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1 Introduction

3D imaging modalities such as CT, MRI, MRS, PET, SPECT, Ultrasound
Echography, and X-Ray have become indispensable tools in clinical diagnosis
and therapy planning. Automated 3D image registration provides a voxel to
voxel matching of two 3D images of the same anatomical object obtained by
different imaging modalities, at different times, or from different perspectives.
A sufficiently good correspondence between reference and target images can be
obtained on the basis of one or several matching quality criteria.
In general, image matching is achieved by an R3-diffeomorphism F matching two
given bounded subdomains of the 3D voxel grid. In 2D or 3D-image registration,
typical matching quality criteria involve the differences in image intensities at
all pairs of matched voxels. The intensity matching cost is usually defined by a
weighted sum of the image intensities over all voxels belonging to the domain of
interest. Moreover, the diffeomorphism F can be assigned an elastic energy which
measures the amount of spatial deformation. On this basis, optimal registration
can be stated as a variational problem where a deformation F is sought that
minimizes a linear combination of the elastic energy and the intensity matching
cost.
Image registration methods have been initially designed for 2D-images. During
the past decade, 3D-image registration based on volumetric data sets has at-
tracted a lot of attention. A survey of image registration algorithms for biome-
dical applications can be found in [1].

The scenario which we consider in this paper is as follows: Given a 3D movie of
a deformable anatomical shape S(t) ⊂ R3, t ∈ I := [0, 1], biomedical techniques
enable the extraction of snapshots Sj := S(tj) at specific time frames tj , 0 ≤
j ≤ q. The mathematical task is to find a family F (·, t) ∈ Diff(R3), t ∈ I, of time
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dependent R3-diffeomorphisms

F (S0; t0) = S0 , F (S0; tj) = Ŝj , 1 ≤ j ≤ q,

which map the initial shape S0 onto the shapes Ŝj at the time frames tj such
that for all 1 ≤ j ≤ q the shapes Ŝj are as close to Sj as possible.
In case of two snapshots S0 and S1, concepts based on diffeomorphic match-
ing have been developed in [2–12]. The diffeomorphism F (·, t) = F vt , t ∈ I, is
generated by a time dependent flow vt according to

∂tF (·, t) = vt(F (·, t)) , t ∈ I, (1a)
F (·, 0) = Id. (1b)

The rigid constraint F (S0, t1) = S1 is replaced by a soft constraint using suit-
ably chosen geometric surface matching distances, and the resulting optimization
problem is solved within a variational framework.
In particular, we will consider a generalization to arbitrarily many intermediary
snapshots: Given q + 1 snapshots Sj , 0 ≤ j ≤ q, at time instants tj ∈ [0, 1], 0 =:
t0 < t1 < · · · < tq := 1, we want to compute a time dependent family of
diffeomorphisms F (·, t) ∈ Diff(R3), t ∈ [0, 1], satisfying (1a),(1b) such that

E(v) +
q∑

j=1

λjDj(F (S0, tj), Sj) → min,

where E(v) is the elastic energy associated with the flow v, and λj , Dj(·, ·), 1 ≤
j ≤ q, are regularization parameters and geometric surface matching distances,
respectively.

The paper is organized as follows: Since an appropriate function space setting
for the variational formulation of the optimal diffeomorphic matching problem is
given by Reproducing Kernel Hilbert Spaces (RKHS), we provide a brief review
of RKHS in section 2. The following section 3 is devoted to geometric surface
matching distances, namely the Hausdorff distance and the Borel measure dis-
tance. In section 4, we provide the variational formulation, prove the existence
of a minimizing diffeomorphic flow, and state the first order necessary optimal-
ity conditions. A semi-discretization in space featuring the approximation of the
snapshots by point sets and the approximation of the Borel measures by Dirac
measures is dealt with in 5 leading to optimal diffeomorphic point matching
problems. In the subsequent section 6, we consider a time discretization of the
optimality system which turns out to represent the first order necessary opti-
mality conditions of a fully discrete optimization problem. On this basis, we
develop a matching algorithm which is an inner/outer iterative scheme featuring
a continuation method in the regularization parameters as outer iterations and a
gradient method with Armijo line search as inner iterations. In the final section
7, we apply the matching algorithm to multiple snapshots of the mitral valve
apparatus of the human heart and provide a documentation of numerical results
illustrating the computational performance of the algorithm.
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2 Reproducing Kernel Hilbert Spaces (RKHS)

Let H be a Hilbert space of functions on Rd with inner product (·, ·)H and norm
‖ · ‖H . A function K : Rd × Rd → C is said to be a reproducing kernel of H, if
the following two conditions hold true:

(RK)1 For every x ∈ Rd, we have Kx ∈ H, where Kx : Rd → C is given by

Kx(y) = K(y, x) , y ∈ Rd.

(RK)2 For every x ∈ Rd and every f ∈ H there holds

f(x) = (f, Kx)H , x ∈ Rd.

The Hilbert space H is said to be a Reproducing Kernel Hilbert space (RKHS),
if there exists a reproducing kernel on H.
The kernel K is called Hermitian (positive definite), if for any finite set of points
{y1, · · · , yn} ⊂ Rd and any γi ∈ C, 1 ≤ i ≤ n, there holds

n∑

i,j=1

γ̄jγi K(yj , yi) ∈ R (> 0).

Positive definite kernels uniquely determine the associated RKHS. Moreover,
pointwise evaluations are continuous linear functionals [13].
We will consider positive definite translation invariant kernels. A kernel K is
said to be translation invariant, if for any a ∈ Rd

K(x− a, y − a) = K(x, y) , x, y ∈ Rd.

By Bochner’s theorem, they can be characterized as the Fourier transform of a
finite positive Borel measure. A special class of translation invariant kernels are
those given by radial functions. A function K : Rd × Rd → C is called radial, if
there exists a function r on R+ such that

K(x, y) = r(|x− y|) , x, y ∈ Rd.

In particular, Schoenberg’s theorem [14] states that any continuous radial kernel
admits the representation as a normally distributed positive Borel measure.
In the sequel, we will mainly deal with RKHS with reproducing Gaussian kernels.
In this case, for any smooth function f ∈ H the Frobenius norm of the Jacobian
Df is bounded from according to

‖Df‖F ≤ d

σ
‖f‖H ,

where σ > 0 is the parameter from the associated Gaussian distribution.
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3 Geometric surface matching distances

For the comparison of the snapshots Sj , 1 ≤ j ≤ q, with the deformed initial
shapes F (S0, tj) we use the following geometric distances:

– Hausdorff distance between two surfaces

DH(F (S0, tj), Sj), (2)

– Borel measure distance by identifying surfaces with bounded Borel measures

D2
Γ (F (S0, tj), Sj). (3)

3.1 Hausdorff distance

The Hausdorff distance between two bounded subsets S, S′ ∈ R3 is given by

DH(S, S′) := max
(
h(S, S′), h(S′, S)

)
, (4)

where the Hausdorff disparity h(S, S′) is defined by means of

h(S, S′) := max
x∈S

min
x′∈S′

|x− x′|.

The Hausdorff distance is not smooth. Instead, we use

D̃H(S, S′) := hsm(S, S′) + hsm(S′, S), (5)

where hsm(S, S′) refers to a smoothed Hausdorff disparity.

3.2 Borel measure distance

We denote by BM(R3) the linear space of bounded Borel measures on R3 equipped
with the inner product

〈µ, µ′〉Γ :=
∫

R3

∫

R3

Γ (x, x′) dµ(x) dµ′(x′),

where Γ (·, ·) is a smooth, symmetric, and translation-invariant bounded positive
definite kernel on R3 × R3. We identify a bounded Borel subset S ⊂ R3 with
a measure µS ∈ BM(R3) induced on S by the Lebesgue measure of R3. The
distance between two bounded Borel subsets S, S′ ∈ R3 is defined by means of

D2
Γ (S, S′) := ‖µS − µS′‖2Γ . (6)
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4 Variational formulation of the optimal diffeomorphic
matching problem

We are now in a position to provide a variational formulation of the optimal
diffeomorphic matching problem. We refer to D(I; V ) as the space of all disparity
functionals D : L2(I; V ) → R+ of the form

D(v) = Φ(F v(·, t1), · · · , F v(·, tq)), (7)

where Φ : Diff(R3)q → R+ is a continuous function.
We further denote by E the linear functional associating to a flow v its kinetic
energy E(v) according to

E(v) =
1
2

1∫

0

‖vt‖2V dt, (8)

which will be added to the disparity functional D as a regularizing term.
The optimal diffeomorphic matching problem then reads:
For a given disparity functional D, consider the objective functional J consisting
of the weighted sum of the energy and the disparity functional with regularization
parameter λ > 0, and minimize J over all admissible flows v ∈ L2(I; V ) subject
to the initial value problem for the evolution in time of the diffeomorphisms F
describing the dynamic deformations of the initial snapshot: Find v∗ ∈ L2(I;V )
such that

J(v∗) = inf
v∈L2(I;V )

J(v) , J(v) := E(v) + λD(v), (9a)

subject to

∂tF (·, t) = vt(F (·, t)) , t ∈ I, (9b)
F (·, 0) = Id. (9c)

Theorem 1. Assume that the embedding V ⊂ W s,2(R3), s > 5/2, is continuous.
Then, the optimal diffeomorphic matching problem (9a)-(9c) has a solution v∗ ∈
L2(I;V ).

Proof. Let {vn}N be a minimizing sequence. Due to the boundedness of {vn}N,
there exist N′ ⊂ N and v∗ ∈ L2(I; V ) such that

lim inf
n→∞

‖vn‖L2(I;V ) ≤ ‖v∗‖L2(I;V ).

Denoting by Fn(·, t), F ∗(·, t) ∈ Diff(R3), t ∈ I, the unique flows solving (9b),(9c)
with respect to vn, v∗, the main part of the proof is to show that

Fn(·, t) → F ∗(·, t) (n →∞) , t ∈ I,
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uniformly on bounded subsets of R3 (see the proof of Theorem 3.2 in [15] for
details). This implies D(vn) → D(v∗) (n →∞), and hence,

lim inf
n→∞

J(vn) ≤ lim
n→∞

D(vn) + lim inf
n→∞

E(vn) ≤ D(v∗) + E(v∗) = J(v∗),

which allows to conclude.

The next result states the first order necessary optimality conditions.

Theorem 2. In addition to the assumptions of Theorem 1, suppose that the
functional Φ : C(R3)q → R+ has Gâteaux derivatives ∂jΦ ∈ M(R3), 1 ≤ j ≤ q,
where M(R3) stands for the linear space of regular Borel measures.
If v∗ ∈ L2(I; V ) is a solution of (9a)-(9c), then there exists a family p∗ = p∗t , t ∈
I, of vector valued Borel measures on I × R3 satisfying the jump process

−∂tp
∗
t − bv∗,tp

∗
t = 0 , t ∈ (tj−1, tj), (10a)

p∗
t+q

= 0 , p∗
t−j

= p∗
t+j

+ λ∂jΦ(F ∗(·, tj) , 1 ≤ j ≤ q, (10b)

p∗t + ρt,v∗ = 0 , t ∈ I. (10c)

Here, bv,t = (Dvt(F (·, t)))T , and ρt,v is a vector valued Borel measure with
density Kvt.

Proof. We introduce the Lagrangian

L(F, v, p) := J(v)−
q∑

j=1

tj∫

tj−1

〈pt, ∂tF (·, t)− vt(F (·, t))〉M(R3),C(R3)dt (11)

− 〈p0, F (·, 0)− Id〉M(R3),C(R3),

where pt ∈ M(R3), t ∈ I, is the Langrange multiplier coupling the constraints
(9b) and (9c). If v∗ ∈ L2(I; V ) is a minimizing diffeomorphic flow with associated
time dependent family of diffeomorphisms F ∗(·, t) and multiplier p∗, the triple
(F ∗, v∗, p∗) is a critical point of the Lagrangian, i.e., there holds

LF (F ∗, v∗, p∗) = 0, (12a)
Lv(F ∗, v∗, p∗) = 0, (12b)
Lp(F ∗, v∗, p∗) = 0. (12c)

In view of (7), we obtain

LF (F ∗, v∗, p∗) =
q∑

j=1

λ∂jΦ(F ∗(·, tj))−
q−1∑

j=1

[p∗tj
]− p∗

t−q
+ p∗

t+0
− p0

+
q∑

j=1

tj∫

tj−1

(
∂tp

∗
t + (Dv∗t (F ∗(·, t)))T p∗j,t

)
dt,
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where [p∗tj
] = pt−j

− pt+j
, 1 ≤ j ≤ q. It follows from (12a) that p0 = pt+0

and
that (10a),(10b) are satisfied. Since the Gâteaux derivative of E at v is given by
ρt,v ∈ M(R3) with density Kvt, (10c) is a consequence of (12b). Finally, (12c)
results in (9b),(9c).

Remark 1. A controllability approach to diffeomorphic matching can be found
in [16].

5 Discretization in space: diffeomorphic point matching

We consider a spatial discretization of the optimal diffeomorphic matching prob-
lem which results in an optimization problem for diffeomorphic point matching.
We discretize the snapshots Sj , 0 ≤ j ≤ q, and the dynamically deformed sur-
faces Ŝj = F v(S0, tj) by point sets

Xj = {xj
1, · · · , xj

Nj
}, (13)

X̂j = F v(X0, tj) = {F v(x0
1, t1), · · · , F v(x0

N0
, tj)}.

We denote by xn(t) = F v(x0
n, tj) , xn(0) = x0

n, 1 ≤ n ≤ N0, the trajectories
emanating from x0

n, i.e., the solutions of the initial value problems

d

dt
xn(t) = vt(xn(t)) , t ∈ [0, 1], (14a)

xn(0) = x0
n. (14b)

We approximate the Borel measures associated with Sj and Ŝj by weighted sums
of Dirac measures

µSj =
Nj∑

m=1

bj
m δxj

m
, µŜj

=
N0∑

n=1

an δxn(tj) , 1 ≤ j ≤ q. (15)

Setting x(t) = (x1(t), · · · , xN0(t))
T , t ∈ (0, 1), the disparity cost functional reads

D(v) =
q∑

j=1

λj Dj(x(tj)) , Dj(x(tj)) := ‖µSj − µŜj
‖2Kσj

, (16)

where we use individual regularization parameters λj > 0 and appropriately
chosen radial Gaussian kernels Kσj , 1 ≤ j ≤ q.
We approximate the flow vt by a linear combination of Kxn(t), 1 ≤ n ≤ N0,

vt(x) =
N0∑

n=1

Kσ0(xn(t), x) αn(t) , x ∈ R3. (17)

It follows that

‖vt‖2V =
N0∑

n=1

N0∑

n′=1

Kσ0(xn(t), xn′(t)) αT
n (t)αn(t) , t ∈ [0, 1],
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Setting α(t) = (α1(t), · · · , αN0(t))
T ∈ RdN0 , t ∈ (0, 1), and

A(x(t)) :=
(
Kσ0(xn(t), xn′(t))Id

)N0

n,n′=1
∈ RdN0×dN0 , (18)

the optimal diffeomorphic point matching problem reads: Find α∗ ∈ L2(I;RdN0)
and x∗(t), t ∈ I, such that

J(α∗) = inf
α

J(α), (19a)

J(α) :=
1
2

1∫

0

α(t)T A(x(t))α(t) dt +
q∑

j=1

λjDj(x(tj)),

subject to

d

dt
x∗(t) = A(x∗(t)) α∗(t) , t ∈ I, (19b)

x∗(0) = x0. (19c)

The existence of a minimizing diffeomorphic flow can be shown along the lines of
the proof of the previous Theorem 1, whereas the first order necessary optimality
conditions state the existence of an adjoint state p∗ which solves a final time
problem for a backward in time dynamical system with jumps at the intermediate
snapshot time instants tj , 1 ≤ j ≤ q − 1.

Theorem 3. The discrete optimization problem (19a)-(19c) has a solution α∗ =
α∗(t), t ∈ I. If x∗ = x∗(t), t ∈ I, is the associated trajectory, there exists a
function p∗ = p∗(t), t ∈ I, which solves the final time problem

− d

dt
p∗(t) = B(x∗(t), α∗(t))T

(
p∗(t) +

1
2

α∗(t)
)

, t ∈ (tj−1, tj), (20a)

p∗(t+q ) = 0 , p∗(t−j ) = p∗(t+j ) + λj ∇Dj(x∗(tj)) , 1 ≤ j ≤ q, (20b)

Moreover, there holds

A(x∗(t))(α∗(t) + p∗(t)) = 0 , t ∈ I, (20c)

where the matrix B(x∗(t), α∗(t)) ∈ RdN0×dN0 in (20a) is given by

B(x∗(t), α∗(t)) = ∇x(A(x∗(t), α∗(t))). (21)

Proof. Introducing Lagrange multipliers p(t) = (p1(t), · · · , pN0(t))
T ∈ RN0d,

t ∈ I, the Lagrangian associated with (19a)-(19c) is given by

L(α, x, p) := J(α)−
1∫

0

p ·
(

dx

dt
−A(x(t))α(t)

)
dt

= −
1∫

0

p · dx

dt
dt +

1∫

0

(p + α/2) ·A(t, x)α dt +
q∑

j=1

λjDispj(x(tj)).
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The optimality conditions for a critical point (α∗, x∗, p∗) are given by:

Lα(α∗, x∗, p∗) = 0, (22a)
Lx(α∗, x∗, p∗) = 0, (22b)
Lp(α∗, x∗, p∗) = 0. (22c)

Obviously, (22a) implies (20c), whereas (22c) gives rise to (19b),(19c). Using
integration by parts, (22a) yields (20a),(20b).

6 Discretization in time and the matching algorithm

6.1 Discretization in time: fully discretized optimality system

For the discretization in time of the optimality system (19b),(19c),(20a),(20b),
and (20c) we introduce the partition

∆I :=
q⋃

j=1

∆Ij , ∆Ij := {tj−1 =: tLj−1 < tLj−1+1 < · · · < tLj := tj},

where ∆Ij , 1 ≤ j ≤ q, are subpartitions of Ij := [tj−1, tj ]. Setting ∆t` := t`+1 −
t`, 0 =: L0 ≤ ` ≤ L := Lq, the discretized optimality system reads

x`+1 − x`

∆t`
= A(x`α` , L0 ≤ ` ≤ L, (23a)

x0 = x(0), (23b)

p(`−1)+ − p`−

∆t`−1
= B(x`, α`)T (p`− + α`/2) , ` = Lj , · · · , Lj−1 + 1, (23c)

pL−q = 0 , pL−j = pL+
j + λj∇Dj(xLj ) , 1 ≤ j ≤ q − 1, (23d)

A(x`)(α` + p`+) , L0 ≤ ` ≤ L− 1. (23e)

Theorem 4. Let J∆I
be the discrete objective functional

J∆I (α) =
1
2

L−1∑

`=0

∆t` (α`)T A(x`)α` +
q∑

j=1

λjDj(xLj ). (24)

The discrete optimality system (23a)-(23e) represents the first order necessary
optimality conditions for the discrete optimization problem

min
α

J∆I
(α), (25a)

subject to

x`+1 − x`

∆t`
= A(x`)α` , L0 ≤ ` ≤ L− 1, (25b)

x0 = x(0). (25c)

Proof. The assertion can be verified along the lines of the proof of Theorem 3.
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6.2 Matching algorithm: inner/outer iterative scheme

The matching algorithm features an inner/outer iterative scheme with a con-
tinuation in the regularization parameters as an outer iteration and a gradient
method with Armijo line search as inner iteration. The continuation is motivated
by the following observation, where for simplicity we assume λj = λ > 0, 1 ≤
j ≤ q:
The regularization parameter provides a balance between the matching quality
and the regularizing kinetic energy. The larger λ, the more emphasis is on the
matching quality. However, the gradient method fails to converge for large λ, in
particular, if the initial iterate is not close to a local minimum. A convenient
remedy is continuation in the regularization parameter. A termination criterion
for the continuation process is

Dj := κ
( N0∑

n=1

(dj
n)2

)1/2

< ϑ , dj
n := min

1≤m≤Nj

|xn(tj)− xm(tj)|, (26)

where ϑ > 0 is a given threshold and 0 < κ ≤ 1 (e.g., κ = 0.9).
With these prerequisites, the matching algorithm reads as follows:

Step 1: Initialization
Choose thresholds θ > 0, ϑ > 0, as well as γ > 1 for continuation and 0 < κ ≤ 1.

Step 2: Initialization of the outer iteration
Choose an initial value λ0 and set ν := 0.

Step 3: Initialization of the inner iteration

Compute α
(0)
ν by an appropriate initialization and set µ := 0.

Step 4: Gradient method with Armijo line search

Step 4.1: Set µ := µ + 1 and compute α
(µ)
ν by gradient descent with Armijo

line search.
Step 4.2: If the termination criterion |∇J(α(µ)

ν )| < θ|∇J(α(0)
ν )| is satisfied, go

to Step 5. Otherwise, go to Step 4.1.

Step 5: Termination of the outer iteration
If the termination criterion Dj < ϑ, 1 ≤ j ≤ q, is satisfied, stop the algorithm.
Otherwise, set ν := ν + 1, α

(0)
ν := α

(µ)
ν−1, λν := γλν−1, and go to Step 4.

7 Application to optimal diffeomorphic matching of the
mitral valve apparatus

7.1 The mitral valve apparatus of the human heart

The circulation of the blood flow in the human heart is controlled by four valves
that guarantee a unidirectional flow through the chambers of the heart (cf. Figure



Optimal Diffeomorphic Matching in Biomedical Image Processing 11

Fig. 1. Anatomy of the human heart (left) and the mitral valve (right)

1 (left)). The tricuspid valve between the right ventricle and the right atrium
and the pulmonary valve between the right ventricle and the pulmonary artery
control the flow of the venous blood from the body to the lungs. The mitral
valve (bicuspid valve) between the left ventricle and the left atrium and the
aortic valve between the left ventricle and the aorta control the flow of oxygen-
rich blood from the lungs to the body.
The mitral valve apparatus (cf. Figure 1 (right)) consists of a saddle shaped
annulus and two leaflets, the anterior and the posterior leaflet. According to
the leaflet insertion, the annulus is divided into the anterior and the posterior
annulus. The anterior annulus is connected to the right and left fibrous trigones,
whereas the less developed posterior annulus is not connected to any fibrous
structure. The semi-circular shaped anterior leaflet is attached to approximately
40 % of the annulus with its free boundary being indentation-free. On the other
hand, the quadrangular shaped posterior leaflet has two well defined indentations
that support the opening of the mitral valve during diastole.
Cardiovascular diseases due to anterior and/or posterior leaflet prolapse or mitral
valve endocarditis often lead to a leaking valve and result in an abnormal heart
rhythm. Such diseases require mitral valve repair or, in severe cases, mitral valve
replacement.

We have applied the optimal matching algorithm to mitral valve annulus
curves and mitral valve anterior as well as posterior leaflet surfaces based on
NURBS snapshots obtained from echocardiographic data by a combination of
optical flow extraction algorithms and surface tagging by medical experts (cf.,
e.g., [17, 18]). The number of intermediary heartbeat cycle time instants ranged
from 3 to 8 with the time interval I covering either a half or a full heartbeat
cycle.

7.2 Matching multiple snapshots of the mitral annulus

We first consider the matching of multiple snapshots for the mitral annulus which
amounts to optimal diffeomorphic curve matching. We have used 5 successive
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annulus snapshots with 42 points on the reference curve and approximately 500
points on the intermediaries and the target. As discrete time steps, we have
chosen ∆t` = 1/18 starting from the initialization α = 0.

 

 

ref intermediary target trajectories

Fig. 2. Matching multiple snapshots of the mitral annulus at t = 1,3,5,7,10

The dotted curve in Figure 2 represents the reference curve. From bottom to
top, the next 3 curves are the intermediary snapshots, and the last curve is the
final target. The dashed lines are computed deformation trajectories for selected
points on the reference curve.
The computational performance of the matching algorithm is evaluated by the
convergence history reflected by the matching disparities both in case of smoothed
Hausdorff matching and Borel measure matching. We will also display Pareto
frontiers displaying the matching quality as a function of the regularizing kinetic
energy.
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Fig. 3. Convergence history: smoothed Hausdorff disparities (left) and Borel measure
disparities (right)
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Figure 3 contains the convergence histories both for the individual Hausdorff
disparities (left) and the Borel measure disparities (right). Each interval rep-
resents one step of the outer iteration for a specific value of the regularization
parameter λ.
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Fig. 4. Pareto frontiers: smoothed Hausdorff disparities (left) and Borel measure dis-
parities (right)

The Pareto frontiers display the tradeoff between the matching quality and
the kinetic energy. In the ideal case, points on the Pareto frontier represent weak
Pareto optima for the pair of competing criteria, i.e., matching quality versus
kinetic energy. For two person games, a weak Pareto optimum is a Pareto optimal
strategy in the sense that there does not exist another strategy such that both
players are better off with that strategy. Hence, a Pareto frontier should be a
convex curve. The Pareto frontiers are shown in Figure 4 in case of smoothed
Hausdorff disparities (left) and for Borel measure disparities (right). We see that
the Pareto frontiers are convex except for the first intermediary snapshot at the
beginning of the iterative process. The reason is that the algorithm improves the
matching quality of the target first, followed by the intermediary snapshots in
decreasing order.

7.3 Matching multiple snapshots of the mitral leaflets

We report on the performance of the matching algorithm applied to multi-
ple snapshots of the anterior and the posterior leaflet. Given four snapshots
S0, S1, S2, S3 of the anterior leaflet at time instants 0, 1, 5, 10, we have imple-
mented smoothed Hausdorff disparities featuring separate disparities for the
boundary and the interior of each snapshot. For the initial discretization we
have used 400 points on S0 and approximately 1700 points on S1, S2 and S3.
Figure 5 shows the reference surface (top left) and the computed deformations at
time instants t=1,5,10 (top right and bottom). The Pareto frontiers for smoothed
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Fig. 5. Anterior leaflet: reference surface and computed deformations at time instants
t=1,5,10 (from left to right and top to bottom)
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Fig. 7. Posterior leaflet: reference surface and computed deformations at time instants
t=1,5,10 (from left to right and top to bottom)
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individual Hausdorff disparities are displayed in Figure 6 (left). For comparison,
Figure 6 (right) contains the Pareto frontier in case of a smoothed global Haus-
dorff disparity.

The matching algorithm has been applied as well to four snapshots S0, S1, S2,
and S3 of the posterior leaflet at the same time instants 0, 1, 5, 10 based on
smoothed Hausdorff disparities. In particular, for discretization we have used
250 points for the initial snapshot S0 and and approximately 1100 points for
the two intermediary snapshots and the target. Figure 7 displays the reference
surface (top left) and the computed deformations at time instants t=1,5,10 (top
right and bottom). The convergence history of the matching algorithm reflected
by the geometric accuracy indicators is shown in Figure 8 (left), whereas Figure
8 (right) contains the Pareto frontiers.
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