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FRONT MOTION IN THE ONE-DIMENSIONAL
STOCHASTIC CAHN-HILLIARD EQUATION

D.C. ANTONOPOULOU'Y, D. BLOMKER?, G.D. KARALI'Y

ABSTRACT. In this paper, we consider the one-dimensional Cahn-Hilliard equation perturbed by additive
noise and study the dynamics of interfaces for the new stochastic model. The noise is smooth in space and
is defined as a Fourier series with independent Brownian motions in time. Motivated by the work of Bates
& Xun on slow manifolds for the integrated Cahn-Hilliard equation, our analysis reveals the significant
difficulties and differences in comparison with the deterministic problem. New higher order terms, that we
estimate, appear due to It6 calculus and stochastic integration dominating the exponentially slow deter-
ministic dynamics of the interfaces. We derive a first order linear system of stochastic ordinary differential
equations approximating the equations of front motion. Furthermore, we prove stochastic stability for the
approximate slow manifold of solutions on a very long time scale and evaluate the noise effect.

Keywords: 1-D Stochastic Cahn-Hilliard, slow manifold, interface motion, additive noise, dynamics.

1. INTRODUCTION

1.1. The problem. The standard Cahn-Hilliard equation is a simple model for the phase separation of a
binary alloy at a fixed temperature, proposed in [I7, [I8]. This model was extended by Cook [23] 40] in
order to incorporate thermal fluctuations in the form of an additive noise. In this paper, we consider the
one-dimensional Cahn-Hilliard equation posed on (0, 1) with an additive stochastic term:

(SC-H) Uy = (—2Uge + f(U))ge + W, 0<z <1, t>0,
with no-flux boundary conditions of Neumann type:

(1.1) Uy = Upze = 0 at =0, 1.

Here, W is a smooth in space space-time noise defined as the formal derivative of a Wiener process W.
The nonlinearity f = f(u) is the derivative of a smooth double equal-well potential F' taking its global
minimum value 0 at v = £1 [I], with non-degenerate minima. A typical example is F(u) := 1 (u* —1)? with
f(u) := u® — u. The parameter ¢ > 0 is a small atomistic interaction length modeling the width of layers
that develop during the initial phase separation of spinodal decomposition (cf. [12, [13]). In the later stages
of the separation process ¢ measures the width of interfacial regions between the pure phases u = +1.

A characteristic feature of the Cahn-Hilliard model is the conservation of total mass fol u(t, z)dx, which
we now fix to be M € (—1,1). Substituting a(t,z) := [; u(t,y)dy we obtain the equivalent integrated
stochastic Cahn-Hilliard equation:

(ISC-H) Gy = —2lgpee + (f(Ux))a + W, 0<z <1, t>0,

associated with the boundary conditions:

(1.2)
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2 ANTONOPOULOU, BLOMKER, KARALI

J. Carr and R. Pego in [21], 22] presented a detailed analysis of the slow evolution of patterns of the singularly
perturbed Ginzburg-Landau equation. They proved existence and persistence of metastable patterns and
analyzed the equations governing their motion. These metastable states have been characterized in terms
of the global unstable manifolds of equilibria. In [7, [§], P.W. Bates and J. Xun extended their argument
and studied the dynamics of the one-dimensional C-H equation in a neighborhood of an equilibrium having
N +1 transition layers, using several estimates presented in [21] [22]. They determined the exponentially slow
speed of the layer motion and described precisely the layer motion directions. In addition, they established
existence of an N-dimensional unstable invariant manifold attracting solutions exponentially fast uniformly
in e. Related work in this direction are [9, [33], 41].

Motivated by the work of Bates and Xun for the deterministic problem, we study dynamics for the
stochastic model. Due to stochastic integration, new higher order terms appear that we estimate using
techniques and ideas of [7, [8, 21l 22]. In the sequel we shall refer frequently to some important definitions
and results presented in the aforementioned articles, therefore, we give some details concerning our notation.
Following [21] 22], we use the letter f for the nonlinearity in (SC-H), and denote by F the double equal well
potential. In [7 [8] the symbol W’ is used in place of f; we avoided such a notation since we name by the
standard symbol W the additive noise.

1.2. The effect of noise. The stochastic Cahn-Hilliard equation being one of the important examples of
the nonlinear Langevin equations is based on a field-theoretic approach to the non-equilibrium dynamics
of metastable states (see for example [23] 37, [40]). The multi-dimensional generalized stochastic Cahn-
Hilliard equation associated with Neumann boundary conditions posed on bounded domains contains a
time dependent noise into the chemical potential and an additive multiplicative noise defined as the formal
derivative of a Wiener process. The chemical potential noise describes external fields [37] 35 [39], while the
free-energy independent noise may describe thermal fluctuations or external mass supply [23], 40}, 37, 35].

Existence and uniqueness of solution for the stochastic problem was first studied in [24], where the
nonlinearity f is a polynomial of odd degree and the problem is posed on multi-dimensional rectangular
domains. Further, in [19], the author proved existence of solution and of its density for the stochastic
Cahn-Hilliard with additive noise (in the sense of Walsh, cf. [44]) posed on cubic domains. When the
trace of the Wiener process is finite, existence was analyzed in [28]. In [], existence for the generalized
stochastic Cahn-Hilliard equation was derived for general convex or Lipschitz domains; the main novelty
was the derivation of space-time Holder estimates for the Green’s kernel of the stochastic problem, by using
the domain’s geometry, which can be very useful in many other circumstances. The polynomial nonlinearity
which forces the solution to stay between the pure phases +1 has been analyzed in [12] [I3] 19, 20] 24, 28],
while in [27] 26} [34] a stochastic Cahn-Hilliard with reflection was considered.

In [12, T3] (see [14] for a review), the effect of noise on evolving interfaces during the initial stage of phase
separation is analyzed. The evolution of these interfaces is stochastic and not yet fully understood. In [12],
the authors show that for a solution starting at the homogeneous state, the probability of staying near a
certain finite-dimensional space of pattern is high as long the solution stays within the distance of the size of
the homogeneous state. Further, in [I3], the dynamics of a nonlinear partial differential equation perturbed
by additive noise are considered. Under the assumption that the underlying deterministic equation has an
unstable equilibrium, the authors show that the nonlinear stochastic partial differential equation exhibits
essentially linear dynamics far from equilibrium.

On the other hand interface motion has been studied for many related models like Allen-Cahn or Ginzburg
Landau and phase-field models, cf. for example [I5] [I1] for a rigorous analysis or the results of [30] for
formal arguments, which describe the interfaces as interacting Brownian motions. Numerical results for
interface motion are [43],[36]. The problem of singular perturbation for a reaction-diffusion stochastic partial
differential equation of Ginzburg-Landau type is investigated in [32]. The motion of interfaces for Cahn-
Hilliard was only studied in an unpublished note by S. Brassesco in 2003, where she studied a solution with a
single interface on R. When properly rescaled the interface is driven by non-Markovian dynamics. A similar
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result is [I1]. In [42], the authors present a numerical study of the late stages of spinodal decomposition
with noise.

The deterministic Cahn-Hilliard equation was proposed by Cahn and Hilliard ([I7, [16]) as a model for
the phase separation of a binary alloy at a fixed temperature, with u(z,t) defining the mass concentration
of one of the phases at a point x at time ¢. For more physical background, derivation and discussion of the
deterministic Cahn-Hilliard equation and related equations we refer to [6l, [16], 17, 29, BI] and the references
therein. Results for the noisy Cahn-Hilliard equation are of great interest for the studying of Ostwald
ripening [2, [3, [38] and nucleation [I0]. For a survey, including numerical results and conjectures concerning
the nucleation problem, see [14].

1.3. The approximate slow manifold. The space-time noise that we introduce is smooth in space, so,
integration in space is deterministic. Therefore, in order to study the transition layers dynamics for the
stochastic model in the finite interval (0, 1), we closely follow the approach of Bates & Xun and Carr & Pego
that is based on the analysis of an approximate invariant manifold M. Although constructed in a different
way, it can be thought of as piecing together a rescaled one kink (or front) steady state solution on the whole
real-line. The elements of the manifold are parametrized by the position of the fronts given by h € RV+1,
Nevertheless, in our case the dependency on time is stochastic. This fact arises the very interesting and
difficult problem of investigating further the properties of M by means of deriving higher order estimates
related to the stationary problem.

Let us present first the details necessary for the steady state solutions ¢, the parameters h and the
manifold M. Given ¢ > 0, we consider a such that f’(u) > 0 for all u satisfying |u & 1| < a. Then, cf. [21],
there exists p > 0 such that if £ satisfies § < p then a unique solution ¢ = ¢(x, £, £1) exists for the following
stationary Dirichlet problem

52¢xw_f(¢>207 _€/2<x<£/27

(1.3) $=0, z=+/2,

that satisfies: (a) ¢(x, ¥, +1) > 0 for |z| < £/2, and |$(0) — 1| < a, (b) ¢(x,¢,—1) < 0 for |z| < ¢/2, and
|¢(0) + 1| < a. For ¢ > 0 small, it is known that ¢ ~ +1 with transition layers of order O(g) near z = +£/2.

Following [§], we consider the slowly evolving solutions with N + 1 layers well separated and bounded
away from the boundary x = 0,1 and define the set of admissible positions h of the interfaces

(14) Q= {heRN+1:0<h1<-~-<hN+1<1, and%<hj—hj_1, j=1,...,N+2},

with hg := —h1, hyyo := 2 — hyy1. These interfaces evolve in time, and we expect them to have a width
of order . Thus, the distance is bounded below by &/p for some small p. Later we fix p = " for any small
K> 0.

Let h € €, be given as above, and denote the mid points between interfaces by m; := for
j=1,...,N +2 with mg = 0 and my41 = 1. Moreover, we define the function u" : I; := [m;,m;41] = R
for the interfaces h by

hj—1+h;
2

x—hj ]
(15) “h(x):{l—X(T” ¢ (x —my, by = hjo1, (—1)7)
+ X (%) <@ (z—mypa, hjpa — hy, (=1)771),
where x : R — [0,1] is a C*° cut-off function such that xy =1 on [1,00) and x = 0 on (—o0, —1].

Definition 1.1 (approximate slow manifold). The first approximate manifold of the stochastic Cahn-
Hilliard solution is defined by

My = {uh che Qp}.
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Fixing a mass M € (—1,1), we define as the second approximate manifold the submanifold M of M; where
mass conservation holds i.e.

1
M = {uh € My :/ uhdx:M}.
0
For the integrated equation, we consider the manifold

M= {ﬂh e M, aM(z) = /I uhd:z:}.
0

h
u
A é(-—ma, ha — h1, 1) ¢(-—mn,hng1r — by, 1)
hO = _hl hl / \ hg hN /_\ hN+1 1 hN+2
— | - | i —
&_/ " \ / o L/
T
o(-,2h1,—1) (- —1,2 = 2hn41,—1)

FIGURE 1.1. Gluing together positive and negative solutions of (1.3) to obtain u® € M.
Note that my =0, my42 = 1, and I; = [m;, m;41].

Remark 1.2. In view of the initial stochastic equation (SC-H), conservation of mass holds if and only if
formally

1
(1.6) /O 0, Wdy = W(1) — W(0) = 0.

This is later assured by our assumptions on W, which impose Dirichlet-boundary conditions (cf. Definition
and Assumption [2.3). A very simple rigorous example is the following: consider W := g(z)V (t), where

V() is a white noise in time and g a smooth function satisfying g(1) = ¢(0), then by integrating in space
the equation (SC-H) and using the fact that

1 1
/0 0, Wdy = V(t)/o 92(y)dy = 0,

we obtain mass conservation even with the noise. We can extend this example to infinite series of terms of
these type.

Throughout the entire paper we will assume that the additive noise in (SC-H) satisfies (|1.6)), and therefore
the proposed stochastic model exhibits mass conservation.

1.4. The new coordinate system. Along M the natural coordinate system would be to use the parameters
h € ), for the position in M (where N of them are sufficient due to mass conservation), together with the
orthogonal projection onto M. In order to relate the coordinate system to the deterministic flow of (ISC-H),
one approximates the tangential space of M by the span of some functions El i=1,...,N to be defined
in the sequel; here, we follow [7].

We denote the L?(0,1) inner product by (u,v) := fol uvdz, the induced L2-norm by || - || and introduce
the symbol g(z,t) := fowg(y,t)dy, for any g smooth in space.

Due to mass conservation, we reduce the parameter space €1, by one dimension, define

SS: (51,...,51\/):(]7,1,...,}1]\/),
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/ | =

FIGURE 1.2. The local coordinate system @ = @€ + ¢ around M for N = 1 (two interfaces).
Note that Ef ~ aﬁ, which is the tangential vector along the manifold.

. . - il - o .
and consider hyy1 as a function of £. Thus, for u;’ = g“;l and u§ = g—z‘_ we obtain that
J J

s 0T Ohyy  ou
J 8hN+1 8hj 8hj

We use the following coordinate system around M: @ — (£,7), where we write the stochastic solution 4 of
(ISC-H) as a sum of stochastic processes

(1.7) a(t) == a*® + o(t).
Here the position on M is given by @ € M while the distance from M is given by & which is defined as the
following projection such that
(1.8) (#,E5) =0 for j=1,...,N.
It turns out that the functions EJE are good approximations to the first eigenfunctions of the linearized

integrated Cahn-Hilliard operator, which in turn are good approximations to the tangential space of M.
They are defined as follows:

ES = () — Q;(w), Wy = 1 () + 4 (),
Qj(z) == (—%x?’ + %:ﬁ - éx)zbjm(()) + %( 3 D)W (1) + 2i(1), j=1,...,N,

where the @, later turn out to be exponentially small terms (cf. [7]), that only takes care of the boundary
values of Ef
For short-hand notation, we also define higher derivatives using indices
€ 2 1§ 25
(1.9) g =08 pe o OB e 00 |
& 0& 08}, 0808
The rest of the paper is organized as follows: In Section 2, we present the main results including a
proper definition of the noise, the equations for the motion of the interfaces, the stability of the approximate
manifold M, and the approximation of the front motion in a neighborhood of M. The proofs of the main
results appear in Sections 3 and 4, while the final Section 5 collects all the estimates of the higher order
terms appearing in the stochastic dynamics. Here, we consider the stationary problem and analyze the
properties of its solution by deriving bounds for higher order derivatives, extending some of the results of
[211, 22 7, []].

2. MAIN RESULTS

The SDE (Stochastic Differential Equation) system for the motion of fronts is given by the projection onto
the manifold M, using the coordinate system of Section We then prove that M is locally exponentially
attracting and show that solutions stay with high probability in a small slow tube around M, until large
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times or until one of the layers becomes small. The flow along M is well described by the SDE for the
interfaces £&. Depending on the strength of the noise we investigate how the equation of motion of the fronts
looks like and evaluate the noise effect. In addition, we investigate extensively the case N = 1 where the
motion of the second interface is determined by the first. Finally, the case of space-time white noise is
discussed. In the final section we present the proofs of the estimates used in our analysis concerning all the
higher order terms that appear in the to stochastic setting. These are technical results that are independent
of the other section.

Let us first explain briefly how the equations of motions along M are derived in Section 3; for details we
refer to Subsection If @ is the solution of (ISC-H), then using the Ité-formula to differentiate @¢ in t we
get

N
- - 1 - -
(2.1) div =Y uSde; + 5 N g, dedg + do.
j=1 1<k,I<N
We take the inner product in space of (ISC-H) with Ef to obtain for any i =1,..., N:
(2.2) (ES,di) = (—€%tigpan + (f(Ur))e, BS)dt + (ES,dW) .
The inner product of (2.1]) with Ef now gives
N
(2.3) (Bf,dity = (@5, E5)dé; + 5 Y (i, By )déedé; + (B, db) .
j=1 1<k, I<N

Applying the It6-formula in differentiating in ¢ the term (9, Ef) =0, using dit = da€ + dv and combining
(2.2) with (2.3)), we get fori = 1,--- , N the following system in d¢;, - -- ,déy for the stochastic Cahn-Hilliard
equation:

> G ES) = (5, BS)|de =(— (i e + Banaa) + (55 + 02)), B el
J
+ Z [% Ejy) — 5, Bf) — (@}, E >} d&yd&p,
(2.4)
+ Z<dm E5;)dg;
J
+ (ES,dW) .
In the above, we denote that the last three additive terms at the right-hand side give the difference from the
deterministic Cahn-Hilliard system of [§].

Remark 2.1. In view of , we observe that the study of dynamics for the stochastic Cahn-Hilliard, even
in one dimension, arises a much more complicated and difficult problem in comparison with the deterministic
one.
(1) Deterministic case: The system is linear in d¢;, therefore by estimating the inverse matrix on the
left-hand side (which is possible close to /\;l) and the right-hand side terms, the motion of interfaces
is obtained, see [§].

(2) Stochastic case: Obviously, for a general noise definition the system is non-linear due to the appear-
ance of d{;d¢,. In the sequel, we make an ansatz for £ in order to get a linear system, which then
justifies the ansatz. Further, we need estimates for the additional higher order terms E”7 Ellk, and

ﬁil. Here we need to improve the estimates of [7].

The sufficiently regular noise W is the formal derivative of a Wiener process W defined as follows.
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Definition 2.2 (The Wiener process W). Let W be a Q-Wiener process in the underlying Hilbert-space
H = L?(0,1), Q a symmetric operator and (ej)ren an orthonormal basis with corresponding eigenvalues a3,
such that

Qekfozkek and W (¢ Zakﬁk €k,

for a sequence of independent real-valued standard Brownlan motions {Sx(t)}i>0 (cf. DaPrato, Zabzcyck
[25]).
We will always use the following assumption, which is an assumption for mass conservation and regularity.

Assumption 2.3. Suppose that the e; are also the eigenfunctions of the Dirichlet-Laplacian. Moreover, we
assume that for some 0 < 6,

(1) Q| < Ce? 2

(2) o5l apBe(er) < C6.

where for some small k > 0 we have 5, < B+r)/(2=x)

The first assumption on the norm of Q@ as an operator in H means that the strength of the noise is
bounded by O(4.), while the second one is an assumption on the noise regularity. Note that

B.(e) = 52||em||2 + ||ez||2,

which is equivalent to the standard H?-norm (see (3.14))).
The next crucial assumption considered in order to obtain the equation for the interfaces £ is the following.
Let @ be a solution of (ISC-H), then let £(¢) be a diffusion process in RY defined for any k = 1,..., N by

&k = br(§)dt + (ox(£), dW),

for some vector field b : RY — RY and some variance o : R — HY. Let us define as in [§] the matrix
Aij(f) = <ﬂ§7 E§> - <’Dv E’f]>7

which is invertible, provided that we are near the slow manifold. The previous noise definition combined
with ([2.4]), gives the following SDE system for the interfaces motion for the stochastic C-H:

Z Aij(€)de; =(—* (8 g + Vuaaw) + (F(@S + T0))s, ES)dt

+Z[$ By — Ak B9) — (i, BS)] (Qow(€). o1(€)dt
(2.5)

+Z<QEija‘7j(f)>dt

+ (ES, dw).

(cf. also the equivalent presentation ) We can easily read off b and o from this equation for £&. Moreover,
it gives the flow along M by describing the interface positions. It is now easy to check by construction that
the difference © = @ — @¢ is actually the © of the coordinate system (see Sec.|1.4)). In addition, a solution of
together with a corresponding equation for o (see (3.15)), later) describes a solution @ of (ISC-H).

Further, in Section 3 the variance o of the multi-dimensional diffusion process £ of the interfaces is
computed first explicitly and then estimated in terms of . A main result of grate importance is the
stochastic analysis of the stability of the second approximate manifold which is presented in Theorem
of this section. Over a long time-scale of order O(¢~?) for any ¢ > 0, we show that with high probability
the solution of the stochastic Cahn-Hilliard stays in a small neighborhood T of the integrated manifold M,
unless an interface breaks down.
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FIGURE 2.1. The stability of the slow manifold M for two interfaces (N = 1). A small
tubular neighbourhood T', the slow channel, is attracting over long time-scales. Solutions
tend to exit at the end of I" by loosing an interface.

In Section 4, we present first Theorem in which we approximate and derive the equations of
interfaces motion. Further, we consider several examples where Theorem is simplified. If the noise is ex-
ponentially small, then we recover the slow motion results of [7, [8]. There is a slow channel as a neighborhood
of M, in which with high probability the motion of the interfaces is described by the deterministic regime.
There is also an interesting intermediate regime of still exponentially small noise, which for simplicity of
presentation we do not consider in this article. Here, due to the presence of noise, additional deterministic
and stochastic terms appear in the deterministic equation of Bates & Xun [§]. An interesting case from
the point of applications is the case where the noise strength is a power of . As the general case is quite
involved in presentation, we consider only two interfaces (i.e. N = 1). Here, obviously the motion of the
second interface is determined by the first which is approximated by the following SDE (cf. ):

1 0 1
(2) A1 = 33 5 1 QP ES Pt + - (B, W),
2

404

where /5 is the distance between the two interfaces. Finally in this section, we also discuss the case of
non-smooth in space space-time white noise (Q = Id), which we do not treat by our assumptions; here &;
would be close to a Brownian motion with variance 62/(16¢3).

3?hni1
h;0h;

Ef and @¢, and a bound for the quantity (L°?, ﬂil) (needed in the proof of the stability Theorem). Here the
operator L¢ acting on a general smooth in space function ¢ is given by

LE(¢) = —&*Prawa + (f/(uh)d’a:)x

The results of this section are quite technical since their proof involves extensive computations related to
the stationary problem properties. The new estimated terms appear only in the stochastic setting due
to the presence of noise, and where therefore not treated in the work of Bates & Xun [7, [§] or Carr & Pego
[21L 22]. A main result of this paper is that the stochastic treatment of the very important deterministic
result of Bates & Xun gives new insights on the analysis of the deterministic stationary problem by means
of a higher order regularity point of view.

Section 5 provides estimates for the second order derivatives for the higher order derivatives of

3. FRONT MOTION

In this section, we derive the equations of motions of the fronts and show that the approximate manifold
is locally attracting.

3.1. Preliminaries and definitions. Let us first recall some notation. If u is the solution of (SC-H), then
a(x,t) == [, u(y,t)dy is the solution of the integrated one i.e. of (ISC-H). Let a, &, p, N be given; for some
¢ such that €/¢ < p, we consider the unique solution ¢ of which satisfies the properties (a) and (b).
Let also (hi,...,hnt1) € Q, be the admissible interfaces positions and take hg := —h1, hAng2 =2 — hyy1.
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Let ¢; = h; — hj_1 be the distance between interfaces and £ := min{/y, ..., ¢y} the lower bound on them.
Note that by the construction of €2, the functions ¢ are always well defined. Let

r:=¢/l, Bi(r):=1F¢(0,4,£) and ay(r):= F(¢(0,£,4)).
In view of (1.5]), we also define
djj(x) = ¢ ('1j - mjvgj’ (_1)3) )
and ué” = g—z: for j =1,...,N + 1. Considering r; := €/{;, let
A N for i .
§(r) i= { ) TOTT N ) i max i)

B—(r;) for j odd, j

We denote that in [§], as an application of the implicit function Theorem,

Ohn i1
oh,

(31) = ()Y + O B().

In addition, let

. . f ] )
ol (r) = o (ry) for ‘7 YN and a(r) == maxao’ (r) .
a_(r;) for j odd J
We see later, that both o and 8 are exponentially small in ¢, if we consider r; < p < € for some small
positive k.

3.2. The general SDE for the front motion. Let @ be a solution of (ISC-H). We assume that the N

front positions, i.e. the coordinates of £(t) = (&1(¢),...,&n(t)), define a multi-dimensional diffusion process
which is given by
(3.2) d§i = b (§)dt + (o (§),dW), k=1,...,N,

for some vector field b : RV — R and some variance o : R — H. The main aim of this paragraph is to
identify b and o, which might also depend on 7, i.e. on the distance from the manifold.
We use Ito-formula, in order to differentiate #¢ with respect to ¢, and get

9%at

N
(3.3) div=Y aSds;+ 5 > iig,dedd + do with @5, = e

j=1 1<k,JI<N
We take as in [8], p. 175, the inner product in space of equation (ISC-H) with Ef, to get foranyi=1,..., N
(3.4) (EE, da)y = (£°(a), ES)dt + (ES,dW)
where we defined the nonlinear ICH-operator as
L(u) = = ugman + (f(ua))a

for short-hand notation.
On the other hand, if we take the inner product of (3.3]) with Ef, we derive

N

(3.5) (Ef,dity = (@5, E5)dé; + 5 Y iy, By )déedé + (B, db) .
j=1 1<k, I<N

Throughout the rest of this paper, any summation is on 1,2,..., N for any index.
In order to eliminate dv, we apply It6-formula to the orthogonality condition (9, Ef y =0, and arrive at

= =) (0,E5dg — 1> (0, By déde, — > (S, db)de;.
J

gk J
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Now, we use that do = dii — dai and the fact that dtdt = 0 and dWdt = 0. In details,

Z B, dv)dg; = —Z E5;, diydg; +Z E;,, duf)de;

(3.6) = Z (B, £°(a) dtdsj = (B AWdg; + > (B, ) dede;
J gk
= —Z (ES,dW)de; ,+ Y (ES, @) dede;,
J g,k

where we took the inner product in space of equation (ISC-H) with E”7 and used that

dg;dt = b (€)dtdt + (o;(€), dW)dt = 0.

Therefore, by (3.6)) it follows that

(3.7)  (Bfdd)=—> (0, E5)de; — 1> (0, B de de, — > (AW, B dg; + Z © A ey .

J Jik J
Combining ((3.4) with (| and ( we arrive at
> [<a§,E§> - <6,E§j>]dej —(L°(@), 5 )dt
(33) P> (46, B — (@ B) — (@, B5) | deude
Z (dW, E;)dg; + (E5,dW) .
Lemma 3.1. For all1 <k, I < N it holds that

<0k (6)7 dW> <Ul (5)7 dW> = <Q0k (5)7 o1 (f»dt
Proof. Since dB;dB; = 6;;dt and W (t) = >, oSk (t)er we obtain, using Parcevals identity,

(o1(8), AW){1(€),dW) = Z%% ok (£), €i)(01(£), €5)dB;dB; = Za (), ¢5){01(§), e5)dt

Z<Q0k(§)7€j><az(£),6g‘>dt = <Q0k(€),01(£)>dt -

J

Analogously to this Lemma we easily obtain (using dtdW = 0)

(B, dW)de; = (E5,dW)(0;(6),dW) = (QE};. 0;(€))dt.

ij) ij)
Moreover, for short-hand notation, as in [7], we define the matrix A(¢) = (4;;(£)) € RV*N by
(39) A (€) = (@5, ) — (0, Ey)

which is invertible, provided that we are near the slow manifold (cf. Lemma later). Let us denote the

inverse matrix of A by A=1(¢) = (4;;'(€)) € RM*N,
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Therefore, for all ¢ € {1,..., N} we arrive at

> Aij(€)dg; = (Le(a + ), B )dt
(3.10) +Z[ (@, Bfy) — 35, BY) — (g, E5) | (Qow(€), 0u(€)) dt
+ Z<QEl-j,Uj(§))dt +(ES, dW) .

To obtain the equation for d¢ we use that d¢ = A(&)"LA(E)dE .

Thus, the final equation for & (as long as @ is near the manifold) is given for any r =1,..., N by
Z A €45), ESYdt
(3.11) + ZA [ BSy) — 5@ BS) — (5, BS)] (Qow(€), ou(©)dt
a0,k

A OD (QE0 dt+ZA E)(ES,dW) .
i J

We can now recover ¢ and b from (3.11). The only term that does involve noise is the last one. Thus, in

view of (3.2) we get

(3.12) or(§) = DAL OB

After we obtained o, we can proceed, in order to determine b(§) from the remaining terms (cf. (3.2)). So
we get for r =1,..., N that

(3.13) Z Al @ +0), EY)

Remark 3.2. (Well defined coordinates) It is easy to check from the construction, that given our £(t)
from Equation ([3.2)) with b and o defined as above, then there exists a corresponding solution @ of (ISC-H).
If the distance ¥ from the manifold M is sufficiently small, then £ describes the motion of the interfaces of

u.

3.3. Stability and Attractivity of the manifold. In this paragraph, we prove the stability and discuss
the attractivity of M. Considering the stability, we show that with high probability (over a long time-scale)
the solution stays close to M, unless an interface breaks down.

In [7, Theorem B], Bates and Xun show that in the deterministic setting the slow manifold is exponentially
attracting in a O(¢7/2)-neighborhood in H?, until the solution reaches an exponentially small neighborhood,
where the motion of the solution along the manifold is exponentially slow. Using large deviation estimates,
it is straightforward to verify for small noise, that the stochastic solution follows the deterministic one up to
error terms of the order of the noise strength. Hence, the exponential attraction of M still holds for (ISC-H),
until the solution reaches a neighborhood of the manifold that is determined by the strength of the noise.

Here, for simplicity of presentation we will focus only on the stability of M. The proof can be easily
modified to show attraction, too. Once, we are in the slow channel around M, with high probability we
cannot exit for a long time-scale T¢, unless one of the interfaces breakes down.
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We define the metrics A, and B, as

(3.14) A(D) = /O 1[5%; + f/(u®)i2)dz  and  B.(9) = /O 1[52733,% + 2] da.
Note that it is easy to check that
10,8 < Ce™'Be(9) < Ce™A.(0) < Ce™®B.(0) < Ce™3||0[|32,
and
I19]1% < Be(9) 19013, < +£2B-(7) -
Definition 3.3. (cf. [7], p. 452) Define a neighborhood I of M by
I'={a*+9 : £€Q,, B(d) <},
and we define the slow tube I" by
Di={a*+0 : £€Q,, A(d) <"},
where k > 0 is presented in the definition of the noise (cf. Assumption and J. estimates the noise
strength.

The small tube I is a neighborhood of the slow manifold, where the coordinate system (cf. ) is well
defined, while the slow tube I' is a neighborhood in which solutions with high probability do not exit for
long times unless one of the interfaces breakes down. Recall that T' C IT” by definition of §.. We even have
B.(9(t)) < C§2e=2 < Ce%* | which we need in the proof of stability.

As indicated in the introduction, the first term at the right-hand side of the flow given by , is
identical to the right-hand side of the deterministic flow and has been estimated in [7]. In our stochastic
case, in order to approximate the flow, we need to bound also the additional higher order terms and estimate
the contribution of the noise. Later, in the next Section 4, we will identify the dominant terms in .

Using (4.27) of [§] and the fact that ||Ef] | = O(e=/2) (8] p. 187), we obtain in T considering the matrix
A the following invertibility result:

Lemma 3.4. Suppose that h € Q, and ||3|| = O(c%/?), then

Aij(&) = O(e) + { é_l)i+j4€j+1 if 1>

if 1<y
and the matriz is invertible, with
AL =0 46541 if i1=3,J
t ©) () +{ 0 otherwise

where 1 > €; > ¢/p denotes the length of the i-th interface.

As the equation is deterministically stable, we should be able to show that © stays small for a long time
(depending on the noise strength). To be more precise, we show a bound on A.(?) for solutions near M.
Following [7] p. 449, we consider equation ({3.3))

N
- - - 1 -
di = di =Y 5de; — o) g dendé,
j=1 ki
and thus the key equation for the distance from the manifold M is described by
- o/~ - - 1 -
(3.15) di = Lo@)dt = a5 (E)dt — 5 (0y(€),dW) — 5 D iy (Qon(€), ou(€))dt + dW .
J J kl

We can now proceed (cf. also (86) of [7]) and show a bound on ¥ in terms of A..
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Fix some large time T. and define 7* > 0 as the first exit time (below the threshold T¢) of @ from I".
This is the stopping time

™ =T Ainf{t > 0: £(t) € Q, or A(d(t)) > 627"} .
Note that for ¢t < 7% also B.(9(t)) < CebF*,

Definition 3.5. We say that a term is O(e.), if it is asymptotically smaller than any polynomial uniformly
for times t < 7*.

Note that «, 8 are O(e.), if p = &".

Theorem 3.6. Suppose p = € for some small Kk > 0, 0 > Ce™? for any q > 0, and suppose that for all
p > 0 there exists a constant ¢, > 0 such that EA.(9(0))? < ¢,62P. Then for all p > 0 there exists a constant
Cp > 0 such that

EAL(9(7%))P < Cp(T. +1)52P .

Therefore, we can show that the probability that the solution exits from the slow tube before T. (i.e.
7* =1T,) or an interface is breaking down (i.e. £(7*) & Q,) is bounded above by

P (A.(8(1%)) > 627%) < EA(9(77))P6- PP < Cp(T. + 1)057

for any p > 0. Thus the probability that the solution exits from the slow tube before T is of order O(e,)
provided T, <« 679 for some large ¢ > 0. The typical case for applications would be to consider a noise
strength polynomial in e, where we can take T, = ¢~ 9 for any ¢ > 0.

Remark 3.7. (Exponentially small noise-strength §.) If we want to have exponentially long times 7,
then we need to take exponentially small noise strength J. and look closer at the various error terms in the
proof of Theorem This is straightforward, but for simplicity of presentation, we refrain from stateing
details here.

On the other hand, assuming that d. is exponentially small, the probability of the solution exiting the
slow tube I' before T, without an interface breaking down, is exponentially small, even for exponentially
large times 7.

3.4. Bounds on the sde. The following Lemmas replace the bound on 5 , which is used in the deterministic
setting (cf. Lemma 4.3. in [7]).

Lemma 3.8. Let @ +9 €Tl andr =1,...,N, then (with E1€v+1 = 0 for shorthand notation)

or(§) =

(ES + ES, ) + O(e),
4£r+1

and

lor ()l < C/t < Cple.

Proof Note that ||5| < B-()'/2. Thus from the definition of o (cf. (3.12)), Lemma and the bound on
EZ— one has

lor () < Z IAZNONIES | < C/e.
Moreover
0’7‘(5) A 1EE + Ar ,r+1 7"+1 + O( )
and the claim follows from Lemma [3.4] O

The next Lemma estimates the vector field b of the diffusion process &.
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Lemma 3.9. Let @¢ + 0 € IV and assume that p = € for some small k > 0, then there is a constant ¢ > 0
such that

(3.16) b ()] < el Q{2 4 e275/2) 4 O(e),

foranyr=1,...,N.
Proof. We recall first b,
(3.17) ZA )(LC(af + ), ES)
YA {% B8y — iy, ) — (i, B9 (Qow(€), ai(©))

i,k

T2 A ) ) (0

Then we use Lemma and the bound on ¢. Moreover, in Section 5, after tedious computations the next
estimates are derived (cf. (5.40), (5.41), (5.42)), (5.37) and (5.38), respectively):

‘<ukl7 >| <O(e” )[4&‘4-1 + O(Eigﬂ)],
‘<f‘£7 Ezl>| = 0(5_1/2 +e7r71B),
(8, BSy)| < O™ 4 e B)|[o] < e+ O(=™/2r718)

since in the slow channel ||3]| < ||7]|oo < ¢Be(9)'/? < ce®/2. Moreover,
IES|| < 46141 + O(e778), IE; | < 02 + O *r715) .
In addition, we observe that (cf. [8])

|ZA @€ + 1), ES)| = O(a/t) + O(ea) = Oe.) .

In this way, since 0 = O(pe~!) and A;;' = O(p"), we obtain

b:(6)] < el QU= el Qll 2 + Ofer) < e[ Q{77 4 452 4 Ofer)

O

3.5. Proof of Stability. Now let us turn to the proof of the Theorem Considering the linearized
C-H-operator and using Ito-formula we arrive at

dA. (D) = d(—L%, ) = 2(— L%, dv) + (—L°dv, dv)
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and therefore, Lemma [3.1] gives

(3.18) dA.(B) =2(— L%, £¢(@))dt
(3.19) = =L, )b (§)dt

= 2 2L, ) o (€), W)
(3.20) - ZHC@, ii,)(Qok(€), ou(6)) dt
(3.21) + Z (—LeuS, 55)(Qoy(€), 0 (€))dt
(3.22) + Z — L5, Qoi(§))dt

- 2<LC17, dw)
(3.23) + trace(QY2L¢QY?)dt

For the term in (3.18)) we follow [7] pages 449/450, where
LE(@) = LA 4 D) = LD + L) + 05 (f20,7)
with
102 (f20:0)|| < Ce™?B. ().
Moreover, note that by Lemma 5.1 in [7] we have

1£(@%) [l = [10:L£°(u®) | e < Ce™tar(r)

and thus
(—L°9,L£(a)) < —[|L°0|* + C(e72B:(0) + e~ a(r)) | L7
< —2||L°0||* + Ce*B- (17)||ch)|| + Ce2a(r)?
(3.24) < —3||L°0|* + Ce2ar)?,

where we used that for some constant a > 0 independent of ¢ and r (cf. [7], Lemma 3.2 at p. 434, and
Lemma 4.2 at p. 446)

B.(?) < Ce™?A (D) < 20 2| Leo||* .
This is the crucial and only point, where we need B.(9) = O(5%%). Thus, we obtain
2(~L%, L(0)) < — 3| L2 — ad. (D) + C=2a(r)2.
Now consider the remaining four deterministic integrals. For the term in , notice that
(L°,05) = (0, L°U5) = (0, 0,0;L"(uf)) .
Thus using integration by parts and Lemma 5.2 of [7] yields

(3.25) (LD, @5)| < C||0,0]le*B(r) = Ofex).

We use now (3.25) to arrive at

(3.26) IZ — L0, @5)b; (€)] < Ce™®?B(r) B (8)"/ sup{|b; (§)[} = O(e.),
j

which is exponentially small in ¢ by Lemma By Definition a term is O(e.), if it is asymptotically
smaller than any polynomial in ¢ uniformly for times ¢t < 7*.



16 ANTONOPOULOU, BLOMKER, KARALI

Now let us turn to . Similarly, we get
(= Lcug u; >| = (@, 0,0, L (u))| < |55 [| 1 10205 L"(u%) || oo < Ce™*B(r)

i g
where we used Lemma 5.1 of [7] and the bound [|aé|,: = O(1) (cf. (5.34), for 8 bounded). Thus we obtain
for the term in (3.21])

(3.27) IZ (—Lea5, T5)(Qai(€), ()] < Ce*B(r)|| Q™% = Ofee) .

For the term in 1) we use the bounds on (—L°0, ﬂ£l> provided by Theorem m Thus, we get

(L5, 55,) (Qor(€). o1(6))] < CIIQII6*2CE*2ﬂ(r)IIﬁII = 0(e.) .

Using similar estlmates and Lemma [3.8] the term in is also O(e.).
For the term in , we use the elgenfunctlons €k of Q and the uniform bound on f’(uf), in order to
obtain

trace(Q'/2LcQ/?) Za (Lep, er) < CZakB (ex) < CO?
=1 k=1
This is the largest deterministic term, as the other ones are all O(e.). This term comes directly from the

It6-correction of the additive noise.
Consider now Equations (3.18)) - (3.23), with all deterministic integrals already estimated. For ¢t < 7*

(3.28) dA.(0(t)) < C82dt — (3||L°D||* + aAe(D))dt+ < I,dW >,
where

1= 2(-L,i)o;(§) — 2L°% .
In order to bound I, we use , and Jthe asymptotic formula for o;(&) of Lemma combined with
(54)-(55) of [7] to obtain that (LC~ ~€> 0;(&) = O(e.) and thus

(1, Q)| < O(ee) + 2] QI LED]1* -
Now we can bound powers of A, for t < 7*

LAA(D)" = A(0)P T dA(D) + B3 A(0)P 2 (dAL(D))

(3.29) < Ce® A (D)P7hdt — (|| L°0]12 + aA-(9)) A (9)Pdt

+ A (0)P NI AW + B AL(D )P HI,QIdt .

Taking integrals up to 7* and expectation, we easily obtain from (|3 and - (using that the expectation
of a stochastic integral is 0)

EAE(@(T*))—F%E/ ||Lcﬁ||2dt+aE/ A (D)dt < A(9(0)) + OT:62
0 0

and for p > 2

LEA(8(r*))P + / | LB|* A ()P~ 1dt+aE Ae(f;)pdt

< EAE(@(O))MC(@E/ Ag(ﬁ)p‘ldt—i—O(eE)-E/ Ag(ﬁ)p_Zdt+2||Q||-E/ A (5)7~2|| L5 2dt
0 0 0

=

Now (using §. > Ce?) it is easy to verify by induction on p that

LEA(3(7))P + / |L°D||* A ()P~ dt + aE A (0)Pdt < C(T. + 1)62 .
0

This implies the claim.
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4. MOTION OF THE INTERFACES

In this section, we investigate in detail what the SDE for £ actually implies for the motion of the
interfaces considering some important special cases, where the equation simplifies a lot. Let us assume first
that the noise is exponentially small. Then in the case of two interfaces (i.e., N = 1) we discuss the case
of noise strength being polynomial in €. Finally, although not covered by our theorems, we present some
comments on how the equation would look like for non-smooth in space space-time white noise, which means
that Q is the identity.

Let us first state the result we achieved so far. The motion of the interfaces for the stochastic model is
given by the following theorem.

Theorem 4.1. Let @€ + o € IV and assume that p is small, then the equations dominating the flow of the
Stochastic Cahn-Hilliard equation within the slow channel are given by

L (03— aVYdt + O(ea)dt + dAD

d
§1 = 0,
1 1
déy = —(a® — ab)dt + —(a* — a?)dt + O(ea)dt + dAP
405 4405
1 1
(4.1) dgs = 1-(a* = a?)dt + -(a® = a*)dt + Ofea)dt + dAY)
445 40y
1 1
déy = — (@t — oV hdt + ————(aN 2 — aN)dt + O(ea)dt + dAN),
4€N 4EN—H
where
o1 L —ALl;
4.2 J = ZK2 A2 — . -2 J | =
(4.2) e} 5 A% exp( Aifj/s)[l—i—(?(gexp( 5 ))} j=1,2,...,N+2,
for
1
Ay 1
4.3 = f! = — .
(4.3) Ap = f'(£1) and Ks 26Xp[/0 [QF(j:t)l/Q — t}dt}
Here, the stochastic processes Aq ,r=1,...,N are related to the noise; they depend on the symmetric

operator Q and the variance o, and are given by the formula

=30 AN |10 B — 5, B - (@, E5) | (Qow(€), ou(€)at

a0,k

4.4
H +ZA €) D _(QE. o5(€)dt + 3 AL E)(ES, dW) .

Proof. Remind that as long as 4 is near the manifold, then by (3.11]) we obtained for any r =1,..., N

Z AT §4+0), ESYdt +dAD).

Lemma gives that the matrix A~! and therefore the terms Y, A~ (&)(Le(af + ), Ef ) are identical to

those presented in [7}, [§] for the deterministic case (i.e. when dA" =0 for any r). Hence, using (4.32) of [§]
we obtain the result. g

‘We observe that
(4.5) AAY) = ASdt+ 37 AN (B, W)
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for
AG =30 AT [0 Bl — btk B) — (5, )] (Qou(©),ou(@)
(4.6) o
+ 2 AGHE D (QE 0(9))

Following Lemma we obtain in the slow channel that
(4.7) |Ag)| <c|Qlp?(pe 32 4e7%/2), forallr=1,...,N.

Thus, in case of ||Q| = O(e**1/2a), since p is at least bounded, we can show that Ag) = O(ea). Tt is
not hard to show that we can also neglect the stochastic term from , in order to recover the result of
Bates & Xun on metastable slow motion, at least with high probability.

An interesting case arises, when the additional terms in Ag” are of order O(«a). Then we obtain additional
terms in (4.1). Nevertheless, for simplicity of presentation, we refrain from stating details here.

4.1. Polynomial noise strength. For the remainder of this section we fix N = 1, which is the case of
two interfaces, and a noise strength 6. = €% for some § > 4. To be more precise suppose @ = Qpe® with

Qo =0(1).
Using (4.1)), we notice that the equation of motion for the first interface is given by

dé; = O(a)dt + dAWY |

and the motion of the second interface is fixed due to mass conservation.
Recall that /5 is the distance between the two interfaces, and fix p = £, which means that the lower
bound on ¢ is e!7*. Let us now first look at ([3.12))

o1(€) = A EY.
Since ¢ = ﬂgg—ﬁf + @} while 2—23 =1+ 0(e.) and Ef = @l + @l + O(e.), it follows that
Ef =+ Ofe.) ,

and again the error term remains of the same order under differentiation w.r.t. £&1. Secondly, from (4.24)
in [8] there is a constant ¢, such that ||a$]|> = 46, + c,e + O(e.), and the error term remains O(e.) under
differentiation. (In our case N = 1 we have that @; used in [8] is up to errors of order O(e.) equal to @.).
Moreover, by definition

An = (@, BY) = (8, B5,) = @] + 8] O0(™/?) + Olee)

where we used ([5.38)) (cf. also [8], where the same estimate is used, though never presented analytically) for
ES, = O(e~1/2). Recall that in the slow channel I' we have

(4.8) [v]]oo < (Be(v))'/? < Ce™ (Ac(v)/? < Ce™H(827F)1/2 < Qe Ho0m/2)
Thus we proved
3 1
(4.9) Ay = 4ly + e+ O(ED72) and oy (¢) = —ES +0(e.) .

409 + cie + 0(56(1_“/2)_5)

Now we can consider the deterministic drift
AS = AT ©O[305, Bh) - gy, B — (@, Bf) | (Qe1(6), o1(€)) + AT (6)(QES1, 05(9))
AT O )l - 3o IS I1Q2ES 12 + AT?L 32 1 Q2 ES | + Ofe.)
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Thus in the slow channel I' (cf. (4.8))) the equation of motion for the interface is reduced to
des =AFP O/ | QV2ES |t - 3AT (2| 5 12) Q2 S
+ AP LS| QVPEL | Pdt + AN ES, dW) + O(ec)dt .
By (45) of [7] we know that
B =1—uf+0(.) and ul=—uf+0O(e),

(as [0,1] = I; U Iy and u®(m1) = u¢(0) = —1+ O(e.)). They also proved, that the error terms remain O(e.),
under differentiation w.r.t. £&. Thus, we obtain

IG5 1° = [I1 = uf]|* + Ofec) = 1 — 2M + [|uf||* + O(e.)
Taking again a derivative yields

12 = 20, u) + Ofer) = —2(u, uf) + Oer) = uf(0)? — uf(1)® + Ofez) = O(e.) -

And thus we verified that
261 ||E£||2 Ofe.),
therefore, the equation of motion for £ simplifies to
(4.10) &y = OB a4 ATPL || Q2 B |[Pdt + Ay (EX, dW) .

Although this is not covered by our assumptions, as a final example we consider space-time white noise
with @ = £°Id. In this case
dé = OE¥T2)dt + 2 ATHES, dW),
which is a rescaled equation valid on the timescale O(¢~?%). Up to the small deterministic error terms, ¢ is a
stochastic process with mean zero and quadratic variation

t
/0 £ ATR(ES, BS)dt = £ / AT Pt + O(e. )t
t 2

t
— 626 Al—lldt+ 0(5573/2+n)72 _ 7t+ O( 26+1)t+ O( 36— 7/2+;<;) ’
0 »€2 4[2

which means (compare to Levy’s characterization of Brownian motion) that in first approximation for times
not too large the interface behaves similar to a Brownian motion with variance £2°/(4/5).

5. HIGHER ORDER ESTIMATES

5.1. Preliminaries. This section deals with the estimation of all the following higher order terms that
appear due to stochastic integration when deriving the equations of motion in the slow channel:

<’L~)7E§lk>7 <ail7EE>a <ﬂ§;’Ez£l>

In addition, we bound the quantity (L, ukl> Considering a general smooth in space function ¢, the operator
L¢ is given by
LC(¢) = _52¢zmxm + (f/(uh)¢z)z

In order to achieve this aim, we investigate the properties of the stationary problem . Our analysis
admits extensive computations and is based on the ideas and technics presented in [2T], 22| [7, [§] for the
deterministic case where analogous terms of lower order have been estimated.

Denote first, that for the construction of the approximate manifold of solutions for the stochastic Cahn-
Hilliard we use a local coordinate system when presenting the admissible interface positions. The hyy1
variable depends on h; = &;, i« = 1,..., N, therefore, when differentiating two times in £ variables and
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2
applying the chain rule the second order term %hﬁg;? appears. More specifically, for a general function f
iONj

smooth in space and any ¢,j = 1,..., N, we obtain

of _ of n Of Ohnia
85,‘ oh; 6hN+1 Oh; ’
(5.1) *f _ *f +( *f O f (9hN+1)8hN+1
: 9E0E,  OhiOh; | \Ohnai0h; | OW%,, Oh; ) oh;
6f (82hN+1 4 ath_H 8hN+1).
ahNH 8h18hj 8hiah]\7+1 th

By the next lemma considering p = € for some small x > 0 and thus «, 8 are exponentially small, we estimate
9*h
L

theorem argument combined with the mass conservation constraint. If u” is in the second approximate
manifold M then by definition mass conservation holds i.e.

. As in [7], where the analogous first order estimate has been derived, we use an implicit function

1
M = M(h) :/0 ul(z)da.

Differentiating two times in h variables, we get

d? b
M(h) = .
dhadh; (h) /0 u;;d,

ho._ 8%uM au?’
where u;; = Phioh; = Bh.

Lemma 5.1. For anyi,j =1,..., N the next inequality follows

O*hn i1
Ohioh,

| <0e).

Proof. Consider £ a generic positive variable. According to the analysis presented in [2I], when comparing
the x and ¢ derivatives of the solution ¢ of the stationary problem (|1.3)), we obtain a residual function w
given by the following relation

(5.2) 2¢0(x, 4, £1) = —(sgnz)py(x, £, £1) + 2w(z, ¢, £1).

Let us define I; := [mj,mj1], X/ (x) := X(wfhj). If wi(z) := w(@—mj, hj —hj_1,(—1)7), then the interval

€

[hj—1 — &, hj41 + €] contains the support of u/} and

X7 twd for x € I,y
(5.3) uj(2) = § (1= X9) (=9} +w’) + 37 (=5 —wI ™) 4+ xJ(¢7 — ¢ F) fora € I
—(1 — T Hwitt for x € I; 11

where \i = 4, (X(x_ahj )) and ¢ = ¢, (x —my,l; — 11, (—1)7) (cf. [21], p. 561). We denote that in I; (cf.
7 p. 430)

b = it (1= —
and thus
h A AV j j j
(5.4) Wi == n Tt (=6jixg)w” + (1 = x7)(Ajiw), + Bjiwy)

Gl i +1 1y
— 853w = X (Ajriwi ™+ B wy ), in I
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where w = wy(z —myj,l; — 1, (=1)7), w) = wi(x —my,l; —lj_1,(—1)7), §;,; is the Kronecher delta, while

Oz —my) {0 for i # j,j — 1
Aj,i = =

Oh; —-1/2 fori=jj—1

and

0 fori#j,j—1

B = 0(h; —hj-1) 1): 1 fori=j
e Oh;

-1 fori=j—1.
In a similar way we obtain
(55) ’U/;L = 05— 12Xé 1U}j —f—Xj_l(Ajﬂ‘w% +Bj,in)7 in [jfl
(5.6) uly = 8000w T — (1= ) (A1l 4 Bipawl ), in I

Using now the estimates of w, wl, w) (cf. [21], or [7] at p. 172), then for 7 > 0 sufficiently small, we
obtain

’ / U?i(m)dﬂﬁ‘ < Ce(r7 M+ 1)B(r)K i + Olec)(8-1, + Gj41,4),
j—1Uli11

with K;; = |4;, j+1,il + Byl + |Bjt1,] and

‘ / 850w’ + (1 — x9) (A wl + Bjw])

- j,z‘Xg;ij —x? (Ajya, lw T+ B4, zwe )} dx}
<Ce2(rt + 1)B(r)K; i + O(ec)d;.i.

Therefore, using the estimates for w® it follows that

d2 1 N 32 h .
i M0 = [ s = |~ O+ DB

+ O(ec)(0j-1,i + 65,0 + 6j41,1)

oul
= /1-(7 5; Ydz + O(e2(r™t + 1)B(r)Kji + Olec)(§j—1,i + 055 + G416

= —(uf(mj41) =} (my)) + O (™ + 1)B(r) Ky
+ 0(65)((%,1,2‘ + 4+ 6j+1,i)-

Since the support of ul? is I; _1ULUIL; 11 3 m;_1,m;, my1,m;12 then we get that #;L_M =0ifj #£i—1,4,i+
1,i+2, while for example ul (m;) = x* " w'|nm, = X' m,w(0,1;, £1) and ul (mg1) = —(1—xTHw ™.,
S = 00, i1, £1). But w(0) = O )als (r), 1] p. 558, since ¢a(0)} = £2/W(6(0)) and
¢/l is uniformly bounded, while x is C'*°.

Let us now for simplicity consider N = 1 then M (hy,y) = constant, when y = ho where hs is a function
of hy, so

oM LM oM 9y _o
8h1 dy hq
and thus

O*M OM. 9y 0y OM &%y

amon oy v any on, T om onz
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We set y = hsy to get using the estimate Ohwer — o)

Oh;
0%h
O(ee) + O(e)O(1) + O(1) W“‘ =0
and thus 52
ha
22— Ofe.

The same follows when N > 1. Therefore, we obtain the result. O
5.2. The estimates. We define I, := [—{/2 — ¢,{/2 + €], then for any z € I, it holds that ([} 21| 22])

|w| < ce™'BL(r),

lwe| < ce™2r 1L (r),
(5.7) lwe| < ce™?BL(r),

|wae| < ce™r7 B (r),

[ wea| < ce™?Be(r).
For the purposes of our proof we will need estimates for the terms

|’LUM|, |wza:a:|7 |wa:a:5‘7 |wa:€Z‘7 |wa:wwwz|7 |wwza:€|a |w$a:éé‘-

It is sufficient to estimate the above terms in I := [0,£/2+4¢] or in (0,4/2 4 £]. We write I = [0,¢/2 —cH]U
[¢/2 —eH,{/2 + €], for a positive H to be defined in the sequel. We set

Ig:=10,0/2—cH], and J:=[{/2—¢eH,(/2+¢],

and prove the next lemma related to the second derivative of w in /.
Lemma 5.2. For any x € I, it holds that
(5.8) lwee| < ce™3Bx(r).
Proof. Motivated by the proof of [22] for the estimate of |wy|, we use that

2Wae = f(d(x))w in (0,£/24¢) DI,
and differentiate two times in ¢ to obtain

e (wee)aw — f'()wee = F

for F = f"(¢)p2w + f"(¢)peew + 2f" (¢)pewe. By maximum principle it follows that

(5.9) |wee(x)] < max{\weg( )Ny |wee(€/2 — eH)| sup ’]-'/f ’} for any x € Iy.

Following Carr and Pego (cf. [2I] p. 560), we choose o and H such that f (p(z)) >co>0for0< < l/2—
eH. Since e2¢? = 2(F(¢) — ), then there exists C' > 0 such that |¢ < G forany x € J =[(/2—eH, {/2+¢]
(cf. [21] p. 560, and p. 557).

We will estimate first, |wee(z, £, —1)| in J. It holds that (cf. [2I] p. 558)

|| ds
5.10 w(z, l,—1) = e U2 (1), (x|, £, —1 / — .
(5.10) (,6,-1) e e e
Let us define A := |, lfz‘ e e FMewamyEE for simplicity we shall refer to a_ by using the symbol a. We differentiate

relation and arrive at
Wep = 5_1{(5_2a/(7‘))u¢z«4 + 200720/ (1)) e A + 2(0720 (1)) e As

(5.11)
(720 () ateA+ 2070 (1)) bure + (20 ()b Aue



FRONT MOTION IN THE ONE-DIMENSIONAL STOCHASTIC CAHN-HILLIARD 23

According to [211, 22] it follows that
o] < er2a, |o”] < orta,

analogously we obtain
|| < er~Ca.

So, observing that that r = ¢// is bounded, i.e. £~ < ce™!, we get

(5.12) 10720/ (1) < ce2a, |(£72(r))e] < ceBa, |(€720 (1))pe| < ce e
Obviously since z € J then |A| < cg2T!. Denote that

(5.13) 262 = 2AF(9) — a)

(cf. [21] p. 552), while

(5.14) P60s = [(6).

Since [ Z% |po| <2 (cf. [2I] p. 558), and ¢ satisfies a Dirichlet problem then by trace inequality we get that
¢ is uniformly bounded. Therefore, we obtain
|6e] < ce™h, dual <72, [Puma] < a7

Using now the definition of w, and the fact that |w| + |¢,| < ce™!, we arrive at

|de| < ce™t,
while |¢u1| < €|pux| + clwz]. So, using that |w,| < cs72, [§], we get

| b < ce2.
By it follows that

|¢ww€| S 05_3-

Finally, we will also need an estimate for the term ¢,¢,. We differentiate two times in ¢ the equation (5.13])
and obtain

&% b ee] < ce™2,

hence using that in J it holds that ﬁ < ce we get

|¢xél| < ce™3 in J.
In order to compute the derivatives of A in (5.11)), we apply the formulae

d b b
G| atsnds= [ guls0ds 5 0(s(6).0),
s(0) s(£)

d2 b b .
g [ 000005 = [ au(s(0), )5 = (05010

— " (0)g(s(0),0) = 5" (0)* gz (s(6),1) — 5" (0)ge(s(£), €).
After tedious computations, using the above estimates and the fact that the interval’s length is of order O(¢)
we arrive at

|Ae| < 662, | Age| < ce.
We denote that €/¢ is bounded i.e. £~ < ce™1, thus by (5.11) and (5.12) we obtain

(5.15) lwee| < ceBa in J.
So by (5.15)), since £/2 —eH € J, it follows that
(5.16) lwee(£)2 — eH)| < ce 30
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By the definition of F, the fact that f’ > ¢y > 0 in Iy and the first and third estimate of (5.7]) we get for
8:=f_ that

sup [ 7/7'(9)| < eIl + [eallwl +1elbuel] < ez I6ul? + Iouel 4+l
z€ly
In addition, since |wy| + [¢ze| < ce™2 [21L 8], then it follows that

|pee| < ce72,

while, as we proved, |¢¢| < ce™1, so

(5.17) sup )f/f’(@’ <3

z€ly

What is missing is the estimate of |wg(0)]; in [22] by use of the relation w(0) = —% (e/¢), it was demonstrated
that |we(0)| < ce~2f, analogously by differentiating in ¢ it follows that

(5.18) lwee(0)| < es™3.
Using now (5.9), (5.15), (5.16), (5.17) and (5.18) we obtain that |we| < ce ™38 for any x in I = I U J. By
symmetry we prove finally that |we| < ce =284 (r) in L. O

The next three lemmas present bounds for the third or higher order terms.
Lemma 5.3. For any x € I? — {0} it holds that
(5.19) Wae| < ce™*r Be(r),
(520) |w'r7"€| < C6745:|:(7')'

Proof. We consider x € (0,¢/2 +¢) so e?wy, = f'(¢)w. By differentiating the previous in  and using (5.7)
and the |¢,| estimate, or by differentiating in ¢ and using (5.7)) and the |¢y| estimate we get the following

(Wazal < e=72[|F(6)lwal + £"(&)] o]

< e 2 {05*27’*15 + ceilsflﬁ] <ce 41,

and
[Wawel < ce=2 176 lwel + 1" (6) el ]
< e 2 [05*25 + 05*15*16} <ce4B,
for § = f_. Therefore, we obtain the results in I — {0}. |

Lemma 5.4. For any x € I, — {0} it holds that
(5.21) |ware| < ce*r Be(r).

Proof. We consider x € (0,¢/2 + €|, write wgee(€/2) — wyee(x) = fZ/Q

x

Weeee(s)ds and get

/2
(5.22) [waee(2)] < |ware(€/2)] +/ [wazee(s)|ds.

x

We use the definition of w given in (5.10)), set p = e~1/20/, and remind that A = )72‘ 2—3. We take first the
x derivative and then the ¢/ derivative to obtain
Waoe =PeePraA + PePrat A + 20020 A + Pedrze A + PPrroe A
Pedae p(%wbi —202,¢2) | P Proae
o o3 ¢r P2

+ 2p¢mml-AZ + p¢ImA£Z -
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Observe that A =0 at z = ¢/2, while

Ae(t/2) = —%%(5/2)_2, Ace(€/2) = ¢2(0/2) 7 due(£/2) + b (£/2) 0 (£/2) 7>

We also denote that £/2 € J, so by the estimates of Lemmal5.2|we obtain |¢,¢(¢/2)| < cs=2 and |¢,(£/2)| 71 <
ce. Thus, as in Lemmal[5.2) for general x € J, we get that e~ 1| Ay(¢/2)| + [Aw(£/2)] < ce.

In addition using the last estimate of we obtain that |pg(¢/2)| < ce~5a. Further, we use that
¢/2 € J, so by the proof of Lemma we have that |¢,,(¢/2)] < ce™2, while |@gee(€/2)] < ce™3, and
therefore, we obtain finally

(5.23) |weee(£/2)] < ce™4a,

fora=a_.
Since e2w,, = f'(¢)w in (0,£/2 + €), then taking the £¢ derivative we arrive at

(5.24) [waree(@)] < c=2[I6elw] + | Gellwe] + hweel ] < c2=58

for 5 = B_. Here, we used the estimates of the proof of Lemma i.e. that |¢¢| < ce™!, the first and
third estimate of (5.7)), the fact that |w| < cs='8 while |w| < ce7?f3, and the result of Lemma [5.2]i.e. that
|wee| < ce3B.

Since x € (0,¢/2) then using that r = /¢, we get that |z — £/2| < ¢(¢/2 + &) < cer™!, and therefore,

(5.22), (5.23)) and (5.24) give

|weee ()] < ce 718, x € (0,£/2+¢].
By symmetry the analogous result holds for any = € [—¢/2 — ¢,0). ]
Analogously the next lemma follows:
Lemma 5.5. For any x € I, — {0} it holds that

(525) |wx3cgcx;c| + ‘wxocxd + ‘wxxﬁd < 65757‘716i(7‘)'

According to the definition of Ef, in order to estimate Ef, Efj and Efj « we need first the next result.

Lemma 5.6. For any i, j, k it follows that
1Q;] < e=7%8,
(5.26) 1Qij| < ce™*r15,
|Qijx| < ce0r71.

Proof. We remind that

X twd for z € I; 4
uj (@) = § (1= X9)(=¢] + w’) + 3 (=t —wi™h) 4 x](¢7 — ¢'H) forz € I
—(1 = Hwitt for x € I 41.

Consider x = 0,1 (i.e. in the first and last set of the support). Using the estimates of |w|, |wzz| we arrive at
|ﬁ?| <ce™'B and thus |w;] < ce™'B,
|ﬂ?m| < ce 733 and thus || < ce 3B.
The estimates of |w,|, |we| and of |wyye|, | Wz | respectively, now give
|a;3| <ce ?r7 !B and thus |wj;| < ce 2r 15,

|€L§Lm| <ce !B and thus |Wjize| < ce ™ *r !4
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Finally, using the estimates of |wg|, |wze|, |[wee| and of |wegrs|, |Wezae], |Wezee] TESpectively we obtain

|ﬂ?lk| <ce 37! and thus @] < ce3r1,

|’&"}717,k93x| <ce ®r7'B3 and thus |Wjike.| < ce Pr 8.
Remind also that
wj = uy(r) + ﬁ?ﬂ(x)»
1, 1, 1 1, ~ .
Qj(x) == (—633 t57 - gx)wj;wc(o) + 6(33 = T)Wjea(1) + 2w;(1), j=1,...,N,
thus, the definition of (); combined with the above estimates on w; give the result.

Remark 5.7. By [2I] p. 557-556, the next estimates hold true

0 2/2
(5.27) b (2,0, —1)* + bu(x,0,+1)? < 718 + E(r),
—£/2 0

where |E| < ce7! and So = Ll1 /2F (u)du, and

/2
(5.28) JNCES!
—2/2

and

/2
(5.29) / (bual? + da < ce=?.

—¢/2
In addition, there exists constant ¢ > 0 such that for « € [h; —¢,h; +¢],j =0,...,N + 1 we have
(5.30) ¢/ () — ¢' T (@)| < cla? —a?,
(5.31) |67 (2) — i (2)] < ce7Ma! —a?F,
(5.32) |50 () — G151 ()] < e 72! —a?*,

provided €/¢;,e/€;4+1 < o with ro small (cf. [7]).
Now, we are able to compute bounds for the term @" which are presented in the next theorem.
Theorem 5.8. For any i,j,k it holds that
@] < O1) + O(|lwl),

(5.33) ]| < ce™2(1+ S + max(rja?, rjp1a? ™)) + cllwgl| + cl|we,
@l ]| < ce™2 + cllws | + cllwe]| + ellwaal| + cllwaell + c|lweel-

Proof. We use the definition of u? and get by (/5.28)) that

x
ja"| < c/ |b|da + cllw]] < ¢+ c]|w]].
0

By [7] p. 38 it holds that
N N L o
uj (v) = —uy(z) + (1 — x7)w! — Ywtt z eI,

so using the above and (5.3)) we obtain

O(wy + wy) for x € I;_4
u?l(x) = —ul (z) —ul(2) + O(wy +wy) foraze I

O(wy + wy) for x € Ij41,
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and therefore we arrive at

g; O(wy + wy) for x € I;_4
7171(95) = / u?i(l/)dy = O(ug + u? +wy +wy) forxz el
0 O(wx + wg) for x € Ij+1.

The argument of [21] p. 562 of Lemma 8.3 applied for u” in I; and the support of |¢J — ¢4 *1| combined

with (| and -, since

now gives that

]| < |léell + /O 2e) < ce= /2,

while by [21] (cf. p. 563, relation (8.6)) it holds that
luf | < e V2(SYL? + max(rja’, rjpaa 1)),
Using the above estimates we obtain
gl < e 21+ S302 + max(rja? rj0a? )Y + cllwe | + cllwe|

Observe now that

@ O(Wgy + Wae + wep) forz €I 4
;lzk( )= / jzk( )dy = O(Uﬁw + uﬁl + Wag + Wep + wyg) for x € 1;
’ O(wzx + Wye + w(@) for z € Ij+1.
In addition, since uff = —u® + (1 — x/)w’ — xwI*! in I;, then we obtain that

gl < Nlugga || + cllws])-
Differentiating two times in & the function u” and using the estimate and and the support of
64, — 11 we get o
uhx = O(|¢mx|) + O(|¢?pz - (bg:js_lDﬂ

]| < lldaall + VO %) < ce™3/2

ligill < e™3/% + clfwg|.

and thus
So, it follows that

The previous estimates give finally

32 el | + ellwel| + ellwse | + cllwarll + cllweell-

1a55kll < ce
|

Using now the estimate |ﬁ?\ < O(1) + O(JJw||) combined with the implicit function result for change of
variables we get that

(5.34) @] < (O(1) + O(Jlw|)]O1) + O B)],

while the second derivative in £ variables gives

@y < @ |[0(1) + O™ B))” + [ [O(1) + O 8)] + [} |O(ec).
So, the next lemma follows.

Lemma 5.9. For any j, k it holds
(5.35) || < (0(1) + O(|lw])[O(1) + O B)],

(5.36) [, < [O(1) + O(e728%) + O(e ™' B)[O(ws +we) +e7 /2 + 72 A] + O(e)[O(1) + O(||w])],

1/2 . .
for A= 8% 4 max;(rjal, rj 107t 12,
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The following theorem gives the final estimates concerning the term Ef in the L? norm.

Theorem 5.10. For any i, j, k the next inequalities hold:

(5.37) |ES|| < 4liy1 + O(=38),
(5.38) Bl < O™V + O(e~*r71pB),
(5.39) 1B, || < O(%2) + O(e~"r 7' B).

Proof. Using that ||E]E|| < ||w;]| + ||@Q,ll, the estimate of ||[@;| presented in [§] (cf. p. 186, relation (4.24))
and Lemma [5.6] we obtain (5.37). Also, observe that

Efz = wj; + O(Qji) + O(Qijz) = O(wy +we) + /0 (—ul, — ugi)dy + O(Qji) + O(Qij)

< O(wy + we) + O(ull + uf') + O(Qji),
S0,
IES | < O(™?) + O(e™4r71B).

Further, we obtain
Ef-ik = Wjir + O(Qjir) + O(Qjikz) = O(Wae + Wer + W) + /o (—ul s — Uzar)dy + O(Qjik) + O(Qjikz)

< O(Wey + Wee + wye) + O, +uly) + O(Qjur),
so, by Lemma [5.6] we get

B3]l < O(e72) + O(e~°r 71 B).

,

O

Remark 5.11. We denote that the estimate of ||Efj|| presented in the previous Theorem coincides in the
main order term with the estimate that was used but not presented analytically in [8].

Using the results of the previous analysis we derive finally by Cauchy-Schwarz inequality all the desired
estimates involving the higher order derivatives which are presented at the next main theorem of this section.

Theorem 5.12. The next inequalities hold for any 1,1, k:

(5.40) (@, B < O(E™) [4lia + O(E*)),
(5.41) (@, BS)| < O™/ + 471 ),
and

(5.42) (B, Bfy)| < O +e7r7'B)||o].

The last term to be analyzed is (L°0, a§l> Therefore, we prove the following main result.

Theorem 5.13. For any k,l, it holds that
(5.43) (L8, @) < e=38(r) (0(1) +=728(r)? ) 1l

Proof. We denote that

(L0, i) = — (0, 0,05, D, L (uF),
where £%(¢) := 2¢,, — f(¢). Asin [7] (cf. p. 452-453) we write for x € [hj—ehj+el,7=12,...,.N+1
(5.44) LOw") = fi+ fa + G,
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for
fl = 62X;x(¢j+1 - ¢j)a f2 = 252X§:(¢jw.+1 - (bjw)a

Gi= (¢ - ¢j)2{(1 -x’) /Oxj sf"(0)ds + xj/

xJ

1

(1= 5)f"(0)ds},

with 0 = 0(s) := (1 — s)¢/ () + s¢/T1(x). For other x, we use Lb(u”) = 0.
In Lemma 5.2 of [7] at p. 454, after differentiating f1, fo, G in h; is derived that

0
‘Tmﬁbuh‘ < ce?B(r).
Applying the analogous computation, i.e. differentiating in h;, h;, we may derive
(5.45) ‘ o Cbuh‘ < ce3B(r)
' 8h]8h1 - '

Denote that in the above computation the worst term is |7, (z) — ¢21(2)|. But e2¢rrs = f'(¢)bs, where

fl@) = ¢* — ¢ and f'(¢) = 34? — 1, so using the estimates of ¢, ¢, and the results for the differences
presented at p. 453 of [7], we get

|0hae () = S22 (2)] = 72| (¢7) DL (2) — /(&7 TH) o ()]

= 7?|f'(¢")dh(x) = f(&7 ol (@) — F1(&7)oh (@) + f/ ()l (2))]
< eI f (OIgh(x) — 7 ()| + 72|00 (@)1 (¢7) = (07T

< =216 () — 04 (2)| + =2 () — (6]

<ce3|a? — T+ eeT33¢0 (2)% — 1 — 3¢ T ()2 + 1

< el — @ 4 e () + 00 () — 1)

<ce3|a? — T 4 ce3 el — ad T

<ce3a? —ad .

Again as in [7] (cf. p. 456), by using that e?w,, = f'(¢(x))w and differentiating it in x, we may obtain
that

82 0 b, h 5
— < ce™ .
Do, - ‘ < ce7B(r)

Returning now in ¢ variables, since the second derivative appears, then by use of the formula (5.1)) in
(5.46) and since (cf. [7] p. 454) it holds that

9 9 4o 4
=z 2 <
oh; [“)xﬁ U ‘ < ce *B(r),

(5.46)

(5.47)

we obtain finally

(5.48) 858& %Eb“h‘ 55_55(?‘){(0(1) +e'B(r)? + (0(1) + 5‘1ﬁ(7~))} +eB(r)O(e.)
<e=56(r) (0(1) +726(r)?).
So, the result follows. -
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