterised by scanning and (scanning) transmission electron mi-

croscopy.

Specimens of all types were exposed to deuterium plasmas in a fully quantified

plasma source [65]. In order to understand the different aspects of retention and

diffusivity of deuterium in these specimens, the temperature during implantation,

the ion energy and the ion fluence were varied over wide ranges. After plasma

exposure, degassing of deuterium from tungsten specimens can be considerable,

particularly during the first few days [72]. To avoid a large scatter of the measured

retention data, all specimens were stored for about two months before analysis.

This ensures that the unavoidable small time differences between the analyses of

the individual specimens have only a minor impact when comparing their deu-

terium inventories. The specimens were then analysed with a wide range of optical

and electron microscopy techniques in order to study surface modifications due

to the plasma exposure, particularly the formation of gas-filled cavities near the

surface (so-called “blisters”). The deuterium inventory was quantified by nuclear

reaction analysis (NRA), which allows non-destructive, depth-resolved measure-

ments up to approximately 8–12 µm below the surface for tungsten (depending on

the highest energy used in the ion beam analysis). The total inventory, including

the bulk of the sample beyond the probing range of NRA, was also investigated

by thermal desorption spectroscopy (TDS). A series of TDS measurements with

varying heating rates and also interrupted temperature ramps was performed on

a set of identical specimens in order to avoid the ambiguity of binding energy

distribution and depth profile of the deuterium for the interpretation of thermal

desorption spectra [14, 112]. This method also allows to determine the attempt

frequency for desorption of bound deuterium. The influence of the plasma expo-

sure on the defects in the tungsten was studied by ex situ and in situ transmission

electron microscopy for selected specimens.

Chapter 2 first introduces the reader to the general properties of hydrogen–metal

systems. The thermodynamic aspects are discussed to provide a basic understand-
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ing of the interactions of dissolved hydrogen with the host metal. The diffusion of

interstitially dissolved hydrogen is discussed as well as the influence of crystal de-

fects and the effect of non-equilibrium loading conditions. Chapter 3 then focusses

on the peculiarities of the tungsten-hydrogen system. It provides an overview of

the existing data and discusses diffusion-trapping models, which are a common

tool for the numerical simulation of hydrogen isotopes in tungsten. Based on

this, the details of the model used in this thesis are explained. The device for

plasma exposure of tungsten specimens and the central methods for measuring

their deuterium inventory, NRA and TDS, are discussed in detail in chapter 4.

This chapter also gives a short overview over the microscopy equipment used for

this work, and explains the technique of differential interference contrast (DIC)

microscopy. Chapter 5 is dedicated to the procedures for specimen preparation.

While this may seem trivial at first, it will be shown also in experimental results

in section 8.4 that the specimen preparation can indeed have a notable influence

on measurement results. The thorough pre-characterisation of the investigated

material is presented in chapter 6. In detail, the influence of different heat treat-

ments on the grain size distribution and the dislocation density are investigated.

Knowledge of these parameters is essential for understanding the connection be-

tween the microstructure of tungsten and the deuterium retention. Chapter 7

describes the strategy and scientific rationale of the experiments performed here.

The results of the individual experiments are presented and discussed in detail

in chapter 8. Chapter 9 then summarises these results and delivers a synopsis in

order to combine the large amount of individual data into a global picture. This

chapter also provides an outlook on possible further investigations based on the

results presented here.

The variation of several key parameters of the plasma exposure, as well as of

the well-characterised initial microstructure of the specimens, provides a broad

data base. Rigorous standardisation of experimental procedures ensures the re-

producibility and comparability of the results. This allows a more detailed un-

derstanding of the mechanisms of hydrogen isotope retention in tungsten due to

plasma exposure. This thesis will try to elucidate these mechanisms and provide

the basis for a better understanding of more complex systems like they will be

found in a future fusion reactor, e.g., tungsten damaged by fast neutrons (see,

e.g, [109, 115]) or the formation of so-called “mixed materials” [19].
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2. Hydrogen in metals: general

considerations

This chapter aims to give a general overview of the complex behaviour of

hydrogen–metal systems. Starting from the solubility in thermal equilibrium

and defect-free single crystals, the influences of defects and mutual hydrogen–

hydrogen interactions are discussed. Some basic mechanisms of hydrogen diffu-

sion in metals are explained, as well as the influence of external forces. Finally,

some effects of loading a metal specimen with hydrogen in conditions far from

thermal equilibrium, e.g., by an ion beam or plasma, are described.

2.1. Thermodynamics of hydrogen in metals

2.1.1. Solubility in thermal equilibrium: Sieverts’ Law

From a thermodynamical point of view, one has to examine a two-phase system

consisting of hydrogen in the gas phase and hydrogen dissolved in the metal.

Upon entering a metal, hydrogen typically dissociates and forms an interstitial

solution in a defect-free crystal. It has been experimentally verified — e.g., by

ion channelling or neutron scattering experiments — that hydrogen preferentially

occupies the tetrahedral interstitial sites in bcc metals, while in metals with a

close packed crystal structure the octahedral sites are preferred [28]. This is also

backed by model calculations (see, e.g., [33, 40, 64, 74]).

The properties of the solute hydrogen in the metal can generally be derived from

its chemical potential µsolute. In the tracer limit, where the occupancy of hydrogen

ζH is much smaller than unity, it is given by

µsolute(ζH) = kBT ln(ζH) + const. (2.1)
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T denotes the temperature of the system and kB is the Boltzmann constant. The

occupancy ζH in this case should be understood as the ratio between the amount

of dissolved hydrogen atoms nH and of the available sites nsites. The chemical

potential of the hydrogen in the gas phase µH2,gas, on the other hand, is for

moderate pressures given by

µH2,gas = kBT ln(p/p0) + const., (2.2)

i.e., the expression for an ideal gas, where p is the pressure of the gas and p0

is an (in principle arbitrary) reference pressure. In equilibrium, the dissolution

of hydrogen in the metal and the desorption from the metal into the gas phase

balance each other. This can be expressed by the reaction equation

Me +
1

2
xH2 
 MeHx, (2.3)

where Me stands for the metal and x is the occupancy of hydrogen times the

number of available sites per metal atom. Accordingly, the equilibrium condition

for the chemical potentials µsolute and µH2,gas is

µsolute =
1

2
µH2,gas. (2.4)

Inserting equations (2.1) and (2.2) into (2.4) yields the relation between gas pres-

sure and dissolved occupancy that is also known as Sieverts’ law:

ζH = K
√
p. (2.5)

This relation was first derived by Sieverts and Jurisch [104] from experimental

values for the absorption of gaseous hydrogen by a platinum wire. They took

the
√
p proportionality as evidence for hydrogen being dissolved as atoms. In

fact this relation holds for many metal–hydrogen systems as long as the pressure

is sufficiently low so that an ideal gas can be assumed (approximately up to

10 MPa [121]), and the hydrogen concentration in the metal is small so that

hydrogen–hydrogen interactions or hydride formation do not play a role [29]. The

temperature dependence of ζH can be found in the proportionality factor K:

K =
1
√
p0

exp(
∆Ssol
kB

) exp(−∆Hsol

kBT
). (2.6)
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∆Ssol is the entropy of solution, and ∆Hsol is the heat of solution. A detailed

thermodynamical derivation of (2.6) can be found, e.g., in Fukai’s book on the

hydrogen-metal system [29]. In this book it is also shown that the entropy of

solution is ∆Ssol/kB ≈ 8.2 in the tracer limit. Experimental values compiled by

Fukai [29] are of the range from -4 to -9 and thus do not vary too strongly from

the theoretical value for a large variety of metals. The heat of solution, however,

depends strongly on the host metal and varies roughly between -1 and +1 eV per

hydrogen atom. Accordingly, metals can roughly be grouped into hydrogen-affine

(where the dissolution of hydrogen is exothermic, i.e, ∆Hsol < 0) and hydrogen-

repelling metals (where dissolving hydrogen is endothermic, i.e., ∆Hsol > 0).

Figure 2.1 shows the heat of solution of hydrogen in the tracer limit in most of

the transition metals as listed by [29]. It can be easily seen that ∆Hsol varies more

or less systematically when going from left to right in the periodic system.

This already hints at a strong interaction between the electronic states of the

metal and the dissolved hydrogen. A more detailed explanation is given by

Ebisuzaki and O’Keeffe [20]. They assume that hydrogen exists in metals as pro-

tons, whose positive potential is screened by a local increase of the electron den-

sity. That the dissolved hydrogen contributes its electron to the conduction band

of the metal has been experimentally verified by different methods [124, 122, 101].

The corresponding screening length generally decreases as the (electron) density

of states at the Fermi level N Fermi
e increases. In a simple ansatz, the enthalpy of

solution ∆Hsol for hydrogen in a metal is made up from the following contribu-

tions:

∆Hsol =
1

2
∆HH2→2H + ∆HH→H++e− − Φ + (εrep + εpol) + εlattice. (2.7)

In order to dissolve one hydrogen atom, a hydrogen molecule must be dissociated,

which needs half the dissociation energy of 1
2
∆HH2→2H ≈ 2.3 eV per H atom. Then

the hydrogen atom must be ionised, which requires ∆HH→H++e− = 13.6 eV. Both

the ion and the electron enter the metal. The system gains the energy−Φ, which is

the electron work function (typically 3–5 eV for transition metals). The screened

proton is repelled by the positive metal ion cores, which is accounted for by

the positive εrep, while the screening by the metal electrons leads by itself to the

negative contribution εpol. What is not mentioned in [20] is the contribution of the

deformation of the crystal lattice εlattice. Later models such as the one presented

by Nordlander et al. [78] take also this effect into account.
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Figure 2.1. Heat of solution ∆Hsol for hydrogen at low occupancies in various transition metals

[29]. The main group metals Li, Mg and Al are also included (white symbols). Note

the mostly systematic variation from exo- to endothermic dissolution when going

from left to right in the periodic system.

According to Ebisuzaki and O’Keeffe [20], εpol is the term that mainly balances the

enthalpies for dissociation and ionisation, while εrep is comparatively small, but

can still be important when comparing different elements. In total, the screened

proton model predicts that the sum εrep + εpol becomes more negative as N Fermi
e

increases, i.e., the heat of solution ∆Hsol tends towards becoming more exother-

mic in that case. Indeed, e.g., the vanadium group displays a high N Fermi
e as well

as exothermic ∆Hsol. The chromium group, on the other hand, has a low N Fermi
e

and exhibits endothermic dissolution of hydrogen.

While this relatively simple model is not sufficient to quantitatively describe the

effects of hydrogen dissolution in metals (as also the authors of [20] admit), it
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provides a reasonable qualitative explanation for experimental observations. One

main conclusion is that the dissolution behaviour of metals for hydrogen is the

result of the close balance of several large contributions. This means that even

small changes in the terms listed above can have a large influence on the overall

behaviour, even more so since ∆Hsol enters the solubility as an exponential term.

Another important conclusion from the model is that although the hydrogen atom

donates its electron to the conduction band of the metal, the electron density due

to the shielding of the proton is comparable to that of a hydrogen atom (or in

some cases even to a hydride anion).

For a more quantitative approach, ab initio methods such as density functional

theory (DFT) are needed. Self-consistent calculations of the electronic state of

hydrogen in interstitial sites were performed, e.g., by Nørskov [76]. These calcu-

lations are based on the so-called jellium model. This approach is actually still not

too different from the screened proton model, as it also places a hydrogen atom

inside a free-electron gas and then self-consistently calculates the electron density

and the (electronic) density of states. However, this model already takes the full

quantum-mechanical nature of the conduction electrons into account, while the

screened proton model is essentially a classical model. The results include the

electron density distribution around a hydrogen impurity, stating that it actually

is even closer to an H− anion than a neutral hydrogen atom. A further result is

that an H2 molecule is typically not stable in a free-electron gas at typical metal

electron densities. One can conclude from this that only single hydrogen “pseudo-

atoms” (respectively “anions”) exist in the solute state in a metal. This backs the

initial assumption that was made for deriving Sieverts’ law from thermodynam-

ics. For simplicity, hydrogen dissolved in a metal will accordingly be considered

to be atomic from here on. DFT studies, however, are very complex and prone to

many pitfalls. Especially the size of systems that can be computed on an atom-

istic scale is severely limited because such simulations require a large amount of

computing power. Typical system sites that can be handled are of the order of

100 metal atoms. This inevitably leads to the question if, e.g, the assumption of

an ideal dilute solution still holds, or if even a single hydrogen atom placed inside

a simulation cell will interact with itself through periodic boundary conditions.

Therefore, such investigations on the subject of hydrogen in metals still continue

(see e.g., [40, 86]).
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2.1.2. Influence of defects

As soon as one deals with a real metal, one has to consider defects, e.g., vacan-

cies and vacancy clusters, dislocations or grain boundaries. Since crystal defects

are typically more attractive to hydrogen than normal interstitial sites, they are

generally referred to also as traps. The situation in a defective material is, of

course, much more complex than in a perfect crystal. In metals where the sol-

ubility in interstitial sites is very low (typically those with positive ∆Hsol), the

amount of hydrogen in trap sites can, e.g., easily exceed the amount in intersti-

tial sites. In many cases, the exact density of interstitial and trap sites nsites is

not exactly known. Because of this, the occupancy ζH = nH/nsites is not easily

attainable anymore. A more convenient experimental value is the concentration

cH = nH/(nH + nmetal), while ζH remains the better quantity for thermodynam-

ics. Furthermore, defects can have a range of different binding energies for the

dissolved hydrogen. In fact, even in a defect-free single crystal, tetrahedral and

octahedral interstitial sites have different hydrogen binding energies due to their

different size. For a thermodynamic treatment, a density of sites approach can be

used [45]. In analogy to the electronic density of states Ne, the density of sites for

the dissolved hydrogen NH(E) is defined as the number of binding sites for hy-

drogen atoms per energy interval dE and per unit volume. Considering that, e.g.,

a single trap can only bind a limited number of hydrogen atoms, it is appropriate

to fill the traps in the metal in analogy to Fermi-Dirac statistics:

ζH =
1

nsites

+∞∫
−∞

NH(E)

1 + exp(E−µsolute
kBT

)
dE, (2.8)

where µsolute is, by itself, a function of ζH (see equation (2.1)). Equation (2.8)

is therefore an implicit equation. Please note that this formulation does not im-

pose any restriction on how many hydrogen atoms can occupy a certain trap, it

only states that a trap can be eventually filled if the hydrogen concentration be-

comes high enough. Unsaturable traps, such as gas-filled voids, have to be treated

separately.

Table 2.1 shows some examples for the densities of sites for a perfect crystal

lattice as well as different types of defects as proposed by Kirchheim [45]. The

interstitial sites in a perfect periodic lattice can be described by a delta function

located at an energy Eint and weighted by the volume density of interstitial sites

nint (octahedral or tetrahedral sites, depending on the lattice) per metal. For a
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lattice including point defects, e.g., vacancies or impurity atoms, in the simplest

approximation a second delta function at the binding energy Evac < Eint weighted

by the density of point defects nvac can be added to the density of sites. It should

be remembered, however, that in ab initio calculations vacancies have been found

to be able to trap more than one hydrogen atom (see, e.g., [25, 74]).

For edge dislocations, one has to consider that the actual dislocation line is sur-

rounded by an elastic strain field, which is compressive in the half space of the

inserted lattice plane, and tensile in the other half space. Due to the elastic de-

formation of the lattice by the hydrogen, it is attracted to the tensile side and

repelled from the compressive side. This can be described by a density of states

proportional to K2/|E − Eint|3, where K is a constant containing the Burgers

vector.

Grain boundaries contain a broad distribution of interstitial sites with different

sizes and, accordingly, binding energies. One can assume that the average grain

boundary interstitial site will be somewhat larger than an undistorted interstitial

site, and thus attractive to hydrogen. Grain boundaries can therefore be described

as a Gaussian (i.e., statistical) distribution of trap energies with the centre of

weight EGB below the interstitial site binding energy Eint, width σGB and weight

nGB. The bulk interstitial sites can again be treated by adding a delta function

at Eint.

The extreme case, as opposed to the perfect single crystal, is an amorphous ma-

terial, where the sizes and, accordingly, binding energies of interstitial sites are

statistically deviating from the single crystal case. In this case the density of sites

can be modelled by a Gaussian distribution of the width σam centred around Eint.

This Gaussian distribution has to be normalised to contain exactly the number

of interstitial sites nam in the amorphous matrix. Note that nam is probably close

to, but not necessarily equal to nint, since in a single crystal typically only one

type of interstitial site, i.e., octahedral or tetrahedral, is occupied by hydrogen,

whereas, strictly speaking, such a distinction is pointless in a completely amor-

phous matrix.

The total density of sites can then be treated as a superposition of an appropriate

selection of the models discussed above. Using such a set of density-of-sites models

and statistical mechanics based on a Fermi-Dirac distribution, the behaviour of

hydrogen in metals can be simulated. An example for hydrogen in palladium can

be found in [45].
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It should not be neglected that the view that defects lower the energy of hydrogen

in the metal can also be reversed, i.e, that the energy of a defect in the metal is

lowered by hydrogen binding to it. One implication is that hydrogen dissolved in a

metal can also lower the energy necessary for the creation of defects. For example,

consider the mechanical deformation of a piece of metal containing hydrogen as

well as of one free of hydrogen, but otherwise identical to the first. The hydrogen-

containing metal will contain more dislocations after the deformation, as it has

been shown by Kirchheim [47]. The effect can be explained by a generalisation of

the Gibbs adsorption isotherm and Wagner’s definition of excess solute at internal

interfaces [48]. The reduction of the defect creation energy can even go so far

that defects are produced exothermically. This can lead, e.g., to superabundant

vacancies with a concentration in the range of 10–30% [30]. Please note that the

exothermic defect production does not go on indefinitely if the energy necessary

for defect creation rises again for large defect concentrations, but a metastable

equilibrium is reached instead [47].

2.1.3. Hydrogen–hydrogen interactions

When the occupancy ζH of hydrogen interstitials dissolved in a metal gets higher,

the H atoms can no longer be treated as completely independent. In a mean field

approach, this means an interaction term µH−H has to be added to the chemical

potential [45]. This interaction term can, in principle, be positive or negative,

i.e., hydrogen atoms can attract or repel each other. Please note that already

a concentration of the order of 1% amounts to about one hydrogen atom per

4× 4× 4 supercell. In that case, each H atom has on average another one within

a few lattice constants. At such relatively short distances interactions between

hydrogen atoms could already play a role, which is a common problem for DFT

calculations where often only samples of about this size are treated due to the

demand on computational power.

To understand how these interactions could look like, one has to consider that

each hydrogen atom in an interstitial site will slightly displace the metal atoms

around it, causing the lattice to expand locally. In order to keep the surface of

a finite volume of metal stress-free, the whole lattice has to expand on average,

which lowers the chemical potential for the present hydrogen as well as for the

dissolution of further atoms [31]. Accordingly, this can be seen an example of an

attractive interaction on a global scale.
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However, a single interstitial or trap site can certainly only contain only a limited

number of hydrogen atoms. If this number is reached, energy must be expended

to force another hydrogen atom into this site, which can be considered as repul-

sive interaction. This site blocking effect starts plays a role when the hydrogen

concentration is comparable to the concentration of sites. Please note, that, e.g.,

for sparse traps this can already be the case at quite low global hydrogen con-

centrations.

From these examples it can already be seen that the interaction between hydrogen

atoms is likely to vary both locally and with varying hydrogen concentration.

Both ab initio calculations and experimental approaches have been trying to esti-

mate the hydrogen–hydrogen interactions in a metal for several decades. It is more

or less generally agreed that long-range H–H interactions tend to reduce the chem-

ical potential of the dissolved hydrogen due to the mechanism described above.

The results for short-range interactions, however, appear conflicting at first. For

example, Nørskov calculated that within the jellium model, a H2 molecule is

unstable and explains this by the filling of antibonding electronic states when

the molecule is immersed within an electron gas of a density typical for a metal

[76]. This also is confirmed by DFT studies presented in [40] for defect-free tung-

sten. As soon as defects enter the picture, the situation can change, however. For

example, according to Kirchheim [45], there are attractive short-range interac-

tions between hydrogen atoms close to dislocations in palladium. Recent DFT

calculations for hydrogen near dislocations in nickel also point towards an at-

tractive interaction between hydrogen atoms in nearest neighbor sites, while for

second-nearest neighbor sites the interaction is repulsive [86]. Finally, for example

Nazarov et al. [74] calculated that up to six hydrogen atoms can be trapped by

a vacancy in fcc iron.

The logical conclusion from these seemingly conflicting results is that the inter-

actions between hydrogen atoms dissolved in a metal indeed depend not only on

global properties of hydrogen and metal, but also on the local environment, as it

was already pointed out by Kirchheim [45].

2.2. Diffusion

Diffusion of hydrogen in metals was and is a complex problem, which is still in the

focus of numerous research groups, possibly even more than the solubility alone.
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One fact is that the diffusion is surprisingly fast. Even at room temperature, it can

be comparable to the diffusion of ions in aqueous solution, and is in any case much

faster than for any other impurity in metals. First off, this is often attributed

to the small size and mass of hydrogen, but in fact the diffusion behaviour is

also strongly affected by quantum mechanics. Neutron scattering experiments,

for example, show discrete energy levels of hydrogen interstitials as well as a

spatially extended density distribution [31].

A good overview about possible diffusion mechanisms for hydrogen in metals can

be found in the review article of Fukai and Sugimoto [31]: For very low temper-

ature, the diffusion is much faster than the extrapolation of high-temperature

diffusion data suggests and, in fact, nearly independent of the temperature. The

conclusion is that hydrogen moves by coherent tunnelling, i.e, the hydrogen in-

cluding its elastic stress field changes its location within the crystal. This assump-

tion is backed by a non-classical isotope dependence. For very pure and defect-free

crystals even band-like propagation is occasionally postulated, but for real sys-

tems a hopping motion between adjacent sites (but nevertheless by tunnelling)

is more likely. For somewhat higher temperatures, incoherent transitions dom-

inate. This mechanism is characterised by the participation of phonons: lattice

vibrations can lead to a temporary energetic levelling of adjacent sites of initially

different binding energies (or to the reduction of saddle point energies). In this

state, the hydrogen atom can tunnel through the barrier. This is called a non-

adiabatic transition or thermally activated tunnelling. An adiabatic transition

occurs if the hydrogen atom is in an excited state that extends over two adja-

cent sites in the common potential well of a saddle point configuration. In both

cases, the hydrogen atom has a chance of being in the neighboring site when the

lattice relaxes again. For adiabatic transitions, it is expected that the diffusion

coefficient does not depend on the mass of the hydrogen isotope [31].

At intermediate temperatures, the transition between neighboring sites starts to

become classical, and thermally activated jumps over the energetic saddle point

occur. In this regime an Arrhenius-like temperature dependence is to be expected.

For tungsten, DFT calculations by Heinola and Ahlgren [40] place the transition

from quantum-mechanical to classical behaviour at about 200 K. If the tempera-

ture is raised further, jumps to second-nearest neighbors or multiple consecutive

jumps start to occur more and more frequently. In this regime it can also make

sense to describe the hydrogen as alternating between a mobile and an immo-

bile state with different lifetimes. The validity of such assumptions for elevated
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temperatures is backed by experimental evidence from quasi-elastic scattering of

slow neutrons for hydrogen in palladium [63]. For very high temperatures, finally,

hydrogen is more or less permanently in the mobile state. The movement can

then be assumed to be gas- or fluid-like with a diffusivity that is proportional

to the temperature [31]. No indication of such a behaviour has been observed for

tungsten for temperatures up to 2500 K (see Figure 3.1).

Apart from these purely lattice-related effects, the conduction electrons of the

metal also play a role. If one thinks back to the screened proton model in sec-

tion 2.1.1, it is evident that the cloud of screening electrons has to move with the

proton. The detailed theoretical framework for the interaction between a diffusing

(light) impurity and the conduction electrons of the metal is laid in the Kondo

theory [51, 52, 53, 54, 55].

Generally, diffusion of hydrogen in metals requires a quantum-mechanical de-

scription, and particularly at low temperatures the isotope and temperature de-

pendence is non-classical. However, in all cases deuterium diffuses at least as fast

as tritium. This means that in all experiments where the radioactive tritium is

substituted by deuterium in order to minimise safety concerns (as it is done in

this thesis), the measured diffusion coefficient can be seen as an upper limit for

the tritium case. In the temperature range of about 300–1200 K, which is rele-

vant for the experiments presented in this thesis, an Arrhenius-like temperature

dependence of the diffusivity D hydrogen isotopes in tungsten can be expected.

Using the (quantum mechanical) harmonic oscillator as an estimate for the at-

tempt frequency for jumps of hydrogen atoms between interstitial sites, an isotope

dependence like D ∝ 1/
√
m can be assumed, where m is the mass of the isotope

[31].

Defects also do not only affect the solubility, but also the diffusivity of hydrogen in

metals. Basically, there are two different possibilities: Hydrogen can be effectively

trapped by defects so that the activation barrier for diffusion is increased and

the effective diffusivity is, accordingly, reduced. Spatially extended defects like

grain boundaries and dislocations can also increase the diffusivity if the saddle

point energies along the extension of the defect are correlated and lower than

in the undisturbed crystal. It has to be noted, however, that this leads — at

least locally — to a strongly anisotropic enhancement of diffusivity. Diffusion is

often faster than average parallel to the defect and hindered in the perpendicular

direction. The global effect then depends strongly on the topology of the defect

network, and on the possible saturation of the defects with hydrogen. Detailed
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studies on the diffusivity in defective materials can, e.g., be found in [45, 46].

The special case of grain boundaries in tungsten is discussed by von Toussaint et

al. [114]. A more detailed description of diffusion with trapping will be given in

section 3.2.

2.3. Influence of external forces

All effects discussed above assumed that no other driving force for the dissolution

of hydrogen and its diffusion in a metal existed than the pressure of the hydrogen

gas phase and the concentration gradient in the metal, as described by Fick’s first

law for the diffusive flow ~jFick:

~jFick(~r, t) = −D~∇cH(~r, t), (2.9)

where D is the diffusion coefficient. But since hydrogen interstitials already inter-

act with each other and with defects through strain fields, it is logical to assume

that externally applied stress, whether tensile or compressive, will also have an

influence. Furthermore, temperature gradients or electrical fields also play a role.

According to Wipf [119, 120, 121], these effects add to the well-known diffusion

by the concentration gradient in the following way:

~j = ~jFick + cH
D

kBT
·
(
~Fstress + ~Ftemp + ~Fel

)
(2.10)

The term D/kBT is the mobility of the hydrogen, while ~Fstress, ~Ftemp and ~Fel

stand for the forces exerted by gradients of stress, temperature and electrical

potentials, respectively.

The stress gradient contribution can be written as follows:

~Fstress = vH~∇tr(σ). (2.11)

vH is the partial volume of the dissolved hydrogen, and tr(σ) is the trace of the

stress tensor, i.e., the hydrostatic stress. Since vH is in most cases positive, this

term leads to the migration of hydrogen from regions with compressive into re-

gions with tensile stresses. One example for this is the accumulation of hydrogen
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at crack tips, which, due to the detrimental influence of hydrogen on the mechan-

ical stability of the metal, promotes crack propagation and material failure. It

should be noted that not only stress gradients, but also gradients in plastic strain

can act as a driving force for the diffusion of hydrogen [108, 113].

The force exerted by a temperature gradient is given as

~Ftemp = −Q∗
~∇T
T
. (2.12)

This is also known as thermodiffusion or Soret effect. Q∗ is the heat of transport

and can in principle be either positive or negative. A positive value of Q∗ leads

to a transport of hydrogen into cooler regions of the material. For tungsten, no

definitive literature data on Q∗ exists. Theoretical considerations on the heat of

transport have been performed by Longhurst [61]: He derives a formula for the

calculation of Q∗ of the form of Q∗ = a + b · T . a is a constant that depends

strongly on material parameters, particularly the heat of solution ∆Hsol. b de-

pends only weakly on the material and is typically positive. Longhurst predicts a

negative Q∗ for metals with a positive (i.e., endothermic) heat of solution (such

as, e.g., tungsten). Due to the typically positive sign of b, the initially repulsive

effect of thermodiffusion on hydrogen at room temperature will reduce with rising

temperature. Eventually Q∗ will even change its sign. Using Longhurst’s formula,

the heat of transport for tungsten can be estimated to be of the order of roughly

−0.7 eV at room temperature. The change of sign should occur somewhere around

700–1000 K. Values based on Longhurst’s publication [61] that were calculated

by Tamura et al. [107] of −2× 10−4 J/mol are clearly wrong when compared to

the experimental values of Q∗ for other metals. They are typically of the order of

several 103 to several 104 J/mol, i.e., 0.1–1 eV (positive or negative, depending

on the metal) [61]. If the sign of the exponent of the Q∗ by Tamura et al. were

positive, it would coincide with the value calculated here.

Under low-temperature plasma loading conditions such as they will be mostly dis-

cussed in this thesis, diffusion driven by a concentration gradient will be several

orders of magnitude stronger than thermodiffusion. This is because concentration

gradients are usually much steeper than temperature gradients. There are, how-

ever, some cases like plasma-facing components in a steady-state fusion reactor,

where the situation might be different. Here the components will probably be

saturated with hydrogen isotopes, and the concentration gradient will be flat. On

the other hand, the component faces a high thermal load on the plasma side and
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is water-cooled on the other side. Longhurst [61] showed that under such condi-

tions thermodiffusion could possibly drive a substantial part of the steady-state

permeation flow of hydrogen isotopes through the component if Q∗ is positive.

This could even be the case for tungsten if the temperature is high enough for

Q∗ to be positive. Another effect that may play a role in a fusion reactor is an

intense transient heat load due to plasma edge instabilities. In this case very steep

temperature gradients could temporarily occur.

Finally, the force due to a gradient in the electrical potential Φ can be expressed

as

~Fel = eZ∗~∇Φ, (2.13)

where e is the (positive) elementary charge and Z∗ is the effective charge number.

Please note that Z∗ can be either positive or negative. It is the net effect of the

electrical force acting directly on the proton and the drag force exerted on the

screened proton by the electron current flowing in the metal due to the potential

gradient. For hydrogen in tungsten, no value of Z∗ was found in literature.

While these effects are applicable to all kinds of alloys or impurities in metals,

they have an especially strong impact for hydrogen in metals due to the very high

diffusivity in this system even at moderate temperatures.

2.4. Effects of non-equilibrium hydrogen loading

In the previous sections of this chapters, the behaviour of hydrogen in metals in

(respectively near) thermal equilibrium was discussed. But it is also possible to

create hydrogen inventories in a metal that lie far above the equilibrium solubility.

One possibility to achieve this is thermal quenching after equilibrium loading at

high temperatures. A very interesting alternative is the bombardment of metal

samples with energetic ions, e.g., from an ion beam or a plasma. Please note that

even an ion energy of only a few eV corresponds to a chemical potential that is

sufficient for achieving extraordinarily high concentrations.

In such a non-equilibrium situation the corresponding equilibrium pressures as es-

timated by Sieverts’ Law (2.5) become immense. Note that the estimation by (2.5)

is somewhat mediated, e.g., because the H2 gas becomes non-ideal at very high

pressures. A more thorough calculation of equivalent pressures for oversaturated
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copper is given in the report of Wipf [121].

This leads to some interesting effects. One that is observed in metals with an en-

dothermic heat of solution Hsol is the precipitation of hydrogen and the formation

of hydrogen molecules in internal cavities [121]. Since the equilibrium pressure is

often far beyond the yield strength of the metal, the metal is displaced to make

room for the hydrogen gas, and gas bubbles start to grow. A broad overview over

hydrogen bubble formation in various metals is given in [17]. This article lists

three main microscopic mechanisms for the nucleation and growth of bubbles:

dislocation loop punching, vacancy clustering and blistering, i.e., the displace-

ment of material near the surface, which often produces surface morphologies

that can even be observed with an optical microscope. Please note that the as-

sociation of blister formation with plastic deformation by Condon and Schober

[17] does not conflict with recent findings [9] that blisters can, under certain con-

ditions, collapse fully as soon as the high-pressure gas is released by puncturing

the cap of the blister: The inflation of the blister has in these cases still caused

a very fine crack system along grain boundaries. This decohesion at the grain

boundary cannot be recovered elastically. While the term plastic deformation in

the strictest sense is not quite applicable (the failure is actually brittle or semi-

brittle), this can at least be counted as a microscopically irreversible deformation

of the metal.

In brittle materials, such as tungsten, that are exposed to very high ion fluxes,

stresses due to the oversaturation with hydrogen can become so large that the

lattice is ripped apart and stress-induced cracks are formed [57, 58].

2.5. Summary of the general properties of

hydrogen-metal systems

This chapter has given an overview over the general behaviour of metal–hydrogen

systems. While the system is highly complex in detail, some basic properties can

be identified. The most generally observed one is that hydrogen has to dissociate

in order to be dissolved in a metal. Hydrogen molecules are not stable in solid

solution, as has been shown by DFT modelling. The validity of Sieverts’ Law —

at least for dilute concentrations and moderate pressures — in a wide range of

metal–hydrogen systems gives experimental backing for this.
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The actual solubility of hydrogen of can vary very strongly between metals. The

most general classification can be made by distinguishing metals that dissolve

hydrogen either exothermically or endothermically. Please note that the heat of

solution has no direct relation to the formation of a hydride phase, which can in

principle occur in both types of metals at sufficiently high concentrations. The

heat of solution is strongly connected to the electronic structure of the metal, as

it is qualitatively described by the screened proton model. The electron density

around the solute was calculated by DFT and is comparable to atomic or maybe

even anionic hydrogen. Typically, hydrogen is located in tetrahedral interstitial

sites for bcc and in octahedral sites for fcc metals.

Crystal imperfections such as vacancies, dislocations or grain boundaries can act

as traps for hydrogen. This means they have a higher binding energy for hydrogen

than regular interstitial sites. The existence of traps generally increases the ab-

sorption capacity of metals under given loading conditions. In metals where the

interstitial solubility is very low, trapping can dominate the hydrogen inventory.

Especially in such cases, it is helpful to consider the hydrogen inventory in the

metal in a density-of-sites approach in analogy to the density of states in the

theory of conduction electrons in metals.

Hydrogen atoms dissolved in a metal interact also with each other, especially at

higher concentrations. Elastic long-range interactions imparted through the crys-

tal lattice are assumed to be typically attractive, while short-range interactions in

a defect-free crystal are repulsive in accordance with the non-existence of solute

hydrogen molecules. In the vicinity of defects, especially within the tensile strain

field of a dislocation, attractive nearest-neighbor interactions between hydrogen

atoms can occur as well.

Diffusion of hydrogen in metals is very fast and, in particular at low temperatures,

strongly influenced by quantum-mechanical effects. At very low temperatures,

coherent tunnelling is believed to be dominant, although mostly for hopping be-

tween adjacent sites and usually not for band-like propagation. At slightly higher

temperatures, thermally activated tunnelling as well as propagation through ex-

cited states in saddle-point configurations are the most important processes. At

intermediate temperatures of the order of 300 K and above, thermally activated,

classical hopping over the barrier between adjacent sites takes place. With in-

creasing temperature, there is some evidence that long-range jumps start to oc-

cur, until at very high temperature the movement of hydrogen is gas- or fluid-like.

Interaction with the conduction electrons of the metal also plays a role for diffu-
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sion. This is discussed in the Kondo theory. External forces such as gradients in

(hydrostatic) stress, temperature and electrical potential can also drive a diffusive

flow of hydrogen.

Non-equilibrium conditions such as irradiation of a metal with a plasma or an

ion beam can lead to — at least transient — hydrogen inventories far above the

equilibrium solubility. This leads to enormous corresponding pressures particu-

larly in metals with an endothermic ∆Hsol. As a result, hydrogen precipitates in

high-pressure gas bubbles in internal cavities. If this happens near the surface, it

leads to blistering.
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3. Hydrogen isotopes in tungsten

While the previous chapter described metal–hydrogen systems in general, this

chapter now focusses on the hydrogen–tungsten system. It addresses, therefore, a

system whose hydrogen inventory is dominated by defects. After a brief review of

the data published so far, a tool for the numerical simulation of a system heavily

influenced by traps is introduced: so-called diffusion-trapping models. Along with

a general description of the method, details of the model used in this thesis are

presented.

3.1. Characteristics of the hydrogen–tungsten

system

Tungsten is a metal that has only one stable modification, namely the bcc phase.

Any other modifications are only metastable, e.g, the A-15 β phase, which can

be created by physical vapour deposition of thin tungsten films. They decay into

the bcc phase at temperatures far below the melting point of tungsten, values

between room temperature and up to ≈ 900 K are reported in literature [85,

84, 102, 93]. Since nearly all the tungsten specimens discussed in this thesis are

powder-metallurgical bulk tungsten that was annealed at least at 1200 K, it will

be assumed from now on that only the bcc phase is present.

Since tungsten is a bcc metal, hydrogen in a perfect single crystal is expected to

occupy only tetrahedral interstitial sites. This has been confirmed by ion chan-

nelling measurements [87]. DFT calculations [40] also show that tetrahedral sites

are preferred and that the energetic separation between octahedral and tetrahe-

dral sites in tungsten is 0.38 eV. These calculations yield an endothermic enthalpy

of solution of ∆Hsol = +0.96 eV per hydrogen atom and state a partial volume

of hydrogen of vH = 2.90 Å3 per hydrogen atom. The most commonly accepted

experimental value for the enthalpy of solution is ∆Hsol = 1.04 ± 0.17 eV per
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hydrogen atom [27].

The enthalpy of solution for hydrogen in tungsten is the most endothermic ones

that can be found among the transition metals (see Figure 2.1). Therefore, the

solubility in a tungsten single crystal is extremely low. This also has the conse-

quence that even small concentrations of traps can easily dominate the achievable

concentration and behaviour of the dissolved hydrogen. This has severe implica-

tions for attempts to measure the diffusivity of hydrogen in tungsten: as long as

the temperature is low enough that the traps can still bind a considerable frac-

tion of the hydrogen in the specimen, the diffusion barrier is governed by the

traps. If one looks at diffusion barriers Ediff published by in literature, one finds,

e.g., values of Ediff = 0.39 eV [27], Ediff = 0.86 eV [96] or Ediff = 1.8 eV [71].

In the appendix of [27] the difference between the values found by Frauenfelder

[27] and by Moore et al. [71] are explained by a second type of “residual” site

that is strongly attractive to hydrogen (Etrap ≈ 3 eV). The deviations between

Frauenfelder’s [27] and Ryabchikov’s [96] values could be explained by taking

into account that the hydrogen in Ryabchikov’s tungsten specimens possibly had

a non-uniform spatial distribution (while Ryabchikov assumed a homogeneous

distribution for the evaluation of the data) [27]. DFT results by Heinola et al.

[40] state a diffusion barrier of Ediff = 0.21 eV. The authors of [40], following

a suggestion in [100], also calculated a fit to the data of Frauenfelder [27] that

neglects the two data points below 1500 K and arrived at a diffusion barrier of

Ediff = 0.25 eV, which is rather close to the DFT result. However, the simulation

cell in [40] contained 128 W and one H atom, which corresponds to a hydrogen

concentration of approximately 0.8% using periodic boundary conditions. This is

an extremely high value even for defect-rich tungsten, and even more so for an

undisturbed crystal.

These differences in reported values show how difficult it is to determine a reliable

diffusion barrier for hydrogen isotopes in tungsten. Experimental results appear

to depend strongly on the temperature window and the quality of the tungsten

specimen that is investigated. Similarly, the diffusion pre-factor D0 also varies by

several orders of magnitude, depending on the experimental conditions. The most

extreme cases are D0 = 6× 10−4 m2/s [123] and D0 = 3.5× 10−11 m2/s [32]. The

Frauenfelder value of 4.1× 10−7 m2/s is somewhere in between.

A large selection of diffusivity data from experiments and modelling are compiled

into the Arrhenius plot shown in Figure 3.1. So far, the most widely accepted

values are those proposed by Frauenfelder [27]:
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D =
(
4.1+5
−2
)
× 10−7 exp

(
−0.39± 0.09 eV

kBT

)
m2/s. (3.1)

It can be clearly seen how the diffusivity drops below the extrapolation of the high-

temperature data by Frauenfelder [27] at lower temperatures. This is probably

an effect of the increasing influence of hydrogen trapping at lower temperatures.
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Figure 3.1. Selection of experimental [27, 123, 11, 96, 71, 26, 32] and DFT [40] data of hydro-

gen diffusivities in tungsten. The transition from interstitial-dominated to trap-

dominated diffusion is also indicated.

3.2. Modelling of the deuterium inventory: diffusion

and trapping

Typical ion beam or plasma exposure experiments, as they will be discussed in

the experimental section of this thesis, are performed at temperatures between

300 and 800 K. Subsequent analysis by thermal desorption is usually performed

in the temperature range up to 1200 K, with the largest part of the desorption

usually occurring well below 1000 K. In this temperature range it is not sufficient

to consider only jumps of hydrogen atoms between interstitial sites, and the

diffusivity is not simply given by equation (3.1) anymore (see Figure 3.1). Instead,

traps also have to be taken into account.
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The diffusion in defect-containing tungsten at intermediate temperatures (i.e,

between room temperature and up to roughly 1500 K) is often described by

one-dimensional rate equation models, so-called diffusion-trapping models. Well-

documented examples are the model by Krom and Bakker [56] and the program

TMAP7 [62], but many varieties of such codes are in use. The following discussion

of diffusion-trapping models refers mostly to the two models cited above.

These models typically assume that hydrogen is either dissolved in “normal” in-

terstitial lattice sites or resides in one or several types of saturable traps with

specified binding energies Etrap. Trapped hydrogen is considered immobile, while

interstitial “mobile” hydrogen diffuses around the tungsten specimen with a dif-

fusivity Dmobile. While the value of Dmobile is in principle arbitrary, usually a

classical hopping motion is assumed, which is characterised by a pre-factor D0

and a diffusion barrier Ediff [62]:

Dmobile(T ) = D0 exp

(
−Ediff
kBT

)
. (3.2)

The values for D0 and Ediff are typically taken from experimental data, e.g.,

the work of Frauenfelder [27], but occasionally they are also regarded as free

parameters.

The bound hydrogen can leave the traps in a classical, Arrhenius-like process with

an attempt frequency νdetrap and an activation energy Etrap, which is expressed

by a detrapping rate coefficient αdetrap [56, 62]:

αdetrap(T ) = νdetrap exp

(
−Etrap
kBT

)
. (3.3)

Vice versa, mobile hydrogen can also be captured again by a trap. The trapping

rate αtrap for the diffusing hydrogen is in these models expressed by the diffusive

speed of the hydrogen [56, 62]:

αtrap =
Dmobile

a2
, (3.4)

i.e., the number of lattice parameters a a particle can travel in a given time

interval. This expression includes two assumptions: First, the trapping probability

is independent of the depth Etrap of the trap, and second, one trap site equals

one lattice space. The possible spatial extension of traps is only considered as
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an average, i.e., it is included into the total concentration of trap sites c0trap.

Of course, this approach neglects the possibility of anisotropic, locally enhanced

diffusion, which can occur due to correlated saddle point energies along a spatially

extended defect (see section 2.2).

The mobile (i.e, interstitial) hydrogen concentration cmobile and the trapped con-

centration ctrapped are linked by a generalisation of Fick’s second law [56]:

∂cmobile
∂t

+
∂ctrapped
∂t

−Dmobile
∂2

∂x2
cmobile = αsources − αsinks. (3.5)

The rate coefficients αsources and αsinks stand for additional local sources and

sinks for hydrogen, e.g., dissolution from and desorption into the gas phase at

the surface [62]. When the system is in a stationary state, the right hand side of

equation (3.5) vanishes as in the model by Krom and Bakker [56], but the more

general form used here includes also non-stationary effects. This allows studying

also transient effects in dynamical processes such as ion implantation and thermal

desorption experiments.

Using equations (3.3)–(3.4), the time evolution of the trapped concentration

∂ctrapped/∂t can be written for saturable traps as [62]

∂ctrapped
∂t

= αtrap(c
0
trap − ctrapped)cmobile − αdetrapctrapped. (3.6)

Since c0trap stands for the total concentration of traps (filled as well as empty),

c0trap − ctrapped is the concentration of empty traps.

Diffusion-trapping models are often semi-empirical, and several central constants

such as νdetrap or Etrap are regularly used as free parameters in order to fit exper-

imental results. Such experiments are, e.g., loading of a specimen with hydrogen

isotopes under certain conditions and subsequent thermal desorption spectroscopy

(TDS; see also section 4.3) in order to probe the retained hydrogen inventory, or

also permeation experiments. The simulation can then include the full experimen-

tal process, i.e, hydrogen loading along with migration from the surface into the

bulk of the specimen, re-emission after the loading stops (especially for experi-

ments at elevated temperatures) and the release of hydrogen during thermal des-

orption spectroscopy. This can be supplemented by depth profile measurements,

e.g., by the D(3He, p)4He nuclear reaction (see also section 4.2) if deuterium was

used for the loading of the sample. Depth profiles can serve as a further dataset
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to be compared with the state of the simulated system after the loading with

hydrogen, or be used to estimate trap concentrations for the simulation.

The desired results derived from diffusion-trapping simulations are often trap

energy distributions P(Etrap). While the simulations typically lack ab initio char-

acter, they can still be used to predict new experiments based on existing experi-

mental data. This is also the ultimate test for the validity of the empirical results,

and of course the assumptions of the model itself.

3.3. Modelling details

For the interpretation of experimental results presented in this thesis, a (yet un-

published) diffusion-trapping code developed by K. Schmid was used. The model

is, in its central equations, similar to the models introduced in section 3.2. It is

implemented in Wolfram Mathematica R© 8 and uses the NDsolve solver for the

numerical solution of the differential equations. The Mathematica implementation

offers a high flexibility of the code together with a powerful solver.

The numerical solution is based on the so-called method of lines. An overview of

this technique for numerically solving partial differential equations is presented

by Hamdi et al. [39]. The basic idea behind the method of lines is to approx-

imate a partial differential equation by a system of ordinary differential equa-

tions by replacing the spatial derivatives with algebraic approximations, while

the time derivatives are not transformed. When this is done, one can choose a

well-established method for integrating ordinary differential equations. One pos-

sible approximation for the spatial derivatives are finite differences. This means

that the spatial coordinate is discretised into a so-called grid, i.e., an indexed

array of positions. The choice of an appropriate grid is important for success in

finding a solution: If the grid is too coarse, the accuracy of the solution can be

insufficient or singularities may appear. If the grid is too fine, the demand on

computational resources can become excessive.

In the model used here, the initial condition at t = 0 is either chosen as an empty

specimen for the simulation of hydrogen implantation experiments, or set as the

result from a previous implantation simulation, e.g., for modelling TDS results.

The boundary conditions in space are that the hydrogen concentration in any

type of site vanishes at the front and the rear surface of the specimen, i.e., the

desorption from the specimen is assumed to be diffusion limited, as suggested in
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the review by Causey [14]. Hydrogen losses from the free surfaces of the specimen

are the only sinks in the system. For implantation experiments, the source term in

equation 3.5 is set to a Gaussian profile that is truncated by a steep Boltzmann

function towards the surface. The position of the maximum and the width of

the implantation profile are pre-calculated by SDTrimSP [22] (see Figure 7.1)

and entered into the model as parameters. The incident ion flux is taken from

measurements (see section 4.1 respectively [65]) and reduced by the reflection

yield calculated by SDTrimSP. The energy distribution of the incident ions is

approximated as monoenergetic.

The grid used for the numerical solution has a variable step width: The discreti-

sation is very fine near both surfaces in order to fulfil the boundary conditions

without numerical oscillations. The step width is increased following a Gaussian

function towards the bulk of the specimen and is then set to a constant value

throughout most of the specimen. While the specimens used for experiments were

about 800 µm thick, the specimen thickness used for the simulations was set to

only 200 µm because this significantly reduced the demand on computational

resources. The reduced specimen thickness has no influence on the simulation of

most deuterium implantation experiments since the diffusion range turned out to

be typically less than about 100 µm at the implantation temperature of 370 K for

which this simulation was optimised, even at high incident fluences. The reduced

specimen thickness in the simulations usually only led to a larger fraction of the

deuterium desorbing from the rear side of the specimen in TDS simulations.

For the movement between interstitial sites as well as from interstitial sites into

traps, the values by Frauenfelder [27] were used, as suggested by Causey [14].

Since Frauenfelder’s values were derived for hydrogen, the pre-exponential factor

was scaled by 1/
√

2 to account for the larger mass of deuterium. Unfortunately,

measurements directly comparing the diffusivity of hydrogen isotopes in tungsten

apparently do not exist, and the scatter between different published values is large

(see section 3.1).

Just like most other diffusion-trapping models (e.g., TMAP7 [62]) the model used

here specifies a small number of different types of traps with a precisely defined

binding energy. Escape of hydrogen atoms from traps are modelled by Arrhenius

laws. While an ensemble of traps with many different binding energies might be

used to approximate a continuous density of sites, it would still neglect spatial and

energetic correlations between trap sites, e.g, in the strain field of a dislocation

or in a grain boundary. On the other hand, increasing the number of traps also
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increases the stiffness of the differential equation system and thus impairs the

numerical stability of the solutions. However, the model goes beyond most of its

predecessors by allowing also a time evolution of trap density profiles. This is

necessary to account for the experimentally observed production of defects due

to the plasma exposure of tungsten specimens (see sections 8.2 and 8.3). The time

evolution of traps is, for now, modelled by specifying empirical, explicitly time-

dependent trap density functions. An implicit time dependence that is based on

local hydrogen concentrations is, at present, not implemented.

Currently, three different types of trap are used in the model. Firstly, a high-

energy trap with a high binding energy of 2.2 eV is used to represent displace-

ment damage near the surface caused during plasma exposure. These defects are

confined to a narrow subsurface region, and their density increases up to an em-

pirical saturation value with time respectively fluence. The high binding energy

traps give rise to a release peak at relatively high temperatures of about 800–

900 K. The assignment of displacement damage with this release peak is based

on observations for self-damaged tungsten [109].

Secondly, dislocation cores (and grain boundaries) are modelled as defects with an

intermediate binding energy of 1.2 eV. This value is based on the analysis of TDS

spectra with different heating rates. Details of this analysis will be discussed in

section 8.5.1. Their density profile is the sum of a background, which is constant

in time and space, and an evolving Gaussian peak within a few microns of the

implanted surface, which is used to model dislocations emitted due to the growth

of blisters (see, e.g, section 8.1.6). Based on measured deuterium depth profiles,

the peak does not only grow in magnitude up to a certain saturation value, but

also becomes broader and shifts its centre of weight towards larger depths with

time respectively fluence.

The third trap at 0.7 eV is set to five times the density of the 1.2 eV trap.

This trap is used as a coarse approximation for hydrogen being trapped in the

strain fields of dislocations. The density relation reflects the 1/E3 model for the

density of sites around a dislocation (see Table 2.1). This trap is responsible

for the early onset of deuterium release that is observed in thermal desorption

experiments. The evolution of the time-dependent trap densities is presently based

on experimental depth profiles of deuterium retained in stress-relieved tungsten

after plasma exposure at different fluences (see Figure 8.11). Details about these

experimental results are discussed in section 8.2. Overall, the trap energies stated

above all lie within the range of previously published values (for an overview see



3.3. Modelling details 37

[14]) and reproduce the main features in experimental thermal desorption spectra

of deuterium from tungsten.

The detrapping attempt frequency was initially chosen at 3.3×1013 s−1, i.e, 1/
√

2

times the ground state vibration frequency of interstitial hydrogen calculated by

Heinola et al. [40]. By comparison with experimental data (see section 8.5.1), this

value was iteratively refined to 6.6× 1011 s−1.

So far, simulations were only performed for stress-relieved tungsten at a temper-

ature of 370 K during implantation. The reason is that an empirical description

of the trap evolution — mainly due to blistering — currently exists only for this

temperature and only for this type of material. For other temperatures and mi-

crostructures, a consistent trap evolution model has yet to be developed. Consid-

ering the large amount of experimental data that was necessary to find a suitable

description only for the conditions mentioned above, this has to be regarded as

a long-term project.
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4. Analysis methods and equipment

This chapter first introduces the device “PlaQ” that was used to expose tungsten

specimens to deuterium plasmas. After that, the main analysis techniques used

in this thesis are described. Both nuclear reaction analysis (NRA) and thermal

desorption spectroscopy (TDS) are discussed in detail. A short overview over

the electron microscopy equipment as well as an introduction to the differential

interference contrast (DIC) method for optical microscopes are also presented.

4.1. Plasma exposure of tungsten specimens

For the deuterium loading of all tungsten specimens investigated for this thesis,

the plasma device “PlaQ” was used. A detailed description of PlaQ can be found

in [65], but the key features are reviewed here. A sketch of the set-up can be

found in Figure 4.1.

In this device, a low-temperature, low-pressure plasma is ignited by electron

cyclotron resonance (ECR) heating. The operating gas is D2 at a pressure of

1.0 Pa, the nominal output power of the 2.45 GHz microwave source is set to

144 W. The main discharge is spatially separated from the sample holder. This

allows setting the impact energy of ions from the plasma on the specimens by

biasing the holder with a (negative) voltage Vbias without strongly influencing the

plasma itself. The deuterium ion flux density impinging on the sample holder has

been absolutely quantified using a retarding field analyser and a plasma monitor

[65]. It has only a weak dependence on the bias voltage and an absolute value

of ≈1020 D m−2s−1. Variations derived from measurements of the sample holder

current are typically less than 5% during an implantation run. The ion flux is

constant even over long periods — up to 12 consecutive days of implantation

were successfully tried so far. This allows the accumulation of large deuteron

fluences. The deuteron flux is mostly carried by D+
3 ions, accompanied by small

fractions of D+ and D+
2 ions. This means that the typical energy per deuteron



4.1. Plasma exposure of tungsten specimens 39

plasma
ECR

2.45 GHz

shutter

holder
substrate

Vbias

photo
diode

grid

Figure 4.1. Schematic drawing of the PlaQ plasma device [65]. The main ECR discharge is

confined to a stainless steel cage and monitored by a photo diode. The sample

holder is hit by a freely expanding plasma beam, which can be blocked by a

shutter. The holder can be biased with the voltage Vbias in order to adjust the

ion energy. Its temperature is regulated either by radiative heating or by a liquid

thermostat.

is one third of the total ion energy. The energy spectrum of the ions is peaked

at e · |Vbias| + 15 eV. Its shape is nearly unaffected by the sample holder bias.

The offset of 15 eV is present even at floating potential and reduces only slightly

towards higher values of Vbias. Accordingly, all ion energies ED specified in this

thesis for specimens implanted in PlaQ should be understood in this way:

ED =
1

3
e · |Vbias|+ 5 eV/D. (4.1)

The maximum possible bias voltage is −600 V, corresponding to 205 eV/D. Typ-

ically a lower voltage of Vbias = −100 V, corresponding to 38 eV/D, is used. This

reduces the sputtering as well as the heating of the specimens and the holder by

the impinging ions.
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It should be noted that the specimens are also bombarded by a large amount of

neutral D atoms from the plasma [65]. They have approximately thermal kinetic

energies (i.e., typically � 1 eV), but an about 10–100 times higher flux. It will

be shown by bias variation experiments, however, that their contribution to the

deuterium uptake of tungsten specimens is usually negligible compared to the

effect of the energetic ions.

For all implantation experiments, the actual plasma exposure of the specimens is

preceded by a phase of about 30 minutes where the direct plasma beam is blocked

by a shutter. This burn-in phase is necessary to ensure that the plasma discharge

is stabilised and impurities at surfaces in direct contact with the main plasma are

removed [65].

The specimen temperature during loading can be adjusted by either radiatively

heating a stainless steel holder from the rear side with a BORALECTRIC R©

heater, or by using a copper holder that is either heated or cooled by a fluid

thermostat (heat transfer medium: silicon oil). Radiative heating is used for tem-

peratures of 500 K and above, while the latter method is applicable between

≈ 300 and 450 K. Both the steel and the copper holder are coated with ≈ 1 µm

of sputter-deposited tungsten to minimise sputtering by the plasma. Both types

of holder can hold up to 5 specimens of the type described in chapter 5. They are

firmly attached to the holder by 4 molybdenum screws each. This ensures a good

thermal contact between the specimens and the holder.

For implantation at elevated temperatures, the sample holder is pre-heated to the

desired temperature before the plasma exposure. When the exposure starts, the

heating power of the BORALECTRIC R© heater or the oil thermostat is typically

slightly reduced in order to compensate for the additional power input from the

plasma. When the implantation stops, the cool-down procedure is immediately

started. Using the oil thermostat, the cool-down curve is approximately linear.

From a temperature of 370 K, it takes about 40 minutes with a cooling rate of

≈ 1.7 K/min. If the BORALECTRIC R© heater is used, the cool-down curve is

exponential. For example, it takes about 50 minutes to cool to room temperature

from 500 K, with a decay time constant of ≈11 minutes.
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4.2. Nuclear reaction analysis

4.2.1. Basic description of the technique

One method used to probe the retained deuterium inventory in a tungsten speci-

men after plasma exposure utilises the nuclear reaction of energetic 3He ions with

the deuterium in the specimen:

D(3He, p)4He respectively D(3He, α)p. (4.2)

This reaction has a Q-value of 18352 keV, which is distributed to the proton

and the α particle according to the laws of conservation of energy and momen-

tum. Both particles can be detected in order to quantify the amount of deuterium

within the specimen volume probed by the incident 3He beam. This reaction has a

resonant cross-section with a relatively broad maximum at about 620 keV projec-

tile kinetic energy. For the work presented here, the cross-section data published

by Alimov et al. [3] was used. The symbols in Figure 4.2 show the measured

differential cross-section σNRA at a laboratory angle of 135◦ versus the energy of

the incident 3He beam Ebeam. The line shows a fit of the data that is included in

the more recent versions of the SIMNRA program package [69]. The version used

here is v6.06.

By varying the energy of the incident 3He beam, this maximum can be positioned

at different depths below the specimen surface due to the energy loss of the 3He

particles. Due to the high stopping power of tungsten, the accessible information

depth is limited to about 8 µm for 4500 keV 3He and to ≈12 µm for a 6000 keV
3He beam. Figure 4.3 shows simulated effective cross-sections of the D(3He, p)4He

nuclear reaction for 3He beams with different energies impinging on a tungsten

specimen. These effective cross-sections are based on the data shown in Figure 4.3

and SDTrimSP [22] calculations of the stopping of the 3He beam in the tungsten.

The effective cross section σNRA×ηbeam takes into account a small correction due to

the range straggling of the 3He beam. Calculations were made for all energies that

were used in this thesis (although the highest energy of 6000 keV was only used for

a few selected investigations). Please note that even at high beam energies Ebeam,

where the cross-section maximum lies deep in the specimen, there is a considerable

contribution to the cross-section from deuterium close to the specimen surface.

In addition to counting the total amount of protons (or also α particles) for
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Figure 4.2. Differential cross-section of the D(3He, p)4He nuclear reaction as published by

Alimov et al. [3] (symbols). The solid line represents the fit included in the current

versions of the SIMNRA program package [69].
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Figure 4.3. Effective differential cross-sections σNRA × ηbeam of the D(3He, p)4He nuclear re-

action versus beam penetration depth in a tungsten specimen. The cross-section

data by Alimov et al. [3] were convolved with stopping simulations for various

incident 3He energies and include range straggling.

each incident beam energy, the energy spectrum of the reaction products can be

acquired. For this, a thick proton counter capable of completely stopping the high-

energy protons is necessary. A single full proton spectrum of the D(3He, p)4He

reaction for deuterium in tungsten yields theoretical depth resolutions that range

from slightly more than 100 nm close to the specimen surface for low incident
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beam energies up to around 1–2 µm at 8 µm for 4000 keV incident ions [70].

The α particle spectra at low incident beam energies can yield a better depth

resolution, but are limited to the near-surface inventory due to the limited range

of the α particles in the material. Additionally, the accurate determination of

deuterium depth profiles from the α particle spectrum only works well for very

smooth specimens. The reason is that the α particles lose a considerable amount

of energy on their way out of the tungsten specimen. Together with the relatively

shallow detection angle of 102◦ (see below), this can lead to distortions of the

energy spectrum of the detected particles due to surface roughness.

For the measurements performed for this thesis, a proton detector thick enough

to stop all reaction protons was used. It was installed at a laboratory scattering

angle of 135± 0.5◦. The detector is equipped with a parabolic slit that limits the

solid angle to 29.94±0.2 msr, and with a stopping foil that allows the high-energy

protons to pass but blocks the back-scattered 3He particles. With this set-up an

effective energy resolution of around 100 keV can be achieved. This value was

obtained by measuring the NRA proton spectra of a 20 nm thick amorphous

deuterated hydrocarbon (a–C:D) layer on silicon.

The alpha particles were detected with a detector under 102 ± 0.5◦ scattering

geometry in the laboratory system. This detector has rectangular aperture that

leads to a solid angle of 9.16 ± 0.07 msr and has no stopper foil. Energy spec-

tra from this detector can only be evaluated for incident beam energies below

1000 keV. For higher energies, the much larger signal from back-scattered 3He

particles obscures the α particle spectrum. Additionally, due to the small solid

angle of the detector, its sensitivity is rather small. This is even aggravated by the

dead time caused by the massive amount of backscattered 3He particles imping-

ing on the detector. Together with the typically small deuterium inventories in

tungsten, this often leads to poor signal quality, which cannot be outweighed by

the superior depth resolution achievable with this detector. Although α particle

spectra were recorded for all analysed specimens, most of them were discarded

during the data analysis due to the aforementioned problems.

The 3He beam was generated by a tandem accelerator manufactured by High

Voltage Engineering Europa B.V. (HVE). This accelerator has a terminal voltage

of 3 MV and thus allows to generate 3He+ with up to 6000 keV. Due to radiation

safety limits only up to 4500–5000 keV can be achieved with 3He+ ions, however.

For higher energies, it is necessary to use 3He2+ ions.
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4.2.2. NRADC optimisation

The energy spectra from NRA were analysed with a combination of the SIMNRA

software [69] for calculating energy spectra and the NRADC program [99] for the

deconvolution of the data resulting from an energy variation of the incident beam.

Considering the spatial overlapping of the effective reaction cross-sections shown

in Figure 4.3, it is clear that all data from a beam energy scan have to be fitted

simultaneously in order to get a reliable result.

The NRADC program calculates a “free-form” reconstruction of the deuterium

concentration depth profile. Since it is based on SIMNRA, it has to discretise

the depth profiles into layers with a constant deuterium concentration. The re-

construction uses very little prior knowledge about the depth profile to be fitted

and is therefore relatively unbiased. The necessary prior information (besides the

experiment parameters) is limited to the material of the specimen, a starting lay-

out for the depth profile, the energy calibration for the detector and the regions

of interest for the peaks that are to be fitted. The program then optimises the

number N , thicknesses ∆xi and D concentrations ci of the layers. The procedure

for a depth profile reconstruction is shown in the flowchart in Figure 4.4.

First, a SIMNRA template file containing the experiment geometry and a simple

target layout that includes all elements that are present in the target and needed

for the analysis — e.g., tungsten, deuterium and, for the energy calibration, a very

thin layer of carbon on the surface. Then, the energy calibration of the detector is

fine-tuned for every measured spectrum by the user. The linear dispersion of the

detector can best be derived from the three proton peaks originating from nuclear

reactions of a 3He beam and the small amount of carbon containing impurities

that are nearly always present on the specimen surface. These peaks are typically

very narrow and are well visible for 3He energies of 2000 keV or more. The surface

edge of the proton peak is also a fixed point in the energy spectrum. Quite often,

the constant offset of the energy calibration has to be slightly adjusted for each

spectrum in order to ensure a good agreement of the measured surface edge and

the corresponding SIMNRA calculation. This is mostly due to small variations

of the angle between the beam and the specimen surface normal. After that,

the user has to specify the range of detector channels containing the proton (or

α particle) peak for each measured spectrum. The last preparation step is the

generation of the starting layout for the optimisation. This is typically done by

calculating the stopping range and the position of the cross-section maximum

(see Figure 4.3) for each incident beam energy in the specified target material.
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Figure 4.4. Flowchart of the NRADC optimisation procedure of a deuterium depth profile.

The program package provides an automated function for that. Each layer in this

initial layout is subdivided to a certain degree specified by the user in order to

allow future refinement of the layout. A typical value is 4 sub-layers per layer.

The first step of the actual calculation is the linearisation of the problem: For

small deuterium concentrations (like they usually occur for tungsten specimens)

it can be assumed that the stopping power of the incident 3He beam depends

only on the specimen material and not on the deuterium concentration. In this

case the calculation of NRA spectra from an assumed deuterium depth profile

can be simplified to a linear problem:
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Ik =
N∑
i=1

Dik × ci. (4.3)

In this equation, Ik is the kth component of the data vector ~I, which contains the

measured intensities of all channels in the regions of interest for all incident 3He

beams. The integrals over the individual regions of interest are also included as

channels in ~I. Dik is the so-called design matrix, which specifies the contribution of

the deuterium concentration ci in layer i (i.e., in a certain depth in the specimen)

to the data in channel k . This design matrix is built by the program by positioning

a small amount of deuterium sequentially in every sub-layer of the specimen and

calculating the resulting NRA spectrum with SIMNRA for each incident 3He

beam energy. The calculation of Dik is often the most time-consuming part of the

reconstruction process, but in turn strongly reduces the necessary computing time

for the following Monte-Carlo optimisations. It even allows a first quick estimate

of ci by a simple least-squares inversion of equation (4.3), including error bars.

However, the least-squares result is not always physically meaningful since it can

also include negative concentrations ci in the depth profile.

The next step is the optimisation of the number of layers N and their thicknesses

∆xi. For this, the parameter space is sampled for a range of N specified by

the user. For each N the best solution Copt(N) is searched by a Monte-Carlo

sampling of possible layouts {∆xi} and a subsequent least-squares inversion of

equation (4.3) in order to find the corresponding concentrations ci (i = 1...N).

For each solution the χ2 value is computed, and the solution with the smallest

χ2 = χ2
min(N) is considered the best solution Copt(N). Solutions containing one or

more negative concentration are discarded. The solutions Copt(N) for the different

numbers of layers N are then compared using the Bayes theorem

P(H|D,B) =
P(D|H,B)× P(H|B)

P(D|B)
. (4.4)

The basic meaning of this equation is that the posterior probability P(H|D,B),

i.e., the probability for a hypothesis H being true given the data D and the

background information B, is given by the product of the likelihood P(D|H,B)

and the prior probability P(H|B), divided by the evidence P(D|B) (which is

often treated as a normalisation constant). For a more detailed introduction into

data analysis with the help of Bayesian probability theory, the book of Sivia [105]

is recommended to the reader.
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In this case, the posterior probability of a certain number of layers N given

the experimental data vector ~I is needed to find the most probable number of

layers N opt. For this, a method called marginalisation is needed. Marginalisation

eliminates unwanted “nuisance” parameters Y from the probability P(H,Y |B)

by integrating over them:

P(H|B) =

∫
P(H,Y |B)dY. (4.5)

In this optimisation step, the exact depth profiles C(N ) = {ci,∆xi}(N) are

the “nuisance” parameters and the measured data vector ~I is the parameter

against which the number of layers N has to be optimised. Using a flat prior, i.e.,

P(N |B) = const. independent of N (at least for all N in the specified range),

equation (4.4) yields that the posterior probability P(N |~I,B) is proportional to

the likelihood P(~I|N,B). The likelihood itself is obtained by marginalisation as

follows:

P(~I|N,B) ∝
∫
P(~I, {ci,∆xi}|N,B)dNcid

Nxi. (4.6)

Using the Bayes theorem (4.4) on the expression under the integral of equa-

tion (4.6) and assuming flat priors P({ci}|B) and P({∆xi}|B) yields

P(~I, {ci,∆xi}|N,B) ∝ P(~I|{ci,∆xi}, N,B). (4.7)

Although the likelihood P(~I|{ci,∆xi}, N,B) is actually a Poisson distribution,

it can be approximated by a χ2 distribution for this step. With this approxima-

tion the marginalisation integral in equation (4.6) is simplified to a multivariate

Gaussian integral, which can be solved analytically. The posterior probability

P(N |~I,B) is then given as

P(N |~I,B) ∝ 1

[(∆xmaxi −∆xmini )(cmaxi − cmini )]
N

∫
e−χ

2/2dNcid
Nxi (4.8)

=
1

[(∆xmaxi −∆xmini )(cmaxi − cmini )]
N

N !(4π)N

det (∇∇χ2)
e−χmin2(N)/2.

This equation gives now the probability that the best model for the depth profile

underlying the measured data ~I can be discretised into N layers. The exponential
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term in equation (4.9) judges the quality of the fit to the measured data. χ2
min(N)

is, as stated above, the smallest χ2 value found in the Monte-Carlo sampling of

possible depth profiles for a certain number of layers N . χ2
min(N) typically gets

smaller for increasing N since the model has more degrees of freedom and can fit

more details of the measured NRA spectra. The pre-factor of the exponential term

serves as a so-called “Occam factor” that penalises more complicated models, i.e.,

those with a larger number of layers N .

The most probable solution {N, (∆xi), (ci)} can then be selected after the poste-

rior probability has been calculated for all numbers of layers allowed by the user.

This step already yields a physically relevant result C including error bars for the

concentration, but it is usually refined in a second Markov-Chain Monte-Carlo

process.

This second step can either be a Markov-Chain Monte-Carlo (MC-MC) optimisa-

tion of only the concentrations ci (OC mode) or of both ci and ∆xi (OCL mode)

for the previously determined optimum number of layers N (which is now kept

fixed). The most probable result of the previous optimisation step also serves

as the starting value for the refinement. In this second MC-MC refinement, the

actual Poisson distribution, which describes a counting experiment such as the

acquisition of NRA spectra, is used to calculate the likelihood P(~I|C, B):

P(~I|C, B) ∝
∏
k

Ĵk(C)Ik
Ik!

× exp
(
−Ĵk(C)

)
. (4.9)

~I respectively Ik denotes the actual measured data, while Ĵk(C) stands for the

result of the forward calculation according to equation (4.3) based on the assumed

depth profile C.

The prior probability P(C|B) is, in the simplest case, flat for all relevant solutions

(i.e., those with ci ≥ 0 and ∆xi > 0 for i = 1..N), but it is also possible to impose

further restrictions such as a minimum and/or maximum thickness for each layer

∆xi.

After the refined solution CMC−MC has been found by maximisation of the pos-

terior probability P(C|~I,B) ∝ P(~I|C, B)P(C|B), a high resolution sampling of

the posterior probability distribution function (PDF) P(ci|~I,B) is performed for

the concentration ci in each layer. The PDF is the most general description of

the system, but can in many cases be approximated reasonably well by normal
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distributions. Accordingly, it can be described by conventional σ error bars. How-

ever, there are occasional cases where the PDF is strongly asymmetric or even

multimodal. In these cases, while it is still possible to find the maximum of the

PDF, a description of the uncertainty by conventional error bars is clearly wrong.

The complete N -dimensional PDF would lead to very complicated graphs, espe-

cially when several depth profiles are to be compared. Therefore, a conservative

estimate for the uncertainty, i.e., the full range of concentrations ci where the

sampling of the PDF is non-zero, will be used for simplicity in the presentation

of data when the PDF deviates strongly from a normal distribution.

Figure 4.5 shows the measured proton spectra from sample A0129 for 8 differ-

ent beam energies (at 690 keV, two measurements were performed). The forward

calculation result for the most probable solution {N, (∆xi), (ci)} is also included

in the graph. For an easier presentation, all spectra were combined into a single

data vector as it is also used by the deconvolution algorithm. They are therefore

plotted not against the proton energy, but against their index k in the data vec-

tor ~I. It can be seen that the calculated spectra are a good fit to the measured

data. Figure 4.6 shows the reconstructed depth profile based on the data shown

in Figure 4.5. For comparison with the standard error represented by the error

bars, the full posterior probability density function (PDF) is represented by the

shading of the red line. For better visibility, the PDF is normalised for each layer

of the depth profile individually. As you can see, the PDF is in most cases rea-

sonably well described by the (Gaussian) standard error. Only the error bars will

therefore be shown from here on in order to make the presentation clearer. Please

note that the errors given in this graph represent only the statistical uncertainty

of the deconvolution result. Systematic errors like uncertainty of the absolute re-

action cross-section or of the measurement geometry are not included here since

they act in the same direction on all results. When trying to compare the shape

of depth profiles measured under the same conditions, displaying the systematic

errors would be obstructive. Looking at a “Round Robin” experiment comparing

different analysis methods for deuterium [10], one can estimate the absolute error

to be of the order of at least ±15%, although the reproducibility of measurements

performed with one single analysis device can be significantly better. Overall, the

uncertainty in of the absolute value would scale the whole depth profile homoge-

neously by this value. Wherever not explicitly stated otherwise in the future, only

the statistical errors of measurements of the deuterium inventory will be given.
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Figure 4.5. Comparison of experimental NRA data from sample A0129 and the corresponding

fitted spectra by NRADC. 9 Proton spectra were measured at incident beam en-

ergies of 500, 690 (2x), 1200, 1800, 2400, 3200, 4500 and 6000 keV. The integrated

beam currents were 20 µAs for 4500 keV and 6000 keV (3He2+), and 10 µAs for

all other energies. For better demonstration, the spectra have been combined into

a single data vector in panel (a). Panel (b) shows a close-up of the spectrum ac-

quired at 1200 keV. Sample A0129 was exposed to a deuterium plasma with an

ion energy of 38 eV/D to a fluence of 6× 1024 D m−2 at a temperature of 370 K.
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Figure 4.6. Deuterium depth profile reconstruction based on the NRA measurement data from

sample A0129 shown in Figure 4.5. The arrow indicates the average deuterium

concentration in an ≈ 8 nm thick surface layer. Error bars represent the statisti-

cal standard errors from the NRADC deconvolution. The shading of the red line

represents the full posterior probability density function.
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4.3. Thermal desorption spectroscopy

A major drawback of NRA as a method to probe the deuterium inventory of bulk

tungsten specimens is its limited information depth of around ≤ 12 µm. Thermal

desorption of the deuterium, on the other hand, is able to probe the whole volume

of the deuterium.

For thermal desorption spectroscopy (TDS), a deuterium containing specimen is

heated in ultra high vacuum with an (approximately) linear temperature ramp

up to a certain temperature while the release of gases from the specimen is mon-

itored with a residual gas analyser. An example of a thermal desorption spectra

showing the deuterium-containing molecules HD, D2, HDO and D2O is shown in

Figure 4.7. For the work presented in this thesis, this temperature was ≈1200 K

due to technical constraints of the available measurement set-ups. However, the

deuterium release rate reduced to zero before the maximum temperature was

reached for nearly all investigated specimens. Subsequent analysis with NRA as

well as a second TDS measurement was performed for selected specimens and

showed no indication of deuterium being in the specimen anymore. This means

that the remaining D inventory within the first 8 µm (for a 4500 keV 3He beam)

is at least below 1018 D m−2, which would correspond to a D concentration of

≈ 10−6 evenly distributed across the probed volume. This is far below the D in-

ventories of the order of 1020 D m−2 that were typically measured in specimens

exposed to a D plasma. The inventory that would be released at temperatures of

more than 1200 K can therefore be considered negligible.

The main uncertainty besides the absolute calibration of a TDS set-up is the re-

lease of deuterium-containing molecules other than D2 from the specimen (see also

Figure 4.7. While for the HD molecule sensitivity calibrations can be performed

either with HD calibration gas or by interpolating between the sensitivities for

H2 and D2, this is extremely difficult for heavy water species, i.e., HDO and D2O.

The difficulty with these molecules is that they have a high tendency to stick to

any cold (i.e., room temperature) surface. Therefore, only by using heated gas

lines and delivering the calibration gas directly at the specimen location it would

be possible to perform an accurate calibration. For most set-ups, including the

ones used for the work presented here, such an in situ calibration set-up with

heated gas lines is technically not realisable. Additionally, the high sticking prob-

ability of water-like molecules near room temperature also means that the TDS

set-up may have a “memory”: Heavy water released from a specimen during a
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Figure 4.7. Thermal desorption of deuterium-containing molecules (HD, D2, HDO and D2O)

from sample A0052 after exposure to a deuterium plasma (ion energy: 38 eV/D,

fluence: 6 × 1024 D m−2, temperature: 370 K). The heating rate β was approx-

imately 75 K/min. The calibration factors for HDO respectively D2O were esti-

mated to be 50% of those for HD respectively D2 (see below).

measurement may first adsorb at a surface and then appear during a subsequent

measurement when the chamber walls become warm again. Because of these dif-

ficulties, the specimens were protected from oxidation as much as possible by

storage in a vacuum exsiccator (see section 5.1.3) in order to prevent heavy water

formation during TDS. The remaining HDO and D2O release — in most cases

much less than the D2 release — is treated as an uncertainty of the upper limit of

deuterium in the specimen. The sensitivity on HDO and D2O is approximated as

about twice the sensitivity for HD respectively D2. This scaling is recommended

by manuals on residual gas analysis (see, e.g, [41]). While by no means reliable

enough for an absolute quantification due to the reasons described above, this is

the best possible estimate for the uncertainty due to heavy water release.

TDS is not only capable of measuring the total deuterium inventory in bulk

tungsten specimens, but also yields information about the binding states of the

deuterium to trap sites in the specimen by correlation of the release rate to the

temperature. With the help of, e.g, diffusion-trapping models (see section 3.2),

TDS release peaks can then be assigned to binding energies [14, 82]. Even complex

release spectra can, however, also be modelled solely by a depth distribution of

the deuterium using only a single binding energy [14, 112]. The reason is that

diffusion of the deuterium from a trap site to the surface takes a finite time.

Deuterium depth profiling by NRA shows that diffusion during the implantation
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results in significant concentrations at least several microns below the surface,

and often even much deeper. This means that the resulting release spectrum

typically is a convolution of diffusion and (de-)trapping effects, which makes the

interpretation of the spectrum non-trivial. For a reliable deconvolution accurate

knowledge not only of the deuterium depth profile but as well of the diffusion

constant and detrapping attempt frequency is necessary. Unfortunately there is a

large scatter in literature data on these values (see also section 3.1). The surface

recombination rate of deuterium leaving a tungsten specimen is also not known

with very much accuracy, but most publications on this subject agree that it is

very fast and thus does not limit the release rate [14].

Because of the large uncertainty in the parameters necessary for the interpretation

of thermal desorption spectra, a set of identical tungsten specimens was prepared

and implanted with deuterium. These specimens were then analysed with different

heating rates as well as with interrupted ramps. All acquired data then had to be

fitted using only one single set of parameters. Since such a detailed approach is

not feasible for a large number of different implantation conditions and specimen

types — as it is needed for a comparison of different tungsten microstructures —

this was only performed for one selected case (see section 7.6). For the rest of the

specimens, TDS was mainly used to investigate the total deuterium inventory.

The TDS experiments for the majority of the specimens were performed in the

“HSQ-TDS” set-up sketched in Figure 4.8. In this set-up, the specimen is held

by a molybdenum frame, which also contains contacts for a K-type thermocou-

ple. The specimen is heated from the rear side by an electron beam (acceleration

voltage Ve−beam = 3 kV), with the specimen at high potential and the filament at
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Figure 4.8. Sketch of the TDS set-up located at the Garching High Current Source (“HSQ-

TDS”). The specimen is clamped in a molybdenum frame and heated by a 3 kV

electron beam heater with a maximum power of 90 W. The specimen temperature

is measured by a K-type thermocouple.
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ground potential. The implanted surface faces towards a Pfeiffer QMG700 residual

gas analyser. The ionisation chamber of the analyser is shielded from the acceler-

ation voltage and the direct molecular beam desorption by a grounded stainless

steel plate. This way, the sensitivity to desorbed deuterium is equivalent to the

reference signal from a calibrated leak valve. The analysis chamber is pumped

by a turbomolecular pump. For specimen exchange a load-lock chamber with an

in-vacuum transfer system is used so the analysis chamber is never exposed to

atmosphere. This way, the base vacuum can be maintained at less than 10−7 Pa.

The heating rate is set by a feed-forward program of the emitter heating current

and has a typical value of ≈70–80 K/min, which allows a relatively quick analysis

with a high sensitivity. A typical temperature ramp is shown in Figure 4.10. To-

gether with the short pump-down time due to the load-lock and the small heated

mass (i.e., only the specimen and its holder) this is well-suited for quick surveys

over a large number of specimens.

Some measurements, e.g., those described in section 7.6, were performed in the

TESS set-up [98]. The layout of TESS is sketched in Figure 4.9. Here typically

six specimens are loaded into a quartz tube, which is pumped for approxi-

mately 4 hours before it is connected to the main analysis chamber. After another

≈ 10 hours of pumping the base vacuum of the order of 10−8 Pa is reached. For

the analysis one specimen is moved to the measurement position by a magnetic

transfer mechanism while the other specimens remain in the storage position.

The specimen in the measurement position is then radiation-heated by a tube

furnace, which is programmed for a linear temperature ramp. The specimens in

the storage position are not heated significantly during a measurement. The des-

orption signal is monitored by a Pfeiffer Vacuum DMM 422 residual gas analyser,

which is calibrated by deuterium leak valves. For slow ramps (3 K/min and less),

the specimen temperature follows the furnace temperature ramp accurately with

only a small offset. For faster ramps, there is a significant delay between the

furnace temperature ramp and the specimen temperature. This is due to the rel-

atively high heat capacity of the tungsten specimen together with its very low

emission respectively absorption coefficient for infrared radiation. For very fast

temperature ramps (300 K/min and faster) the furnace is pre-heated to a certain

temperature and then pushed over the glass tube. This results in a linear tem-

perature increase of the specimen approximately up to about two thirds of the

final temperature, followed by an asymptotic approach. The results of calibration

measurements for several heating rates between 0.3 and 600 K/min are shown in

Fig. 4.10.
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Figure 4.9. Sketch of the TESS set-up. The specimens are placed in a quartz glass tube and
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Figure 4.10. Thermal response of a tungsten specimen in TESS for different heating rates.

The plot shows the rate of specimen temperature increase versus temperature.

The values indicated at each graph are the heating rates at ≈600–700 K, i.e., the

approximate location of the main desorption peak. For comparison, the typical

heating rate achieved in the “HSQ-TDS” apparatus is also included (dashed line).
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The TESS set-up provides more flexibility in terms of the heating program and

a better base vacuum than the “HSQ-TDS”. Due to the long pump-down time

and the thermal inertia of the furnace, it allows only a much slower specimen

throughput, however.

4.4. Electron microscopy

Electron microscopy was an important tool for analysing the surface and sub-

surface morphology of the tungsten before and after plasma exposure. Besides

that, backscattered electron (BSE) contrast in scanning electron microscopes as

well as (scanning) transmission electron microscopy ((S)TEM) were used to in-

vestigate the microstructure of the specimens.

For scanning electron microscopy, a Philips XL30 ESEM and a FEI HELIOS

NanoLab 600 were available. Both microscopes use acceleration voltages up to

30 keV. The XL30 microscope uses a LaB6 cathode, while the HELIOS uses a

Schottky thermal field emitter (FEG). Together with an immersion lens mode

for high resolution, this allows point resolutions down to ≈1 nm. For the XL30,

the resolution is limited to 6 nm. Both microscopes are equipped with secondary

electron (SE) and BSE detectors.

The HELIOS NanoLab 600 is furthermore equipped with a Ga+ focused ion beam

(FIB) with acceleration voltages up to 30 kV. This allows, e.g., to prepare micro-

cross-section cuts in situ in the electron microscope. The cross-sections can then

be imaged with the electron beam without having to transfer or reposition the

specimen. The FIB was also used to apply markers to the surface of a number of

specimens.

Besides surface analysis by scanning electron microscopy, the HELIOS system is

also equipped with a multi-segment solid-state STEM detector. It consists consists

of a bright-field (BF) segment with a collection semi-angle of 7.1◦, a concentric

annular dark field (DF) detector and a high-angle dark field (HADF) detector.

The latter is made up of 12 segments, which can be combined into a high-angle

annular dark field (HAADF) detector. The segments can also be read out individ-

ually or in arbitrary combinations (HADF-P mode). This directional selectivity

allows in some cases to enhance the diffraction contrast in dark-field mode.

TEM investigations were also carried out using the Jeol JEM-2010F TEM at the



4.5. Differential interference contrast microscopy 57

University of Augsburg, Germany, and the FEI Titan E-Cell 80-300ST environ-

mental TEM (ETEM) at the DTU–CEN facility in Copenhagen, Denmark1.

Technical specifications of the microscopes as well as drawings of the arrangement

of beams and detectors in the XL30 and HELIOS scanning electron microscope

can be found in the appendix in section A.2.

4.5. Differential interference contrast microscopy

Since scanning electron microscopes (SEMs) have become widely available, they

have been replacing optical microscopes more and more in the field of materials

science. Nowadays, optical microscopy is mostly used in life sciences and biology,

especially for transparent specimens. A highly specialised technique for specimens

that have only poor contrast is the differential interference contrast microscopy

(DIC). The most common set-up for this is based on the design by Nomarski

[77] and integrated in a microscope with Köhler illumination. An excellent review

of the working principle of the Nomarski-type DIC microscope was written by

Murphy et al. [73]. A brief excerpt will be given here. Technical details of the

equipment used for the work presented in this thesis can be found in the appendix

in section A.3.

Basically, DIC microscopy is closely related to both phase contrast and interfer-

ometric imaging. In short, the image is formed by the interference of two parallel

beams separated by a distance of the order of the radius of an Airy disk. The

image is thus a map of local phase differences. In a DIC set-up, linearly polarised

light is separated into two beams of orthogonal polarisation by a birefringent

prism, in the simplest case a Wollaston prism. It consists of two wedges of calcite

that are glued together at the hypotenuse, e.g., with Canada balsam. The optic

axes of both wedges are parallel to the flat surfaces of the Wollaston prism, but

perpendicular to each other. The polarisation vector of the incident light lies ex-

actly between the orientation of both optic axes. This shears the light into two

polarised beams (i.e., ordinary and extraordinary beam) that are polarised per-

pendicularly to each other and also have a certain phase shift. This makes the

incorporation of such a prism into a microscope difficult because it has to be in-

tegrated into the condenser and objective lenses. A modification of the Wollaston

1DTU–CEN: Centre for Electron Nanoscopy, Danmarks Tekniske Universitet, Copenhagen.

http://www.cen.dtu.dk

http://www.cen.dtu.dk
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prism is the Nomarski prism: Here one wedge is cut like in the Wollaston prism,

but the second one has its optic axis at an oblique angle to the flat surface of the

prism, while it is still oriented perpendicular to the optic axis of the first wedge.

This causes the ordinary and the extraordinary beam to form a focal point out-

side the volume of the prism. This allows much easier integration into the optical

set-up of the microscope since no special lens construction is needed anymore.

Sketches of a Wollaston and a Nomarski prism are shown in Figure 4.11.

Figure 4.11. Sketches of a Wollaston prism (a) and a Nomarski prism (b). Both consist of

calcite wedges that are joined at the hypotenuse and whose optical axes are

perpendicular to each other. In the Wollaston prism both optical axes are parallel

to the prism surface, while in the Nomarski prism one optical axis is inclined

towards the surface. This produces a focus of the ordinary and extraordinary

beam.

The ordinary and extraordinary beam are projected onto the specimen by the

condenser lens with a spatial separation of approximately one Airy disk radius,

i.e., depending on the numerical aperture (NA) of the condenser. Due to the

shear, they can experience a slightly different phase shift when passing through

the specimen. A second Nomarski prism placed behind the objective lens recom-

bines the two beams and exactly compensates the phase shift of the condenser

prism. Only the phase difference introduced by the specimen remains. A second

polarisation filter oriented perpendicular to the one in the illumination system

removes all linearly polarised light and allows only circularly polarised light to

interfere in the image plane.

The image then represents the local phase difference between two beams that are

separated by a diffraction-limited distance. In other words, it is a map of the local

gradient of optical path length trough the specimen. In case of a plane-parallel cut

of the specimen, this translates to a gradient in refractive index. If the refractive

index is constant (and different than that of the ambient air), the image repre-
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sents the local thickness of the specimen. In all cases, minimum light intensity

corresponds to a locally flat profile. By displacing the compensator prism (i.e.,

the one behind the objective lens) along the shear direction and relative to the

optical axis of the microscope, the compensation of the phase shift introduced

by the condenser prism is not exact anymore. This is also occasionally called

“introduction of bias retardation”. In that case, the image appears brighter than

average in areas where optical path length increases along the shear direction,

and darker where it decreases. This can be reversed by displacing the compen-

sator prism in the opposite direction with respect to the microscope optical axis.

The result of DIC with bias retardation is a pseudo-relief image with an apparent

shadow-casting in the direction of the shear caused by the condenser Nomarski

prism. Some instructive examples can be found in the article of Murphy et al. .

[73]. A further possible modification of the image can be achieved by introducing

a compensator plate (e.g., a full-wavelength plate) after the compensator prism

together with white light illumination. This will lead to all interference fringes

beyond the principal minimum not being dark anymore, but rather displaying in-

terference colours. This can be used for so-called optical staining of the specimens

(for details see [73]).

DIC microscopy is best known in transmission geometry as in the original set-up

by Nomarski. However, it also works very well in a reflection geometry, e.g., for

surface analysis in materials science. In fact, reflection geometry even makes the

system simpler and more robust, because the same lens-prism combination is used

both for illumination and imaging. Brandmaier et al. [12] describe this variant of

the DIC technique in detail. The actual working principle is very similar to the

classical transmission DIC described above, as it still uses the local shearing and

subsequent recombination of the light by the birefringent Nomarski prism. How-

ever, the phase shift between ordinary and extraordinary beam is now no longer

caused by transmission through areas with different refractive index respectively

thickness. It rather corresponds to the local distance between specimen and ob-

jective lens. Accordingly, the image now represents a map of the local slope of the

specimen surface. For zero bias retardation (i.e, an undisplaced Nomarski prism),

dark areas are perpendicular to the optical axis and, accordingly, flat. For a finite

bias retardation, a similar relief image as described above is formed, where bright

areas ascend along the shear direction and dark areas descend, or vice versa.

Since basically, DIC is an interferometric method, it is sensitive even to very

small changes in the optical path length, respectively specimen height, typically
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of the order of 1% of the wavelength of the incident light, i.e., a few nanometres.

Therefore, even very small steps respectively very gentle slopes can be imaged

with a clear contrast. It has to be noted, however, that DIC microscopy still

suffers from the physical constraints of optical microscopy, i.e., the Abbe limit for

lateral resolution and the small focal depth for objectives with a high numerical

aperture. In summary, optical DIC microscopy is a valuable addition to scanning

electron microscopy in terms of surface analysis, especially if surveys over many

specimens and large areas are needed.

4.6. Summary of the analysis techniques for

tungsten specimens

This chapter gave an overview over the different tools and techniques used for the

analysis of tungsten specimens. Nuclear reaction analysis as well as thermal des-

orption spectroscopy are used in combination to probe the deuterium inventory of

plasma-exposed specimens. NRA yields the depth-resolved, absolutely quantified

deuterium inventory in the near-surface volume (up to 12 µm below the exposed

surface). TDS allows to measure the total deuterium content in the specimen and

gives insight into the binding energy distribution of trapped deuterium. A broad

set of optical, scanning and transmission electron microscopy as well as focused

ion beam techniques is used to study the surface topology, grain structure and

dislocation density of specimens. These methods are used to characterise speci-

mens before exposure and to reveal changes induced by the plasma exposure. The

combination of all these analysis methods is necessary to give an as complete as

possible picture of the mechanisms of deuterium retention in tungsten due to

plasma exposure.
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5. Specimen preparation

This section describes the preparation procedures for the specimens investigated

in this thesis. It will be shown in detail how high-quality specimen surfaces with-

out any visible distortion layer were produced with a sophisticated mechani-

cal polishing procedure (for the influence on the deuterium retention see sec-

tion 8.4). Apart from that, heat treatment procedures for producing the differ-

ent microstructures described in chapter 6 are addressed, as well as the issue of

specimen storage. Finally, the preparation of tungsten TEM specimens by elec-

trochemical thinning is discussed.

5.1. Bulk specimen preparation

For a thorough comparison of the deuterium retention under different loading

conditions and for different microstructural modifications, it is indispensable to

work with a well-defined base material. To ensure this, all tungsten specimens dis-

cussed in this work were procured from one single manufacturing batch. The sam-

ples were manufactured by PLANSEE. The material had a purity of 99.97 wt.%.

The tungsten was hot-rolled into a sheet of 0.8 mm thickness and subsequently

ground to a coarse, plane-parallel finish. Finally it was cut into pieces with the

dimensions 12× 15× 0.8 mm3 by the manufacturer. The impurity concentrations

specified by PLANSEE can be found in Table A.3 in the appendix.

5.1.1. Polishing procedure

While the technical finish of the tungsten by the manufacturer guaranteed an even

thickness of all specimens, the surface of the as-received samples was still very

rough. In order to be able to observe changes to the microscopic surface morphol-

ogy and to ensure a well-defined surface condition before loading, the specimens

were mechanically polished to a mirror-like finish. This was done by first grinding
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the samples with increasingly more fine-grained silicon carbide grinding paper

(P400 up to P4000) and subsequent polishing with a diamond suspension. How-

ever, it must be taken into account that this kind of mechanical polishing can also

introduce defects into the polished surface, up to completely obscuring the bulk

grain structure to a depth in the micrometre range. Therefore, it was necessary to

derive a polishing procedure that removes this damaged layer in the final polishing

step. One way to do this is to apply a chemo-mechanical polishing method after

grinding and diamond polishing. As an alternative, electrochemical polishing can

also be used. For most specimens discussed here, the chemo-mechanical treatment

was chosen because it proved to be a quicker and more reliable method than elec-

trochemical polishing. Only a small number of specimens were electropolished for

comparison. In order to optimise the polishing procedure, several specimens were

polished at the same time. After certain steps, i.e., after grinding, after diamond

polishing and after different durations of chemo-mechanical polishing, specimens

were successively removed from the process in order to assess the quality of the

polished surfaces.

The polished surfaces were investigated with a FEI HELIOS 600 dual-beam scan-

ning electron microscope (SEM) with a focussed ion beam (FIB) for cross-section

preparation. Both the plan-view surface and a FIB cross-section were analysed

for each specimen. The exact polishing procedure is listed in Table 5.1 along with

the sample numbers associated to each polishing steps. It can be clearly seen in

the plan-view image in Fig. 5.1a that after grinding the grains at the surface of

sample A0025 appear very small. The cross-section view in Fig. 5.1b makes it

clear that the actual bulk grain structure is much coarser, but in a top layer of

about 0.5 µm the grains have fragmented. The near-surface region also contains

many small pores, cracks and craters. After diamond polishing this fragmentation

is strongly reduced, but the grains near the surface still appear distorted as it can

be seen both in the plan-view and cross-section images of sample A0026 in Fig.

5.2. The sample surface also still contains cracks, pores and craters. This makes it

clear that diamond polishing alone is not sufficient to remove preparation damage

from the sample surface. Therefore, the remaining specimens A0027, A0028 and

A0029 were chemo-mechanically polished with an alkaline colloidal silica suspen-

sion1 for 10, 20 and 30 minutes. The plan-view and cross-section imaging of these

specimens showed a gradual reduction of the distortions as well as of the density

of cracks, pores and craters. Only after a long chemo-mechanical polishing time

of 30 minutes the grains next to the surface were indistinguishable from grains

1Logitech SF1, “Syton”



5.1. Bulk specimen preparation 63

in the bulk as the cross section-image in Fig. 5.3b shows. The grains in the plan-

view image in Fig. 5.3a are clearly visible with only occasional distortions and a

small number of scratch traces. For comparison, plan-view and cross-section im-

ages of sample A0091 are shown in Fig. 5.4. This specimen was electrochemically

polished with 2.5 wt.% NaOH solution in water. The polishing voltage was 25 V,

the duration was 2–3 minutes. The electrolyte was stabilised at a temperature of

approximately 293 K. Because the electropolishing usually leaves a residual oxide

layer with a thickness of the order of up to several 10 nm on the surface, the

specimen was subsequently annealed for 60 minutes at 1200 K in a high vacuum

oven. During this treatment, the oxide fully evaporates respectively decomposes.

The grain structure remains unchanged. The effects of annealing are discussed in

more detail in chapter 6. Sample A0091 exhibits a grain structure very similar

to sample A0029, which was chemo-mechanically polished for 30 minutes. In the

plan-view image Fig 5.4a the grains are clearly visible, with the same occasional

distortions as for A0029. The main differences are that the contrast of some grain

boundaries of A0091 is slightly enhanced due to superficial etching, and that no

scratch traces are visible at all. The cross-section image shows the same grain

structure near the surface and in the bulk.

Table 5.1. Polishing steps and associated sample IDs for the specimen preparation procedure

applied in this work.

Finish Force Polishing pad Sample ID Figure

SiC paper P4000 20 N hard A0025 Figure 5.1

diamond suspension, 10 min 35 N textile A0026 Figure 5.2

Logitech SF1, 10 min 30 N felt (SubaX) A0027

Logitech SF1, 20 min 30 N felt (SubaX) A0028

Logitech SF1, 30 min 30 N felt (SubaX) A0029 Figure 5.3

Electropolishing A0091 Figure 5.4

This analysis shows that (chemo-)mechanical polishing can produce specimens of

similar quality as electropolishing. The main advantage of the mechanical prepa-

ration is that once the polishing recipe was optimized, large numbers of samples

could be prepared quickly and with excellent reproducibility. Getting stable re-

sults from electropolishing proved much more tedious in comparison. A repro-

ducibly good quality could only be achieved when the samples were embedded

in epoxy resin prior to grinding and electropolishing. Otherwise there was a high

risk of electrolyte spilling to the anode conductor, which produced local galvanic
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10 µm

3 µm

(a)

(b)

Figure 5.1. Plan-view (a) and cross-section (b) SEM images of the surface of sample A0025

after grinding with SiC paper up to P4000.

10 µm

3 µm

(a)

(b)

Figure 5.2. Plan-view (a) and cross-section (b) SEM images of the surface of sample A0026

after grinding and 10 minutes of diamond polishing.
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10 µm

3 µm

(a)

(b)

Figure 5.3. Plan-view (a) and cross-section (b) SEM images of the surface of sample A0029

after grinding, diamond polishing and 30 minutes of chemo-mechanical polishing.

10 µm

3 µm

(a)

(b)

Figure 5.4. Plan-view (a) and cross-section (b) SEM images of the surface of sample A0091

after grinding and 2–3 minutes of electrochemical polishing with 2.5% NaOH. The

specimen was also annealed for 60 minutes at 1200 K in a high vacuum oven in

order to evaporate the residual oxide layer from electropolishing.
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elements. This in turn led to severe damage of the sample surface, e.g., numerous

etch pits or strong preferential etching at grain boundaries. After electropolishing

the epoxy resin had to be dissolved in acetone.

5.1.2. Heat treatment

After polishing of the surface and thorough cleaning of the specimens, they were

annealed at different temperatures in order to selectively create specimens with

different well–defined grain and defect structures. All in all, four different an-

nealing procedures were used: stress relief at 1200 K, partial recrystallisation at

1500 K and full recrystallisation at 1700 K as well as at 2000 K. The result of

these heat treatment procedures is discussed in detail in chapter 6.

The stress relief at 1200 K was performed in a custom-built high–vacuum oven

(“MoMo”) where the hot zone is constructed entirely from molybdenum. A draw-

ing of the oven is shown in Figure 5.5. After pumping for at least four hours, the

base vacuum before heating was typically several 10−5 Pa. At the maximum tem-

perature the vacuum was still better than 10−3 Pa. The specimens were held at

1200 K for 60 minutes. After the holding time, the heating power was set to zero

in order to let the specimens cool to room temperature as quickly as possible.

Apart from relieving residual stress from the manufacturing and preparation pro-

cesses, this heat treatment served the purpose of decomposing and evaporating

any oxide layers on the specimens, and to remove the hydrogen introduced dur-

ing the manufacturing. 1200 K is also the maximum temperature that is reached

during analysis by thermal desorption spectroscopy (TDS), so it can be expected

that the specimen microstructure does not change significantly during TDS.

Heating of specimens to 1500 K and higher was performed under a protective gas

atmosphere at 150 kPa in a commercial graphite oven manufactured by Thermal

Technology LLC (“HORST”). A drawing of this oven can be seen in Figure 5.6.

For 1500 and 1700 K, argon (purity: 4.8) was used, for 2000 K helium (purity:

5.0) was necessary due to oven specifications. The specimens were enclosed in a

tantalum box or an envelope made of tungsten foils. Blocking all direct lines of

sight to the graphite parts of the oven in such a way prevented carbide formation

on the specimen surface. The oven was brought to the annealing temperature as

quickly as possible. The holding time was 30 minutes in each case. Cool-down was

also performed as quickly as possible after the specified holding time by setting

the heating power to zero.
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heating elements

power feedthrough

to vacuum pump

sample holder

heat
shields

Figure 5.5. Drawing of the high-vacuum oven “MoMo”. The entire hot zone including heating

elements, sample holder and heat shields is constructed from molybdenum. The

water-cooled vacuum vessel is evacuated to ≤ 10−4 Pa by a turbomolecular pump.

pyrometer

graphite felt
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power feedthrough

heating element
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Figure 5.6. Drawing of the high-temperature oven “HORST”. All interior components are fab-

ricated from graphite, the water-cooled external shell is aluminium and the flanges

are nickel-plated copper. The oven is operated under a protective gas atmosphere

(Ar or He) at 150 kPa. A rotary pump providing a vacuum of ≤ 1 kPa is used for

removing the air prior to filling with the protective gas.
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5.1.3. Storage

The heat treatments described in section 5.1.2 remove all surface oxide layers

from the specimens. After heating, excessive oxidation particularly of the pol-

ished surfaces has to be prevented. Although tungsten is generally assumed to be

resistant against oxidation in air at room temperature, this is mostly due to a

passivating oxide layer forming at the surface. During the first attempts at find-

ing a suitable preparation technique for the tungsten specimens for this thesis,

it was discovered that highly polished tungsten surfaces can suffer severely from

air exposure. While some test surfaces appeared clean and shiny even after more

than two years of storage in ambient air, others visibly changed to a dull gray

appearance already after a few weeks. However, this uncontrolled modification of

the polished surface can be effectively suppressed by storing the samples in a dry

vacuum environment, e.g., a vacuum exsiccator equipped with a desiccant.

It is even more important to suppress the uncontrolled oxidation process in ambi-

ent air for specimens that are implanted with deuterium. Investigations performed

by Moshkunov et al. [72] have shown that even after less than 24 hours of ambient

air exposure, deuterium-containing water fractions detected in TDS, i.e., HDO

and D2O, were increased significantly compared to a specimen that was stored in

vacuum all the time between implantation and analysis. This was explained by

the formation of surface oxide on the specimen exposed to air. Formation of heavy

water fractions during TDS, however, is problematic because the absolute cali-

bration of the sensitivity of a TDS setup to water molecules is not possible with

reasonable effort. A large heavy water fraction therefore means a large error in

the determination of the deuterium inventory of a specimen (see also section 4.3).

Fortunately, the storage of specimens in a vacuum exsiccator for the time between

implantation and analysis has also proven to be sufficient to suppress excessive

heavy water formation during TDS. All specimens analysed for this thesis were

therefore only exposed to ambient air when this was unavoidable for analysis and

otherwise stored in a vacuum exsiccator with a filling of silica gel desiccant.

5.2. TEM specimen preparation

In order to understand the deuterium retention in specimens with different heat

treatment prior to plasma exposure, a thorough characterisation of the mi-

crostructure is necessary. While the grain structure can be studied by SEM anal-
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ysis of well-polished bulk specimens, the dislocation density can only be revealed

by transmission electron microscopy (TEM). It was therefore necessary to de-

velop a thinning procedure for TEM samples that introduces as little preparation

artifacts as possible into the material. So far, only electrochemical thinning has

proven to fulfil these requirements. The thinning process that produced the best

and most reliable results is described in this section.

After cutting a disc with 3 mm diameter from a bulk specimen, the disc was first

mechanically pre-thinned to a thickness of 0.1 mm. The electrochemical thinning

was then performed with a custom-built set-up, which is sketched in Fig. 5.7.

In this set-up, the specimen is mounted upside-down above a thin stainless steel

needle, which delivers the electrolyte and serves as the cathode for the electro-

chemical process. The electrolyte flow is set by a drip. The specimen disc is placed

on a stainless steel holder. It is fixed to the holder by a PTFE cap with a 2 mm

aperture. The cap also largely prevents spilling of electrolyte to the sample holder.

This is necessary because it has been observed that contact between electrolyte

and sample holder leads to the formation of local galvanic elements, which in

turn leads to a strong roughening of the specimen, which renders it useless for

TEM analysis. To increase the reliability of the thinning process, the surface of

the holder that is in contact with the specimen was also PVD-coated with tung-

sten in order to prevent electrochemical reactions between specimen and holder

in case of small electrolyte leaks through the PTFE cap.

Specimens were usually electropolished on both surfaces in order to remove any

roughness or damage introduced from the mechanical pre-thinning. For this, the

specimen is first electropolished from one side, typically for between one third

and half of the time required to achieve a small perforation. The specimen is then

removed from the holder, cleaned, and re-mounted with the already polished

surface facing towards the holder. The electrochemical thinning is then continued

until a small perforation appears near the centre of the specimen.

For the detection of this perforation, the sample holder contains a central hole

of 1.5 mm diameter, which allows observation of the rear side of the specimen

during the thinning process. The front side is illuminated through the cathode

needle by a white LED. As soon as the perforation appears, the light from the

LED is registered by an electro-optical detection circuit, which then disconnects

the polishing voltage. With this automatic detection mechanism perforations as

small as 30 µm can be achieved. The best thinning results were achieved with

a 2.5. wt.% NaOH dissolved in water as the electrolyte. The polishing voltage
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was 19 V. The electrolyte flow was adjusted to a small drip rate corresponding

to an etching current of approximately 5–10 mA. After ≈5 minutes on one side

the thinning was interrupted. After washing, the thinning was continued on the

other side of the specimen. Under these conditions perforation of a ≈ 0.1 mm

thick specimen is typically achieved after approximately 15 minutes of cumula-

tive thinning time, which corresponds to a total charge of roughly 5–8 C. After

perforation is achieved, the sample is carefully washed alternatingly in de-ionised

water and ultra-clean acetone and subsequently stored in a vacuum exsiccator

until it is analysed.

+-Vpol

LED

light sensor

Ipol

specimen

electrolyte

injection needle

Figure 5.7. Sketch of the set-up for TEM sample thinning. The electrolyte (2.5 wt.% NaOH

in water) is supplied from a drip and applied to the specimen with a stainless

steel injection needle. The light of a white LED placed coaxially with the needle is

detected by a phototransistor as soon as a small (ø ≈30 µm) perforation appears.

This immediately disconnects the polishing voltage.
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6. Microstructural properties of the

material

In order to correlate the results for deuterium retention and surface modifications

of tungsten specimens that will be discussed in the following chapters, it is first

necessary to characterise the material before plasma exposure as thoroughly as

possible. Therefore, after the preparation steps described in section 5.1, a selec-

tion of specimens with different heat treatment were analysed by a scanning and

transmission electron microscopy. Part of the results presented here were already

published in [66], but will be shown here in more detail along with previously

unpublished investigations. The quantitative data on grain size and dislocation

density are summarised in Tables 6.1 and 6.2.

6.1. Initial material and stress relief at 1200 K

The initial material is powder metallurgical tungsten with a nominal purity of

99.97 wt.% manufactured by PLANSEE. It is hot-rolled to 0.8 mm and cut into

pieces of 12×15×0.8 mm by the manufacturer. Figure 6.1 shows a backscattered

electron (BSE) micrograph of a specimen after mechanical polishing and subse-

quent stress-relief annealing for 60 minutes at 1200 K. The grains have typical di-

mensions between ≤ 1 and 5 µm. The grain structure is virtually identical for the

stress-relieved and the initial, hot-rolled material. Although no explicit mechan-

ical testing was performed on the material, its basic mechanical properties still

became apparent while handling it. Particularly thin foils without heat treatment

or after stress relief — albeit much more brittle than most other metals — are still

quite sturdy and can even be plastically deformed to a limited extent. This made

it possible to use such foils for protecting the actual specimens during annealing

in the graphite furnace for temperatures of 1500 K or more (see section 5.1.2).

A more detailed statistical analysis shows that the mean grain area is
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Agrain = 1.99± 0.08 µm2. The statistical error is calculated under the as-

sumption of a Gaussian error distribution. The mean of the equivalent square

side length (as a measure for the grain size) sequiv = (Agrain)1/2 of the grains

is 1.17 ± 0.02 µm. The average grain boundary surface per unit volume SV is

correlated to the average number of intercepts per length Nl of an arbitrary

straight line with grain boundaries on a micrograph as follows [92]:

SV = 2Nl. (6.1)

The quantity Nl is in turn equivalent to the inverse square root of the mean grain

area, so

SV = 2 ·
(
Agrain

)−1/2
. (6.2)

For the initial respectively stress-relieved tungsten as investigated here,

SV = 1.42± 0.03 µm2/µm3.

Many grains have a non-uniform greyscale contrast in this imaging mode,

which points towards deformations of the lattice that affect the channelling and

backscatter diffraction of the electrons. These deformations are due to the rolling

process. In the plan-view image in Figure 6.1, the elongation of the grains in

the rolling direction (horizontal in this image) is very difficult to see. Images of

cross-section cuts along the rolling direction, such as shown in Figure 6.2, clearly

show that the grains are strongly flattened. Cutting in the perpendicular direc-

tion reveals that the grains are indeed primarily elongated parallel to the rolling

direction.

In order to quantify the dislocation density in a STEM micrograph such as it is

shown in Figure 6.3, the image was first converted into a binary image showing

only the dislocations. For this, the dislocations were traced by hand in the image.

Semi-automatic filtering turned out to be usually just as time consuming, but not

quite as accurate. The dislocation density was then determined by first measur-

ing the total projected surface of dislocations in the binary image. The projected

surface was divided by the line width used for tracing in order to obtain the total

length of dislocations in the image. This value was then divided by the image

area times the average sample thickness, which yields the dislocation density. In

order to improve the statistical relevance of the measured dislocation density,

several different images from the initial material as well as from a stress relieved
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20 µm

Figure 6.1. BSE micrograph of a tungsten specimen stress-relieved at 1200 K for 60 minutes in

vacuum. The average grain size is 1.17±0.02 µm. Many grains show deformations

due to the production process. The elongation of the grains in the rolling direction

(horizontal) is difficult to see in the surface is difficult to see. The grain structure

is identical to that of a specimen without heat treatment.

5 µm

Figure 6.2. Scanning electron micrograph of a cross-section through a piece of the initial mate-

rial. The cross-section was prepared by focused ion beam. The surface is protected

by a Pt-C layer. The image clearly shows the elongation of the grains in the rolling

direction (left to right).

sample were analysed. This showed that the measured dislocation density can

vary significantly from image to image, which leads to statistical uncertainties of

±15% for stress-relieved material, which still has a comparatively homogeneous
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1 µm

Figure 6.3. Bright field (BF) STEM micrograph of tungsten stress-relieved for 60 minutes at

1200 K. A dense network of dislocations can be seen as well as several grains.

Grain boundaries and dislocation arrays or tangles can barely be separated. The

elongated dark patches in the image are residue from thinning that could not be

removed.

distribution of dislocations. For recrystallised material, which has very few and

inhomogeneously distributed dislocations, it can go up to over ±50%. In most

cases the most uncertain value in the calculation of dislocation densities from the

STEM images is the sample thickness, however. Unfortunately, commonly used

methods for determining the sample thickness in a TEM, like tilting experiments

or the comparison of elastic and inelastic contributions to the EELS spectrum,

are not applicable in the HELIOS NanoLab 600 microscope that was used for

most of the analysis. Taking into account the acceleration voltage of 30 kV and

an acceptance semi-angle of ≈7.1◦ of the bright field detector, the NIST database

on electron elastic scattering cross-sections [42] yields an elastic mean free path

of ≈ 21.5 nm. In order to acquire a clear diffraction contrast image, the sample

thickness must not be thicker than about one or two mean free paths. Addition-

ally, the thickness typically varies also across a single image. All in all, since the

images were usually acquired in areas of intermediate thickness some distance

from the thin edge, the average thickness is estimated to be about 35 nm ±50%.

The STEM images also show that a large fraction of the grain boundaries can
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be easily resolved into arrays of dislocations. In fact, in many cases it is not

easily possible to distinguish between grain boundaries and dislocation arrays

respectively tangles of dislocations. Therefore all features that can be resolved

into individual dislocations are also counted as dislocations. The occurrence of

these — often rather loosely spaced — dislocation arrays also points towards an-

other property of the initial respectively stress-relieved material: namely that a

large fraction of the grain boundaries are small angle grain boundaries. This is

deduced from the relation between the tilt angle θ between two adjacent grains,

and the spacing d of dislocations constituting the boundary [92]:

sin(θ/2) =
b

2d
. (6.3)

In this equation b is the magnitude of the Burgers vector. Although equation (6.3)

is directly applicable only to simple pure tilt boundaries, its underlying principle

is rather general: the larger the distance between the dislocations in an array, the

smaller the misorientation between the grains. In other words, many of the grains

visible in Figure 6.1 are actually sub-cells originating from polygonisation during

the hot-rolling process and to some extent possibly also during the subsequent

annealing. A similar strong tendency towards polygonisation and sub-grain for-

mation has also been investigated recently for molybdenum [90], which has many

similarities to tungsten. In this publication the sub-grains were assigned a key

role in the recrystallisation behaviour of the metal.

The result is an average dislocation density of ρ⊥ = 3.2± 1.7× 1014 m−2 for the

stress relieved material, corresponding to a dislocation length of 320 µm/µm3.

There is no significant difference between the initial hot-rolled and the stress-

relieved material. This is about 20 times lower than the dislocation density of

7.8× 1015 m−2 measured by Debye-Scherrer X-ray diffraction of tungsten filings

produced at 290 K, but coincides within the measurement accuracy with the value

of 2.1×1014 m−2 found after annealing these filings without recrystallisation [118].

It is to be expected that the material analysed in this thesis is more similar to

the annealed powder since it was deformed at high temperatures, which generally

leads to a lower dislocation density than cold working such as filing.

Since the initial and stress-relieved material are very similar, both in terms of

grain structure and dislocation density, both terms will be usually used synony-

mously from now on.
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6.2. Partial recrystallisation at 1500 K

The recrystallisation temperature of tungsten, i.e., the temperature at which

total recrystallisation takes one hour, is reported to be about 1500–1600 K [23].

Annealing a tungsten specimen for 30 minutes at 1500 K should accordingly lead

to partial recrystallisation. Indeed such a heat treatment produces a rather fine

grain material that looks not very different from the initial material at first glance,

as it can be seen in Figure 6.4. However, partially recrystallised foils turned out to

be already much more brittle and delicate than stress-relieved ones, respectively

than those without heat treatment.

20 µm

Figure 6.4. BSE micrograph of a tungsten specimen partially recrystallised at 1500 K for

30 minutes under Ar atmosphere. The average grain size has slightly increased

to 1.54± 0.02 µm compared to the initial material. While many grains still show

deformations, there are already many new grains with nearly uniform orientation

contrast.

If one takes a closer look, many grains already show a much more uniform

greyscale contrast than in the initial material, which is a clear indication for the

beginning formation of new, more or less strain-free grains, i.e., recrystallisation.

Also, grain growth, especially of these new grains, has already begun, leading to

a slightly larger average grain size of sequiv = 1.54±0.02 µm, respectively a mean

area of Agrain = 3.77± 0.11 µm. Accordingly, the partial grain boundary surface

is reduced to slightly less than 3/4 compared to the initial material and is now

SV = 1.03 ± 0.01 µm2/µm3. Especially for the larger, strain free grains, ther-
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mal grooving at the intersections of grain boundaries with the surface is already

starting. This effect becomes much more pronounced for the fully recrystallised

material (see sections 6.3 and 6.4). In short, grain boundary grooving is due to the

relaxation of surface tension when a grain boundary meets a free surface. More

details can be found, e.g., in [92]. Please note that nevertheless, grain growth

can be assumed to be not significantly affected by free-surface effects since the

specimen thickness is much larger than the grain size [92].

The partial recrystallisation after annealing for 30 minutes at 1500 K is also

clearly visible in (S)TEM images. An example is shown in Figure 6.5. Overall,

the dislocation network appears less dense and more fragmented than in the ini-

tial material. The arrangement of dislocations into strands and sub-grain bound-

aries also appears to be continuing. Besides these recovery effects, some grains

that are nearly free of dislocations are appearing. Many of these grains are even

smaller than the dislocation-rich grains and occasionally have thick dislocation

walls around them. These are most probably new grains that have just nucleated.

An example for such a grain can be seen roughly in the centre of Figure 6.6.

1 µm

Figure 6.5. BF STEM micrograph of tungsten after annealing for 30 minutes at 1500 K. The

dislocation network is slightly less dense than in the initial or stress-relieved ma-

terial. Several new, practically dislocation-free grains have already formed. An

increasing number of grain boundaries cannot be resolved into individual disloca-

tions anymore.
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100 nm

Figure 6.6. BF STEM micrograph of tungsten after annealing for 30 minutes at 1500 K. Note

the small grain without dislocations roughly in the centre of the image. This grain

has probably just nucleated in the recrystallisation process.

Other grains with a very low local dislocation density are have already reached

a considerable size. These grains have most likely already nucleated very early

after the annealing started and therefore have had sufficient time to grow.

All in all, the average dislocation density has reduced by roughly three times to

ρ⊥ = 9.8± 5.3× 1013 m−2 compared with the initial material. Due to the pres-

ence of larger areas without dislocations, the dislocation density also becomes

more inhomogeneous, which is reflected by the larger relative uncertainty of the

dislocation density.

The appearance of the grain boundaries is also gradually changing. Compared

with the initial material, a larger fraction of the grain boundaries cannot (or

only barely) be resolved into individual dislocations. This points towards grain

boundaries changing their nature from small-angle to large-angle grain bound-

aries. It is likely that this, as well as the reduced dislocation density, affects also

the mechanical behaviour of the tungsten and contributes to the increased brit-

tleness. This would be in agreement with observations on the cracking behaviour
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of tungsten bi-crystals by Liu and Shen [59]: According to that study, cracks

propagate along the grain boundary rather than crossing it for misorientations of

more than 10◦. The grain boundaries are generally believed to be the weak points

in polycrystalline tungsten [23].

6.3. Full recrystallisation at 1700 K

Tungsten recrystallised for 30 minutes at temperatures of 1700 K can be consid-

ered fully recrystallised in the sense that the grain structure of the initial material

is not recognisable anymore. This is also predicted by literature data [23]. The

material has practically no ductility at all, as it is typical for recrystallised tung-

sten. This requires great care especially when handling thin foils, such as TEM

specimens. The grain structure is significantly coarser, as it can be seen in Fig-

ure 6.7. There is already a significant number of grains with sizes of 10 µm or

more. However, areas with small grains in the micron range can also be found

in patches between these big grains. The coarsening of the grain structure also

becomes apparent when one looks at the average grain size: sequiv has nearly dou-

bled to 2.92± 0.13 µm compared to the partially recrystallised material. Agrain is

now 18.7±2.4 µm2, and correspondingly SV has reduced to 0.46±0.03 µm2/µm3,

i.e, about one third of the initial value.

Another feature of specimens annealed at 1700 K is the apparently strongly corru-

gated surface. This is due to grains that have formed grooves at the intersections of

their boundaries with the surface shortly after nucleation, but were subsequently

consumed by grains with a faster growth rate. Note that the cells outlined by

these residual grooves have roughly the same size as the remaining small grains

that can be distinguished by channelling contrast.

The recrystallisation also has a strong effect on the dislocation structure of the

tungsten. As Figure 6.8 shows, the initially long strands and dense networks

of dislocations have often fragmented into many short lines. Their arrangement

sometimes still hints at the former layout. Besides that, there are now many

large areas nearly devoid of dislocations. Note also the numerous bright, angular

shapes in the image. These result most likely from preferential etching of some

dislocations during the electrochemical thinning. The resulting pits then appear

bright due to thickness contrast. These pits are not prominent for the initial

or partially recrystallised material. Only at high magnifications can similar, but



80 Chapter 6. Microstructural properties of the material

20 µm

Figure 6.7. BSE micrograph of a tungsten specimen recrystallised at 1700 K for 30 minutes

under Ar atmosphere. While still patches with small grains remain, grain growth

has produced large areas covered by large grains. The average grain size is now

2.92±0.13 µm, with some grains as large as 30 µm. The specimen surface appears

corrugated due to thermal grooving at grain boundaries and subsequent grain

growth.

much smaller features be distinguished at the intersections of dislocations with

the specimen surface.

Since usually there is no sign of the typical diffraction contrast signature of dislo-

cations around the etching pits in the fully recrystallised material, it is assumed

that the dislocations were perpendicular (or at least steeply inclined) to the spec-

imen surface. The exact appearance of the etching pits also depends on the crys-

tallographic orientation of the grain they occur in. Etching pits are also counted

as dislocations. Because of their orientation, each one of them is assigned a length

corresponding to the average sample thickness. All in all, this results in an aver-

age dislocation density of ρ⊥ = 5.2± 3.0× 1012 m−2. This is almost two orders of

magnitude lower than the dislocation density of the initial, hot-rolled material,

and matches well with the value of 3.0× 1012 m−2 found by X-ray diffraction of

recrystallised tungsten powder [118].

The appearance of grain boundaries has also changed significantly compared to

the initial material. They typically cannot be resolved into individual dislocations

anymore, which means that large-angle grain boundaries are now dominant. Some
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1 µm

Figure 6.8. BF STEM micrograph of tungsten after annealing for 30 minutes at 1700 K.

There are large areas free of dislocations. The dense dislocation networks have

fragmented into short individual dislocations or even completely disappeared. The

bright angular features in the images are etching pits due to end-on dislocations.

Grain boundaries typically cannot be resolved as individual dislocations anymore.

grain boundaries also show distinct traces of preferential etching. This effect,

like the prominent etching pits at end-on dislocations, is not found in tungsten

annealed at 1200 or 1500 K.

6.4. Full recrystallisation at 2000 K

Annealing the material for 30 minutes at 2000 K also leads to full recrystallisation

of the tungsten, like already at 1700 K. Again, the material becomes extremely

brittle after the annealing. However, the resulting grain structure is quite differ-

ent, as Figure 6.9 shows. It is now even coarser with grains up to 50 µm, and does

not show patches of small grains between the larger ones anymore. The small and

large grains are now much more evenly distributed. Also, residual grooves inside

large grains are usually not found like after recrystallisation at 1700 K. Only

occasional traces of grain boundary movement, or of the disappearance of small

grains, are visible, e.g., on the right hand side of Figure 6.9. Occasionally also

small amounts of carbon-rich precipitate can be found, mostly inside the grooves
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at grain boundaries. Deuterium plasma exposure was typically able to completely

remove this kind of contamination.

20 µm

Figure 6.9. BSE micrograph of a tungsten specimen recrystallised at 2000 K for 30 minutes

under He atmosphere. The grain structure is dominated by large grains of up to

50 µm, with an average size of 12.1±0.3 µm. The grains can be well distinguished

by channelling contrast as well as by thermal grooving.

Because of the small number of grains visible in Figure 6.9, this image was not

suitable for grain size statistics, but it is shown here for better comparability with

the other BSE-SEM images. The actual statistical analysis was performed for an

image at one quarter of the magnification. The results were an average grain size

sequiv = 12.1 ± 0.3 µm, an average grain area of Agrain = 216 ± 10 µm2 and a

corresponding grain boundary fraction of SV = 0.136 ± 0.003 µm2/µm3. This is

again by more than a factor of three less than for the tungsten recrystallised at

1700 K.

The dislocation density is very low after annealing at 2000 K, just as for the heat

treatment at 1700 K. Also, large areas practically without any visible dislocations

exist, and etching pits are also observed. Fragments of former dislocation networks

are only very rarely found. Instead, dislocations rather appear as isolated, straight

lines with lengths of up to a few 100 nm, as Figure 6.10 illustrates. The average

dislocation density of ρ⊥ = 1.9 ± 1.4 × 1012 m−2 is even slightly lower than

for recrystallisation at 1700 K, but the large statistical uncertainty due to the

inhomogeneous distribution of dislocations makes it hard to tell. Compared to
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the initial and partially recrystallised material, both fully recrystallised materials

have a dislocation density close to zero.

1 µm

Figure 6.10. BF STEM micrograph of tungsten after annealing for 30 minutes at 2000 K.

Dislocations typically appear as well-separated, straight lines. Etching pits are

also occasionally present. Large areas are free of dislocations. Grain boundaries

typically cannot be resolved into individual dislocations.

6.5. Summary of the tungsten microstructure

analysis

The annealing of tungsten at different temperatures between 1200 and 2000 K

produces a wide range of different microstructures, both in terms of the grain size

and the dislocation density. The quantitative results for the grain structure and

the dislocation density are summarised in Tables 6.1 and 6.2. While annealing for

60 minutes at 1200 K barely changes the microstructure, heat treatment 2000 K

for 30 minutes causes full recrystallisation. The grain size increases by one order

of magnitude, which leads to a corresponding reduction of the grain boundary

surface area per volume. At the same time, the dislocation density is reduced by

about two orders of magnitude. Annealing for 30 minutes at 1500 K leads to par-

tial recrystallisation and produces a still fine-grained material whose dislocation
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density is reduced by about three times compared to the initial material, but is

still relatively high. Tungsten annealed for 30 minutes at 1700 K can be consid-

ered fully recrystallised, like for annealing at 2000 K. The initial grain structure is

more or less completely transformed, and the dislocation density is similarly low.

The grain structure, while including already a notable number of grains larger

than 10 µm, is still not as coarse as for the highest annealing temperature used

here.

Table 6.1. Results of the grain size analysis of tungsten specimens after different heat treat-

ment. The table lists the statistical averages for the equivalent square side sequiv as

a linear measure for the grain size, the grain area Agrain and the grain boundary

surface per volume SV .

Heat treatment sequiv Agrain SV

none / 1200 K 1.17± 0.02 µm 1.99± 0.08 µm2 1.42± 0.03 µm2/µm3

1500 K 1.54± 0.02 µm 3.77± 0.11 µm2 1.03± 0.01 µm2/µm3

1700 K 2.92± 0.13 µm 18.7± 2.4 µm2 0.46± 0.03 µm2/µm3

2000 K 12.1± 0.3 µm 216± 10 µm2 0.136± 0.003 µm2/µm3

Table 6.2. Average dislocation density ρ⊥ in tungsten specimens after different heat treat-

ment, based on a sample thickness estimation of 35 nm ±50%. Particularly for

high annealing temperatures the dislocation density is highly inhomogeneous on

typical TEM analysis scales.

Heat treatment evaluated images total image area ρ⊥

none / 1200 K 5 57.8 µm2 3.2± 1.7× 1014 m−2

1500 K 6 172 µm2 9.8± 5.3× 1013 m−2

1700 K 7 388 µm2 5.2± 3.0× 1012 m−2

2000 K 7 495 µm2 1.9± 1.4× 1012 m−2

Figure 6.11 shows histograms of the grain size distribution for all four heat treat-

ments of the tungsten. Note that the bin size is increased for the larger and

accordingly less frequent grain sizes. To compensate for this, the histogram is

normalised to the bin size so that the area of a bin accurately represents the
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relative abundance of grains of a specific size. It can be clearly seen how the

abundance of large grains increases steadily with the annealing temperature.
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Figure 6.11. Grain size (sequiv) distributions of tungsten stress-relieved for 60 min at 1200 K

and (partially) recrystallised for 30 min each at 1500, 1700 and 2000 K. The

relative abundance of grains in each size bin is normalised to the bin width.

Figure 6.12 visualises the variation of the dislocation density ρ⊥ and the grain

boundary surface per volume SV with the annealing temperature. It can be clearly

seen that both ρ⊥ and SV decrease significantly for higher annealing tempera-

tures. However, the dislocation density is nearly equal and close to zero for both

fully recrystallised materials, while SV decreases steadily. This should allow dis-

tinguishing between the influence of grain boundaries and dislocations on the

deuterium retention after plasma exposure.

The different heat treatment procedures applied here also lead to a pronounced

change in the mechanical behaviour of the material, as it becomes apparent es-

pecially when handling thinner foils used for protective wrapping during the an-

nealing, respectively TEM specimens. While the initial material displays at least

some ductility, even partial recrystallisation makes the material much more brit-
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tle. While this is to be expected for tungsten (see, e.g., [23]), it makes the material

very difficult to handle, especially in the form of TEM samples. This increased

brittleness is probably related to the transition from many small-angle to domi-

nantly large-angle grain boundaries. This can be deduced from the misorientation

angle dependence of the fracturing behaviour of tungsten bi-crystals [59]. The re-

duced dislocation density might also play a role. In experiments, a pre-deformed

polycrystalline specimen exhibited a higher fracture toughness than specimens

without such pre-treatment [34].
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Figure 6.12. Dislocation density ρ⊥ (squares, left y-axis) and grain boundary surface per

volume SV (circles, right y-axis) in tungsten for different annealing temperatures.
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7. Strategy and motivation of the

experiments

This chapter presents an overview of the experimental studies performed for this

thesis. It describes the scientific rationale and summarises the key parameters for

each experiment. The crossing point of the parameter variations introduced in

this chapter is an ion energy of 38 eV/D, an incident fluence of 6 × 1024 D m−2

and a specimen temperature during plasma exposure of 370 K. These exposure

conditions will from here on be termed as “reference conditions”. A detailed in-

terpretation of the results from the experiments described here will be given in

chapter 8 and will be summarised in chapter 9.

7.1. Temperature variation

As it was already explained in detail in chapter 3, the deuterium inventory in a

tungsten specimen is governed to a large extent by diffusion and trapping, i.e,

by thermally activated processes. This makes a series of experiments at different

specimen temperatures crucial for the understanding of deuterium retention in

tungsten. For these experiments, the ion energy was kept constant at 38 eV/D.

A fluence of 6 × 1024 D m−2 was chosen since own preliminary investigations

showed that the deuterium inventory accessible by NRA is more or less satu-

rated at this fluence [66] (see also section 8.2.1). Based on the results from these

own investigations [66] as well as from literature, five different temperatures were

chosen: 300, 370, 450, 500 and 750 K. The first four temperatures were selected

because they cover the region of the typically observed desorption maxima with

good resolution. A broad overview of published values was compiled by Causey

[14]. Furthermore, the maximum of deuterium retention varies typically between

about 300 and 600 K depending on the experiment conditions [4, 5, 13, 38]. The

highest temperature of 750 K is of interest because it lies beyond the typically
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observed desorption maximum: This means that the deuterium can be expected

to be able to escape from most traps and, accordingly, to be highly mobile. Also,

it was reported that blistering effects can be suppressed at such high tempera-

tures [57]. For each temperature listed above, four specimens were mounted and

exposed at once, one of each microstructure described in chapter 6.

7.2. Fluence variation

Observing the variation of the retained deuterium inventory with the implantation

fluence allows to study the effective diffusion of deuterium from the implantation

zone into the bulk of the sample. In particular for small fluences, NRA is invalu-

able because it allows direct observation of the deuterium depth profile. For high

fluences, where the diffusion front has already moved beyond the range of NRA

analysis, thermal desorption completes the picture. The experiments in this cam-

paign were all performed at a specimen temperature of 370 K, where diffusion is

expected to be measurable, but most trap sites reported in literature [15] can still

be expected to bind deuterium in significant quantities (see also section 8.5). An

ion energy of 38 eV/D was selected because sputtering and displacement damage

to the specimens due to plasma impurities (see also section 7.3) can be consid-

ered moderate. Still, the energy of the impinging ions is already far above the

enthalpy of solution of ∆Hsol = 1.04 eV [27] for hydrogen in tungsten. The flu-

ence was varied by more than three orders of magnitude from 3× 1022 to about

5× 1025 D m−2. This corresponds to implantation times between 5 minutes and

6 consecutive days. For each fluence, four specimens, one of each microstructure

described in chapter 6, were exposed simultaneously.

Assume that the retention of hydrogen is determined solely by diffusive transport

to traps with a homogeneous distribution and without any temporal variation

(apart from saturation). Then one can expect the retained amount of deuterium

RD to scale with the fluence Φ (which is proportional to the implantation time

for a constant ion flux) according to

RD ∝ Φ1/2. (7.1)

Any deviation of the fluence dependence of RD from such a power law with an

exponent of 1/2 points towards additional effects besides diffusion. Such effects
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could be, e.g., the creation of additional traps during implantation or the existence

of diffusion barriers at specific depths below the surface of the specimens.

7.3. Ion energy variation

Implantation experiments at different ion energies are of interest for various rea-

sons. First of all, the ion energy determines the range an impinging ion can pene-

trate into a specimen before its kinetic energy is reduced to thermal energies. From

then on, it can only travel by diffusion. For all investigated energies, the ther-

malisation range is small: SDTrimSP [22] calculations predict an average range

of about 1.2 nm for 8 eV deuterons, and up to 6.4 nm for 205 eV. Neverthe-

less, this could strongly change the re-emission probability of an implanted and

thermalised deuteron. The reflection yield for energetic particles is only weakly

affected by the incident energy in this energy range and lies roughly between

60 and 70%. For this experiment series, bias voltages of −10, −100, −300 and

−600 V were used. This corresponds to energies per deuteron of 8, 38, 105 and

205 eV/D (see section 4.1). Figure 7.1 shows the calculated particle stopping

profiles for these energies.
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Figure 7.1. Particle stopping profiles for deuterium ions with incident energies between 8 and

205 eV/D. All profiles were calculated with the simulation package SDTrimSP

using 106 incident particles.

A plasma practically always contains impurities from the background gas or from

reactions with plasma-facing surfaces. A notable effect of background impurities
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was even reported for experiments using a mass-separated ion beam [89]. In the

experiments performed here, particularly the quartz plate through which the mi-

crowave for plasma generation is coupled in (see section 4.1) is slowly eroded

by the deuterium plasma. This produces, e.g., D2O molecules and their corre-

sponding ions. Presently the formation of deuterated silane molecules cannot be

excluded. However, the exposure of SiC to deuterium ions showed no indication

of SiD4 formation, only CD4 [8]. Similarly, it is assumed that mainly oxygen is

removed in form of D2O from SiO2 by the deuterium plasma. There is also no in-

dication for SiD4 in residual gas mass spectra at PlaQ, i.e., silane is assumed to be

only a minor erosion product, if at all. While the sputter threshold for deuterium

on tungsten is quite high at 250 eV/D (the threshold for directly producing dis-

placement damage is even higher), the threshold for heavier impurity ions such

as oxygen is much lower. Already at Vbias = −100 V, where all deuterium ion

species are well below the sputter threshold, a D2O
+ ion delivers an oxygen atom

with 80 eV, which is already well above the sputter threshold of ≈50 eV [21]. For

this reason it can be expected that even a small impurity ion flux of less than

1% (corresponding to the typical background gas composition during a discharge

[65]) will cause significantly more damage than the deuterium ions. Varying the

sample holder bias and accordingly the ion energies will allow to get a better

picture of these effects. Applying a very low bias of only −10 V means that no

ion from the plasma will have enough energy to produce sputtering or displace-

ment damage. Experiments at such a low ion energy also allow to estimate the

influence of low-energy particles like, e.g., neutral atoms with thermal energies.

The advantage of a small bias over experiments at floating potential is that the

ion flux is higher and can be monitored by measuring the current to the sample

holder.

The experiments on the influence of ion energy were performed at a fluence of

6× 1024 D m−2 and at a specimen temperature of 370 K. For each ion energy, all

four specimen types described in chapter 6 were exposed to the plasma simulta-

neously.
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7.4. Influence of the specimen preparation

7.4.1. Surface finish

The typical specimens investigated in this thesis were all carefully polished to

a metallographic finish without any visible distortion layer at the surface, as

described in chapter 5.1.1. But it is also interesting to see what effect an imper-

fect surface has on the deuterium retention. Also, it is necessary to check if the

even slightly better surface quality produced by electropolishing leads to notable

differences of the behaviour of specimens with respect to plasma exposure.

To study this, stress-relieved samples with the as-received technical surface fin-

ish were exposed at the same time as electropolished samples and samples with

the standard polishing. The plasma exposure was performed under the reference

conditions at a specimen temperature of 370 K with an ion energy of 38 eV/D to

an incident fluence of 6× 1024 D m−2.

7.4.2. Comparison of stress-relieved and initial material

In chapter 6 it was shown that the microstructure of the initial and the stress-

relieved specimens is more or less indistinguishable. However, annealing a speci-

men for 60 minutes at 1200 K in a vacuum of 10−4 Pa can be expected to produce

changes that cannot be detected by electron microscopy, mainly the release of

hydrogen (i.e., the 1H isotope) from the specimen. This hydrogen is introduced

during the manufacturing of the material: Typically, all processes at elevated

temperatures, e.g., sintering or hot-rolling, are performed under H2 atmosphere

to prevent oxidation. This means that the hydrogen is literally worked into the

tungsten. The manufacturer guarantees a hydrogen content of ≤ 5 µg/g, which

corresponds to a concentration of about 10−3 H/W. This is comparable to the

values of deuterium concentrations reached by D plasma loading of tungsten (see,

e.g., section 8.1 or [5]).

Such a high concentration of “natural” 1H can be expected to significantly impede

the uptake of deuterium in a tungsten specimen: since practically all hydrogen

isotopes retained in a tungsten specimen are bound to traps, a D atom has to

swap places with a trapped H atom before itself can be bound by the trap. This

isotope exchange process can be expected to be significantly slower than the filling

of empty traps.
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TDS experiments usually show that the release of deuterium from D implanted

tungsten specimens subsides at temperatures ≤ 1200 K (see, e.g., [50, 82, 109]

or section 8.5). Accordingly, annealing for 60 minutes at 1200 K (compared to

≤ 20 minutes for TDS experiments) should be able to drive out a large amount

of hydrogen. Also, using Frauenfelder’s value for the diffusion coefficient at this

temperature [27], one arrives at a time of little more than 1 minute necessary

for a hydrogen atom to diffuse through the whole specimen thickness of 0.8 mm.

However, this fast diffusion speed also means that all the hydrogen in the specimen

will be in thermal equilibrium with the hydrogen background in the vacuum

during the annealing process. This will lead to a finite hydrogen concentration

after the annealing, regardless of the holding time. The release of deuterium, on

the other hand, usually is not affected in this way since the D2 partial pressure

in the vacuum is much lower due to the small natural abundance of deuterium.

It is quite difficult to get a handle on the “natural” hydrogen content in tungsten

specimens. It is only possible to probe for hydrogen in very shallow depths with

ion beam analysis techniques (e.g., NRA with 15N or ERDA), and TDS spectra of

hydrogen release from tungsten are often obscured by the H2 in the background

gas. Therefore, non-annealed and stress-relieved specimens, both polished and

unpolished, were exposed to a D plasma under the reference conditions at 370 K

and 38 eV/D to a fluence of 6×1024 D m−2. The D inventories in these specimens

were subsequently investigated by NRA, and in several cases also by TDS to

investigate the release of H2, D2 and HD molecules.

7.5. Investigation of blisters and related surface

modifications

As it was explained in section 2.4, metals with an endothermic heat of solution for

hydrogen isotopes, such as tungsten, can be easily oversaturated, e.g., by plasma

loading. This can lead to the formation of gas bubbles in the material. A special

case are blisters, i.e., gas-filled cavities near the exposed surface that are visible

as a protrusion on this surface. Blistering is frequently reported in literature

(e.g., [103, 82, 57, 116, 50]) and occurred for many of the exposure conditions

mentioned above, but the blisters varied considerably in terms of their size, shape

and abundance. Blistering effects also depend strongly on the microstructure of

the specimen (see sections 8.1.6, 8.2.3 and 8.3.3).
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Understanding these dependencies and the connection between blistering and the

retained amount of deuterium in a specimen is an important step towards under-

standing deuterium retention in tungsten as a whole. Therefore, the surfaces of

most specimens were investigated, mainly by optical DIC microscopy. It could be

recently demonstrated that blisters are not purely plastic deformations, but can

vanish due to degassing of the specimen during TDS [66] or when their cap is

punctured by a focussed ion beam [9]. Because of this, blisters were usually inves-

tigated before TDS and in some cases additionally afterwards. For the experiment

series on the influence of specimen temperature during deuterium loading, mark-

ers were applied to the specimen surface by FIB in order to compare the identical

area before and after the plasma exposure as well as after TDS (see section 8.1.6).

For some selected cases, cross-sections were also prepared by FIB and imaged by

SEM in order to investigate the cavities corresponding to the blisters.

7.6. “Ramp-and-Hold” experiments

In order to deconvolve the effects of the depth and binding energy distributions

on the release temperature of deuterium from a specimen (see section 4.3 and

[14, 112]), one set of identical specimens was prepared and loaded with deu-

terium specifically for a detailed investigation by TDS. All these specimens were

mechanically polished and stress-relieved. Deuterium implantation was performed

under the reference conditions, i.e., at a specimen temperature of 370 K, an ion

energy of 38 eV/D and to a fluence of 6×1024 D m−2. The temperature of 370 K is

also below the typical release temperatures reported in literature [14], so all traps

can be expected to bind at least some deuterium. Finally, for these parameters

the largest deuterium inventory was found in this thesis, which ensures a good

signal-to-noise ratio in the TDS. The specimens for the “Ramp-and-Hold” TDS

experiments that are described in this section were stored for two months in a

vacuum exsiccator before analysis, like all the other specimens investigated here

(see section 5.1.3). The depth distribution of the deuterium in these species was

investigated in a detailed NRA study.

The specimens described above were degassed in TESS (see Figure 4.9) with

heating rates varying over more than three orders of magnitude between 0.3 and

600 K/min. This variation of heating rates allows a decoupling of the binding

energy and the attempt frequency for the escape of deuterium from a certain

type of binding site. Two different methods for this are discussed in detail in
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section 8.5.1 [24, 91]. Both of them require as much variation of the heating rate

as possible to yield accurate results. In detail, the specimens were degassed with

heating rates of 0.3, 1, 3, 30, 72, 300 and 600 K/min. A spectrum acquired in

the “HSQ-TDS”, with a heating rate similar to that of the 72 K/min program in

TESS (see also Figure 4.10), is also included in the dataset. Since some heating

programs lead to a non-linear specimen temperature response, the values stated

here correspond to the rate of temperature increase at ≈ 600 K, i.e., at the

approximate temperature of the main D2 release peak.

In addition to the degassing at different heating rates, several samples were also

subjected to interrupted temperature ramps. One variant of these experiments

was to heat up the specimen to a certain temperature at 30 K/min and then re-

tract the tube furnace from the glass tube of TESS in order to cool the specimen

to room temperature as quickly as possible. The second variant was to heat the

tube furnace to a temperature that — after a sufficiently long time — results in a

specimen temperature equal to that reached in the pull-off experiment. The spec-

imen was then held at this temperature for about 90 minutes in order to allow the

mobilised deuterium to be released from the specimen. This asymptotic-heating

method was chosen in order to prevent overshoots of the temperature. After ei-

ther of these first heating steps, the specimen was allowed to cool down to room

temperature. Then a second, uninterrupted temperature ramp at 30 K/min was

applied in order to release the deuterium that remained in the specimen after the

first step. This is a method to determine in how far diffusion and binding energy

distribution contribute to the release spectrum: Deuterium that remains in the

specimen after a pull-off experiment, but is released during an equivalent asymp-

totic heating, must have had a similar binding energy, but have been trapped

deeper inside the specimen. These experiments were performed for holding (re-

spectively interruption) temperatures for 470 and 660 K, which is in both cases

close to one of the release peaks at ≈450 and ≈680 K (see section 8.5.2).

The deuterium depth profile before TDS was determined for a representative

specimen (ID: A0129) by NRA. Additionally, this specimen as well as a second

one (ID: A0144) were re-analysed by NRA after partial degassing due to pull-

off experiments. This was done to study the redistribution of deuterium inside

specimens during TDS experiments. Prior to the pull-off experiments, sample

A0129 was also analysed two days after the plasma exposure in addition to the

reference NRA measurement after the standard two months resting time in order

to investigate the degassing during storage.
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The results from this chapter are interpreted on the basis of the diffusion-trapping

model introduced in section 3.3. The model was iteratively refined to match the

observations of the experiments. The comparison of the model with a whole set

of TDS spectra acquired with different heating rates is needed to compensate the

fact that most methods for the analysis of these spectra were developed for the

desorption of surface adsorbates [24, 91] and do not include diffusion from larger

depths. Only with the model taking into account the full depth distribution of the

traps as well as of the deuterium the influences of trap energy, detrapping attempt

frequency and depth profile on the temperature of the desorption maximum can

be resolved. Comparison with interrupted TDS ramps allows to study the redis-

tribution of deuterium inside the specimen due to annealing, and to explore the

limits of the strongly simplified model.

7.7. Hydrogen isotope exposure of transparent

TEM specimens

As it was already briefly mentioned in section 2.1.2, the presence of hydrogen

isotopes in a metal can significantly reduce the energy for the formation of defects.

This can go so far that defects are even produced exothermically [48]. Also, the

mobility of dislocations can be enhanced by hydrogen through shielding of their

stress fields [86]. Therefore, it was tried to study these effects also for the tungsten-

hydrogen system.

The most commonly used tool to study crystal defects, particularly dislocations,

is the transmission electron microscope. However, preparation of specimens is al-

ways involved with the risk of introducing artifacts. Although the electrochemical

preparation method described in section 5.2 is commonly believed to be damage-

free, it still leaves the difficulty of not removing the most interesting layers when

preparing plan-view TEM samples from an implanted bulk specimen. Unfortu-

nately, the method does not work for cross-section preparation. Furthermore, it

is highly valuable to be able to study exactly the same part of a specimen before

and after exposure. Because of that, it was decided to perform these experiments

on already transparent TEM specimens.

One specimen was prepared from partially recrystallised tungsten (see section 6.2)

and exposed to a deuterium plasma at an ion energy of 38 eV/D. The specimen

holder was kept at ≤ 300 K during the exposure. The loading time was about
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30 minutes, which corresponds to a fluence of ≈ 1.5 × 1023 D m−2. For this, an

adapter was constructed that allowed clamping a TEM specimen to the specimen

holder of the PlaQ device for the best possible temperature control. It must be

said, however, that there is no way of measuring (respectively accurately con-

trolling) the temperature of the transparent areas during the deuterium loading.

They receive considerable energy input from the energetic ions, which are fully

stopped even within the thickness of the specimen. This may lead to a significant

heating of the thin areas because heat diffusion away from the thin edge can be

expected to be significantly lower than in bulk material. For obvious reasons, the

thin areas themselves cannot be clamped directly.

Before and after plasma exposure, the specimen was thoroughly investigated in

the JEOL JEM-2010F TEM at the University of Augsburg. This instrument was

chosen because it offered, besides high-quality TEM and STEM imaging at in-

termediate magnifications, also the possibility of achieving lattice resolution by

HRTEM imaging.

Two more TEM specimens, one from stress-relieved (see section 6.1) and one from

partially recrystallised tungsten (see section 6.2) were investigated in a so-called

“environmental TEM” (ETEM). This kind of instrument features a differentially

pumped specimen chamber and allows the introduction of gases, among others H2

at pressures up to about 0.7 kPa. These experiments were made possible by Mr

Martin Deutges and Prof. Reiner Kirchheim from the University of Göttingen.

They offered to expose these specimens along with their own material during their

experiment time at the DTU–CEN facility in Copenhagen, Denmark1. The ex-

periments carried out consisted of acquiring TEM image series (“videos”) while

varying the pressure of the H2 gas in the specimen chamber, and of trying to

damage the specimen with a high-intensity electron beam in STEM mode while

the specimen was exposed to hydrogen. These experiments allowed a direct in-

vestigation of the reaction of the specimens to the presence of an H2 atmosphere

while irradiated by high-energy electrons.

1DTU–CEN: Centre for Electron Nanoscopy, Danmarks Tekniske Universitet, Copenhagen.

http://www.cen.dtu.dk

http://www.cen.dtu.dk
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8. Discussion of the experimental

results

This chapter discusses the detailed results from the experiments introduced in

chapter 7. Each parameter variation is first examined separately in order to iden-

tify the key tendencies of deuterium retention and blister formation. Some of

the experimental results are also interpreted based on a diffusion-trapping model

(see section 3.3). Because of the large amount of data presented here, chapter 9

is dedicated to deliver a synopsis and correlate the individual experiments.

8.1. Temperature dependence of D retention

Generally, the retained amount of deuterium after exposure to a plasma with an

ion energy of 38 eV/D was of the order of 10−5 to 10−4 of the incident fluence of

6×1024 D m−2. Overall, the retained D inventories measured here are of the same

order of magnitude as values reported for comparable fluences by other researchers

(see, e.g., [1, 37, 79]), although in detail there are also notable differences between

those results and the ones presented in this thesis. They will be discussed in the

course of this chapter and in chapter 9.

Generally, the balance between diffusion of the implanted deuterons deeper into

the bulk and losses through the specimen surface changes considerably as the

temperature rises. Consequently, the deuterium retention strongly depends on

the temperature during plasma exposure, as Figure 8.1 illustrates. The following

sections 8.1.1–8.1.5 will discuss in detail the retention in tungsten specimens with

different microstructures due to implantation at temperatures between 300 and

750 K.
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Figure 8.1. Total deuterium inventory in tungsten specimens exposed to deuterium plasmas

with an ion energy of 38 eV/D up to a fluence of 6 × 1024 D m−2 at various

specimen temperatures. (a) shows the total D inventory accessible by NRA, (b)

shows the corresponding value as determined by TDS. The symbols refer to the

same type of specimen for both panels.

8.1.1. Implantation at 300 K

The retained amount of deuterium, as well as its depth distribution in the tung-

sten specimens, varies strongly within the temperature range between 300 and

750 K. At 300 K, the deuterium inventory determined by NRA is already quite

large (for tungsten) and ranges between 0.7×1020 D m−2 for the material annealed

at 2000 K, and 1.9× 1020 D m−2 for the stress-relieved tungsten (see Figure 8.1).

Because diffusion is still comparatively slow at this temperature, the amount of

deuterium released by TDS matches the NRA value for the defect-rich, stress-

relieved material. For the partially and fully recrystallised specimens the situation

is similar. The deuterium depth profiles of all materials are shown in Figure 8.2a.

In all cases a high concentration of several 10−2 (i.e, several atomic percent) was

found in a very narrow zone at the specimen surface. Considering the low solu-

bility of hydrogen in tungsten, this is a very high value. Since the analysis takes

place about two months after the plasma exposure, this is no transient super-

saturation effect but permanent. The extension of this zone roughly corresponds

to the stopping range of the implanted ions. The deuterium concentration then

sharply drops by one to two orders of magnitude and subsequently decays down

to concentrations of ≈10−5 towards the depth range limit of the NRA measure-

ment. For the recrystallised material the initial drop of the concentration after

the surface maximum is steeper, but the subsequent decay into the bulk is slightly

flatter compared to the stress-relieved material. This points towards diffusion be-



8.1. Temperature dependence of D retention 99

ing generally slow, but already slightly faster in material with a smaller defect

density. Overall, NRA and TDS are consistent that the deuterium retention is

highest in the stress-relieved material, followed by the partially recrystallised and

finally the fully recrystallised tungsten.

8.1.2. Implantation at 370 K

If the temperature during implantation is increased to 370 K, the D inventory

of the stress-relieved material increases strongly. NRA results range from 4.5 to

5.4×1020 D m−2, TDS yields even larger inventories of up to 7.7×1020 D m−2, as

illustrated by Figure 8.1. For the other materials, this increase of the deuterium

inventory is less pronounced. It is barely detectable by NRA for the partially re-

crystallised tungsten and does not show in NRA results for the fully recrystallised

materials. The results from TDS indicate a significant increase for all materials.

In all cases, TDS yields also a higher total deuterium inventory than NRA. This

means that a significant amount of deuterium (roughly up to one third of the

total inventory) has already diffused beyond the detection range of NRA.

While the D depth profiles of all types of specimen were not too different for

implantation at 300 K, at 370 K remarkable differences between the materials

become apparent as Figure 8.2b shows: The surface maximum is comparable to

implantation at 300 K for all materials, but the depth profile in stress-relieved

material now shows a local concentration minimum directly beyond the surface

maximum. In this minimum the concentration reduces to a few 10−4. This min-

imum is followed by a strong secondary maximum of up to 2 × 10−3 in a depth

range between 0.5 at 5 µm. The highest values are reached between about 2 and

4 µm. Towards larger depths, the concentration decays down to values of about

10−4. For the partially recrystallised tungsten, the local minimum and secondary

maximum are also visible, but much less distinctive.

Both fully recrystallised materials do not display this structure in the depth pro-

file. Instead, the depth profile becomes even flatter than at 300 K. Also, the bulk

concentration typically becomes smaller for higher pre-annealing temperatures.

As a result, the stress-relieved material shows significantly higher retention than

all other materials, again followed by the partially recrystallised specimen. The

fully recrystallised materials have the lowest retention. Both of them show very

similar inventories in the NRA measurement. This is somewhat surprising con-

sidering the significant difference between the grain sizes of these two materials.
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The TDS results show some variation, but in general the reproducibility of NRA

is better than for TDS, so this could also be due to experimental uncertainties.

8.1.3. Implantation at 450 K

The temperature of 450 K roughly corresponds to the first release peak of deu-

terium found in literature (see, e.g., [4, 82]) and also in own preliminary work

[66]. For a detailed discussion of the features in thermal desorption spectra see

also section 8.5. At this temperature, it is expected that significant amounts of

deuterium can already escape from low-energy traps. Accordingly, the diffusivity

of deuterium in the material should already be considerable. At the same time,

desorption losses from the surface are also expected to increase. Indeed, the depth

profiles of deuterium in tungsten of all the microstructures described in chapter 6

become flatter (see Figure 8.2c).

For stress-relieved tungsten, the secondary concentration maximum is still clearly

visible, but lower in magnitude at about 7.3× 10−4. At the same time, the bulk

concentration is slightly higher. The surface maximum is practically unaffected

by the higher temperature, but the following local minimum becomes even deeper

and is now slightly below 10−4. This could be due to deuterium re-emission while

the specimen cools down (see section 8.5.2). The depth profile in partially as

well as in fully recrystallised tungsten is now practically flat beyond the surface

maximum. The bulk concentration in tungsten pre-annealed at 1500 K is a bit

higher at 3 × 10−5 than that of both fully recrystallised materials, which is at

2× 10−5. The maximum itself, like in the other materials, is not strongly affected

by the higher temperature during implantation.

Both TDS and NRA measurements of the total inventory displayed in Figure 8.1

show that the retention of deuterium is smaller than at 370 K. However, the

reduction is less pronounced in the TDS result. In fact, the inventory determined

by TDS is now more than 2.5 times larger than the inventory accessible by NRA

in the case of stress-relieved tungsten. For the other materials the difference is

not quite as large, but still considerable. Comparing the different microstructures,

the same tendency as for the lower implantation temperatures can be seen: The

stress-relieved material retains the most deuterium, and the fully recrystallised

material the least — again the materials annealed at 1700 and 2000 K show very

similar retention. The partially recrystallised material lies in between the stress-

relieved and fully recrystallised materials.
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8.1.4. Implantation at 500 K

For implantation at 500 K, the depth profiles of all specimens, even of the stress-

relieved one, are more or less flat beyond the surface peak (see Figure 8.2d).

The surface maximum itself is of the same order of magnitude as for the lower

implantation temperatures, i.e., the concentration in this thin layer is still several

10−2. For the stress-relieved material a shallow minimum followed by a slight

increase of the concentration towards larger depths can be seen. This could be

interpreted as a low, broad secondary maximum whose spatial extension cannot

be fully probed by NRA, but with the available data this cannot be said with

certainty. Looking at Figure 8.1 you can see that the bulk concentrations and,

accordingly, the total inventories are again lower than at 450 K, both for the NRA

and the TDS measurement. The amount of deuterium detected by TDS is now for

all specimens much larger than the amount within the detection range of NRA.

Again, the total retention shows the same dependence on the microstructure as

for the other implantation temperatures.

8.1.5. Implantation at 750 K

The implantation temperature of 750 K is beyond the main desorption maximum

that has been previously observed for a similar material [66], respectively for the

lower implantation temperatures. Because of this, the total retained amount of

deuterium is very low for all specimens. In fact, it is just barely detectable by

NRA. Only the surface concentration peak, which has now reduced by about

one order of magnitude to ≈ 10−3, is still discernible and about the same for

all specimens. Beyond that, the concentration is too low to be detected within

reasonable measurement times. However, TDS still shows a small, broad but nev-

ertheless well-discernible desorption peak starting roughly at the implantation

temperature. At lower temperatures the desorption is — not surprisingly — prac-

tically zero. The total retained amount measured by TDS is significantly larger

than the amount contained within the surface maximum, and shows the same

systematic variation with the microstructure as for the other temperatures. This

means that the deuterium has probably permeated through the whole thickness

of the specimens. Accordingly, the concentration is very small throughout, but

sums up to a well-measurable total amount.
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Figure 8.2. Deuterium depth profiles in tungsten specimens pre-annealed at various temper-

atures after plasma exposure at 38 eV/D to a fluence of 6 × 1024 D m−2. The

temperatures during exposure were (a) 300, (b) 370, (c) 450 and (d) 500 K. At

750 K only a D concentration of ≈ 10−3 in the surface layer could be measured,

but apart from that the concentration was too small for depth profiling. Tungsten

specimens of the same type are represented by the same line style in each panel.

Arrows indicate the D concentration at the surface. The maximum 3He beam

energy for this analysis was 4500 keV, which allows to probe a depth up to 8 µm.

8.1.6. Effect of the implantation temperature on blistering

The size and density of blisters vary just about as strongly with the implanta-

tion temperature as the retained deuterium inventory, and also show a strong

dependence on the microstructure that goes in the same direction: Blisters ap-

pear at all implantation temperatures between 300 and 500 K on the surface of

the stress-relieved material. On the partially recrystallised material, some small,

sporadic blisters can be found in surface regions without grain boundary grooving

at temperatures of 300 and 370 K, while the fully recrystallised material does not

show any blisters at any temperature. The blisters on the stress-relieved material
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often have nearly circular and sometimes elliptic outlines and a rounded dome.

At temperatures above 300 K, elliptical or even irregular shapes become slightly

more common. This is most likely due to overlapping and/or coalescence of neigh-

boring blisters. This domed type of blisters with diameters between 1 and up to

over 100 µm is regularly found on hot-rolled tungsten irradiated with hydrogen

isotope ions [1, 50, 79, 110], while the exact shape, size and density varies con-

siderably depending on the exact experiment conditions. Additionally, occasional

small, flat, angular shapes can be found at 370 and 450 K. These are discussed

in more detail in section 8.3.3. While they are much scarcer than the round type,

they can usually be found when a sufficiently large area is searched.

Figure 8.3 shows images of blisters on stress-relieved tungsten acquired by optical

DIC microscopy for implantation temperatures between 300 and 500 K. An image

of the specimen implanted at 750 K is not shown because no blisters were found

on this specimen. Alimov et al. also reported that blistering can be suppressed

at temperatures above ≈ 700 K [1]. The reason is probably that at such high

temperatures, the deuterium concentration is already very low, and the diffusivity

is very high. Accordingly, local accumulations of deuterium that are sufficient

to initiate blistering — whether by supersaturation stress or by precipitation of

D2 — are no longer possible. “T”-shaped markers were applied by FIB to the

surface of all specimens to compare the same area before and after implantation

as well as after TDS. All images have the same magnification. One can clearly

see that the blisters increase in size for increasing temperatures, but their density

and surface coverage decreases. At 500 K the blister density is already so low

that no blisters were found in the same area around the markers as for the other

temperatures, so a different spot is shown instead for this temperature.

The marked areas were investigated again after TDS. Figure 8.4 shows the same

areas as in Figure 8.3 for comparison. Please note that contrast changes due to

different illumination and DIC prism settings are generally very difficult to avoid.

Most blisters on the specimen implanted at 300 K vanished during TDS (as

already published [66]). Mainly blisters with a strong bright-dark contrast, i.e.,

those with steep flanks and accordingly a strong deformation of the material in

the cap, remained recognisable (Figure 8.3a).

For the material loaded with D at 370 K, things are different: Now a large fraction

of the blisters were still visible after TDS (Figure 8.3b). For this specific specimen

also a 3D analysis using a confocal optical microscope could be performed directly
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(a) 300 K 370 K
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Figure 8.3. Optical DIC micrographs of blisters on stress-relieved tungsten before TDS on

stress-relieved tungsten for various temperatures during implantation at 38 eV/D

to a fluence of 6× 1024 D m−2: (a) 300, (b) 370, (c) 450 and (d) 500 K. At 750 K,

the surface remained unchanged apart from a small amount of sputtering due

to plasma impurities. “T”-shaped markers were used to compare the same area

before and after implantation and after TDS.
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Figure 8.4. Optical DIC micrographs of blisters on stress-relieved tungsten after TDS up to

1200 K for various temperatures during implantation at 38 eV/D to a fluence of

6× 1024 D m−2: (a) 300, (b) 370, (c) 450 and (d) 500 K. The micrographs shown

here depict the same areas as those in Figure 8.3.
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before and after TDS. This showed that still a significant number of blisters,

particularly those with a small bulge height, deflated like the blisters created at

300 K. This could also be clearly seen by comparing the DIC images. Others

deflated only partially or barely changed their appearance at all. The fraction

of this group of blisters was much larger than for implantation at 300 K. One

blister within the investigated surface area even grew in size during TDS due to

the thermal expansion of the contained D2 gas.

It is likely that all blisters that collapsed at least partially were emptied at an early

stage of the TDS, either by permeation of D through thin caps or by rupturing.

Blisters that do not show any discernible change during TDS might have been

emptied already during the plasma exposure. A likely mechanism for this is that

the blisters can grow to a size where their cavity intersects with a crack connected

with the surface, respectively that the expanding cavity itself follows a grain

boundary that leads to the surface. The blister that increased in size held its

D2 inventory until a high temperature of the TDS ramp. After the TDS ramp

is completed, however, all blisters can be considered to be empty since neither

NRA nor a second TDS analysis reveal any further deuterium in the specimen.

For the higher implantation temperatures, the blisters change their appearance

less and less during TDS (see panels (c) and (d) in Figure 8.3). Only very few

blisters vanish more or less completely, and some more appear to have undergone

a rather strong partial relaxation. In any case, most blisters are unambiguously

recognisable in the DIC images acquired before and after TDS. They can therefore

be considered to be mostly plastic deformations. For the specimen implanted at

500 K, there were not enough blisters around the “T” markers for a reasonable

analysis, but due to the low overall density of blisters it was relatively easy to

find a particular group of blisters again after TDS. Most blisters in this group

had barely changed at all. One particularly flat blister appears to have vanished,

another one is still just barely visible. Overall, it can be said that the fraction

of mostly plastically deformed blisters increases significantly for higher specimen

temperatures during plasma exposure.

For the specimens exposed to a deuterium plasma at 300 and 370 K, cross-section

cuts were prepared in situ by FIB and imaged by SEM in the HELIOS NanoLab

600 dual-beam microscope. The caps of some blisters were also punctured by FIB

before cross-sectioning in order to observe the relaxation of the blisters. The re-

laxation was typically complete for the blisters on the specimen exposed at 300 K,

and often only partial for 370 K. Figure 8.5 shows one example of a cross-section
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through a blister created by D implantation at each of these two temperatures.

In both cases the cavity is a crack system following grain boundaries running

parallel to the surface. For 300 K, the crack system is typically located about

1 µm beneath the surface, as already reported in [66]. However, the crack does

not necessarily appear at the first grain boundary below the surface.

For 370 K, the blister cavities are often located much deeper at depths up to

about 4 µm. In these cases, there are several layers of grains between the cavity

and the free surface. Nevertheless, some blister cavities also come very close to

the surface at some points. Generally, the geometry of the cavities is complex: at

grain boundary junctions, it can follow either the grain boundary leading closer

to the surface or deeper into the bulk, and in some cases it also branches to follow

both. In many cases, the cavity tends to propagate towards the surface near the

perimeter of the blister and in some cases is also found to intersect with it. In

fact, DIC images also occasionally reveal fine cracks following the circumference

of the blister. Cracks at the apex of the blister are only rarely found and not

clearly identifiable. Apparently the preferred mode for the rupturing of a blister

is not bursting of the cap, but the eventual intersection of the cavity with the

free surface at the rim of the blister. It can also be seen from the cross-section

images that blisters do indeed overlap, i.e., there can be multiple cavities within

the projected area of a larger blister. These cavities are located at different depths

below the surface and often do not intersect with each other, although coalescence

is occasionally also found. One can conclude that the irregular blister shapes found

in DIC micrographs often are such overlapping structures, and that small blisters

in particular often “stack” upon larger ones. It is therefore usually correct to treat

these blisters as individual objects in a statistical analysis.

The typical location of the blister cavities found in cross-sections coincides rather

well with the secondary D concentration maximum found by NRA depth profiling.

On the other hand, it could recently be shown by the analysis of individual

blister bursts visible in TDS experiments at slow heating rates that the amount

of deuterium stored as D2 gas inside blisters is only a few percent of the total

retained amount [67]. This small fraction cannot by itself explain the secondary

concentration maximum observed by NRA.

To clarify if the observed D2 bursts indeed represent all (or at least most) of the

blisters, a stress-relieved specimen that had been implanted with 38 eV/D up to

3× 1024 D m−2 at 300 K [66] was investigated again. As it is typical for a speci-

men loaded with deuterium under these conditions, most of the blisters vanished
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completely during degassing in a TDS experiment up to a temperature of 1200 K.

This specimen was implanted again up to 6× 1024 D m−2 at the same ion energy

and temperature. The blisters on the specimen were subsequently re-analysed by

optical DIC microscopy. The result was that blisters that disappeared during TDS

did not reappear after the second plasma exposure. One must therefore assume

that the emptying of the blisters is irreversible, most probably because the cavity

is open to the surface after TDS. Furthermore, TDS one day after the implanta-

tion yielded the same deuterium inventory in the re-implanted specimen and in

a fresh specimen that had been implanted at the same time. The shapes of both

release spectra also matched. Since the number of blisters on the re-implanted

specimen was much smaller than on the fresh one, this means that the D2 gas

stored in the cavities indeed does not contribute significantly to the total D inven-

tory. Consequently, the observed D2 release from blister bursts can be considered

to represent at least the majority of the D2 gas stored in blisters.

The interplay between blisters and deuterium retention, on the other hand, must

be dominated by other effects than the D2 gas contained in the blisters them-

selves, as opposed to the suggestion of Causey et al. [16]. A likely mechanism is

that the fracturing of the material due to expansion of the blister cavities causes

the emission of dislocations. This is supported by the crack-tip plasticity for tung-

sten single crystals, which was observed, e.g., by Gumbsch et al. [35]. Crack-tip

plasticity means that dislocations are emitted in the concentrated stress field at

the crack tip and then move away from it. It should be noted, however, that

the situation discussed here is cracking along a grain boundary, i.e., a somewhat

different case. Still, finite element continuum mechanical simulations of blisters

like those described here point towards stresses far beyond the yield strength of

tungsten [9], which should lead to the emission of dislocations. These “dislocation

halos” created due to blister growth, in turn, trap the majority of the deuterium

in the blister region and remain in the specimen even after the blister cavities

are opened and the D2 gas released. This theory will be discussed further in the

following sections.

Automatic detection of blisters such those as shown in Figure 8.3 is not trivial.

Brightness threshold filters fail due to the bipolar intensity distribution that is

typical for DIC and makes the blisters so easy to discern by eye. Edge filters

also suffer from this and have additional problems due to image noise and due to

contrast variations originating from surface roughness. This roughness is due to

the polishing and also to sputtering during the implantation.
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10 µm

(b)

2 µm crack

(a)

Figure 8.5. SEM images of cross-sections prepared by FIB of blisters due to plasma exposure

at 38 ev/D to a fluence of 6 × 1024 D m−2. (a) shows a blister created at 300 K

that collapsed as soon as the cap was punctured by FIB. Only a fine crack system

remains. The central crater is where the cap was perforated. (b) shows the cavity

of a significantly larger blister created at 370 K that relaxed only partially upon

perforation. In both images the specimen is tilted by 52◦ and the surface is pro-

tected by an amorphous Pt:C layer. The structure in the lower half of (b) is an

artifact of the FIB preparation.

For implantation at 300 K, where the vast majority of the blisters have a circular

outline and very similar brightness distribution, a more sophisticated automatic

detection mechanism was tried: The bipolar brightness distribution with its fixed

orientation was exploited to calculate a quantity analogous to a dipole moment

(i.e, the strength of the bright-dark contrast). Using that, a disk radius and cen-

tre position could be derived that described the size and location of the blisters

rather well. Unfortunately this method is not applicable anymore for the higher

implantation temperatures. One thing is the increasing amount of (at least nearly)

overlapping or coalescing blisters. Probably even more problematic is the occur-

rence of a significant number of blisters with steep flanks: These show interference

fringes in the DIC image save for high magnifications — where in turn the image

area is not statistically relevant anymore. It might be that sophisticated shape

recognition algorithms such as those used for face detection and recognition could

be modified and trained to detect blisters, but currently there is no expertise in

applying these programs to blister analysis.

In order to gain some statistical information on blistering at various temperatures,
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the blisters were therefore marked by hand in some selected images. In order

to keep the necessary amount of time tolerable, blisters were represented by a

straight line following the largest lateral extension of the blister (i.e., the diameter

for circular and the longer half-axis for elliptical outlines). The lengths of these

lines were taken as measures for the blister size. Approximate blister areas were

calculated assuming only circular shapes. Therefore the derived values for the

average size and the surface coverage must be considered as upper limits for the

actual values. On the other hand, this marking method has the advantage that

blisters whose outlines touch, or small blisters sitting on top of larger ones, can

still be easily separated. Accordingly, “pile-up” effects leading to a statistical

over-representation of very large blisters are reduced.

Figure 8.6 shows the results of the statistical evaluation described above. The

number of blisters per area is huge at about 4.7×104 mm−2 for 300 K — to a large

extent due to many very small blisters — and decays approximately exponentially

for higher temperatures, until at 500 K the areal density is down to a few dozen of

blisters on the entire specimen surface. For comparison, Ueda et al. [110] found a

blister density of 450 mm−2 for pure tungsten irradiated by a hydrogen plasma at

653 K and a bias voltage of 1 kV. At the same time, the average size of the blisters

increases strongly, from less than 2 µm at 300 to over 40 µm at 500 K, with some

blisters reaching over 100 µm. Reports of blisters with comparable sizes as well as

of the increase of their size with temperature can also be found in literature (see,

e.g., [1, 50]). The surface coverage is already quite high at over 15% for 300 K and

reaches a maximum of about 27% for 370 K. For higher temperatures it reduces

down to less than 1% at 500 K.
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Figure 8.6. Statistical evaluation of blister parameters after plasma exposure at 38 eV/D to a

fluence of 6× 1024 D m−2 for temperatures between 300 and 500 K. For 750 K no

blisters occurred. (a) shows the average size of blisters, (b) displays the number

density and (c) the surface coverage.

Figure 8.7 shows an Arrhenius plot of the average blister size versus the inverse
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temperature. There is no data point for 750 K (corresponding to 1.33 on the

1000/T -axis) because no blisters were found at this temperature anymore. As one

can see, the dependence of the average size on the temperature can be very well

described by an Arrhenius law, i.e., a function proportional to exp
[
− EA

kBT

]
(EA:

activation energy, T : temperature) within the range of temperatures where blis-

ters were observed. This points towards blister growth being a thermally activated

process. Considering that the blister cavities are typically located far beyond the

stopping range of the implanted ions and can only be reached by deuterium by

means of diffusion (which is also thermally activated), this appears reasonable.

The activation energy EA resulting from a fit of the data points is 0.21±0.01 eV.

This is lower than Frauenfelder’s activation energy for interstitial diffusion of hy-

drogen in tungsten of 0.39 ± 0.09 eV, but coincides with the lowest published

value of 0.21 eV by Heinola et al. [40]. This suggests that the growth of blis-

ters is to a large extent governed by diffusion of deuterium to the cavities. Still,

other temperature-dependent processes probably also play a role. For example,

the softening of tungsten as it approaches the ductile-to-brittle transition temper-

ature (BDTT) could promote the growth of blisters as well. For single crystalline

tungsten, values of the BDTT as low as 370–470 K were reported [35]. The lower

purity and high dislocation density of the specimens discussed here will most

probably lead to a somewhat higher BDTT, but even then a gradual softening

within the temperature range discussed here is likely.

8.1.7. Summary of effects related to the specimen

temperature

The deuterium retention in the investigated tungsten specimens of different mi-

crostructures (see chapter 6) was observed to depend strongly on the temperature

during D plasma exposure. Considering that the behaviour of hydrogen isotopes

in tungsten is assumed to depend predominantly on thermally activated pro-

cesses, i.e., diffusion and (de)trapping of dissolved atoms at defects, this appears

reasonable. The present study does not only show the detailed evolution of the

deuterium depth distribution with temperature, but also shows its connection to

the defect structure. At room temperature (≈ 300 K), the uptake of deuterium

is predominantly affected by the (yet) slow diffusion. The depth profiles for all

microstructures are qualitatively similar, and the deuterium does not diffuse be-

yond the range of ≈8 µm that is accessible by NRA (with a maximum incident
3He beam energy of 4500 keV) in significant amounts. The total retention is no-
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Figure 8.7. Arrhenius plot of the average blister size versus the inverse temperature. The data

can be well described by an Arrhenius law, i.e., by thermally activated behaviour.

There is no data point for 750 K (=̂1.33 on the 1000/T -axis) since no blisters were

observed at this temperature.

ticeably smaller for recrystallised materials with a low dislocation density, as it

can be seen in Figure 8.1. Blisters are only observed for stress-relieved specimens.

They are numerous, but relatively small.

Looking back at Figure 8.1, 370 K appears to be the temperature where most deu-

terium is retained after implantation under the conditions applied here (38 eV/D,

6 × 1024 D m−2 at 1020 D m−2s−1; see also section 4.1): Diffusion into the bulk

of the specimens is already strong, but not yet outweighed by losses through the

surface. For all types of specimen, the total retention observed by TDS displays

a maximum, which is most distinct for the stress-relieved material. The D depth

profiles measured by NRA show a clear secondary maximum for stress-relieved

and partially recrystallised tungsten, but become flat for fully recrystallised tung-

sten.

A significant amount of deuterium has already diffused beyond the detection range

of NRA and is only accessible by TDS. The secondary D concentration maxi-

mum observed for stress-relieved and partially recrystallised tungsten appears to

be connected to blistering. The blistering activity is maximal for stress-relieved

specimens, and weak but at least detectable for partially recrystallised material.

The typical location of blister cavities coincides with the secondary concentration

maximum, although the amount trapped in gaseous form (see [67]) is not sufficient



8.1. Temperature dependence of D retention 113

to explain the observed maximum. The cavities always form at grain boundaries

parallel to the specimen surface. This could be due to some grain boundaries

acting as trapping centres respectively diffusion barriers, which lead to a local

pile-up and subsequent precipitation of deuterium. Particularly the comparison

of stress-relieved and partially recrystallised tungsten — which both have similar

average grain sizes — gives some indication of small-angle grain boundaries be-

ing likely blister nucleation points. They are abundant for stress-relieved material,

which shows strong blistering. During partial recrystallisation they are partially

replaced by large-angle boundaries (see also chapter 6). This coincides with a sig-

nificantly lower blistering activity, in particular on surface areas that show signs

of recrystallisation (i.e, grain boundary grooving).

For higher temperatures of 450 and 500 K diffusion into the bulk of all specimens

is very strong: The depth profiles become increasingly flatter, and the amount

of D retained beyond the range of NRA starts to dominate. At the same time,

desorption losses increase even more strongly with temperature. This leads to a

reduction the total retained amount of deuterium with increasing temperature

for high implantation temperatures (see Figure 8.1). As before, it is highest for

the stress-relieved material, followed by the partially recrystallised one and finally

both fully recrystallised materials, which show nearly identical retention. Blisters

are only observed for stress-relieved material. They become larger, but also less

numerous, and the surface coverage reduces significantly with higher tempera-

ture. Overall, the average blister size was found to correlate to the temperature

according to an Arrhenius law with an activation energy that is comparable to

that for interstitial diffusion. This points towards diffusion of deuterium to the

blister cavities being a key factor in blister growth, but other effects like softening

of the tungsten probably also play a role.

For 750 K, the deuterium is distributed throughout the specimen at a local con-

centration that is too low to be detected by NRA within reasonable acquisition

times, apart from a small amount very close to the surface. TDS, however, still

shows a small but well-measurable amount of deuterium, which is released from

the specimens predominantly at high temperatures. This is the reason why in

Figure 8.1 the total amount measured by NRA is orders of magnitude lower than

the amount measured by TDS. The dependence on the microstructure is similar

as for lower temperatures. This consistent behaviour suggests that dislocations

are more important for the retention of deuterium than grain boundaries: The

fully recrystallised specimens have significantly different grains sizes, but similar
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dislocation densities and also similar deuterium inventories. Blisters are not ob-

served on any material for this high temperature. This can be attributed to the

overall low deuterium concentration as well as to the deuterium being able to

effortlessly cross any diffusion barriers where blisters might otherwise nucleate.

8.2. Fluence dependence

8.2.1. Evolution of the deuterium inventory

Contrary to the simplest possible assumption of ideal diffusion-limited retention

(see section 7.2), the deuterium inventory after plasma exposure at 38 eV/D and

370 K does not vary with the incident fluence Φ according to a Φ1/2 power law,

as Figure 8.8 shows. At high fluences, the increase of the deuterium retention

is considerably flatter than Φ1/2 and more or less saturates, while at very low

fluences, the curve is steeper. From this one can already conclude that the uptake

of deuterium is governed by more complex processes than simply diffusion to

time-independent trap sites.

Nevertheless, the dependence of the retention on the microstructure is very clear:

regardless of the fluence, the stress-relieved material retains the most deuterium,

followed by the partially recrystallised one. Both fully recrystallised materials

have a nearly identical retention that is considerably lower than for stress-relieved

tungsten. This gives further credit to the assumption made in section 8.1 that the

dislocation density has the strongest influence on the deuterium retention, while

the grain size plays a minor role.

The total amount of deuterium released from stress-relieved specimens during

TDS in the TESS set-up is significantly flatter than a power law with an exponent

of 1/2 at high fluences (see Figure 8.9), similar to the NRA results.

At low fluences, the steep increase of the retention with the fluence that was

found by NRA is also clearly visible. The error bars in this graph are to be

understood in the way described in section 4.3. The data point at 6×1024 D m−2

appears significantly higher than the surrounding ones. This would mean that the

retention actually reduces towards very high fluences, which is considered rather

unlikely. Looking at the release spectrum from the specimen corresponding to this

data point, a significantly larger high-temperature shoulder than for all specimens

from the fluence variation campaign is visible. At this point, it cannot be said
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Figure 8.8. Variation of the deuterium retention in tungsten of different microstructures with

the incident fluence Φ for plasma exposure at 38 eV and 370 K. The dashed

grey line represents ideal diffusion limited (∝ Φ1/2) retention. Dotted symbols not

connected by lines show the effect of a slower cool-down after implantation.
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Figure 8.9. Variation of the total amount of deuterium released from stress-relieved speci-

mens during TDS with the incident fluence Φ at 38 eV/D and 370 K. The data

point with the dotted outline was acquired in a different experimental campaign.

For comparison, the total deuterium inventory resulting from diffusion-trapping

simulations is also shown. The simulation results have been downscaled to 2/3 to

account for losses during storage of the specimens.
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definitely if this data point is the exception: It was acquired in the course of

the “Ramp-and-Hold” experiments (see section 7.6) and was well in agreement

with other measurements taken during that measurement campaign. Therefore

it must be for now assumed that the observed deviation shows the limits of

reproducibility between experimental campaigns. The reproducibility within a

single campaign is significantly better, however. The total amounts of D2 released

from identical specimens implanted all under the same reference conditions (ion

energy: 38 eV/D, fluence: 6 × 1024 D m−2, temperature: 370 K) in the “Ramp-

and-Hold” experiments (section 7.6) showed a standard deviation of only ±5.1%

(which is included in the error bars in Figure 8.9).

The only way to explain the steep increase of the retention at the lowest flu-

ences discussed here (corresponding to several minutes of plasma exposure) is

the creation of additional traps during plasma exposure. One such type of trap is

connected with the concentration peak that is observed at the surface of the spec-

imens (see also section 8.1). As it will be explained in more detail in section 8.3,

it is due to the amorphisation (and possibly also doping) of the implantation

zone by plasma impurities — mainly nitrogen- and oxygen-containing molecular

ions. For all investigated microstructures, the surface peak shows a very similar

dependence on the fluence (see Figure 8.10). In fact, its magnitude is practically

independent of the microstructure of the material before plasma exposure. The

magnitude Rsurface of this peak grows quickly at low fluences and then saturates:

It can be reasonably well approximated by a simple exponential saturation law:

Rsurface = A ·
[
1− exp(−Φ/Φ̃)

]
. (8.1)

A is the saturation value of the inventory in the surface layer. A fit of the data

in Figure 8.10 yields Φ̃ ≈ 8× 1023 D m−2.

A second mechanism for the production of traps is the growth of blisters. If one

looks carefully at Figure 8.8 again, one notices that for the stress-relieved material

the initial increase of the deuterium retention with the fluence is even a bit steeper

than for the other materials. As it was already mentioned in section 8.1.6, blister

growth most likely leads to the production of additional dislocations in the vicinity

of the blister cavities. These “dislocation halos” are believed to be the reason for

the enhanced retention in the depth region where the blisters occur. In fact, the

secondary concentration peak, which was already associated with the blisters in

the previous section, becomes higher and broader with increasing fluence, as it
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can be seen from the depth profiles in Figure 8.11. The position of the maximum

also moves towards larger depths. This can be interpreted as the result of the

blistering zone extending over a larger depth range.

The observed saturation of the total deuterium retention at high fluence was also

reported before, e.g., by Haasz et al. [37]. It could, in theory, have several reasons:

Firstly, all traps in the specimen could be filled at sufficiently high fluences.

Secondly, a diffusion barrier could present at a certain depth. Ogorodnikova et al.

[82] introduced a fluence-dependent diffusion coefficient due to stress fields caused

by the ion implantation in order to describe saturation effects. The first option can

be ruled out because even when the diffusivity is calculated using the Frauenfelder

values [27], which certainly overestimates the diffusion at low temperatures, the

time necessary for permeation of a 0.8 mm thick specimen at 370 K would take

nearly 90 hours, while the actual implantation only took 18.5 hours. Using the

values published by Franzen et al. [26], which were determined for temperatures

comparable to the implantation temperature used here, permeation would even

take about 3000 hours. In any case, the deuterium cannot have permeated all

the way to the rear side of the specimen. Accordingly, the specimen cannot be

fully saturated. The limited range accessible by NRA (≈8 µm for 4500 keV 3He),

however, is indeed more or less saturated at high fluences: between a fluence of

6× 1024 and 5× 1025 D m−2, the depth profile barely changes (see Figure 8.11),

and the total retention is the same within the error margins (Figure 8.8). Even

if the 3He beam energy is increased to 6000 keV to extend the depth range to

≈ 12 µm, no significant difference between the depth profiles at 6 × 1024 and

5 × 1025 D m−2 is visible. On the other hand, the total D retention determined

by TDS also exhibits a trend at high fluences that is significantly flatter than

a Φ1/2 power law (Figure 8.9). The fact that the slow uptake of deuterium is

not only observed by NRA but also by TDS shows that this is not only an

artifact of the limited observation depth of NRA. This only leaves the reduction

of diffusivity — either by an already existing diffusion barrier, or by a stress field

[82] — as a possible explanation.

Figure 8.9 also contains the fluence dependence of the total deuterium reten-

tion in a stress-relieved specimen obtained from diffusion-trapping simulations as

described in section 3.3. To account for deuterium losses during storage (see sec-

tion 8.5.2), the simulation results were downscaled to two thirds. Both the steep

increase of retention at the low fluences as well the slower uptake than a Φ1/2

power law at high fluences is — at least qualitatively — captured by the model,
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which includes evolution of the trap density at the surface as well as in the blister

region. The absolute values of the retention are also reasonably well reproduced.

The model is primarily adapted to reproduce the deuterium depth profiles, re-

lease temperature and retention at higher fluences. It should be mentioned that

trap evolution at very low fluences could only be extrapolated because of the

comparatively poor depth profile resolution for very small deuterium inventories.

The simulated dependence of the retention on the fluence shows that a local in-

crease in trap density over a depth of several microns can indeed qualitatively

explain the observed retention curve. In contrast, simulations with flat concen-

tration profiles show the expected Φ1/2 dependence of the retention. Simulations

with a trap profile resembling the observed one at high fluence, but without trap

evolution, show a similar slower uptake of deuterium at high fluence as with evolv-

ing traps, but exhibit a “normal” Φ1/2 behaviour for low fluences. Therefore, only

a model including evolving traps can describe the experimentally observed be-

haviour. Still, dynamic effects of the ion implantation (i.e., stress fields) such as

proposed by Ogorodnikova et al. [82] might produce a synergistic effect. Further

studies on stress fields during deuterium implantation and their effect on the deu-

terium uptake would be desirable. Their results should then also be included in

future simulations.

8.2.2. Evolution of thermal deuterium release with the fluence

The stress-relieved tungsten specimens implanted at different fluences were de-

gassed at a heating rate of 3 K/min in the TESS set-up (see section 4.3) in

order to investigate deep diffusion at high fluences and to provide a broader

data base for the interpretation of the “Ramp-and-Hold” measurements described

in section 7.6). The slow heating rate was chosen for two main reasons: First,

the temperature increase of the tungsten specimens is nearly linear under these

conditions. This makes the interpretation of TDS spectra — which are further-

more expected to be strongly influenced by a depth distribution varying with the

fluence — easier. Second, D2 bursts due to rupturing blisters are best visible at a

slow heating rate.

All the specimens whose release spectra are displayed in Figure 8.12 were loaded

at once into TESS to reduce reproducibility problems due to changing of the glass

tube (see section 8.2.1. As it can be seen, the main desorption peak at ≈600 K not

only grows in magnitude, but also broadens and shifts towards higher tempera-
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tures with increasing fluence. This can be mainly attributed to diffusion: The peak

shift can be interpreted as the centre of weight of the deuterium depth distribu-

tion being located deeper in the specimen. Diffusion-trapping simulations confirm

this. The broadening is, accordingly, due to the deuterium being distributed over

a larger depth range. At intermediate fluences, a minor release peak at a lower

temperature than the main peak is clearly visible. This peak is obscured at high

fluences due to the broadening of the main peak. The nature of this peak is not

completely clear since this region is not accurately reproduced by the diffusion-

trapping model introduced in section 3.3. The reason is that the binding energy

distribution in a real specimen is more complex than in the simulations. Spa-

tially extended traps like dislocation networks or grain boundaries that provide

“shortcuts” for desorption could also play a role.

In the high temperature part of the spectrum — i.e., between the main desorption

peak and the maximum temperature of about 1200 K — a broad, flat shoulder

extending nearly to the highest temperatures is visible. This shoulder also be-

comes more pronounced at higher fluence. Simulations show that this shoulder

is made up from two contributions: One is the release of deuterium from point

defects with a high binding energy that are created at the irradiated surface as

discussed in the previous section. The second contribution comes from deuterium

not being released from the implanted surface, but diffusing all the way through

the specimen and leaving from the rear surface. Both contributions are expected

to increase with fluence: As shown in Figure 8.10, the amount of deuterium re-

tained at the surface increases with fluence, up to a certain saturation value. At

high fluences, the deuterium has also reached larger depths and is therefore closer

to the rear side, which increases the fraction of deuterium leaving the sample on

that route.

Mainly in the low-temperature part of the release spectrum — i.e., from 300 K

up to the release maximum — sharp bursts of D2 release are visible. They are

the result of pressurised D2 gas being released from rupturing blisters, as it could

recently be shown [67]. The bursts increase in magnitude and frequency towards

higher fluences. This is in accordance with the development of blister size and

abundance, which will be discussed in detail in the following section. The sporadic

bursts visible at high temperatures are also due to rupturing blisters, albeit not

from the specimen being currently investigated: The specimens in the storage

position also heated up slightly towards the end of the temperature ramp. This

leads to the release of a small amount of deuterium from these specimens as well as
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to the rupturing of some blisters. As it was discovered during the experiments in

TESS, some blisters are extremely sensitive to any disturbance of the specimen,

and occasionally even rupture when a specimen is moved to the measurement

position.
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Figure 8.12. Evolution of the D2 release spectra from stress-relieved specimens with the inci-

dent fluence at 38 eV/D and 370 K. The main release peak broadens and shifts

to higher temperatures for higher fluences, mainly due to deep diffusion. The

minor low-temperature peak visible at intermediate fluence is obscured by the

broad main peak at high fluences. Bursts on the low-temperature flank of the

main peak correspond to rupturing blisters.

8.2.3. Blister evolution with fluence

It is an ongoing discussion if blisters occurring due to ion beam or plasma load-

ing of specimens with hydrogen isotopes are the result of supersaturation and

the accompanying stress, or of the gas pressure inside cavities. However, recent

investigations gave strong support to the internal gas pressure being responsible

at least for expanding the blister cavities [9]. Also, it was shown in section 8.1

that the average blister size depends on the temperature, which indicates a filling

of the cavities by deuterium diffusing into them. It is now also highly interesting

to study the kinetics of blister growth at a fixed temperature, i.e., the abundance

and size of the blisters depending on the incident fluence. For this, the blisters in

DIC images of stress-relieved specimens from the fluence variation experiments

were marked in the same way as on the specimens from the temperature varia-
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tion. It should be noted that again, no blisters were found on the recrystallised

tungsten, not even at the highest fluence. The fluence of 5×1025 D m−2 is already

comparable to fluences achieved in high-flux experiments such as those reported

on by Alimov et al. [6, 2] as well as by Lindig et al. [57, 58]. That those researchers

did find blister-like structures also on recrystallised tungsten can therefore not

simply be attributed to the fluence, but probably has other reasons such as the

ion flux and the detailed properties of the material. Figure 8.13 shows the results

of the statistical analysis of the blisters. At the lowest fluence of 3× 1022 D m−2,

no blisters were found, which indicates a fluence threshold for blistering. Both

the number density and the surface coverage then grow with the incident fluence

until the values stagnate at a fluence of 1× 1024 D m−2. For the highest fluences

first the number density and then also the coverage apparently become smaller

again. This could be due to several reasons: After six days of continuous plasma

exposure corresponding to the highest fluence of 5 × 1025 D m−2, the specimen

surface is rather strongly corrugated due to sputtering by plasma impurities. This

might have destroyed many of the smaller blisters by eroding away their caps.

Also, the smaller blisters might simply be not recognisable anymore on the rough

surface. A third possibility is the coalescence of small blisters into larger ones at

high fluences. This would be consistent with the average blister size continuing

to grow up to the highest fluence. It is likely that a combination all these effects

leads to the observed results.

In any case, the analysis of the blisters depending on the incident fluence indicates

that blisters are not spontaneously created, but rather grow with the incident

fluence. This is consistent with the conclusion in section 8.1 that blisters grow

due to deuterium diffusing into their cavities. From the absence of blisters exposed

only to a very small fluence of 3× 1022 D m−2, respectively for a very short time

(≈ 5 minutes), it can be concluded that a minimum concentration of deuterium

must be present in order to nucleate blisters. Since the blister cavities were always

observed at grain boundaries parallel to the surface, this concentration must also

be reached at a location sufficiently deep within the specimen. Therefore, both a

minimum fluence and a sufficient time for diffusion to the grain boundaries are

necessary to create blisters.

From the recent statistical analysis of D2 gas bursts during TDS it can be con-

cluded that the blister size distribution should follow an exponential distribution

[67]. This can now be explicitly tested by looking at the detailed blister size his-

tograms derived from image analysis. Figure 8.14 shows the size distributions of
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Figure 8.13. Statistical evaluation of blister parameters for fluences between 3× 1022 and 5×
1025 D m−2 at 38 eV/D and 370 K. Blisters were, apart from sporadic occurrences

on partially recrystallised material, only found on stress-relieved tungsten. (a)

shows the average size of blisters, (b) displays the number density and (c) the

surface coverage.

the blisters for all fluences where blisters were observed. Because very large blis-

ters are comparatively rare, the bin width for the computation of the histogram

was increased for larger sizes. In order to conserve the correct relative weight

with respect to the smaller bins for the smaller sizes, the abundance per bin was

normalised to the bin width.
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6×1022 and 5×1025 D m−2 at 38 eV/D and 370 K (symbols). The abundance of

blisters in a certain size class is normalised to the bin width. The straight lines

represent exponential fits to the size distributions.

For all fluences shown in Figure 8.14, the blister size distribution can indeed be

well described by exponential distributions. This is illustrated by the straight
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lines representing exponential fits to the individual size distributions. The size

distributions become flatter for large fluences, probably due to coalescence and

maybe also due to destruction of smaller blisters, as already discussed above.

The matching distribution functions for both burst sizes and lateral blister di-

mensions support the assumption that the size distribution of blister bursts indeed

represents the size distributions of the blisters themselves. For an accurate com-

putation of the pressure inside the blisters, it is necessary to analyse not only the

lateral dimensions of the blisters, but the actual volume of the blisters. For this,

3D surveys by confocal laser scanning microscopy would be ideal. However, such

equipment was only available for some first, sporadic investigations.

8.3. Influence of ion energy

8.3.1. Deuterium retention

The depth profiles of deuterium implanted into tungsten specimens of the four

different microstructures described in chapter 6 at a temperature of 370 K and

a fluence of 6 × 1024 D m−2 all exhibit a common characteristic when the bias

voltage, and therefore the ion energy, is increased: The concentration peak at

the surface — which was already ascribed to damage caused by impurity ions

in the plasma in the previous sections — grows significantly. As it can be seen

in Figure 8.15, the amount of deuterium retained in this peak shows a nearly

linear dependence on the bias voltage and has no pronounced dependence on the

initial tungsten microstructure. This increase could be due to a higher damage

potential of the impinging impurity ions, or due to a deeper penetration range of

these ions. In all cases, the deconvolution of the measured proton spectra yielded

the minimum allowed width (due to the depth discretisation of the specimen) of

approximately 8 nm for this layer (i.e., the equivalent of a delta function at the

surface). The average deuterium concentration that corresponds to the amount

of deuterium retained in this 8 nm thick layer reaches surprisingly high values of

more than 20% for the highest bias of −600 V. It should be noted that the depth

resolution of the present NRA analysis using the D(3He, p)4He reaction [70] is not

sufficient to clarify whether the deuterium concentration increases within a layer

of fixed thickness, or if the thickness of the layer increases while the concentration

stays constant. Maybe highly surface sensitive techniques such as ERDA could

be applied to investigate this surface peak in more detail as a follow-up project.
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Figure 8.15. Deuterium retention measured by NRA in tungsten specimens of different mi-

crostructures depending on the applied bias voltage, respectively ion energy for

a fluence of 6 × 1024 D m−2 and a temperature during exposure of 370 K. (a)

shows the total amount of deuterium together with the amount retained at the

surface and in the bulk up to ≈8 µm for specimens stress-relieved at 1200 K. (b),

(c) and (d) show the same for specimens pre-annealed at 1500, 1700 and 2000 K.

At−10 V bias, corresponding to 8 eV/D, the amount of deuterium retained in any

of the specimens is very small. The concentration profile is practically flat, and

a concentration peak near the surface cannot be identified. There is no obvious

systematic variation with the microstructure, but this is most likely due to the

experimental uncertainties under these conditions. The deuterium inventory is

very small, and due to the low energy, even minor differences in the surface

quality of the specimens could have a comparatively strong effect. In any case,

the very small deuterium uptake at these low ion energies shows that the large

amount of low-energy neutral deuterium atoms in the plasma can only have a

negligible effect on the deuterium retention at higher ion energies.
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Rather surprisingly, the effect of higher ion energies on the deuterium retention in

the bulk of the specimen (up to ≈8 µm) is quite different from the behaviour of

the near-surface region, as Figure 8.15 shows. At 38 eV/D, the deuterium reten-

tion is significantly higher than at 8 eV/D, but shows the pronounced differences

in the total retention for different microstructures that were discussed in the

previous sections of this chapter. For stress-relieved and partially recrystallised

tungsten, the largest part of the deuterium inventory is contained in the bulk of

the specimen, although the surface peak is clearly visible. For both fully recrys-

tallised materials, the bulk inventory accessible by NRA (i.e., up to ≈ 8 µm) is

about equal to the amount retained in the surface peak, and the total retention

is considerably lower than for the other two specimens.

At 105 eV/D, the deuterium retention in the stress-relieved specimen is smaller

than at 38 eV/D, while it increases by different amounts for the other specimens.

The partially recrystallised specimen now contains approximately as much deu-

terium as the stress-relieved specimen. For tungsten recrystallised at 1700 K, the

retained amount is about half as much, and for material annealed at 2000 K only

about one quarter of the amount in stress-relieved specimens. The bulk retention

detectable by NRA dominates the total retention at this energy for all speci-

mens except for the specimen recrystallised at the highest temperature. Here the

amounts of deuterium contained in the bulk and in the surface peak are about

equal. The implantation at 105 eV/D is one of the rare cases where the specimens

recrystallised at 1700 and 2000 K show significantly different behaviour.

At the highest investigated ion energy of 205 eV/D, the deuterium retention in

stress-relieved tungsten decreases further to about half of the maximum retention

observed at 38 eV/D. The amounts found by NRA in the bulk and in surface

peak are now nearly equal. For partially recrystallised tungsten, a similar total

retention as well as the same distribution between bulk and surface are observed.

Both fully recrystallised specimens, however, show again a strong increase of the

deuterium retention. The inventory is now nearly as large as for stress-relieved

tungsten implanted at 38 eV/D and about the same for both specimens. Contrary

to the stress-relieved and partially recrystallised specimens, much more deuterium

is retained in the bulk of the fully recrystallised specimens than in the surface

peak.

The observed changes of the total deuterium retention as well as of the distri-

bution between bulk and surface are, at first, quite surprising. The maximum of

the retention is found at different energies for different microstructures, but is
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in every case comparable in the absolute magnitude. The distribution between

bulk and damage zone also depends strongly on the microstructure for different

energies. For stress-relieved tungsten, the abundant defects at the surface appar-

ently act as a diffusion barrier preventing migration of deuterium into the bulk

of the specimens at higher ion energies. For partially recrystallised tungsten, the

diffusion into the bulk is first enhanced and then again reduced as the ion energy

increases. For fully recrystallised tungsten, the diffusion into the bulk is, para-

doxically, apparently the highest when the near-surface region suffers the most

damage from the plasma.

8.3.2. Surface damage

Because of the pronounced dependence of the retention within the damage zone

on the bias voltage respectively ion energy, this is an ideal parameter for studying

the nature and origin of the damage in this region. Two different investigation

methods, which were both performed in SEMs, were applied for this. One method

was energy-dispersive X-ray spectroscopy (EDX). Impurities, mainly ions from

the plasma containing oxygen or nitrogen, are suspected to be the cause of the

damage near the specimen surface. Accordingly, one can expect to find some

oxygen and nitrogen implanted into the specimen at very shallow depths. At

the most commonly used acceleration voltages in SEMs of 20–30 kV, thin layers

of these light elements are nearly invisible against a thick, heavy background

target such as tungsten. By decreasing the acceleration voltage to 5 kV, the EDX

analysis becomes much more surface sensitive. Together with long integration

times of 1–2 hours per spectrum, the Kα X-ray lines of N and O can be clearly

identified, as the example in Figure 8.16 shows. At an electron energy of 5 keV,

the M lines of tungsten are still excited and can be used for normalisation of

the X-ray spectra from different specimens. It should be noted at this point that

traces of silicon on tungsten (from hypothetical silane molecules in the plasma)

cannot be distinguished by EDX because the Si Kα line overlaps with the W Mα

line.

As Figure 8.17 shows, the intensity of the N and O Kα lines exhibit a very clear

dependence on the bias voltage applied during plasma exposure. For the unex-

posed reference specimen only a small oxygen peak, probably due to a superficial

oxide skin and some oxygen impurities in the bulk, is visible. With increasing

bias, the intensity of the O Kα line increases linearly from its background level.
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With increasing bias voltages, also the N Kα becomes clearly visible. Its intensity

increases at a similar, albeit slightly lower rate than that of the O Kα line. This is

clear evidence that the near-surface damage on the specimens is indeed caused by

impurities in the plasma. These are present in practically any plasma. In nuclear

fusion experiments, impurities are even intentionally introduced into the plasma

boundary layer in order to reduce the heat load on the plasma-facing components

due to concentrated particle fluxes [43, 44]. As it was shown in section 8.3.1, a

combination of intense deuterium fluxes with heavier impurity ions can have a

pronounced effect on the deuterium retention at energies where the hydrogen by

itself is not yet able to cause displacement damage.

The second analysis method applied to these specimens was electron backscat-

tering diffraction (EBSD), a tool otherwise often used for orientation mapping.

This technique is usually difficult to apply because the quality of EBSD patterns

is very sensitive even on thin contamination or amorphisation layers on the inves-

tigated surface. Here, this sensitivity was exploited to observe the damage caused

by the plasma in a narrow near-surface zone of the tungsten specimens. In order

to have as clear EBSD patterns as possible, the material recrystallised at 2000 K

was selected for this analysis. It can be seen as representative for all specimens

because, as described above, the retention in the damage zone does not depend

on the microstructure. For the EBSD analysis, an acceleration voltage of 20 kV

and a specimen tilting angle of 70◦ were used. The working distance was 5.5 mm.

From each specimen, at least two arrays of 22 × 19 points evenly distributed

over an area of about 105 µm2 (corresponding to an image width of 64 µm) were

acquired to gather statistically significant information. Figure 8.18 shows EBSD

patterns acquired from specimens exposed to deuterium plasmas with ion energies

between 8 and 205 eV/D, as well as from an unexposed reference specimen. All

patterns were recorded with the same camera settings and acquisition time. Both

the reference specimen and the specimen exposed at 8 eV/D showed very clear,

detailed and contrast-rich patterns. There was some variation in pattern contrast

due to electron channelling effects, but on average the pattern quality was excel-

lent. Accordingly, nearly all recorded patterns could also be solved by the EBSD

software (Channel 5 HKL Flamenco). Only a few grains on the reference speci-

men showed unsolvable patterns of comparatively poor quality. Closer inspection

of these grains showed a small-scale roughness and an increased carbon signal in

EDX spectra. This means that these grains were contaminated by a thin layer of

tungsten carbide during the recrystallisation in the graphite furnace. Such grains

were not found on the specimen exposed at 8 eV/D. The conclusion is that the
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Figure 8.16. Low-energy detail of an EDX spectrum acquired at an acceleration voltage of

5 keV. The specimen was implanted at −600 V bias voltage, corresponding to

205 eV/D (fluence: 6× 1024 D m−2, temperature: 370 K). The background due

to the bremsstrahlung was subtracted from the spectrum. Both N and O Kα

lines are clearly visible. The small F Kα line is present on all specimens and is

therefore considered a background impurity. The inset shows the full spectrum

(including the background).
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Figure 8.17. Integral intensity of the N and O Kα lines depending on the bias voltage applied

during plasma exposure to a fluence of 6× 1024 D m−2at 370 K. The intensities

were normalised to the tungsten Mα line for each spectrum. Both N and O inten-

sities increase nearly linearly from their base levels on an unexposed specimen

(“no plasma”) with the bias voltage.
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surface contamination was completely eroded during plasma exposure. On both

specimens, the orientation contrast between different grains is strong and clear

in BSE images.

The EBSD patterns from the specimen exposed at 38 eV/D are still recognisable

and in many cases solvable by the analysis software. However, the pattern quality

is markedly worse than on the reference and low-energy exposed specimens. The

orientation contrast between different grains is fainter, but still visible. This points

towards a beginning destruction of the ordered tungsten lattice in the near-surface

region.

For specimens exposed at higher energies of 105 and 205 eV/D, the EBSD patterns

are barely visible anymore. Most images recorded by the EBSD detector are a

near-uniform gray. Only very faint and diffuse traces of some Kikuchi bands can

be seen. Consistently, also the orientation contrast on these specimens has faded

to a point where it is barely visible anymore. On these specimens, the near-

surface layer is practically completely destroyed. Together with the extremely high

concentrations of deuterium — and accordingly defects — measured in this zone,

one comes to the conclusion that the specimen surface is practically amorphised

at higher incident ion energies.

(a) (b)

(c) (d) (e)

reference 8 eV/D

38 eV/D 105 eV/D 205 eV/D

Figure 8.18. EBSD patterns from recrystallised tungsten specimens exposed to deuterium

plasmas (fluence: 6 × 1024 D m−2, temperature: 370 K) with different energies.

(a) shows a pattern from an unexposed reference specimen. (b), (c), (d) and (e)

show patterns from specimens exposed at ion energies of 8, 38, 105 and 205 eV/D.

Note how the pattern quality deteriorates for increasing bias.
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Assuming Frenkel pairs, respectively vacancies, as the dominant trap for deu-

terium in the surface layer, one comes to defect concentrations similar to super-

abundant vacancies reported in hydrogen-loaded Pd and Ni [30]. As mentioned

above, only the average concentration of deuterium respectively traps in an 8 nm

thick layer could be measured. Accordingly, it could not be distinguished between

an increase of the trap concentration in a layer of fixed thickness and an increase

of the layer thickness on the nanometre scale at a fixed concentration. However,

the stopping range of the ions also increases with the ion energy, so the latter

explanation appears more plausible.

8.3.3. Blisters and other surface modifications

The intensity of blister formation at different incident ion energies (respectively

bias voltages) appears to be tightly correlated to the deuterium retention. When-

ever the deuterium retention, particularly the fraction beyond the damage zone,

is at its maximum, so is the blistering activity. In contrast to all other param-

eter variations performed for this thesis, blister-like structures are even found

on fully recrystallised tungsten at a bias voltage of −600 V (corresponding to

205 eV/D), where the maximum retention is observed for this material. Likewise,

a low blistering activity always coincides with a comparatively small deuterium

inventory.

At an incident energy of 8 eV/D, none of the specimens show any blisters or

similar structures. Sputtering of the specimen surface is also not observed. The

only apparent effect on the specimen surface is the removal of superficial carbide

contamination, as discussed in section 8.3.2. As shown in Figure 8.15, the retained

deuterium inventory is also very small and rather evenly distributed in within the

depth range accessible by NRA.

At 38 eV/D, the blistering activity is at its maximum on stress-relieved tung-

sten. The details were already discussed in sections 8.1.6 and 8.3.3 (see, e.g.,

Figure 8.3). For partially recrystallised material only occasional, small blisters

are observed. On both types of tungsten, most blisters have a circular or ellip-

tical circumference and a domed cap as panels (a) and (c) of Figure 8.19 show.

There are no blisters on either of the fully recrystallised materials. Slight traces

of sputtering are visible mainly on stress-relieved tungsten, e.g., when comparing

surface areas covered by the mounting screws and exposed areas. On the other

materials, sputtering traces are more difficult to see due to strong thermal groov-
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ing at grain boundaries: The grooves make it difficult to observe steps between

neighboring grains caused by preferential erosion.

At 105 eV/D, the picture changes, as Figure 8.19 illustrates: On stress-relieved

tungsten, which is depicted in panel (b), sputtering traces are now clearly visible.

Blisters are still numerous, but their density is slightly lower and the largest

blisters are missing in comparison to specimens implanted at 38 eV/D. On the

other hand, partially recrystallised tungsten (Figure 8.19e) now shows a much

higher number of round blisters than the same material exposed at 38 eV/D.

They are quite small compared to blisters on stress-relieved tungsten exposed at

38 eV/D and 370 K, on average about 2.5 µm in diameter. These blisters are

almost only found in areas that show little to no thermal grooving, i.e., that

are more or less still in the initial, non-recrystallised state. On the recrystallised

areas, i.e, on those showing grooves at the grain boundaries, a different type of

blister-like protrusion shows up in large numbers. These features are very small,

on average around 2 µm. In contrast to the blisters observed on stress-relieved

tungsten, they are flat, plateau-like protrusions with an angular outline. While

they were occasionally also found at 38 eV/D, these features are now at least

as abundant as the round blisters on partially recrystallised tungsten. Another

difference between the recrystallised and non-recrystallised areas is that the non-

recrystallised areas appear to be rather uniformly and slightly more strongly

eroded than the recrystallised ones. On fully recrystallised tungsten, no round

blisters appear, but some isolated features of the second, angular type are found.

After exposure at the highest energy of 205 eV/D, blistering on stress-relieved

tungsten is significantly reduced compared to 38 and 105 eV/D. Figure 8.19c

shows that blisters are now small and have roughly the same size as for exposure

at 38 eV/D and 300 K (see Figure 8.3), although the specimen temperature

here was 370 K. The blister density is also much lower than in the other cases.

On the other hand, sputtering of the surface is now considerable. At the bias

voltage of −600 V applied here, impurity ions as well as the small fraction of

D+ ions with the full energy of about 600 eV/D from the plasma can erode the

tungsten surface. On partially recrystallised tungsten (Figure 8.19f), the situation

is similar. Blisters are rare and difficult to find due to the strong roughening of

the surface by sputtering. Of the few blisters found after exposure at the highest

energy, almost all have rounded bulges, but are rather flat. The outlines of the

blisters vary between nearly circular features and strongly elongated, ridge-like

shapes.
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Figure 8.19. Optical DIC micrographs of stress-relieved (a–c) and partially recrystallised (d–

f) tungsten after plasma exposure to a fluence of 6 × 1024 D m−2 at 370 K at

various ion energies. At 38 eV/D (a, d) nearly all blisters have a circular or

elliptical circumference and a domed cap. At 105 eV/D the density and size of

blisters on stress-relieved tungsten (b) is reduced, while partially recrystallised

tungsten (e) shows many blisters as well as small, flat, angular protrusions. At

205 eV/D the size and density of the blisters on the stress-relieved specimen (c) is

significantly reduced compared to lower ion energies. The partially recrystallised

specimen (f) shows only very few, isolated blisters and ridge-like features.
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On the other hand, fully recrystallised material now shows a high density of

the small, flat, angular features such as in Figure 8.20a. With a mean size of

about 1.2 µm, they are a bit smaller than those found on partially recrystallised

tungsten at 105 eV/D, but look otherwise very similar. Such surface features were

also found by Ogorodnikova et al. [81] after irradiation of recrystallised tungsten

with a 3 keV D+ ion beam. On FIB cross-sections, as shown in Figure 8.20b, one

can find short, intragranular cracks in a depth around 1 µm. They are typically

inclined towards the specimen surface. Due to the large average grain size, they

are typically far away from grain boundaries and can therefore not be seen as

material failure at distinguished weak spots. Around and between the cracks,

the SEM image shows varying greyscale contrast within the otherwise uniform

grains. This is due to severe plastic deformation of the material, particularly in the

vicinity of crack tips, which is visible as (mis-)orientation contrast. The cracks

and distortion fields are coincident with a secondary deuterium concentration

peak that is found in NRA depth profiles.

These features observed on recrystallised tungsten at high incident ion energies

are remarkably similar to features observed on recrystallised tungsten at a similar

exposure temperature by Lindig et al. [57, 58]. In this case, however, the base

material was different and the grain size was significantly larger. The plasma

exposure was performed with a lower ion energy of 38 eV/D, but with a 100

times higher particle flux. Nevertheless, very similar flat, angular features were

observed, also with similar subsurface cracks and distortion fields. This suggests

that there is at least some degree of equivalence between plasma exposures at high

ion energies (205 eV/D respectively -600 V bias) but low flux (≈1020 D m−2s−1),

and those at high flux (≈1022 D m−2s−1) but low energy (38 eV/D).

The strong correlation between blistering and deuterium retention beyond the

surface peak backs up the hypothesis that retention is enhanced by dislocations

that are emitted when the material fails locally and cracks appear. Particularly for

recrystallised tungsten, the volume of the cavities is very small, but the distortion

fields in their vicinity are clearly visible. These fields might be due to the semi-

brittle fracture mechanism associated with crack-tip plasticity for tungsten in this

temperature range [35]: This process is controlled by the emission and movement

of dislocations near the crack tip. Furthermore, the dislocation density was low

before plasma exposure, so the increase in dislocation density due to cracking is

even more pronounced than in initially dislocation-rich material. Judging from

the magnitude of the deuterium retention in the cracked region, the dislocation
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Figure 8.20. SEM micrographs of fully recrystallised tungsten after plasma exposure at

205 eV/D and 370 K. (a) shows a view of the surface at a specimen tilt of

52◦. (b) shows a FIB cross-section of the same region. The cut is located at the

line indicated in (a). The surface was protected by an amorphous Pt:C layer for

cutting. Note also the changing greyscale contrast around the cracks indicating

distortion fields.

density can be expected to be comparable to that in the blister region of stress-

relieved specimens implanted at lower ion energies.

The reason for intragranular cracks appearing in recrystallised tungsten at high

incident ion energy is probably at least partially due to a higher transient su-

persaturation of the material with deuterium during the plasma exposure. Sim-

ulations (for defect-free tungsten) indeed show that the interstitial solute con-

centration in the subsurface region is higher for a higher ion energy, respectively

penetration depth of the ions, although the effect is not as pronounced as for a

higher ion flux. As already mentioned in section 7.3, the direct reflection yield of

energetic deuterium ions depends only weakly on the incident energy. It is nev-

ertheless a striking coincidence that high-energy deuterium implantation at an

intermediate particle flux produces very similar surface features to those resulting

from a low-energy but high-flux exposure, where also a high supersaturation is

expected [1, 2, 57, 58]. Furthermore, the extremely high deuterium concentration
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and the amorphisation of the tungsten matrix in the damage zone at the surface

can be expected to exert a considerable stress on the underlying material due to

dilatation of the surface layer. This would also promote cracking.

On the other hand, the question comes up why non-recrystallised material does

not fail in the same way. This might be due to the different mechanical properties

of the material: Non-recrystallised tungsten shows at least some residual ductility,

while it is very brittle when recrystallised (see also chapter 6). The appearance

of cracks can be expected to be accompanied by the emission of dislocations due

to crack-tip plasticity, as also indicated by the well-visible distortion fields in

Figure 8.20. The suddenly increased defect density then effectively acts as an at-

tractive potential drawing deuterium from the implantation region into the bulk

and binding it there. Grain boundaries, which are assumed to act as weak points

in bulk material, are typically too far away from the stressed region to play a deci-

sive role due to the large grain size. In already dislocation-rich material, however,

it might be easier to relax stress by moving existing dislocations than by initiat-

ing a fracture and creating new ones. A similar opinion is expressed by Alimov

et al. [2], who assumes that a deformation layer at the specimen surface might

act as a damper to implantation stresses. Indeed, edge dislocations in tungsten

are quite mobile with an activation energy of 0.2–0.5 eV [35]. On the other hand,

the core energy of an edge dislocation in tungsten is 16.9 eV/nm according to

Liu et al. [60]. It is therefore possible that the increased stress does not lead to

a significant increase in dislocation density, but rather to a rearrangement of the

existing dislocations. So contrary to the recrystallised material, the defect den-

sity is not significantly enhanced beyond the implantation region, albeit it is still

higher than in recrystallised specimens without cracks. Furthermore, experiments

by Ogorodnikova et al. [82] also showed the seemingly paradox effect of lower to-

tal retention at high incident ion energy (i.e., above the damage threshold) for

polycrystalline tungsten irradiated with mass-filtered deuterium ion beams. As

mechanisms for this, the reduction of the diffusivity into the bulk by a stress

field caused by the incident ion flux was suggested. It is possible that a simi-

lar mechanism reduces the bulk concentration of deuterium and accordingly the

precipitation into blisters at grain boundaries in stress-relieved tungsten.

On partially recrystallised specimens, both effects can be observed right next to

each other: The yet untransformed regions behave similar to stress-relieved mate-

rial, while the already recrystallised parts of the specimen behave more like fully

recrystallised tungsten. This shows that even local variations of the dislocation
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density (and probably also of the grain boundary type) on a microscopic scale

can have an immediate effect on the blistering behaviour of the material.

8.4. Effects due to specimen preparation

As mentioned in section 7.4, the influence of the specimen preparation, i.e., pol-

ishing as well as degassing during stress-relief annealing were also investigated.

Figure 8.21 shows the deuterium inventories in stress-relieved tungsten specimens

with unpolished, mechanically polished (see section 5.1.1) and electropolished sur-

faces. All specimens were exposed in a single plasma discharge with a specimen

temperature of 370 K and an ion energy of 38 eV/D. The incident fluence was

6 × 1024 D m−2. The specimen with the unpolished surface retains significantly

more deuterium than the other two specimens. Its surface has received only a

coarse mechanical grinding by the manufacturer. It is very rough with height dif-

ferences of the order of 10 µm and more, and can be expected to contain very

much mechanical damage from the grinding in the whole depth range accessible

by NRA. Therefore, it is not very surprising that this specimen contains the most

deuterium, even though blisters were not found on its surface. It should be noted,

however, that this may also be due to blisters being simply undetectable on the

corrugated surface. On the other hand, experiments by Nishijima et al. [75] also

led to the conclusion that blisters do not appear on rough, distorted surfaces. The

deconvolution of the NRA measurements on this specimen shows less detail than

for the polished specimens. Since the surface contains height differences that are

comparable to the range of the 3He ions used for analysis, it must be expected

that this significantly blurs the depth resolution.

As it was shown in section 5.1.1, the distortion layer on the surface of a specimen

is effectively removed by the mechanical polishing procedure applied here (see

section 5.1.1, and the defect concentration should accordingly be close to the

bulk level. Indeed, the mechanically polished specimen shows about 10% less

deuterium in the depth accessible by NRA than the unpolished one. The lower

defect density compared to the heavily deformed surface layer is probably partially

offset by the appearance of blisters on the polished surface. As it was discussed

in the previous sections of this chapter, it is likely that the expansion of blister

cavities produces new defects during plasma exposure.

The electropolished specimen has again about 10% less deuterium inventory. Al-
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though both electrochemical and mechanical polishing looked virtually the same

in surface and cross-section SEM images (see section 5.1.1), this points to some

residual damage being present in mechanically polished specimens. The forma-

tion of blisters is at first glance not very strongly affected by that, as Figure 8.22

shows. However, a detailed statistical analysis, such as in sections 8.1.6 and 8.2.3,

reveals some differences: For example, small blisters are more abundant on the

electropolished surface. This is at least partially due to the better visibility of

these small features on a very smooth surface. Still, this may also be due to small

blisters typically having their cavities closer to the surface, so these are most

likely to be more affected by any residual surface roughness or porosity. Also,

large blisters are slightly more common on mechanically polished tungsten. This

may be due to weakening of grain boundaries near the surface by shear stresses

occurring during the polishing. On electron micrographs, it is difficult to make

out any differences in the microstructure. The effect must therefore be rather sub-

tle. Overall, the average size of blisters is slightly higher on mechanically polished

tungsten (8 µm compared to 6.9 µm), and the surface coverage is smaller (27%

compared to nearly 35%). Because of the larger number of small blisters found on

electropolished tungsten, the number density of blisters is about twice as high on

this material. However, it should be noted that the influence of the fluence and

particularly of the temperature on blistering is much more pronounced than that

of the polishing method (see sections 8.1.6 and 8.2.3). Therefore, the blistering

behaviour of mechanically and electrochemically polished tungsten can still be

considered rather similar.

In Figure 8.23 it can be seen that the deuterium inventory in specimens that

were not annealed prior to plasma exposure systematically have a more than

20% lower deuterium inventory than their stress-relieved counterparts. Despite

the high defect density, the unpolished and non-annealed specimen even has a

lower deuterium inventory than the polished and stress-relieved specimen. Please

also keep in mind that stress-relief practically does not change the defect density

in the material (see section 6.1).

The explanation for the behaviour observed here is that, as suspected (see sec-

tion 7.4.2), the specimen indeed contains a large amount of hydrogen due to the

production process. This hydrogen occupies the available trap sites and has to

be replaced by deuterium. At the exposure temperature of 370 K, the rate for

thermally activated detrapping is still low, as TDS spectra show. Accordingly, the

isotope exchange process necessary for binding deuterium in a trap site occupied
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Figure 8.21. Deuterium inventories in stress-relieved specimens with different surface quality

after plasma exposure at 38 eV/D and 370 K. The fluence was 6× 1024 D m−2.

The inventories were measured by NRA.
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Figure 8.22. Optical DIC micrographs of blisters on (a) mechanically and (b) electrochem-

ically polished specimens. Both specimens were stress-relieved and implanted

under the same conditions (ion energy: 38 eV/D, fluence: 6× 1024 D m−2, tem-

perature: 370 K). Blistering is only weakly affected by the polishing method.

by hydrogen is slower than filling of empty traps with deuterium. At the incident

fluence of 6 × 1024 D m−2 that was used for this experiment, diffusion-trapping

simulations (see section 3.3) predict the diffusion front at about 35 µm below

the surface. Considering that the NRA measurements probed only about 1/4 of
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Figure 8.23. Deuterium inventories in mechanically polished and unpolished specimens with

and without stress-relief for 60 minutes at 1200 K in vacuum prior to plasma

exposure (ion energy: 38 eV/D, fluence: 6 × 1024 D m−2, temperature: 370 K).

The inventories were measured by NRA. Non-annealed specimens systematically

have a lower inventory than the corresponding stress-relieved ones.

that depth, the measured difference of deuterium retention in stress-relieved and

non-annealed specimens is already quite remarkable.

The influence of the initially present hydrogen was also studied by TDS. While

the hydrogen background pressure in ultra high vacuum makes it much more

difficult to directly measure the hydrogen release from a tungsten specimen, this is

nevertheless possible. Of course, the release of the deuterium-containing molecules

D2 and HD was also observed. Particularly the release of HD is a very useful

indicator for interactions between H and D: If H and D atoms reach the surface

simultaneously and in similar amounts, one can expect much more HD to desorb

from the sample compared to H2 and D2. The reason is that hydrogen isotopes are

dissolved in the tungsten as atoms and have to recombine at the surface before

they can desorb as molecular gas. This process is considered to be very fast for

tungsten [14], but the laws of combinatorics still dictate that the probability to

form HD is twice as high as for the isotopically pure molecules.

When one looks at the desorption spectra of unexposed tungsten specimens with

and without heat treatment in panels (a) and (b) of Figure 8.24, one can imme-

diately see that much more H2 desorbs from the non-annealed specimen. There

is also a strong H2 peak at around 600–700 K where the main D2 release peak
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Figure 8.24. TDS spectra of mechanically polished tungsten specimens (a) with and (b) with-

out stress-relief for 60 minutes at 1200 K in vacuum. For comparison, spectra

of (c) stress-relieved and (d) non-annealed specimens that were exposed to a D2

plasma (38 eV/D, 6 × 1024 D m−2) at 370 K are also shown. The spectra were

recorded in TESS at a heating rate of 30 K/min. Non-annealed specimens release

significantly more H2, while D2 release after plasma exposure is reduced. The re-

lease of HD molecules is only slightly increased if the specimen is not annealed

before plasma exposure.

is typically found. Additionally, a large amount of H2 is released at a late stage

of the TDS run, i.e, at high temperatures. The background H2 emission from the

glass tube that contains the specimens is already subtracted from the spectra

shown in Figure 8.24. As expected, D2 and HD are practically not released from

specimens not exposed to a deuterium plasma.

After exposure to a deuterium plasma, both the stress-relieved and non-annealed

specimen (see panels (c) and (d) in Figure 8.24) release a significant amount

of D2 and also some HD during TDS. The H2 release spectrum is similar in

shape and magnitude for both non-annealed specimens, whether exposed to a

deuterium plasma or not. On the other hand, the specimen that was not annealed
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before plasma exposure released only about half as much D2 as the corresponding

annealed specimen. The release of HD from the non-annealed specimen, which

released significant amounts of both D2 and “natural” H2, is somewhat larger

than for the stress-relieved specimen, which released more D2 but only very little

H2. Yet, the release of HD is much smaller than that of both H2 and D2. This

means that H and D atoms reaching a free surface of the specimen predominantly

recombine with atoms of the same isotope. This can be explained by assuming

that the tungsten is initially more or less homogeneously saturated with H. When

one surface of the specimen is bombarded by D ions, they gradually replace the

trapped H in an isotope exchange process driven by the large excess of D. As

mentioned before, this process is slower than the uptake of D by empty traps,

which explains the significantly smaller D inventory in a non-annealed specimen.

When the plasma exposure stops, H has been largely replaced by D up to a certain

depth (at most about 35 µm judging from diffusion-trapping simulations) below

the exposed surface. Still, H saturates the rest of the specimen. During TDS, D2

is released predominantly from the front surface that was exposed to the plasma,

since the trapped D is concentrated close to this surface. H atoms, on the other

hand, detrap throughout the bulk of the specimen, save for the region where they

have been displaced by D. Accordingly, H2 can be expected to detrap first from

the unexposed rear side of the specimen. At the exposed surface, the mobilised H

atoms have to travel a longer distance before they can recombine and desorb than

the D atoms. Most H even originates from deep inside the bulk of the specimen,

which explains the large high-temperature tail of the H2 release. The consequence

of this model is that most H and D atoms cannot recombine into HD because in

a first stage, they leave the specimens through opposite surfaces. A large part of

the H2 desorption is also delayed to a point where almost all D has already left

the specimen because most H atoms are trapped deep inside the bulk and have

to travel a long way to the surface.

8.5. Results of the “Ramp-and-Hold” experiments

8.5.1. Variation of the heating rate

Figure 8.25 shows measured TDS spectra of stress-relieved tungsten specimens

implanted with a fluence of 6 × 1024 D m−2 at an ion energy of 38 eV and at

a temperature of 370 K for different heating rates. Since the desorption rate is
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much lower for slow heating rates, it was normalised to the heating rate for

all spectra. This renormalisation is necessary to yield the same total amount of

deuterium when integrating over the temperature axis as when integrating over

time. Accordingly, the unit of the release rate is transformed from D/(m2s) to

D/(m2K).

It can be clearly seen that the desorption spectrum shifts towards higher temper-

atures for faster heating rates. Redhead proposed a method to derive the energy

barrier for the release of gases from this peak shift [91]. For a first-order process

and a constant heating rate β, the temperature Tpeak at which the desorption

peak is observed and the energy barrier Eb are related as follows:

Eb
kBT 2

peak

=
ν

β
exp

(
− Eb
kBTpeak

)
. (8.2)

ν is the frequency pre-factor for the desorption process. Redhead then suggests

plotting β against Tpeak on a double logarithmic graph and obtaining Eb from the

slope m:

m =
d (ln β)

d ln (Tpeak)
= 2 +

Eb
kBTpeak

. (8.3)

It should be noted this original notation is, in a strict sense, not correct since the

arguments of the logarithms are not unitless, but it will yield the correct result if

β is entered in K/s and Tpeak in K. While with this relation Eb can be determined

independently from ν, it has the problem that Tpeak appears on the right hand

side of the equation, i.e., the slope of the curve depends on Tpeak. Because the

range of peak shifts is usually only of the order of 10% of Tpeak, the points still

lie close to a straight line. Nevertheless, the problem remains which value of Tpeak

to choose when solving equation (8.3) for Eb.

Falconer et al. [24] suggest an elegant alternative to Redhead’s method for

deriving Eb from the peak shift due to heating rate variations: When plot-

ting ln(β/T 2
peak) against 1/Tpeak — with the same caveat for the units as in

equation (8.3) — the data points ideally lie on a straight line with the slope

m = −E/kB. This can be seen by transforming equation (8.2) into

ln

(
β

T 2
peak

)
= −Eb

kB

1

Tpeak
+ ln

(
kB
Eb
ν

)
. (8.4)
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and calculating the derivative

m =
d
(
ln(β/T 2

peak)
)

d (1/Tpeak)
= −Eb

kB
. (8.5)

This relation also yields Eb without knowledge of the frequency pre-factor ν.

Falconer et al. even showed that equation (8.5) is valid for any non-negative

reaction order [24]. In a comparative survey of methods for the analysis of thermal

desorption spectra, de Jong et al. [18] credited the method with an adequate

accuracy for Eb. Its main merit is that it requires only very little prior knowledge

about the investigated system and is easy to apply once a set of TDS spectra

acquired at different heating rates is available.

Strictly speaking, Redhead’s as well as Falconer’s method were developed for

the desorption or decomposition of gases directly from a thin adsorbate layer

and do not consider diffusion at all. Because of that, TDS spectra were also

simulated using the diffusion-trapping model discussed in section 3.3 to cross-

check the results from the Falconer method. The simulations used exactly the

same temperature ramps (including all non-linearities) as in the experiments.

The resulting spectra are shown in Figure 8.26 and are re-normalised like the

measured spectra. To account for deuterium losses during specimen storage, the

simulated spectra have been downscaled to two thirds. The effect of specimen

storage is discussed in more detail in section 8.5.2. The main desorption peak at

around 600 K is reproduced well.

Figure 8.27 shows a Falconer plot for the positions of the main desorption

peaks of the spectra shown in Figure 8.25. The resulting energy barrier is

Eb = 1.25± 0.11 eV. Peak positions extracted from simulated TDS spectra with

binding energies of 0.7, 1.2 and 2.2 eV (with the 1.2 eV trap retaining most of the

deuterium) and different detrapping attempt frequencies νdetrap are also included

into the plot.

While the experimental peak positions showed quite some scatter, the posi-

tions of the main desorption peaks derived from simulated spectra lie almost

perfectly on a straight line in the Falconer plot. Applying equation (8.5) yields

Eb = 1.22± 0.02 eV. This is only minimally higher than the binding energy of

1.2 eV of the main trap that entered into the model, and also matches the result

from the experimental data within the measurement accuracy. The small devia-

tions can be due to the non-linearities of the temperature ramps as well as to the
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Figure 8.25. Selection of D2 release spectra from stress-relieved tungsten implanted with

38 eV/D ions up to 6 × 1024 D m−2 at a temperature of 370 K. The legend

indicates the heating rate in the vicinity of the main desorption peak (i.e., at

≈600 K). Spikes in the low-temperature part of the spectrum are due to ruptur-

ing of blisters filled with D2 gas.
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Figure 8.26. Selection of D2 release spectra simulated with a diffusion-trapping model for the

same conditions as indicated in Figure 8.25. All spectra have been downscaled to

2/3 to account for deuterium losses during storage. Please keep in mind that the

specimens in the simulation have only 1/4 of the total thickness of real specimens

and a strongly simplified density of sites model.
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intrinsic inaccuracy of the method, which was investigated by de Jong et al. [18].

Therefore, one can conclude that for the present system of hydrogen in tungsten,

the Falconer method yields a good estimate of the main trap energy even in a

system that includes diffusion from the bulk to the surface, while eliminating the

uncertainty of the frequency pre-factor ν and the order of the desorption reaction.

Looking at equation 8.4, it should be possible to calculate ν from the intercept

of the straight line with the y-axis once Eb is known. Applying this to simulation

results where the attempt frequency for detrapping νdetrap is a known parame-

ter, the resulting values for ν are always several orders of magnitude too low.

In contrast to the trap energy, the attempt frequency for detrapping νdetrap ac-

cordingly cannot be directly determined by this method. It is likely that the

frequency pre-factor ν calculated with equation (8.4) is instead an effective value

that includes the time lag due to diffusion. By iterative variation of νdetrap, while

keeping the trap energies and concentrations constant, experimental and simu-

lated data points could be brought to a good agreement, as Figure 8.27 shows.

By this method, νdetrap was determined to be very close to 6.6 × 1011 s−1, and

certainly within the range of 3.3 × 1011–1.0 × 1012 s−1. This set of parameters,

i.e., a main trap energy of 1.25 ± 0.11 eV and νdetrap = 6.6 ± 3.3 × 1011 s−1, is

unique thanks to the determination of the binding energy independently from the

attempt frequency, and simultaneously fits the main desorption peak of all TDS

spectra.

On closer inspection of the experimental spectra in Figure 8.25 and of the simu-

lated ones in Figure 8.26, a surprising detail becomes apparent: The small peak on

the low-temperature flank of the main desorption peak that is clearly visible for

fast heating rates disappears at slower heating rates in experimental spectra. In

simulations, on the other hand, this peak is nearly obscured by overlap with the

main peak at fast heating rates and becomes more clearly visible as the heating

rate decreases. Intuitively, one would expect the behaviour seen in the simulations:

At fast heating rates, peaks become broader because of the time lag of deuterium

being trapped deeper inside the specimen, while at slow heating rates the shape

of the desorption spectrum should approach a representation of the true binding

energy distribution. A possible explanation for the counter-intuitive behaviour of

the low-temperature peak can be found in the large desorption bursts that become

visible at slow heating rates. As discussed in section 8.2.2, these are due to the

rupturing of blisters. It could recently be shown that this is a stochastic process

with a constant burst rate per temperature interval, independent of the heating
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Figure 8.27. Falconer plot of ln(β/T 2
peak) versus the inverse of the main desorption peak tem-

perature 1/Tpeak. Data points extracted from both experimental and simulated

spectra are shown. The main trap binding energy of 1.2 eV used in the model

is close to Eb derived by equation (8.5) for all simulated results and matches

the value derived from the experimental data points within the measurement

accuracy.

rate, and that the size distribution of the bursts follows an exponential distribu-

tion [67]. This allowed also the simulation of these bursting events at different

heating rates and for different integration times of the measurement equipment.

As Figure 8.28 illustrates, a fast heating rate of, e.g, 15 K/min together with

a slow acquisition rate and a long integration time can lead to the overlapping

of individual bursts. The result is a significant offset of the desorption signal,

which is only perturbed by fluctuations with a much smaller amplitude than the

bursts themselves. This can in principle go so far that one has the impression of

an additional, noisy desorption peak. Indeed, a close look at the low-temperature

part of the measured desorption spectra shows an apparent noise level that is

much higher than one would expect at the average signal level in this tempera-

ture range. This is the residual signature of the bursts that were clearly visible

for the slower heating rates.

Therefore, one can conclude that the true binding energy distribution of deu-

terium trapped in stress-relieved tungsten is in fact rather represented by a

roughly triangular shape, like it can be seen for the slowest heating rates in Fig-

ure 8.25. The small but clearly distinguishable low-temperature peak in the sim-



148 Chapter 8. Discussion of the experimental results

0

400

800

 

 experiment 1K/min fast

0

400

800

 

 

 simulation 1 K/min fast

m
as

s 
4 

si
gn

al
 (c

ou
nt

s/
s)

400 500 600 700
0

400

800

 

 

 simulation 15 K/min slow

time (s)

Figure 8.28. Measured and simulated D2 bursts due to rupturing blisters [67]. The measure-

ments in the top panel were taken at a heating rate of 1 K/min with a high

acquisition rate of more than 10 Hz and a short integration time of 50 ms. The

simulation in the middle panel was performed for the same conditions. The bot-

tom panel shows the effect of overlapping blister bursts at a faster heating rate of

15 K/min and a slower acquisition rate of about 0.2 Hz with a long integration

time of 1 s. The same acquisition conditions were used for the measurements

presented here.

ulated spectra shown in Figure 8.26 is most likely too narrow, since the diffusion-

trapping model approximates all the binding sites for deuterium in the strain

fields of dislocations with one single, monoenergetic trap with a low binding en-

ergy of 0.7 eV (see section 3.3).

For a similar reason, the high temperature shoulder of the spectra is also not mod-

elled as well as the main peak. The reason is that the binding energy of the traps

in the amorphised surface layer is in reality not one discrete value, but rather

a broad distribution of binding energies. A much better model for the density

of sites distribution in this zone would be a Gaussian distribution, as suggested

by Kirchheim [45] (see also Table 2.1). Unfortunately, this cannot be treated in

current full-scale diffusion-trapping models, including the one used here (see sec-

tion 3.3). Another issue in the high temperature part of the desorption spectrum

is the desorption from the rear side of the specimen, i.e., the side that was not

exposed to the plasma. In order to keep computation times manageable while

preserving the accuracy and stability of the numerical solution, the specimen

thickness was reduced from about 800 to 200 µm for the simulations. Because of

that, desorption from the rear side occurs earlier and more strongly compared to
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actual specimens. Besides these deviations due to necessary simplifications made

for the diffusion-trapping model, the simulated spectra match the experimental

ones quite well in terms of the absolute magnitude as well as of the peak positions.

8.5.2. Interrupted temperature ramps

As described in section 7.6, TDS experiments were also performed with inter-

rupted temperature ramps in order to deconvolve the influence of the binding

energy and of the depth distribution of the deuterium in the specimens. As Fig-

ure 8.29 shows, pull-off experiments at 470 K have little influence on the main

desorption peak in a subsequent full TDS run. Only about up to about 400 K a

nearly complete depletion of the trapped deuterium is observed. For asymptotic

heating up to 470 K, i.e., holding at this temperature for approximately 90 min-

utes, the spectrum in the second TDS run looks remarkably similar to the one

after the pull-off experiment. The main peak position is still at the same tem-

perature, but the peak is about 10% lower. Also, the depletion at temperatures

below 470 K is slightly stronger, but still a measurable amount of deuterium is

released between 400 and 470 K in the second TDS run. In diffusion-trapping

simulations this behaviour is quite well reproduced in many aspects. The main

difference is that in simulations, mainly the onset of desorption during the second,

full TDS run is significantly retarded for asymptotic heating: desorption does not

start before 470 K. On the other hand, the reduction of the peak desorption is

noticeably smaller in the simulation than in the experiment. From these differ-

ences the following conclusions can be drawn: The 1.2 eV trap is barely depleted

at 470 K in simulations. The retardation of the onset of desorption is therefore

due to depletion of 0.7 eV traps deeper below the surface. On the other hand, the

experimental observations that the main peak is depleted while the onset of des-

orption is barely affected indicate a loss channel of deuterium from higher-energy

traps at surprisingly low temperatures.

Figure 8.30 shows that after a pull-off at 660 K, i.e, approximately at the temper-

ature of the main desorption peak, desorption starts at about 450 K in the second

TDS run. Below this temperature, the traps are practically completely depleted.

Also, the traps in the main peak itself are depleted to about one third of the

initial value at the pull-off temperature. Beyond the main peak, again virtually

no traps are depleted. Asymptotic heating to 660 K with subsequent holding at

that temperature for 90 minutes practically completely depletes the main desorp-
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Figure 8.29. Experimental (a) and simulated (b) TDS spectra with temperature ramps inter-

rupted at 470 K. The heating rate was 30 K/min around the main desorption

peak. Each panel compares a pull-off (0 min holding time) and an asymptotic

heating (90 min holding time) experiment. Simulated spectra have been down-

scaled to 2/3 to account for losses during storage.

tion peak. Only the high-temperature shoulder remains and is nearly unaffected.

A similar qualitative behaviour is seen in diffusion-trapping simulations of these

experiments: A significant part of the deuterium in 1.2 eV traps is still retained

in the specimen after a simulated pull-off experiment. However, the onset of deu-

terium release in the second, full ramp starts about 100 K later in the simulation

than in the experiment. After asymptotic heating and holding for 90 minutes, the

1.2 eV trap is nearly completely depleted, while the high-energy trap at 2.2 eV

has only lost about 1.5% of its deuterium inventory during the holding. The small

high-temperature peak during the second TDS run is then to a large part made

up from release from the 2.2 eV trap, as indicated by the dashed line in Fig-

ure 8.30b. There is still a remarkable contribution from deuterium that has been

redistributed to 1.2 eV traps far below the implanted surface during the holding

at 660 K, which is now predominantly released from the rear side of the speci-

men. These results indicate that the high-temperature shoulder seen in measured

TDS spectra is at least partly due to a distribution of high-energy traps, but may

also contain a non-negligible fraction of rear-side release from lower-energy traps.

Due to the larger thickness of the real specimens, this contribution is distributed

over a larger time span and, accordingly, temperature range, but with a smaller

amplitude.

Interrupted heating ramps also offer the possibility to investigate the depth dis-

tribution of the deuterium remaining in the specimen by NRA. Figure 8.31 shows
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Figure 8.30. Experimental (a) and simulated (b) TDS spectra with temperature ramps inter-

rupted at 660 K. The heating rate was 30 K/min around the main desorption

peak. Each panel compares a pull-off (0 min holding time) and an asymptotic

heating (90 min holding time) experiment. Simulated spectra have been down-

scaled to 2/3 to account for losses during storage. The dashed line in panel (b)

indicates the fraction of D released from high-energy traps.

such depth profiles acquired after pull-offs at 470 K and 660 K. For comparison,

depth profiles measured two days after plasma exposures and after two months

of storage in vacuum at room temperature, i.e., the state before TDS, are also

shown. Remarkably, the effect of the storage time is nearly the same as that of

partial TDS runs: In each case, the shape of the depth profile beyond the sur-

face peak is practically conserved, only the absolute magnitude is reduced. The

surface peak itself only starts to deplete significantly at 660 K. For the partial

TDS runs, this could be qualitatively reproduced by diffusion-trapping simula-

tions, as panel (b) in Figure 8.31 illustrates. The underlying mechanism is that

the deuterium concentration profile closely follows the trap concentration profiles.

While these evolve during implantation, they are kept constant for the simula-

tion of TDS. The surface peak starts depleting at higher temperatures than the

bulk inventory because of its high binding energy. The simulation also allows to

study the deuterium depth profile beyond the range of NRA. This shows that

while the deuterium concentration gradually depletes within the first 12 µm due

to annealing, the deuterium at the same time diffuses far into the bulk at higher

temperatures: In the initial state, the deuterium has diffused up to 35 µm below

the implanted surface. After a pull-off experiment at 660 K, it reaches an almost

three times larger depth, although at a considerably lower average level.

The experiment and the simulation also differ from each other in some aspects.
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For annealing up to 470 K, the measured depletion of the deuterium inventory is

significantly stronger than the simulated one. The reason is that the 1.2 eV traps,

which bind most of the deuterium in the simulation, barely release any deuterium

at this temperature. This coincides with the conclusion drawn from the analysis of

the TDS spectra shown in Figure 8.29 that in real specimens, there is a depletion

channel for high-energy traps also at low temperatures. Also, while the measured

and simulated depth profiles after annealing up to 660 K match rather well for

depths beyond about 1 µm, there are some notable differences in the near-surface

region: The surface peak already starts to deplete in the experiment, while it is

yet unaffected in the simulation. Furthermore, the measured depth profile shows

signs of the local minimum after the surface peak becoming shallower at 660 K.

In the simulation, on the other hand, this region is depleted preferentially and

the minimum deepens.
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Figure 8.31. Measured (a) and simulated deuterium concentration depth profiles in stress-

relieved tungsten implanted at 370 K with an ion energy of 38 eV/D to a fluence

of 6×1024 D m−2. Panel (a) shows depth profiles measured 2 days and 2 months

after plasma exposure, as well as after pull-off experiments at 470 and 660 K.

Panel (b) shows the initial state after a simulated D implantation as well as the

result of pull-off experiments at 470 and 660 K.

While the diffusion-trapping model can at least qualitatively explain the stiffness

of the concentration profile during annealing, it fails to reproduce the losses during

long-term storage for two months at room temperature: At 300 K, the 0.7 eV traps

can be practically fully depleted, but they contain less than 10% of the total

inventory in simulations. The 1.2 and 2.2 eV traps, on the other hand, do not

change their population during simulated storage. A real specimen stored for two

months at room temperature only contains two thirds of the deuterium inventory

measured two days after implantation, i.e, the loss is three times as much as in
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the simulations (see Figure 8.31a). This means that at least the 1.2 eV trap must

also lose a significant amount of deuterium. Indeed, the investigation of storage

time effects on TDS spectra by Moshkunov et al. [72] also showed that the high-

energy traps are depleted and agree on the magnitude of the total deuterium loss,

too.

Like the observations made above for a specimen annealed up to 470 K, this ef-

fect cannot be explained by uncorrelated traps as they are assumed in diffusion-

trapping models. A mechanism that could explain the observed behaviour is that

interstitial solutes in metals tend to form so-called “dislocation atmospheres” [92]

due to trapping of solute atoms in the tensile strain field particularly of edge dislo-

cations. These aggregates of solute atoms are called “atmospheres” because they

are in a dynamic equilibrium with the surrounding lattice: In a stationary state

the rate of solute atoms entering the atmosphere balances the rate of particles

leaving it, while the average solute density in the atmosphere is higher than in

the surrounding lattice by a ratio that depends on temperature. At higher tem-

peratures, the evaporation rate increases and the atmosphere becomes thinner. In

this sense, a fitting analogy to the deuterium release observed here is, in fact, the

atmosphere of a planet: Gas molecules in the upper layers are only weakly bound

by gravity and can easily escape into space. This evaporation slowly reduces the

average density of the atmosphere, i.e., also the density near the ground where

the gravitational force is stronger. If the energy input by solar irradiation would

increase, the evaporation would become faster. Eventually even gas molecules

close to the ground would receive enough energy to overcome gravity and the

planet would completely lose its atmosphere. On the scale of the lattice constant

of tungsten, the strain field of a dislocation leads to correlated saddle points be-

tween interstitial sites: A site inside the strain field is not surrounded by “normal”

interstitial sites, but by sites with similarly reduced potential for the deuterium

(see also the potential trace for a dislocation shown in Table 2.1). One can there-

fore expect that the energy barrier for transition between such sites is also lower

than between isolated traps of the same binding energy.

Looking again at Figure 8.8, particularly at the fluences of 3× 1023 and

6× 1024 D m−2, one finds data points (with dashed outlines) with a noticeably

lower retention. It was already mentioned in section 8.2.1 that this is due to a

slower cool-down to room temperature after the plasma exposure had stopped.

The effects of a finite cool-down time are closely related to interrupted TDS runs

as they were described above — the main difference is that the temperature ramp
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is reversed, i.e., its slope is negative. Based on the parameter set found by help of

the “Ramp-and-Hold” experiments described above, cooling of a specimen after

exposure could also be simulated.

In these simulations, deuterium is lost predominantly from low-energy traps in

regions near the surface for exposures performed at 370 K. Using the model pa-

rameters determined in section 8.5.1, the fraction of the total inventory that

escapes from the specimen during cool-down is of the order of a few percent.

Looking at how much deuterium is lost from a specimen even during storage at

room temperature, one can expect that the total magnitude of the deuterium

loss during cool-down is also somewhat underestimated by the model. The ex-

perimentally observed magnitude of the loss due to slower cooling suggests the

same.

At higher implantation temperatures, one can expect the amount of deuterium

leaving the specimen while it cools to room temperature to be considerably higher,

since also higher-energy traps can then release deuterium at significant rates. This

means that great care has to be applied when trying to measure the deuterium

retention at elevated temperatures, because the cool-down process probably must

be considered as one of the main sources of error. Fortunately, the uncertainties

due to cool-down could be avoided for the comparison of different microstruc-

tures under the same loading conditions since the specimens were exposed and,

accordingly, also cooled simultaneously. Afterwards, the specimens were stored

together and analysed within a comparatively short time.

8.6. TEM investigations of defect evolution due to

hydrogen exposure

The partially recrystallised TEM specimen exposed to a deuterium plasma with

an ion energy of 38 eV/D was still very well transparent afterwards and had not

suffered any significant loss of thin areas due to sputtering or overheating. In fact,

as the STEM images in Figure 8.32 illustrate, the dislocation and grain structures

of the specimen did not change at all due to the plasma exposure. All disloca-

tions found in images that were taken before plasma exposure were still found

in the same place afterwards. New dislocations also had not formed. The most

obvious differences between images taken before and after plasma exposure were

due to differences in the orientation of the specimen: The orientation contrast of
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the grains is different in some cases, and there is also a small perspective distor-

tion due to different tilt angles, which were necessary to achieve good diffraction

contrast.

0.5 µm

(a)

0.5 µm

(b)

0.5 µm

(d)

0.5 µm

(c)

Figure 8.32. STEM images of a partially recrystallised specimen acquired before and after

exposure to a deuterium plasma with an ion energy of 38 eV/D to a fluence of

≈ 1.5 × 1023 D m−2. The specimen holder was cooled to ≤ 300 K during the

exposure. (a) and (c) respectively (b) and (d) depict the same area before and

after exposure. The only differences in the images are due to re-orientation of

the specimen.

A subtle difference was found in HRTEM images acquired right at the edge of the

perforation. As Figure 8.33 shows, the lattice fringes of the tungsten specimen

extend almost right to the edge. After exposure, however, a broad amorphous
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rim is visible. This could be an indication of the thin amorphised layer created

by energetic impurity ions from the plasma, as discussed in section 8.3.2. This

layer should only be visible in areas that have a comparable thickness. In thicker

areas, the tungsten lattice fringes from the undisturbed material would obscure

the amorphous layer.

10 nm

(b)

10 nm

(a)

Figure 8.33. HRTEM images of partially recrystallised tungsten (a) before and (b) after ex-

posure to a deuterium plasma with an ion energy of 38 eV/D to a fluence of

≈ 1.5 × 1023 D m−2 at ≈ 300 K. The micrographs depict similar regions at the

thin edge of the specimen. Note the width of the amorphous rim that is indicated

by the arrows.

Exposure of stress-relieved and partially recrystallised tungsten to a hydrogen

atmosphere in an ETEM yielded very similar results to the plasma exposure:

Dislocations neither appeared, disappeared nor moved at all when up to 0.7 kPa

of hydrogen gas were introduced into the specimen chamber. This is shown repre-

sentatively by the image pairs in Figures 8.34 and 8.35. The only reaction of the

specimen to the H2 atmosphere was that it started bending when the hydrogen

pressure began to rise. The bending stagnated when the hydrogen pressure sta-

bilised at its final value, and reverted back to the initial state when the hydrogen

was pumped away. The bending was a little stronger for the stress-relieved tung-

sten. Continuous irradiation of the specimen with a strongly focused STEM probe

under H2 atmosphere for one hour also did not have any effect on dislocations.

One could interpret the observed bending effect as an indication of hydrogen

being absorbed by the specimen, possibly assisted by the high-energy electron

beam. On the other hand, introduction of He gas, which is virtually insoluble in
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any metal, also produced a bending effect, so this could also be due to a pressure

difference between the front and the rear side of the specimen. In that light,

the difference in bending between the stress-relieved and partially recrystallised

specimens could also be simply due to a different mechanical stiffness.

One can conclude from both types of TEM experiments that the mere presence of

hydrogen or deuterium does not lead to the emission of dislocations and not even

to any changes of the dislocation network in a thin, electron-transparent TEM

specimen made of tungsten under the conditions investigated here. It should be

noted, though, that irradiation with protons at energies of several keV (i.e., above

the displacement threshold) are able to produce defects — particularly dislocation

loops — in tungsten [97].

For the case of low-energy deuterons, which is presented here, there are some fun-

damental differences between an electron-transparent thin foil and a bulk speci-

men: One is that any stress due to implanted (respectively absorbed) hydrogen or

deuterium might be redistributed differently in the thin foil. The other difference

is that there are only very few grain boundaries parallel to the exposed surface

of the foil because its thickness (several 10 nm) is much smaller than the aver-

age grain size (more than 1 µm). However, the investigation of blisters forming

on stress-relieved bulk specimens at 38 eV/D showed that these always form at

such grain boundaries (see, e.g., Figure 8.5). This prevents the formation of such

blisters on the thin areas of TEM specimens.

The results presented in this section can be seen as strong evidence that dis-

solved hydrogen isotopes do not produce dislocations in tungsten directly. Ac-

cordingly, additional effects such as the expansion of blister cavities are necessary

to produce these defects. So far, it was not possible to verify this directly by

cross-sectional TEM of the blister zone in plasma-exposed specimens. To date,

all well-established methods for the production of TEM cross-sections failed to

produce specimens of sufficient quality from tungsten.
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Figure 8.34. TEM specimen prepared from stress-relieved tungsten imaged in an environmen-

tal TEM. (a) shows the specimen before introduction of H2 gas. (b) shows the

same area after increasing the H2 pressure to 706 Pa within 6 minutes and hold-

ing the pressure for further 4 minutes. During the ramp-up of the pressure, the

specimen bent, but remained otherwise unchanged.
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Figure 8.35. TEM specimen prepared from partially recrystallised tungsten imaged in an en-

vironmental TEM. (a) shows the specimen before introduction of H2 gas. and

(b) shows the same area after increasing the H2 pressure to 700 Pa within 4 min-

utes and holding the pressure for further 6 minutes. Apart from bending, the

specimen did not undergo any visible changes.
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9. Synopsis and outlook

This chapter brings together the results of the individual experiments introduced

in chapter 7 and discussed in chapter 8. It will be shown how and why the ten-

dencies of deuterium retention and blistering correlate with the experimental

parameters such as temperature, fluence and ion energy, as well as with each

other. Together with the knowledge of the microstructure of the specimens (see

chapter 6), some of the key mechanisms of deuterium retention in tungsten due

to plasma exposure will be elucidated. Where appropriate, a brief outlook on

possible further investigations based on the findings gained in this thesis is also

given.

9.1. Balance of bulk diffusion and surface losses

As it was described in section 8.1, the variation of the deuterium inventory with

temperature is considerable. In the temperature range between 300 and 750 K,

the total inventory determined by thermal desorption measurements varies by

up to about one order of magnitude: The maximum value for tungsten stress-

relieved at 1200 K of up to nearly 8× 1020 D m−2 is reached at 370 K for an ion

energy of 38 eV and an incident fluence of 6× 1024 D m−2. At this temperature,

all specimens showed a maximum of retention. At 750 K, the retention in stress-

relieved tungsten was down to 7×1019 D m−2at the same fluence. Throughout the

whole temperature range, stress-relieved tungsten retained the most deuterium,

while fully recrystallised tungsten displayed the smallest retention. Both types,

i.e., annealed at 1700 or 2000 K, had approximately the same inventory. It was

2–5 times smaller than in stress-relieved tungsten. The values for tungsten par-

tially recrystallised at 1500 K were found in between those for stress-relieved and

fully recrystallised tungsten.

The deuterium inventories within the first ≈ 8 µm as determined by NRA (for

a maximum 3He energy of 4500 keV), i.e., the average local concentrations, vary
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over up to about three orders of magnitude with the temperature. This is even

more than the variation of the total inventories (see Figure 8.1). For stress-relieved

tungsten, a clear maximum was also found at 370 K, while for the other mate-

rials the inventory was about equal or even slightly larger at 300 K. At 750 K,

the deuterium was only barely detectable by NRA anymore, regardless of the

microstructure.

The large difference between the deuterium found within the first couple of mi-

crons below the plasma-exposed surface and the total inventory at elevated tem-

peratures points out the importance of deep diffusion for deuterium retention in

tungsten. This is expected and was also observed by various other researchers

(e.g., [1, 37, 82]).

The equilibrium concentration is close to zero for an undistorted tungsten

lattice — at the plasma working pressure of 1.0 Pa and temperatures below

1000 K it is less than 10−9 according to Frauenfelder’s values [27]. Accordingly,

the achievable concentration is practically fully determined by the local density

of traps. These are quickly saturated close to the surface, so further ones can only

be reached by diffusion. The temperature dependence of interstitial diffusion is

governed by the energy barrier between interstitial sites, which is overcome by

classical, thermally activated jumps at temperatures above 200 K [40]. Using

Frauenfelder’s value of 0.39 eV for this barrier, one finds a variation of almost 4

orders of magnitude between little more than 10−13 and nearly 10−9 m2/s within

the temperature range of 300–750 K investigated here. On the other hand, traps

release the deuterium bound to them also in a thermally activated process. Using

a binding energy of 1.2 eV with a pre-factor of 6.6×1011 s−1 (see section 9.6), one

finds an increase of the detrapping frequency by about 12 orders of magnitude,

from ≈ 5 × 10−9 (i.e., practically zero) to about 5 × 103 s−1. Looking at these

numbers, it is evident that at the same time as diffusion increases and transports

the deuterium deeper into the bulk of a specimen, traps lose their ability to bind

the deuterium. In other words, the balance of losses and diffusion determines the

final deuterium inventory.

However, one parameter, which also affects this balance, was not investigated

in this thesis: the ion flux. In the experiments performed here, it was about

1020 D m−2s−1. Significantly higher fluxes could not be reached with the PlaQ

device (see section 4.1 and [65]), while at lower fluxes, high fluences are no longer

attainable within reasonable time. However, one can still compare the tempera-

ture dependence of the deuterium retention observed here with values of other
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researchers. The more recent results published by Alimov et al. (e.g., [5]) were

performed at the same ion energy of 38 eV/D that was used here, but at a 100

times higher flux. Indeed, Alimov finds the maximum of deuterium retention at

a higher temperature of about 480 K.

In order to investigate in detail the flux dependence of deuterium retention in

tungsten (and correlated phenomena like blister formation) under otherwise iden-

tical conditions, a joint experimental campaign has been proposed: Several facil-

ities for plasma exposure of tungsten specimens are supposed to expose tungsten

specimens of the same type at fluxes between 1020 (PlaQ) and 1024 D m−2s−1

(Pilot-PSI or Magnum-PSI1; see also [117]). The ion energies will be 20–40 eV/D.

The target fluence will be 1026 D m−2 at a specimen temperature of 500 K.

The joint experiment is necessary since no single existing facility can cover the

whole flux range. These parameters are a compromise with respect to the range

of ion fluxes: At very high flux, cooling of the specimen to approximately room

temperature becomes extremely difficult. On the other hand, retention at low

fluxes becomes very small at temperatures above 500 K, as it was shown here

(see Figure 8.1). At fluxes in the range of 1022 D m−2s−1, 500 K is close to the

temperature for maximum retention [5]. The high fluence of 1026 D m−2 is nec-

essary so that the specimen can approach steady-state loading conditions under

ion fluxes in the 1024 D m−2s−1 range. Even then it will take only of the order of

100 seconds to reach this fluence. At 1020 D m−2s−1, this takes about 12 days of

continuous plasma operation. Such a plasma exposure was only recently success-

fully performed at PlaQ, but the results are not yet evaluated.

9.2. Evolution of the specimen with fluence

9.2.1. Near-surface displacement damage by plasma impurities

It was shown in section 8.2 that the trap concentration in a tungsten specimen

under deuterium plasma irradiation is not necessarily constant, but can evolve

with the ion fluence. The most obvious example for this is the surface concen-

tration maximum, which is barely visible at very low fluences in the 1022 D m−2

range, and saturates at very high deuterium concentration levels of the order

of 1–10 at.% for high fluences at an energy of 38 eV/D and a temperature of

1FOM Institute for Plasma Physics, Rijnhuizen, The Netherlands
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370 K during exposure. Similar concentration maxima near the surface were also

frequently reported before (see, e.g., [1, 3, 13, 82]). Here, this concentration maxi-

mum was ascribed to displacement damage caused by energetic impurity ions from

the plasma. These could also be detected in the specimen surface afterwards.

As it was shown in section 8.3.2, the amount of damage and accordingly the

deuterium retention depends linearly on the bias voltage that is applied to the

specimen during plasma exposure, respectively on the ion energy. Deuterium con-

centrations of more than 20 at.% were observed, which would correspond to sim-

ilar defect concentrations as observed for so-called superabundant vacancies in,

e.g., Pd and Ni [30]. Due to the limits of depth resolution achievable with the

D(3He, p)4He nuclear reaction [70], it is not yet clear if the increase of the deu-

terium concentration in the surface layer is actually due to more damage within a

layer of constant thickness, or due to an increase of the thickness of the damaged

layer. As discussed before, the latter explanation appears more likely because

the ion stopping range also increases with the energy of the ions. It should be

noted at this point that the effect of impurity ions could also depend strongly on

their concentration in the plasma. In the case of intentional impurity seeding, the

concentration can be sufficient to form a closed surface layer with a significantly

different chemical composition than the bulk material (e.g., tungsten nitride or

a similar compound). These layers can act as diffusion barriers preventing the

re-emission of implanted deuterium [83].

Nevertheless, the defect concentrations near the surface must be very high in order

to produce the observed results. It is likely that such high defect concentrations

in tungsten can only exist with hydrogen reducing the defect formation energy, as

suggested by Kirchheim [48], respectively by stabilising the defects. On the other

hand, it could also be that such high defects are only stable as thin surface layers.

It would therefore be very interesting to investigate the formation of radiation

damage by fast neutrons, such as they are produced in nuclear fusion reactions,

under simultaneous hydrogen loading. In this case, the damage would not only be

produced in a thin surface layer, but evenly distributed throughout the bulk of the

material. As a substitute for neutron irradiation (which inevitably leads to the

complication of radioactive specimens), also self-implantation with multi-MeV

tungsten ions, which have at least penetration ranges of the order of microns,

could be used [109].
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9.2.2. The role of blisters

Whenever blisters were found on the surface of a specimen, a distinct secondary

maximum of the deuterium concentration was found in the same depth as the

cavities corresponding to the surface features, which are depicted in Figures 8.5

and 8.20. Also, the maximum of blistering activity was always coincident with

a maximum of the deuterium retention. Blistering on stress-relieved tungsten

specimens was found to increase with fluence and stagnate at high fluences, as

did the shape and magnitude of the secondary deuterium concentration maximum

observed by NRA (see Figure 8.11). Together, these observations provide strong

evidence that the formation of blisters locally increases the trap density.

On the other hand, only a few percent of the deuterium are found to be released

as D2 bursts due to rupturing blisters during TDS with sufficient time resolution

[67]. Considering that blisters that collapsed during TDS are not re-inflated when

the specimen is loaded with deuterium a second time, but the deuterium retention

barely changes, one has to assume that these bursts indeed represent all (or at

least most) of the D2 gas stored in the cavities. This means that the deuterium

is not primarily retained in gaseous form inside the blister cavities, as suspected,

e.g., by Causey et al. [16], but in traps in the deformed material around them.

This would also help to explain the comparatively low pressure of the order of

100 MPa or less that was estimated from the opening of individual blisters by FIB

and continuum mechanical calculations of the inflation and relaxation process

[9]. Applying Sieverts’ law (2.5) with Frauenfelder’s solubility constant [27] of

9 × 10−3 exp[−1.04eV/(kBT )] to the observed deuterium concentrations of the

order of 10−4 to 10−3 at 370 K, the equilibrium pressure should be at least 14

orders of magnitude higher! This unrealistically high value can only be alleviated

by traps reducing the occupancy of “normal” interstitial sites down to nearly zero.

The importance of the mechanical deformation of the material associated with

blistering for the production of lattice defects — i.e., traps for deuterium — was

also pointed out by Alimov et al. [6]. The direct production of dislocations due

the stress caused by the implantation of deuterium — i.e., without fracturing of

the material — was suspected, e.g., by Ogorodnikova et al. [82]. However, this can

be now considered rather unlikely because the experiments on hydrogen loading

of transparent TEM specimens discussed in section 8.6 showed no indication for

such a process.

It remains to be proven which type of lattice defect is responsible for the accumu-
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lation of deuterium in the blister zone. Based on the correlation of the dislocation

density with the deuterium retention (for details see section 9.5), dislocations are

the most likely candidate. Most deuterium loading experiments were performed

at 370 K, i.e., at elevated temperatures but below the BDTT. In this semi-brittle

regime, crack-tip plasticity occurs [35]. This leads to the emission of dislocations

particularly at the edges of blister cavities.

On the other hand, in Alimov’s opinion [6] vacancies and vacancy clusters as well

as voids, such as the blister cavities themselves, are responsible. At least the signif-

icant retention in the cavities seems rather unlikely based on the results presented

here. To finally resolve the issue of the type and density of traps being produced

in the vicinity of blisters, the direct observation of the dislocation density around

blister cavities both in stress-relieved and recrystallised tungsten is necessary. As

mentioned before, the preparation of cross-sectional TEM specimens of sufficient

quality was not yet successful. A way out could be electron channelling contrast

imaging (ECCI). Gutierrez-Urrutia et al. [36] have shown the potential for high-

resolution imaging of dislocations with this method. The main advantage of this

method for the present problem is that although a high-quality surface compa-

rable to that of a TEM specimen is necessary to achieve this, the specimen does

not need to be electron transparent. While electrochemical polishing was found

to be unsuitable for the thinning of cross-section specimens, it works well for a

thick cross-section. A recent first attempt to use ECCI for the imaging of disloca-

tions in a thick region of an electropolished tungsten TEM specimen was already

successful.

In order to understand the evolution of blisters and their associated trap sites,

an integrated multi-scale model including the diffusion and trapping of tungsten

coupled with the nucleation and expansion of blister cavities and a model for

the production of the associated defects would be helpful. Such a model would

probably have to bridge the gap between microscopic molecular dynamics (MD)

simulations and meso- to macroscopic mechanical calculations such as finite ele-

ment simulations.

9.2.3. Fluence dependence of deuterium retention

The evolution of the trap density with fluence is necessary to explain the exper-

imentally observed fluence dependence of deuterium retention. At small fluences

up to about 1023 D m−2, the deuterium inventory increases faster than the square
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root of the fluence, which can only be caused by increasing the trap density with

the fluence. At fluences of 1024 D m−2 and higher, the trap evolution begins to

stagnate and the enhanced trap concentration near the irradiated surface reduces

diffusion into the bulk, up to the point where the deuterium inventory increases

slower than the square root of the fluence, i.e., than undisturbed diffusion. A

slower deuterium uptake at high fluence was also observed before, e.g., by Haasz

et al. [37].

Ogorodnikova et al. [82] stated that an increased trap density within the im-

plantation range of a 3 keV D+ ion beam could not explain saturation effects

at high fluences, and ascribed it to a fluence-dependent diffusion coefficient due

to a transient, evolving stress field during the implantation instead. While such

a mechanism is by no means denied — it might even be of considerable impor-

tance in the case of deuterium implantation at high incident ion energies (see

section 8.3) — the results presented here clearly show that trap evolution has a

major effect under the conditions discussed here. Simulations with traps that do

not evolve with the fluence could not reproduce the observed behaviour across the

whole range of fluences, whereas an empirical trap evolution model based on deu-

terium depth profiles measured at different fluences qualitatively reproduced both

the steep increase of the deuterium retention at low fluences and the slower up-

take at high fluences. Because of these findings, the description of trap evolution

should be considered a central issue in any new models for the deuterium uptake

of tungsten due to plasma exposure. Please note that although Ogorodnikova et

al. [82] ascribe saturation of the deuterium retention to a stress-induced change of

the diffusion coefficient rather than to defect evolution, they also point out that

trap production during deuterium irradiation of tungsten specimen nevertheless

needs to be considered in simulations (see also [80]).

9.3. Influence of the surface preparation

It was shown in section 8.4 that the quality of the surface finish of a tungsten

specimen can have a marked influence on the deuterium retention. Particularly

specimens with only a rough “technical” finish show an increased retention due

the mechanical damaging of the surface (see Figure 8.21). Similar observations

were made by Sugiyama et al. [106] for tungsten specimens exposed to the diver-

tor plasma of the fusion experiment ASDEX Upgrade. Electropolished specimens

show a lower retention than even high-quality chemo-mechanically polished spec-



166 Chapter 9. Synopsis and outlook

imens. Still, chemo-mechanical polishing is deemed a good compromise for the

large-scale surveys performed for this thesis because it is a much faster and more

reliable preparation method.

In terms of blister formation, there was only little difference between mechanically

and electrochemically polished surfaces, but on the rough surface of an unpol-

ished specimen no blisters were found. This apparent suppression of blistering on

a rough surface was also suggested as a measure to counter blister formation on

fusion reactor plasma facing components by Nishijima et al. [75]. Considering the

results presented here, this would not reduce the deuterium retention in tungsten

components, but rather increase it slightly. Intentional roughening would, how-

ever, probably be not applicable to components in fusion reactor environment

because the surfaces are typically exposed to very large fluxes of ions at shal-

low incident angles, which leads to smoothing of surfaces [106]. Together with

the erosion of material, this will inevitably lead to the removal of any artificially

applied surface morphologies over a prolonged operation period. All in all, the

initial surface quality is probably not relevant to any fusion reactor component

exposed to the plasma, but can have a strong influence on the results of laboratory

experiments, particularly with respect to blister formation.

9.4. Isotope exchange with “natural” hydrogen

The initial inventory of 1H in as-received tungsten specimens was also addressed

in section 8.4. It was shown by means of TDS of initial and stress-relieved ma-

terial that this “natural” hydrogen inventory can be considerable, but can also

be significantly reduced by pre-annealing of the specimens (see Figure 8.24). The

deuterium retention in specimens still saturated with the 1H isotope was signifi-

cantly reduced compared to specimens degassed before plasma exposure. TDS of

non-annealed, plasma-exposed specimens showed that nevertheless only a small

fraction of deuterium desorbs in the form of HD molecules. This indicates a spa-

tial separation of H and D in the specimen, which is achieved by replacement

of H by D atoms near the surface exposed to the plasma. The influence of the

“natural” 1H content shows that for reliable investigations of the hydrogen iso-

tope uptake of tungsten specimens, it is necessary to reduce the initial hydrogen

content as far as possible, or at least accurately determine it prior to the loading

experiment.
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The observed effects of the “natural” hydrogen content also indicate some possi-

bilities to reduce the tritium inventory in plasma-facing components of a future

fusion reactor. One is that pre-loading of these components with other hydrogen

isotopes could significantly slow down the uptake of the radioactive tritium. Since

it is not yet clear if the displaced isotopes migrate deeper into the bulk or are

released from the surface, it would probably be safer to use deuterium so that

the D-T fuel mixture of the reactor is not diluted by H. Second, the irradiation of

components with pure H or D plasmas after exposure to tritium might be used to

“flush out” the radioactive isotope. Some dedicated experiments towards isotope

exchange by subsequent plasma irradiation with D and H have also been recently

performed by Alimov et al. [7].

9.5. Correlation of deuterium retention in tungsten

with the microstructure

Looking at the whole set of data gathered for this thesis, particularly the results

from the variation of temperature and incident fluence described in sections 8.1

and 8.2, one trend becomes clear: Except for high ion energies, where other effects

take over, stress-relieved tungsten always retains the most deuterium, followed

by tungsten partially recrystallised at 1500 K. Both fully recrystallised materi-

als, whether annealed at 1700 or 2000 K, nearly always have remarkably similar

deuterium inventories, which are significantly smaller than those of the other two

materials. In the light of the large number of consistent results presented here,

the large difference between specimens recrystallised at 1700 and 2000 K that was

found in a preliminary study [66] must be regarded as an exception, or at least

as a peculiarity of plasma exposure at room temperature (to a smaller extent it

was also observed here for D implantation at 300 K). The observation that the

deuterium retention is reduced in recrystallised tungsten was also made, e.g., by

Ogorodnikova et al. [81]. On the other hand, Alimov et al. [2] found nearly the

same inventory after high-flux irradiation of stress-relieved and recrystallised ma-

terial over a wide range of temperatures, but this is probably due to the strong

blister formation enhancing the D retention (particularly for the recrystallised

tungsten) under these conditions (see section 8.3).

Looking back again at Figure 6.12, it becomes apparent that the deuterium in-

ventory follows the trend of the dislocation density rather than that of the grain
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boundary surface per unit volume: Compared to the dislocation densities of stress-

relieved and partially recrystallised tungsten, the dislocation densities of the fully

recrystallised materials are equal, namely effectively zero. The grain boundary

surface per volume, on the other hand, is markedly different for tungsten recrys-

tallised at 1700 and 2000 K because even when most dislocations are consumed

by the recrystallisation process, grain growth still takes place if the temperature

is sufficiently high. It is therefore proposed that dislocations (and possibly also

small-angle grain boundaries, which can be resolved into individual dislocations

in the TEM) are the primary trap for deuterium in the materials investigated

here. This fits well with the observation that unpolished tungsten with a strongly

deformed surface layer shows increased deuterium retention compared to well-

polished specimens. It is also consistent with the theory that the traps produced

by the growth of blisters are, in fact, dislocations emitted due to the large stresses

associated with cracking.

The residual traps density that is present in fully recrystallised (i.e., dislocation-

poor) tungsten specimens could be to a large part due to impurities. The nominal

purity of the base material of 99.97 wt.% corresponds to about 99.7 at.% taking

into account the atomic weight of the impurities listed in Table A.3. Since the

surface of the grain boundaries per unit volume is already fairly low for the large

grains found in recrystallised tungsten, their influence might be obscured. This

would explain the very close match of both types of fully recrystallised materials

under nearly all loading conditions discussed here. A higher effective diffusivity in

a material with larger grains exactly cancelling the effect of a lower trap density

is considered improbable, particularly since both NRA (probing a fixed volume)

and TDS (probing the total deuterium inventory) showed coincident deuterium

retention for both materials.

Blister formation due to deuterium plasma exposure also showed a strong depen-

dence on the microstructure. On stress-relieved tungsten, round, domed blisters

were found under nearly all exposure conditions (see, e.g., Figure 8.3). Only at

the highest specimen temperature of 750 K, very low ion energies of 8 eV/D or at

the smallest fluence of 6× 1022 D m−2 no blisters were found on this material. In

all these cases the local deuterium concentration was very low. The round, domed

blisters were always correlated to crack systems along grain boundaries such as

those shown in Figure 8.5. The deformation of the blister cap was in many cases

at least partially reversible (see also [9, 66]). Many of these blisters contain D2

gas at a pressure of approximately 0.1 GPa [9]. This gas is responsible for the
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final observed shape of the blister [9], but makes only a small contribution to the

total deuterium inventory (see also [67] and section 8.1.6). A much larger effect

is ascribed to the dislocation halos created during the expansion of the blister

cavity.

Occasionally blisters of this type were also found on partially recrystallised tung-

sten. Their occurrence was usually confined to those areas on the specimen surface

that showed little to no thermal grooving and are therefore considered to be still

close to their initial state. On fully recrystallised tungsten, on the other hand,

these domed blisters were never found. Instead, small, flat, angular features cor-

related to intragranular subsurface cracks and distortions such as those shown

in Figure 8.20 were found for implantation at high ion energies. They are also

remarkably similar to features produced by high-flux irradiation at comparable

ion energy and temperature [57].

At 105 eV/D, these “blister-like” features were found in large numbers in already

transformed surface areas on partially recrystallised specimens, and sporadically

also on fully recrystallised tungsten. At 205 eV/D, they were abundant on fully

recrystallised material, while any type of blistering was strongly reduced on the

other specimens. The blister-like features on recrystallised tungsten had a very

similar effect on the deuterium retention as the domed blisters on stress-relieved

material. This effect is also believed to be caused by the emission of dislocations

due to crack-tip plasticity at the cavities corresponding to the surface features.

It is strong enough to even cause a reversal of the dependence of the deuterium

retention on the initial microstructure (see section 8.3). In all cases, a strong

occurrence of blisters or blister-like features was equivalent to a high deuterium

retention, and vice versa, scarce or absent blisters went together with a small

inventory. This shows the importance of blistering phenomena for the deuterium

retention in tungsten. Because in most cases the blistering activity is affected

by pre-annealing (and therefore the microstructure) in the same direction as the

dislocation density, the net effect on the deuterium retention is even amplified.

The final proof for assigning a certain defect as the primary trap for deuterium

in tungsten would be a linear scaling of the deuterium retention with the density

of that defect, but it is difficult to find such a scaling law based on the data

presented in this thesis. It would require a fixed sampling volume to compensate

for the higher effective diffusivity at lower defect densities. This could be achieved

by using NRA data, which intrinsically only include the deuterium inventories up

to the depth that can be probed by the 3He ion beam. This, however, leads im-
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mediately to the problem that this volume near the implanted surface is strongly

affected by blistering, which was already shown to have a large influence on the

deuterium retention and also depends strongly on the specimen microstructure.

Suppressing blistering by a high specimen temperature during the plasma expo-

sure is also problematic since then the defects are already far from saturation.

Therefore, it would be desirable to find deuterium loading conditions that do

not lead to blistering on any type of specimen or any other damage while the

temperature is kept preferably near room temperature.

Such a method could be, e.g., electrochemical loading like it is well-proven for

other materials such as palladium [49] or also steels [101]. This is usually per-

formed with thin foils, so the specimen can be completely saturated. Current

integration during loading, NRA and TDS would then provide three independent

methods to determine the deuterium uptake. Another method to ascertain the

assignment of deuterium trapping to a certain type of crystal defect would be the

direct detection of deuterium and the correlation with the spatial distribution

of defects. Some first attempts at probing the deuterium inventory with a high

lateral resolution have been made using a NanoSIMS device, i.e., a secondary ion

mass spectrometry set-up capable of spatial resolutions of the order of 50–100 nm

[58]. These investigations pointed towards at least some attraction of hydrogen

to grain boundaries in recrystallised tungsten. This research is ongoing.

9.6. Density of sites in stress-relieved tungsten

In addition to identifying dislocations as a likely candidate for the dominant trap

particularly in stress-relieved tungsten, the density of sites in this material was

investigated in more detail. This was done by the analysis of thermal desorption

spectra of identical tungsten specimens exposed to a deuterium plasma under

the reference conditions, i.e., with an ion energy of 38 eV/D to a fluence of

6 × 1024 D m−2 at a temperature of 370 K. The spectra were acquired with

different heating rates and with interrupted temperature ramps. From the shift

of the main desorption peak temperature due to variation of the heating rate, a

dominant binding energy of 1.25±0.11 eV and a detrapping attempt frequency of

6.6± 3.3× 1011 s−1 was determined by combining the analysis method proposed

by Falconer [24] and numerical diffusion-trapping simulations using the model

described in section 3.3. The evaluation of measured and calculated spectra was

shown in Figure 8.27.
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The central properties of the model are interstitial diffusion based on the values

by Frauenfelder [27] and three types of traps whose density evolves with fluence

based on empirical laws derived from fluence variation experiments. Traps with

binding energies of 0.7 and 1.2 eV are used to represent the extended stress fields

respectively the cores of dislocations and therefore share the same time evolution.

They are present throughout the specimen. Traps at 2.2 eV are confined to a

thin surface layer and are used to model radiation damage caused by energetic

impurity ions. Large differences between the attempt frequency used in the model

and the frequency pre-factor resulting from the Falconer analysis for coinciding

peak positions between simulations and experiments stress the considerable effect

of diffusion from larger depths on thermal desorption spectra of deuterium, which

was also recognised by other researchers [14, 112].

The trap energies used here lie within the same range as those published by

other researchers (see, e.g., [82, 88]), but are interpreted differently by these:

The lowest-energy trap (Eb = 0.65 eV [88] respectively Eb = 0.85 eV [82]) is

assigned to dislocations (and also grain boundaries [82]) and identified with a

low-temperature release peak at between 400-500 K. Binding energies between

1.07 and 1.45 eV are assumed to correspond to vacancy-type defects [82, 88]

or pores [82] and are stated to give rise to a desorption peak roughly around

600 K. High-energy traps (Eb = 2.1 eV [88]) are assigned to atomic hydrogen

adsorbed at the internal surfaces of voids (see also [82]) and identified with high-

temperature deuterium release at ≈ 900 K. Particularly the intermediate trap

(here: Eb = 1.2 eV) is interpreted differently in this thesis and is assigned to

dislocations instead, based on the comparison of tungsten materials with different

microstructures (see section 9.5). Please keep in mind that the term “voids” as

it is used by Poon et al. [88] refers to nano-cavities consisting of 30–50 vacancies

[111], whereas, e.g., Tyburska et al. [109] identify essentially the same trap with

“vacancy clusters”. Basically, both terms are used to describe agglomerations of

vacancies, which are, in both cases, produced by ion irradiation. In this thesis, the

term “radiation damage” is used to simply describe the origin of these defects and

makes no further assumption about their actual nanoscopic structure. In addition

to traps with a high binding energy, rear-side release of deuterium is also found

to contribute to the high-temperature release peak (or rather shoulder) for the

specimens investigated here.

Please keep in mind when comparing the different models and the interpretation

of the traps as certain crystal defects that the experimental data on which they
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are based were acquired under very different conditions. Poon et al. [88] irradi-

ated annealed tungsten single crystals with an ion energy of 500 eV/D, whereas

Ogorodnikova et al. [82] exposed recrystallised polycrystalline tungsten to ions

with energies of 200 eV/D and 3 keV/D. In both cases a low initial dislocation

density is assumed. In contrast, the model introduced in this thesis was devel-

oped for hot-rolled and stress-relieved (i.e., dislocation-rich) tungsten exposed

to a low-energy (38 eV/D) deuterium plasma. The different interpretations are

therefore not necessarily contradictions, but probably rather the result of different

experimental conditions.

While the model used here describes the observed shift of the spectra with the

heating rate well, its deviations from experimental observations, especially when

applied to interrupted temperature ramps, hint at a more complex density of

sites than a set of three monoenergetic traps. In particular, considerable losses of

deuterium for TDS ramps interrupted at 470 K and for long-term storage at room

temperature can only be explained by a (slow) low-temperature loss channel for

the main 1.2 eV trap. This is in agreement with observations and conclusions

made by Moshkunov et al. [72]. Such an additional loss channel could be due to

correlated trap sites or to the “evaporation” of dislocation atmospheres. In order

to describe such effects, a new type of numerical model beyond the simplified

one-dimensional rate-equation approach of diffusion-trapping models needs to be

developed. The challenge of such a new model would be that it needs to include

correlations between traps on the scale of the tungsten lattice while at the same

time describing also the hydrogen isotope retention in macroscopic specimens.



173

10. Summary

In order to investigate the correlation between the deuterium retention in tung-

sten after exposure to a low-energy deuterium plasma and the microstructure of

the material, a large set of specimens with four different microstructures based

on a common initial material was prepared. These specimens were thoroughly

pre-characterised by scanning and transmission electron microscopy to asses the

grain size and dislocation density of each type of microstructure. These speci-

mens were then exposed under a variety of different conditions: The temperature,

the incident ion fluence and the ion energy were each varied individually while

keeping the other parameters constant. The common point in parameter space

for all parameter variations was at an ion energy of 38 eV/D, an incident fluence

of 6× 1024 D m−2 and a specimen temperature during exposure of 370 K (“refer-

ence conditions”). The ion flux was ≈1020 D m−2s−1 for all experiments presented

here. To minimise any errors due to reproducibility of the plasma discharge when

comparing the different microstructures, all four specimen types were exposed

simultaneously. Possible complications due to the surface quality and the initial

hydrogen inventory of the specimens were identified and consequently avoided.

Particular attention was also paid to identical storage of all specimens in vacuum

to avoid inconsistencies of the measured deuterium inventories due to the ef-

fects of room-temperature degassing and specimen oxidation that were described

by Moshkunov et al. [72]. This strict standardisation of the specimens and the

experimental procedure allowed to gather a large set of consistent data on the

deuterium retention in these specimens.

It was found that the most obvious correlation exists between the dislocation

density of the initial specimen and the deuterium retention. In all but a few ex-

ceptional cases where other mechanisms were dominant, the highest deuterium re-

tention was found in stress-relieved specimens, which had the highest dislocation

density. Fully recrystallised specimens, which had a much lower dislocation den-

sity, also displayed a low deuterium retention. Partially recrystallised specimens

showed intermediate values for both dislocation density and retention. Based on



174 Chapter 10. Summary

the present data, the trapping of deuterium at grain boundaries is considered

of minor importance because two types of fully recrystallised tungsten showed

nearly the same deuterium retention under a broad range of loading conditions

although the grain size in these specimens was significantly different.

Blistering was also found to considerably increase the deuterium retention. Blis-

ters predominantly occurred on stress-relieved specimens and occasionally on par-

tially recrystallised specimens under most of the exposure conditions applied here.

On fully recrystallised specimens, blister-like features were only found for high ion

energies and not under any other conditions investigated in this thesis. In many

cases, blistering amplifies or even dominates the microstructure dependence of

the deuterium retention described above. The large impact of blister formation

becomes most obvious for the highest ion energy of 205 eV/D: While blister-like

features are abundant on fully recrystallised specimens, blistering of the other

specimen types is strongly reduced. At the same time, the order of the materials

with respect to their deuterium retention is reversed, i.e., recrystallised tungsten

retains more deuterium than stress-relieved material under these conditions.

The enhanced deuterium retention associated with blisters and blister-like fea-

tures is predominantly caused by crystal defects created due to the expansion

of the blister cavity. A likely candidate are dislocations emitted due to crack-tip

plasticity. The deuterium stored as D2 gas inside the blister cavities is only of

minor importance for the total inventory in a specimen (see also [67]). However,

the pressure of this gas is the key mechanism for expanding the cavities at least

of round, domed blisters [9].

For the case of stress-relieved tungsten exposed at 38 eV/D and 370 K, the bind-

ing energy of the dominant trap was found to be 1.25±0.11 eV with a detrapping

attempt frequency of 6.6±3.3×1011 s−1. These values were found by comparison

of thermal desorption spectra acquired at different heating rates with simulated

spectra calculated with an iteratively refined diffusion-trapping model with dis-

crete trap energies, and by independently determining the binding energy and

the detrapping attempt frequency with the Falconer method [24]. They comprise

a unique, consistent parameter set and fully account for the influence of the mea-

sured depth distribution of the deuterium. By that, the non-uniqueness of trap

parameters derived from a single desorption spectrum [14, 112] is avoided. The

diffusion-trapping model used here includes trap evolution due to blister growth

and surface damage due to energetic impurity ions from the plasma. With that it

is capable of at least qualitatively reproducing the experimentally observed flu-
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ence dependence of the deuterium retention: For large fluences, this dependence

is slower than the square root of the fluence, respectively the implantation time,

while at small fluences the uptake of deuterium is faster. It also yields absolute

deuterium inventories close to the measured ones. Differences between modelled

and simulated thermal desorption spectra point towards a more complex, proba-

bly continuous density of sites function. Deuterium losses from high-energy traps

particular during long-term storage at room temperature and for annealing at

temperatures below the observed release maximum at approximately 600 K, sug-

gest an — albeit slow — additional low-temperature release channel from these

traps.

Many of the individual observations presented in this thesis were also made by

other researchers before, but in most cases isolated from each other and each

under different experimental conditions. Because of this they often seemed con-

tradictory. Performing all these experiments on a set of strictly standardised,

thoroughly characterised specimens and under standardised experiment condi-

tions reveals many connections between the observed phenomena. This shows that

the behaviour of the tungsten-hydrogen system needs to be recognised as being

the result of a number of complexly interacting effects. These effects may either

be synergistic or counteracting. Their interplay can even reverse under certain

conditions, such as for the reversal of the dependence of the deuterium retention

on the initial microstructure at high ion energies. All in all, the new, consistent

data set presented here allows new, valuable insights into the complex interaction

of low-energy deuterium ions from a plasma with tungsten and provides a solid

basis for further experiments and modelling concerning this topic.
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A. Appendix

A.1. Empirical models for trap density evolution

Please note: The models shown here are empirical descriptions of the observed

evolution of the observed trap (respectively deuterium) concentration depth pro-

files with the incident fluence. Although they are associated with certain types

of traps and their production mechanisms, their exact realisations are presently

not based on physical models of these mechanisms. Please keep in mind that the

deuterium concentration in a certain trap at a given temperature is a function of

both the trap concentration and its binding energy.

The following functions are used to describe the time evolution of the trap depth

profiles for the surface peak:

ρsurface(x, t) = B(csurface(t), ssurface, xsurfaces ; x) (A.1)

csurface(t) = csurfacemax · S(τ surface; t),

as well as for dislocation cores respectively strain fields:

ccore,strain⊥ (x, t) = ccore,strain⊥,0 + θ(t− t0) · G(A(t), w(t), xc(t); x) (A.2)

A(t) = ccore,strain⊥,max · S(τA; t− t0)
w(t) = w0 + wmax · S(τw; t− t0)
xc(t) = xc,⊥,max · S(τxc ; t− t0).
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The symbols B, G and S are in the above equations are defined as follows:

B(A, s, xs; x) =
A

1 + exp
[
x−xs
s

] (A.3)

G(A,w, xc; x) = A exp

[
−(x− xc)2

w2

]
(A.4)

S(τ ; t) = 1− exp

[
− t

τ

]
. (A.5)

(A.6)

θ(t− t0) is the Heaviside theta function, i.e., 1 for t− t0 > 0, and 0 otherwise.

Figure A.1 shows trap concentration profiles calculated with equations (A.2)

and (A.3) exactly like they were used for the diffusion-trapping simulations pre-

sented in this thesis. Please note that because of their low binding energy, only

a small fraction of the 0.7 eV traps are populated at the reference temperature

of 370 K (for which all simulations were performed), whereas the 1.2 and 2.2 eV

traps are saturated up to a certain depth (≈ 35 µm under the reference condi-

tions, i.e, an ion energy of 38 eV/D and a fluence of 6× 1024 D m−2). Beyond the

diffusion front, all traps are still empty.
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Figure A.1. Evolution of trap concentrations with time (respectively fluence) as it is used in

the diffusion-trapping model described in section 3.3. The time-dependent con-

centration profiles of traps with Eb = 0.7 eV and Eb = 1.2 eV, which are used to

represent the cores and strain fields of both intrinsic and blister-induced disloca-

tions, are shown in panels (a) and (b). Panel (c) shows the concentration profile of

the trap with a binding energy of Eb = 2.2 eV, which corresponds to the surface

peak.



A.2. Electron microscopes 179

A.2. Electron microscopes

Table A.1. Properties of the electron microscopes used for the work presented in this thesis.

microscope acceleration resolution detectors

Philips XL30 ESEM 1–30 kV 6 nm ETD (SE)

6 nm annular BSE

EDX (EDAX)

HELIOS NanoLab 600 0.35–30 kV ETD (SE, BSE)

≈1 nm in-lens SE/BSE

0.8 nm STEM (BF, DF, HADF)

CBS (annular BSE)

EDX (Oxford Instr.)

EBSD (HKL)

Jeol JEM-2010F 200 kV lattice GIF (TEM, EELS)

≈1 nm (W) STEM (BF, HAADF)

EDX (EDAX)

Titan E-Cell 80–300ST 80–300 kV < 0.08 nm (HR)TEM

< 0.14 nm STEM

EDX (Oxford Instr.)

EFTEM

environmental cell
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in image
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Figure A.2. Detector positions in the XL30 microscope. Images can be acquired with an

Everhart-Thornley detector (ETD) or with an annular backscattered electron

detector (BSE). An energy-dispersive X-ray detector is also present.

side view
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"up" direction
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ETD

specimen

electron column 

Figure A.3. Detector and beam positions in the HELIOS NanoLab 600 microscope. SE and

BSE images can be acquired both with a conventional Everhart-Thornley detector

(ETD) and an in-lens detector (TLD). Several additional retractable detector

are also present: a concentric solid-state backscattered electron detector (CBS)

and a scanning transmission electron microscopy detector (STEM). Furthermore,

an EDX system and an electron backscattering diffraction (EBSD) system are

present. A focused Ga+ beam intersects the electron beam ≈ 4 mm from the

objective lens. The angle between electron and ion beam is 52◦.
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A.3. Optical microscope

For the work presented here, an Olympus BX60MF5 upright microscope with

Köhler illumination and infinity-corrected plan semi-apochromat objectives

(Olympus UMPlanFl) was used. The objective revolver contains a slot for an

adjustable Nomarski prism with a compensator plate (Olympus U-DICR). The

illumination and observation optical pathways are equipped with slots for re-

tractable polarisation filters. The Nomarski prism was usually operated with bias

retardation close to the neutral point, i.e., in the range where interference col-

ors do not yet appear. The bias retardation was adjusted so that the apparent

illumination comes from the top left corner of the image, and the shadows point

towards the lower right corner. Since optical staining by interference colors was

not used, a green interference filter (Olympus U-IFF550-2) was used to produce

monochromatic light for illumination, which minimises chromatic aberration. A

Nikon DS-2Mv CCD camera with 1600× 1200 pixels (sensor format: 1 1/8”) was

used for image acquisition, usually in monochrome mode. The specifications of

the microscope system for all used objectives are listed in Table A.2.

Table A.2. Properties of the objectives used in the Olympus BX60MF5 optical microscope.

objective NA magnification Abbe resolution pixel equivalent

5× 0.15 50× 1.83 µm 1.76 µm/px.

10× 0.30 100× 0.92 µm 0.88 µm/px.

20× 0.46 200× 0.60 µm 0.44 µm/px.

50× 0.80 500× 0.34 µm 0.18 µm/px.

100× 0.90 1000× 0.31 µm 0.09 µm/px.
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A.4. Chemical purity specification of the tungsten

material

Table A.3. Impurity concentrations in the tungsten material from PLANSEE with 99.97 wt.%

nominal purity. The listed values are guaranteed maximum concentrations.

Impurity weight % atomic %

Ag 0.0010 0.0017

Al 0.0015 0.0102

As 0.0005 0.0012

Ba 0.0005 0.0007

C 0.0030 0.0459

Ca 0.0005 0.0023

Cd 0.0005 0.0008

Co 0.0010 0.0031

Cr 0.0020 0.0071

Cu 0.0010 0.0029

Fe 0.0030 0.0099

H 0.0005 0.0912

K 0.0010 0.0047

Mg 0.0005 0.0038

Mn 0.0005 0.0017

Mo 0.0100 0.0192

N 0.0005 0.0066

Na 0.0010 0.0080

Nb 0.0010 0.0020

Ni 0.0005 0.0016

O 0.0020 0.0230

P 0.0020 0.0119

Pb 0.0005 0.0004

S 0.0005 0.0029

Si 0.0020 0.0131

Ta 0.0020 0.0020

Ti 0.0005 0.0019

Zn 0.0005 0.0014

Zr 0.0005 0.0010
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A.5. Parameter space of the experiments
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analysis: +TDSNRA microscopy electron
optical

1200 K 1500 K 1700 K 2000 K

natural H

300 K

38 eV/D
370 K

6×1024 D/m2

205 eV/D

8 eV/D 5×1025 D/m2

1×1024 D/m2

surface
quality

Ramp
& Hold

(E)TEM

105 eV/D

450 K 500 K 750 K

3×1023 D/m2

6×1022 D/m2

3×1022 D/m2

Figure A.4. Schematic representation of the parameter space covered by the experiments pre-

sented in this thesis (see chapter 7). Specimens with four different microstructures

resulting from pre-annealing at 1200, 1500, 1700 or 2000 K (see chapter 6) were

exposed to deuterium plasmas at various ion energies, fluences and temperatures.

The crossing point of these parameter variations is an energy of 38 eV/D, a fluence

of 6 × 1024 D m−2 and a specimen temperature during exposure of 370 K. Un-

der these reference conditions, further investigations such as “Ramp-and-Hold”

experiments were performed, mainly for tungsten stress-relieved at 1200 K.
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A.6. Energy levels for deuterium in tungsten

-0.5

0.0

0.5

1.0

1.5

H 2
 / D

2
 gas

interst
itia

l si
te

⊥ (st
rain �eld)

⊥ (c
ore)

radiatio
n damage

saddle point

∆H
0 f  (

eV
/a

to
m

)

 ∆Hsol = 1.04 eV

Edi� = 0.39 eV Eb = 0.7 eV

Eb = 1.25 eV

Eb = 2.2 eV

exothermic

endothermic

Figure A.5. Overview of energy levels for deuterium in tungsten. As the reference scale, the

standard enthalpy of formation ∆H0
f — which is 0 for gaseous hydrogen respec-

tively deuterium under standard conditions — is chosen. The values for the en-

thalpy of solution ∆Hsol and the diffusion barrier Ediff are those published by

Frauenfelder [27]. The detrapping (respectively binding) energy Eb for disloca-

tion cores (and possibly also grain boundaries) was derived in this thesis (see

section 8.5). The values of Eb for the strain fields of dislocations and radiation

damage at the plasma-exposed surface are estimates used for modelling (see sec-

tion 3.3).
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Molecular dynamics study of grain boundary diffusion of hydrogen in tung-

sten. Phys. Scr. T145, p. 014036, 2011.

Articles on other topics

• S. Brezinsek, R. Pugno, U. Fantz, A. Manhard, H. W. Müller, A. Kallen-

bach, and Ph. Mertens:

Determination of photon efficiencies and hydrocarbon influxes in the de-

tached outer divertor plasma of ASDEX Upgrade. Phys. Scr. T128, p. 40,

2007.

• S. Brezinsek, A. Pospieszczyk, D. Borodin, M. F. Stamp,R. Pugno,

A. G. McLean, U. Fantz, A. Manhard, A. Kallenbach, N. H. Brooks,

M. Groth, Ph. Mertens, V. Philipps, U. Samm, TEXTOR, ASDEX Up-

grade, DIII-D Teams and JET-EFDA Contributors:

Hydrocarbon injection for quantification of chemical erosion yields in toka-

maks. J. Nucl. Mater. 363–365, p. 1119–1128, 2007.

• K. Schmid, A. Manhard, Ch. Linsmeier, A. Wiltner, T. Schwarz-Selinger,

W. Jacob, and St. Mändl:
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