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FRONT MOTION IN THE ONE-DIMENSIONAL

STOCHASTIC CAHN-HILLIARD EQUATION

D.C. ANTONOPOULOU†¶, D. BLÖMKER‡, G.D. KARALI†¶

Abstract. In this paper, we consider the one-dimensional Cahn-Hilliard equation perturbed by additive
noise and study the dynamics of interfaces for the new stochastic model. The noise is smooth in space and

is defined as a Fourier series with independent Brownian motions in time. Motivated by the work of Bates
& Xun on slow manifolds for the integrated Cahn-Hilliard equation, our analysis reveals the significant

difficulties and differences in comparison with the deterministic problem. New higher order terms, that we

estimate, appear due to Itô calculus and stochastic integration dominating the exponentially slow deter-
ministic dynamics of the interfaces. We derive a first order linear system of stochastic ordinary differential

equations approximating the equations of front motion. Furthermore, we prove stochastic stability for the

approximate slow manifold of solutions on a very long time scale and evaluate the noise effect.

Keywords: 1-D Stochastic Cahn-Hilliard, slow manifold, interface motion, additive noise, dynamics.

1. Introduction

1.1. The problem. The standard Cahn-Hilliard equation is a simple model for the phase separation of a
binary alloy at a fixed temperature, proposed in [17, 18]. This model was extended by Cook [23, 40] in
order to incorporate thermal fluctuations in the form of an additive noise. In this paper, we consider the
one-dimensional Cahn-Hilliard equation posed on (0, 1) with an additive stochastic term:

(SC-H) ut = (−ε2uxx + f(u))xx + ∂xẆ , 0 < x < 1, t > 0,

with no-flux boundary conditions of Neumann type:

ux = uxxx = 0 at x = 0, 1.(1.1)

Here, Ẇ is a smooth in space space-time noise defined as the formal derivative of a Wiener process W .
The nonlinearity f = f(u) is the derivative of a smooth double equal-well potential F taking its global
minimum value 0 at u = ±1 [1], with non-degenerate minima. A typical example is F (u) := 1

4 (u2− 1)2 with

f(u) := u3 − u. The parameter ε > 0 is a small atomistic interaction length modeling the width of layers
that develop during the initial phase separation of spinodal decomposition (cf. [12, 13]). In the later stages
of the separation process ε measures the width of interfacial regions between the pure phases u = ±1.

A characteristic feature of the Cahn-Hilliard model is the conservation of total mass
∫ 1

0
u(t, x)dx, which

we now fix to be M ∈ (−1, 1). Substituting ũ(t, x) :=
∫ x
0
u(t, y)dy we obtain the equivalent integrated

stochastic Cahn-Hilliard equation:

(ISC-H) ũt = −ε2ũxxxx + (f(ũx))x + Ẇ , 0 < x < 1, t > 0,

associated with the boundary conditions:

ũ(0, t) = 0, ũ(1, t) = M,

ũxx(0, t) = ũxx(1, t) = 0.
(1.2)
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J. Carr and R. Pego in [21, 22] presented a detailed analysis of the slow evolution of patterns of the singularly
perturbed Ginzburg-Landau equation. They proved existence and persistence of metastable patterns and
analyzed the equations governing their motion. These metastable states have been characterized in terms
of the global unstable manifolds of equilibria. In [7, 8], P.W. Bates and J. Xun extended their argument
and studied the dynamics of the one-dimensional C-H equation in a neighborhood of an equilibrium having
N+1 transition layers, using several estimates presented in [21, 22]. They determined the exponentially slow
speed of the layer motion and described precisely the layer motion directions. In addition, they established
existence of an N -dimensional unstable invariant manifold attracting solutions exponentially fast uniformly
in ε. Related work in this direction are [9, 33, 41].

Motivated by the work of Bates and Xun for the deterministic problem, we study dynamics for the
stochastic model. Due to stochastic integration, new higher order terms appear that we estimate using
techniques and ideas of [7, 8, 21, 22]. In the sequel we shall refer frequently to some important definitions
and results presented in the aforementioned articles, therefore, we give some details concerning our notation.
Following [21, 22], we use the letter f for the nonlinearity in (SC-H), and denote by F the double equal well
potential. In [7, 8] the symbol W ′ is used in place of f ; we avoided such a notation since we name by the

standard symbol Ẇ the additive noise.

1.2. The effect of noise. The stochastic Cahn-Hilliard equation being one of the important examples of
the nonlinear Langevin equations is based on a field-theoretic approach to the non-equilibrium dynamics
of metastable states (see for example [23, 37, 40]). The multi-dimensional generalized stochastic Cahn-
Hilliard equation associated with Neumann boundary conditions posed on bounded domains contains a
time dependent noise into the chemical potential and an additive multiplicative noise defined as the formal
derivative of a Wiener process. The chemical potential noise describes external fields [37, 35, 39], while the
free-energy independent noise may describe thermal fluctuations or external mass supply [23, 40, 37, 35].

Existence and uniqueness of solution for the stochastic problem was first studied in [24], where the
nonlinearity f is a polynomial of odd degree and the problem is posed on multi-dimensional rectangular
domains. Further, in [19], the author proved existence of solution and of its density for the stochastic
Cahn-Hilliard with additive noise (in the sense of Walsh, cf. [44]) posed on cubic domains. When the
trace of the Wiener process is finite, existence was analyzed in [28]. In [4], existence for the generalized
stochastic Cahn-Hilliard equation was derived for general convex or Lipschitz domains; the main novelty
was the derivation of space-time Hölder estimates for the Green’s kernel of the stochastic problem, by using
the domain’s geometry, which can be very useful in many other circumstances. The polynomial nonlinearity
which forces the solution to stay between the pure phases ±1 has been analyzed in [12, 13, 19, 20, 24, 28],
while in [27, 26, 34] a stochastic Cahn-Hilliard with reflection was considered.

In [12, 13] (see [14] for a review), the effect of noise on evolving interfaces during the initial stage of phase
separation is analyzed. The evolution of these interfaces is stochastic and not yet fully understood. In [12],
the authors show that for a solution starting at the homogeneous state, the probability of staying near a
certain finite-dimensional space of pattern is high as long the solution stays within the distance of the size of
the homogeneous state. Further, in [13], the dynamics of a nonlinear partial differential equation perturbed
by additive noise are considered. Under the assumption that the underlying deterministic equation has an
unstable equilibrium, the authors show that the nonlinear stochastic partial differential equation exhibits
essentially linear dynamics far from equilibrium.

On the other hand interface motion has been studied for many related models like Allen-Cahn or Ginzburg
Landau and phase-field models, cf. for example [15, 11] for a rigorous analysis or the results of [30] for
formal arguments, which describe the interfaces as interacting Brownian motions. Numerical results for
interface motion are [43, 36]. The problem of singular perturbation for a reaction-diffusion stochastic partial
differential equation of Ginzburg-Landau type is investigated in [32]. The motion of interfaces for Cahn-
Hilliard was only studied in an unpublished note by S. Brassesco in 2003, where she studied a solution with a
single interface on R. When properly rescaled the interface is driven by non-Markovian dynamics. A similar
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result is [11]. In [42], the authors present a numerical study of the late stages of spinodal decomposition
with noise.

The deterministic Cahn-Hilliard equation was proposed by Cahn and Hilliard ([17, 16]) as a model for
the phase separation of a binary alloy at a fixed temperature, with u(x, t) defining the mass concentration
of one of the phases at a point x at time t. For more physical background, derivation and discussion of the
deterministic Cahn-Hilliard equation and related equations we refer to [6, 16, 17, 29, 31] and the references
therein. Results for the noisy Cahn-Hilliard equation are of great interest for the studying of Ostwald
ripening [2, 3, 38] and nucleation [10]. For a survey, including numerical results and conjectures concerning
the nucleation problem, see [14].

1.3. The approximate slow manifold. The space-time noise that we introduce is smooth in space, so,
integration in space is deterministic. Therefore, in order to study the transition layers dynamics for the
stochastic model in the finite interval (0, 1), we closely follow the approach of Bates & Xun and Carr & Pego
that is based on the analysis of an approximate invariant manifold M. Although constructed in a different
way, it can be thought of as piecing together a rescaled one kink (or front) steady state solution on the whole
real-line. The elements of the manifold are parametrized by the position of the fronts given by h ∈ RN+1.
Nevertheless, in our case the dependency on time is stochastic. This fact arises the very interesting and
difficult problem of investigating further the properties of M by means of deriving higher order estimates
related to the stationary problem.

Let us present first the details necessary for the steady state solutions φ, the parameters h and the
manifold M. Given ε > 0, we consider a such that f ′(u) > 0 for all u satisfying |u± 1| < a. Then, cf. [21],
there exists ρ > 0 such that if ` satisfies ε

` < ρ then a unique solution φ = φ(x, `,±1) exists for the following
stationary Dirichlet problem

ε2φxx − f(φ) = 0, −`/2 < x < `/2,

φ = 0, x = ±`/2,
(1.3)

that satisfies: (a) φ(x, `,+1) > 0 for |x| < `/2, and |φ(0) − 1| < a, (b) φ(x, `,−1) < 0 for |x| < `/2, and
|φ(0) + 1| < a. For ε > 0 small, it is known that φ ≈ ±1 with transition layers of order O(ε) near x = ±`/2.

Following [8], we consider the slowly evolving solutions with N + 1 layers well separated and bounded
away from the boundary x = 0, 1 and define the set of admissible positions h of the interfaces

(1.4) Ωρ :=
{
h ∈ RN+1 : 0 < h1 < · · · < hN+1 < 1, and

ε

ρ
< hj − hj−1, j = 1, . . . , N + 2

}
,

with h0 := −h1, hN+2 := 2 − hN+1. These interfaces evolve in time, and we expect them to have a width
of order ε. Thus, the distance is bounded below by ε/ρ for some small ρ. Later we fix ρ = εκ for any small
κ > 0.

Let h ∈ Ωρ be given as above, and denote the mid points between interfaces by mj :=
hj−1+hj

2 for

j = 1, . . . , N + 2 with m0 = 0 and mN+1 = 1. Moreover, we define the function uh : Ij := [mj ,mj+1] → R
for the interfaces h by

uh(x) =
[
1− χ

(
x−hj
ε

) ]
· φ
(
x−mj , hj − hj−1, (−1)j

)
+ χ

(
x−hj
ε

)
· φ
(
x−mj+1, hj+1 − hj , (−1)j+1

)
,

(1.5)

where χ : R→ [0, 1] is a C∞ cut-off function such that χ = 1 on [1,∞) and χ = 0 on (−∞,−1].

Definition 1.1 (approximate slow manifold). The first approximate manifold of the stochastic Cahn-
Hilliard solution is defined by

M1 :=
{
uh : h ∈ Ωρ

}
.
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Fixing a mass M ∈ (−1, 1), we define as the second approximate manifold the submanifoldM ofM1 where
mass conservation holds i.e.

M :=
{
uh ∈M1 :

∫ 1

0

uhdx = M
}
.

For the integrated equation, we consider the manifold

M̃ :=
{
ũh : uh ∈M, ũh(x) =

∫ x

0

uhdx
}
.

x

uh

1h1 h2 hN hN+1 hN+2

m2

h0 = −h1

φ(·, 2h1,−1)

mN+1

φ(· −m1, h2 − h1, 1) φ(· −mN , hN+1 − hN , 1)

φ(· − 1, 2− 2hN+1,−1)

Figure 1.1. Gluing together positive and negative solutions of (1.3) to obtain uh ∈ M.
Note that m1 = 0, mN+2 = 1, and Ij = [mj ,mj+1].

Remark 1.2. In view of the initial stochastic equation (SC-H), conservation of mass holds if and only if
formally

(1.6)

∫ 1

0

∂xẆdy = Ẇ (1)− Ẇ (0) = 0.

This is later assured by our assumptions on W , which impose Dirichlet-boundary conditions (cf. Definition

2.2 and Assumption 2.3). A very simple rigorous example is the following: consider Ẇ := g(x)V̇ (t), where

V̇ (t) is a white noise in time and g a smooth function satisfying g(1) = g(0), then by integrating in space
the equation (SC-H) and using the fact that∫ 1

0

∂xẆdy = V̇ (t)

∫ 1

0

gx(y)dy = 0,

we obtain mass conservation even with the noise. We can extend this example to infinite series of terms of
these type.

Throughout the entire paper we will assume that the additive noise in (SC-H) satisfies (1.6), and therefore
the proposed stochastic model exhibits mass conservation.

1.4. The new coordinate system. Along M̃ the natural coordinate system would be to use the parameters
h ∈ Ωρ for the position in M̃ (where N of them are sufficient due to mass conservation), together with the

orthogonal projection onto M̃. In order to relate the coordinate system to the deterministic flow of (ISC-H),

one approximates the tangential space of M̃ by the span of some functions Ehi , i = 1, . . . , N to be defined
in the sequel; here, we follow [7].

We denote the L2(0, 1) inner product by 〈u, v〉 :=
∫ 1

0
uvdx, the induced L2-norm by ‖ · ‖ and introduce

the symbol g̃(x, t) :=
∫ x
0
g(y, t)dy, for any g smooth in space.

Due to mass conservation, we reduce the parameter space Ωρ by one dimension, define

ξ := (ξ1, . . . , ξN ) = (h1, . . . , hN ),
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Eξ1

ũ

ũξ

M̃

ṽ

Figure 1.2. The local coordinate system ũ = ũξ + ṽ around M̃ for N = 1 (two interfaces).

Note that Eξ1 ≈ ũ
ξ
1, which is the tangential vector along the manifold.

and consider hN+1 as a function of ξ. Thus, for ũhj := ∂ũh

∂hj
and ũξj := ∂ũξ

∂ξj
we obtain that

ũξj =
∂ũh

∂hN+1
· ∂hN+1

∂hj
+
∂ũh

∂hj
.

We use the following coordinate system around M̃: ũ→ (ξ, ṽ), where we write the stochastic solution ũ of
(ISC-H) as a sum of stochastic processes

(1.7) ũ(t) := ũξ(t) + ṽ(t).

Here the position on M̃ is given by ũξ ∈ M̃ while the distance from M̃ is given by ṽ which is defined as the
following projection such that

(1.8) 〈ṽ, Eξj 〉 = 0 for j = 1, . . . , N .

It turns out that the functions Eξj are good approximations to the first eigenfunctions of the linearized

integrated Cahn-Hilliard operator, which in turn are good approximations to the tangential space of M̃.
They are defined as follows:

Eξj := w̃j(x)−Qj(x), w̃j := ũhj (x) + ũhj+1(x),

Qj(x) := (−1

6
x3 +

1

2
x2 − 1

3
x)w̃jxx(0) +

1

6
(x3 − x)w̃jxx(1) + xw̃j(1), j = 1, . . . , N,

where the Qj later turn out to be exponentially small terms (cf. [7]), that only takes care of the boundary

values of Eξj .
For short-hand notation, we also define higher derivatives using indices

(1.9) Eξil :=
∂Eξi
∂ξl

, Eξilk :=
∂2Eξi
∂ξl∂ξk

, ũξkl :=
∂2ũξ

∂ξk∂ξl
.

The rest of the paper is organized as follows: In Section 2, we present the main results including a
proper definition of the noise, the equations for the motion of the interfaces, the stability of the approximate
manifold M̃, and the approximation of the front motion in a neighborhood of M̃. The proofs of the main
results appear in Sections 3 and 4, while the final Section 5 collects all the estimates of the higher order
terms appearing in the stochastic dynamics. Here, we consider the stationary problem (1.3) and analyze the
properties of its solution by deriving bounds for higher order derivatives, extending some of the results of
[21, 22, 7, 8].

2. Main results

The SDE (Stochastic Differential Equation) system for the motion of fronts is given by the projection onto

the manifold M̃, using the coordinate system of Section 1.4. We then prove that M̃ is locally exponentially
attracting and show that solutions stay with high probability in a small slow tube around M̃, until large
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times or until one of the layers becomes small. The flow along M̃ is well described by the SDE for the
interfaces ξ. Depending on the strength of the noise we investigate how the equation of motion of the fronts
looks like and evaluate the noise effect. In addition, we investigate extensively the case N = 1 where the
motion of the second interface is determined by the first. Finally, the case of space-time white noise is
discussed. In the final section we present the proofs of the estimates used in our analysis concerning all the
higher order terms that appear in the to stochastic setting. These are technical results that are independent
of the other section.

Let us first explain briefly how the equations of motions along M̃ are derived in Section 3; for details we
refer to Subsection 3.2. If ũ is the solution of (ISC-H), then using the Itô-formula to differentiate ũξ in t we
get

(2.1) dũ =

N∑
j=1

ũξjdξj +
1

2

∑
1≤k,l≤N

ũξkldξkdξl + dṽ.

We take the inner product in space of (ISC-H) with Eξi to obtain for any i = 1, . . . , N :

(2.2) 〈Eξi , dũ〉 = 〈−ε2ũxxxx + (f(ũx))x, E
ξ
i 〉dt+ 〈Eξi , dW 〉 .

The inner product of (2.1) with Eξi now gives

(2.3) 〈Eξi , dũ〉 =

N∑
j=1

〈ũξj , E
ξ
i 〉dξj + 1

2

∑
1≤k,l≤N

〈ũξkl, E
ξ
i 〉dξkdξl + 〈Eξi , dṽ〉 .

Applying the Itô-formula in differentiating in t the term 〈ṽ, Eξi 〉 = 0, using dũ = dũξ + dṽ and combining
(2.2) with (2.3), we get for i = 1, · · · , N the following system in dξ1, · · · , dξN for the stochastic Cahn-Hilliard
equation: ∑

j

[
〈ũξj , E

ξ
i 〉 − 〈ṽ, E

ξ
ij〉
]
dξj =〈−ε2(ũξxxxx + ṽxxxx) + (f(ũξx + ṽx))x, E

ξ
i 〉dt

+
∑
l,k

[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
dξldξk

+
∑
j

〈dW,Eξij〉dξj

+ 〈Eξi , dW 〉 .

(2.4)

In the above, we denote that the last three additive terms at the right-hand side give the difference from the
deterministic Cahn-Hilliard system of [8].

Remark 2.1. In view of (2.4), we observe that the study of dynamics for the stochastic Cahn-Hilliard, even
in one dimension, arises a much more complicated and difficult problem in comparison with the deterministic
one.

(1) Deterministic case: The system is linear in dξj , therefore by estimating the inverse matrix on the

left-hand side (which is possible close to M̃) and the right-hand side terms, the motion of interfaces
is obtained, see [8].

(2) Stochastic case: Obviously, for a general noise definition the system is non-linear due to the appear-
ance of dξldξk. In the sequel, we make an ansatz for ξ in order to get a linear system, which then

justifies the ansatz. Further, we need estimates for the additional higher order terms Eξij , E
ξ
ilk, and

ũξkl. Here we need to improve the estimates of [7].

The sufficiently regular noise Ẇ is the formal derivative of a Wiener process W defined as follows.
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Definition 2.2 (The Wiener process W ). Let W be a Q-Wiener process in the underlying Hilbert-space
H = L2(0, 1), Q a symmetric operator and (ek)k∈N an orthonormal basis with corresponding eigenvalues α2

k,
such that

Qek = α2
kek and W (t) =

∞∑
k=1

αkβk(t)ek,

for a sequence of independent real-valued standard Brownian motions {βk(t)}t≥0 (cf. DaPrato, Zabzcyck
[25]).

We will always use the following assumption, which is an assumption for mass conservation and regularity.

Assumption 2.3. Suppose that the ek are also the eigenfunctions of the Dirichlet-Laplacian. Moreover, we
assume that for some 0 < δε

(1) ‖Q‖ < Cδ2ε ,
(2)

∑∞
k=1 α

2
kBε(ek) < Cδ2ε .

where for some small κ > 0 we have δε < ε(8+κ)/(2−κ).

The first assumption on the norm of Q as an operator in H means that the strength of the noise is
bounded by O(δε), while the second one is an assumption on the noise regularity. Note that

Bε(e) = ε2‖exx‖2 + ‖ex‖2,

which is equivalent to the standard H2-norm (see (3.14)).
The next crucial assumption considered in order to obtain the equation for the interfaces ξ is the following.

Let ũ be a solution of (ISC-H), then let ξ(t) be a diffusion process in RN defined for any k = 1, . . . , N by

dξk = bk(ξ)dt+ 〈σk(ξ), dW 〉,

for some vector field b : RN → RN and some variance σ : RN → HN . Let us define as in [8] the matrix

Aij(ξ) = 〈ũξj , E
ξ
i 〉 − 〈ṽ, E

ξ
ij〉,

which is invertible, provided that we are near the slow manifold. The previous noise definition combined
with (2.4), gives the following SDE system for the interfaces motion for the stochastic C-H:∑

j

Aij(ξ)dξj =〈−ε2(ũξxxxx + ṽxxxx) + (f(ũξx + ṽx))x, E
ξ
i 〉dt

+
∑
l,k

[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉dt

+
∑
j

〈QEξij , σj(ξ)〉dt

+ 〈Eξi , dW 〉.

(2.5)

(cf. also the equivalent presentation (3.11)). We can easily read off b and σ from this equation for ξ. Moreover,

it gives the flow along M̃ by describing the interface positions. It is now easy to check by construction that
the difference ṽ = ũ− ũξ is actually the ṽ of the coordinate system (see Sec. 1.4). In addition, a solution of
(2.5) together with a corresponding equation for ṽ (see (3.15), later) describes a solution ũ of (ISC-H).

Further, in Section 3 the variance σ of the multi-dimensional diffusion process ξ of the interfaces is
computed first explicitly and then estimated in terms of ε. A main result of grate importance is the
stochastic analysis of the stability of the second approximate manifold which is presented in Theorem 3.6
of this section. Over a long time-scale of order O(ε−q) for any q > 0, we show that with high probability

the solution of the stochastic Cahn-Hilliard stays in a small neighborhood Γ of the integrated manifold M̃,
unless an interface breaks down.
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Γ
ũ

M̃

Figure 2.1. The stability of the slow manifold M̃ for two interfaces (N = 1). A small
tubular neighbourhood Γ, the slow channel, is attracting over long time-scales. Solutions
tend to exit at the end of Γ by loosing an interface.

In Section 4, we present first Theorem 4.1 in which we approximate (2.5) and derive the equations of
interfaces motion. Further, we consider several examples where Theorem 4.1 is simplified. If the noise is ex-
ponentially small, then we recover the slow motion results of [7, 8]. There is a slow channel as a neighborhood

of M̃, in which with high probability the motion of the interfaces is described by the deterministic regime.
There is also an interesting intermediate regime of still exponentially small noise, which for simplicity of
presentation we do not consider in this article. Here, due to the presence of noise, additional deterministic
and stochastic terms appear in the deterministic equation of Bates & Xun [8]. An interesting case from
the point of applications is the case where the noise strength is a power of ε. As the general case is quite
involved in presentation, we consider only two interfaces (i.e. N = 1). Here, obviously the motion of the
second interface is determined by the first which is approximated by the following SDE (cf. (4.10)):

(2.6) dξ1 =
1

32`22

∂

∂ξ1
‖Q1/2Eξ1‖2dt+

1

4`2
〈Eξ1 , dW 〉 ,

where `2 is the distance between the two interfaces. Finally in this section, we also discuss the case of
non-smooth in space space-time white noise (Q = Id), which we do not treat by our assumptions; here ξ1
would be close to a Brownian motion with variance δ2ε/(16`22).

Section 5 provides estimates for the second order derivatives ∂2hN+1

∂hi∂hj
, for the higher order derivatives of

Eξj and ũξ, and a bound for the quantity 〈Lcṽ, ũξkl〉 (needed in the proof of the stability Theorem). Here the
operator Lc acting on a general smooth in space function φ is given by

Lc(φ) := −ε2φxxxx + (f ′(uh)φx)x.

The results of this section are quite technical since their proof involves extensive computations related to
the stationary problem (1.3) properties. The new estimated terms appear only in the stochastic setting due
to the presence of noise, and where therefore not treated in the work of Bates & Xun [7, 8] or Carr & Pego
[21, 22]. A main result of this paper is that the stochastic treatment of the very important deterministic
result of Bates & Xun gives new insights on the analysis of the deterministic stationary problem by means
of a higher order regularity point of view.

3. Front motion

In this section, we derive the equations of motions of the fronts and show that the approximate manifold
is locally attracting.

3.1. Preliminaries and definitions. Let us first recall some notation. If u is the solution of (SC-H), then
ũ(x, t) :=

∫ x
0
u(y, t)dy is the solution of the integrated one i.e. of (ISC-H). Let a, ε, ρ, N be given; for some

` such that ε/` < ρ, we consider the unique solution φ of (1.3) which satisfies the properties (a) and (b).
Let also (h1, . . . , hN+1) ∈ Ωρ be the admissible interfaces positions and take h0 := −h1, hN+2 := 2− hN+1.
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Let `j = hj −hj−1 be the distance between interfaces and ` := min{`1, . . . , `N} the lower bound on them.
Note that by the construction of Ωρ the functions φ are always well defined. Let

r := ε/`, β±(r) := 1∓ φ(0, `,±) and α±(r) := F (φ(0, `,±)) .

In view of (1.5), we also define

φj(x) := φ
(
x−mj , `j , (−1)j

)
,

and uhj := ∂uh

∂hj
for j = 1, . . . , N + 1. Considering rj := ε/`j , let

βj(r) :=

{
β+(rj) for j even

β−(rj) for j odd,
and β(r) := max

j
βj(r) .

We denote that in [8], as an application of the implicit function Theorem,

(3.1)
∂hN+1

∂hj
= (−1)N−j +O(ε−1β(r)).

In addition, let

αj(r) :=

{
α+(rj) for j even

α−(rj) for j odd
and α(r) := max

j
αj(r) .

We see later, that both α and β are exponentially small in ε, if we consider rj ≤ ρ ≤ εκ for some small
positive κ.

3.2. The general SDE for the front motion. Let ũ be a solution of (ISC-H). We assume that the N
front positions, i.e. the coordinates of ξ(t) = (ξ1(t), . . . , ξN (t)), define a multi-dimensional diffusion process
which is given by

(3.2) dξk = bk(ξ)dt+ 〈σk(ξ), dW 〉, k = 1, . . . , N,

for some vector field b : RN → RN and some variance σ : RN → HN . The main aim of this paragraph is to
identify b and σ, which might also depend on ṽ, i.e. on the distance from the manifold.

We use Itô-formula, in order to differentiate ũξ with respect to t, and get

(3.3) dũ =

N∑
j=1

ũξjdξj + 1
2

∑
1≤k,l≤N

ũξkldξkdξl + dṽ , with ũξkl =
∂2ũξ

∂ξk∂ξl
.

We take as in [8], p. 175, the inner product in space of equation (ISC-H) with Eξi , to get for any i = 1, . . . , N

(3.4) 〈Eξi , dũ〉 = 〈Lc(ũ), Eξi 〉dt+ 〈Eξi , dW 〉 ,

where we defined the nonlinear ICH-operator as

Lc(u) := −ε2uxxxx + (f(ux))x

for short-hand notation.
On the other hand, if we take the inner product of (3.3) with Eξi , we derive

(3.5) 〈Eξi , dũ〉 =

N∑
j=1

〈ũξj , E
ξ
i 〉dξj + 1

2

∑
1≤k,l≤N

〈ũξkl, E
ξ
i 〉dξkdξl + 〈Eξi , dṽ〉 .

Throughout the rest of this paper, any summation is on 1, 2, . . . , N for any index.

In order to eliminate dṽ, we apply Itô-formula to the orthogonality condition 〈ṽ, Eξi 〉 = 0, and arrive at

〈Eξi , dṽ〉 = −〈ṽ, dEξi 〉 − 〈dṽ, dE
ξ
i 〉

= −
∑
j

〈ṽ, Eξij〉dξj − 1
2

∑
j,k

〈ṽ, Eξijk〉dξjdξk −
∑
j

〈Eξij , dṽ〉dξj .
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Now, we use that dṽ = dũ− dũξ and the fact that dtdt = 0 and dWdt = 0. In details,

−
∑
j

〈Eξij , dṽ〉dξj = −
∑
j

〈Eξij , dũ〉dξj +
∑
j

〈Eξij , dũ
ξ〉dξj

= −
∑
j

〈Eξij ,L
c(ũ)〉dtdξj −

∑
j

〈Eξij , dW 〉dξj +
∑
j,k

〈Eξij , ũ
ξ
k〉dξkdξj

= −
∑
j

〈Eξij , dW 〉dξj ,+
∑
j,k

〈Eξij , ũ
ξ
k〉dξkdξj ,

(3.6)

where we took the inner product in space of equation (ISC-H) with Eξij , and used that

dξjdt = bj(ξ)dtdt+ 〈σj(ξ), dW 〉dt = 0.

Therefore, by (3.6) it follows that

(3.7) 〈Eξi , dṽ〉 = −
∑
j

〈ṽ, Eξij〉dξj − 1
2

∑
j,k

〈ṽ, Eξijk〉dξjdξk −
∑
j

〈dW,Eξij〉dξj +
∑
j,k

〈ũξk, E
ξ
ij〉dξjdξk .

Combining (3.4) with (3.5) and (3.7) we arrive at∑
j

[
〈ũξj , E

ξ
i 〉 − 〈ṽ, E

ξ
ij〉
]
dξj =〈Lc(ũ), Eξi 〉dt

+
∑
l,k

[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
dξldξk

+
∑
j

〈dW,Eξij〉dξj + 〈Eξi , dW 〉 .

(3.8)

Lemma 3.1. For all 1 ≤ k, l ≤ N it holds that

〈σk(ξ), dW 〉〈σl(ξ), dW 〉 = 〈Qσk(ξ), σl(ξ)〉dt.

Proof. Since dβjdβi = δijdt and W (t) =
∑∞
k=1 αkβk(t)ek we obtain, using Parcevals identity,

〈σk(ξ), dW 〉〈σl(ξ), dW 〉 =
∑
i,j

αiαj〈σk(ξ), ei〉〈σl(ξ), ej〉dβjdβi =
∑
j

α2
j 〈σk(ξ), ej〉〈σl(ξ), ej〉dt

=
∑
j

〈Qσk(ξ), ej〉〈σl(ξ), ej〉dt = 〈Qσk(ξ), σl(ξ)〉dt .

�

Analogously to this Lemma we easily obtain (using dtdW = 0)

〈Eξij , dW 〉dξj = 〈Eξij , dW 〉〈σj(ξ), dW 〉 = 〈QEξij , σj(ξ)〉dt.

Moreover, for short-hand notation, as in [7], we define the matrix A(ξ) = (Aij(ξ)) ∈ RN×N by

(3.9) Aij(ξ) = 〈ũξj , E
ξ
i 〉 − 〈ṽ, E

ξ
ij〉 ,

which is invertible, provided that we are near the slow manifold (cf. Lemma 3.4 later). Let us denote the
inverse matrix of A by A−1(ξ) = (A−1ij (ξ)) ∈ RN×N .
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Therefore, for all i ∈ {1, . . . , N} we arrive at∑
j

Aij(ξ)dξj = 〈Lc(ũξ + ṽ), Eξi 〉dt

+
∑
l,k

[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉dt

+
∑
j

〈QEξij , σj(ξ)〉dt+ 〈Eξi , dW 〉 .

(3.10)

To obtain the equation for dξ we use that dξ = A(ξ)−1A(ξ)dξ .
Thus, the final equation for ξ (as long as ũ is near the manifold) is given for any r = 1, . . . , N by

dξr =
∑
i

A−1ri (ξ)〈Lc(ũξ + ṽ), Eξi 〉dt

+
∑
i,l,k

A−1ri (ξ)
[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉dt

+
∑
i

A−1ri (ξ)
∑
j

〈QEξij , σj(ξ)〉dt+
∑
i

A−1ri (ξ)〈Eξi , dW 〉 .

(3.11)

We can now recover σ and b from (3.11). The only term that does involve noise is the last one. Thus, in
view of (3.2) we get

(3.12) σr(ξ) =
∑
i

A−1ri (ξ)Eξi .

After we obtained σ, we can proceed, in order to determine b(ξ) from the remaining terms (cf. (3.2)). So,
we get for r = 1, . . . , N that

br(ξ) =
∑
i

A−1ri (ξ)〈Lc(ũξ + ṽ), Eξi 〉(3.13)

+
∑
i,l,k

A−1ri (ξ)
[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉

+
∑
i

A−1ri (ξ)
∑
j

〈QEξij , σj(ξ)〉.

Remark 3.2. (Well defined coordinates) It is easy to check from the construction, that given our ξ(t)
from Equation (3.2) with b and σ defined as above, then there exists a corresponding solution ũ of (ISC-H).

If the distance ṽ from the manifold M̃ is sufficiently small, then ξ describes the motion of the interfaces of
ũ.

3.3. Stability and Attractivity of the manifold. In this paragraph, we prove the stability and discuss
the attractivity of M̃. Considering the stability, we show that with high probability (over a long time-scale)

the solution stays close to M̃, unless an interface breaks down.
In [7, Theorem B], Bates and Xun show that in the deterministic setting the slow manifold is exponentially

attracting in a O(ε7/2)-neighborhood in H2, until the solution reaches an exponentially small neighborhood,
where the motion of the solution along the manifold is exponentially slow. Using large deviation estimates,
it is straightforward to verify for small noise, that the stochastic solution follows the deterministic one up to
error terms of the order of the noise strength. Hence, the exponential attraction of M̃ still holds for (ISC-H),
until the solution reaches a neighborhood of the manifold that is determined by the strength of the noise.

Here, for simplicity of presentation we will focus only on the stability of M̃. The proof can be easily
modified to show attraction, too. Once, we are in the slow channel around M̃, with high probability we
cannot exit for a long time-scale Tε, unless one of the interfaces breakes down.
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We define the metrics Aε and Bε as

(3.14) Aε(ṽ) =

∫ 1

0

[ε2ṽ2xx + f ′(uξ)ṽ2x]dx and Bε(ṽ) =

∫ 1

0

[ε2ṽ2xx + ṽ2x]dx.

Note that it is easy to check that

‖∂xṽ‖2 ≤ Cε−1Bε(ṽ) ≤ Cε−3Aε(ṽ) ≤ Cε−3Bε(ṽ) ≤ Cε−3‖ṽ‖2H2 ,

and

‖ṽ‖2∞ ≤ Bε(ṽ) , ‖ṽx‖2∞ ≤ 1+ε
ε Bε(ṽ) .

Definition 3.3. (cf. [7], p. 452) Define a neighborhood Γ′ of M̃ by

Γ′ = {ũξ + ṽ : ξ ∈ Ωρ, Bε(ṽ) < ε3},

and we define the slow tube Γ by

Γ := {ũξ + ṽ : ξ ∈ Ωρ, Aε(ṽ) < δ2−κε } ,

where κ > 0 is presented in the definition of the noise (cf. Assumption 2.3) and δε estimates the noise
strength.

The small tube Γ′ is a neighborhood of the slow manifold, where the coordinate system (cf. (1.7)) is well
defined, while the slow tube Γ is a neighborhood in which solutions with high probability do not exit for
long times unless one of the interfaces breakes down. Recall that Γ ⊂ Γ′ by definition of δε. We even have
Bε(ṽ(t)) < Cδ2εε

−2 ≤ Cε6+κ, which we need in the proof of stability.
As indicated in the introduction, the first term at the right-hand side of the flow given by (3.11), is

identical to the right-hand side of the deterministic flow and has been estimated in [7]. In our stochastic
case, in order to approximate the flow, we need to bound also the additional higher order terms and estimate
the contribution of the noise. Later, in the next Section 4, we will identify the dominant terms in (3.11).

Using (4.27) of [8] and the fact that ‖Eξij‖ = O(ε−1/2) ([8] p. 187), we obtain in Γ′ considering the matrix
A the following invertibility result:

Lemma 3.4. Suppose that h ∈ Ωρ and ‖ṽ‖ = O(ε3/2), then

Aij(ξ) = O(ε) +

{
(−1)i+j4`j+1 if i ≥ j
0 if i < j

and the matrix is invertible, with

A−1ij (ξ) = O(ε) +

{ 1
4`j+1

if i = j, j − 1

0 otherwise

where 1 > `i > ε/ρ denotes the length of the i-th interface.

As the equation is deterministically stable, we should be able to show that ṽ stays small for a long time
(depending on the noise strength). To be more precise, we show a bound on Aε(ṽ) for solutions near M̃.
Following [7] p. 449, we consider equation (3.3)

dṽ = dũ−
N∑
j=1

ũξjdξj −
1

2

∑
kl

ũξkldξkdξl,

and thus the key equation for the distance from the manifold M̃ is described by

(3.15) dṽ = Lc(ũ)dt−
∑
j

ũξjbj(ξ)dt−
∑
j

ũξj〈σj(ξ), dW 〉 −
1

2

∑
kl

ũξkl〈Qσk(ξ), σl(ξ)〉dt+ dW .

We can now proceed (cf. also (86) of [7]) and show a bound on ṽ in terms of Aε.



FRONT MOTION IN THE ONE-DIMENSIONAL STOCHASTIC CAHN-HILLIARD 13

Fix some large time Tε and define τ∗ > 0 as the first exit time (below the threshold Tε) of ũ from Γ′.
This is the stopping time

τ∗ = Tε ∧ inf{t > 0 : ξ(t) 6∈ Ωρ or Aε(ṽ(t)) ≥ δ2−κε } .

Note that for t ≤ τ∗ also Bε(ṽ(t)) ≤ Cε6+κ.

Definition 3.5. We say that a term is O(eε), if it is asymptotically smaller than any polynomial uniformly
for times t ≤ τ∗.

Note that α, β are O(eε), if ρ = εκ.

Theorem 3.6. Suppose ρ = εκ for some small κ > 0, δε ≥ Cε−q for any q > 0, and suppose that for all
p > 0 there exists a constant cp > 0 such that EAε(ṽ(0))p ≤ cpδ2pε . Then for all p > 0 there exists a constant
Cp > 0 such that

EAε(ṽ(τ∗))p ≤ Cp(Tε + 1)δ2pε .

Therefore, we can show that the probability that the solution exits from the slow tube before Tε (i.e.
τ∗ = Tε) or an interface is breaking down (i.e. ξ(τ∗) 6∈ Ωρ) is bounded above by

P
(
Aε(ṽ(τ∗)) ≥ δ2−κε

)
≤ EAε(ṽ(τ∗))pδ−p(2−κ)ε ≤ Cp(Tε + 1)δκpε

for any p > 0. Thus the probability that the solution exits from the slow tube before Tε is of order O(eε)
provided Tε � δ−qε for some large q > 0. The typical case for applications would be to consider a noise
strength polynomial in ε, where we can take Tε = ε−q for any q > 0.

Remark 3.7. (Exponentially small noise-strength δε) If we want to have exponentially long times Tε,
then we need to take exponentially small noise strength δε and look closer at the various error terms in the
proof of Theorem 3.6. This is straightforward, but for simplicity of presentation, we refrain from stateing
details here.

On the other hand, assuming that δε is exponentially small, the probability of the solution exiting the
slow tube Γ before Tε, without an interface breaking down, is exponentially small, even for exponentially
large times Tε.

3.4. Bounds on the sde. The following Lemmas replace the bound on ξ̇, which is used in the deterministic
setting (cf. Lemma 4.3. in [7]).

Lemma 3.8. Let ũξ + ṽ ∈ Γ′ and r = 1, . . . , N , then (with EξN+1 = 0 for shorthand notation)

σr(ξ) =
1

4`r+1
(Eξr + Eξr+1) +O(ε),

and

‖σr(ξ)‖ ≤ C/` < Cρ/ε.

Proof. Note that ‖ṽ‖ ≤ Bε(ṽ)1/2. Thus from the definition of σ (cf. (3.12)), Lemma 3.4, and the bound on

Eξi one has

‖σr(ξ)‖ ≤
∑
i

|A−1ri (ξ)|‖Eξi ‖ ≤ C/` .

Moreover

σr(ξ) = A−1r,rE
ξ
r +A−1r,r+1E

ξ
r+1 +O(ε),

and the claim follows from Lemma 3.4. �

The next Lemma estimates the vector field b of the diffusion process ξ.
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Lemma 3.9. Let ũξ + ṽ ∈ Γ′ and assume that ρ = εκ for some small κ > 0, then there is a constant c > 0
such that

|br(ξ)| ≤ c‖Q‖
{
ε3κ−7/2 + ε2κ−5/2

}
+O(eε),(3.16)

for any r = 1, . . . , N .

Proof. We recall first br

br(ξ) =
∑
i

A−1ri (ξ)〈Lc(ũξ + ṽ), Eξi 〉(3.17)

+
∑
i,l,k

A−1ri (ξ)
[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉

+
∑
i

A−1ri (ξ)
∑
j

〈QEξij , σj(ξ)〉.

Then we use Lemma 3.4 and the bound on σ. Moreover, in Section 5, after tedious computations the next
estimates are derived (cf. (5.40), (5.41), (5.42), (5.37) and (5.38), respectively):

|〈ũξkl, E
ξ
i 〉| ≤ O(ε−1/2)

[
4`i+1 +O(ε−3β)

]
,

|〈ũξk, E
ξ
il〉| ≤ O(ε−1/2 + ε−4r−1β),

|〈ṽ, Eξilk〉| ≤ O(ε−3/2 + ε−5r−1β)‖ṽ‖ ≤ c+O(ε−7/2r−1β) ,

since in the slow channel ‖ṽ‖ ≤ ‖ṽ‖∞ ≤ cBε(ṽ)1/2 ≤ cε3/2. Moreover,

‖Eξi ‖ ≤ 4`i+1 +O(ε−3β), ‖Eξij‖ ≤ O(ε−1/2) +O(ε−4r−1β) .

In addition, we observe that (cf. [8])

|
∑
i

A−1ri (ξ)〈Lc(ũξ + ṽ), Eξi 〉| = O(α/`) +O(εα) = O(eε) .

In this way, since σ = O(ρε−1) and A−1ij = O(ρε−1), we obtain

|br(ξ)| ≤ c‖Q‖ρ3ε−3−1/2 + c‖Q‖ρ2ε−5/2 +O(eε) ≤ c‖Q‖
{
ε3k−7/2 + ε2k−5/2

}
+O(eε) .

�

3.5. Proof of Stability. Now let us turn to the proof of the Theorem 3.6. Considering the linearized
C-H-operator and using Itô-formula we arrive at

dAε(ṽ) = d〈−Lcṽ, ṽ〉 = 2〈−Lcṽ, dṽ〉+ 〈−Lcdṽ, dṽ〉
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and therefore, Lemma 3.1 gives

dAε(ṽ) =2〈−Lcṽ,Lc(ũ)〉dt(3.18)

−
∑
j

2〈−Lcṽ, ũξj〉bj(ξ)dt(3.19)

−
∑
j

2〈−Lcṽ, ũξj〉〈σj(ξ), dW 〉

−
∑
kl

〈−Lcṽ, ũξkl〉〈Qσk(ξ), σl(ξ)〉dt(3.20)

+
∑
ij

〈−Lcũξi , ũ
ξ
j〉〈Qσi(ξ), σj(ξ)〉dt(3.21)

+
∑
i

〈−Lcũξi ,Qσi(ξ)〉dt(3.22)

− 2〈Lcṽ, dW 〉

+ trace(Q1/2LcQ1/2)dt.(3.23)

For the term in (3.18) we follow [7] pages 449/450, where

Lc(ũ) = Lc(ũξ + ṽ) = Lcṽ + Lc(ũξ) + ∂x(f2∂xṽ)

with

‖∂x(f2∂xṽ)‖ ≤ Cε−2Bε(ṽ).

Moreover, note that by Lemma 5.1 in [7] we have

‖Lc(ũξ)‖∞ = ‖∂xLb(uξ)‖∞ ≤ Cε−1α(r) ,

and thus

〈−Lcṽ,Lc(ũ)〉 ≤ −‖Lcṽ‖2 + C(ε−2Bε(ṽ) + ε−1α(r))‖Lcṽ‖
≤ − 2

3‖L
cṽ‖2 + Cε−2Bε(ṽ)‖Lcṽ‖+ Cε−2α(r)2

≤ − 1
2‖L

cṽ‖2 + Cε−2α(r)2,(3.24)

where we used that for some constant a > 0 independent of ε and r (cf. [7], Lemma 3.2 at p. 434, and
Lemma 4.2 at p. 446)

Bε(ṽ) < Cε−2Aε(ṽ) <
C

2a
ε−2‖Lcṽ‖2 .

This is the crucial and only point, where we need Bε(ṽ) = O(ε6+κ). Thus, we obtain

2〈−Lcṽ,Lc(ũ)〉 ≤ − 1
2‖L

cṽ‖2 − aAε(ṽ) + Cε−2α(r)2.

Now consider the remaining four deterministic integrals. For the term in (3.19), notice that

〈Lcṽ, ũξj〉 = 〈ṽ, Lcũξj〉 = 〈ṽ, ∂x∂jLb(uξ)〉 .

Thus using integration by parts and Lemma 5.2 of [7] yields

(3.25) |〈Lcṽ, ũξj〉| ≤ C‖∂xṽ‖ε
−2β(r) = O(eε).

We use now (3.25) to arrive at

(3.26) |
∑
j

〈−Lcṽ, ũξj〉bj(ξ)| ≤ Cε
−5/2β(r)Bε(ṽ)1/2 sup

j
{|bj(ξ)|} = O(eε),

which is exponentially small in ε by Lemma 3.9. By Definition 3.5, a term is O(eε), if it is asymptotically
smaller than any polynomial in ε uniformly for times t ≤ τ∗.
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Now let us turn to (3.21). Similarly, we get

|〈−Lcũξi , ũ
ξ
j〉| = |〈ũ

ξ
i , ∂x∂jL

b(uξ)〉| ≤ ‖ũξi ‖L1‖∂x∂jLb(uξ)‖∞ ≤ Cε−4β(r) ,

where we used Lemma 5.1 of [7] and the bound ‖ũξi ‖L1 = O(1) (cf. (5.34), for β bounded). Thus we obtain
for the term in (3.21)

(3.27) |
∑
ij

〈−Lcũξi , ũ
ξ
j〉〈Qσi(ξ), σj(ξ)〉| ≤ Cε

−4β(r)‖Q‖`−2 = O(eε) .

For the term in (3.20) we use the bounds on 〈−Lcṽ, ũξkl〉 provided by Theorem 5.43. Thus, we get

|〈Lcṽ, ũξkl〉〈Qσk(ξ), σl(ξ)〉| ≤ C‖Q‖ε−2Cε−2β(r)‖ṽ‖ = O(eε) .

Using similar estimates and Lemma 3.8 the term in (3.22) is also O(eε).
For the term in (3.23), we use the eigenfunctions ek of Q and the uniform bound on f ′(uξ), in order to

obtain

trace(Q1/2LcQ1/2) =

∞∑
k=1

α2
k〈Lcek, ek〉 ≤ C

∞∑
k=1

α2
kBε(ek) ≤ Cδ2ε .

This is the largest deterministic term, as the other ones are all O(eε). This term comes directly from the
Itô-correction of the additive noise.

Consider now Equations (3.18) - (3.23), with all deterministic integrals already estimated. For t ≤ τ∗

(3.28) dAε(ṽ(t)) ≤ Cδ2εdt− ( 1
2‖L

cṽ‖2 + aAε(ṽ))dt+ < I, dW > ,

where
I =

∑
j

2〈−Lcṽ, ũξj〉σj(ξ)− 2Lcṽ .

In order to bound I, we use (3.25), and the asymptotic formula for σj(ξ) of Lemma 3.8 combined with

(54)-(55) of [7] to obtain that 〈Lcṽ, ũξj〉σj(ξ) = O(eε) and thus

|〈I,QI〉| ≤ O(eε) + 2‖Q‖‖Lcṽ‖2 .
Now we can bound powers of Aε for t ≤ τ∗

1
pdAε(ṽ)p = Aε(ṽ)p−1dAε(ṽ) + p−1

2 Aε(ṽ)p−2(dAε(ṽ))2

≤ Cε2δsAε(ṽ)p−1dt− ( 1
2‖L

cṽ‖2 + aAε(ṽ))Aε(ṽ)p−1dt(3.29)

+Aε(ṽ)p−1〈I, dW 〉+ p−1
2 Aε(ṽ)p−2〈I,QI〉dt .

Taking integrals up to τ∗ and expectation, we easily obtain from (3.28) and (3.29) (using that the expectation
of a stochastic integral is 0)

EAε(ṽ(τ∗)) + 1
2E
∫ τ∗

0

‖Lcṽ‖2dt+ aE
∫ τ∗

0

Aε(ṽ)dt ≤ Aε(ṽ(0)) + CTεδ
2
ε ,

and for p ≥ 2

1
pEAε(ṽ(τ∗))p + 1

2E
∫ τ∗

0

‖Lcṽ‖2Aε(ṽ)p−1dt+ aE
∫ τ∗

0

Aε(ṽ)pdt

≤ 1
pEAε(ṽ(0))p + Cδ2εE

∫ τ∗

0

Aε(ṽ)p−1dt+O(eε) · E
∫ τ∗

0

Aε(ṽ)p−2dt+ 2‖Q‖ · E
∫ τ∗

0

Aε(ṽ)p−2‖Lcṽ‖2dt .

Now (using δε ≥ Cεq) it is easy to verify by induction on p that

1
pEAε(ṽ(τ∗))p + 1

2E
∫ τ∗

0

‖Lcṽ‖2Aε(ṽ)p−1dt+ aE
∫ τ∗

0

Aε(ṽ)pdt ≤ C(Tε + 1)δ2pε .

This implies the claim.
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4. Motion of the interfaces

In this section, we investigate in detail what the SDE (2.5) for ξ actually implies for the motion of the
interfaces considering some important special cases, where the equation simplifies a lot. Let us assume first
that the noise is exponentially small. Then in the case of two interfaces (i.e., N = 1) we discuss the case
of noise strength being polynomial in ε. Finally, although not covered by our theorems, we present some
comments on how the equation would look like for non-smooth in space space-time white noise, which means
that Q is the identity.

Let us first state the result we achieved so far. The motion of the interfaces for the stochastic model is
given by the following theorem.

Theorem 4.1. Let ũξ + ṽ ∈ Γ′ and assume that ρ is small, then the equations dominating the flow of the
Stochastic Cahn-Hilliard equation within the slow channel are given by

dξ1 =
1

4`2
(α3 − α1)dt+O(εα)dt+ dA(1)

s

dξ2 =
1

4`2
(α3 − α1)dt+

1

4`3
(α4 − α2)dt+O(εα)dt+ dA(2)

s

dξ3 =
1

4`3
(α4 − α2)dt+

1

4`4
(α5 − α3)dt+O(εα)dt+ dA(3)

s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dξN =
1

4`N
(αN+1 − αN−1)dt+

1

4`N+1
(αN+2 − αN )dt+O(εα)dt+ dA(N)

s ,

(4.1)

where

αj =
1

2
K2
±A

2
±exp(−A±`j/ε)

[
1 +O

(`j
ε

exp
(−A±`j

2ε

))]
j = 1, 2, . . . , N + 2,(4.2)

for

A± := f ′(±1) and K± := 2exp
[ ∫ 1

0

[ A±
2F (±t)1/2

− 1

1− t

]
dt
]
.(4.3)

Here, the stochastic processes A(r)
s , r = 1, . . . , N are related to the noise; they depend on the symmetric

operator Q and the variance σ, and are given by the formula

dA(r)
s :=

∑
i,l,k

A−1ri (ξ)
[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉dt

+
∑
i

A−1ri (ξ)
∑
j

〈QEξij , σj(ξ)〉dt+
∑
i

A−1ri (ξ)〈Eξi , dW 〉 .
(4.4)

Proof. Remind that as long as ũ is near the manifold, then by (3.11) we obtained for any r = 1, . . . , N

dξr =
∑
i

A−1ri (ξ)〈Lc(ũξ + ṽ), Eξi 〉dt+ dA(r)
s .

Lemma 3.4 gives that the matrix A−1 and therefore the terms
∑
iA
−1
ri (ξ)〈Lc(ũξ + ṽ), Eξi 〉 are identical to

those presented in [7, 8] for the deterministic case (i.e. when dA(r)
s = 0 for any r). Hence, using (4.32) of [8]

we obtain the result. �

We observe that

dA(r)
s := A(r)

Q dt+
∑
i

A−1ri (ξ)〈Eξi , dW 〉 ,(4.5)
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for

A(r)
Q :=

∑
i,l,k

A−1ri (ξ)
[
1
2 〈ṽ, E

ξ
ilk〉 −

1
2 〈ũ

ξ
kl, E

ξ
i 〉 − 〈ũ

ξ
k, E

ξ
il〉
]
〈Qσk(ξ), σl(ξ)〉

+
∑
i

A−1ri (ξ)
∑
j

〈QEξij , σj(ξ)〉
(4.6)

Following Lemma 3.9 we obtain in the slow channel that

(4.7) |A(r)
Q | ≤ c‖Q‖ρ

2(ρε−3−1/2 + ε−5/2), for all r = 1, . . . , N .

Thus, in case of ‖Q‖ = O(ε4+1/2α), since ρ is at least bounded, we can show that A(r)
Q = O(εα). It is

not hard to show that we can also neglect the stochastic term from (4.1), in order to recover the result of
Bates & Xun on metastable slow motion, at least with high probability.

An interesting case arises, when the additional terms in A(r)
s are of order O(α). Then we obtain additional

terms in (4.1). Nevertheless, for simplicity of presentation, we refrain from stating details here.

4.1. Polynomial noise strength. For the remainder of this section we fix N = 1, which is the case of
two interfaces, and a noise strength δε = εδ for some δ > 4. To be more precise suppose Q = Q0ε

δ with
Q0 = O(1).

Using (4.1), we notice that the equation of motion for the first interface is given by

dξ1 = O(α)dt+ dA(1)
s ,

and the motion of the second interface is fixed due to mass conservation.
Recall that `2 is the distance between the two interfaces, and fix ρ = εκ, which means that the lower

bound on `2 is ε1−κ. Let us now first look at (3.12)

σ1(ξ) = A−111 E
ξ
1 .

Since ũ1
ξ = ũh2

∂h2

∂h1
+ ũh1 while ∂h2

∂h1
= 1 +O(eε) and Eξ1 = ũh1 + ũh2 +O(eε), it follows that

Eξ1 = ũξ1 +O(eε) ,

and again the error term remains of the same order under differentiation w.r.t. ξ1. Secondly, from (4.24)

in [8] there is a constant c? such that ‖ũξ1‖2 = 4`2 + c?ε + O(eε), and the error term remains O(eε) under

differentiation. (In our case N = 1 we have that w̃1 used in [8] is up to errors of order O(eε) equal to ũξ1.).
Moreover, by definition

A11 = 〈ũξ1, E
ξ
1〉 − 〈ṽ, E

ξ
11〉 = ‖ũξ1‖2 + ‖ṽ‖∞O(ε−1/2) +O(eε)

where we used (5.38) (cf. also [8], where the same estimate is used, though never presented analytically) for

Eξ11 = O(ε−1/2). Recall that in the slow channel Γ we have

(4.8) ‖v‖∞ ≤ (Bε(v))1/2 ≤ Cε−1(Aε(v))1/2 ≤ Cε−1(δ2−κε )1/2 ≤ Cε−1+δ(1−κ/2) .

Thus we proved

(4.9) A11 = 4`2 + c?ε+O(εδ(1−κ/2)−
3
2 ) and σ1(ξ) =

1

4`2 + c?ε+O(εδ(1−κ/2)−
3
2 )
Eξ1 +O(eε) .

Now we can consider the deterministic drift

A(1)
Q = A−111 (ξ)

[
1
2 〈ṽ, E

ξ
111〉 − 1

2 〈ũ
ξ
11, E

ξ
1〉 − 〈ũ

ξ
1, E

ξ
11〉
]
〈Qσ1(ξ), σ1(ξ)〉+A−111 (ξ)〈QEξ11, σj(ξ)〉

= A−311

[
O(ε−3/2)‖ṽ‖ − 3

4
∂
∂ξ1
‖Eξ1‖2

]
‖Q1/2Eξ1‖2 +A−211

1
2
∂
∂ξ1
‖Q1/2Eξ1‖2 +O(eε)
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Thus in the slow channel Γ (cf. (4.8)) the equation of motion for the interface is reduced to

dξ1 =A−311 O(εδ(1−κ/2)−5/2)‖Q1/2Eξ1‖2dt− 3
4A
−3
11

(
∂
∂ξ1
‖Eξ1‖2

)
‖Q1/2Eξ1‖2dt

+A−211
1
2
∂
∂ξ1
‖Q1/2Eξ1‖2dt+A−111 〈E

ξ
1 , dW 〉+O(eε)dt .

By (45) of [7] we know that

ũξ1 = 1− uξ +O(eε) and uξ1 = −uξx +O(eε) ,

(as [0, 1] = I1∪ I2 and uξ(m1) = uξ(0) = −1 +O(eε)). They also proved, that the error terms remain O(eε),
under differentiation w.r.t. ξ. Thus, we obtain

‖ũξ1‖2 = ‖1− uξ‖2 +O(eε) = 1− 2M + ‖uξ‖2 +O(eε)

Taking again a derivative yields

∂
∂ξ1
‖ũξ1‖2 = 2〈uξ1, uξ〉+O(eε) = −2〈uξx, uξ〉+O(eε) = uξ(0)2 − uξ(1)2 +O(eε) = O(eε) .

And thus we verified that
∂
∂ξ1
‖Eξ1‖2 = O(eε),

therefore, the equation of motion for ξ simplifies to

(4.10) dξ1 = O(εδ(3−κ/2)−11/2)dt+A−211
1
2
∂
∂ξ1
‖Q1/2Eξ1‖2dt+A−111 〈E

ξ
1 , dW 〉 .

Although this is not covered by our assumptions, as a final example we consider space-time white noise
with Q = εδId. In this case

dξ = O(ε3δ−7/2)dt+ εδA−111 〈E
ξ
1 , dŴ 〉,

which is a rescaled equation valid on the timescale O(ε−δ). Up to the small deterministic error terms, ξ is a
stochastic process with mean zero and quadratic variation∫ t

0

ε2δA−211 〈E
ξ
1 , E

ξ
1〉dt = ε2δ

∫ t

0

A−211 ‖ũ
ξ
1‖2dt+O(eε)t

= ε2δ
∫ t

0

A−111 dt+O(εδ−3/2+κ)
t

`22
=
ε2δ

4`2
t+O(ε2δ+1)t+O(ε3δ−7/2+κ)t ,

which means (compare to Levy’s characterization of Brownian motion) that in first approximation for times
not too large the interface behaves similar to a Brownian motion with variance ε2δ/(4`2).

5. Higher order estimates

5.1. Preliminaries. This section deals with the estimation of all the following higher order terms that
appear due to stochastic integration when deriving the equations of motion in the slow channel:

〈ṽ, Eξilk〉, 〈ũξkl, E
ξ
i 〉, 〈ũξk, E

ξ
il〉.

In addition, we bound the quantity 〈Lcṽ, ũξkl〉. Considering a general smooth in space function φ, the operator
Lc is given by

Lc(φ) := −ε2φxxxx + (f ′(uh)φx)x.

In order to achieve this aim, we investigate the properties of the stationary problem (1.3). Our analysis
admits extensive computations and is based on the ideas and technics presented in [21, 22, 7, 8] for the
deterministic case where analogous terms of lower order have been estimated.

Denote first, that for the construction of the approximate manifold of solutions for the stochastic Cahn-
Hilliard we use a local coordinate system when presenting the admissible interface positions. The hN+1

variable depends on hi = ξi, i = 1, . . . , N , therefore, when differentiating two times in ξ variables and
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applying the chain rule the second order term ∂2hN+1

∂hi∂hj
appears. More specifically, for a general function f

smooth in space and any i, j = 1, . . . , N , we obtain

∂f

∂ξi
=

∂f

∂hi
+

∂f

∂hN+1

∂hN+1

∂hi
, and

∂2f

∂ξi∂ξj
=

∂2f

∂hi∂hj
+
( ∂2f

∂hN+1∂hj
+

∂2f

∂h2N+1

∂hN+1

∂hj

)∂hN+1

∂hi

+
∂f

∂hN+1

(∂2hN+1

∂hi∂hj
+

∂2hN+1

∂hi∂hN+1

∂hN+1

∂hj

)
.

(5.1)

By the next lemma considering ρ = εκ for some small κ > 0 and thus α, β are exponentially small, we estimate∣∣∣∂2hN+1

∂hi∂hj

∣∣∣. As in [7], where the analogous first order estimate has been derived, we use an implicit function

theorem argument combined with the mass conservation constraint. If uh is in the second approximate
manifold M then by definition mass conservation holds i.e.

M = M(h) =

∫ 1

0

uh(x)dx.

Differentiating two times in h variables, we get

d2

dhidhj
M(h) =

∫ 1

0

uhijdx,

where uhij := ∂2uh

∂hi∂hj
=

∂uhi
∂hj

.

Lemma 5.1. For any i, j = 1, . . . , N the next inequality follows∣∣∣∂2hN+1

∂hi∂hj

∣∣∣ ≤ O(eε).

Proof. Consider ` a generic positive variable. According to the analysis presented in [21], when comparing
the x and ` derivatives of the solution φ of the stationary problem (1.3), we obtain a residual function w
given by the following relation

(5.2) 2φ`(x, `,±1) = −(sgnx)φx(x, `,±1) + 2w(x, `,±1).

Let us define Ij := [mj ,mj+1], χj(x) := χ
(
x−hj
ε

)
. If wj(x) := w(x−mj , hj−hj−1, (−1)j), then the interval

[hj−1 − ε, hj+1 + ε] contains the support of uhj and

(5.3) uhj (x) =


χj−1wj for x ∈ Ij−1
(1− χj)(−φjx + wj) + χj(−φj+1

x − wj+1) + χjx(φj − φj+1) for x ∈ Ij
−(1− χj+1)wj+1 for x ∈ Ij+1

where χjx = ∂x

(
χ
(
x−hj
ε

))
and φjx = φx(x−mj , lj − lj−1, (−1)j) (cf. [21], p. 561). We denote that in Ij (cf.

[7] p. 430)

uhj = −uhx + (1− χj)wj − χjwj+1

and thus

uhji =− ∂uhx
∂hi

+ (−δj,iχjx)wj + (1− χj)(Aj,iwjx +Bj,iw
j
`)

− δj,iχjxwj+1 − χj(Aj+1,iw
j+1
x +Bj+1,iw

j+1
` ), in Ij

(5.4)
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where wjx = wx(x−mj , lj − lj−1, (−1)j), wj` = wl(x−mj , lj − lj−1, (−1)j), δj,i is the Kronecher delta, while

Aj,i :=
∂(x−mj)

∂hi
=

{
0 for i 6= j, j − 1

−1/2 for i = j, j − 1

and

Bj,i :=
∂(hj − hj−1)

∂hi
=


0 for i 6= j, j − 1

1 for i = j

−1 for i = j − 1.

In a similar way we obtain

(5.5) uhji = δj−1,iχ
j−1
x wj + χj−1(Aj,iw

j
x +Bj,iw

j
`), in Ij−1,

(5.6) uhji = δj+1,iχ
j+1
x wj+1 − (1− χj+1)(Aj+1,iw

j+1
x +Bj+1,iw

j+1
` ), in Ij+1.

Using now the estimates of wj , wjx, wj` (cf. [21], or [7] at p. 172), then for r > 0 sufficiently small, we
obtain ∣∣∣ ∫

Ij−1∪Ij+1

uhji(x)dx
∣∣∣ ≤ Cε−2(r−1 + 1)β(r)Kj,i +O(eε)(δj−1,i + δj+1,i),

with Kj,i = |Aj,i|+ |Aj+1,i|+ |Bj,i|+ |Bj+1,i| and∣∣∣ ∫
Ij

[
(−δj,iχjx)wj + (1− χj)(Aj,iwjx +Bj,iw

j
`)

− δj,iχjxwj+1 − χj(Aj+1,iw
j+1
x +Bj+1,iw

j+1
` )

]
dx
∣∣∣

≤ Cε−2(r−1 + 1)β(r)Kj,i +O(eε)δj,i.

Therefore, using the estimates for wi it follows that

d2

dhjdhi
M(h) =

∫ 1

0

uhjidx =

∫
Ij

− ∂2uh

∂x∂hi
dx+O(ε−2(r−1 + 1)β(r))Kj,i

+O(eε)(δj−1,i + δj,i + δj+1,i)

=

∫
Ij

(−∂u
h
i

∂x
)dx+O(ε−2(r−1 + 1)β(r))Kj,i +O(eε)(δj−1,i + δj,i + δj+1,i)

= −(uhi (mj+1)− uhi (mj)) +O(ε−2(r−1 + 1)β(r))Kj,i
+O(eε)(δj−1,i + δj,i + δj+1,i).

Since the support of uhi is Ii−1∪Ii∪Ii+1 3 mi−1,mi,mi+1,mi+2 then we get that d2

dhidhj
M = 0 if j 6= i−1, i, i+

1, i+2, while for example uhi (mi) = χi−1wi|mi = χi−1|miw(0, li,±1) and uhi (mi+1) = −(1−χi+1)wi+1|mi+1 =

−(1 − χi+1)|mi+1w(0, li+1,±1). But w(0) = O(ε−1)α′±(r), [21] p. 558, since φxx(0)−1 = ε2/W ′(φ(0)) and
ε/l is uniformly bounded, while χ is C∞.

Let us now for simplicity consider N = 1 then M(h1, y) = constant, when y = h2 where h2 is a function
of h1, so

∂M

∂h1
+
∂M

∂y

∂y

h1
= 0

and thus
∂2M

∂h1∂h1
+ (

∂M

∂y
)y
∂y

∂h1

∂y

∂h1
+
∂M

∂h1

∂2y

∂h21
= 0.
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We set y = h2 to get using the estimate ∂hN+1

∂hj
= O(1)

O(eε) +O(eε)O(1) +O(1)
∂2h2
∂h21

= 0

and thus
∂2h2
∂h21

= O(eε).

The same follows when N > 1. Therefore, we obtain the result. �

5.2. The estimates. We define Is := [−`/2− ε, `/2 + ε], then for any x ∈ Is it holds that ([8, 21, 22])

|w| ≤ cε−1β±(r),

|wx| ≤ cε−2r−1β±(r),

|w`| ≤ cε−2β±(r),

|wx`| ≤ cε−3r−1β±(r),

|wxx| ≤ cε−3β±(r).

(5.7)

For the purposes of our proof we will need estimates for the terms

|w``|, |wxxx|, |wxx`|, |wx``|, |wxxxxx|, |wxxx`|, |wxx``|.
It is sufficient to estimate the above terms in I := [0, `/2 + ε] or in (0, `/2 + ε]. We write I = [0, `/2− εH]∪
[`/2− εH, `/2 + ε], for a positive H to be defined in the sequel. We set

IH := [0, `/2− εH], and J := [`/2− εH, `/2 + ε],

and prove the next lemma related to the second derivative of w in `.

Lemma 5.2. For any x ∈ Is it holds that

(5.8) |w``| ≤ cε−3β±(r).

Proof. Motivated by the proof of [22] for the estimate of |w`|, we use that

ε2wxx = f ′(φ(x))w in (0, `/2 + ε) ⊃ I◦H ,
and differentiate two times in ` to obtain

ε2(w``)xx − f ′(φ)w`` = F
for F := f ′′′(φ)φ2`w + f ′′(φ)φ``w + 2f ′′(φ)φ`w`. By maximum principle it follows that

(5.9) |w``(x)| ≤ max
{
|w``(0)|, |w``(`/2− εH)|, sup

x∈IH

∣∣∣F/f ′(φ)
∣∣∣} for any x ∈ IH .

Following Carr and Pego (cf. [21] p. 560), we choose α and H such that f ′(φ(x)) ≥ c0 > 0 for 0 < x < `/2−
εH. Since ε2φ2x = 2(F (φ)−α), then there exists C > 0 such that 1

|φx| ≤
ε
C for any x ∈ J = [`/2−εH, `/2+ε]

(cf. [21] p. 560, and p. 557).
We will estimate first, |w``(x, `,−1)| in J . It holds that (cf. [21] p. 558)

(5.10) w(x, `,−1) = ε−1`−2α′−(r)φx(|x|, `,−1)

∫ |x|
`/2

ds

φx(s, `,−1)2
.

Let us define A :=
∫ |x|
`/2

ds
φx(s,`,−1)2 ; for simplicity we shall refer to α− by using the symbol α. We differentiate

relation (5.10) and arrive at

w`` = ε−1
{

(`−2α′(r))``φxA+ 2(`−2α′(r))`φx`A+ 2(`−2α′(r))`φxA`

+ (`−2α′(r))φx``A+ 2(`−2α′(r))φx`A` + (`−2α′(r))φxA``
}
.

(5.11)
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According to [21, 22] it follows that

|α′| ≤ cr−2α, |α′′| ≤ cr−4α,

analogously we obtain

|α′′′| ≤ cr−6α.
So, observing that that r = ε/` is bounded, i.e. `−1 ≤ cε−1, we get

(5.12) |`−2α′(r)| ≤ cε−2α, |(`−2α′(r))`| ≤ cε−3α, |(`−2α′(r))``| ≤ cε−4α.

Obviously since x ∈ J then |A| ≤ cε2+1. Denote that

(5.13) ε2φ2x = 2(F (φ)− α)

(cf. [21] p. 552), while

(5.14) ε2φxx = f(φ).

Since
∫ `/2
−`/2 |φx| ≤ 2 (cf. [21] p. 558), and φ satisfies a Dirichlet problem then by trace inequality we get that

φ is uniformly bounded. Therefore, we obtain

|φx| ≤ cε−1, |φxx| ≤ cε−2, |φxxx| ≤ cε−3.

Using now the definition (5.2) of w, and the fact that |w|+ |φx| ≤ cε−1, we arrive at

|φ`| ≤ cε−1,

while |φxl| ≤ c|φxx|+ c|wx|. So, using that |wx| ≤ cε−2, [8], we get

|φx`| ≤ cε−2.

By (5.14) it follows that

|φxx`| ≤ cε−3.
Finally, we will also need an estimate for the term φx``. We differentiate two times in ` the equation (5.13)
and obtain

|ε2φxφx``| ≤ cε−2,
hence using that in J it holds that 1

|φx| ≤ cε we get

|φx``| ≤ cε−3 in J.

In order to compute the derivatives of A in (5.11), we apply the formulae

d

d`

∫ b

s(`)

g(s, `)ds =

∫ b

s(`)

g`(s, `)ds− s′(`)g(s(`), `),

d2

d`2

∫ b

s(`)

g(s, `)ds =

∫ b

s(`)

g``(s(`), `)ds− s′(`)g`(s(`), `)

− s′′(`)g(s(`), `)− s′(`)2gx(s(`), l)− s′(`)g`(s(`), `).
After tedious computations, using the above estimates and the fact that the interval’s length is of order O(ε)
we arrive at

|A`| ≤ cε2, |A``| ≤ cε.
We denote that ε/` is bounded i.e. `−1 ≤ cε−1, thus by (5.11) and (5.12) we obtain

(5.15) |w``| ≤ cε−3α in J.

So by (5.15), since `/2− εH ∈ J , it follows that

(5.16) |w``(`/2− εH)| ≤ cε−3α.
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By the definition of F , the fact that f ′ ≥ c0 > 0 in IH and the first and third estimate of (5.7) we get for
β := β− that

sup
x∈IH

∣∣∣F/f ′(φ)
∣∣∣ ≤ c[|φ`|2|w|+ |φ``||w|+ |φ`||w`|] ≤ cε−1β[|φ`|2 + |φ``|+ ε−1|φ`|

]
.

In addition, since |w`|+ |φx`| ≤ cε−2 [21, 8], then it follows that

|φ``| ≤ cε−2,
while, as we proved, |φ`| ≤ cε−1, so

(5.17) sup
x∈IH

∣∣∣F/f ′(φ)
∣∣∣ ≤ cε−3β.

What is missing is the estimate of |w``(0)|; in [22] by use of the relation w(0) = −∂β∂` (ε/`), it was demonstrated

that |w`(0)| ≤ cε−2β, analogously by differentiating in ` it follows that

(5.18) |w``(0)| ≤ cε−3β.
Using now (5.9), (5.15), (5.16), (5.17) and (5.18) we obtain that |w``| ≤ cε−3β for any x in I = IH ∪ J . By
symmetry we prove finally that |w``| ≤ cε−3β±(r) in Is. �

The next three lemmas present bounds for the third or higher order terms.

Lemma 5.3. For any x ∈ I◦s − {0} it holds that

(5.19) |wxxx| ≤ cε−4r−1β±(r),

(5.20) |wxx`| ≤ cε−4β±(r).

Proof. We consider x ∈ (0, `/2 + ε) so ε2wxx = f ′(φ)w. By differentiating the previous in x and using (5.7)
and the |φx| estimate, or by differentiating in ` and using (5.7) and the |φ`| estimate we get the following

|wxxx| ≤ cε−2
[
|f ′(φ)||wx|+ |f ′′(φ)||φx||w|

]
≤ cε−2

[
cε−2r−1β + cε−1ε−1β

]
≤ cε−4r−1β,

and

|wxx`| ≤ cε−2
[
|f ′(φ)||w`|+ |f ′′(φ)||φ`||w|

]
≤ cε−2

[
cε−2β + cε−1ε−1β

]
≤ cε−4β,

for β = β−. Therefore, we obtain the results in I◦s − {0}. �

Lemma 5.4. For any x ∈ Is − {0} it holds that

(5.21) |wx``| ≤ cε−4r−1β±(r).

Proof. We consider x ∈ (0, `/2 + ε], write wx``(`/2)− wx``(x) =
∫ `/2
x

wxx``(s)ds and get

(5.22) |wx``(x)| ≤ |wx``(`/2)|+
∫ `/2

x

|wxx``(s)|ds.

We use the definition of w given in (5.10), set p = ε−1`2α′, and remind that A =
∫ |x|
`/2

ds
φ2
x

. We take first the

x derivative and then the `` derivative to obtain

wx`` =p``φxxA+ p`φxx`A+ 2p`φxxA` + p`φxx`A+ pφxx``A

+ 2pφxx`A` + pφxxA`` −
p`φx`
φ2x

− p (φx``φ
2
x − 2φ2x`φx)

φ4x
+
p``
φx
− p`φx`

φ2x
.
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Observe that A = 0 at x = `/2, while

A`(`/2) = −1

2
φx(`/2)−2, A``(`/2) = φx(`/2)−3φx`(`/2) + φx`(`/2)φx(`/2)−3.

We also denote that `/2 ∈ J , so by the estimates of Lemma 5.2 we obtain |φx`(`/2)| ≤ cε−2 and |φx(`/2)|−1 ≤
cε. Thus, as in Lemma 5.2 for general x ∈ J , we get that ε−1|A`(`/2)|+ |A``(`/2)| ≤ cε.

In addition using the last estimate of (5.12) we obtain that |p``(`/2)| ≤ cε−5α. Further, we use that
`/2 ∈ J , so by the proof of Lemma 5.2 we have that |φxx(`/2)| ≤ cε−2, while |φx``(`/2)| ≤ cε−3, and
therefore, we obtain finally

(5.23) |wx``(`/2)| ≤ cε−4α,

for α = α−.
Since ε2wxx = f ′(φ)w in (0, `/2 + ε), then taking the `` derivative we arrive at

(5.24) |wxx``(x)| ≤ cε−2
[
|φ`|2|w|+ |φ`||w`|+ |w``|

]
≤ cε−5β

for β = β−. Here, we used the estimates of the proof of Lemma 5.2 i.e. that |φ`| ≤ cε−1, the first and
third estimate of (5.7), the fact that |w| ≤ cε−1β while |w`| ≤ cε−2β, and the result of Lemma 5.2 i.e. that
|w``| ≤ cε−3β.

Since x ∈ (0, `/2) then using that r = ε/`, we get that |x − `/2| ≤ c(`/2 + ε) ≤ cεr−1, and therefore,
(5.22), (5.23) and (5.24) give

|wx``(x)| ≤ cε−4r−1β, x ∈ (0, `/2 + ε].

By symmetry the analogous result holds for any x ∈ [−`/2− ε, 0). �

Analogously the next lemma follows:

Lemma 5.5. For any x ∈ Is − {0} it holds that

|wxxxxx|+ |wxxx`|+ |wxx``| ≤ cε−5r−1β±(r).(5.25)

According to the definition of Eξi , in order to estimate Eξi , Eξij and Eξijk we need first the next result.

Lemma 5.6. For any i, j, k it follows that

|Qj | ≤ cε−3β,
|Qij | ≤ cε−4r−1β,
|Qijk| ≤ cε−5r−1β.

(5.26)

Proof. We remind that

uhj (x) =


χj−1wj for x ∈ Ij−1
(1− χj)(−φjx + wj) + χj(−φj+1

x − wj+1) + χjx(φj − φj+1) for x ∈ Ij
−(1− χj+1)wj+1 for x ∈ Ij+1.

Consider x = 0, 1 (i.e. in the first and last set of the support). Using the estimates of |w|, |wxx| we arrive at

|ũhj | ≤ cε−1β and thus |w̃j | ≤ cε−1β,

|ũhjxx| ≤ cε−3β and thus |w̃jxx| ≤ cε−3β.

The estimates of |wx|, |w`| and of |wxxx|, |w`xx| respectively, now give

|ũhji| ≤ cε−2r−1β and thus |w̃ji| ≤ cε−2r−1β,

|ũhjixx| ≤ cε−4r−1β and thus |w̃jixx| ≤ cε−4r−1β.
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Finally, using the estimates of |wxx|, |wx`|, |w``| and of |wxxxx|, |wxxx`|, |wxx``| respectively we obtain

|ũhjik| ≤ cε−3r−1β and thus |w̃jik| ≤ cε−3r−1β,

|ũhjikxx| ≤ cε−5r−1β and thus |w̃jikxx| ≤ cε−5r−1β.
Remind also that

w̃j := ũhj (x) + ũhj+1(x),

Qj(x) := (−1

6
x3 +

1

2
x2 − 1

3
x)w̃jxx(0) +

1

6
(x3 − x)w̃jxx(1) + xw̃j(1), j = 1, . . . , N,

thus, the definition of Qj combined with the above estimates on w̃j give the result. �

Remark 5.7. By [21] p. 557-556, the next estimates hold true

(5.27)

∫ 0

−`/2
φx(x, `,−1)2 +

∫ `/2

0

φx(x, `,+1)2 ≤ ε−1S∞ + E(r),

where |E| ≤ cε−1β and S∞ =
∫ 1

−1

√
2F (u)du, and

(5.28)

∫ `/2

−`/2
|φx|dx ≤ 2,

and

(5.29)

∫ `/2

−`/2
|φxx|2 + dx ≤ cε−3.

In addition, there exists constant c > 0 such that for x ∈ [hj − ε, hj + ε], j = 0, . . . , N + 1 we have

(5.30) |φj(x)− φj+1(x)| ≤ c|aj − aj+1|,

(5.31) |φjx(x)− φj+1
x (x)| ≤ cε−1|aj − aj+1|,

(5.32) |φjxx(x)− φj+1
xx (x)| ≤ cε−2|aj − aj+1|,

provided ε/`j , ε/`j+1 < r0 with r0 small (cf. [7]).

Now, we are able to compute bounds for the term ũh which are presented in the next theorem.

Theorem 5.8. For any i, j, k it holds that

|ũhj | ≤ O(1) +O(‖w‖),

‖ũhji‖ ≤ cε−1/2(1 + S1/2
∞ + max(rja

j , rj+1a
j+1)1/2) + c‖wx‖+ c‖w`‖,

‖ũhjik‖ ≤ cε−3/2 + c‖wx‖+ c‖w`‖+ c‖wxx‖+ c‖wx`‖+ c‖w``‖.

(5.33)

Proof. We use the definition of uhj and get by (5.28) that

|ũhj | ≤ c
∫ x

0

|φx|dx+ c‖w‖ ≤ c+ c‖w‖.

By [7] p. 38 it holds that

uhj (x) = −uhx(x) + (1− χj)wj − χjwj+1 x ∈ Ij ,
so using the above and (5.3) we obtain

uhji(x) =


O(wx + w`) for x ∈ Ij−1
−uhxx(x)− uhxi(x) +O(wx + w`) for x ∈ Ij
O(wx + w`) for x ∈ Ij+1,
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and therefore we arrive at

ũhji(x) =

∫ x

0

uhji(y)dy =


O(wx + w`) for x ∈ Ij−1
O(uhx + uhi + wx + w`) for x ∈ Ij
O(wx + w`) for x ∈ Ij+1.

The argument of [21] p. 562 of Lemma 8.3 applied for uh in Ij and the support of |φjx − φj+1
x | combined

with (5.31) and (5.28), since
uhx = O(|φx|) +O(|φjx − φj+1

x |),
now gives that

‖uhx‖ ≤ ‖φx‖+
√
O(ε−2ε) ≤ cε−1/2,

while by [21] (cf. p. 563, relation (8.6)) it holds that

‖uhi ‖ ≤ ε−1/2(S1/2
∞ + max(rja

j , rj+1a
j+1)1/2).

Using the above estimates we obtain

‖ũhji‖ ≤ cε−1/2(1 + S1/2
∞ + max(rja

j , rj+1a
j+1)1/2) + c‖wx‖+ c‖w`‖.

Observe now that

ũhjik(x) =

∫ x

0

uhjik(y)dy =


O(wxx + wx` + w``) for x ∈ Ij−1
O(uhxx + uhxi + wxx + wx` + w``) for x ∈ Ij
O(wxx + wx` + w``) for x ∈ Ij+1.

In addition, since uhh = −uhx + (1− χj)wj − χjwj+1 in Ij , then we obtain that

‖uhxi‖ ≤ ‖uhxx‖+ c‖wx‖.
Differentiating two times in x the function uh and using the estimate (5.32) and (5.29) and the support of
|φjxx − φj+1

xx | we get
uhxx = O(|φxx|) +O(|φjxx − φj+1

xx |),
and thus

‖uhxx‖ ≤ ‖φxx‖+
√
O(ε−4ε) ≤ cε−3/2.

So, it follows that
‖uhxi‖ ≤ cε−3/2 + c‖wx‖.

The previous estimates give finally

‖ũhjik‖ ≤ cε−3/2 + c‖wx‖+ c‖w`‖+ c‖wxx‖+ c‖wx`‖+ c‖w``‖.
�

Using now the estimate |ũhj | ≤ O(1) + O(‖w‖) combined with the implicit function result for change of
variables we get that

(5.34) |ũξj | ≤ (O(1) +O(‖w‖))[O(1) +O(ε−1β)],

while the second derivative in ξ variables gives

ũξjk ≤ |ũ
h
jk|[O(1) +O(ε−1β)]2 + |ũhjk|[O(1) +O(ε−1β)] + |ũhj |O(eε).

So, the next lemma follows.

Lemma 5.9. For any j, k it holds

(5.35) ‖ũξj‖ ≤ (O(1) +O(‖w‖))[O(1) +O(ε−1β)],

(5.36) ‖ũξjk‖ ≤ [O(1) +O(ε−2β2) +O(ε−1β)][O(wx + w`) + ε−1/2 + ε−1/2A] +O(eε)[O(1) +O(‖w‖)],

for A := S
1/2
∞ + maxj(rja

j , rj+1a
j+1)1/2.
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The following theorem gives the final estimates concerning the term Eξi in the L2 norm.

Theorem 5.10. For any i, j, k the next inequalities hold:

(5.37) ‖Eξi ‖ ≤ 4`i+1 +O(ε−3β),

(5.38) ‖Eξij‖ ≤ O(ε−1/2) +O(ε−4r−1β),

(5.39) ‖Eξijk‖ ≤ O(ε−3/2) +O(ε−5r−1β).

Proof. Using that ‖Eξj ‖ ≤ ‖w̃j‖ + ‖Qj‖, the estimate of ‖w̃j‖ presented in [8] (cf. p. 186, relation (4.24))

and Lemma 5.6, we obtain (5.37). Also, observe that

Eξji = w̃ji +O(Qji) +O(Qijx) = O(wx + w`) +

∫ x

0

(−uhxx − uxi)dy +O(Qji) +O(Qijx)

≤ O(wx + w`) +O(uhx + uhi ) +O(Qji),

so,

‖Eξji‖ ≤ O(ε−1/2) +O(ε−4r−1β).

Further, we obtain

Eξjik = w̃jik +O(Qjik) +O(Qjikx) = O(wxx + w`` + wx`) +

∫ x

0

(−uhxxx − uxxk)dy +O(Qjik) +O(Qjikx)

≤ O(wxx + w`` + wx`) +O(uhxx + uhxk) +O(Qjik),

so, by Lemma 5.6 we get

‖Eξijk‖ ≤ O(ε−3/2) +O(ε−5r−1β).

�

Remark 5.11. We denote that the estimate of ‖Eξij‖ presented in the previous Theorem coincides in the

main order term with the estimate that was used but not presented analytically in [8].

Using the results of the previous analysis we derive finally by Cauchy-Schwarz inequality all the desired
estimates involving the higher order derivatives which are presented at the next main theorem of this section.

Theorem 5.12. The next inequalities hold for any i, l, k:

(5.40) |〈ũξkl, E
ξ
i 〉| ≤ O(ε−1/2)

[
4`i+1 +O(ε−3β)

]
,

(5.41) |〈ũξk, E
ξ
il〉| ≤ O(ε−1/2 + ε−4r−1β),

and

(5.42) |〈ṽ, Eξilk〉| ≤ O(ε−3/2 + ε−5r−1β)‖ṽ‖.

The last term to be analyzed is 〈Lcṽ, ũξkl〉. Therefore, we prove the following main result.

Theorem 5.13. For any k, l, it holds that

(5.43) |〈Lcṽ, ũξkl〉| ≤ ε
−5β(r)

(
O(1) + ε−2β(r)2

)
‖ṽ‖.

Proof. We denote that

〈Lcṽ, ũξkl〉 = −〈ṽ, ∂x∂ξk∂ξlLb(uξ)〉,
where Lb(φ) := ε2φxx − f(φ). As in [7] (cf. p. 452-453) we write for x ∈ [hj − ε, hj + ε], j = 1, 2, . . . , N + 1

(5.44) Lb(uh) = f1 + f2 +G,
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for

f1 := ε2χjxx(φj+1 − φj), f2 := 2ε2χjx(φj+1
x − φjx),

G := (φj+1 − φj)2
{

(1− χj)
∫ χj

0

sf ′′(θ)ds+ χj
∫ 1

χj
(1− s)f ′′(θ)ds

}
,

with θ = θ(s) := (1− s)φj(x) + sφj+1(x). For other x, we use Lb(uh) = 0.
In Lemma 5.2 of [7] at p. 454, after differentiating f1, f2, G in hj is derived that∣∣∣ ∂

∂hj
Lbuh

∣∣∣ ≤ cε−2β(r).

Applying the analogous computation, i.e. differentiating in hj , hi, we may derive

(5.45)
∣∣∣ ∂2

∂hj∂hi
Lbuh

∣∣∣ ≤ cε−3β(r).

Denote that in the above computation the worst term is |φjxxx(x)− φj+1
xxx(x)|. But ε2φxxx = f ′(φ)φx, where

f(φ) = φ3 − φ and f ′(φ) = 3φ2 − 1, so using the estimates of φ, φx and the results for the differences
presented at p. 453 of [7], we get

|φjxxx(x)− φj+1
xxx(x)| = ε−2|f ′(φj)φjx(x)− f ′(φj+1)φj+1

x (x)|
= ε−2|f ′(φj)φjx(x)− f ′(φj+1)φj+1

x (x)− f ′(φj)φj+1
x (x) + f ′(φj)φj+1

x (x)|
≤ ε−2|f ′(φj)||φjx(x)− φj+1

x (x)|+ ε−2|φj+1
x (x)||f ′(φj)− f ′(φj+1)|

≤ cε−2|φjx(x)− φj+1
x (x)|+ cε−2ε−1|f ′(φj)− f ′(φj+1)|

≤ cε−3|aj − aj+1|+ cε−3|3φj(x)2 − 1− 3φj+1(x)2 + 1|
≤ cε−3|aj − aj+1|+ cε−3|φj(x) + φj+1||φj(x)− φj+1|
≤ cε−3|aj − aj+1|+ cε−3|aj − aj+1|
≤ cε−3|aj − aj+1|.

Again as in [7] (cf. p. 456), by using that ε2wxx = f ′(φ(x))w and differentiating it in x, we may obtain
that

(5.46)
∣∣∣ ∂2

∂hj∂hi

∂

∂x
Lbuh

∣∣∣ ≤ cε−5β(r).

Returning now in ξ variables, since the second derivative appears, then by use of the formula (5.1) in
(5.46) and since (cf. [7] p. 454) it holds that

(5.47)
∣∣∣ ∂
∂hj

∂

∂x
Lbuh

∣∣∣ ≤ cε−4β(r),

we obtain finally∣∣∣ ∂2

∂ξk∂ξl

∂

∂x
Lbuh

∣∣∣ ≤ε−5β(r)
{

(O(1) + ε−1β(r))2 + (O(1) + ε−1β(r))
}

+ ε−4β(r)O(eε)

≤ε−5β(r)
(
O(1) + ε−2β(r)2

)
.

(5.48)

So, the result follows. �
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