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Chapter 1

Introduction

In this chapter we introduce the topic of knowledge spaces and data analysis

methods for deriving knowledge structures. The research reported in this

thesis is motivated, the relevant literature is reviewed, and an outline of the

present work is given.

1.1 Motivation

Knowledge space theory (KST) provides a framework for the modeling, test-

ing, and training of knowledge. Knowledge can be defined in a very general

way. For example, it could be questions taken from a math exam, or atti-

tude towards political issues. Knowledge as a whole can be seen as sum of

different pieces of knowledge. A natural assumption is that some pieces of

knowledge may imply others. In KST, this results in a knowledge structure

representing the organization of knowledge. For instance, a math problem

can be a sub-problem of a more complex problem. Note that the theory of

knowledge spaces is not restricted to topics of psychology. KST can also

be applied to other fields, such as pattern recognition or medical diagnosis

(Doignon and Falmagne, 1999).
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If all implications would be known and no errors be made, training and

testing of knowledge could be done efficiently. An examiner could ask ques-

tions based on prior answers of the examinee. The questions could even be

administered by a computer, (computer adaptive testing, e.g. (van der Lin-

den and Glas, 2000)). For training students, the implications can be used

to develop a learning path, along which students are gradually taught new

pieces of knowledge according to their knowledge states.

Since knowledge structures are latent, hence not directly observable, a

crucial task in knowledge space theory is to reveal them. There are differ-

ent ways of building knowledge structures, such as by querying experts, by

item construction, or by means of data analysis methods. All methods have

advantages and disadvantages. Querying experts, for instance, can lead to

ambiguous knowledge structures, and is expensive and time consuming. Data

analysis methods are fast and cheap, and most importantly are derived from

observed data. Further, techniques such as hypothesis testing can be used

for analyzing the results. So far data analysis methods in KST have been

treated ad hoc only. In this work, we present new algorithms for deriving

knowledge structures by data analysis, and unify them based on approved

statistical approaches, such as maximum likelihood methodology.

Due to the computational effort, it is mandatory to use software in real

life situations. In the R package DAKS, all data analysis methods analyzed in

this thesis are implemented. This is an important contribution as it is the

single software implementing these data analysis methods. Furthermore, it

introduces the software R, with all of its advantages such as accessibility to

statistical methods or being free of charge, to the users of KST.
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1.2 Relevant literature

KST was introduced by Doignon and Falmagne (1985). Most of the theory

of knowledge spaces is presented in a monograph by Doignon and Falmagne

(1999); see also Doignon and Falmagne (1987), Falmagne (1989), and Fal-

magne et al. (1990). For concrete application examples, see in particular

Albert and Lukas (1999). Current references on knowledge spaces can be

obtained from http://wundt.kfunigraz.ac.at/kst.php.

Item tree analysis (ITA) was introduced by van Leeuwe (1974). The en-

hancement leading to inductive item tree analysis (IITA) was introduced by

Schrepp (1999). This algorithm was analyzed and improved in Schrepp (2002,

2003, 2006, 2007). In Sargin and Ünlü (2009a) the original IITA algorithm

was corrected and optimized regarding the used fit measure. Maximum like-

lihood methodology and statistical concepts, such as asymptotic normality or

consistency, are proposed in Ünlü and Sargin (2008a). The use of asymptotic

normality, leading to the computation of asymptotic variances, and hence in-

ferential statistics was made in Ünlü and Sargin (2009). For example, this

can be used for computing confidence intervals or hypothesis testing. The

algorithms and the fundamental concepts of KST are implemented in the R

package DAKS (Sargin and Ünlü, 2008). All simulations and computations

in this work were performed in R (R: Development Core Team, 2009) mainly

using the package DAKS.

Detecting knowledge states from data visually is discussed in Ünlü and

Sargin (2008b). They show that data analysis methods in KST and mosaic

plots complement one another, and lead to better results when using both in

analyses. A good overview of graphics can be found in Chen et al. (2008). For

exploratory data analysis using interactive graphics, see Theus and Urbanek

(2008); Unwin et al. (2006).
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1.3 Outline

This work deals with data analysis methods in KST. First, in the next sec-

tion the relevant literature on KST and data analysis methods for deriving

knowledge structures is presented. In Chapter 2, the main deterministic and

probabilistic concepts of KST are introduced. In Chapter 3, data analysis

methods are discussed. Item tree analysis, the predecessor of the three algo-

rithms analyzed in this work, is briefly reviewed. Inductive item tree analysis

(IITA) and its two enhancements, corrected and minimized corrected IITA,

are thoroughly discussed. The IITA algorithms are compared in two sim-

ulation studies and with real datasets. We introduce maximum likelihood

methodology for the IITA methods, by interpreting the fit measures of these

methods as maximum likelihood estimators. It is shown that these fit mea-

sures have several asymptotic quality properties. In Chapter 4, the R package

DAKS is presented, and the use of the package’s functions are illustrated with

examples. In Chapter 5, a summary is given, and important directions for

future research are presented.
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Chapter 2

Knowledge space theory

A mathematical framework for the assessment, modeling, and training of

knowledge is realized with KST. In this chapter we review the essential de-

terministic and probabilistic concepts of KST.

2.1 Deterministic concepts

Assume a set Q of dichotomous items, and let n be the number of items. The

set Q is called the domain of the knowledge structure. Mastering an item

j ∈ Q may imply mastering another item i ∈ Q. If no response errors are

made, these implications, j → i, entail that only certain response patterns

(represented by subsets of Q) are possible. Those response patterns are called

knowledge states, and the set of all knowledge states (including ∅ and Q) is

called a knowledge structure, and denoted by K. Implications are assumed

to form a quasi order, that is, a reflexive, transitive binary relation, v on

the item set Q. In other words, an implication j → i (for i, j ∈ Q) stands

for the pair (i, j) ∈ v, also denoted by i v j. Quasi orders are referred to as

surmise relations in KST.
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An example helps to illustrate these concepts. Let Q = {a, b, c} be a set

of three dichotomous items. Consider the surmise relation

v = {(a, a), (b, b), (c, c), (a, b), (a, c)}

on Q, that is, a → a, b → b, c → c, b → a, and c → a. These implications

specify the feasible latent knowledge states. A respondent can master just

item a. This does not imply mastery of any other item. In that case, the

knowledge state is {a}. However, if the respondent masters c, for instance,

then a must also be mastered. This gives the knowledge state {a, c}. We

see that there are exactly five knowledge states consistent with the surmise

relation, and the corresponding knowledge structure is

K = {∅, {a}, {a, b}, {a, c}, Q}.

Note that this knowledge structure is closed under set-theoretic union and

intersection. Such knowledge structures are called quasi ordinal knowledge

spaces.

The five knowledge states of the example knowledge structure consistent

with the surmise relation are obtained, in fact, applying Birkhoff (1937)’s

theorem (see also Doignon and Falmagne, 1999, Theorem 1.49). This theo-

rem provides a linkage between quasi ordinal knowledge spaces and surmise

relations on an item set. It states that there exists a one-to-one correspon-

dence between the collection of all quasi ordinal knowledge spaces K on a

domain Q, and the collection of all surmise relations Q on Q. More formally:

pQq ⇔ ∀K ∈ K : q ∈ K ⇒ p ∈ K

K ∈ K ⇔ ∀(p, q) ∈ Q : q ∈ K ⇒ p ∈ K

Applications of these concepts are, for example, a questionnaire, where people

can agree or disagree to a statement, or an aptitude test, where people can

16



solve or fail to solve a question. In this paper, we use the latter interpretation

to illustrate the algorithms. Solving an item is coded as 1 and failing to solve

an item is coded as 0.

2.2 Probabilistic concepts

Implications are latent and not directly observable, due to random response

errors. A person who is actually unable to solve an item, but does so, makes

a lucky guess. On the other hand, a person makes a careless error, if he fails

to solve an item which he is capable of mastering. If careless errors or lucky

guess guesses are committed, all kinds of response patterns may be generated.

A probabilistic extension of the knowledge structure model covering random

response errors is the basic local independence model in KST.

A quadruple (Q,K, p, r) is called a basic local independence model (BLIM)

(Doignon and Falmagne (1999)) if and only if

1. (Q,K) is a knowledge structure,

2. p is a probability distribution on K, i.e., p : K → ]0, 1[ , K 7→ p(K),

with p(K) > 0 for any K ∈ K, and
∑

K∈K p(K) = 1,

3. r is a response function for (Q,K, p), i.e., r: 2Q × K → [0, 1],

(R,K) 7→ r(R,K), with r(R,K) ≥ 0 for any R ∈ 2Q and K ∈ K,

and
∑

R∈2Q r(R,K) = 1 for any K ∈ K,

4. r satisfies local independence, i.e.,

r(R,K) =
∏

q∈K\R

βq ·
∏

q∈K∩R

(1− βq) ·
∏

q∈R\K

ηq ·
∏

q∈Q\(R∪K)

(1− ηq),

with two constants βq, ηq ∈ [0, 1[ for each q ∈ Q, respectively called

careless error and lucky guess probabilities at q.
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To each state K ∈ K is attached a probability p(K) measuring the likelihood

that an examinee is in state K (point 2). For R ∈ 2Q and K ∈ K, r(R,K)

specifies the conditional probability of response pattern R for an examinee

in state K (point 3). The item responses of an examinee are assumed to be

independent given the knowledge state of the examinee. The response error

probabilities βq, ηq (q ∈ Q) are attached to the items and do not vary with

the knowledge states (point 4). The resulting probability distribution on the

set of all response patterns is

ρ(R) =
∑
K∈K

r(R,K)p(K).

Note that the number of independent model parameters of the BLIM is

2|Q|+(|K|−1) (|Q| parameters, each for careless error and lucky guess prob-

abilities, and |K|−1 for the occurrence probabilities of the knowledge states).

Because the size of K generally tends to be prohibitively large in practice, pa-

rameter estimation and model testing based on classical maximum likelihood

methodology are not feasible in general (see, e.g., Ünlü, 2006).

Next, we consider a random sample of size m. The data are the absolute

counts m(R) of response patterns R ∈ 2Q, i.e., x = (m(R))R∈2Q . The ex-

aminees are assumed to give their responses independent of each other. The

true probability of occurrence ρ(R) of any response pattern R is assumed to

stay constant across the examinees, and to be strictly larger than zero. Then

the data x are the realization of a random vector, X = (XR)R∈2Q , which is

distributed multinomial over 2Q.

18



In other words, the probability of observing the data x, i.e., the realiza-

tions XR = m(R), is

P(X = x) = P(X∅ = m(∅), . . . , XQ = m(Q))

=
m!∏

R∈2Qm(R)!

∏
R∈2Q

ρ(R)m(R),

where ρ(R) > 0 for any R ∈ 2Q,
∑

R∈2Q ρ(R) = 1, and 0 ≤ m(R) ≤ m for

any R ∈ 2Q,
∑

R∈2Qm(R) = m.
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Chapter 3

Inductive item tree analysis

Data analysis methods are important procedures for deriving knowledge

structures. There exist various methods such as the di coefficient by Kam-

bouri et al. (1994) or the presently discussed IITA algorithms. We give a brief

historical overview and present the ITA algorithm by van Leeuwe (1974),

which is the predecessor of IITA. The three IITA algorithms are discussed

and compared in simulated and real data examples.

3.1 History

The first variant of ITA was introduced by Airasian and Bart (1973); Bart

and Krus (1973). The ITA algorithm was proposed by van Leeuwe (1974),

and he developed especially the correlational agreement coefficient (CA).

This is a fit measure, such as the diff coefficient in IITA, which is used for

determining the best fitting quasi order.

Next, we give a sketch of the ITA algorithm (van Leeuwe, 1974).

We use the following notation (m,n ∈ N):

Q := {Il : 1 ≤ l ≤ n} set of dichotomous items,
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P := {Pk : 1 ≤ k ≤ m} sample of subjects,

D := (d′kl) corresponding binary (= 0/1) m× n-data matrix,

and, for every (Ii, Ij) ∈ Q×Q (1 ≤ i, j ≤ n), the 2× 2-table notation

Ii \ Ij 1 0

1 aij bij

0 cij dij

with aij, bij, cij, dij ∈ N∪{0}; in respective order, the absolute frequencies of

subjects solving items Ii and Ij [aij], solving Ii, not Ij [bij], solving Ij, not Ii

[cij], and solving neither Ii, nor Ij [dij]. Then, the ITA-rule for generating

binary relations ≤L (0 ≤ L ≤ m) is given by

Ii ≤L Ij :⇐⇒ cij ≤ L.

This L (0 ≤ L ≤ m) is called tolerance level. The ITA-rule represents STEP1

of ITA. The latter consists of five steps, STEP1-STEP5:

STEP1 Determine the binary relations ≤L for L = 0, 1, . . . ,m.

STEP2 From the ≤L (0 ≤ L ≤ m) remove those that are not transitive.

STEP3 Set a critical value 0 < c ≤ 1 for the proportions, pL, of subjects

not contradicting the respective surmise relations ≤L in STEP2.

STEP4 From the surmise relations in STEP2 remove those with pL < c.

STEP5 From the remaining surmise relations (after STEP4)—≤0 is always

contained—, select one with maximal CA(≤, D)-value.

The CA coefficient is defined as:

CA(≤, D) := 1− 1

n(n− 1)

∑
i<j

(rij − r∗ij)2,
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where rij is the Pearson correlation and

r∗ij :=



1 : if i = j√
1− pi)pj/(1− pjpi : if i ≤ j ∧ j 6≤ i√
1− pj)pi/(1− pipj : if i 6≤ j ∧ j ≤ i

0 : otherwise

The correlational agreement coefficient is used as a goodness-of-fit measure

to handle the selection problem in STEP5. From the remaining surmise

relations select an “optimal” one, i. e., one with maximal CA(≤, D)-value.

3.2 Original inductive item tree analysis al-

gorithm

IITA is an enhancement of the ITA algorithm. The idea behind IITA is to

generate a more appropriate set of competing quasi orders and to construct

a theoretically sound fit measure for determining the most adequate quasi

order.

3.2.1 Original algorithm

One of the main parts of IITA is the inductive generation of surmise relations

(giving the algorithm its name). For two items i, j, the value

bij := |{R ∈ D|i 6∈ R ∧ j ∈ R}|

is the number of counterexamples, that is, the number of observed response

patterns R in the data matrix D contradicting j → i. Based on these values,

binary relations v
L

for L = 0, ...,m are defined (note that m is the sample

size). Let i v0 j :⇔ bij = 0. The relation v0 is transitive, and based on

that, all the other transitive relations v
L

are constructed inductively.
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Assume v
L

is a transitive relation. Define the set

S
(0)
L+1 := {(i, j)|bij ≤ L+ 1 ∧ i 6v

L
j}.

This set consists of all item pairs that are not already contained in the relation

v
L

and have at most L + 1 counterexamples. From the item pairs in S
(0)
L+1,

those are excluded that cause an intransitivity in v
L
∪S(0)

L+1, and the remain-

ing item pairs (of S
(0)
L+1) are referred to as S

(1)
L+1. Then, from the item pairs

in S
(1)
L+1, those are excluded that cause an intransitivity in v

L
∪S(1)

L+1, and

the remaining item pairs (of S
(1)
L+1) are referred to as S

(2)
L+1. This process con-

tinues iteratively, say k times, until no intransitivity is caused anymore (i.e.,

k is the smallest non-negative integer such that S
(k)
L+1 = S

(l)
L+1 for all l > k).

The generated relation v
L+1

:=v
L
∪S(k)

L+1 is then transitive by construction.

Because v0 is reflexive, all generated relations are. Hence v
L

for L = 0, ...,m

are quasi orders. They constitute the selection set {v
L
: L = 0, ...,m} of the

IITA procedure.

Besides the construction of the quasi orders, it is very important to find

that quasi order which fits the data best. In IITA, the idea is to estimate

the number of counterexamples for each quasi order, and to find, over all

competing quasi orders, the minimum value for the discrepancy between the

observed and expected numbers of counterexamples.

Let

pi := |{R ∈ D|i ∈ R}|/m

be the relative solution frequency of an item i. A violation of an underlying

implication is only possible due to random errors. To compute the expected

number of counterexamples, b∗ij, error probabilities are needed. In this al-

gorithm, the error probabilities are assumed to be equal for all items. This
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single error rate is estimated by

γ
L

:=

∑
{bij/(pjm)|i v

L
j ∧ i 6= j}

(| v
L
| − n)

,

where |v
L
| − n is the number of non-reflexive item pairs in v

L
(note that n

is the number of items).

Under every relation of the selection set, the algorithm computes the

expected number of counterexamples for each (non-reflexive) item pair. If

the relation v
L

provides an implication j → i, meaning i v
L
j, the expected

number of counterexamples is computed by b∗ij = γ
L
pjm. If (i, j) 6∈ v

L
, no

dependency between the two items is assumed, and b∗ij = (1−pi)pjm(1−γ
L
).

In this formula, (1−pi)pjm is the usual probability for two independent items,

and the factor 1− γ
L

is assumed to state that no random error occurred. As

we discuss later in detail, the main criticism on the algorithm is on the used

estimates b∗ij.

A measure for the fit of each relation v
L

to the data matrix D is the diff

coefficient. It is defined as

diff (v
L
, D) :=

∑
i 6=j

(bij − b∗ij)2

n(n− 1)
.

It gives the averaged sum of the quadratic differences between the observed

and expected numbers of counterexamples under the relationv
L
. The smaller

the diff value the better is the fit of the relation to the data. Therefore, the

IITA algorithm looks for the smallest value of the diff coefficient and returns

the corresponding quasi order.

Some remarks are in order with respect to the definition of the diff coef-

ficient.

1. The crucial constituent measuring the discrepancy between the ob-

served and expected numbers of counterexamples is
∑

i 6=j(bij − b∗ij)
2.
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The constant factor 1/(n(n − 1)), however, could be replaced by any

other (non-zero) constant without affecting the final surmise relation

returned by the IITA algorithm. The same quasi order would be ob-

tained independent of what constant is used in the formulation of the

coefficient. (Note that such a logic, mathematically at least, would

also apply to other selection criteria such as AIC or BIC.) To keep the

discussion of the three IITA algorithms in terms of the diff coefficient

comparable, of course the same constant must be used throughout.

(Comparing values of diff coefficients formulated for different constants

would be distorted.) In this paper, all three algorithms use 1/(n(n−1)),

and relative to this (fixed) constant, the diff coefficient can be inter-

preted as the average quadratic difference between the observed and

expected numbers of counterexamples, and compared across the algo-

rithms.

2. The fit criterion underlying the diff coefficient is to match the observed,

two-dimensional summaries bij of the data. Of course, the ultimate

purpose of using the diff coefficient (i.e., the corresponding fit criterion)

is to select that quasi order which best resembles the underlying (true)

relation. Assuming the diff coefficient not to be informative for the

quality of the returned solution would invalidate the rationale behind

the IITA procedure. The selection measure, to some degree, has to

reflect the underlying relation. Stated differently, it makes sense, and

is important, to address and investigate the relationship between the fit

criterion (decision rule) on the one hand, and the underlying structure

on the other. Since selection is based on the minimum value of the diff

coefficient, it is interesting to see whether and to what degree smaller

diff values (better values of the fit criterion) do correlate with better
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reconstructions of underlying quasi orders. (An answer to the latter

question is by no means obvious a priori.)

3.2.2 Problems of the original algorithm

The inductive construction of the quasi orders is stated as one of the main

advantages of this algorithm (Schrepp, 1999, 2003). However, the inductive

construction can be criticized as follows. It is possible that two implications

would cause together an intransitivity, but not if added separately. Consider

on a set of three items {a, b, c} the implication b → c (in addition to the

reflexive ones), representing v
L
. Assume that the implications a → c and

c → b are the possible candidates to be added in the next step L + 1. To-

gether these implications lead to an intransitivity (a → b is not contained

in v
L
∪S(0)

L+1), and the procedure excludes both implications, until a → b is

added. However, each of the two implications, a → c and c → b, could be

added separately, without a → b being added, such that transitivity is not

violated. But the procedure does not incorporate this. Moreover, the under-

lying (correct) quasi order is not necessarily contained in the selection set of

constructed quasi orders. In the simulation study reported in this paper (see

Table 3.4 for individual figures), the underlying quasi orders are contained

in the selection sets 57% of the trials. In the other 43% it is impossible to

reveal the underlying quasi orders.

The major problem of the original IITA algorithm lies in the computa-

tion of the diff coefficient. It uses estimates b∗ij of the expected numbers of

counterexamples. Two problems arise in the calculation of these estimates.

For (i, j) 6∈ v
L
, the estimate is b∗ij = (1 − pi)pjm(1 − γ

L
). But the algo-

rithm does not take two different cases into account, namely (j, i) 6∈ v
L

and

(j, i) ∈ v
L
. In the first case, independence holds, and a corrected estimator
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is b∗ij = (1− pi)pjm. (‘A corrected estimator’ in this paper is understood as

an estimator which avoids the inconsistencies that arise when using the orig-

inal estimators, in the sense of the discussion in the next paragraph.) This

estimator is used in the first version of IITA (Schrepp, 1999, 2002), but is

changed in Schrepp (2003). (Using the product of individual marginal prob-

abilities is the common approach in statistics when independence is present,

for instance in the analysis of two-way contingency tables.) In the second

case, independence cannot be assumed, as j v
L
i. In Schrepp (2003), this

problem is briefly mentioned, but not further pursued or even solved. This,

in particular, explains why the original IITA version gives bad results when

longer chains of items are present in the underlying quasi order (Schrepp,

1999). As explained in detail in the next section, a corrected estimator b∗ij is

(pj − (pi − piγL))m, instead of (1− pi)pjm(1− γ
L
).

The estimates b∗ij of the original algorithm not only are lacking interpre-

tation, but they do also lead to methodological inconsistencies. Consider the

case (i, j) 6∈ v
L

and (j, i) ∈ v
L
. The observed number of people solving item

j is pjm, and using the estimate (1− pi)pjm(1− γ
L
) of the expected number

of people solving item j and failing to solve item i, the expected number of

people solving both items is estimated by pjm−(1−pi)pjm(1−γ
L
). Another

estimate of the expected number of people solving both items is pim−pimγL .

In the same manner, for the expected number of people failing to solve both

items, the two estimates (1−pj)m−pimγL and (1−pi)m−(1−pi)pjm(1−γ
L
)

are derived. If γ
L

= 0 and pi = 0, it holds

pjm− (1− pi)pjm(1− γ
L
) = pim− pimγL

and

(1− pj)m− pimγL = (1− pi)m− (1− pi)pjm(1− γ
L
),
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and the respective estimates do coincide. If γ
L
6= 0 or pi 6= 0, these equations

hold if and only if pi = 1. Apart from these exceptional cases, which are

rather rare, the estimation scheme of the original algorithm mostly leads to

inconsistent results. In other words, fixing the marginals of the two-by-two

table for an item pair (i, j) 6∈ v
L

and (j, i) ∈ v
L
, and the two entries of it

for which estimates are proposed, the results are in contradiction for nearly

all datasets. (In the sequel, the expression ‘inconsistent estimator’ is used to

refer to these methodological inconsistencies. It should not be confused with

‘an estimator that is not consistent’, in the sense of the consistency property

in point estimation.)

3.3 Corrected and minimized corrected in-

ductive item tree analysis algorithms

In Sargin and Ünlü (2009a) the problems mentioned in Section 3.2.2 are dis-

cussed and a corrected estimation scheme is proposed (see Section 3.3.1).

Furthermore an optimization regarding the diff coefficient is introduced (see

Section 3.3.2). Simulation studies, along with applications to empirical

data, comparing the three IITA algorithms are presented in Sargin and Ünlü

(2009a,b); Ünlü and Sargin (2008a) (see Section 3.4). In Ünlü and Sargin

(2008a) the diff coefficient is interpreted as a maximum likelihood estimator.

This estimator possesses good asymptotic properties (see Section 3.5). In

Particular, inferential statistics can be proposed for the diff coefficient (see

Section 3.6).
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3.3.1 Corrected estimation

In this section, we introduce the corrected estimators b∗ij for the expected

numbers of counterexamples. These are very important for computing the

diff coefficient, which is the fit measure for finding the best quasi order.

A correct choice for b∗ij for (i, j) 6∈ v
L

depends on whether (j, i) 6∈ v
L

or

(j, i) ∈ v
L
.

• If (i, j) 6∈ v
L

and (j, i) 6∈ v
L
, set b∗ij = (1 − pi)pjm. As stated in

Section 2.2, independence holds, and the additional factor (1 − γ
L
) is

omitted.

• If (i, j) 6∈ v
L

and (j, i) ∈ v
L
, set b∗ij = (pj − (pi − piγL))m. This

estimator is derived as follows. The observed number of people who

solve item i is pim. Hence the estimated number of people who solve

item i and item j is pim− b∗ji = (pi − piγL)m. (Note that (j, i) ∈ v
L
,

and the estimator is b∗ji = piγLm.) Eventually this gives the estimate

b∗ij = pjm−(pi−piγL)m = (pj−(pi−piγL))m. This estimator not only

is mathematically motivated, but is also interpretable. The first term,

pjm, gives the number of people solving item j. The second term, (pi−

piγL)m, stands for the number of people solving both items, because

pim is the number of people solving item i, and piγLm represents the

number of people solving item i and failing to solve item j.

3.3.2 Minimizing the fit measure

Let the diff coefficient be based on the corrected estimators. We discuss min-

imizing the diff coefficient as a function of the error probability γ
L
, for every

quasi order v
L
. The idea is to use the corrected estimators and to optimize

the fit criterion underlying the selection of competing quasi orders. The fit
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measure then favors quasi orders that lead to smallest minimum discrepan-

cies, or equivalently, largest maximum matches, between the observed and

expected two-dimensional summaries, bij and b∗ij, respectively. (Note that

the IITA algorithms include the fit measure as a defining main constituent.)

The diff coefficient can be decomposed as

diff =

∑
i 6=j(bij − b∗ij)2

n(n− 1)

=

∑
i 6v
L
j∧jv

L
i

[
b2
ij − 2bij(pj − pi + piγL)m+ (pj − pi + piγL)2m2

]
n(n− 1)

+

∑
i 6v
L
j∧j 6v

L
i [bij − (1− pi)pjm]2

n(n− 1)

+

∑
iv
L
j

[
b2
ij − 2bijpjγLm+ (pjγL)2m2

]
n(n− 1)

.

Setting equal to zero the derivative of the diff coefficient with respect to γ
L

gives

0 =

∑
i 6v
L
j∧jv

L
i [−2bijpim+ 2pipjm

2 − 2p2
im

2 + 2p2
im

2γ
L
]

n(n− 1)

+

∑
iv
L
j

[
−2bijpjm+ 2p2

jm
2γ

L

]
n(n− 1)

.

This is equivalent to

0 =
∑

i 6v
L
j∧jv

L
i

[
−2bijpim+ 2pipjm

2 − 2p2
im

2
]

︸ ︷︷ ︸
=:x1

+
∑
iv
L
j

−2bijpjm︸ ︷︷ ︸
=:x2

+γ
L

∑
i 6v
L
j∧jv

L
i

2p2
im

2

︸ ︷︷ ︸
=:x3

+γ
L

∑
iv
L
j

2p2
jm

2

︸ ︷︷ ︸
=:x4

.
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Solving for γ
L

results in

γ
L

= −x1 + x2

x3 + x4

.

Note that this expression always gives a value in [0, 1]. This error probability

can now be used for an alternative IITA procedure, in which a minimized

diff value is computed for every quasi order.

3.4 Comparisons of the three algorithms

The three algorithms are the original IITA version by Schrepp (2003), and the

corrected and minimized corrected IITA versions introduced above. In the

following, the performances of these procedures are compared in a simulation

study.

3.4.1 Settings of the simulation study

The settings

Throughout the simulation study nine items are used. The general simulation

scheme consists of three parts. First, quasi orders are generated randomly.

Second, each of these quasi orders is used for simulating the data. Third, the

three algorithms are applied to and compared on that data.

More precisely:

1. All reflexive pairs are always added to the relation R. A constant δ is

set randomly (detailed below), which gives the probability for adding

each of the remaining 72 item pairs to the relation. The transitive

closure v of this relation R is computed, and is the underlying (true)

quasi order.
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2. From the set {K ⊂ Q : (i v j ∧ j ∈ K) → i ∈ K} of all response

patterns consistent with v, an element is drawn randomly. For this

drawn pattern all entries are changed from 1 to 0 or from 0 to 1, with

a same prespecified error probability τ . This is repeated m times to

generate a data matrix. (Part 2 is simulating with a special case of the

BLIM.)

3. The three algorithms are applied to the simulated data. They are com-

pared with respect to two criteria: the symmetric differences between

the data analysis solutions of the algorithms and the underlying quasi

order, and the numbers of erroneously detected implications.

The following settings are made in the simulation study. The error prob-

ability τ takes the values 0.03, 0.05, 0.08, 0.10, 0.15, and 0.20. The sample

sizes 50, 100, 200, 400, 800, 1600, and 6400 are used. For each combination

of these settings, 1000 simulations are made. In each of these simulations,

an underlying quasi order is generated, a data matrix is simulated, and for

each of the three algorithms the data analysis solution is derived.

Important changes made to the simulation study in Schrepp (2003)

The above simulation scheme replicates the one described in Schrepp (2003).

However, the following important changes are made. Schrepp (2003) draws δ

randomly from the entire unit interval. This leads to the following problem.

For δ values greater than (approximately) 0.42, the average number of non-

reflexive implications contained in the underlying quasi order already turns

out to be not less than (approximately) 70. This can be seen from Figure

3.1.

Figure 3.1 shows the average number of non-reflexive implications as a

function of δ. For each δ value ranging from 0 to 1, in steps by 0.01, 100
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Figure 3.1: Average number of non-reflexive implications as a function of δ.

The δ values range from 0 to 1, in steps by 0.01. For each δ value, 100 quasi

orders are generated, and the corresponding average number of non-reflexive

implications is shown.

quasi orders are generated, and the corresponding average number of non-

reflexive implications is calculated. In particular, Figure 3.1 demonstrates

that Schrepp’s choice of δ values mostly results in generating large quasi

orders: 58% of the computed average numbers of non-reflexive implications

are at least 70; 29% are even equal to the maximum 72 (yielding the set Q×Q

of all possible item pairs). This definitely does not come from a reasonably

representative sample of the collection of all quasi orders (cf. also the remarks

below), and leads to substantially biased results as we describe in this paper.

To accommodate this problem, we pursue the following sampling. The δ

values are drawn from a normal distribution with µ = 0.16 and σ = 0.06.

Values less than 0 or greater than 0.3 are set to 0 or 0.3, respectively. Figure

3.2 shows the average numbers of non-reflexive implications calculated for

100 generated quasi orders to 500 δ values drawn according to our sampling.

Compared to the plot of Figure 3.1 (random sampling from the entire unit

interval), the results reported in Figure 3.2 most probably come from a rea-

sonably representative, in any case considerably improved, sample of quasi

orders (see also the remarks that follow).
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Figure 3.2: Average numbers of non-reflexive implications calculated for

100 generated quasi orders to 500 δ values drawn according to our sampling.

Points are ordered by average number of non-reflexive implications.

Some remarks are in order regarding the representativeness of samples

of quasi orders drawn in such simulation studies as for investigating IITA

type data analysis methods. The three IITA algorithms are sensitive to the

underlying surmise relation that is used, and to test their performances ob-

jectively a representative sample of the collection of all quasi orders is needed.

However, defining representativeness as sampling uniformly from this collec-

tion (i.e., drawing each element with the same probability) is a theoretical

concept, which is basically not feasible. A general approach to handling rep-

resentativeness of samples of quasi orders is through investigating tractable

consequences of that theoretical definition. For instance, a necessary condi-

tion following from a uniform distribution on the set of all surmise relations,

by and large, is having a (not necessarily symmetric) bell-shaped type of dis-

tribution on the set of all (attained) numbers of non-reflexive implications,

centered around, approximately, the middle of the scale, and decreasing to-

wards the edges of the scale. This reflects the fact that, on the whole, there

are many more surmise relations around the middle of the scale than around

the edges. In addition, at least in this study with nine items, there seems

to be more surmise relations around the left edge than the right. (There are
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surmise relations containing 0, 1, 2, . . . , 10 non-reflexive implications, whereas

there are surmise relations with just 72, 64, or 58 implications.) Correspond-

ingly, we expect that more mass of the resulting distribution is located around

the left than the right edge.

To compare the two ways of sampling the δ values, unit interval versus

normal, Figure 3.3 shows histograms of the average numbers of non-reflexive

implications depicted in Figures 3.1 and 3.2; upper and lower plots, respec-

tively.
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Figure 3.3: Histograms of the average numbers of non-reflexive implications

for the unit interval and normal sampling methods (upper and lower plots,

respectively). The dotted line shows the probability density function of the

uniform distribution on the interval [0, 72].
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The histograms corroborate what we have stated about the two sampling

methods. The random sampling using the entire unit interval is far from

producing reasonably representative samples of quasi orders, and without

question, the normal sampling clearly improves on the latter.

The above discussion is, to our knowledge, the first of a kind so far pre-

sented on the issue of assessing the representativeness of samples of quasi

orders drawn in simulation studies for investigating the IITA algorithms.

Much of the discussion here is meant as a starting point for further research

on this issue. Work in this direction is important but still lacking.

3.4.2 Results of the simulation study

Average symmetric differences

First we compare the three IITA algorithms with respect to the average sym-

metric differences. For each of the three algorithms, for every combination

of error probability and sample size, the mean of the numbers of elements in

the 1000 symmetric differences between the underlying quasi orders and the

data analysis solutions is computed; in the sequel referred to as dist value.

This summary statistic is reported in Table 3.1; first, second, and third lines

refer to the original, corrected, and minimized corrected IITA algorithms,

respectively. (In addition, the means of the 1000 diff values obtained for the

data analysis solutions are listed in parentheses.)

Table 3.1 shows the following results:

1. The average dist values are quite similar (maximum discrepancy of

0.76) for the corrected and minimized corrected algorithms. Moreover,

in 24 of the 42 combinations the corrected algorithm performs better,

in three they perform (almost) identically, and in 15 the performance of

37



Table 3.1: Average dist values under original, corrected, and minimized

corrected IITA algorithms (first, second, and third lines, respectively; average

diff values in parentheses)

Sample size

50 100 200 400 800 1600 6400

τ

0.03 3.71(3.79) 2.89(11.67) 2.14(41.16) 2.29(152.10) 1.87(599.61) 1.69(2438.30) 1.99(36528.70)

5.44(1.66) 5.18(4.28) 4.54(11.58) 4.86(38.37) 4.30(128.13) 3.90(489.21) 3.81(7414.34)

5.44(1.58) 5.30(4.04) 4.67(10.76) 5.11(34.92) 4.77(114.65) 4.58(438.49) 4.51(6635.50)

0.05 4.24(3.73) 4.05(11.32) 2.87(38.28) 2.59(138.35) 2.11(517.96) 1.77(2094.56) 1.10(32968.50)

6.89(1.93) 5.69(5.13) 4.91(14.35) 5.09(44.49) 4.22(152.74) 4.33(587.63) 3.63(8172.90)

6.90(1.81) 5.67(4.68) 5.02(12.67) 5.40(39.24) 4.91(130.82) 4.89(489.52) 4.39(6892.42)

0.08 7.66(3.96) 5.95(12.18) 5.12(41.09) 4.91(149.30) 4.43(606.56) 4.47(2392.01) 3.69(37444.40)

8.61(2.24) 6.36(6.05) 5.70(17.35) 5.28(52.26) 4.46(196.09) 4.5(702.46) 3.99(9870.19)

8.45(2.09) 6.30(5.58) 5.90(15.38) 5.70(45.48) 4.88(163.70) 5.06(582.79) 4.55(8102.32)

0.10 9.01(4.23) 7.87(12.71) 7.89(45.51) 6.14(166.79) 6.67(682.10) 6.37(2808.66) 6.87(44472.91)

9.61(2.43) 7.65(6.75) 6.37(18.70) 5.37(59.49) 5.26(203.67) 4.35(765.31) 4.25(11373.20)

9.60(2.31) 7.47(6.21) 6.42(16.84) 5.66(52.69) 5.58(175.46) 4.85(644.15) 4.58(9491.62)

0.15 16.68(4.55) 14.96(14.81) 14.22(58.53) 13.88(221.76) 15.06(935.71) 14.50(3664.33) 14.92(62646.07)

12.18(2.59) 10.11(7.45) 7.77(21.90) 7.11(67.43) 6.06(250.24) 5.89(877.53) 5.10(14659.14)

11.93(2.48) 9.89(7.09) 7.71(20.49) 7.11(62.26) 6.06(226.58) 6.08(790.18) 5.21(13027.16)

0.20 23.38(4.53) 25.41(16.69) 24.93(62.96) 24.02(276.97) 23.72(1148.28) 24.65(4699.31) 23.46(76842.70)

14.81(2.59) 11.40(7.34) 9.81(22.34) 8.00(71.94) 7.96(254.09) 6.79(930.46) 6.79(14769.23)

14.68(2.52) 11.36(7.12) 9.62(21.53) 7.91(68.79) 7.93(240.95) 6.75(879.06) 6.58(13893.23)

the minimized corrected version is better. In particular, the minimized

corrected version gives smaller dist values for an error probability of

0.20. On average, however, the corrected algorithm shows a smaller

dist value.

2. For the very small error rates 0.03 and 0.05, the original version gives

better dist results than the corrected and minimized corrected algo-

rithms (however, see Table 3.2 for worse dist∗ results). It may seem

surprising that, though of the inconsistent estimators used in the orig-

inal IITA algorithm, this algorithm gives better results. We suppose

that the inconsistent estimation, in the case of very small error rates,

has a considerably less negative effect for the underlying quasi order
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than for the other relations; see also ‘Important remarks regarding the

simulation study in Schrepp (2003)’ in this section below. However, for

τ = 0.08, the results are approximately the same, and for the higher er-

ror rates 0.10, 0.15 and 0.20, the original version is outperformed. (It is

important to note that for small dist values the underlying quasi orders

are still reconstructed with acceptable accuracy, as in the case of the

corrected and minimized corrected algorithms for small error rates. By

contrast, the underlying quasi orders are clearly missed by the original

algorithm for high error rates, due to the very large dist values.) On

average, the corrected and minimized corrected versions show smaller

dist values than the original algorithm.

3. The differences in the cases when the corrected and minimized corrected

algorithms perform better are substantially larger than the differences

obtained when the original version performs better. This is true not

only in absolute differences, but also in relative. For instance, for the

error rate 0.03 and sample size 50, the dist value for the corrected algo-

rithm is 1.47 times larger than the dist value for the original, whereas

for the error rate 0.20 and sample size 50, the corrected version is 1.58

times better. The ratio increases with increasing sample size. For the

error rate 0.03 and sample size 6400, the dist value for the corrected al-

gorithm is 1.91 times larger than the dist value for the original, whereas

for the error rate 0.20 and sample size 6400, the corrected version is

3.46 times better.

4. With increasing sample size, the improvements obtained for the two

new algorithms are greater than the improvements for the original al-

gorithm. For τ = 0.10, for instance, the original algorithm improves
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from a dist value of 9.01 to 6.87 (difference of 2.14), the corrected

algorithm from a value of 9.61 to 4.25 (difference of 5.36), and the

minimized corrected version from 9.60 to 4.58 (difference of 5.02).

5. An interesting observation is the following one. For our two algorithms,

for any two error probabilities, the differences between the dist values

decrease as the sample size increases. For the original algorithm, these

differences range around a constant. For instance, consider the error

probabilities 0.05 and 0.15. The sequence of differences for the original

algorithm is 12.44, 10.91, 11.35, 11.29, 12.95, 12.73, and 13.82. The

sequences for the other algorithms are 5.29, 4.43, 2.86, 2.02, 1.84, 1.56,

and 1.47 (corrected version), and 5.03, 4.22, 2.69, 1.71, 1.15, 1.19, and

0.82 (minimized corrected version).

6. Table 3.1 serves to compare the different IITA algorithms with respect

to the average dist values, which is the main comparison that is made

here. Nevertheless, inspecting the average diff values gives the following

information. For all combinations of settings, the same ranking is ob-

tained. The minimized corrected version gives the smallest average diff

value, second comes the corrected version, and the original algorithm

has the largest diff value. Hence, the matches between the observed

and expected numbers of counterexamples (the fit criterion underlying

diff) can be ranked accordingly. It is also seen that smaller (average)

diff values do not necessarily imply smaller (average) dist values.

To give more information about the performances of the IITA algorithms,

we also present the symmetric differences at the level of knowledge states

(dist∗). This is justified and important since, according to Birkhoff (1937)’s

theorem, there exists a one-to-one correspondence between quasi orders and
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their corresponding knowledge structures. The results obtained at the two

levels do differ in general; for example, the original IITA algorithm may have

moderately lowest dist but considerably highest dist∗ values (cf. Tables 3.1

and 3.2). This can be explained primarily by the following two facts, which

are true especially when the error probabilities are small (see ‘Important

remarks regarding the simulation study in Schrepp (2003)’ below).

1. For an underlying quasi order with many implications, missing the true

relation already implies a large dist value; there are large differences of

the sizes of the true and neighboring quasi orders. The corresponding

true knowledge structure has few knowledge states, and hence there

are not large differences of the sizes of the true and neighboring quasi

ordinal knowledge spaces. Compared to the other two algorithms, the

original IITA algorithm produces good results specifically for quasi or-

ders with many implications, therefore yielding relatively smaller dist

than dist∗ values.

2. For an underlying quasi ordinal knowledge space with many knowl-

edge states, missing the true knowledge structure already implies a

large dist∗ value; there are large differences of the sizes of the true and

neighboring quasi ordinal knowledge spaces. The corresponding true

relation has few implications, and hence there are not large differences

of the sizes of the true and neighboring quasi orders. Compared to the

other two algorithms, the original IITA algorithm produces bad results

specifically for quasi orders with few implications, therefore yielding

relatively larger dist∗ than dist values.

We performed the simulation study described in Schrepp (2003), with the

following changes. The error probability τ takes the values 0.03, 0.05, 0.08,
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and 0.15. The sample sizes 50, 400, and 1600 are used. For every combination

of these settings, 100 simulations are made. For each of the three algorithms,

for every combination of error probability and sample size, the mean of the

numbers of elements in the 100 symmetric differences between the underlying

knowledge structures and the knowledge structures obtained from data anal-

ysis is computed; in the sequel referred to as dist∗ value. The dist∗ values

are reported in Table 3.2; first, second, and third lines refer to the original,

corrected, and minimized corrected IITA algorithms, respectively.

Table 3.2: Average dist∗ values under original, corrected, and minimized

corrected IITA algorithms (first, second, and third lines, respectively)

Sample size

50 400 1600

τ

0.03 13.94 10.31 13.85

14.67 2.51 5.75

14.23 2.58 6.45

0.05 33.55 26.49 22.67

22.90 7.31 6.54

22.30 7.74 6.99

0.08 60.45 63.79 79.21

34.84 8.59 3.70

29.04 8.77 3.94

0.15 120.88 173.30 182.00

45.36 14.67 12.05

40.27 12.85 7.66
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Except for the error rate 0.03 and sample size 50, the corrected and min-

imized corrected IITA algorithms give clearly smaller dist∗ values than the

original algorithm. Compared to the results in Table 3.1, even for the very

small error rates the two new algorithms perform better than the original.

For τ = 0.05 and sample size 400, for instance, the original, corrected, and

minimized corrected versions yield the dist∗ values 26.49, 7.31, and 7.74, re-

spectively. Regarding the dist∗ statistic, hence for small error rates, the new

IITA algorithms are more capable of reconstructing the underlying knowl-

edge structure than the original algorithm. For the higher error rates, the

dist results in Table 3.1 being confirmed here using dist∗, the original version

is clearly outperformed. Whereas the original algorithm solutions are far off

from the underlying knowledge structures, the corrected and minimized cor-

rected algorithms still produce reasonably accurate results. For τ = 0.15 and

sample size 400, for instance, the original, corrected, and minimized corrected

versions give the dist∗ values 173.30, 14.67, and 12.85, respectively.

Average numbers of erroneously detected implications

From a practical point of view, it may be important to have only few false im-

plications being added to the correct underlying quasi order (Schrepp, 2003,

2007). False implications can lead to wrong conclusions, and it may be inef-

ficient to try to exclude them afterwards. (This should not be interpreted as

a general statement, and of course, depends on the research context and the

costs and risks associated with such errors.) In the following, we compare

the three IITA algorithms with respect to the average numbers of erroneously

detected implications. This summary statistic is reported in Table 3.3; first,

second, and third lines refer to the original, corrected, and minimized cor-

rected IITA algorithms, respectively.
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Table 3.3: Average numbers of erroneously detected implications under

original, corrected, and minimized corrected IITA algorithms (first, second,

and third lines, respectively)

Sample size

50 100 200 400 800 1600 6400

τ

0.03 2.69 2.23 1.80 1.91 1.47 1.43 1.65

1.82 0.92 0.48 0.38 0.23 0.17 0.18

1.90 0.96 0.48 0.37 0.21 0.16 0.17

0.05 2.30 2.08 1.24 1.28 1.11 0.51 0.23

2.10 1.14 0.64 0.45 0.30 0.20 0.13

2.20 1.20 0.66 0.42 0.28 0.19 0.11

0.08 2.69 1.79 1.57 1.37 0.99 1.23 0.98

2.26 1.47 0.92 0.58 0.42 0.40 0.35

2.44 1.54 0.95 0.59 0.42 0.40 0.34

0.10 1.95 1.40 1.73 0.95 1.45 1.22 1.81

2.30 1.49 0.92 0.73 0.55 0.50 0.46

2.50 1.56 0.99 0.73 0.55 0.49 0.43

0.15 3.02 2.03 2.33 3.13 3.78 4.08 3.84

2.57 1.72 1.28 1.08 0.97 0.82 0.82

2.76 1.85 1.36 1.13 1.02 0.82 0.83

0.20 3.46 5.68 5.80 6.38 6.89 8.38 7.00

2.71 2.08 1.52 1.27 1.09 1.11 0.99

2.87 2.16 1.57 1.34 1.16 1.17 1.02
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Table 3.3 shows the following results:

1. Except for τ = 0.10 and sample sizes 50 and 100, the corrected and

minimized corrected IITA algorithms yield smaller average numbers

of falsely detected implications. For example, for the error rates 0.15

and 0.20, the original version is clearly outperformed. On average, the

corrected and minimized corrected algorithms falsely detect 1.01 and

1.05 implications, respectively, while the original version adds 2.59 false

implications.

2. The results are quite similar (maximum discrepancy of 0.20) for the cor-

rected and minimized corrected algorithms. Moreover, in 25 of the 42

combinations the corrected algorithm performs better, in six they per-

form (almost) identically, and in 11 the performance of the minimized

corrected version is better. For smaller sample sizes, the corrected al-

gorithm performs better than the minimized corrected one. For larger

sample sizes, there seems to be no noticeable difference.

3. The results for the corrected and minimized corrected versions improve

for increasing sample sizes. The original version, however, jitters be-

tween smaller and larger values, with no decreasing trend observable

for larger error probabilities. For τ = 0.10, for instance, the sequences

of decreasing values for the corrected and minimized corrected versions

are 2.30, 1.49, 0.92, 0.73, 0.55, 0.50, and 0.46, and 2.50, 1.56, 0.99, 0.73,

0.55, 0.49, and 0.43, respectively. The sequence for the original version

is 1.95, 1.40, 1.73, 0.95, 1.45, 1.22, and 1.81.
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Important remarks regarding the simulation study in Schrepp (2003)

Some important remarks are in order regarding the simulation study in

Schrepp (2003). The results reported in this simulation study are much

better than the results we have obtained for the original IITA algorithm.

There are substantial discrepancies between the average dist values and the

average numbers of falsely detected implications. For instance, for τ = 0.08

and sample size 200, Schrepp’s study gives 1.67 and 0.09, respectively, while

our simulation study yields 5.12 and 1.57. This can be explained by the fol-

lowing flaw in the simulation methodology in Schrepp (2003). As mentioned

in Section 3.4.1, the choice of (0, 1)-uniformly distributed δ values leads to

the problem that mostly large quasi orders are generated. The inconsistent

estimation scheme of the original IITA algorithm now produces good results

specifically for large quasi orders. For a large quasi order v, there are pre-

dominantly the cases i v j, for which correct estimators are used. For the

cases i 6v j, however, inconsistent estimators are applied, and hence the dis-

crepancies between the observed and expected numbers of counterexamples

are large. This implies that, for an underlying large quasi order, the diff val-

ues for small quasi orders of the selection set are large (pulling apart the diff

value for the true quasi order from the diff values obtained for the other rela-

tions). As a result, the underlying quasi order is more frequently recovered.

This is true particularly for smaller error probabilities.

That also explains why the original algorithm gives smaller dist values

for the error rates 0.03 and 0.05 in our simulation study (see Table 3.1). In

addition to pulling apart diff values because of distorted estimation, Note

that in the case of a large number of implications in the underlying quasi

order, there are large differences of the sizes of the true and the neighboring

relations in the selection set (due to transitivity). For instance, for nine
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items used in the simulation study, an underlying quasi order consisting

of 64 implications has possible nearest neighbors which contain 58 or 72

implications, and the former even may not be included in the selection set. As

a consequence, for an underlying large quasi order, missing the true relation

already implies a large dist value.

Moreover, it is not astonishing that in Schrepp (2003) smaller average

numbers of falsely detected implications are obtained. For quasi orders con-

taining an average number of not less than 70 non-reflexive implications,

there are, on average, no more than two implications left to be added erro-

neously.

A first assessment of the inductively generated selection set

Finally, we briefly summarize few results obtained from our simulation study

concerning the quality of the inductive construction procedure for generat-

ing the selection set of competing quasi orders. Table 3.4 reports, for each

combination of error probability and sample size, the numbers of times out

of 1000 simulations the underlying quasi orders are contained in the selection

sets. (Note that in all three IITA algorithms the same inductive construction

procedure is used.)

Overall, the results get worse for larger error probabilities or smaller sam-

ple sizes. Note that these figures, strictly speaking, do not give information

about reconstructing the underlying surmise relation with acceptable accu-

racy.
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Table 3.4: Numbers of times (out of 1000) the underlying quasi orders are

contained in the inductively generated selection sets

Sample size

50 100 200 400 800 1600 6400

τ

0.03 439 692 838 932 970 976 984

0.05 350 520 707 840 903 944 964

0.08 242 374 571 689 752 808 844

0.10 215 345 490 578 685 707 760

0.15 157 236 342 433 466 534 538

0.20 99 144 241 299 381 419 480

3.4.3 A second simulation study

In Sargin and Ünlü (2009b) a different simulation scheme is presented, we

discuss this second simulation study and point out the differences between

the simulation study previously described and this second simulation study.

Settings of the second simulation study

Except for the simulation of the underlying quasi order, the second simulation

study uses the same settings as the first one. The simulation of the underlying

quasi order had to be changed, because this first simulation study put to much

emphasize on quasi orders with many implications. Nevertheless we describe

the settings thoroughly.

Throughout the simulation study nine items are used. The general sim-

ulation scheme consists of three parts. First, quasi orders are generated
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randomly. Second, each of these quasi orders is used for simulating the data.

Third, the three algorithms are applied to and compared on that data. More

precisely:

1. All reflexive pairs are always added to the relation R. A constant

δ := 0.285 is set, giving the probability for adding an item pair to the

relation. Whenever 19 implications are added to the relation R, δ is

set to δ − 0.08. Finally, the transitive closure v of this relation R is

computed, and is the underlying quasi order.

2. From the set {K ⊂ Q : (i v j ∧ j ∈ K) → i ∈ K} of all response

patterns consistent with v, an element is drawn randomly. For this

drawn pattern all entries are changed from 1 to 0 or from 0 to 1, with

a same prespecified error probability τ .

3. The three algorithms are applied to the simulated data. They are com-

pared with respect to two criteria: the symmetric differences between

the data analysis solutions of the algorithms and the underlying quasi

order at the level of items (dist) and knowledge states (dist∗), and the

average diff values.

Part 1 only deviates from the simulation scheme in Sargin and Ünlü (2009a).

There are 363 083 quasi orders for nine discriminable (isomorphic quasi orders

are not considered) items (Brinkmann and McKay, 2007). It is impossible

to use all of them in a sampling scheme. However, one can try to draw

as representative as possible samples of quasi orders. The new simulation

scheme takes into account that quasi orders with many and few implications

can be obtained by only few combinations, while medium sized quasi orders

have more possible combinations. The following two graphics (see Figures

3.4 and 3.5) illustrate the difference between the two simulation schemes.
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Figure 3.4: Histogram of the size of 5000 quasi orders simulated using

the scheme described in Sargin and Ünlü (2009a). Quasi orders with many

implications are overrepresented.
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Figure 3.5: Histogram of the size of 5000 quasi orders simulated using the

scheme described in Sargin and Ünlü (2009b).
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One can see that the scheme depicted in Figure 3.5 puts more empha-

sis on the medium sized quasi orders, while Figure 3.4 indicates that the

sampling scheme treats all sizes of quasi orders equally. Note that in the

simulation study in Schrepp (2003) the very large quasi orders were highly

overrepresented (see Figure 3.3).

Due to the representativeness of the simulation scheme of the underlying

quasi orders, the highest quality of the simulation studies has the second

simulation study (Sargin and Ünlü, 2009b), second comes the first simula-

tion study (Sargin and Ünlü, 2009a), and worst results are obtained by the

simulation study in Schrepp (2003).

Results of the second simulation study

For each of the three algorithms, for every combination of error probability

and sample size, three summary statistics are computed. Two are the means

of the numbers of elements in the 1000 symmetric differences between the

underlying quasi order (at the level of items) and knowledge structure (at the

level of states) and the data analysis solutions; in the sequel referred to as

dist and dist∗ values. Another is the mean of the 1000 diff values obtained for

the data analysis solutions. These summary statistics are reported in Tables

3.5 and 3.6; first, second, and third lines refer to the original, corrected, and

minimized corrected IITA algorithms, respectively.

Table 3.5 and 3.6 show the following results:

1. For all settings the minimized corrected version gives the smallest diff

value, second smallest is the corrected version, and largest is the original

IITA algorithm. This shows that a better fit between the expected and

observed numbers of counterexamples is obtained by the corrected and

minimized corrected IITA algorithms.

51



Table 3.5: Average dist and dist∗ (first and second entries, respectively) val-

ues under original, corrected, and minimized corrected IITA algorithms (first,

second, and third lines, respectively) using the second simulation scheme

Sample size

50 100 200 400 800 1600 6400

τ

0.03 4.92, 21.17 3.69, 17.15 3.05, 18.83 2.53, 17.44 2.36, 20.45 2.31, 16.73 2.14, 15.21

4.82, 13.51 3.54, 5.93 2.77, 4.64 2.66, 3.12 2.57, 2.78 2.81, 2.56 2.86, 2.85

4.64, 9.88 3.42, 5.10 2.72, 3.86 2.78, 3.33 2.77, 3.11 3.00, 2.91 3.26, 3.43

0.05 6.38, 34.26 5.31, 38.43 4.58, 42.18 4.43, 45.48 4.62, 50.74 3.95, 44.03 3.28, 34.25

5.97, 14.69 4.21, 8.13 3.65, 5.63 3.38, 4.85 2.99, 4.21 3.22, 4.00 2.82, 3.24

5.67, 11.49 4.07, 7.14 3.51, 4.38 3.41, 4.01 3.16, 4.06 3.37, 3.84 3.18, 3.55

0.08 9.67, 72.56 9.33, 90.09 8.68, 103.23 8.77, 104.50 7.69, 100.19 6.94, 92.30 7.14, 86.80

7.79, 22.07 5.66, 15.46 4.86, 11.36 3.94, 6.93 3.91, 5.68 3.83, 5.58 3.40, 4.46

7.61, 18.35 5.43, 11.57 4.61, 8.29 3.91, 5.48 3.89, 4.88 3.95, 4.78 3.64, 4.32

0.10 12.89, 106.55 12.08, 129.17 11.72, 142.28 11.08, 146.13 10.27, 139.11 10.23, 132.77 9.82, 122.27

9.20, 28.80 6.66, 17.28 5.31, 12.98 4.65, 9.69 4.38, 7.87 4.11, 6.54 3.87,6.17

8.71, 23.12 6.41, 13.61 5.13, 10.10 4.57, 7.17 4.28, 6.47 4.12, 5.54 4.02, 5.45

0.15 18.07, 172.89 18.19, 198.54 18.71, 221.40 17.44, 221.57 18.29, 224.09 17.73, 208.66 16.60, 189.34

12.14, 42.12 9.20, 34.39 7.43, 25.57 6.85, 21.56 6.07, 17.59 5.56, 16.46 5.22, 15.14

11.84, 36.58 8.82, 28.67 7.12, 20,20 6.45, 15.59 5.85, 13.45 5.34, 12.11 4.99, 11.42

0.20 22.51, 232.76 24.40, 251.24 24.95, 260.73 25.10, 251.45 25.12, 243.85 25.68, 237.83 24.81, 206.81

14.18, 59.44 12.24, 53.10 10.45, 41.90 9.18, 35.43 7.90, 32.52 8.00, 33.96 7.56, 30.88

13.83, 52.56 12.01, 48.76 20.23, 37.54 8.86, 31.44 7.64, 27.95 7.63, 29.29 7.19, 26.29
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Table 3.6: Average diff value under original, corrected, and minimized

corrected IITA algorithms (first, second, and third lines, respectively) using

the second simulation scheme

Sample size

50 100 200 400 800 1600 6400

τ

0.03 3.70 11.92 43.37 161.14 618.21 2495.78 38245.63

1.74 4.83 15.52 49.84 191.26 672.67 10359.63

1.61 4.41 13.88 43.65 164.98 574.91 8908.12

0.05 3.90 12.52 43.34 169.68 671.86 2598.53 43288.03

1.94 5.82 17.05 58.70 210.34 769.39 12072.80

1.79 5.14 14.64 48.88 172.62 630.12 9863.98

0.08 4.21 13.95 50.94 203.20 820.12 3382.32 55885.89

2.32 6.80 20.57 71.66 242.06 922.36 15514.49

2.14 6.01 17.71 59.77 200.99 756.46 12397.85

0.10 4.46 15.07 58.11 235.76 980.21 3949.65 66508.00

2.46 7.19 22.56 76.57 271.03 1051.75 16441.65

2.27 6.49 19.83 65.10 229.43 887.51 13570.93

0.15 4.56 17.49 71.81 308.31 1289.43 5494.77 90699.35

2.54 7.64 24.61 84.65 315.40 1182.94 18043.73

2.42 7.20 22.82 76.97 251.73 1060.33 16122.29

0.20 4.98 18.45 84.06 371.98 1582.87 6464.70 108890.71

2.56 7.26 23.23 82.16 394.51 1160.47 18769.55

2.47 7.03 22.39 78.63 289.62 1099.82 17781.04
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2. For the corrected and minimized corrected IITA algorithms the average

dist and dist∗ values are quite similar, with a maximum discrepancy

of 0.40 and 0.58, respectively. Nevertheless, the minimized corrected

version is slightly better in more cases (in 30 cases for the dist value

and in 37 cases for the dist∗ value).

3. Except for four settings the original IITA algorithm performs worse

than the corrected and minimized corrected IITA algorithms, in terms

of dist values. For dist∗ the new algorithms perform always better.

Especially for the very high error rates, 0.15 and 0.20 the results of the

original version are far off compared to the results obtained under the

new algorithms. For instance, for τ = 0.20, the mean dist∗ value of the

original IITA algorithm is 240.67 and for the new algorithms it is 41.03

and 36.26, respectively.

4. All algorithms have in common that for increasing sample sizes and

decreasing error rate the dist and dist∗ values become better. Note

that the improvements with increasing sample size are larger for the

new algorithms. For example, for τ = 0.10, the original version gives

a dist value of 12.89 for a sample size of 50, and 9.82 for a sample size

of 6400 (with a difference of 3.07). However, the minimized corrected

version gives the values of 8.71 and 4.02 (with a difference of 4.69).

The second simulation study takes into account that very large quasi

orders are more seldom than medium sized quasi orders. The results of

this simulation study confirm the superiority of the two new methods as

compared to the original IITA algorithm. It is important to note that the

original IITA algorithm produces very good results if the underlying quasi

order is very large. Hence the first simulation study is strongly favoring the
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original algorithm (which nevertheless is inferior to the new algorithms for

higher error rates).

Note, that a perfect simulation scheme would assume randomly drawing

the underlying quasi order from the set of all possible quasi orders. This

set for nine items already is larger than 200 000 for unlabeled (that is using

non-discriminable items) quasi orders, and larger than 44 billion for labelled

quasi orders (Brinkmann and McKay, 2007). This perfect sampling scheme

is not feasible in practice.

3.4.4 Applications to empirical data

In this section, we apply the three IITA algorithms to two empirical datasets.

One is the Aphasic dataset, which is also used in Schrepp (2003), and the

other is from the Programme for International Student Assessment (PISA;

http://www.pisa.oecd.org/).

IITA analyses of the Aphasic dataset

The Aphasic dataset (Gloning et al., 1972) consists of 162 aphasic patients

tested on five tasks. These tasks are:

1. point to an object on a picture (Example: Please show me the ship.)

2. name an object on a picture (Example: Please tell me how this object

is calles.)

3. repeat a sentence (Example: Please repeat exactly what I say.)

4. name as fast as possible words beginning with a given letter (Example:

Please tell ma as many words as possible starting with M)
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5. the number of verbal and phonemic errors produced when the patient

performs tasks 2, 3, and 4

The items were dichotomized at the median and coded that 1 stands for

aphasic behavior and 0 for normal behavior This dataset is used in Schrepp

(2003) for comparing the original IITA algorithm to feature pattern analysis

and configural frequency analysis. For details on the dataset, the latter two

methods, and the obtained results, see Schrepp (2003).

Analyses of the Aphasic dataset using the corrected and minimized cor-

rected IITA algorithms give the same quasi order as obtained for the original

algorithm. The quasi order consists of the following implications {(1, 1),

(1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4)}. The

three IITA versions reproduce the scaling of items obtained by feature pat-

tern analysis and also derive all the knowledge states obtained by configural

frequency analysis (Schrepp, 2003). The fact that all three IITA algorithms

produce virtually the same results as obtained by these approved (for the

Aphasic dataset) data analysis methods is positive and confirms their use-

fulness. Interestingly, though the same quasi order is obtained for the three

algorithms, the computed diff values (i.e., the matches between the observed

and expected numbers of counterexamples; the fit criterion) are considerably

smaller for the corrected (61.54) and minimized corrected (60.93) versions

than for the original (165.98) algorithm, showing a better fit of the b∗ij to the

data for the two new algorithms.

IITA analyses of the PISA dataset

We analyze part of the 2003 PISA data consisting of 340 German students

answering eight questions on mathematical literacy. These items are chosen

to form a Rasch scale. That is, the dichotomous one-parameter logistic model
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Figure 3.6: Rasch scale of the eight assessment items (from bottom to top,

items sorted according to increasing difficulty). Assumed to underlay the

PISA dataset.

(Fischer and Molenaar, 1995) fits (goodness-of-fit and item fit) the data very

well. Under this model, the following item difficulties are estimated for the

eight questions: −2.09, −1.58, −1.23, −0.04, 0.28, 0.66, 1.46, and 2.20. Since

the Rasch model assumes unidimensionality of the latent trait, the items can

be ordered linearly along the continuum in terms of their difficulties (with

respect to the natural ordering in the reals), resulting in a deterministic

Guttman (1944) scale; in this regard, see also Ünlü (2007). Due to the

highly confirmatory fit statistics obtained for this dataset, the items most

likely form a chain, which is considered as the underlying quasi order (see

Figure 3.6) in the subsequent analyses.

Analyzing the PISA dataset using the original IITA algorithm and the

corrected and minimized corrected IITA algorithms gives the quasi orders

shown in Figures 3.7 and 3.8, respectively.
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Figure 3.7: Quasi order obtained for the PISA dataset under the original

IITA algorithm.
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Figure 3.8: Quasi order obtained for the PISA dataset under the corrected

and minimized corrected IITA algorithms.
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The original IITA algorithm yields a dist value of 19, in contrast to the

corrected and minimized corrected versions, which give a clearly smaller dist

value of 5. Since under all three algorithms no false implications are added,

these are the numbers of true implications missed by the algorithms. The cor-

rected and minimized corrected versions outperform the original algorithm.

The better performance of the two new algorithms is even more evident,

if multiple barcharts are used for exploring the data. Multiple barcharts are

a variant of mosaic plots, in which each tile has the same width and the

height is computed according to the number of cases in the cell. Mosaic

plots are a good graphic for exploring categorical data (Unwin et al., 2006).

For dichotomous data, as we have in KST, multiple barcharts provide an

appropriate way of visually displaying the data (Ünlü and Sargin, 2008b). If

interactive techniques are incorporated, those graphics can become a powerful

tool for detecting knowledge states (for interactive graphics, see Theus and

Urbanek (2008); Ünlü and Sargin (2008b)). Figure 3.9 shows the multiple

barcharts view of Items 1, 3, 4, 7, and 8 of the PISA dataset. We used only

five items for illustrating the usage of mosaic plots, because it gives a clearer

picture of the benefits of using mosaic plots.

The multiple barcharts in Figure 3.9 give a satisfactory picture. The two

tiles in the upper left and lower right corners of the mosaic plot correspond

to the knowledge states ∅ and Q. The tiles representing the remaining states

reasonably emerge, as compared to the ones that do not correspond to the

states.

In Figure 3.10 the knowledge states obtained by the original (left) and

corrected / minimized corrected (right) IITA algorithms are highlighted in

multiple barcharts.

The original and corrected / minimized corrected IITA algorithms both
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Figure 3.9: Mosaic plot of the PISA dataset. The assumed underlying

knowledge states are highlighted.

Figure 3.10: Mosaic plot of the PISA dataset. The knowledge states ob-

tained for this dataset under the original (left) and corrected / minimized

corrected (right) IITA algorithms are highlighted.
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detect all the underlying knowledge states. The original IITA algorithm

additionally includes seven non-states; for instance, the non-state represented

by the tile in the first row and third column. Using multiple barcharts, this

tile would certainly be discarded. (Note that the tiles in the upper left

and lower right corners correspond to the knowledge states ∅ and Q.) The

corrected / minimized corrected IITA algorithm, on the other hand, only

includes one non-state. Yet the tile representing this non-state (third row,

last column) has a relatively large height. However, it is obvious from the

graphic that the original IITA algorithm is includes non-states in the derived

quasi order.

The better performance of the two new algorithms can be explained by

the fact that the original IITA version, in general, gives bad results when

longer chains of items are present in the underlying quasi order. In the PISA

example, the underlying Rasch scale v, which is a chain, consists only of

cases i v j and j 6v i. As mentioned in Section 3.2, for these cases incon-

sistent estimators are used in the original algorithm. This leads to larger

discrepancies between the observed and expected numbers of counterexam-

ples, hence to a larger diff value. The corrected and minimized corrected

IITA algorithms, however, use the corrected estimators and therefore detect

true implications more properly.

3.5 Maximum likelihood methodology

In this section, we introduce the population analogs of the diff fit measures,

interpret the coefficients as maximum likelihood estimators (MLE) for the

corresponding population values, and show for these estimators the quality

properties asymptotic efficiency, asymptotic normality, asymptotic unbiased-
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ness, and consistency. The use of asymptotic normality in practice is further

commented on in Section 3.6.

3.5.1 The diff coefficients as maximum likelihood esti-

mators

Consider the transformed sample diff coefficients

difft := diff/m2.

The division is necessary to cancel out sample size m in replacements of

sample quantities with population quantities. Given the multinomial prob-

ability distribution on the set of all response patterns, make the following

replacements in the arguments, bij and pi, of the sample difft coefficients:

bij
m
→ P(i = 0, j = 1) =

∑
R∈2Q,i 6∈R ∧ j∈R

ρ(R) =: %īj,

pi → P(i = 1) =
∑

R∈2Q,i∈R

ρ(R) =: %i.

This gives three population difft coefficients corresponding to the sample difft

coefficients.

The sample difft coefficients are the obvious sample analogs of these

population fit measures. They are reobtained by replacing the arguments

ρ(R) of the population difft measures with the maximum likelihood esti-

mates m(R)/m of the multinomial distribution. According to the invariance

property of maximum likelihood estimation, the sample difft coefficients are

the maximum likelihood estimators for the corresponding population difft

coefficients. The invariance property states that if θ̂ is the maximum like-

lihood estimator for θ, then for any function f(θ), the maximum likelihood

estimator for f(θ) is f(θ̂) (Casella and Berger, 2002; Zehna, 1966).
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3.5.2 Asymptotic properties of the diff coefficients

Next, we present an application of established maximum likelihood asymp-

totics. Though this is a straightforward application, it is novel and impor-

tant in the so far ad hoc discussion of data analysis methods in KST. Since

the following techniques are well-known, the explanations are kept succinct.

For technical details on asymptotic properties and regularity conditions, see

Bishop et al. (1975), Casella and Berger (2002), and Witting and Müller-

Funk (1995).

Maximum likelihood estimators possess a number of asymptotic quality

properties, given certain regularity conditions are satisfied. Important prop-

erties are asymptotic efficiency (the most precise estimates are produced),

and implied by this property, asymptotic normality, asymptotic unbiased-

ness (estimates converge in expectation to the true values), and consistency

(estimates converge in probability to the true values). It can be verified that

the maximum likelihood estimator for the multinomial distribution fulfills

required regularity conditions and hence is asymptotically efficient (Witting

and Müller-Funk, 1995).

The population difft coefficients are continuous functions of the multi-

nomial cell probabilities ρ(R). (Note that ρ(R) > 0 for all response pat-

terns R ∈ 2Q. This assumption is essential for assuring continuity of the

population difft coefficients. Therefore the corresponding sample difft coef-

ficients are asymptotically efficient, asymptotically normal, asymptotically

unbiased, and consistent estimators for the population values (Casella and

Berger, 2002).
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3.5.3 Illustrating consistency

One possibility to assess and compare the quality of asymptotic properties for

finite samples for the three IITA algorithms is by simulation. We exemplify

that with the consistency property. First, we visually illustrate consistency

using one quasi order. Theoretically, consistency is formulated and holds for

any single quasi order. The rate of convergence may vary from quasi order

to quasi order. Second, to get a rough structure-independent evaluation, we

aggregate the results obtained for 100 quasi orders.

The simulation study illustrating consistency is based on nine items and

is as follows. This simulation study is not to be mixed up with the simulation

studies for comparing the three IITA approaches discussed earlier.

1. All reflexive pairs are always added to the relation R. A constant δ is

set randomly (Sargin and Ünlü (2009a)), which gives the probability for

adding each of the remaining 72 item pairs to the relation. The tran-

sitive closure v of this relation R is computed, and is the underlying

(true) quasi order.

2. Fifty data matrices are simulated for each of the increasing sample

sizes 100, 1000, 10000, and 25000 in the following way. From the set

{K ∈ 2Q : (i v j∧j ∈ K)→ i ∈ K} of all response patterns consistent

with v an element is drawn randomly. For this drawn pattern all

entries are changed from 1 to 0 or from 0 to 1, with a same prespecified

error probability τ . This is simulating with a special case of the BLIM.

3. Under all three algorithms, the sample and population difft coefficients

are computed.

In Figure 3.11 a graphical display of consistency for one quasi order is

given (for τ = 0.10); running the previous three simulation steps once.
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Figure 3.11: Boxplots for the three IITA algorithms, within each of the

sample sizes of the 50 computed sample difft values. The three population

difft values are shown as horizontal lines in the plots.
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Figure 3.11 shows boxplots for all three IITA algorithms, within each of

the sample sizes of the 50 computed sample difft values. The three population

difft values are shown as horizontal lines in the plots. This graphic illustrates

that the population values are better attained and the sample values are less

dispersed with increasing sample size, for all three algorithms. The results

are better for the corrected and minimized corrected IITA versions than for

the original. The corrected and minimized corrected algorithms have a higher

speed of convergence. In particular, they achieve the population values with

a much higher accuracy than the original algorithm, which shows, even for a

sample size of 25000, clear discrepancies between sample and population val-

ues. Hence consistency, which is guaranteed by theory, manifests in smaller

finite sample sizes for the two new IITA versions.

Table 3.7 summarizes the aggregated results obtained for 100 quasi orders

(for τ = 0.10); running the three simulation steps 100 times.

Table 3.7 shows, for each combination of ε (0.01, 0.001, 0.0001) and sam-

ple size, the relative frequencies of 5000 data matrices satisfying |θ̂n− θ| > ε,

where θ̂n and θ stand for the sample and population difft coefficients, respec-

tively. The entries represent estimates of the probabilities P(|θ̂n−θ| > ε) used

in the definition of consistency, where the probability is taken with respect

to the true multinomial distribution. For instance, the first entry says that

the probability for obtaining a sample difft value, for a sample size of 100,

differing more than 0.01 from the population difft value is, approximately,

0.0010. This is on average, independent of the underlying quasi order.

Under all three algorithms, for each ε, the relative frequencies are de-

creasing with increasing sample size (except for one case, mentioned below).

Again, the two new IITA versions outperform the original. The original ver-

sion shows the lowest speed of convergence, and for ε = 0.0001, from sample
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Table 3.7: Relative frequencies of 5000 data matrices (50 data matrices

per one out of 100 quasi orders) satisfying |θ̂n − θ| > ε; first, second, and

third lines refer to the original, corrected, and minimized corrected IITA

algorithms, respectively.

Sample size

100 1000 10000 25000

ε

0.01 0.0010 0 0 0

0 0 0 0

0 0 0 0

0.001 0.2402 0.0278 0 0

0.0466 0 0 0

0.0326 0 0 0

0.0001 0.9266 0.5636 0.4910 0.5240

0.9540 0.2306 0.0158 0.0066

0.9646 0.1878 0.0032 0.0002

sizes 10000 to 25000, the relative frequency is even increasing. The corrected

and minimized corrected IITA algorithms perform well and quite similar,

with a slight advantage for the minimized corrected.

In sum, we have seen that the diff coefficients of the IITA algorithms

can be interpreted as maximum likelihood estimators possessing desirable

asymptotic properties. Based on the consistency property, next we propose

evaluating the diff fit measures via rank ordered population values.
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3.5.4 Comparisons of the population values of the three

algorithms

Prior, only sample, not population, quantities have been considered. The

simulation study in this section is theoretical, in the sense of solely dealing

with values for a known population. The following summary statistics (eval-

uation criteria) are investigated in population, not sample, quantities.

The symmetric difference, at the level of items (dist), of the obtained and

underlying quasi orders is used as a distance measure. Since there is a bijec-

tion between quasi orders and their corresponding knowledge structures, the

symmetric difference can also be considered at the level of knowledge states

(dist?). The results obtained at the two levels may differ; for example, the

original IITA algorithm may have moderately lowest dist but considerably

highest dist? values (see Table 3.8). Therefore we introduce the rank statistic

(rk) as a third useful measure. Given a set of competing quasi orders, which

is required to include the underlying one, this statistic computes the rank of

the true quasi order in the ordered list of population difft values.

This population based approach is justified according to the asymptotic the-

ory discussed previously. The sample difft values converge in probability (and

expectation) to the population difft values.

3.5.5 Procedure of the simulation study

In the simulation study nine items are used. The general simulation scheme

consists of five parts. First, the underlying quasi order is generated randomly.

Second, the set of competing quasi orders is constructed according to the

inductive procedure of the IITA algorithms. Third, the underlying quasi

order is added to the selection set. Fourth, the population difft coefficients
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are computed. Fifth, the three algorithms are compared regarding symmetric

differences and ranks. More precisely:

1. All reflexive pairs are always added to the relation R. A constant δ is

set randomly (Sargin and Ünlü (2009a)), which gives the probability for

adding each of the remaining 72 item pairs to the relation. The tran-

sitive closure v of this relation R is computed, and is the underlying

quasi order.

2. To generate a selection set of quasi orders, a binary 5000×9 data matrix

is simulated. From the set {K ∈ 2Q : (i v j ∧ j ∈ K) → i ∈ K} of

all response patterns consistent with v an element is drawn randomly.

For this drawn pattern all entries are changed from 1 to 0 or from

0 to 1, with a same prespecified error probability τ . The inductive

construction procedure is applied to the simulated data matrix.1

3. If the underlying quasi order v is not contained in the selection set, it

is added.

4. Under all three algorithms, the population difft coefficients are com-

puted for all quasi orders of the selection set.

5. The three algorithms are compared with respect to three criteria: the

symmetric differences dist and dist? of the obtained (with smallest

population difft value) and underlying quasi orders and corresponding

knowledge structures, respectively, and the rank rk of the underlying

quasi order among the population difft values.

1The idea is to obtain a large as possible number of quasi orders in the selection set.

Experimentation (not reported here) has shown that for sample sizes greater than 5000

barely any improvement of the selection set is achieved. Sample sizes smaller than 5000

have led to smaller selection sets.
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The error probabilities take the values 0.03, 0.05, 0.08, 0.10, 0.15, and 0.20.

For each of these error probabilities, the previous five simulation steps are

run 1000 times.

3.5.6 Results of the simulation study

For each of the three algorithms, for every error probability, three population

summary statistics are computed. They are the means of the 1000 dist, dist?,

and rk values. These summary statistics are reported in Table 3.8).

Table 3.8) shows the following results:

1. Summary statistic dist: For the small error rates 0.03 and 0.05, the

original algorithm gives better average dist results than the corrected

and minimized corrected. For all other τ values, the two new versions

perform clearly better than the original. This is especially the case for

the large error probabilities 0.15 and 0.20.

The average population dist values show a similar pattern as the av-

erage sample dist values reported in Sargin and Ünlü (2009a). Those

descriptive results hence are substantiated through theoretical consid-

erations. In both simulation studies, the two new versions outperform

the original, yet the difference in performance is larger in terms of pop-

ulation quantities.

For any τ value, the minimized corrected IITA algorithm performs

slightly better than the corrected. This shows that the minimized cor-

rected version is better asymptotically.

2. Summary statistic dist?: For all error probabilities, the average dist?

statistic gives the same ranking; listed from worst to best, original,

corrected, and minimized corrected IITA. The results are quite similar
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Table 3.8: Average dist, dist?, and rk values; first, second, and third lines

refer to the original, corrected, and minimized corrected IITA algorithms,

respectively.

Summary statistic

dist dist? rk

τ

0.03 0.74 2.42 1.78

3.10 1.72 1.60

2.99 0.77 1.43

0.05 1.16 11.73 2.30

2.76 2.23 1.68

2.31 0.91 1.35

0.08 4.05 40.85 3.88

3.72 2.17 1.95

3.50 1.13 1.57

0.10 6.17 79.44 6.54

3.59 2.89 2.35

3.00 1.65 1.67

0.15 15.11 142.90 11.76

3.62 6.56 3.18

3.49 3.54 2.42

0.20 32.79 174.80 16.96

4.56 14.76 4.79

3.82 10.81 3.86
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for the corrected and minimized corrected algorithms. Compared to the

original version, the corrected and minimized corrected IITA algorithms

perform very well. For error probabilities up to 0.10, their average

dist? values are smaller than 3. The original version, however, shows

a bad performance already for τ = 0.05. The results strongly worsen,

reaching a maximum average dist? value of 174.80 for τ = 0.20. For the

corrected and minimized corrected versions, the corresponding average

dist? values are 14.76 and 10.81, respectively.

3. Summary statistic rk: For all error probabilities, the average rk statistic

gives the same ranking; listed from worst to best, original, corrected,

and minimized corrected IITA. The corrected and minimized corrected

IITA algorithms perform quite similar. Compared to the original ver-

sion, they produce good results, especially for larger error rates. For

τ = 0.20, the corrected and minimized corrected versions give average

rk values of 4.79 and 3.86, respectively, while the original algorithm

shows a considerably larger average rk value of 16.96.

Some remarks are in order regarding the results of the simulation study.

1. Overall, the minimized corrected version performs best, second comes

the corrected, and worst is the original (with respect to all three sum-

mary statistics). We have obtained similar results for the two new

algorithms. For each of the three summary statistics, the original ver-

sion has shown considerably bad results for larger error probabilities.

2. Further analyses made using ranks (of underlying quasi orders) show

that the original version, compared to the other two algorithms, not

only performs worse based on average ranks, but also has higher max-

imum ranks. For every error probability, the maximum of the 1000 rk
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values is greater. For instance, we obtained the maximum ranks 22, 7,

6 (for τ = 0.03) and 40, 31, 15 (for τ = 0.10) for the original, corrected,

and minimized corrected algorithms. Moreover, the original version is

outperformed concerning the number of rk values that are at most as

large as 3 (first three ranks). For instance, we obtained the first three

ranks 893, 940, 960 times (for τ = 0.03) and 645, 830, 919 times (for

τ = 0.10) for the original, corrected, and minimized corrected algo-

rithms. These summary statistics measure rank variability and show

that the original IITA algorithm has a wider range for the rk values.

3. That the original algorithm gives better average dist results in popula-

tion quantities for the error probabilities 0.03 and 0.05 can be explained

in the same way as we did for sample quantities in Sargin and Ünlü

(2009a). The incorrect estimation scheme of the original algorithm

produces good results specifically when the size of the underlying quasi

order is large. For a large quasi order v, there are predominantly

the cases i v j, for which correct estimators are used. For the cases

i 6v j, however, incorrect estimators are applied, and the discrepan-

cies between the observed and expected numbers of counterexamples

are large. This implies that, for an underlying large quasi order, the

difft values for small quasi orders of the selection set are large (pulling

apart the difft value for the true quasi order from the difft values ob-

tained for the other relations). As a result, the underlying quasi order

is more frequently recovered. This is true particularly for smaller error

probabilities. In addition, note that in the case of a large number of

implications in the underlying quasi order, there are large differences of

the sizes of the true and the neighboring relations in the selection set

(due to transitivity). For instance, for nine items used in the simula-
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tion study, an underlying quasi order consisting of 64 implications has

possible nearest neighbors which contain 58 or 72 implications, and the

former even may not be included in the selection set. As a consequence,

for an underlying large quasi order, missing the true relation already

implies a large dist value.

3.6 Inferential statistics for the diff coeffi-

cients

So far we could only tell which quasi order fits the data best. However it is

important to know to which degree one quasi order is better than another.

Furthermore the diff coefficient was treated as a single number. However, for

an estimator it is important to know its variability. To tackle these problems,

hypothesis testing and computation of confidence intervals are the proper

tools in statistics. These tools require the variances of the diff coefficients to

be computed.

Maximum likelihood estimators satisfy several asymptotic properties, if

certain regularity conditions are fulfilled. Assume a sequence of estimators

Wn = Wn(X1, ..., Xn) with E(Xi) = µ, then one of these properties is asymp-

totic normality

√
n
Wn − µ

σ
→ Z,

where Z ∼ N(0, 1) (Casella and Berger, 2002). Further, the delta method

(Goodman and Kruskal, 1979) states that, for any function f(θ) satisfying

the property that f ′(θ) exists and is non-zero valued,

√
n
f(Wn)− f(µ)

σ[f ′(θ)]
→ Z.
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For computing σ, one can use the inverse of the Fisher information matrix

I(θ) = E
[
∂

∂θ
log(L(θ))2|θ

]
,

where L(θ) is the likelihood function. The variance can be computed by

V ar(f(θ̂)|θ) = f ′(θ)I−1(θ)[f ′(θ)]T ,

if I(θ) is nonsingular (Casella and Berger, 2002).

3.6.1 Gradients of the diff coefficients

In the following, we derive the gradients of the three difft coefficients.

First, we present the gradients of the corrected and minimized corrected

IITA difft coefficients:

difft =
diff

m2

=

∑
i 6=j

(bij−b∗ij)2

n(n−1)

m2

=
1

n(n− 1)

∑
i 6=j
ivj

(
bij
m
− pjγ

)2

+
∑
i 6=j

i 6vj,jvi

(
bij
m
− (pj − pi + piγ)

)2


+

1

n(n− 1)

∑
i 6=j

i6vj,j 6vi

(
bij
m
− (1− pi)pj

)2

=
1

n(n− 1)

∑
i 6=j
ivj

(
%īj − %jγ

)2︸ ︷︷ ︸
=:µ1

+
∑
i6=j

i6vj,jvi

(
%īj − (%j − %i + %iγ)

)2︸ ︷︷ ︸
=:µ2


+

1

n(n− 1)

∑
i 6=j

i6vj,j 6vi

(
%īj − (1− %i)%j

)2︸ ︷︷ ︸
=:µ3

.

Next, ∂

∂ρ(R̂)
is computed for a fixed R̂ ∈ 2Q. Since the coefficient is a sum,

we can derive each part separately.
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According to the chain rule the derivatives of µ are

∂µk

∂ρ(R̂)
= 2
√
µk
∂
√
µk

∂ρ(R̂)
, k = 1, 2, 3.

The corresponding derivatives are as follows:

∂
√
µ1

∂ρ(R̂)
=


1− γ − %j ∂γ

∂ρ(R̂)
: R̂ = Rīj

−(γ + %j
∂γ

∂ρ(R̂)
) : R̂ = Rj ∧ R̂ 6= Rīj

−%j ∂γ

∂ρ(R̂)
: R̂ = Rj̄ ∧ R̂ 6= Rīj

∂
√
µ2

∂ρ(R̂)
=



−%i ∂γ

∂ρ(R̂)
: R̂ = Rīj

−(γ + %i
∂γ

∂ρ(R̂)
) : R̂ = Rij

1− (γ + %i
∂γ

∂ρ(R̂)
) : R̂ = Rij̄

−%i ∂γ

∂ρ(R̂)
: R̂ = Rīj̄

∂
√
µ3

∂ρ(R̂)
=



%i : R̂ = Rīj

%j − (1− %i) : R̂ = Rij

%j : R̂ = Rij̄

0 : R̂ = Rīj̄

The derivative of γ for the corrected version is

∂γ

∂ρ(R̂)
=



1
|v|−n

∑
i6=j
ivj

%j−%īj
%2
j

: R̂ = Rīj

1
|v|−n

∑
i6=j
ivj

%īj
%2
j

: R̂ 6= Rīj ∧ R̂ = Rj

0 : else

.

For the minimized corrected version the derivative is as follows. (Recall that

γ = −x1+x2

x3+x4
where x1, x2, x3, and x4 are defined as in Section 3.3.2.) The

derivative of the error rate γ is

∂γ

∂ρ(R̂)
= −

∂(x1+x2)

∂ρ(R̂)
(x3 + x4)− ∂(x3+x4)

∂ρ(R̂)
(x1 + x2)

(x3 + x4)2
.

76



Since ∂(x1+x2)

∂ρ(R̂)
= ∂(x1)

∂ρ(R̂)
+ ∂(x2)

∂ρ(R̂)
and ∂(x3+x3)

∂ρ(R̂)
= ∂(x3)

∂ρ(R̂)
+ ∂(x4)

∂ρ(R̂)
, the derivatives are:

∂(x1)

∂ρ(R̂)
+
∂(x2)

∂ρ(R̂)
=



−2
∑
i6=j
ivj

(%j + %īj) : R̂ = Rīj∑
i 6=j
i 6vj

(−2%īj + 2%j − 2%i)− 2(
∑
i6=j
ivj

%īj) : R̂ = Rij

∑
i6=j
i 6vj

(−2%īj + 2%j − 4%i) : R̂ = Rij̄

0 : R̂ = Rīj̄

and

∂(x3)

∂ρ(R̂)
+
∂(x4)

∂ρ(R̂)
=



4
∑
i 6=j
ivj

%j : R̂ = Rīj

4(
∑
i 6=j

jvi,i 6vj

%i +
∑
i 6=j
ivj

%j) : R̂ = Rij

4(
∑
i 6=j

jvi,i6vj

%i) : R̂ = Rij̄

0 : R̂ = Rīj̄

For the original IITA the gradient follows. The derivative of γ is the same

as for the corrected IITA version. The difft coefficient for the original IITA

algorithm is

difft =
1

n(n− 1)

∑
i 6=j
ivj

(
bij
m
− pjγ

)2

+
∑
i 6=j
i 6vj

(
bij
m
− (1− pi)pj(1− γ)

)2


=

1

n(n− 1)

∑
i6=j
ivj

(
%īj − %jγ

)2︸ ︷︷ ︸
:=ν1

+
∑
i6=j
i6vj

(
%īj − (1− %i)%j(1− γ)

)2︸ ︷︷ ︸
=:ν2

 .

As above

∂νk

∂ρ(R̂)
= 2
√
νk
∂
√
νk

∂ρ(R̂)
, k = 1, 2,

where the corresponding derivatives are as follows:

∂
√
ν1

∂ρ(R̂)
=


1− γ − %j ∂γ

∂ρ(R̂)
: R̂ = Rīj

−(γ + %j
∂γ

∂ρ(R̂)
) : R̂ = Rj ∧ R̂ 6= Rīj

−%j ∂γ

∂ρ(R̂)
: R̂ = Rj̄ ∧ R̂ 6= Rīj
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∂
√
ν2

∂ρ(R̂)
=



γ − %j ∂(1−γ)

∂ρ(R̂)
+ %i

(
1− γ + %j

∂(1−γ)

∂ρ(R̂)

)
: R̂ = Rīj

γ − 1− %j
(
∂(1−γ)

∂ρ(R̂)
− 1 + γ

)
+ %i

(
1− γ + %j

∂(1−γ)

∂ρ(R̂)

)
: R̂ = Rij

−%j
(
∂(1−γ)

∂ρ(R̂)
− 1 + γ

)
+ %i

(
%j

∂(1−γ)

∂ρ(R̂)

)
: R̂ = Rij̄

−%j ∂(1−γ)

∂ρ(R̂)
+ %i

(
%j

∂(1−γ)

∂ρ(R̂)

)
: R̂ = Rīj̄

3.6.2 Expected Fisher information matrix

In Section 2.2 we showed that a multinomial distribution underlies the data.

In general, we consider now a multinomial distribution M(m, p) with m trials

and cell probabilities p = (p1, . . . , pn), with pi > 0 for all i = 1, . . . , n.

Let X = (X1, . . . , Xn) ∼ M(m, p) with realization x = (m1, . . . ,mn). The

likelihood function is

L =
m!∏n
i=1mi!

n∏
i=1

pi
mi .

Thus

log(L) = C +

(
m−

n∑
i=2

mi

)
log

(
1−

n∑
i=2

pi

)
+

n∑
i=2

mi log(pi),

where C does not depend on p.

The Hessian matrix I = (∂2 logL/∂pi∂pj)i,j (of dimension (n−1)×(n−1))

is next computed. Consider an pk (for some k 6= 1). Then

∂

∂pk
logL =

mk

pk
− m−

∑n
i=2 mi

1−
∑n

i=2 pi
.

On the diagonal of I, for k = 2, . . . , n,

∂2

∂2pk
logL = −mk

p2
k

− m−
∑n

i=2mi

(1−
∑n

i=2 pi)
2
.

Off-diagonal elements of I, for k, l = 2, . . . , n, k 6= l,

∂2

∂pk∂pl
logL = − m−

∑n
i=2mi

(1−
∑n

i=2 pi)
2
.
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In particular, the off-diagonal elements of I are identical. Set θ := − m−
Pn
i=2mi

(1−
Pn
i=2 pi)

2 ,

and

I =


−m2

p2
2

+ θ θ θ · · · θ

θ −m3

p2
3

+ θ θ · · · θ

. . .

θ θ θ · · · −mn
p2
n

+ θ

 .

The expected Fisher information matrix is −Ep(I). Off-diagonal elements

of −Ep(I), for k, l = 2, . . . , n, k 6= l are

−Ep(Ikl) =
m

1−
∑n

i=2 pi
.

On the diagonal of −Ep(I), for k = 2, . . . , n we have

−Ep(Ikk) =
m

pk
+

m

1−
∑n

i=2 pi
.

Set θ′ := m
1−

Pn
i=2 pi

, and

−Ep(I) =


m
p2

+ θ′ θ′ θ′ · · · θ′

θ′ m
p3

+ θ′ θ′ · · · θ′

. . .

θ′ θ′ θ′ · · · m
pn

+ θ′

 .

It can be seen that the inverse of − 1
m
Ep(I) is the variance-covariance matrix

(δijpi − pipj)i,j for i, j = 2, . . . , n (Cramér, 1946). Here δij is the Kronecker

delta.

In Ünlü and Sargin (2009) it is shown that the observed and expected

Fisher information matrices are equal, if maximum likelihood estimators are

used. Hence the inverses are the same. Figure 3.12 summarizes and illustrates

this results.

Figure 3.12 is to be understood as follows. The expected Fisher informa-

tion (EF) and observed Fisher information (OF) matrices can be inverted in

order to obtain EF−1 and OF−1 and vice verse.
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OF

EF

OF−−1

EF−−1Inversion

Inversion

MLE MLE

Figure 3.12: Diagram of relations between expected and observed Fisher

information matrices. The diagram shows that one can either invert the

Fisher information matrix and then use the MLE, or first use the MLE and

then invert the matrix.

3.6.3 Applications to empirical and simulated data

In this section, we illustrate the use and performance of the above approach

in finite sample sizes by real and simulated data. We start with giving an

example using the PISA data (cf. Section 3.4.5). In the following we only

focus on the minimized corrected IITA algorithm. For the other IITA versions

the approach is analogous.

In Section 3.4.5 we obtained a quasi order with smallest diff value for the

minimized corrected IITA version. It has the implications {(1, 1), (1, 2), (1, 3),

(1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5), (4, 4), (5, 5)}, where

(i, j) stands for solving item j implies solving item i. This relation is de-

picted in Figure 3.8. Further, the PISA test items form a Rasch scale (see
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Figure 3.6) with significant goodness-of-fit and item fit tests, hence the Rasch

model suggests a chain as the underlying quasi order. With the upper ap-

proach we can statistically analyze if a significant difference between the diff

values exists.

The transformed difft value of the quasi order implied by the minimized

corrected IITA algorithm is 0.0002384614 with variance 0.0000037372, and

of the chain 0.0009289828 with variance 0.0000278196. We perform a normal

hypothesis test for comparing the means of the difft values under the null

hypothesis that the chain has a larger difft value than the quasi order obtained

by minimized corrected IITA algorithm. We obtain a p-value of 0.0117, which

indicates a significant difference of these two results. However, one should

note that the result is not highly significant. Therefore the chain as the

underlying quasi order (as proposed by the Rasch model) can be questioned

and for further analyses the quasi order obtain by the minimized corrected

IITA algorithm should rather be used.

This example shows the possibilities gained through the availability of

variances. First, it is now possible to judge whether the quasi orders in the

selection set have a significant difference to the quasi order that fits the data

best. This information can be taken into consideration in further analyses.

Second, a common approach in KST for deriving a quasi order is the querying

of experts. Different quasi orders, obtained by querying different experts, can

be tested against each other. Third, many methods exist in psychometrics

for deriving quasi orders by data analysis. The results gained by these data

analysis methods can be compared with the results of other data analysis

methods. This is what was done in the upper example, where the quasi

order proposed by the Rasch model was tested against the solution of the

minimized corrected IITA algorithm.
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Next, we illustrate the performance of the asymptotic behavior by simu-

lated data examples. For the fixed quasi order, {(1, 1), (1, 8), (2, 2), (2, 3),

(2, 4), (2, 5), (2, 8), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5), (5, 5), (6, 6), (7, 6), (7, 7),

(8, 8), (9, 3), (9, 4), (9, 5), (9, 9)} displayed in Figure 3.13, 200 datasets are

simulated, 50 for each of the four sample sizes, 100, 500, 5000, and 100000. In

all cases the sample variances are computed using the minimized corrected

IITA version, and a boxplot is drawn for each of the sample sizes. The

population asymptotic variance is shown as a horizontal line in the graphic.

Strict Preference Part

1L 2L

3L

4L

5L

6L

7L

8L

9L

Figure 3.13: Underlying fixed quasi order used for simulating the data.
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Figure 3.14: Boxplots of the sample variance computed for a fixed quasi

order under the minimized corrected IITA version. For each of the sample

sizes 50, datasets are simulated and the sample variances are computed. The

corresponding population value is shown as a horizontal line in the plot.

Figure 3.14 shows that the sample variances approach the population

value with increasing sample size. Further, the values are less dispersed and

fewer outliers are produced. This indicates that the asymptotic behavior of

the the computation of the sample variance is, already for a sample size of

500, very good.
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Chapter 4

DAKS - Data analysis and

knowledge spaces in R

Due to the large amount of computational effort, which is needed in KST

and for the IITA algorithms, it is indispensable to use computer software.

Currently available software implementing the original IITA algorithm is

ITA 2.0 by Schrepp (2006). Compared to this stand-alone software that

runs on Windows only, the package DAKS by Sargin and Ünlü (2008, 2009c)

is implemented in the comprehensive R computing environment and provides

much more functionalities, such as more flexible input/output features.

R (R: Development Core Team, 2009, http://www.r-project.org/) is a

language and environment for statistical computing and graphics. It gives

users the possibility to include own software packages for handling specific

tasks. Besides the three IITA algorithms, the package DAKS implements

functions for computing population and estimated asymptotic variances of

the fit measures, and for switching between test item and knowledge state

representations. Other features are a Hasse diagram drawing device, a data

simulation tool, a function for computing response pattern and knowledge
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state frequencies, and a Z-test for comparing diff values of quasi orders.

In this chapter, we give an overview of the package DAKS and illustrate

its usage with the PISA dataset (see Sections 3.4.5 and 3.6.3).

4.1 Description of the package DAKS

In this section, we present the functions implemented in the package DAKS

and discuss their functionalities. Table 4.1 summarizes all functions of the

package DAKS.

4.1.1 Surmise relations and knowledge structures in

DAKS

A quasi order is a set of tuples, where each tuple is a pair (i, j) representing

the implication j → i. This is implemented in DAKS using the package sets

(Meyer and Hornik, 2009). The latter, in combination with the package

relations (Hornik and Meyer, 2009), are utilized in DAKS, because they

provide useful functions for operating with surmise relations and knowledge

structures. The following R output shows an example quasi order:

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

or

{(1L, 2L), (1L, 3L), (1L, 4L), (2L, 3L), (2L, 4L), (3L, 4L)}

This code is to be read: item 1 is implied by items 2, 3, and 4, item 2

is implied by items 3 and 4, and item 3 is implied by item 4. This gives

the chain 4 → 3 → 2 → 1. Note that in the second code line an item i is

represented by iL. This transformation takes place internally in the packages
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Table 4.1: Summary of the DAKS functions

Function Short description

corr_iita Computing diff values for the corrected IITA algorithm

hasse Plotting a Hasse diagram

iita Computing sample diff values and the best fitting quasi order

for one of the three IITA algorithms selectively

imp2state Transforming from implications to knowledge states

ind_gen Inductively generating a selection set

mini_iita Computing diff values for the minimized corrected IITA algorithm

ob_counter Computing numbers of observed counterexamples

orig_iita Computing diff values for the original IITA algorithm

pattern Computing frequencies of response patterns and knowledge states

pop_iita Computing population diff values and the selection set

for one of the three IITA algorithms selectively

pop_variance Computing population asymptotic variances

simu Data simulation tool

state2imp Transforming from knowledge states to implications

variance Computing estimated asymptotic variances

z_test Z-test for diff values
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sets or relations, but it does not have any influence. Both representations

are equal:

R> 1 == 1L

[1] TRUE

Note that reflexive pairs are not shown in order to reveal implications

between different items only, and to save computing time. Surmise relations

always contain all reflexive pairs, and these are included whenever required

by the package DAKS.

A knowledge structure is implemented as a binary matrix, where rows

and columns stand for knowledge states and items, respectively. Each entry

of the matrix, 1 or 0, represents mastering or not mastering an item in a

corresponding state. The following R output shows the knowledge structure

corresponding to the above quasi order:

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 1 0 0 0

[3,] 1 1 0 0

[4,] 1 1 1 0

[5,] 1 1 1 1

4.1.2 Functions of the package DAKS

The two functions for switching between test item and knowledge state rep-

resentations (cf. Birkhoff’s theorem in Section 2.1) are:

state2imp(P)

imp2state(imp, items)
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The first function transforms a set of knowledge states (ought to be a quasi

ordinal knowledge space) P to the corresponding set of implications (the sur-

mise relation). Note that for any set of knowledge states the returned binary

relation is a surmise relation. The number of items of the domain taken as

basis for P is determined from the number of columns of the matrix P. The

second function transforms a set of implications (ought to be a surmise re-

lation) imp to the corresponding set of knowledge states (the quasi ordinal

knowledge space). Note that for any set of implications the returned knowl-

edge structure is a quasi ordinal knowledge space. The number of items of

the domain taken as basis for imp, the argument items, must be specified

explicitly; because some of the items may not be comparable with any other.

A function to compute the absolute frequencies of the occurring response

patterns, and optionally, the absolute frequencies of a collection of knowledge

states in a dataset is:

pattern(dataset, n = 5, P = NULL)

Argument n refers to response patterns. If n is specified, the response pat-

terns with the n highest frequencies are returned (along with their frequen-

cies). If pattern is called without specifying n explicitly, by default n = 5

is used. If n is larger than the number of different response patterns in the

dataset, n is set to the number of different response patterns. The optional

matrix P gives the knowledge states to be used; pattern then addition-

ally returns information about how often the knowledge states occur in the

dataset. The default P = NULL corresponds to no knowledge states being

specified; pattern then only returns information about response patterns (as

described previously).

A data simulation tool based on the BLIM is included in the package:

simu(items, size, ce, lg, imp = NULL, delta)
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The number of response patterns to be simulated (the sample size) is specified

by size, the careless error and lucky guess noise parameters are given by

ce and lg, respectively. The single careless error ce and lucky guess lg

probabilities are assumed to be constant over all items. (The general form of

the BLIM allows for varying careless error and lucky guess rates from item

to item, which is not identifiable in general, however.) The argument items

gives the number of items of the domain taken as basis for the quasi order

underlying the simulation. A specific underlying quasi order can be passed

manually via imp, or it can be generated randomly. If a quasi order is specified

manually, Birkhoff’s theorem is used to derive the corresponding quasi ordinal

knowledge space. The latter is equipped with the error probabilities ce and

lg to give the BLIM that is used for simulating the data. If imp = NULL, the

underlying quasi order is generated randomly as follows. All reflexive pairs

are added to the relation. The constant delta is utilized as the probability

for adding each of the remaining non-reflexive item pairs to the relation. The

transitive closure of this relation is computed, and the resulting quasi order

then is the surmise relation underlying the simulation.

This simulation tool returns the simulated binary dataset, and the sur-

mise relation and its corresponding quasi ordinal knowledge space used for

simulating the data. The probability specified by delta does not necessarily

correspond to the portion of implications added to the randomly generated

quasi order, because the transitive closure is formed. In Sargin and Ünlü

(2009b), a normal sampling scheme for drawing delta values is proposed.

This sampling scheme provides far better representative samples of quasi or-

ders than simply drawing delta values uniformly from the unit interval (see

Section 3.4.1 for details). In Sargin and Ünlü (2009a) a second sampling is

proposed, which puts more weight on sampling medium sized quasi orders

90



than very large or very small ones (see Section 3.4.4 for details). (Surmise

relations or knowledge structures, and the representativeness of samples of

these, are very important in simulation studies investigating IITA type data

analysis methods. The IITA algorithms are sensitive to the underlying sur-

mise relation that is used, and to test their performances objectively a rep-

resentative sample of the collection of all quasi orders is needed.)

Another basic function of the package DAKS is a Hasse diagram drawing

device:

hasse(imp, items)

This function plots the Hasse diagram of a surmise relation imp (more pre-

cisely, of the corresponding quotient set) using the package Rgraphviz from

Bioconductor (http://www.bioconductor.org/), which is an interface be-

tween R and Graphviz (Graph Visualization Software, http://graphviz.

org/). Users must install Graphviz on their computers to plot such a dia-

gram. The argument items gives the number of items of the domain taken

as basis for imp. The function hasse cannot plot equally informative items.

(Two items i and j are called equally informative if and only if j → i and

i→ j.) Only one, the one with the smallest index, of the equally informative

items is drawn, and the equally informative items are returned (as tuples) in

a list.

Two auxiliary functions for implementing the IITA algorithms are:

ob_counter(dataset)

ind_gen(b)

The first function computes from a dataset for all item pairs the correspond-

ing numbers of observed counterexamples. These values are crucial in the

formulations of the IITA algorithms. This function returns a matrix of the
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numbers of observed counterexamples for all pairs of items. The second func-

tion can be used to generate inductively, from a matrix b of the numbers of

observed counterexamples, a set of quasi orders. The inductive generation of

the selection set of competing quasi orders is a prime component of the IITA

algorithms. This function returns a list of the inductively generated surmise

relations. The main function iita (see below) calls ob_counter for com-

putation of the numbers of counterexamples, and ind_gen for the inductive

generation procedure.

Three functions of the package DAKS realizing the original, corrected, and

minimized corrected IITA algorithms are, in respective order:

orig_iita(dataset, A)

corr_iita(dataset, A)

mini_iita(dataset, A)

These functions perform the respective IITA procedures using the dataset

and the list A of prespecified competing quasi orders. The set of competing

quasi orders must be passed via the argument A manually, so any selection

set of surmise relations can be used. The function iita (see below) automat-

ically generates a selection set from the data using the inductive generation

procedure implemented in ind_gen (see above). The latter approach (using

iita) is common so far, in KST, where the inductive data analysis meth-

ods have been utilized for exploratory derivations of quasi orders from the

data. The functions orig_iita, corr_iita, and mini_iita, on the other

hand, can be used to select among surmise relations for instance obtained

from querying experts or from competing psychological theories. All three

functions return vectors of the diff values and error rates corresponding to

the competing quasi orders in A.
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The function that can be used to perform one of the three IITA procedures

selectively is:

iita(dataset, v)

Whereas for the above three functions selection sets of competing quasi orders

have to be passed via an argument manually, this function automatically

generates a selection set from the dataset using the inductive generation

procedure implemented in ind_gen (see above). The parameter v specifies

the IITA algorithm to be performed; v = 1 (minimized corrected), v = 2

(corrected), and v = 3 (original). Compared to the above three functions,

this function returns, besides the diff values corresponding to the inductively

generated quasi orders, the derived solution quasi order (with minimum diff

value) under the selected algorithm and its index in the selection set. (In case

of ties in minimum diff value, a quasi order with smallest size is returned.)

The package DAKS also contains functions which provide the basis for

statistical inference methodology. The population analog of the previous

function that can be used to perform one of the three IITA algorithms in

population quantities (in a known population) selectively is:

pop_iita(imp, ce, lg, items, dataset = NULL, A = NULL, v)

Compared to iita, this function implements the three IITA algorithms in

population, not sample, quantities; v = 1(minimized corrected), v = 2 (cor-

rected), and v = 3 (original). The argument imp specifies a surmise relation,

and items gives the number of items of the domain taken as basis for imp.

The knowledge structure corresponding to imp is equipped with the careless

error ce and lucky guess lg probabilities and the uniform distribution on

the knowledge states, and is the known BLIM underlying the population.
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If dataset = NULL and A = NULL, a set of competing quasi orders is con-

structed based on a population analog of the inductive generation procedure

implemented in sample quantities in ind_gen. If the dataset is specified

explicitly, that data are used to generate the set of competing quasi orders

based on the sample version of the inductive generation procedure. If A is

specified the passed set of competing quasi orders is used for computing popu-

lation values. This function returns the population diff values corresponding

to the inductively generated quasi orders, all possible response patterns with

their population probabilities of occurrence, the population γv rates corre-

sponding to the inductively generated quasi orders, the inductively generated

selection set, and the used IITA version.

The function for computing population (exact) asymptotic variances of

the MLEs diff is:

pop_variance(pop_matrix, imp, error_pop, v)

Subject to the selected version to be performed in population quantities,

v = 1 (minimized corrected) and v = 2 (corrected), this function computes

the population asymptotic variance of the MLE diff , which here is formulated

for the relation and error rate specified in imp and error_pop, respectively.

This population variance is obtained using the delta method (see Section

3.6), which requires calculating the Jacobian matrix of the diff coefficient

and the inverse of the expected Fisher information matrix for the multino-

mial distribution. The cell probabilities of that distribution are specified

in pop_matrix, a matrix of all possible response patterns and their pop-

ulation occurrence probabilities. Note that the arguments pop_matrix and

error_pop can be obtained from a call to the function pop_iita (see above),

and that the current version of the package DAKS does not support comput-

ing population asymptotic variances for the original IITA algorithm. This
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function returns a single value, the population asymptotic variance of the

MLE diff .

The function for computing estimated asymptotic variances of the MLEs

diff is:

variance(dataset, imp, v)

Subject to the selected version to be performed in sample quantities, v = 1

(minimized corrected) and v = 2 (corrected), this function computes a con-

sistent estimator for the population asymptotic variance of the MLE diff ,

which here is formulated for the relation and the data specified in imp and

dataset, respectively. This estimated asymptotic variance is obtained using

the delta method (cf. pop_variance). In the expression for the exact asymp-

totic variance (expressed in Jacobian matrix and inverse expected Fisher

information), the true parameter vector of the multinomial probabilities is

estimated by its MLE of the relative frequencies of the response patterns.

Note that the two types of estimators for the population asymptotic vari-

ances of the diff coefficients obtained using the expected Fisher information

matrix and the observed Fisher information matrix yield the same result, in

the case of the multinomial distribution. Since computation based on the ex-

pected Fisher information matrix is faster, this is implemented in variance.

Note that the current version of the package DAKS does not support com-

puting estimated asymptotic variances for the original IITA algorithm. This

function returns the estimated asymptotic variance of the MLE diff .

The function for performing a Z-test for the diff values is:

z_test(dataset, imp, imp_alt = NULL, alternative =

c("two.sided", "less", "greater"), mu = 0, conf.level = 0.95, v)
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For a given dataset, a one or two sample Z-test can be performed. The

quasi orders are specified by imp for a one sample test, and additionally by

imp_alt for a two sample test. The value which the test is based on is given

by mu, and the alternative hypothesis is specified by alternative. For a

one sample test, conf.level gives the confidence interval for the diff value,

for a two sample test, the confidence interval for the difference of the two

diff values is computed. The function z_test returns the Z- and p-values,

the type and values of the confidence interval, the diff values of the specified

quasi orders, the specified alternative, and the assumed true value.

4.2 Illustration

We illustrate usage of the package DAKS with another part of the 2003 PISA

data. The dataset consists of the item responses by 317 German students on

a 12-item dichotomously scored mathematical literacy test. (Note that this

dataset is different from the pisa dataset accompanying the package DAKS

and used in Sections 3.4.5 and 3.6.3.

An overview of the data is given by tables of all variables and the function

pattern.

R> apply(pisa, 2, table)

Item.5 Item.6 Item.7 Item.8 Item.37 Item.38 Item.39 Item.64

0 121 245 112 212 129 272 202 112

1 196 72 205 105 188 45 115 205

Item.67 Item.72 Item.73 Item.75

0 154 87 247 22

1 163 230 70 295
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R> pattern(pisa)

5 largest response patterns in the data:

000000000001 000000000101 101010111101 101110111101 111110111111

12 8 6 6 6

We see, for instance, that the last item (Item.75) is most frequently and

the sixth item (Item.38) least frequently solved. The patterns occurring most

frequently are the ones where the last item is solved, especially those where

only the last or only the last and the tenth item are solved. This shows that

the last item is very easy compared to the other items. The last pattern

shown above is the one where only the sixth item is not solved, indicating a

high difficulty of this item. To analyze the dependencies between the items

more accurately, we perform analyses based on the IITA algorithms.

R> mini<-iita(pisa, v = 1)

R> mini

Inductive Item Tree Analysis

Algorithm: minimized corrected IITA

diff values: 257.238 257.117 253.152 239.742 221.593 220.916

216.392 216.724 209.855 204.699 205.684 205.413 202.327 201.471

202.859 201.8 207.349 205.754 199.303 193.052 187.615 174.749

168.928 161.145 153.269 161.902 172.85 179.379 160.938 155.544

145.234 159.922 173.313 167.625 162.24 166.072 170.558 215.021

220.063 231.783 236.943 257.827 1683.669

quasi order:{(1L, 2L), (1L, 4L), (1L, 6L), (1L, 7L), (1L, 11L),

(2L, 6L), (3L, 2L), (3L, 4L), (3L, 5L), (3L, 6L), (3L, 7L),
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(3L,9L), (3L, 11L), (4L, 2L), (4L, 6L), (4L, 11L), (5L, 2L),

(5L, 4L), (5L, 6L), (5L, 7L), (5L, 9L), (5L, 11L), (7L, 6L),

(7L, 11L), (8L, 2L), (8L, 4L), (8L, 6L), (8L, 7L), (8L, 9L),

(8L, 11L), (9L, 2L), (9L, 4L), (9L, 6L), (9L,11L), (10L, 2L),

(10L, 3L), (10L, 4L), (10L, 5L), (10L,6L), (10L, 7L),

(10L, 8L), (10L, 9L), (10L,11L), (11L,6L), (12L, 1L),

(12L, 2L), (12L, 3L), (12L, 4L), (12L, 5L), (12L, 6L),

(12L, 7L), (12L, 8L), (12L, 9L), (12L, 10L), (12L, 11L)}

error rate: 0.143

index in the selection set: 31

The diff values for all quasi orders of the selection set are computed. The

quasi order with minimum diff value is shown, and the corresponding error

rate and its index in the selection set are output.

The results of the other two algorithms are computed analogously.

R> corr<-iita(pisa, v = 2)

R> orig<-iita(pisa, v = 3)

For analyzing the results, functions of R or of other packages can be

helpful. For example, the symmetric difference between two quasi orders can

easily be computed, showing the implications in which the two quasi orders

differ.

R> set_symdiff(mini$implications, orig$implications)

{(1L, 2L), (1L, 4L), (1L, 7L), (1L, 11L), (2L, 6L), (3L,5L),

(3L, 7L), (3L, 9L), (4L, 2L), (4L, 6L), (4L, 11L),(5L, 2L),

(5L, 4L), (5L, 7L), (5L, 9L), (7L, 6L), (7L,11L), (8L, 2L),

(8L, 4L), (8L, 7L), (8L, 9L), (9L, 2L), (9L, 4L), (9L, 6L),
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(9L, 11L), (10L, 3L), (10L, 5L), (10L, 7L), (10L, 8L),

(10L, 9L), (11L, 6L), (12L, 1L), (12L, 3L),(12L, 10L)}

As the quasi orders of the selection set are nested, this symmetric differ-

ence shows the implications which are contained in minimized corrected IITA

solution, but not in the solution obtained under the original IITA version.

These additional implications give a more refined structure of the dependen-

cies between the items. This can also be seen from the Hasse diagrams in

Figures 4.1 and 4.2.

R> hasse(mini$implications, 12)

list()

Strict Preference Part

1L

2L

3L

4L

5L

6L

7L

8L

9L

10L

11L

12L

Figure 4.1: Hasse diagram of the quasi order obtained for the PISA dataset

with twelve items under the minimized corrected IITA algorithm.
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R> hasse(orig$implications, 12)

list()

Strict Preference Part

1L

2L

3L

4L

5L

6L

7L8L9L 10L

11L

12L

Figure 4.2: Hasse diagram of the quasi order obtained for the PISA dataset

with twelve items under the original IITA algorithm.

The empty lists show that there are no parallel items in the obtained quasi

orders. In Figure 4.1, a well-structured quasi order is displayed, with item 12

(Item.75) being the easiest and item 6 (Item.38) the most difficult one. On

the other hand, Figure 4.2 has a more simple structure, mainly consisting of

three layers. This structure barely reveals the overall structure; for instance,

item 6 is not the unique most difficult item and item 12 is not implied by

all other items. This, again (see Section 3.5.6), can be explained by the fact

that the likely underlying structure contains long chains (the longest chain

in the quasi order obtained by the minimized corrected algorithm consists of

eight items: 6→ 2→ 4→ 9→ 5→ 3→ 10→ 12).
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Next, the states obtained by the algorithms are analyzed. Using the

function pattern we see how often the states occur in the dataset.

R> patmini<-pattern(pisa, P = imp2state(mini$implications, 12))

R> patcorr<-pattern(pisa, P = imp2state(corr$implications, 12))

R> patorig<-pattern(pisa, P = imp2state(orig$implications, 12))

The frequencies of the states can be used for further investigations. For

example, it is interesting to compute the proportion of obtained states that

do not occur in the dataset:

R> sum(patmini$states[,13] == 0)/nrow(patmini$states)

[1] 0.1153846

R> sum(patcorr$states[,13] == 0)/nrow(patcorr$states)

[1] 0.1333333

R> sum(patorig$states[,13] == 0)/nrow(patorig$states)

[1] 0.5608108

The results clearly show that the original IITA algorithm identifies far

more states that cannot be observed in the dataset. This indicates that too

many states (hence too few implications) are contained in the obtained quasi

order. The ratio of non-observable and observable states is much better for

the minimized corrected and corrected IITA versions.

To gain certainty we perform some hypothesis testing. In the follow-

ing, we present three Z-tests for comparing the diff values for the obtained

quasi orders. First, we compare the minimized corrected and corrected IITA

algorithm results based on the estimates calculated under both versions.
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R> z_test(pisa, mini$implications, corr$implications, v = 1)

Two sample Z-test

z = -0.3918 p-value = 0.6952

alternative hypothesis: true mean is not equal 0

95 percent confidence interval:

-0.0004798994 0.0003199932

sample estimates:

mean in imp mean in imp_alt

0.00145 0.00153

R> z_test(pisa, mini$implications, corr$implications, v = 2)

Two sample Z-test

z = 0.1205 p-value = 0.9041

alternative hypothesis: true mean is not equal 0

95 percent confidence interval:

-0.0008655576 0.000978937

sample estimates:

mean in imp mean in imp_alt

0.00177 0.00171

Both p-values are high, hence it cannot be assumed that the diff values dif-

fer significantly. The two quasi orders differ only in eight implications (com-

puted by length(set_symdiff(mini$implications,corr$implications))),

which explains the similar results.
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However, the diff value of the original IITA algorithm is significantly

different from the diff value obtained for the minimized corrected version, at

the significance level of 0.01:

R> z_test(pisa, mini$implications, orig$implications, v = 1)

Two sample Z-test

z = -2.579 p-value = 0.0099

alternative hypothesis: true mean is not equal 0

95 percent confidence interval:

-0.001058706 -0.0001443989

sample estimates:

mean in imp mean in imp_alt

0.00145 0.00205

4.3 Summary

We have performed a first analysis of this part of the PISA data. We have

derived possible quasi orders giving us the potential implications between

the test items, and have compared the obtained results. We have illustrated

the features of the package DAKS, and we have indicated the advantages of

using R by performing further analyses based on the results gained through

the functions in the package DAKS.

In the future the package will have to be enhanced, for example it is

planned to implement other fit measures such as the di (discrepancy) index

(Kambouri et al., 1994) or the CA (correlational agreement) coefficient (van

Leeuwe, 1974). As the package will be extended, users will be offered a

powerful and free software tool for handling tasks in KST.
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By contributing the R package DAKS a basis for computational work in

the so far combinatorial theory of knowledge spaces is established. Imple-

menting KST procedures in R can help to bring together KST and such other

psychometric approaches as item response theory (IRT). A number of R pack-

ages are available for IRT; for instance, eRm, ltm, or mokken. KST and IRT

are split directions of psychological test theories and are currently compared

at a theoretical level (Stefanutti, 2006; Stefanutti and Robusto, 2009; Ünlü,

2007). Using R as an interface between these theories may prove valuable in

comparing them at a computational level.
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Chapter 5

Discussion

5.1 Summary

Data analysis methods in KST are becoming more and more important.

With advancing computing power and more sophisticated algorithms, it is

now possible to tackle the combinatorial and statistical problems involved

with these data analysis methods.

In Chapter 2, the necessary basic concepts of KST were introduced. In

Chapter 3, inductive item tree analysis was discussed. In Section 3.2, the

original IITA algorithm and its problems were presented. In Section 3.3, two

new algorithms, minimized corrected and corrected IITA, were established

and thorough comparisons of the original and new methods were given (Sec-

tion 3.4). We have shown that the diff fit measures can be interpreted as

maximum likelihood estimators (Section 3.5), which possess a number of

good asymptotic properties. Based on these properties, techniques for infer-

ential statistics were presented in Section 3.6. To perform all computations

the R package DAKS was developed. This package was presented in Chapter

4 and used for the computations and analyses in this work.
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To sum up: Two new algorithms have been proposed, which are supe-

rior to the present original IITA algorithm. Tools from statistics were used

to introduce well-established techniques for inference (e.g. MLE, hypoth-

esis testing). So far, only ad hoc quality properties have been considered

(Schrepp, 2007), without taking advantage of such techniques as previously

discussedd.

Finally, some perspectives on future research and open problems are dis-

cussed.

5.2 Directions for future research

IITA is still a very young method for deriving quasi orders from data. Hence,

enhancements and modifications are possible and can be pursued.

Work on the generated selection set should definitely be pursued in future

research. So far, for the IITA algorithms, the quality of the inductively

generated set of quasi orders has not been systematically investigated. In

our simulation study, on average (see Table 3.4 for individual figures), the

underlying quasi orders are contained 569 (out of 1000) times in the selection

sets. Since it is computationally intractable to evaluate all possible quasi

orders in large-scale applications, better search methods may be needed to

improve the selection set. A data analysis method operating on a set of

candidate models is only as good as the quality of the selection set is.

An interesting direction for further research is to modify the diff coeffi-

cient. As apparent from the presented simulation study (see Section 3.4.2

and Section 3.4.3), smaller diff values do not necessarily imply better re-

constructions of underlying quasi orders. It seems that an aggregation (diff

coefficient) of local, two-dimensional views of the data (bij) does not pro-
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vide acceptable results on the relationships among all items mutually in

|Q| dimensions. One could consider developing fit measures incorporating

higher-dimensional views of the data.

The fit measures around in KST (e.g. di or CA), whether they are formu-

lated at the level of items or at the level of knowledge states, all aggregate

the manifest multinomial cell counts into a single real number. This is why,

uniformly, they can be based theoretically using the maximum likelihood ap-

proach (see Section 3.5). However, it is important to note that, in practice,

the quality of the asymptotics has to be checked for finite sample sizes. For

example, this can be pursued by graphical approaches.

Incorporating latent parameters into the formulations of the diff coeffi-

cients (or of other fit measures) is important. The manifest γ
L

parameter in

diff is used as an estimate of the latent response error probability. Instead,

the expected numbers of counterexamples could be parameterized directly

in terms of latent (e.g., careless error and lucky guess) parameters. Though

the introduction of latencies may complicate theory and computation, it can

provide more realistic and interpretable results.

In its current forms, IITA works only for dichotomous items. In ques-

tionnaires or aptitude tests, for example, it is common to have polytomous

items. An important direction for future research is to enhance IITA to poly-

tomous, continuous or mixed indicators. This would provide a powerful tool

for deriving knowledge structures.
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Ünlü, A. and Sargin, A. (2008a). Maximum likelihood methodology for diff

fit measures for quasi orders. Manuscript submitted for publication.

112
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