
U n i v e r s i t ä t    A u g s b u r g

Institut für
Mathematik

Robert Azencott, Roland Glowinski, Jiwen He, Ronald H.W. Hoppe, Aarti
Jajoo, Yipeng Li, Andrey Martynenko, Sagit Benzekry, Stephen H. Little,
William A. Zoghbi

Diffeomorphic Matching and Dynamic Deformable Surfaces in 3D
Medical Imaging

Preprint Nr. 07/2010 — 27. April 2010
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Abstract — We consider optimal matching of submanifolds such as curves and
surfaces by a variational approach based on Hilbert spaces of diffeomorphic transfor-
mations. In an abstract setting, the optimal matching is formulated as a minimization
problem involving actions of diffeomorphisms on regular Borel measures considered as
supporting measures of the reference and the target submanifolds. The objective func-
tional consists of two parts measuring the elastic energy of the dynamically deformed
surfaces and the quality of the matching. To make the problem computationally ac-
cessible, we use reproducing kernel Hilbert spaces with radial kernels and weighted
sums of Dirac measures which gives rise to diffeomorphic point matching and amounts
to the solution of a finite dimensional minimization problem. We present a matching
algorithm based on the first order necessary optimality conditions which include an
initial-value problem for a dynamical system in the trajectories describing the defor-
mation of the surfaces and a final-time problem associated with the adjoint equations.
The performance of the algorithm is illustrated by numerical results for examples from
medical image analysis.

Keywords: diffeomorphic image matching, deformable surfaces, reproducing kernel
Hilbert spaces, Dirac measures, gradient method, medical image analysis.

.
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1. Introduction

Clinical diagnosis and therapy planning are increasingly often supported by 3D-imaging
modalities, such as MRS (Magnetic Resonance Spectroscopy), PET (Positron Emission To-
mography), SPECT (Single Photon Emission Computed Tomography) for functional infor-
mation, and CT (Computed Tomography), MRI (Magnetic Resonance Imaging), Ultrasound
Echography , X-Ray, for anatomical visualization.
Thus clinicians and medical researchers become natural users for automated 3D-image re-
gistration providing voxel to voxel matching of two 3D-images of the same anatomical object
obtained by different imaging modalities, at different times, or from different perspectives.
The search for a good voxel to voxel correspondence between reference and target images
Jref and Jtar is guided by one or several matching quality criteria. Image matching is gen-
erally achieved by an R3-diffeomorphism F matching two given bounded subdomains of the
3D-voxel grid, and can thus be assigned an elastic energy EE(F ) measuring the amount of
spatial deformation implemented by F . In 2D or 3D-image registration, typical matching
quality criteria involve the differences difint(z, z′) = |Jtar(z

′) − Jref (z)| in image intensities
at all pairs (z, z′) of matched voxels. The Intensity Matching Cost IMC(F ) is often defined
by fixing some exponent a > 0 and summing difinta(z, z′) over all voxels z belonging to the
domain of interest in Jref . The search for an optimal registration then becomes a variational
problem where one seeks a deformation F minimizing a linear combination of EE(F ) and
IMC(F ). Image registration methods were initially designed for 2D-images, for instance to
align tomographic slices of different recordings, but in the last decade, 3D-image registra-
tion based on volumetric data sets has become the main technical challenge, and involves
much heavier computing resources. Surveys of image registration algorithms can be found
in [10, 26, 37].

2. Diffeomorphic Shape Matching

2.1. Diffeomorphic Matching of Two Shapes in R3

In most medical imaging applications, different 3D-shapes B ⊂ R3 of the same deformable
organ, such as the brain or the heart, can be assumed to belong to the following family SH3
of smooth 3D-shapes with boundaries : We define the family SH3 of 3D-shapes as the set of
all connected open subsets S of R3 with compact closures S̄ such that

• the boundary Σ = ∂S = S̄ − S of S is a piecewise smooth surface of class Cr, r > 3 ;

• S coincides with a whole connected component of R3 \ Σ;

• for each x ∈ Σ, there is an open neighborhood U of x in R3 and a local r-smooth
diffeomorphism ϕ of U onto an open ball Ũ ⊂ R3 mapping U ∩ Σ̄ onto Ũ ∩H, where
H is the intersection of either one, two or three closed half-spaces of R3.

In medical 3D-imaging, one of the main goals of image registration is to accurately compare
two observed 3D-shapes Sref ∈ SH3 and Star ∈ SH3 of the same deformable organ. These
3D-shapes are often extracted from two 3D-images Jref and Jtar by various 3D-image analysis
techniques such as 3D-segmentation combined with interactive tagging of reference points.
We refer to Σref and Σtar as the boundaries of Sref and Star. Since these two 3D-shapes
are in SH3, any R3-diffeomorphism F such that F (Σref ) = Σtar must necessarily also verify
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F (Sref ) = Star. Hence, in the search for a diffeomorphic matching of two deformable 3D-
shapes, whenever theses shapes have been already pre-extracted as R3-subsets, the matching
of image intensities is then often discarded, and the matching quality of candidate R3-
diffeomorphisms F is focused on suitable geometric distances between the boundary surfaces
F (Σref ) and Σtar as well as between the 3D-shapes F (Sref ) and Star.
As just indicated, diffeomorphic matching of 3D-shapes S0, S1 in R3 quite naturally involves
looking at the matching of their boundaries Σ0, Σ1 which are 2D-shapes in R3 as well as to
the matching in R3 of the boundary 1D-shapes ∂Σ0, ∂Σ1 , where the definitions of smooth
2D and 1D-shapes in R3 are similar to the definition of SH3.

2.2. Variational Approach

Consider two smooth k-dimensional shapes S0, S1 included in R3 with k ∈ {1, 2, 3}. The
search for an R3-diffeomorphism F such that F (S0) = S1 is an ill-posed problem which
requires regularization to be numerically solved by variational methods. Such an approach
has been actively explored by G.Dupuis, J. Glaunès, U. Grenander, M. Miller, D. Mumford,
A. Trouvé, L. Younes [9, 16, 21, 22] with applications to a quantified comparison of images
of human brains. In these papers, the regularization is achieved through the replacement
of the rigid constraint F (S0) = S1 by a soft constraint based on various geometric ’surface
matching’ distances dis [F (S0), S1]. The unknown diffeomorphism F is restricted to be of
the form F = F v, where F v is generated by integration between times 0 and 1 of some time
dependent flow v = (vt) of smooth R3-vector fields vt, 0 6 t 6 1. The vector fields vt are
required to belong to a Hilbert subspace V of the Banach space C3

r of smooth functions from
R3 to R3 tending to zero at infinity. The Hilbert norm in V is assumed to be bounded by
a constant multiple of the Banach norm in C3

r . Then, for some fixed constant λ > 0 one
considers the variational problem of finding a vector field flow v = (vt) minimizing the cost
functional

J(v) =

∫ 1

0

‖vt‖2
V dt + λ dis [F v(S0), S1] ,

which linearly combines a kinetic energy term and a surface matching term.
This variational point of view is directly linked (as λ →∞) to the construction of geodesics
in infinite dimensional Lie groups of diffeomorphisms in the spirit of ideas pioneered by
Arnold, Ebin, and Marsden who showed (see, e.g., [3]) that for an incompressible fluid,
obeying Euler equations, the spatial displacements Ft(x) between times 0 and t of fluid
particles emanating from x ∈ R3 minimize the integral in time and space of the fluid kinetic
energy. The time dependent R3- diffeomorphisms Ft define a continuous path in the group of
R3- diffeomorphisms, and this path is a geodesic t → Ft of an infinite dimensional Lie group
G of R3-diffeomorphisms, endowed with the local Hilbert metric defined by the fluid’s kinetic
energy on the Lie algebra of G. This Lie algebra is naturally identified with the Hilbert space
of smooth vector fields on R3 defined by fluid velocities at time 0. The classical Euler fluid
mechanical equations for the fluid velocities become precisely interpreted as the variational
equations characterizing geodesics in G. Natural right-invariant deformation distances on
the group G can then be associated to this Riemannian structure (see, e.g., [35]).
For the diffeomorphic matching of two smooth k-dimensional shapes (k ∈ {1, 2, 3}) by R3-
diffeomorphisms, the geometric view just outlined above has been intensively explored in
[9, 16, 21, 35] and numerically implemented for comparisons of key anatomic parts of human
brains such as the hippocampus, the temporal lobes, etc. [9, 21].
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2.3. Multiple Snapshots of Dynamic Deformable Shapes

In medical domains such as cardiology, urology, gynecology, clinicians routinely use volume-
tric 3D-echographs to visualize live 3D-movies of deformable organs. However, computerized
algorithms to model such soft organs dynamics by explicit time dependent nonlinear 3D-
deformations constitute a quite complex and active research target. For deformable anatomic
shapes S(t) ⊂ R3 indexed by time t, current bio-medical research often succeeds to extract
from medical 3D-movie data at key time frames tj, 0 6 j 6 q, a sequence of static models
Sj ⊂ R3 of the shapes S(tj). Given these q + 1 shape snapshots Sj = S(tj) ⊂ R3, 0 6 j 6 q,
a natural goal is to model the time deformations of the shape S(t) by a time dependent
family Ft of R3-diffeomorphisms such that

Ftj(S0) = Sj for j = 1, · · · , q, (1a)

Ft0 = Id (identity mapping of R3), (1b)

for each fixed t [Ft(x)− x] → 0 as x →∞ in R3. (1c)

Most publications mentioned above deal with the basic case q = 1 where one wants to match,
by an R3-diffeomorphism, a single pair of static smooth k-dimensional shapes called reference
and target shapes .
In this paper, we will focus on the situation where we are given q+1 ’snapshots’ Sj ⊂ R3 which
is a natural context for 3D-movies analysis. In particular, we will extend the variational
approach described above to the search of time dependent R3-diffeomorphisms Ft verifying
at fixed intermediary times tj the q > 1 geometric matching constraints listed in (1a)-(1c).
The q + 1 given ’snapshots’ Sj ⊂ R3 are typically smooth 3D-shapes belonging to SH3 (see
subsection 2.1) or piecewise smooth R3-submanifolds of lower dimension k ∈ {1, 2}.
As a medical application we will present a dynamic sequence of mitral valve snapshots where
each snapshot Sj actually belongs to a more general class of composite deformable objects
Sj which are unions of several bounded piecewise smooth surfaces and curves in R3 linked
by flexible articulations.

3. Optimal Diffeomorphic Matching of Intermediary Snapshots

In this section, we will use standard notation from Lebesgue and Sobolev space theory (cf.,
e.g., [34]). Moreover, C will denote a generic positive constant not necessarily the same at
each occurrence.

3.1. Time Dependent Vector Fields with Finite Kinetic Energy

We choose a Hilbert space V of vector fields on R3 and we consider the associated Hilbert
space L2(I, V ) of vector field flows v : t → vt ∈ V , indexed by a time parameter t in the
interval I = [t0, t1], having finite kinetic energy E(v) defined by

E(v) :=
1

2
‖v‖2

L2(I,V ) =
1

2

t1∫

t0

‖vt‖2
V dt. (2)

We assume that the Hilbert space V of R3-vector fields is continuously embedded in a Sobolev
space W s,2(R3)3 for some s > 5/2. By the Sobolev embedding theorem, W s,2(R3)3, s > 5/2,



Diffeomorphic Matching and Dynamic Deformable Surfaces in 3D Medical Imaging 5

is continuously embedded in the Banach space C0, s−3/2(R3)3 of R3-vector fields. We note
that in this situation, for each x ∈ R3, the evaluation map w → w(x) from V to R3 is
continuous with respect to both the strong and the weak topology on V .

3.2. Dynamic System of Diffeomorphic Deformations

For t ∈ I and v = (vt) as above, we define the flow of R3-diffeomorphisms Ft as the solution
of the flow dynamics equations

∂tFt = vt(Ft) , t ∈ I, (3a)

F0 = Id, (3b)

where Id refers to the identity map of R3.

Theorem 3.1. Assume v ∈ L2(I; V ) where V is continuously embedded in W s,2(R3) for
some s > 5/2. Then, the initial-value problem (3a),(3b) admits a unique solution Ft with
each Ft being an R3-diffeomorphism of smoothness class 1 6 r < s− 3/2.

Proof. We refer to [20].

3.3. Self-Reproducing Hilbert Spaces

Recall that a symmetric real valued kernel K(x, x′) defined for (x, x′) ∈ R3 × R3 is called
positive definite if for arbitrary vectors xn ∈ R3, n = 1, · · · , N , the (N × N) symmetric
matrix K(xm, xn) is positive definite.
To any such kernel K, one associates the vector space LW of all finite linear combinations of
R3-vector fields wz,u, indexed by arbitrary pairs (z, u) in R3 ×R3, and defined by wz,u(x) =
K(z, x) u for all x ∈ R3. The space LW is then endowed with the pre-Hilbertian scalar
product

〈wz, u , wz′, u′〉 = K(z, z′) 〈u, u′〉R3 .

The self-reproducing Hilbert space VK classically defined by K is then the unique Hilbert
space generated by LW (see [4, 33]).
In our context, the relevant Hilbert space V of R3-vector fields is often defined as the self-
reproducing Hilbert space V = VK of R3-vector fields defined by a smooth symmetric bounded
positive definite kernel K on R3 × R3 , where K is assumed to be bounded, smooth, and
invariant under translations.
For many shape matching applications, K can be the radial Gaussian kernel Kσ

Kσ(x, x′) =
1

(2π)3/2σ3
exp

(
−‖x− x′‖2

σ2

)
(4)

with a suitable scale parameter σ > 0. Note that when V = VKσ , the Sobolev embedding
hypothesis above is satisfied for any s > 5/2 . The choice V = VKσ seems to be a good
pragmatic choice for diffeomorphic shape matching applications as seen in previous studies
and in our numerical implementations below.
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3.4. Matching Quality: Distances between Shapes

We consider a given sequence of instantaneous ’shape snapshots’ Sj = Stj ⊂ R3 generated
by a deformable shape St at instants tj, 0 6 j 6 q. Typically, each Sj is a k-dimensional
submanifold (k ∈ {1, 2, 3}) with boundary, regularly embedded in R3. Let (Ft) be a candidate
family of R3-diffeomorphisms indexed by time. To compare each given snapshot Sj with the
deformed initial shape Ftj(S0), a key choice is to define smooth non-negative geometric
distances D(S, S ′) quantifying the geometric disparity between pairs of shapes S, S ′ in R3.
The classical Hausdorff disparities h(S, S ′) and h(S ′, S) between subsets S, S ′ of R3 are

defined by

h(S, S ′) = max
x∈S

(
min
x′∈S′

|x− x′|
)

.

They determine the Hausdorff distance Dh by

Dh(S, S ′) = max (h(S, S ′), h(S ′, S))) . (5)

Hausdorff distances introduce theoretical complications in the variational framework below,
since Dh(S, S ′) is not always smooth with respect to small perturbations of S or of S ′, but
Hausdorff disparities are nevertheless quite useful in numerical schemes as will be clarified in
the applications below. For many shape matching applications, one can identify as in [21],

each submanifold S regularly embedded in R3, with the measure µS ∈ BM3 induced on S
by the Lebesgue measure of R3. Here, BM3 is the space of bounded Borel measures m,m′

on R3 , endowed with the Hilbert norm ||m||Γ associated with the scalar product

〈m,m′〉Γ =

∫

R3

∫

R3

Γ(x, x′)dm(x)dm′(x′), (6)

where Γ is any smooth, symmetric, translation invariant, and bounded positive definite kernel
on R3 × R3, such as the often used radial Gaussian kernel Kσ. The corresponding distance
between two bounded Borel subsets S, S ′ of R3 is then defined by

D2
Γ(S, S ′) = ||µS − µS′||2Γ (7)

and has nice smoothness properties.
Denote by Diff(R3) the space of all R3-diffeomorphisms endowed with the topology of uniform
convergence on bounded subsets of R3. Then for any fixed pair S, S ′ of bounded submanifolds
regularly embedded in R3, the distance DΓ (G(S), S ′) is a continuous function of G ∈ Diff(R3)
(see [21]). In applications, for each snapshot Sj = Stj one can often identify a well defined
set of p reference points

Zj = {zj,1, . . . zj,p}

such that the Zj are point-to-point matched by the unknown diffeomorphisms Ft. To force
the diffeomorphic matching of these reference point sets, we will use the obvious pointwise
disparity functions

pointdisp(V ) =
r∑

p=1

|Ftj(z0,p)− zj,p|2.
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Other efficient disparity functions D(S, S ′) based on Hilbertian distances between differ-
entiable currents carried by S and S ′ have been introduced in [21]. We now present the

variational formulation for diffeomorphic matching of intermediary snapshots. As above,
consider a given sequence of q + 1 instantaneous ’snapshots’ Sj = Stj ⊂ R3 generated at
fixed intermediary times tj, 0 6 j 6 q, by a deformable shape St with unknown dynam-
ics. Each Sj is typically a bounded piecewise smooth submanifold with boundary, regularly
embedded in R3. We seek a vector field flow v = (vt) on R3 belonging to the Hilbert
space L2(I, V ), I := [t0, tq] such that for j = 1, · · · , q, the R3-diffeomorphism Ft solution of

(3a),(3b) deforms the initial snapshot S0 into a submanifold Ŝj = Ftj(S0) ’coinciding’ as well
as possible with the given snapshot Sj. We select a disparity functional D2(S, S ′) such as
one of the functionals introduced above, and quantify the constraint matching adequacy of
v by the q numerical disparities

Dispj(v) = D2(Ŝj, Sj) , j = 1, · · · , q.

We fix q positive numerical weights λj > 0, and we define the disparity cost functional by

Disp(v) :=

q∑
j=1

λjDispj(v). (8)

These disparity functionals actually belong to a much wider class of functionals D(V ) which
we now introduce.
For v ∈ L2(I, V ) we denote by F v

t ∈ Diff(R3) the solution of (3a),(3b) determined by v. We
define D(V ) as the space of all disparity functionals Disp : L2(I, V ) → R+ which are of the
form

Disp(v) = φ(F v
t1
, . . . , F v

tq) (9)

for some fixed, but arbitrary choices of the integer q, of the instants t1, · · · , tq in R+, and of
the continuous function φ : (Diff(R3))q → R+.

3.5. Existence of a Minimizing Diffeomorphic Flow

We define the objective functional J : L2(I, V ) → R by

J(v) := E(v) + Disp(v) , v ∈ L2(I, V ), (10)

where E(v) is the kinetic energy as given by (2) and Disp(v) is as in (9). We consider the
minimization problem

inf
v∈L2(I,V )

J(v). (11)

The next result proves the existence of a minimizing diffeomorphic flow solution of (11).

Theorem 3.2. The minimization problem (11) has a solution v∗ ∈ L2(I, V ).

Proof. Let {vn}N, vn ∈ L2(I, V ), n ∈ N, be a minimizing sequence, i.e.,

J(vn) → inf
v∈L2(I,V )

J(v) (n →∞). (12)
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Obviously, this sequence is bounded in L2(I, V ) and hence is weakly compact. Consequently,
we find v∗ ∈ L2(I, V ) and a subsequence (still indexed by N) converging weakly to v∗ in
L2(I, V ). This implies

lim inf
n→∞

‖vn‖2
L2(I,V ) 6 ‖v∗‖2

L2(I,V ). (13)

We denote by F n
t and F ∗

t the unique flows of R3-diffeomorphisms solving (3a),(3b) with
respect to the vector field flows vn and v∗, respectively. The main part of the proof will be
to verify the following key convergence result

F ∗
t (x) = lim

n→∞
F n

t (x) ∀ t ∈ I, x ∈ R3, (14)

where, for each fixed t ∈ I, the convergence in (14) is uniform in x on bounded subsets B of
R3. If we assume that (14) holds true, then F n

tj
→ F ∗

tj
, 0 6 j 6 q, in C(R3,R3)) as n → ∞

and hence, the continuity hypothesis on the disparity functional implies

Disp(v∗) = lim
n→∞

Disp(vn). (15)

In view of (12), (13) and (15), we obtain

inf
v∈L2(I,V )

J(v) = lim inf
n→∞

J(vn) 6 lim inf
n→∞

E(vn) + lim
n→∞

Disp(vn) 6 E(v∗) + Disp(v∗) = J(v∗),

which implies

J(v∗) = inf
v∈L2(I,V )

J(v),

i.e., v∗ is a minimizer of J .
We now prove the key point (14). Let B be a fixed, but arbitrary bounded subset of R3.
Since V is continuously embedded in the Banach space of bounded continuous vector fields,
we have

||vt(x)||R3 6 C ||vt||V ∀ x ∈ R3, t ∈ I, v ∈ V.

Then, the equations (3a),(3b) imply that for all (t, x) ∈ I ×B and all n ∈ N there holds

||F n
t (x)||R3 6 ||x||R3 + C

t∫

t0

||vn
t ||V dt 6 C (1 + ||vn||L2(I,V )) 6 C. (16)

Moreover, for all a, b ∈ I and x ∈ R3 we have

|F n
a (x)− F n

b (x)| = |
b∫

a

vn
t (F n

t (x))dt| 6
b∫

a

||vn
t (F n

t (x))||R3dt (17)

6 C

b∫

a

||vn
t ||V dt 6 C (b− a)1/2 ‖vn‖L2(I,V ) 6 C (b− a)1/2.

The continuous embedding of V into W s,2(R3)3, s > 5/2, yields

‖vt(x)− vt(y)‖ 6 cte ||vt||V ‖x− y‖ ∀ x, y ∈ R3, t ∈ I, v ∈ L2(I, V ) (18)
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The inequalities (17) and (18) imply equicontinuity of the functions

(t, x) ∈ I × R3 → F n
t (x).

Moreover, for (t, x) ∈ I × B, the sequence of R3-norms ‖F n
t (x)‖ is bounded. By Ascoli’s

theorem, after extraction of a subsequence (for ease of notation still denoted {vn}N), we
may assume that the sequence {F n

t (x)}N converges uniformly for (t, x) ∈ I × B to some
continuous function (t, x) → ut(x) ∈ R3. Applying this result to a sequence of balls B ⊂ R3

with fixed center and radii tending to infinity, and selecting a ’diagonal’ subsequence of
{vn}N, we deduce the existence of a minimizing sequence (still denoted {vn}N) and of a
continuous function (t, x) → z∗t (x) ∈ R3 such that

z∗t (x) = lim
n→∞

F n
t (x) uniformly for (t, x) in bounded subsets of I × R3. (19)

We fix a bounded set B ⊂ R3 and some ε > 0. Then, there exits n1 ∈ N such that for n > n1

‖F n
t (x)− z∗t (x)‖ 6 ε ∀ (t, x) ∈ I ×B.

We choose δ > 0 small enough such that the continuous function z∗ : (t, x) → z∗t (x) has
oscillations less than ε on any rectangular box in I×B with diameter less than δ. We further
consider a covering of the bounded set B ⊂ R3 by a finite family Ω of disjoint rectangular
boxes ω ∈ Ω and a finite partition Θ of the interval I into subintervals T ∈ Θ such that all
rectangular boxes T × ω have diameters less than δ. Clearly, we can then select a function

Z : (t, x) ∈ I × R3 → Zt(x) ∈ R3,

which satisfies Zt(x) 6 y(T, ω) on each T × ω with T ∈ Θ, ω ∈ Ω, and such that

‖Zt(x)− z∗t (x)‖ < ε ∀ (t, x) ∈ I ×B. (20)

For a, b ∈ I and x ∈ B we want to estimate the integral

b∫

a

(
vn

t (F n
t (x))− v∗t (z

∗
t (x))

)
dt, (21)

where the integrand U := vn
t (F n

t (x))− v∗t (z
∗
t (x)) can be split according to

U = U1 + U2 + U3 + U4 (22)

with

U1 = vn
t (F n

t (x))− vn
t (z∗t (x)) , U2 = vn

t (z∗t (x))− vn
t (Zt(x)),

U3 = v∗t (Zt(x))− v∗t (z
∗
t (x)) , U4 = vn

t (Zt(x))− v∗t (Zt(x)).

For any two functions ft(x) and gt(x) that are continuous on I × B with values in R3 and
satisfy

‖ft(x)− gt(x)‖R3 6 ε ∀ (t, x) ∈ I ×B,
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we have the bound

‖vt(ft(x))− vt(gt(x))‖R3 6 C ε ‖vt‖V ∀ t ∈ I, x ∈ B, v ∈ L2(I, V ).

This implies that for all a, b ∈ I, x ∈ B there holds

|
b∫

a

(
vt(ft(x))− vt(gt(x))

)
dt| 6 C ε

b∫

a

||vt||V dt 6 C ε ||v||L2(I,V ).

Applying the preceding argument separately to U1, U2, U3, we find that for all a, b ∈ I, x ∈ B,
and all n > n1 we have

b∫

a

[ |U1|+ |U2|+ |U3| ] dt 6 C ε
(
2‖vn‖L2(I,V ) + ‖v∗‖L2(I,V )

)
6 C ε. (23)

Since the Hilbert space V is continuously embedded in W s,2(R3)3, s > 5/2,, for each y ∈ R3

there exists a function kery ∈ V generating the evaluation map on V by means of

w(y) = 〈kery, v〉, ∀ w ∈ V.

Now, for each y ∈ R3 and each pair a, b ∈ I we define a function

KER : t → KERt = 1[a,b](t) kery.

Clearly, KER ∈ L2(I, V ) and we have
∫

[a,b]

vt(y) dt =

∫

I

〈KER, vt〉V dt = 〈KER, v〉V ∀ v ∈ L2(I, V ), y ∈ R3.

Since vn − v∗ ⇀ 0 in L2(I, V ), the last equality shows that for each fixed y ∈ R3 and each
pair a, b ∈ I we have

lim
n→∞

( ∫

[a,b]

(vn
t (y)− v∗t (y)) dt

)
= 0. (24)

For each pair (T, ω) ∈ Θ× Ω there is a fixed vector y(T, ω) ∈ R3 such that Zt(x) = y(T, ω)
for all (t, x) ∈ T × ω. Fixing ω ∈ Ω, for all x ∈ ω we have

b∫

a

U4 dt =
∑

T ∈ Θ

∫

T∩[a,b]

(
vn

t (Zt(x))− v∗t (Zt(x))
)

dt (25)

=
∑

T ∈ Θ

∫

T∩[a,b]

(
vn

t (y(T, ω))− v∗t (t(T, ω))
)

dt.

In view of (24), we see that each term on the right-hand side of (25) tends to 0 as n → ∞
uniformly for x ∈ ω. Since the partition Θ is finite and fixed, we deduce

lim
n→∞

[ b∫

a

U4 dt
]

= 0 (26)
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uniformly for x ∈ ω, and hence also uniformly for x ∈ B, since the partition Ω is finite and
fixed. Consequently, for given a, b ∈ I and all x ∈ B we can find n2 > n1 such that for
n > n2 there holds

|
b∫

a

U4 dt| 6 ε. (27)

Combining (27) with (22) and (23), we conclude that for any given a, b ∈ I and uniformly
for all x ∈ B there holds

lim
n→∞

( b∫

a

(
vn

t (F n
t (x))− v∗t (z

∗(t, x))
)

dt
)

= 0. (28)

The equations (3a),(3b) for F n
t (x) imply

F n
t (x) = x +

t∫

t0

(
vn

t (F n
t (x)) ∀ t ∈ I, x ∈ R3.

Hence, the two limits (19) and (28) show that

z∗(t, x) = x +

t∫

t0

(
v∗t (z

∗(t, x))) ∀ t ∈ I, x ∈ R3.

In view of Theorem 3.1, we see that z∗ must coincide with the unique solution F ∗ of (3a),(3b)
determined by v∗. This proves the key convergence result (14).

3.6. Necessary Optimality Conditions

We now derive first order necessary optimality conditions in terms of the Gâteaux derivative
of the objective functional J . Denote by CR3 = C(R3,R3) the vector space of continuous
maps from R3 to R3 endowed with the topology of uniform convergence on bounded subsets
of R3. Call MR3 the dual of CR3, i.e the space of all linear continuous maps Λ : CR3 → R
which are of the form

Λ(g) =

∫

R3

〈λ(x), g(x)〉R3 dθ(x) ∀ g ∈ CR3, (29)

where θ is any positive bounded Borel measure on R3 and λ : R3 → R3 is any Borel function
with compact support such that

∫

R3

‖λ(x)‖R3 dθ(x) < ∞. (30)

We introduce Gat(V, 3) as the space of all functions v → Gv from L2(I, V ) into CR3 having
a Gâteaux derivative ∇Gv at each v ∈ L2(I, V ). The operators ∇Gv are linear maps from
L2(I, V ) to C(R3,R3) of the form

∇Gv.w = lim
ε→0

(1/ε) (Gv+εw −Gv) ∀ w ∈ L2(I, V ). (31)
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We say that a functional φ : (CR3)q → R, φ has weak partial derivatives ∂jφ(Z) ∈ MR3
at Z ∈ (CR3)q, if for any set of q functions Gj ∈ Gat(V, 3) the composite function f(v) =
φ(Gv

1, . . . , G
v
q) has a Gâteaux derivative ∇f(v) at each v ∈ L2(I, V ), and the derivative in

the direction w ∈ L2(I, V ) is given by

∇f(v).w =

q∑
j=1

∂jφ(Z).[∇vGj.w] ∀ w ∈ L2(I, V ), (32)

where Z = (Gv
1, · · · , Gv

q).

Theorem 3.3. Let J be the objective functional as given by (10) with a disparity func-
tional of the form Disp(v) = φ(F v

t1
, . . . , F v

tq), where φ : (C(R3),R3)q → R3 has Gâteaux
partial derivatives ∂jφ. Assume that for all g ∈ CR3

∂jφ.g =

∫

R3

< λj(x), g(x) >R3 dθj(x), (33)

where θj, 1 6 j 6 q, are positive bounded Borel measures with compact support in R3 and
the λj : R3 → R3, 1 6 j 6 q, are continuous functions . Then, the Gâteaux derivative
∇J(v) ∈ L2(I, V ) is given by

∇J(v).w =

tq∫

t0

( ∫

R3

wt d(ρt,v + ηt,v)
)

dt, (34)

where for each t and v the quantities ρt,v and ηt,v are R3-vector valued Borel measures on
R3, and the measures ηt,v remain constant in t over each interval [tj, tj+1). Explicit formulas
for these measures are given below in the proof of this theorem.
If v∗ ∈ L2(I, V ) is a minimizing diffeomorphic flow, then ∇J(v∗) = 0, and this implies
ρt,v∗ + ηt,v∗ = 0 for all t ∈ I.

Proof. Obviously, the Gâteaux derivative ∇E(v) of the kinetic energy is given by

∇E(v).w =< v,w >L2(I,V ) . (35)

We fix v ∈ L2(I, V ) and x ∈ R3 and denote by DF v
t (x) : R3 → R3 the Jacobian m of the

diffeomorphism F v
t at x. Since

∂tF
v
t (x) = vt(F

v
t (x)) and F v

0 (x) = x,

the Gâteaux derivative

gt = gt(x, v, w) = ∇vF
v
t (x)

of F v
t (x) with respect to v in the direction w ∈ L2(I, V ) satisfies

∂tgt −Dvt(F
v
t (x)).gt = wt(F

v
t (x)),

g0 = 0,
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so that gt is the solution of an initial-value problem for a linear ordinary differential equa-
tion with non-zero right-hand side rt = rt(x, v, w) = wt(F

v
t (x)). Setting pt = pt(x, v) =

Dvt(F
v
t (x)), this initial-value problem can be written as

∂tgt = pt.gt + mt, (36a)

g0 = 0. (36b)

We denote by Rs,t, t0 < s < t < tq the resolvent of the homogeneous linear ordinary differ-
ential equation ∂tzt = pt.zt which satisfies

∂tRs,t = pt.Rs,t and Rs,s = Id ∀ s < t.

We note that Rs,t depends only on s, t, x, v and that the solution gt of (36a),(36b) is then
given by

gt =

t∫

t0

Rs,t.ms ds.

With a slight change of notations, omitting the explicit dependence on x ∈ R3, this results
in

∇vF
v
t .w =

t∫

t0

Rv
s,t.ws(F

v
s ) ds. (37)

In view of the hypothesis on the functional φ, it follows that

(∇Dispv).w =

q∑
j=1

∂jφ.∇vF
v
tj
.w,

and hence, taking (37) into account, we have

[∇Dispv].w =

q∑
j=1

tj∫

t0

[
∂jφ.Rv

s,tj
.
]
.[ws(F

v
s )] ds.

For each s ∈ I and fixed v ∈ L2(I, V ) we define the linear map As : V → R by

Av
s =

q∑
j=1

1[t0,tj ](s)∂jφRv
s,tj

, (38)

whence

[∇Disp(v)].w =

tq∫

t0

Av
s .[ws(F

v
s )] ds. (39)

Finally, due to (35) we obtain

∇J(v).w =

tq∫

t0

[
< vt, wt >V +Av

t .[wt(F
v
t )]

]
dt. (40)
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We fix an instant s < tj and for x ∈ R3 temporarily define the 3 × 3 matrix R(x) and the
diffeomorphism x → u(x) ∈ R3 according to

R(x) = Rv
s,tj

(x) and u(x) = F v
s (x).

For the function g : x → g(x) = R(x)ws(u(x)) we thus get

∂jφ.[Rv
s,tj

.[ws(F
v
s )] =

∫

R3

< λj(x), R(x)ws(u(x)) >R3 dθj(x).

We define the bounded measure µj = u(θj) as the direct image of the measure θj by the
diffeomorphism u and note that µj depends only on j, s, v, which are fixed temporarily. In
view of the definition of transported measures, we have

∫

R3

〈λj(x), R(x)ws(u(x))〉R3 dθj(x) =

∫

R3

〈RT (u−1(y))λj(u
−1(y)), ws(y)〉R3 dµj(y), (41)

where RT stands for the transpose of the matrix R.
Now, for s < tj we define

aj,s,v(x) := [Rv
s,tj

(x)]T .λj(x) ∀ x ∈ R3,

bj,s,v(y) := aj,s,v ◦ [F v
s ]−1,

µj,s,v := F v
s [θj].

It follows that

Av
s .[ws(F

v
s )] =

q∑
j=1

1[t0,tj ](s)

∫

R3

〈bj,s,v(y), ws(y)〉R3 dµj,s,v(y).

We introduce the vector-valued Borel measure νj,s,v, taking values in R3, as the measure
with vector-valued density bj,s,v with respect to the bounded Borel measure µj,s,v, so that
for any continuous function g : R3 → R3 there holds

∫

R3

g dνj,s,v =

∫

R3

〈bj,s,v(y)), ws(y)〉R3 dµj,s,v.

We then define the vector-valued measure ηs,v on R3 by means of

ηs,v =

q∑
j=1

1[t0,tj ](s)νj,s,v,

and thus obtain

∇J(v).w =

tq∫

t0

(
〈vt, wt〉V +

∫

R3

wt dηt,v

)
dt. (42)

On the Hilbert space V , the norm and the scalar product are defined by the kernel K(x, y),
whence

< vt, wt >V =

∫

R3

〈Kvt(x), wt(x)〉R3 dx =

∫

R3

wt dρt,v.
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Here, the vector-valued measure ρt,v has density Kvt with respect to the Lebesgue measure
on R3. Finally, we obtain the following representation which is valid for all w ∈ L2(I, V )

∇J(v).w =

tq∫

t0

( ∫

R3

wt d(ρt,v + ηt,v)
)

dt. (43)

Let v∗ ∈ L2(I, V ) be a minimizer of the objective functional J . Obviously, we must have

∇J(v∗).w = 0 ∀ w ∈ L2(I, V ). (44)

In view of (43), this forces the measures ρt,v +ηt,v to be zero for all t ∈ I except for a possible
exceptional set Ω ⊂ I of Lebesgue measure zero. Since the measures ηt,v are constant in t
within each interval [tj, tj+1) and the measures ρt,v are continuous in t, we conclude that Ω
must be empty.

4. Dirac Measures and Diffeomorphic Point Matching

Diffeomorphic point matching [13, 24, 27] is a particular case of diffeomorphic matching of
measures that can be derived from the general framework of section 3. In such a framework,
a given sequence of q + 1 instantaneous shape snapshots Sj = Stj at fixed time frames tj,

j = 0, · · · , q, is identified by a family of point sets Xj =
{

xj
1, . . . , x

j
Nj

}
. Let Ŝj = F v

tj
(S0) be

a sequence of q submanifolds generated at instants tj, 1 6 j 6 q, from the initial snapshot S0

by a R3-diffeomorphism F v
t satisfying (3a),(3b) with unknown flow dynamics v ∈ L2(I, V ).

Let X̂j = F v
tj
(X0) =

{
F v

tj
(x0

1), . . . , F
v
tj
(x0

N0
)
}

be the sequence of q point sets generated by

F v
t at instants tj, 1 6 j 6 q from the initial point set X0. We denote by xn(t) = F v

t (x0
n),

t ∈ I, the corresponding N0 trajectories emanating from x0
n, 1 6 n 6 N0, at t = 0. Thus we

have X̂j = {x1(tj), . . . xN0(tj)}, 1 6 j 6 q. It is natural to represent Sj and Ŝj, 1 6 j 6 q,
as weighted sums of Dirac measures δxj

m
, 1 6 m 6 Nj, and δxn(tj), 1 6 n 6 N0, associated

with the point sets Xj and X̂j. In particular, we assume

µSj
=

Nj∑
m=1

bj
m δxj

m
, µŜj

=

N0∑
n=1

an δxn(tj), an, b
j
m ∈ R , j = 1, · · · , q.

It follows that the disparity cost functional (8) takes the form

Disp(v) =

q∑
j=1

λjD
2
Kσj

(Ŝj, Sj) =

q∑
j=1

λj‖µŜj
− µSj

‖2
Kσj

. (45)

The terms ‖µŜj
− µSj

‖2
Kσj

, 1 6 j 6 q, represent the Borel distances between the shapes Sj

and Ŝj associated with radial Gaussian kernels Kσj
for suitable scale parameters σj > 0.

From (6) and (7), we have

‖µŜj
− µSj

‖2
Kσj

= 〈µŜj
− µSj

, µŜj
− µSj

〉Kσj
= 〈µŜj

, µŜj
〉Kσj

− 2〈µŜj
, µSj

〉Kσj
+ 〈µSj

, µSj
〉Kσj

,

(46)
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where

〈µŜj
, µŜj

〉Kσj
=

∫

R3

∫

R3

Kσj
(x, x′)dµŜj

(x)dµŜj
(x′) =

N0∑
n=1

N0∑

n′=1

anan′ Kσj
(xn(tj), xn′(tj)),

(47a)

〈µŜj
, µSj

〉Kσj
=

∫

R3

∫

R3

Kσj
(x, x′)dµŜj

(x)dµSj
(x′) =

N0∑
n=1

Nj∑
m=1

anb
j
m Kσj

(xn(tj), x
j
m), (47b)

〈µSj
, µSj

〉Kσj
=

∫

R3

∫

R3

Kσj
(x, x′)dµSj

(x)dµSj
(x′) =

Nj∑
m=1

Nj∑

m′=1

bj
mbj

m′ Kσj
(xj

m, xj
m′). (47c)

Recall that xn(t) = F v
t (x0

n), t ∈ I, 1 6 n 6 N0, are the solutions of the ODEs

dxn(t)

dt
= vt(xn(t)), t ∈ (0, 1], (48a)

xn(0) = x0
n. (48b)

Thus the trajectories xn(t), 1 6 n 6 N0, and the disparity cost functional Disp(v), are
uniquely determined by the values of vt taken at N0 points xn(t). Taking into account that
V = VK is a RKHS associated to a radial Gaussian kernel K = Kσ0 , this allows us to
restrict the search for vt ∈ V to the set of linear combination of Kxn(t), 1 6 n 6 N0, and
thus places us in a finite dimensional situation. We look for the flow vt under the form
vt =

∑N0

n=1 αn(t)Kxn(t), αn(t) ∈ R3, which may also be written

vt(x) =

N0∑
n=1

Kσ0(xn(t), x)αn(t) , ∀x ∈ R3. (49)

By the self reproducing property of K, we have

‖vt‖2
V =

N0∑
n=1

N0∑

n′=1

Kσ0(xn(t), xn′(t))α
T
n (t)αn′(t).

We introduce the matrix-vector notations:

x(0) = (x
(0)
1 , · · · , x

(0)
N0

)T ∈ RN0d, x(t) = (x1(t), · · · , xN0(t))
T ∈ RN0d, t ∈ I,

α(t) := (α1(t), · · · , αN0(t))
T ∈ RN0d, t ∈ I,

A(x(t)) = (Ann′(x(t)))N0

n,n′=1 ∈ RN0d×N0d , Ann′(x(t)) := Kσ0(xn(t), xn′(t))Id ∈ Rd×d.

It follows that the kinetic energy E(v) defined by (2) takes the form

E(v) =
1

2

∫ 1

0

α(t)T A(x(t)) α(t) dt. (50)

Hence, in terms of α ∈ L2(I,RN0d), the objective functional reads

J(α) =
1

2

∫ 1

0

α(t)T A(x(t)) α(t) dt +

q∑
j=1

λjDispj(x(tj)) (51)
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where the q disparity functions Dispj(x(tj)) = ‖µŜj
− µSj

‖2
Kσj

, 1 6 j 6 q are given by the

right-hand sides in (46) and (47). The diffeomorphic point matching amounts to the solution
of the optimal control problem

inf
α∈L2(I,RN0d)

J(α), (52a)

subject to

dx(t)

dt
= A(x(t)) α(t), t ∈ (0, 1], (52b)

x(0) = x(0). (52c)

The existence of a solution α∗ of (52a)-(52c) follows from Theorem 3.2, whereas the first
order necessary optimality conditions can be either derived from Theorem 3.3 by evaluating
the terms in (34) within the current setting (cf., e.g., [21]) or directly as will be shown in
the proof of the following result.

Theorem 4.1. Assume that α∗(·) is the solution of the optimal control problem (52),
and that x∗(·) is the corresponding trajectory. Then there exists a function p∗(·), called the
adjoint state, such that the triple (x∗, p∗, α∗) satisfies

dx∗(t)
dt

= A(x∗(t)) α∗(t), t ∈ (0, 1], (53a)

x∗(0) = x(0), (53b)

−dp∗(t)
dt

= B(x∗(t), α∗(t))T

(
p∗(t) +

1

2
α∗(t)

)
, t ∈ (tj−1, tj), (54a)

p∗(t+q ) = 0 , p∗(t−j ) = p∗(t+j ) + λj∇Dispj(x
∗(tj)) , j = q, · · · , 1, (54b)

A(x∗(t))(α∗(t) + p∗(t)) = 0, t ∈ (0, 1]. (55)

In the adjoint state equation (54a), the matrix

B(x∗(t), α∗(t)) = ∇x (A(x∗(t)) α∗(t)) ,

is given by

B(x∗(t), α∗(t)) = Bnm(x∗(t), α∗(t)))N0
n,m=1 ∈ RN0d×N0d,

Bnm(x∗(t), α∗(t)) := α∗m(t)(∇2Kσ0(x
∗
n(t), x∗m(t)))T + δnm

N∑

k=1

α∗k(t)(∇1Kσ0(x
∗
n(t), x∗k(t)))

T ,

where ∇x denotes the gradient with respect the argument x(t) and ∇iKσ0(·, ·), 1 6 i 6 2,
stands for the gradient with respect to the i-th argument of Kσ0(·, ·).
Moreover, (54b) represents the jump discontinuities of p∗(·) at times tj, 1 6 j 6 q.
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Proof. Introducing Lagrange multipliers p(t) = (p1(t), · · · , pN0(t))
T ∈ RN0d, t ∈ I, the

Lagrangian associated with (52a)-(52c) is given by

L(α, x, p) := J(α)−
1∫

0

p ·
(

dx

dt
− A(x(t))α(t)

)
dt

= −
1∫

0

p · dx

dt
dt +

1∫

0

(p + α/2) · A(t, x)α dt +

q∑
j=1

λjDispj(x(tj)).

The optimality conditions for a critical point (α∗, x∗, p∗) of L(α, x, p) read as follows:

Lα(α∗, x∗, p∗) = 0, (56a)

Lx(α
∗, x∗, p∗) = 0, (56b)

Lp(α
∗, x∗, p∗) = 0. (56c)

Obviously, (56a) implies (55), whereas (56c) gives rise to (53). Using integration by parts

−
1∫

0

p · dx

dt
dt = −

q∑
j=1

tj∫

tj−1

p · dx

dt
dt =

q∑
j=1




tj∫

tj−1

dp

dt
· x dt− p(t−j ) · x(tj) + p(t+j−1) · x(tj−1)




=

1∫

0

dp

dt
· x dt +

q−1∑
j=1

(−p(t−j ) + p(t+j )
) · x(tj)− p(1) · x(1) + p(0) · x(0),

(56a) yields (54).

5. Numerical Solutions for Diffeomorphic Matching of Multiple
Snapshots

In this section, we outline the basic matching algorithm based on gradient descent and time
discretizations of the optimality conditions (53a),(53b) and (54a),(54b) as well as variants
involving iteration-dependent weighting parameters for the matching term in the objective
functional. We will also summarize several initialization schemes.

5.1. The Basic Matching Algorithm

For the time discretizations of the optimal control problem (52) we introduce a partition ∆I

of I according to

∆I := ∪q
j=1∆Ij

, ∆Ij
:= {tj−1 =: tLj−1 < tLj−1+1 < · · · < tLj−1 < tLj := tj}, (57)

where ∆Ij, 1 6 j 6 q, are subpartitions of intervals Ij = [tj−1, tj] whose endpoints tj are key
time frames at which the shape snapshots Sj = S(tj) are given. We set L0 := 0 and L := Lq

and define step sizes ∆t` := t`+1 − t` > 0, 0 6 ` 6 L− 1.
We introduce the discrete control space

U∆I = RL×(N0d), (58)
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equipped with the inner product

(α,β)∆I
=

L−1∑

`=0

∆t`α` · β` =
L−1∑

`=0

N0∑
n=1

∆t` α`
n · β`

n,

and discretize the state equation (53a),(53b) and the adjoint state equation (54a),(54b) by
the explicit Euler method. Introducing the notations

x = {x`}L
`=0, x` = {x`

n}N0
n=1, x`

n ≈ xn(t`), (59a)

p = {p`}L−1
`=0 , p` = {p`

n}N0
n=1, p`

n ≈ pn(t`), (59b)

α = {α`}L−1
`=0 , α` = {α`

n}N0
n=1, α`

n ≈ αn(t`), (59c)

the discretized optimality system reads

x`+1 − x`

∆t`
= A(x`) α`, ` = 0, · · · , L− 1, (60a)

x0 = x(0), (60b)

p`−1 − p`

∆t`
= B(x`,α`)T

(
p` +

1

2
α`

)
, ` = Lj − 1, · · · , Lj−1, (61a)

pLq−1 = 0 , pLj−1 = pLj−1 + λj∇Dispj(x
Lj), j = q, · · · , 1 (61b)

A(x`)
(
α` + p`

)
= 0 , 0 6 ` 6 L− 1. (62)

The condition (61b), representing the jump discontinuities of pLj−1 at discrete times tLj−1

(= tLj −∆tLj), is the discrete version of (54b) for jump discontinuities of p∗(·) at snapshot
time frames tj (= tLj), 1 6 j 6 q. This time backward shift of jump discontinuities by
steplength ∆tLj stems from our choice of the explicit Euler method for the time discretization
of the state equation (60a) and the adjoint state equation (61a). It turns out that (60)-(62)
represent the optimality conditions for a discrete minimization problem. In fact, introducing
J∆I (α) as the discrete objective functional

J∆I (α) :=
L−1∑

l=0

∆t`

2
(α`)T A(x`) α` +

q∑
j=1

λjDispj(x
Lj), (63)

we have the following result.

Theorem 5.1. The equations (60)-(62) are the first order necessary optimality condi-
tions for the finite dimensional minimization problem

min
α∈U∆I

J∆I (α) (64)

subject to the discrete state equations (60a),(60b).

Proof. The proof is the discrete analogue of the proof of Theorem 4.1 and will thus be
omitted.
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Corollary 5.2. Let (x∗,p∗,α∗) with x∗ = {x`
∗}L

`=0,p
∗ = {p`

∗}L
`=0,α

∗ = {α`
∗}L

`=0 satisfy
the discrete optimality system (60)-(62). Then, it holds

0 = ∇J∆I (α∗), (65)

where
∇J∆I (α∗) = {g`}L−1

`=0 , g` = A(x`)
(
α`
∗ + p`

∗
)
. (66)

Proof. We observe that

δJ∆I (α) = (∇J∆I (α), δα)∆I . (67)

From (63) we deduce

δJ∆I (α) =
L−1∑

l=0

∆t`
(

(α`)T A(x`) δα` +
1

2
(α`)T B(x`,α`) δx`

)

+

q∑
j=1

λj∇Dispj(x
Lj) δxLj , (68a)

where

δx`+1 − δx`

∆t`
= A(x`) δα` + B(x`,α`) δx`, ` = 0, · · · , L− 1, (68b)

δx0 = 0. (68c)

Multiplying both sides of (68b) by p`, partial summation yields

0 =
L−1∑

l=0

∆t` p` ·
(

δx`+1 − δx`

∆t`
− A(x`) δα` −B(x`, α`) δx`

)

=
L−1∑

l=1

∆t`
p`−1 − δp`

∆t`
· δx` + pL−1 · δxL − p0 · δx0 −

L−1∑

l=0

∆t` p` · A(x`) δα`

−
L−1∑

l=0

∆t` p` ·B(x`,α`) δx`. (69)

If we take (61a),(61b) into account, it follows from (69), (68a) that

δJ∆I (α) =
L−1∑

l=0

∆t` A(x`)
(
α` + p`

) · δα`. (70)

Since δα = {δα`}L−1
`=0 is arbitrary, (67) results in

∇J∆I (α) = {g`}L−1
`=0 , g` = A(x`)

(
α` + p`

)
. (71)

In view of of (65),(66), the discrete minimization problem (64) can be solved by a gradient
based algorithm operating in U∆I .
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5.2. Diffeomorphic Matching for Multiple Snapshots of 3D Curves and Surfaces

We compute a diffeomorphic matching for multiple snapshots of 3D curves, 3D surfaces, or
finite unions of 3D-curves and surfaces, by solving the minimization problem (64) with q
weighting factors λj = λ, 1 6 j 6 q, in the objective functional (63), where the weights help
balance the various matching accuracies desirable for the q given snapshots .
The gradient descent algorithms we have implemented and tested all use an outer/inner
iterative scheme which features a continuation method in the regularization parameter λ
as outer iterations and a gradient method with Armijo line search (cf., e.g., [2]) as inner
iterations.
The continuation method plays an essential and efficient part : the regularization parameter
λ is initialized at a low value and is increased by moderate multiplicative steps until the q
geometric matching disparities with the given q snapshots have all reached a preassigned low
target level. After each multiplicative increase of λ, the gradient G of the objective function
jumps up in norm, and we keep λ fixed during an ”inner” iteration of the gradient descent,
until the norm of G reaches again a low preassigned value. The value of λ is then increased
again (”outer” iteration).
At the end of the inner gradient descent iteration performed at a fixed value λ, the kinetic
energy and the disparity term in the objective function J = Kin + λDisp reach terminal
values Kinλ and Dispλ. In R2, the points [Kinλ, Dispλ] define a curve Γ ⊂ R2 parametrized
by λ > 0 called the Pareto frontier of the objective function J . The convexity of the Pareto
frontier is usually a desirable feature for regularized optimization problems, and we have
empirically observed this convexity in all the multiple snapshots matching applications we
have studied below.
In the applications presented below, the given snapshots Sj = Stj ⊂ R3, 0 6 j 6 q, are
assumed to have been generated at fixed instants t = tj by unknown diffeomorphic defor-
mations S(t) of a known initial deformable shape S(0). The initial shape S(0) is a finite
union of geometric components Ci, where each Ci is either a segment of piecewise smooth
3D-curve, or a piecewise smooth 3D-surface with piecewise smooth boundary. Pairs Ci, Ck

of components may intersect, but then these intersections are also components of S(0).
Each snapshot Sj is then discretized (with arbitrary accuracy) by a finite mesh of points
Xj = {xj

1, · · · , xj
Nj
} where typically the number N0 of points on the reference configuration

S0 is much smaller than the number Nj, 1 6 j 6 q, of points on the other given snapshots.
Indeed, the complexity of the numerical problem to be solved after discretization is essen-
tially determined by the number N0 of discrete trajectories recomputed at each step of each
inner iteration.

In the medical imaging applications below, each snapshot component had actually been
previously modeled [7, 8] by NURBS equations fitted to image data. For each such snapshot
components (curve segment or open surface patch with piecewise continuous boundary) , the
NURBS model can easily be used to generate point meshes approximating this component
with arbitrary accuracy. For surfaces with boundaries, we separately generate two approxi-
mating meshes, one for the surface interior and one for the boundary; the adequate number
of points on each one of these two sub-meshes is determined by fixing the same uniform
approximation accuracy for the interior surface and for the boundary.
Multiscale methods are an important tool in concrete applications of our approach to multiple
snapshots matching for deformable shapes observed in 3D-medical image sequences. Typi-
cally multi-scaling implies the use of increasingly finer finite point meshes to discretize the
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given multiple snapshots and the initial reference S(0). The numerical solution computed as
above at a given approximation scale then becomes the initialization of the gradient descent
for the next finer scale. We have not presented numerical results on multiscaling, essentially
because the human mitral valve deformations studied below concern a complex but fairly
small 3D-deformable shape of diameter less than 35mm, acquired by live 3D-imaging de-
vices with a spatial resolution of the order of 0.5mm. Several important implementation

issues are discussed below. The initialization of the numerical gradient descent is outlined
in 5.2.1. The Hausdorff distance matching term (5) plays an efficient part in our numerical
implementations, but must be smoothed (see 5.2.2 ) to avoid using generalized gradients for
nonsmooth functions. The choice of the scale parameter σ for the radial Gaussian kernels
(see 5.2.4) has a strong impact on the spatial smoothness of deformations and must roughly
match the accuracy of the discretization meshes.

5.2.1. Initialization of the Gradient Method with Armijo Line Search We first
note that after the time and space discretization in order to initialize the unknown vector
α defined above in 5.1, one can initialize first the unknown family of time dependent vector
fields v = (vt(x)) , and then invert, for each value t of the discretized times, a large linear
system of the type v = Mtα , where Mt is a positive definite matrix for which the non zero
coefficients are of the form K(x, y) for various x, y ∈ R3. Here, K is the fixed radial Gaussian
kernel defining the kinetic energy.
Of course to avoid this initial inversion of large matrices, one can crudely initialize α by
setting α = 0. This turns out to be an acceptable choice in several of our numerical
applications, but clearly does not allow the use of existing complementary information on
the solution which may be known in concrete situations.

Rough initialization by a smooth flow of affine transformations. Given two snapshots S
and S ′ of homeomorphic 3D-surfaces with boundaries, one can discretize S and S ′ by two
finite point meshes X and X ′. Diagonalization of the inertia matrices of X and X ′ around
their centers of gravity O,O′ generates the unit eigenvectors e1, e2, e3 and e′1, e

′
2, e

′
3 with

associated positive eigenvalues γ1, γ2, γ3 and γ′1, γ
′
2, γ

′
3. Call T the translation mapping O on

O′, R the rotation mapping e1, e2, e3 on e′1, e
′
2, e

′
3, and A the affinity mapping e1, e2, e3 on

γ′1
γ1

e′1,
γ′2
γ2

e′2,
γ′3
γ3

e′3. The affine linear transformation L = ART of R3 maps X on LX, which has
the same matrix of inertia as X ′. One can obviously imbed explicitly and separately A,R, T
into differentiable semi-groups A(t), R(t), T (t) of affinities, rotations, and translations, such
that [A(1), R(1), T (1)] = [A,R, T ] and [A(0), R(0), T (0)] = [Id, Id, Id], where Id is the
identity transformation of R3. Then the affine linear transformations L(t) = A(t)R(t)T (t)
are R3-diffeomorphisms depending smoothly on t such that L(0) = Id, L(1) = L. They
provide a first rough initialization for the unknown flow of diffeomorphisms matching X
and X ′ . The associated vector fields defined for t ∈ R+, x ∈ R3 by vt(x) = dL(t)

dt
x are a

crude initialization for the numerical search of a vector field solution of an optimal matching
between S and S ′.
For the multiple snapshots case, one applies this initialization successively between Sj and
Sj+1 on the time interval [tj, tj+1] to compute an initial family of time dependent vector
fields vt(x) such that the associated diffeomorphic flow quite roughly matches S0 with the
successive snapshots Sj.
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Hierarchical initialization by B-splines matching. Consider two homeomorphic bounded
3D-surfaces S0 and S1 discretized by finite point meshes X0,X1 with compact piecewise
smooth boundaries B0 and B1. Select arbitrary arc length origins P0 and P1 on B0 and
B1 and let (a0, a1) be the corresponding Euclidean arc lengths abscissas on B0 and B1.
Define a piecewise smooth diffeomorphism f of B0 onto B1 as follows: for each Q ∈ B0,
set f(Q) = U ∈ B1 where a1(U) = ca0(Q) and c is the ratio of the lengths of B0 and B1.
Using the gradient descent algorithm defined above, we can then numerically determine a
time dependent vector field w = wt(x)), t > 0, x ∈ R3 such that the associated flow of R3-
diffeomorphisms Ft verifies F1(Q) close to f(Q) for all Q ∈ B0. This is an easy optimization
problem, since B0 is one dimensional and the desired mapping f of B0 onto B1 is known, so
that numerical convergence is quite fast.
One can then generate a discretized surface Xτ = Fτ (X0) with boundaries Bτ = Fτ (B0) for
any τ 6 1. Select a τ < 1 fairly close to 1 and discretize Bτ by a finite mesh ∂Xτ . Fix
ε > 0. By a relaxation algorithm, provided ε is not too small, it is possible to select targets
z(x) ∈ B1 for each x ∈ X0 such that the map x → z(x) is injective on X0, and such that the
points z(x) and Fτ (x) verify

||z(x)− Fτ (x)|| < ε + d(Fτ (x), X1) , where d(y, X1) = minu∈X1||u− y||.

We then seek an R3-valued function Pol(t, x) defined for τ 6 t 6 1 and x ∈ R3 by linear
combinations of cubic B-splines and such that we have Pol(τ, x) = x for all x ∈ Xτ ∪ ∂Xτ ,
and Pol(1, x) = z(x) ∀x ∈ Xτ . This involves the resolution of a standard linear system for
B-splines. Our initial time dependent vector fields v = vt(x) for gradient descent is then
defined by vt = wt for 0 6 t 6 τ and by vt(x) = ∂tPol(t, x) for all x ∈ R3 and τ < t 6 1.

5.2.2. Smoothing of the Hausdorff Disparity In general, the Hausdorff distance (5)
is not a smooth function. For our gradient descent with Armijo line search we define a
smoothed version of the Hausdorff disparity as follows. Consider two compact 3D-shapes S
and S ′ discretized by finite meshes X and Y . Define functions φ : X → Y and ψ : Y → X

φ(x) = argminy∈Y ||x− y|| ∀x ∈ X, (72)

ψ(y) = argminx∈X ||y − x|| ∀y ∈ Y. (73)

Clearly, these two functions are continuous but not necessarily injective. For each x ∈ X
define U(x) ⊂ X as the set of the r closest neighbors of x in X including x. Similarly, one
defines neighborhoods U(y) ⊂ Y of y for all y ∈ Y . The smoothed Hausdorff disparities
h(X, Y ) and h(Y, X) are defined by

h(X, Y ) = (1/r|X|)
∑
x∈X

∑

z∈U(φ(x))

||x− z||2, (74)

h(Y, X) = (1/r|Y |)
∑
y∈Y

∑

z∈U(ψ(y))

||y − z||2, (75)

where |X|, |Y | are the cardinals of X, Y . The numerical gradients of h(X,Y ) and h(Y, X)
with respect to variations of X when Y remains fixed are always approximated by ”freez-
ing” temporarily the points φ(x) and ψ(y), since the functions φ and ψ are not everywhere
differentiable.
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The smoothed Hausdorff disparity between X and Y will be defined by DH(X, Y ) =
h(X, Y ) + h(Y,X), and will sometimes be referred to below as ”global Hausdorff disparity”
between X and Y . For diffeomorphic matching of surfaces S and S ′ with boundaries ∂S
and ∂S ′, we always compute separate Hausdorff disparities between discretized versions of
the interior sets So, S ′o and of the boundaries ∂S, ∂S ′.

5.2.3. Choice of the Scale Parameters in the Gaussian Kernels When the scale
parameter σ > 0 of the radial Gaussian kernel Kσ (4) defining the Hilbert space V = VK

increases, then the spatial smoothness of the optimal diffeomorphic deformations tends to
increase. Call X the finite discretization of the interior of an initial surface or curve S0.
Define dim(X) as the dimension of S0 . For each x ∈ X, and each fixed integer r > 0, define
as above U(x) ⊂ X as the set of the r closest neighbors of x in X ,including x itself. We
then define the radius function ρ(x) > 0 by

ρ(x) = maxz∈U(x)||x− z|| ∀x ∈ X.

The maximum R(X) = maxx∈X(ρ(x)) of the function ρ concretely defines the local mesh
size of X.

We naturally chose r = 3 when S0 is a curve segment or when X is a finite discretization
of the boundary ∂S0, and r = 5 when S0 is a surface.
Based on the local mesh size R(X) of X, we select the scale parameter σ for the radial
Gaussian kernel defining the kinetic energy as follows

σ = κ 2−1/2 R(X), (76)

where κ is some constant satisfying 2 > κ > 1 . This choice clearly bounds the number
of neighbors y ∈ X of any given point x ∈ X such that the deformation trajectory of y
influences the deformation trajectory of x.
The scale parameter σ is generally kept fixed during the whole gradient descent, but can
be updated dynamically after enough iterations. Numerical evidence suggests to choose σ
according to (76) and to keep it fixed during the whole process, when there is not much
difference between the local mesh sizes selected for the multiple snapshots.
The scale parameter of the radial Gaussian kernel defining the Hilbert distance between

bounded measures on R3 (see (7) )is selected to have the order of magnitude of the Hausdorff
distances between the given snapshots Sj and the current deformed shapes Ŝj at instants tj
and is updated periodically , in particular when the initialization is not close enough to the
assigned multiple snapshots.

5.2.4. Continuation in the Regularization Parameter Consider first the situation
where the weights λj in the disparity cost functional functional (8) are all equal to the same
λ > 0. This regularization parameter provides a weighting between the kinetic energy (2)
and the disparity cost functional. For λ small, the regularizing effect of the kinetic energy
dominates, whereas large values of λ enhance the matching quality of deformed shapes Ŝj

and the given snapshots Sj. To reach a good matching quality, one needs to minimize the
objective function J for fixed but sufficiently large λ. However, for increasing λ, the system of
optimality equations equivalent to gradJ = 0 becomes more and more ill-conditioned, which
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may result in divergence of the gradient descent. A convenient remedy to overcome this
obstacle is to use an appropriate ”continuation” in λ. The continuation method consists in
combining outer iterations in λ with inner iterations at fixed λ, which we chose to implement
by classical gradient descent with Armijo line search (cf., e.g., [2]).

To monitor progress during the outer iterations, we compute q performance indicators
Distj, one for each given snapshot Sj, j = 1, · · · , q, as follows.

j = 1, · · · , q, Distj := 90th percentile of {dj
1, · · · , dj

N0
}, (77)

where the distances dj
n, n = 1, · · · , N0, are defined by

dj
n = min

m=1,··· ,Nj

‖xn(tj)− xj
m‖

Hence, each Distj provides an upper bound for 90% of the current geometric errors affecting

the points of the current deformed surface Ŝj. In practical applications, the given snapshots
Sj are typically determined by 3D-image data where geometric accuracy is bounded by the
image resolution. Algorithmic modeling of the Sj by NURBS for instance also introduces
other sources of geometric inaccuracy in the Sj data. Hence one can generally preassign a
target threshold level THR > 0 for the performance indicators Distj, and we can say that
good matching with all the intermediary snapshots has been reached as soon as all the Distj

are inferior to THR.

As described above, the continuation method implements a succession of inner iterations,
which are gradient descents at fixed λ, and at the end of each inner iteration,the regulariza-
tion parameter λ is increased (outer iteration) by a constant multiplicative factor γ > 1.
At the end of each inner iteration, we want the norm of gradient J to have decreased at least
by a fixed multiplicative factor θ < 1.

Formally the continuation method reads as follows:
Step 1 (Initialization of the outer iteration)

Specify a small initial value λ0 > 0 and set ν = 0.
Step 2 (Initialization of the inner iteration)

Compute α
(0)
ν by one of the initialization procedures as outlined above in subsection 6.1 and

set µ = 0.
Step 3 (Gradient method with Armijo line search)

Step 3.1 Set µ := µ + 1 and compute α
(µ)
ν by gradient descent with Armijo line search.

Step 3.2 If the gradient ∇J of the objective function J verifies the termination criterion

|∇J(α(µ)
ν | < θ |∇J(α(0)

ν | (78)

is satisfied, go to Step 4. Otherwise, go to Step 3.1.
If the gradient method fails to converge, adjust the parameter in the Armijo line search, set
µ := 0, and go to Step 3.1.
Step 4 (Termination of the outer iteration)

If the threshold based termination criterion

Distj < THR , 1 6 j 6 q, (79)
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is satisfied, stop the algorithm.
Otherwise, set ν := ν + 1, α

(0)
ν := α

(µ)
ν−1, and increase the regularization parameter by

λν := γ λν−1, (80)

and go to Step 3.

6. Numerical Results for the Human Mitral Valve Apparatus

6.1. Anatomy of the Mitral Valve

In the cardiology application below, we use the previous variational techniques to numerically
construct diffeomorphic flows roughly approximating the dynamic deformations between
multiple 3D-snapshots of the human mitral valve apparatus. This apparatus is a biological
valve integrated within the heart which has quasi-periodic dynamics tightly correlated to
heartbeats enabling an essential periodic obturation of the blood flow to and from the heart.
Our starting point is a patient specific finite set of q + 1 static models Sj of the mitral valve
apparatus. These models were generated by image analysis of live 3D-echocardiographic
movies at specific heart cycle instants tj in a recent study [7, 8] involving the Methodist
Hospital, Houston, Texas (S. Ben Zekry, S. Little, W. Zoghbi, MDs) as well as a research
group on mathematical image analysis led by R. Azencott at Univ. of Houston. Each
3D-echocardiographic movie includes twenty-seven to thirty 3D-frames per heartbeat cycle,
acquired by ultrasound technology, and represents a high volume of image data corrupted
by ’speckle’ noise.
The mitral valve models Sj are based on NURBS (non uniform rational B-splines), and
were obtained in [7, 8] by combining optical flow extraction algorithms with sparse tagging
by medical experts. The number q+1 of intermediary key heartbeat cycle instants tj ranged
from 3 to 8, and the time range I = [t0, t1] covers either a half or a whole heartbeat cycle
with total duration between 1/2 to 1 second.

Anterior Leaflet

Posterior Leaflet

Coaptation Line

Annulus Curve

Figure 1: Mitral valve: the middle line is the coaptation line along which the surfaces of the
anterior and posterior leaflets meet when the valve is closed. The closed black thick curve is
the mitral annulus.
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The mitral valve apparatus (MVA) involves the annulus (a closed thin deformable ring)
and two deformable surfaces with boundaries, namely the anterior and posterior leaflets.
These mitral leaflets are flexibly linked to the annulus by a subsegment of their boundaries.
When the valve is closed, the exterior parts of the leaflets have a common boundary called
the coaptation line.
The MVA can be viewed as a composite deformable object built from several smooth de-
formable shapes (see Figure 1), namely a closed curve MA (the mitral annulus), a curve
segment COA (the coaptation line), two surfaces AL and PL (the mitral leaflets) with
boundaries ∂AL = COA ∪ antMA and ∂PL = COA ∪ postMA, where antMA and postMA
are complementary subsegments of the MA.

6.2. Multiple Snapshots for the Mitral Annulus and Leaflets

The given snapshots are modeled by parametrized closed curves in R3 for the mitral annulus,
and by parametrized surfaces with boundaries in R3 for the anterior and posterior leaflets.
The parametric equations of these curve and surface models and of their boundaries have
previously been extracted from 3D-image data as indicated above, and are explicit linear
combinations of cubic B-splines which are tensor products of polynomials of degree 3 in one
variable restricted to bounded intervals.

 

 

ref intermediary target trajectories

Figure 2: The 5 closed curves are 5 successive annulus snapshots. The dotted curve is the
initial snapshot. From bottom to top, the next 3 curves are the intermediary snapshots and
the last one is the final target. The vertical ’−−’ lines are computed deformation trajectories
for selected points of the reference curve.

For the annulus, we have 10 given snapshots, and we focus first on the 5 annulus snap-
shots A0, A1, A2, A3, A4 corresponding to instants t0 = 1, t1 = 3, t2 = 5, t3 = 7, t4 = 10. The
time unit, equal to 1/27 second, is the time interval between 2 frames.
The annulus B-spline models enable the selection of point meshes XAj on Aj with equal
arc length between successive points. The first discretizations used in the numerical im-
plementations of continuation algorithms presented here start with 42 points for XA0, and
approximately 500 points for each one of the other XAj.



28 R. Azencott, R. Glowinski, J. He, R.H.W. Hoppe, A. Jajoo, Y. Li, A. Martynenko et al.

For each mitral leaflet, 4 snapshots S0, S1, S2, S4 are available at instants t0 = 0, t1 =
1, t2 = 5, t4 = 10. We discretize them by meshes for which distances between any mesh point
and its closest neighbor are approximately constant. Separate discretizations are applied to
the interior of the Sj and to their boundaries. For the anterior leaflet, we initially select a
mesh of 126 points on the reference surface S0, split into 84 points for its interior and 42
points on its boundary, and meshes of approximately 1600 points each on each one of the
other snapshots of the anterior leaflets.

6.3. Diffeomorphic Matching for Multiple Annulus Snapshots

We sketch the results of optimized diffeomorphic matching for multiple annulus snapshots,
first when the disparity term is the smooth Hausdorff disparity (”Hausdorff matching”),
and second when the disparity is computed by Hilbert distances between Borel measures (”
measure matching”). In both cases, we have used the continuation algorithm outlined above
and the trivial initialization α = 0 with discrete time steps ∆t` = 1/18 and θ = 0.3 in the
termination criterion (78) for gradient descent with Armijo line search. The scale parameter
computed by (76) is σ = 3.53 for the Gaussian kernel Kσ.
The computational performance of the continuation algorithm is evaluated first by the con-
vergence history for the q indicators of the geometric matching accuracy Distj and for the
corresponding values Dispj of the q components of the disparity functional.
We also record and display the tradeoffs between these matching quality indicators and the
kinetic energy of the corresponding deformation flows. At the end of each inner iteration of
gradient descent with fixed regularization parameter λ, we generate a point on each one of
the approximate Pareto frontiers displaying matching quality indicators as functions of the
kinetic energy. For the global disparity term (sum of the q individual snapshot disparities
Dispj), we expect and empirically observe convexity of these approximate Pareto frontiers ,
viewed as usual as the location of the weak Pareto optima for the pair of competing criteria
(kinetic energy versus matching disparity) (cf., e.g., [12]).

6.3.1. Smoothed Hausdorff Matching for Multiple Annulus Snapshots. The
initial value λ(0) = 1 of the regularization parameter is increased at each outer iteration
by the multiplicative factor γ = 1.1 (cf. (80)). The convergence history is documented in
Figure 3 which displays the decrease of the geometric accuracy indicators Distj and of the
disparity components Dispj for our 4 snapshots Aj, 1 6 j 6 4. It takes 200 iterations to
reach the threshold geometric accuracy required for this application (see (79) ), but we have
extended iterations beyond this value to obtain a more complete view of the Pareto frontiers.

The Pareto frontiers for the geometric accuracy indicators Distj, the Hausdorff disparities
Dispj, and the global Hausdorff disparity

∑
j Dispj are shown in Figure 4. Note that for the

first annulus snapshot the geometric accuracy Dist1 and the Hausdorff disparity Disp1 do not
exhibit a convex decrease pattern at the beginning of the continuation procedure. Indeed,
the currently implemented algorithmic optimization strategy first ”focuses” on matching the
final snapshot A4 and then successively shifts the focus on the matching of the intermedi-
ary snapshots A3, A2, A1 in decreasing order. This is due to the fact that in the backwards
adjoint ODE, the snapshots matching errors kick in successively in the same reverse order.
Hence, as long as the final snapshots errors are large, the corrections implemented for the
first snapshots remain quite fuzzy, and only turn out to be efficient once the matching errors
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Figure 3: Diffeomorphic matching for multiple mitral annulus snapshots, using smoothed
Hausdorff distances: Convergence history for the geometric accuracy indicators Distj and
for the smoothed Hausdorff disparity components Dispj.

on the final snapshots have become small enough.

6.3.2. Diffeomorphic Matching for Multiple Annulus Snapshots: Measure Match-
ing. Here, the disparity terms are the squared Hilbert distances between measures. The
regularization parameter λ starts at λ(0) = 200 and is multiplied by γ = 2 at each outer
iteration. Figure 5 displays the corresponding convergence history for 4 individual geometric
accuracy indicators and 4 measure matching disparities. The desired threshold geometric
accuracy is achieved for all snapshots after 70 iterations.
But the computing time for each iteration is about 3 times higher than for Hausdorff match-
ing, due to the fact that measure matching invokes large numbers of evaluations of exponen-
tials. This unfavorable computational feature of measure matching with respect to Hausdorff
is quickly amplified when the number N0 of trajectories increases.

The corresponding Pareto frontiers are shown in Figure 6. As in the case of Hausdorff
matching, and for the same algorithmic reasons, the performance indicators improve first
for the final snapshots and the improvements successively kick in for the other snapshots
in reverse order of the snapshot times tj. Comparing Figures 6 and 4, we see that for a
given geometric matching accuracy, the achievable kinetic energy remains higher for mea-
sure matching than for smoothed Hausdorff matching.
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Figure 4: Diffeomorphic matching for multiple annulus snapshots, using smoothed Hausdorff
distances: Pareto frontiers for the geometric accuracy indicators Distj (top left), for the
Hausdorff disparities Dispj (top right), and for the global Hausdorff disparity

∑
j Dispj

(bottom).
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Figure 5: Diffeomorphic matching for multiple annulus snapshots, using measure matching
disparities: Convergence history for the individual geometric accuracy indicators Distj (left)
and the measure matching disparities Dispj (right).
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Figure 6: Diffeomorphic matching for multiple annulus snapshots using measure matching
disparities: Pareto frontiers for the geometric accuracy indicators Distj (top left), for the in-
dividual measure matching disparities Dispj (top right), and for the global measure matching
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∑
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6.3.3. Diffeomorphic Matching for 10 Annulus Snapshots We consider here the
10 annulus snapshots Aj, 0 6 j 6 10, acquired at times 0, 1, 3, 5, 7, 10, 14, 18, 22, 26 . We
choose 42 points on the reference A0 and approximately 500 points on the other snapshots.
We use the smoothed Hausdorff disparity (5). We initialize α by α = 0, and use 52 dis-
cretized time steps. The parameters θ, σ, ρ are the same as above.
Since good matching accuracy for the first snapshots now takes a longer time (see Figure 7),
we perform continuation with different weights λj for the individual Hausdorff disparities
Dispj, adjusted to dynamically balance the current average sizes of these distinct disparities
(cf. Figures 8). Since we dynamically change the global disparity functional, we cannot
expect to have nice convex Pareto frontiers ( cf. Figure 8).
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Figure 7: Diffeomorphic matching for ten annulus snapshots using Hausdorff disparities:
Convergence history of geometric accuracies (left) and corresponding Pareto frontiers (right)
using a single regularization parameter λ for the nine Hausdorff disparities.
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Figure 8: Diffeomorphic matching for ten annulus snapshots: Convergence history of the
geometric accuracies (left) and corresponding Pareto frontiers (right) using nine dynamic
regularization parameters λj.
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6.4. Diffeomorphic Matching of the Anterior Leaflet

We present the performances of diffeomorphic matching for 4 snapshots S0, S1, S2, S3 of the
anterior leaflet, acquired at times 0, 1, 5, 10, using smoothed Hausdorff snapshot disparities,
where the disparities are separately computed for the boundary and the interior of each
snapshot as outlined in 5.2.2. Indeed, initial experiments where this distinction was not im-
plemented quickly displayed much poorer performances. Rough initial discretization starts
with point meshes of cardinals 400 for S0 and roughly equal to 1700 for S1 and S2.
Initialization for the time dependent vector field is implemented by piecewise constant vec-
tor fields for boundary deformations and adequately fitted polynomials in time and space
variables for the interior of S0, as sketched in subsection 5.1. The continuation algorithm
starts with λ = 0.1, and λ is multiplied by γ = 1.5 at each outer iteration. The scale and
termination parameters σ and θ are as above.
The following Figures 9 and 10 display satisfactory performance results.
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Figure 9: Diffeomorphic matching of four anterior leaflet snapshots: Pareto frontiers for
the separate Hausdorff disparities to snapshots (left) and for the global Hausdorff disparity
(right).
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Figure 10: Pareto frontiers for the maximum distances to snapshots (left) and for their 90th
percentiles (right).

We display in Figure 11 a visualization of the computed deformations of the anterior
leaflet at the 4 snapshot times 0, 1, 5, 10. The corresponding dynamic deformations of the
anterior leaflet boundary are presented in Figure 12. A few deformation trajectories are
indicated. They are computed as solutions of the dynamics equations (3).
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Figure 11: Computed deformations matching four snapshots of the anterior leaflet at instants
0, 1, 5, 10 .

−20

−10

0

−20−15−10−5051015

−30

−20

−10

0

10

20

 

Y

 

Z

Reference;  Intermediate;  Trajectories

t
1
 = 1

t
0
 = 0

−20

−10

0

−20−15−10−5051015

−15

−10

−5

0

5

10

 

Y

 

Z

 Intermediate;  Traget;  Trajectories

t
1
 = 1

t
2
 = 5

t
3
 = 10

Figure 12: Computed deformations of the anterior leaflet boundary: for easier visualization,
the boundary deformations are displayed separately for instants 0, 1 and for instants 1, 5, 10.
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For each computed deformation Ŝj of the initial snapshot S0, the three graphs in Figure

13 display several level curves for the point matching errors between Ŝj and the given an-
terior leaflets snapshots Sj. The coordinate system has been modified isometrically at each

snapshot instant in order to display a better ”horizontal” projection of Ŝj.
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Figure 13: Matching errors between the computed anterior leaflet deformations Ŝj and the
snapshots Sj.
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6.5. Diffeomorphic Matching for Multiple Snapshots of the Posterior Leaflet

We have similarly implemented the diffeomorphic matching for 4 snapshots S0, S1, S2, S3 of
the posterior leaflet acquired at times 0, 1, 5, 10, using smoothed Hausdorff snapshot dis-
parities, with disparities separately computed for the surface boundary and the interior as
outlined in 5.2.2. Time is discretized into 30 equal intervals. The 4 snapshots are discretized
by point meshes of approximate cardinals 250 for the initial leaflet S0, and 1100 for the other
snapshots.
The initialization and the choice of the algorithmic parameters are similar to the implemen-
tation just described for the anterior leaflet (cf. 6.4). As already noted above, when one
uses the same value λ for all 3 regularization weights λj, the matching quality between Sj

and Ŝj improves more slowly for j = 1 than for j = 3 (see Figure 14). We have compared
this approach to a more adaptive one, where one dynamically adjusts the weights λj at
each outer iteration by appropriately balancing current values of the 3 Hausdorff disparities.
(cf. Figure15 ). The geometric matching accuracies reach a desirable pragmatic threshold
slightly faster for the dynamically independent weights, at the cost of some loss of convexity
for the Pareto frontiers, which suggests that dynamic adjustment of weights may provide
less robustness in the continuation procedure.
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Figure 14: Diffeomorphic matching for four posterior leaflet snapshots: Geometric accuracy
indicators and Pareto frontiers for strictly equal regularization weights λj.

Figure 16 displays the computed deformations of the posterior leaflet at the 4 instants
1, 4, 16, 31. The computed dynamic deformations of the posterior leaflet boundary are pre-
sented in Figure 17 with a few deformation trajectories.

Figure 13 displays point matching errors between computed deformations Ŝj of the pos-
terior leaflet and the given snapshots Sj. The coordinate system is modified isometrically

for each computed deformation Ŝj to display a good ”horizontal” projection of Ŝj.
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Figure 15: Diffeomorphic matching for four posterior leaflet snapshots: Geometric accuracy
indicators and Pareto frontiers for dynamically adjusted regularization weights λj.
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Figure 16: Computed deformations matching four snapshots of the posterior leaflet at in-
stants 0, 1, 5, 10.
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Figure 17: Computed deformations of the posterior leaflet boundary: the continuous bound-
ary deformations are displayed separately for instants 0, 1 and for instants 1, 5, 10.

X’

Y
’

Approximation error at t
1

 

 

−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

0.06

0.31

0.55

0.79

1.04

X’

Y
’

Approximation error at t
2

 

 

−10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

20

0.12

0.36

0.59

0.82

1.06

X’

Y
’

Approximation error at t
3

 

 

−15 −10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

0.04

0.26

0.49

0.72

0.94

Figure 18: Matching errors between the computed posterior leaflet deformations Ŝj and the
snapshots Sj.
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6.6. Diffeomorphic Matching of the Whole Mitral Valve Apparatus

We now compute diffeomorphic deformations of the whole mitral valve apparatus (”MVA”)
viewed as one single composite deformable object as introduced above. We apply the dif-
feomorphic matching algorithms outlined above to 3 given MVA snapshots MV A0,MV A1,
MV A2, acquired at instants 1, 5, 10. Our discretization meshes involve roughly 150 points
each for the initial anterior leaflet AL0 and posterior leaflet PL0, and respectively 3200 and
1700 points each for the anterior and posterior leaflets snapshots AL1, PL1, AL2, PL2. The
smoothed Hausdorff disparities involve several disparity terms for each one of the given MVA
snapshots MV A1 and MV A2, quantifying separately the disparities between AL surfaces,
PL surfaces, annulus curves, and coaptation lines. We initialize α by α = 0. All the choices
of parameter values driving the continuation algorithm are identical to the choices made
above to compute deformations of the anterior leaflet (see 6.4).
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Figure 19: Diffeomorphic matching of the whole Mitral Valve Apparatus: Convergence
history for the geometric matching accuracy.
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[37] B. Zitovà and J. Flusser, Image registration methods: a survey , Image and Vision Computing, 21
(2003), pp. 977–1000.

[38] E. Zuazua, Controllability and observability of partial differential equations, Chapter 7 in Handbook of
Differential Equations, Vol. 3, Evolutionary Equations, Elsevier, Amsterdam, 527-621, (2007).

Received April 16 2010


