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NUMERICAL SIMULATION OF SURFACE ACOUSTIC WAVE
ACTUATED CELL SORTING

THOMAS FRANKE∗, R.H.W. HOPPE† , C. LINSENMANN‡ , AND K. ZELEKE§

Abstract.
We consider the mathematical modeling and numerical simulation of high throughput sorting of

two different types of biological cells (type I and type II) by a biomedical micro-electro-mechanical
system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW) manipulated
fluid flow in a microchannel. The BioMEMS consists of a separation channel with three inflow
channels for injection of the carrier fluid and the cells, two outflow channels for separation, and
an interdigital transducer (IDT) close to the lateral wall of the separation channel for generation
of the SAWs. The cells can be distinguished by fluorescence. The inflow velocities are tuned such
that without SAW actuation a cell of type I leaves the device through a designated outflow channel.
However, if a cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow
such that the cell leaves the separation channel through the other outflow boundary. The motion
of a cell in the carrier fluid is modeled by the Finite Element Immersed Boundary Method (FE-IB)
featuring a coupled system consisting of the incompressible Navier-Stokes equations with respect
to a Cartesian coordinate system and the equation of motion of the cell described in a Lagrangian
framework. The generation of the SAWs is taken care of by the linearized equations of piezoelectricity,
and the impact of the SAWs on the fluid flow is realized by means of a boundary condition for the
Navier-Stokes equations. The discretization in space is done by P2/P1 Taylor-Hood elements for
the fluid flow and periodic cubic splines for the immersed cell, whereas for discretization in time we
use the backward Euler scheme for the Navier-Stokes equations and the forward Euler scheme for
the equation of motion of the immersed cell. This backward Euler/forward Euler Finite Element
Immersed Boundary Method (BE/FE FE-IB) requires a CFL-type condition for stability. Numerical
results are presented that illustrate the feasibility of the surface acoustic wave actuated cell sorting
approach.

Key words. surface acoustic wave actuated cell sorting, biomedical micro-electro-mechanical
system, finite element immersed boundary method

AMS subject classifications. 65M60, 74L15, 76Z05, 92C10, 92C50

1. Introduction. Biomedical Micro-Electro-Mechanical Systems (BioMEMS)
are miniaturized laboratories on a chip (lab-on-a-chip) that can be used for vari-
ous biomedical and biochemical purposes such as hybridization in genomics, protein
profiling in proteomics, and cytometry in cell analysis. In this project, we will fo-
cus on high throughput cell sorting in microfluidic channels which has significant
applications in basic cell biology, cancer research, clinical diagnostics, drug design in
pharmacology, tissue engineering in reproductive medicine, and transplantation im-
munology [6, 8, 16, 24, 28].
The working horses in cell sorting are still centrifugal methods where a sample is spun
in a rotating chamber such that heavier cells are separated from lighter ones [18, 23].
Other bioengineering technologies are based on electrokinetic/dielectophoretic meth-

∗Institute of Physics, University of Augsburg, D-86159, Augsburg, Germany. The author has
been supported by the DFG Priority Program SPP 1506.

†Institute of Mathematics, University of Augsburg, D-86159, Augsburg, Germany, and Depart-
ment of Mathematics, University of Houston, Houston, TX 77204-3008, USA (rohop@math.uh.edu).
The author has been supported by the DFG Priority Programs SPP 1253 and SPP 1506, by the NSF
grants DMS-0707602, DMS-0810176, DMS-0811153, DMS-0914788, DMS-10, and by the European
Science Foundation within the Networking Programme ’OPTPDE’.

‡Institute of Mathematics, University of Augsburg, D-86159, Augsburg, Germany. The author
has been supported by the DFG Priority Program SPP 1253.

§Department of Mathematics, University of Houston, Houston, TX 77204-3008, USA. The author
has been supported by the NSF grant DMS-10.

1



ods where an external electric field is used to separate cells with different charge or
polarization properties [7, 30, 32], or on magnetic methods, where cells (particles) of
interest are labeled with magnetic materials and separated from the rest by applying
an external magnetic field [22, 31]. Acoustic techniques rely on bulk acoustic wave
(BAW)-based acoustophoresis [21] or standing surface acoustic waves (SSAW) [25, 26]
to separate cells (particles) of different densities or sizes.

All the methodologies mentioned before heavily rely on different properties of the
cells or particles in the sample (density/size, charge/polarization, magnetic labeling)
and hence are restricted to specific applications. A very recent technology, which
does not depend on such contrasts, is surface acoustic wave actuated cell sorting
(SAWACS) [10, 11]. It combines the advantages of SAW generated acoustic streaming
in microfluidic polydimethylsiloxane (PDMS) devices and fluorescence activated cell
sorting (FACS).

Fig. 1.1. Surface acoustic wave actuated cell sorting (SAWACS) in a microfluidic PDMS
channel (from [11]).

The device consists of a separation channel with two inflow channels, one injection
channel, and two outflow channels. An interdigital transducer (IDT) is placed close to
the lower lateral wall. Once a cell has entered the separation channel and is recognized
as a cell designated to leave the upper outlet, the IDT is switched on and generates
the SAWs. The induced acoustic streaming deflects the focussing stream towards the
upper outlet (cf. Figure 1.1 (bottom)). Without SAW actuation, the stream does not
get diverted and the cell leaves the main channel through the lower outlet (cf. Figure
1.1 (top)). The device has been successfully tested for cell sorting involving different
cell types such as human keratinocytes, murine fibroblasts cells, and melanoma cells
[11].

In this paper, we will be concerned with SAW actuated cell sorting both for viscoelastic
cells such as red blood cells (RBCs) and malignant breast cancer cells.

2. The Mathematical Model Equations. We use standard notation from
Lebesgue and Sobolev space theory (cf., e.g., [29]). In particular, for a bounded do-
main Ω ⊂ Rd, d ∈ N, we denote by L2(Ω) and L2(Ω) := L2(Ω)d, the Hilbert space of
square integrable scalar- and vector-valued functions on Ω, equipped with the inner
product (·, ·)0,Ω and the associated norm ∥ · ∥0,Ω, respectively. L2

0(Ω) stands for the
subspace of functions with zero integral mean. Further, we denote by Hs(Ω), s ∈ R+,
the Sobolev space of vector-valued functions with the inner product (·, ·)s,Ω and the
associated norm ∥ · ∥s,Ω. The space Hs

0,Γ′(Ω) is the subspace with vanishing trace on

Γ′ ⊆ Γ. We will omit the subindex Γ′, if Γ′ = Γ. H−s(Ω) stands for the dual space of
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Hs
0(Ω) with ⟨·, ·⟩ referring to the dual product. The space Hs(Ω̄) ⊂ Hs(Ω) is the sub-

space of all u|Ω where u ∈ Hs(Rd) and ⟨u|Ω,φ⟩ = ⟨u, φ̃⟩ for all φ ∈ C∞
0 (Ω) with φ̃

referring to the continuation of φ by zero outside Ω. We denote by Hs−1/2(Γ′), s ≥ 1,

the trace space of vector-valued functions on Γ′. We further refer to H
s−1/2
00 (Γ′) as the

space of functions whose extensions by zero to Γ\Γ′ belong to Hs−1/2(Γ). Finally, we
denote by Ck,µ(Ω) and Ck,µ(Ω), k ∈ N0, µ ∈ (0, 1/2), the Banach spaces of k-times
continuously differentiable scalar- and vector-valued functions on Ω whose derivatives
of order k are Hölder continuous of order µ.
Moreover, for T > 0 and a Banach space Z (Z) of scalar (vector-valued) func-
tions, we denote by L2((0, T ), Z) (L2((0, T ),Z)) the Hilbert space and by C([0, T ], Z)
(C([0, T ],Z)) the Banach space of functions v : [0, T ] → Z (v : [0, T ] → Z) with
norms

∥v∥L2((0,T ),Z) :=
( T∫

0

∥v(t)∥2Zdt
)1/2

,

∥v∥C([0,T ],Z) := max
t∈[0,T ]

∥v(t)∥Z ,

and analogous settings in the vector-valued case. The spaces Hs((0, T ), Z), s ∈ R+,
(Hs((0, T ),Z)) are defined likewise.

2.1. Incompressible Navier-Stokes Equations. We consider a microchannel

Ω := (0, a1)× (0, a2), ai > 0, with three inflow boundaries Γ
(i)
in := {0}× (b

(i)
1 , b

(i)
2 ), 0 <

b
(i)
1 < b

(i)
2 , 1 ≤ i ≤ 3, two outflow boundaries Γ

(i)
out := {a1} × (c

i)
1 , c

(i)
2 ), 0 < c

(i)
1 <

c
(i)
2 < a2, 1 ≤ i ≤ 2, and a boundary Γac := (a1/2 − d1, a1/2 + d1) × {0}, where the

SAWs enter the channel. We set ΓD := ∂Ω \
(∪3

i=1 Γ̄
(i)
in ∪

∪2
i=1 Γ̄

(i)
out ∪ Γ̄ac

)
and Γ′ :=∪3

i=1 Γ̄
(i)
in ∪Γac∪ΓD. (cf. Figure 2.1). For T > 0, we further set Q := Ω×(0, T ],Σ

(i)
in :=

Γ
(i)
in × (0, T ], 1 ≤ i ≤ 3, Σ

(i)
out := Γ

(i)
out × (0, T ], 1 ≤ i ≤ 2, Σac := Γac × (0, T ], and

ΣD := ΓD × (0, T ].

We denote by v and p the velocity field and the pressure and refer to σ(v, p) =
ηD(v) − p I as the stress tensor, where η is the dynamic viscosity of the carrier
fluid and D(v) = (∇v + (∇v)T )/2 stands for the rate of deformation tensor. We

impose inflow velocities v
(i)
in at the inflow boundaries Σ

(i)
in , 1 ≤ i ≤ 3, do nothing

boundary conditions at the outflow boundaries Σ
(i)
out, 1 ≤ i ≤ 2, and zero velocity at

ΣD. Moreover, we have v = vac at Σac with vac = 0 in case of no SAW actuation
and vac = ∂u/∂t in case the IDT is switched on. Here, u stands for the displacement
vector of the SAW which will be specified in the following subsection 2.2. Finally, we
denote by v(0) the initial velocity and by F a force density which reflects the impact
of the immersed cell on the carrier fluid and which will be derived in subsection 2.3.
The initial-boundary value problem for the incompressible Navier-Stokes equations
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Γac

Γ
(1)
in

Γ
(2)
in

Γ
(3)
in

Γ
(1)
out

Γ
(2)
out

Fig. 2.1. Microchannel with three inflow boundaries Γ
(i)

in , 1 ≤ i ≤ 3,, two outflow boundaries

Γ
(i)
out, 1 ≤ i ≤ 2, and a boundary Γac where the SAWs enter the channel.

then reads as follows:

ρ
∂v

∂t
+ ρ(v · ∇)v −∇ · σ(v, p) = F in Q, (2.1a)

∇ · v = 0 in Q, (2.1b)

v = v
(i)
in on Σ

(i)
in , 1 ≤ i ≤ 3, (2.1c)

σ(v, p)n = 0 on Σ
(i)
out, (2.1d)

v = vac on Σac (2.1e)

v = 0 on ΣD, (2.1f)

v = v(0) in Ω, (2.1g)

Introducing the function spaces

V(0, T ) := H1((0, T ),H−1(Ω)) ∩ L2((0, T ),H1(Ω)),

W(0, T ) := {v ∈ V(0, T ) | v|
Σ

(i)

in
= v

(i)
in , 1 ≤ i ≤ 3, v|Σac = vac, v|ΣD

= 0},

Q(0, T ) := L2((0, T ), L2(Ω)),

the weak formulation of the Navier-Stokes equations requires the computation of
(v, p) ∈ W(0, T ) × Q(0, T ) such that for all w ∈ H1

0,Γ′(Ω) and all q ∈ L2(Ω) there
holds

⟨ρ∂v
∂t

,w⟩H−1,H1 + a(v,w)− b(p,w) = ℓ(w), (2.2a)

b(q,v) = 0, (2.2b)

v(·, 0) = v(0). (2.2c)
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Here, a(·, ·), b(·, ·), and the functional ℓ(·) are given by

a(v,w) := (ρ(v · ∇)v,w)0,Ω + (η∇v,∇w)0,Ω (2.3a)

b(p,v) := (p,∇ · v)0,Ω , ℓ(w) := ⟨F,w⟩H−1,H1
0
. (2.3b)

2.2. Surface Acoustic Wave Actuation. In SAW actuated cell sorting, the
separation channel is placed on top of a plastic chip partially coated by a piezoelectric
substrate such as lithium niobate (LiNbO3). The SAWs are generated by an inter-
digital transducer (IDT) close to the wall of the channel with its aperture pointing
towards the wall. The IDT features fingers substantially parallel to one another. A
static electric field E is applied to generate a strain which varies across the aperture
of the IDT. The electric field is either perpendicular or parallel to the fingers and
created by applying a dc voltage between two correspondingly positioned conductors.
The piezoelectric effect thus leads to SAWs that travel in the direction of the wall,
enter the fluid filled microchannel, and thus manipulate the flow field in the channel.

Fig. 2.2. Interdigital Transducer IDT (top) and motion of the SAW in the sagittal plane (right).

In piezoelectric materials, the stress tensor σ depends linearly on the electric field
E according to the generalized Hooke’s law

σ(u,E) = c ε(u)− eE, (2.4)

where ε(u) := (∇u + (∇u)T )/2 is the linearized strain tensor and u denotes the
mechanical displacement. Moreover, c and e refer to the symmetric fourth order elas-
ticity tensor and the symmetric third order piezoelectric tensor, respectively. Hence,
the application of an electric field causes a displacement of the material. The origin
of the piezoelectric effect is related to an asymmetry in the unit cell of a piezoelectric
crystal and can be observed only in materials with a polar axis (cf., e.g., [9, 17]).
Since the frequency of the electromagnetic wave is small compared to the frequency of
the generated acoustic wave, a coupling will be neglected. Further, the electric field
will be considered as quasistatic and irrotational such that it can be expressed as the
gradient of an electric potential Φ, i.e., E = −∇Φ. Moreover, piezoelectric materials
are nearly perfect insulators and hence, the only remaining quantity of interest in
Maxwell’s equations is the dielectric displacement D which is related to the electric
field by the constitutive equation

D = ϵE+P, (2.5)
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where ϵ is the electric permittivity of the material and P stands for the polarization
which depends linearly on the displacement u according to

P = e ε(u). (2.6)

We assume that the piezoelectric material with density ρ occupies some domain Ω1

with boundary Γ1 = ∂Ω1 and exterior unit normal n1 such that

Γ1 = ΓE,D ∪ ΓE,N , ΓE,D ∩ ΓE,N = ∅ ,

Γ1 = Γp,D ∪ Γp,N , Γp,D ∩ Γp,N = ∅ ,

where ΓE,D is a rectangular subdomain of the upper boundary of Γ1 and ΓE,N :=
Γ1 \ΓE,D. Given boundary data ΦE,D on ΓE,D, the pair (u,Φ) satisfies the following
initial-boundary value problem for the piezoelectric equations (cf. [13])

ρp
∂2u

∂t2
− ∇ · σ(u,E) = 0 in Q1 := Ω1 × (0, T1) , (2.7a)

∇ ·D(u,E) = 0 in Q1 , (2.7b)

u = 0 on Γp,D , n1 · σ = σn1 on Γp,N , (2.7c)

Φ = ΦE,D on ΓE,D , n1 ·D = Dn1 on ΓE,N , (2.7d)

u(·, 0) = 0 ,
∂u

∂t
(·, 0) = 0 in Ω1 . (2.7e)

For an ideal piezoelectric material, the SAW behaves like a Rayleigh wave which
propagates in the sagittal plane spanned by the unit surface normal and the real
wave vector k, i.e., the (x2, x3)-plane with respect to the coordinate system in Figure
2.1. SAWs are strictly confined to the limiting surface of the piezoelectric substrate
and practically nil outside a relatively narrow zone. To be precise, the amplitude
of the displacement u decays exponentially with depth into the substrate [17]. In
true Rayleigh waves, most of the energy (90%) is concentrated within one wavelength
from the surface. The mechanical displacement u should thus vanish as x3 → ∞, and
since x2 is the direction of propagation of the wave, the dependence of u on the x1

coordinate can be neglected. Moreover, if the harmonically excited IDT is placed close
to the lateral wall of the microchannel and we restrict ourselves to a two-dimensional
scenario, we may assume u = (u1, u2) with

u1 = 0, u2 = a sin(2πft) on Σac, (2.8)

where a is the amplitude and f stands for the operating frequency of the IDT. This
leads to vac = (vac,1, vac,2)

T with

vac,1 = 0, vac,2 =
∂u2

∂t
= 2aπf cos(2πft) on Σac (2.9)

in (2.1e) (cf. [2]).

2.3. Finite Element Immersed Boundary Method. Red blood cells (RBCs)
and malignant breast cancer cells (MCF-7) are viscoelastic bodies consisting of a cy-
toskeleton enclosing a heterogeneous cell interior [1]. In a simplified biomechanical
model, neglecting viscoelastic properties, the cytoskeleton can be represented as an
elastic membrane with specific elastic moduli and the cell interior as an incompress-
ible fluid with specific density and viscosity. For simplicity, we further assume that
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that the density and viscosity are the same as for the carrier fluid which facilitates
the application of the Immersed Boundary (IB) method. The IB method, which has
been originally suggested by Peskin [19] (cf. also the survey article [20] and the refer-
ences therein), relies on the incompressible Navier-Stokes equations (2.1a)-(2.1g) for
the motion of the carrier fluid within an Eulerian coordinate system, the material
elasticity equations describing the motion of the immersed cells within a Lagrangian
coordinate system, and the interaction equations which transform Eulerian into La-
grangian quantities and vice versa. The finite element version of the IB has been
introduced in [4] and further studied in [5, 12].

We consider an immersed cell occupying a subdomain Bt, t ∈ [0, T ], with boundary
∂Bt that is supposed to be a non-selfintersecting closed curve. We further assume that
the boundary ∂B0 of the initial configuration B0 has length L := |∂B0| and denote
by q ∈ [0, L] the Lagrangian coordinate labeling a material point on ∂B0. We further
refer to X(q, t) = (X1(q, t), X2(q, t))

T as the position of that point at time t ∈ (0, T ]
such that

X ∈ H1((0, T ),L2([0, L])) ∩ L2((0, T ),H3
per([0, L])), (2.10)

where H3
per([0, L]) := {Y ∈ H3((0, L)) | ∂kY(0)/∂qk = ∂kY(L)/∂qk, k = 0, 1, 2}.

The total elastic energy of the immersed boundary ∂Bt is given by

E(t) := Ee(t) + Eb(t) , t ∈ (0, T ), (2.11)

Ee(t) :=

L∫
0

Ee(X(q, t)) dq, Eb(t) :=

L∫
0

Eb(X(q, t)) dq, (2.12)

where Ee(t) and Eb(t) stand for the local energy densities according to

Ee(X(q, t)) =
κe

2

( ∣∣∣∣∂X∂q (q, t)

∣∣∣∣2 − 1
)
, (2.13a)

Eb(X(q, t)) =
κb

2

∣∣∣∣∂2X

∂q2
(q, t)

∣∣∣∣2 . (2.13b)

Here, κe > 0 and κb > 0 denote the elasticity coefficients with respect to elongation-
compression and bending.

Denoting by f the local force density according to f(q, t) = −E′(X(q, t)), where E′

stands for the Gâteaux derivative of E, the global force density F in (2.1a) is given
by

⟨F(t),w⟩H−1,H1
0
=

L∫
0

f(q, t) ·w(X(q, t)) dq, w ∈ H1
0(Ω). (2.14)
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Remark 2.1. For sufficiently smooth w in (2.14), integration by parts yields

⟨F(t),w⟩H−1,H1
0

= (2.15)

− κe

L∫
0

∂X(·, t)
∂q

· ∂

∂q
w(X(·, t))dq − κb

L∫
0

∂2X(·, t)
∂q2

· ∂2

∂q2
w(X(·, t))dq =

− κe

L∫
0

∂X(·, t)
∂q

·D1w(X(·, t))∂X(·, t)
∂q

dq − κb

L∫
0

∂2X(·, t)
∂q2

·D1w(X(·, t))∂
2X(·, t)
∂q2

dq

− κb

L∫
0

∂2X(·, t)
∂q2

·D2w(X(·, t))
(∂X(·, t)

∂q
,
∂X(·, t)

∂q

)
dq.

Moreover, the immersed boundary moves with the velocity v of the carrier fluid and
hence, the equation of motion of the immersed boundary reads as follows

∂X

∂t
(q, t) = v(X(q, t), t), (q, t) ∈ [0, L]× (0, T ], (2.16a)

X(·, 0) = X(0)(·). (2.16b)

2.4. A Stability Estimate. In case v|Σ = 0, a stability estimate for the FE-IB
has been derived in [5], whereas such an estimate has been provided in [12] for inflow
and outflow boundary conditions of the form νΓin

· v|Γin = −νΓout · v|Γout = g with
g being independent of t ∈ [0, T ]. In the sequel, we will establish a stability estimate
under the boundary conditions as given by (2.1c)-(2.1f).

We suppose that the inflow velocities v
(i)
in , 1 ≤ i ≤ 3, in (2.1c) and vac in (2.1e) satisfy

v
(i)
in ∈ H1((0, T ),H

5/2+µ
00 (Γ

(i)
in )), 1 ≤ i ≤ 3, (2.17a)

vac ∈ H1((0, T ),H
5/2+µ
00 (Γac)), (2.17b)

for some µ ∈ (0, 1/2). We further construct v
(i)
out, 1 ≤ i ≤ 2, according to

v
(i)
out ∈ H1((0, T ),H

5/2+µ
00 (Γ

(i)
out)), 1 ≤ i ≤ 2, (2.18)

such that for t ∈ [0, T ] there holds

2∑
i=1

∫
Γ
(i)

out

n · v(i)
out(s, t) ds+

3∑
i=1

∫
Γ
(i)

in

n · v(i)
in (s, t) ds+

∫
Γac

n · vac(s, t) ds = 0. (2.19)

Lemma 2.1. Under the assumptions (2.17a),(2.17b),(2.18), and (2.19) there ex-
ists a function

ψ̂ ∈ H1((0, T ),H3+µ(Ω) ∩H(div0,Ω)), (2.20)

satisfying for t ∈ [0, T ]

ψ̂(·, t)|
Γ
(i)
in

= v
Γ
(i)

in
(·, t), 1 ≤ i ≤ 3, (2.21a)

ψ̂(·, t)|
Γ
(i)

out
= v

Γ
(i)

out
(·, t), 1 ≤ i ≤ 2, (2.21b)

ψ̂(·, t)|Γac = vΓac(·, t). (2.21c)

8



Moreover, there exist constants Ĉ1 > 0 and Ĉ2 > 0 such that for t ∈ [0, T ] it holds

∥ψ̂(·, t)∥C2,µ(Ω̄) ≤ Ĉ1 g1(t), (2.22a)

t∫
0

∥∂ψ̂
∂τ

(·, τ)∥2C2,µ(Ω̄) dτ ≤ Ĉ2 g2(t), (2.22b)

where the upper bounds g1(t) and g2(t) are given by

g1(t) :=
3∑

i=1

∥v(i)
in (·, t)∥

H
5/2+µ
00 (Γ

(i)

in
)
+

2∑
i=1

∥v(i)
out(·, t)∥H5/2+µ

00 (Γ
(i)

out)
(2.23a)

+ ∥vac(·, t)∥H5/2+µ
00 (Γac)

,

g2(t) :=

t∫
0

( 3∑
i=1

∥∂v
(i)
in

∂τ
(·, τ)∥2

H
5/2+µ
00 (Γ

(i)

in
)
+

2∑
i=1

∥∂v
(i)
out

∂τ
(·, τ)∥2

H
5/2+µ
00 (Γ

(i)

out)
(2.23b)

+ ∥∂vac

∂τ
(·, τ)∥2

H
5/2+µ
00 (Γac)

)
dτ.

Proof. We denote by ṽ
(i)
in (·, t) ∈ H5/2+µ(Γ), 1 ≤ i ≤ 3, ṽ

(i)
out(·, t) ∈ H5/2+µ(Γ), 1 ≤

i ≤ 2, and ṽac(·, t) ∈ H5/2+µ(Γ) the extensions of v
(i)
in (·, t),v(i)

out(·, t), and vac(·, t) by
zero to Γ such that

∥ṽ(i)
in (·, t)∥5/2+µ,Γ . ∥v(i)

in (·, t)∥
H

5/2+µ
00 (Γ

(i)

in
)
, (2.24a)

∥ṽ(i)
out(·, t)∥5/2+µ,Γ . ∥v(i)

out(·, t)∥H5/2+µ
00 (Γ

(i)

out)
, (2.24b)

∥ṽac(·, t)∥5/2+µ,Γ . ∥vac(·, t)∥H5/2+µ
00 (Γac)

. (2.24c)

We define ṽ ∈ H1((0, T ),H5/2+µ(Γ)) according to

ṽ :=
3∑

i=1

ṽ
(i)
in +

2∑
i=1

ṽ
(i)
out + ṽac (2.25)

and observe that due to (2.19) there holds∫
Γ

n · ṽ ds = 0. (2.26)

In view of the trace theorem [29] and (2.26) there exists ψ̂ ∈ H1((0, T ),H3+µ(Ω) ∩
H(div0,Ω)) satisfying (2.21a)-(2.21c) and

∥ψ̂(·, t)∥3+µ,Ω .
3∑

i=1

∥ṽ(i)
in ∥5/2+µ,Γ +

2∑
i=1

∥ṽ(i)
out∥5/2+µ,Γ + ∥ṽac∥5/2+µ,Γ. (2.27)

Finally, (2.22a),(2.22b) follows from the continuous embedding ofH3+µ(Ω) inC2,µ(Ω̄).
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For the proof of the subsequent energy estimate, we note that the computational
domain Ω ⊂ R2 is such that for v ∈ W(0, T ) the Poincaré-Friedrichs inequality

∥v(·, t)∥0,Ω ≤ CΩ

(
∥∇v(·, t)∥20,Ω + ∥v(·, t)∥20,Γ

)1/2

, t ∈ [0, T ], (2.28)

holds true for some constant CΩ > 0.

Theorem 2.2. Let us suppose that the data of the problem satisfy (2.17a),(2.17b)
and that the additional assumption

max
0≤t≤T

g1(t) ≤
η

8 ρ Ĉ1 C2
Ω

(2.29)

holds true, where g1(t), t ∈ [0, T ], is from (2.23a) and the positive constants Ĉ1, CΩ

are given by (2.22a),(2.28). Moreover, assume that the triple (v, p,X) satisfies (2.2a)-
(2.2c) and (2.16a),(2.16b). Then, there exists a positive constant C, depending on
ρ, η, κe, κb, Ĉi, 0 ≤ i ≤ 2, and CΩ such that there holds

ρ

4
∥v(·, t)∥20,Ω +

η

8

t∫
0

∥∇v(·, t)∥20,Ω dτ +
κe

2

∥∥∥∥∂X(·, t)
∂q

∥∥∥∥2
0,[0,L]

+
κb

2

∥∥∥∥∂2X(·, t)
∂q2

∥∥∥∥2
0,[0,L]

≤ C
(
g1(0)

2 + g1(t)
2 +

t∫
0

(g1(τ)
2 + g2(τ)

2) dτ + max
0≤τ≤t

g1(τ)

t∫
0

∥v(·, τ)∥20,Γ dτ

+ ∥u(0)∥20,Ω +

∥∥∥∥∂X(0)

∂q

∥∥∥∥2
0,[0,L]

+

∥∥∥∥∂2X(0)

∂q2

∥∥∥∥2
0,[0,L]

+

t∫
0

∥∥∥∥∂X(·, τ)
∂q

∥∥∥∥2
0,[0,L]

dτ

+

t∫
0

∥∥∥∥∂2X(·, τ)
∂q2

∥∥∥∥2
0,[0,L]

dτ
)
. (2.30)

Proof. Due to Lemma 2.1, w := v − ψ̂ is an admissible test function in (2.2a).
Integrating over [0, t], it follows that

t∫
0

⟨ρ∂v
∂τ

,v − ψ̂⟩ dτ +

t∫
0

a(v,v − ψ̂) dτ =

t∫
0

⟨F(τ),v − ψ̂⟩H−1,H1
0
dτ. (2.31)

Using partial integration, the Cauchy-Schwarz inequality, Young’s inequality with
ε1 > 0, and the Poincaré-Friedrichs inequality (2.28), the first term on the left-hand

10



side in (2.31) can be bounded from below according to

t∫
0

⟨ρ∂v
∂τ

,v − ψ̂⟩H−1,H1
0
dτ =

ρ

2

t∫
0

∂

∂τ
∥v(τ)∥20,Ω dτ − ρ(v(·, t), ψ̂(·, t))0,Ω (2.32)

+ ρ(v(·, 0), ψ̂(·, 0))0,Ω + ρ

t∫
0

(v(·, τ), ∂ψ̂
∂τ

(·, τ))0,Ω dτ ≥ ρ

4
∥v(·, t)∥20,Ω − 3ρ

4
∥v(·, 0)∥20,Ω

− ρ
(
∥ψ̂(·, t)∥20,Ω + ∥ψ̂(·, 0)∥20,Ω

)
− ε1ρ

t∫
0

∥v(·, τ)∥20,Ω dτ − ρ

4ε1

t∫
0

∥∂ψ̂
∂τ

(·, τ)∥20,Ω dτ

≥ ρ

4
∥v(·, t)∥20,Ω − 3ρ

4
∥v(·, 0)∥20,Ω − ρ

(
∥ψ̂(·, t)∥20,Ω + ∥ψ̂(·, 0)∥20,Ω

)
− ε1ρC

2
Ω

( t∫
0

∥∇v(·, τ)∥20,Ω dτ +

t∫
0

∥v(·, τ)∥20,Γ dτ
)
− ρ

4ε1

t∫
0

∥∂ψ̂
∂τ

(·, τ)∥20,Ω dτ.

For the second term on the left-hand side in (2.31) we obtain

t∫
0

a(v,v − ψ̂) dτ =

t∫
0

(ρ(v · ∇)v,v)0,Ω dτ − (2.33)

t∫
0

(ρ(v · ∇)v, ψ̂)0,Ω dτ +

t∫
0

(η∇v,∇(v − ψ̂)0,Ω dτ.

The first term on the right-hand side of (2.33) can be estimated as follows

t∫
0

(ρ(v · ∇)v,v)0,Ω dτ =
ρ

2

t∫
0

∫
Γ

|v(s, τ)|2 n · v(s, τ) ds dτ ≥ (2.34)

− ρ

2

t∫
0

∫
Γ

|v(s, τ)|2 |n · v(s, τ)| ds dτ ≥ −ρ

2
max
0≤τ≤t

g1(t)

t∫
0

∥v(·, τ)∥20,Γ dτ.

By means of the Cauchy-Schwarz inequality, Young’s inequality, and the Poincaré-
Friedrichs inequality (2.28), the remaining two terms on the right-hand side in (2.33)
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can be estimated from below according to

t∫
0

(η∇v,∇(v − ψ̂)0,Ω dτ −
t∫

0

(ρ(v · ∇)v, ψ̂)0,Ω dτ ≥ (2.35)

η

t∫
0

∥∇v(·, τ)∥20,Ω dτ − η

t∫
0

∥∇v(·, τ)∥0,Ω∥∇ψ̂(·, τ)∥0,Ω dτ −

ρ

t∫
0

2∑
i,j=1

∥vj(·, τ)∥0,Ω ∥∂vi

∂xj
(·, τ)∥0,Ω ∥ψ̂i(·, τ)∥0,Ω dτ ≥

(η
2
− ρ

√
2Ĉ1C

2
Ω max

0≤τ≤t
g1(τ)

) t∫
0

∥∇v(·, τ)∥20,Ω dτ −

ρ
√
2

2
C2

Ω max
0≤τ≤t

g1(τ)

t∫
0

∥v(·, τ)∥20,Γ dτ − η

2

t∫
0

g1(τ)
2 dτ.

In view of (2.15) and (2.16a), for the right-hand side in (2.31) we find

t∫
0

⟨F(τ),v⟩H−1,H1
0
dτ = (2.36)

t∫
0

(
− κe

L∫
0

∂X(q, τ)

∂q
· ∂

∂q
v(X(q, τ)) dq − κb

L∫
0

∂2X(q, τ)

∂q2
· ∂2

∂q2
v(X(q, τ)) dq

)
dτ =

t∫
0

(
− κe

L∫
0

∂X(q, τ)

∂q
· ∂

∂τ

(∂X(q, τ)

∂q

)
dq − κb

L∫
0

∂2X(q, τ)

∂q2
· ∂

∂τ

(∂2X(q, τ)

∂q2

)
dq

)
dτ

= −κe

2

t∫
0

∂

∂τ
∥∂X
∂q

(τ)∥20,[0,L] dτ − κb

2

t∫
0

∂

∂τ
∥∂

2X

∂q2
(τ)∥20,[0,L] dτ =

κe

2

(
∥∂X
∂q

(0)∥20,[0,L] − ∥∂X
∂q

(t)∥20,[0,L]

)
+

κb

2

(
∥∂

2X

∂q2
(0)∥20,[0,L] − ∥∂

2X

∂q2
(t)∥20,[0,L]

)
.

Using (2.15) again, we get

t∫
0

⟨F(τ), ψ̂⟩H−1,H1
0
dτ = (2.37)

κe

t∫
0

(∂X
∂q

,D1ψ̂(X(·, τ))∂X
∂q

)
0,[0,L]

dτ + κb

t∫
0

(∂2X

∂q2
,D1ψ̂(X(·, τ))∂

2X

∂q2

)
0,[0,L]

dτ

+ κb

t∫
0

(∂2X

∂q2
,D2ψ̂(X(·, τ))(∂X

∂q
,
∂X

∂q
)
)
0,[0,L]

dτ.

The stability estimate (2.30) now follows by using (2.32) with ε1 := η/(4ρC2
Ω) and

(2.33)-(2.37) in (2.31).
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3. Semi-Implicit FE Immersed Boundary Method. For discretization in
space and time we use the Backward Euler/Forward Euler Finite Element Immersed
Boundary Method (BE/FE FE-IB) from [12] in the sense that we discretize the Navier-
Stokes equations by the backward Euler method in time and by Taylor-Hood P2/P1
elements in space, whereas we discretize the equation of motion of the immersed cell
by the forward Euler scheme in time and by periodic cubic splines in space.

3.1. Discretization in Space and Time. Let Th(Ω) be a quasi-uniform simpli-
cial triangulation of Ω that aligns with the partition of Γ. ForK ∈ Th(Ω), we denote by
|K| the area of K, by hK the diameter of K, and we set h := max{hK | K ∈ Th(Ω)}.
Further, Pk(K), k ∈ N, refers to the set of polynomials of degree ≤ k on K. For
the spatial discretization of the weak formulation (2.2a)-(2.2c) of the incompressible
Navier-Stokes equations we use P2-P1 Taylor-Hood elements [14, 15], i.e., we define

Vh :={vh ∈ C(Ω̄)|vh|K ∈ P2(K)2,K ∈ Th(Ω)},
Qh :={wh ∈ C(Ω̄)|wh|K ∈ P1(K),K ∈ Th(Ω)},

and set V
h,Γ

(i)

in
:= Vh|Γ(i)

in
, 1 ≤ i ≤ 2, and Vh,Γac := Vh|Γac . The finite element

spaces are spanned by the canonically specified nodal basis functions.
For the discretization in time we consider an equidistant partition

T∆t := {0 =: t0 < t1 < · · · < tM := T} , M ∈ N,

of the time interval [0, T ] into subintervals of length ∆t := T/M and denote by v
(m)
h

an approximation of vh ∈ Vh at t = tn. We further refer to D+
∆tv

(m)
h := (v

(m+1)
h −

v
(m)
h )/(∆t) and D−

∆tv
(m)
h := (v

(m)
h − v

(m−1)
h )/(∆t) as the forward and backward

difference operator. For tm ∈ T∆t, we define v
(i)
h,in(·, tm), 1 ≤ i ≤ 2, and vh,ac(·, tm) as

the L2-projection of v
(i)
in (·, tm) onto Vh|Γ(i)

in
and of vac(·, tm) onto Vh|Γac . We set

W
(m)
h := {w(m)

h ∈ C(Ω̄) | w(m)
h ∈ Vh, w

(m)
h |

Γ
(i)

in
= v

(i)
h,in(·, tm),

1 ≤ i ≤ 2, w
(m)
h |Γac = vh,ac(·, tm), w

(m)
h |ΓD

= 0},

Q
(m)
h := {w(m)

h ∈ C(Ω̄) | w(m)
h |K ∈ Qh}.

The discretization of the immersed boundary is done with respect to a partition

T∆q := {0 =: q0 < q1 < · · · < qR := L} , R ∈ N,

of the interval [0, L] into subintervals Ii := [qr−1, qr], 1 ≤ r ≤ R, of length ∆qr :=
qr − qr−1 with ∆q := max{∆qr|1 ≤ r ≤ R}. We approximate X from (2.10) by
periodic cubic splines

Sh := {Yh ∈ C2([0, L]; Ω) | Yh|Ir ∈ P3(Ir)
2, 1 ≤ r ≤ R,

Y
(k)
h (q0) = Y

(k)
h (qR), k = 0, 1, 2},

where P3(Ir) stands for the set of polynomials of degree ≤ 3 on Ir. For Yh ∈ Sh,
we set Yr := Yh(qr), 0 ≤ r ≤ R. The discrete immersed cell occupies subdomains
Bh,tm ⊂ Ω with boundaries ∂Bh,tm that are C2 curves described by the periodic cubic

spline X
(m)
h (·) ∈ Sh.
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We define the total discrete energy by means of Eh(tm) := Ee
h(tm) + Eb

h(tm), where
the discrete elastic energy Ee

h(tm) and the discrete bending energy Eb
h(tm) are given

by

Ee
h(tm) =

κe

2

L∫
0

(∣∣∣∂X(m)
h

∂q
(q)

∣∣∣2 − 1
)
dq, Eb

h(tm) =
κb

2

R∑
r=1

qr∫
qr−1

∣∣∣∂2X
(m)
h

∂q2
(q)

∣∣∣2dq.
(3.1)

Observing that ∂3X
(m)
h (q)/∂q3 is constant on Ir, the discrete force density takes the

form

⟨F(m)
h ,wh⟩h = −κe

L∫
0

∂X
(m)
h

∂q
· ∂

∂q
wh(X

(m)
h (q) dq (3.2)

+ κb

R∑
i=1

qi∫
qi−1

∂3X
(m)
h

∂q3
· ∂

∂q
wh(X

(m)
h (q))dq = −κe

L∫
0

∂X
(m)
h (q

∂q
· ∇wh(X

(m)
h (q))

∂X
(m)
h

∂q
dq

+ κb

R∑
r=1

∂3X
(m)
h

∂q3

∣∣∣
Ir

·
qr∫

qr−1

∇wh(X
(m)
h (q))

∂X
(m)
h

∂q
dq,

which is a discrete approximation of (2.15).

The BE/FE FE-IB reads as follows: Given v
(0)
h ∈ W

(0)
h and X

(0)
h ∈ Sh, for m =

0, . . . ,M − 1 we perform the following two steps:

Step 1: Compute (v
(m+1)
h , p

(n+1)
h ) ∈ W

(m+1)
h ×Q

(m+1)
h such that for all wh ∈ Vh,0

(ρD+
∆tv

(m)
h ,wh)0,Ω + a(v

(m+1)
h ,wh)− b(p

(m+1)
h ,wh) = ℓ

(m)
h (wh), (3.3a)

b(wh,v
(m+1)
h ) = 0, (3.3b)

where ℓ
(m)
h (wh) := ⟨F(m)

h ,wh⟩h is given by (3.2).

Step 2: Compute X
(m+1)
h ∈ Sh according to

D+
∆tX

(m)
r = v

(m+1)
h (X(m)

r ), 1 ≤ r ≤ R. (3.4)

3.2. Stability of the semi-implicit FE-IB. For the derivation of a stability
estimate for the semi-implicit BE/FE-IB we note that the boundary ∂Bh,tm of the

immersed cell at time tm consists of C2 segments ∂B
(r)
h,tm

connecting the material

points X
(m)
h,r−1 and X

(m)
h,r , 1 ≤ r ≤ R. Referring to Th(∂B(r)

h,tm
) as the set {K ∈

Th(Ω) | K ∩ ∂B
(r)
h,tm

≠ ∅} we have

∥∇v
(m+1)
h ∥2

0,∂B
(r)
h,tm

≤
∑

K∈Th(∂B
(r)
h,tm

)

CKh−1
K ∥∇v

(m+1)
h ∥20,K . (3.5)

where CK is a positive constant independent of hK . Due to the quasi-uniformity of
Th(Ω) there exist constants 0 < cQ ≤ CQ that only depend on the local geometry of
the triangulation such that

cQh ≤ hK ≤ CQh , K ∈ Th(Ω). (3.6)
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Hence, denoting by C
(m)
r the maximum number of C2 curve segments contained in

an element K ∈ Th(∂B(r)
h,tm

) and setting

Ccell := c−1
Q max

0≤m≤M−1
max

1≤r≤R

(
C(m)

r max
K∈Th(∂B

(r)
h,tm

)

CK

)
, (3.7)

from (3.5) we obtain

∥∇v
(m+1)
h ∥20,∂Bh,tm

≤ Ccellh
−1∥∇v

(m+1)
h ∥20,Ω. (3.8)

In view of ∂X
(m)
h /∂q ∈ C1([0, L]), 0 ≤ m ≤ M, and taking into account that the third

derivatives ∂3X
(m)
h /∂q3 are constant vectors on Ir, 1 ≤ r ≤ R, we further define

Λ1 := max
0≤m≤M

max
q∈[0,L)

∣∣∣∣∣∂X(m)
h

∂q

∣∣∣∣∣ , Λ2 := max
0≤m≤M

max
1≤r≤R

∣∣∣∣∣∂3X
(m)
h

∂q3
|Ir

∣∣∣∣∣ . (3.9)

Moreover, we refer to ψ̂h(·, tm) as the biquadratic spline interpoland of ψ̂(·, tm) from

Lemma 2.1. Then, there exist constants C
(k)
2 > 0 such that

∥Dkψ̂h(·, tm)∥Ck(Ω̄) ≤ C
(k)
2 g

(m)
1 , 0 ≤ k ≤ 2, (3.10a)

m−1∑
ℓ=0

∥D+
∆tψ̂h(·, tℓ)∥Ck(Ω̄) ≤ C

(k)
2 g

(m)
2 , 0 ≤ k ≤ 2. (3.10b)

Here, g
(m)
1 := g1(tm) with g1(t) from (2.23a), whereas g

(m)
2 is given by (cf. (2.23b))

g
(m)
2 :=

m−1∑
ℓ=0

( 3∑
i=1

∥D+
∆tv

(i)
in (·, tℓ)∥2H5/2+µ

00 (Γ
(i)

in
)
+

2∑
i=1

∥D+
∆tv

(i)
out(·, tℓ)∥2H5/2+µ

00 (Γ
(i)

out)
+ ∥D+

∆tvac(·, tℓ)∥2H5/2+µ
00 (Γac)

)
∆t.

Theorem 3.1. Let (v
(m)
h , p

(m)
h ,X

(m)
h )Mm=0 be the solution of the semi-implicit

BE/FE FE-IB (3.3a),(3.3b) and (3.4). In addition to the assumptions (2.17a),(2.17b)
let

max
0≤r≤R

g
(m)
1 ≤ η

16 ρ C
(1)
2 C2

Ω

. (3.11)

be satisfied and suppose that the following CFL-condition holds true

∆t

h
≤ η

8Ccell(κeΛ1 + κbΛ2)
, (3.12)

where the positive constants CΩ, Ccell, C
(1)
2 , and Λ1,Λ2 are from (2.28),(3.7),(3.9), and

(3.10a). Then, there exists a positive constant C, depending on ρ, η, κe, κb, C
(k)
2 , 0 ≤
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k ≤ 2, and CΩ, Ccell,Λ1,Λ2 such that the following stability estimate is fulfilled

ρ

4
∥v(m)

h ∥20,Ω +
η

16

m∑
ℓ=0

∥∇v
(ℓ)
h ∥20,Ω ∆t+

κe

2

∥∥∥∥∥∂X(m)
h

∂q

∥∥∥∥∥
2

0,[0,L]

+ (3.13)

κb

2

∥∥∥∥∥∂2X
(m)
h

∂q2

∥∥∥∥∥
2

0,[0,L]

≤ C
(
(g

(0)
1 )2 + (g

(m)
1 )2 +

m−1∑
ℓ=0

(
(g

(ℓ)
1 )2 + (g

(ℓ)
2 )2

)
∆t +

max
0≤ℓ≤m−1

g
(ℓ)
1

m∑
ℓ=0

∥v(ℓ)
h ∥20,Γ∆t+ ∥v(0)

h ∥20,Ω +

∥∥∥∥∥∂X(0)
h

∂q

∥∥∥∥∥
2

0,[0,L]

+

∥∥∥∥∥∂2X
(0)
h

∂q2

∥∥∥∥∥
2

0,[0,L]

+

m−1∑
ℓ=1

∥∥∥∥∥∂X(ℓ)
h

∂q

∥∥∥∥∥
2

0,[0,L]

∆t+
m−1∑
ℓ=1

∥∥∥∥∥∂2X
(ℓ)
h

∂q2

∥∥∥∥∥
2

0,[0,L]

∆t
)
.

Proof. We choose vh = v
(ℓ+1)
h − ψ̂

(ℓ+1)

h in (3.3a), multiply the equation by ∆t
and sum over ℓ from ℓ = 0 to ℓ = m− 1. We thus obtain

m−1∑
ℓ=0

(
(ρD+

∆tv
(ℓ)
h ,v

(ℓ+1)
h − ψ̂

(ℓ+1)

h )0,Ω (3.14)

+ a(v
(ℓ+1)
h ,v

(ℓ+1)
h − ψ̂

(ℓ+1)

h )
)
∆t =

m−1∑
ℓ=0

⟨F(ℓ)
h ,v

(ℓ+1)
h − ψ̂

(ℓ+1)

h ⟩h∆t.

By partial summation we find

m−1∑
ℓ=0

(D+
∆tv

(ℓ)
h ,v

(ℓ+1)
h )0,Ω∆t =

1

2
(∥v(m)

h ∥20,Ω − ∥v(0)
h ∥20,Ω) (3.15a)

+
1

2
∆t

m−1∑
ℓ=0

∥D+
∆tv

(ℓ)
h ∥20,Ω∆t,

m−1∑
ℓ=0

(D+
∆tv

(ℓ)
h , ψ̂

(ℓ)

h )0,Ω∆t = (3.15b)

−
m−1∑
ℓ=0

(v
(ℓ)
h ,D+

∆tψ̂
(ℓ+1)

h )0,Ω∆t+ (v
(m)
h , ψ̂

(m)

h )0,Ω − (v
(0)
h , ψ̂

(0)
)0,Ω.

Using (3.15a),(3.15b), Young’s inequality with ε1 > 0, and the Poincaré-Friedrichs
inequality (2.28), the first term on the left-hand side in (3.14) can be bounded from
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below as follows

m−1∑
ℓ=0

(ρD+
∆tv

(ℓ)
h ,v

(ℓ+1)
h − ψ̂

(ℓ+1)

h )0,Ω∆t ≥ ρ

4
∥v(m)

h ∥20,Ω − ρ ∥v(0)
h ∥20,Ω − (3.16)

ρ ∥ψ̂
(m)

h ∥20,Ω − ρ

2
∥ψ̂

(0)

h ∥20,Ω − ε1ρ
m−1∑
ℓ=0

∥v(ℓ)
h ∥20,Ω∆t− ρ

4ε1

m−1∑
ℓ=0

∥D+
∆tψ̂

(ℓ)

h ∥20,Ω∆t

≥ ρ

4
∥v(m)

h ∥20,Ω − ρ ∥v(0)
h ∥20,Ω − ρ ∥ψ̂

(m)

h ∥20,Ω − ρ

2
∥ψ̂

(0)

h ∥20,Ω −

ε1ρC
2
Ω

(m−1∑
ℓ=0

∥∇v
(ℓ)
h ∥20,Ω∆t+

m−1∑
ℓ=0

∥v(ℓ)
h ∥20,Γ∆t− ρ

4ε1

m−1∑
ℓ=0

∥D+
∆tψ̂

(ℓ)

h ∥20,Ω∆t.

As in the proof of Theorem 2.2, for the second term on the left-hand side in (3.14)
we deduce the following lower bound.

m−1∑
ℓ=0

a(v
(ℓ+1)
h ,v

(ℓ+1)
h − ψ̂

(ℓ+1)

h ) ∆t ≥ (3.17)

η

m−1∑
ℓ=0

∥∇v
(ℓ+1)
h (·, τ)∥20,Ω ∆t− η

m−1∑
ℓ=0

∥∇v
(ℓ+1)
h ∥0,Ω∥∇ψ̂

(ℓ+1)

h ∥0,Ω ∆t −

ρ
m−1∑
ℓ=0

2∑
i,j=1

∥v(ℓ+1)
h,j ∥0,Ω ∥

∂v
(ℓ+1)
h,i

∂xj
∥0,Ω ∥ψ̂

(ℓ+1)

h,i ∥0,Ω dτ ≥

(η
2
− ρ

√
2C2

Ω max
1≤ℓ≤m

g1(tℓ)
)m−1∑

ℓ=0

∥∇v
ℓ+1)
h ∥20,Ω ∆t −

ρ
√
2

2
C2

Ω max
1≤ℓ≤m

g1(tℓ)

m−1∑
ℓ=0

∥v(ℓ+1)
h ∥20,Γ ∆t− η

2

m−1∑
ℓ=0

g1(tℓ)
2 ∆t.

Observing (3.2) and (3.4), for the right-hand side in (3.14) we obtain

m−1∑
ℓ=0

⟨F(ℓ)
h ,v

(ℓ+1)
h − ψ̂

(ℓ+1)

h ⟩h∆t = (3.18)

− κe

m−1∑
ℓ=0

L∫
0

∂X
(ℓ)
h

∂q
·D+

∆t

∂X
(ℓ)
h

∂q
dq∆t+ κb

m−1∑
ℓ=0

M∑
i=1

qi∫
qi−1

∂3X
(ℓ)
h

∂q3
·D+

∆t

∂X
(ℓ)
h

∂q
dq∆t +

κe

m−1∑
ℓ=0

L∫
0

∂X
(ℓ)
h

∂q
·D1ψ̂

(ℓ+1)

h

∂X
(ℓ)
h

∂q
dq∆t+ κb

m−1∑
ℓ=0

L∫
0

∂2X
(ℓ)
h

∂q2
·D1ψ̂

(ℓ+1)

h

∂2X
(ℓ)
h

∂q2
dq∆t

+ κb

m−1∑
ℓ=0

L∫
0

∂2X
(ℓ)
h

∂q2
·D2ψ̂

(ℓ+1)

h

(∂X(ℓ)
h

∂q
,
∂X

(ℓ)
h

∂q

)
dq∆t.
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Partial summation yields

− κe

m−1∑
ℓ=0

L∫
0

∂X
(ℓ)
h

∂q
·D+

∆t

∂X
(ℓ)
h

∂q
dq∆t = (3.19)

+ κe

m∑
ℓ=1

L∫
0

D−
∆t

∂X
(ℓ)
h

∂q
·
∂X

(ℓ)
h

∂q
dq∆t+ κe

( L∫
0

∣∣∣∣∣∂X(0)
h

∂q

∣∣∣∣∣
2

dq −
L∫

0

∣∣∣∣∣∂X(m)
h

∂q

∣∣∣∣∣
2

dq
)
.

For the first term on the right-hand side in (3.19) it follows that

κe

m∑
ℓ=1

L∫
0

D−
∆t

∂X
(ℓ)
h

∂q
·
∂X

(ℓ)
h

∂q
dq∆t = (3.20)

κe

m−1∑
ℓ=0

L∫
0

∂X
(ℓ)
h

∂q
·D+

∆t

∂X
(ℓ)
h

∂q
dq∆t+ κe∆t

m−1∑
ℓ=0

L∫
0

∣∣∣∣∣D+
∆t

∂X
(ℓ)
h

∂q

∣∣∣∣∣
2

dq∆t.

Taking (3.4),(3.7), and (3.9) into account, for the last term on the right-hand side in
(3.20) we find

L∫
0

∣∣∣∣∣D+
∆t

∂X
(ℓ)
h

∂q

∣∣∣∣∣
2

dq =

L∫
0

| ∂
∂q

(v
(ℓ+1)
h (X

(ℓ)
h ))|2 dq ≤ (3.21)

L∫
0

|∇v
(ℓ+1)
h (X

(ℓ)
h )|2

∣∣∣∣∣∂X(ℓ)
h

∂q

∣∣∣∣∣
∣∣∣∣∣∂X(ℓ)

h

∂q

∣∣∣∣∣ dq ≤

Λ1∥∇v
(ℓ+1)
h ∥20,∂Bh,tℓ

≤ CcellΛ1h
−1∥∇v

(ℓ+1)
h ∥20,Ω.

Combining (3.19),(3.20) and (3.21) results in

− κe

m−1∑
ℓ=0

L∫
0

∂X
(ℓ)
h

∂q
·D+

∆t

∂X
(ℓ)
h

∂q
dq∆t ≤ (3.22)

κe

2

(∥∥∥∥∥∂X(0)
h

∂q

∥∥∥∥∥
2

[0,L]

−

∥∥∥∥∥∂X(m)
h

∂q

∥∥∥∥∥
2

[0,L]

)
+

κe

2
CcellΛ1h

−1∆t
m−1∑
ℓ=0

∥∇v
(ℓ+1)
h ∥20,Ω∆t.

In much the same way we obtain

κb

m−1∑
ℓ=0

R∑
r=1

qr∫
qr−1

∂3X
(ℓ)
h

∂q3
·D+

∆t

∂X
(ℓ)
h

∂q
dq∆t ≤ (3.23)

κb

2

(∥∥∥∥∥∂2X
(0)
h

∂q2

∥∥∥∥∥
2

[0,L]

−

∥∥∥∥∥∂2X
(m)
h

∂q2

∥∥∥∥∥
2

[0,L]

)
+

κb

2
CcellΛ2h

−1∆t
m−1∑
ℓ=0

∥∇v
(ℓ+1)
h ∥20,Ω∆t.

Choosing ε1 := η/(4ρC2
Ω) in (3.16), observing (3.11), using (3.12) in (3.22),(3.23),

and estimating the remaining terms on the right-hand side in (3.18) from above as in
the proof of Theorem 2.2 allows to conclude.
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4. Results of Numerical Simulations. We present the results of numerical
simulations for two scenarios related to the separation of RBC cells and melanoma
cells in a separation channel by SAWACS. According to [11], we consider a separation
channel

Ω = (0µm, 300µm)× (0µm, 220µm)

with three inflow boundaries

Γ
(1)
in = {0} × (30µm, 80µm),

Γ
(2)
in = {0} × (100µm, 130µm),

Γ
(3)
in = {0} × (150µm, 200µm),

two outflow boundaries

Γ
(1)
out = {300} × (20µm, 100µm),

Γ
(2)
out = {300} × (120µm, 200µm),

and a boundary

Γac = (135µm, 165µm)× {0},

where the SAWs enter the separation channel. The density ρ and the dynamic vis-
cosity η have been chosen as

ρ = 1.0 · 103kg/m3, η = 6.0 · 10−3Pa · s

both for the carrier fluid and the fluid enclosed by the membrane of the RBC and
the melanoma cell. We have considered an RBC of diameter 7.5µm, perimeter L =
19.8µm and moduli [27]

κe = 6.0 · 10−6N/m, κb = 2.0 · 10−19Nm,

whereas the melanoma cell has been modeled as a sphere of diameter 16µm and
moduli [3]

κe = 2.8 · 10−4N/m, κb = 1.2 · 10−16Nm.

Scenario I: The first scenario represents an experimental set-up without SAW
actuation (i.e., vac = 0 on Σac) where an RBC enters the separation channel through

the inlet Γ
(2)
in and the inflow velocities v

(i)
in on Σ

(i)
in , 1 ≤ i ≤ 3, are chosen according to

v
(1)
in = (v

(1)
in,1, v

(1)
in,2)

T ,

v
(1)
in,1 = v̂

(1)
in m

(1)
in (x2)(x2 − b

(1)
1 )(b

(1)
2 − x2) cos α,

v
(1)
in,2 = − v̂

(1)
in m

(1)
in (x2)(x2 − b

(1)
1 )(b

(1)
2 − x2) sin α,

v
(2)
in = (v

(2)
in,1, v

(2)
in,2)

T ,

v
(2)
in,1 = v̂

(2)
in m

(2)
in (x2)(x2 − b

(2)
1 )(b

(2)
2 − x2),

v
(2)
in,2 = 0,

v
(3)
in = (v

(3)
in,1, v

(3)
in,2)

T ,

v
(3)
in,1 = v̂

(3)
in m

(3)
in (x2)(x2 − b

(3)
1 )(b

(3)
2 − x2) cos α,

v
(3)
in,2 = − v̂

(3)
in m

(3)
in (x2)(x2 − b

(3)
1 )(b

(3)
2 − x2) sin α.
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Fig. 4.1. Velocity field and motion of an RBC without SAW actuation: Initial state after
injection (left) and state shortly before the RBC leaves the separation channel (right)

Here, b
(1)
1 = 30, b

(2)
1 = 80, b

(2)
1 = 100, b

(2)
2 = 130, b

(3)
1 = 150, b

(3)
2 = 200, and m

(i)
in (x2),

1 ≤ i ≤ 3, are smooth cut-off functions satisfying m
(i)
in (x2) = 1 on [b

(i)
1 + ε, b

(i)
2 − ε]

and vanishing in b
(i)
1 and b

(i)
2 . The inflow velocities v̂

(i)
in , 1 ≤ i ≤ 3, and the angle α

have been chosen by means of

v̂
(1)
in = 5.0 · 10−2 m/s, v̂

(2)
in = 1.0 · 10−2 m/s, v̂

(3)
in = 10.0 · 10−2 m/s, α = π/6.

As can be seen in Figure 4.1, the RBC leaves the separation channel through the

outlet Γ
(1)
out.
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Fig. 4.2. Velocity field and motion of a melanoma cell with SAW actuation: Initial state after
injection (left) and state shortly before the cell leaves the separation channel (right)

Scenario II: The second scenario corresponds to a situation where a melanoma

cell enters the separation channel though the inlet Γ
(2)
in , the inflow velocities are chosen

as in Scenario I, and SAWs are created by an IDT with operating frequency f = 100.0
MHz that enter the channel through Γac. The impact of the SAWs on the fluid flow
is realized by an inflow velocity vac = (vac,1, vac,2) according to

vac,1 = 0, vac,2 = 2aπfmac(x1) cos(2πft) on Σac.

20



Here, a = 1.0·10−9 m and mac(x1) is a smooth cut-off function satisfyingmac(x1) = 1
on [a1/2− d1 + ε, a1/2+ d1 − ε] and vanishing in a1/2− d1 and a1/2+ d1. (cf. (2.9)).
Figure 4.2 displays the resulting velocity fields and the motion of the melanoma cell.
Due to the SAW actuation, the path of the melanoma cell is diverted such that it

leaves the separation channel through the outlet Γ
(2)
out.
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