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Finite order automorphisms and real forms of
affine Kac-Moody algebras in the smooth and

algebraic category

Ernst Heintze and Christian Grof$

Abstract

Let g be a real or complex (finite dimensional) simple Lie algebra and o € Autg. We
study automorphisms of the twisted loop algebra L(g,o) of smooth o-periodic maps
from R to g as well as of the "smooth” affine Kac-Moody algebra f)(g,a), which is
a 2-dimensional extension of L(g,o). It turns out that these automorphisms which
either preserve or reverse the orientation of loops, and are correspondingly called to be
of first and second kind, can be described essentially by curves of automorphisms of
g. If the order of the automorphisms is finite then the corresponding curves in Autg
allow to define certain invariants and these turn out to parametrize the conjugacy
classes of the automorphisms. If their order is 2 (and g is either compact or complex)
we carry this out in detail and deduce a complete classification of involutions and
real forms (which correspond to conjugate linear involutions) of smooth affine Kac-
Moody algebras. The resulting classification can be seen as an extension of Cartan’s
classification of symmetric spaces, i.e. of involutions on g. For example conjugacy
classes of involutions of the second kind on IAJ(g, o) are classified by equivalence classes
of pairs (g4, 0—) where g1 € Autg are involutions or the identity, and ¢_ g4 is conjugate
to o in Autg/Intg. If g is compact then conjugate linear extensions of involutions
(and the identity) from L(g,o) to conjugate linear involutions on L(gc,oc) yield a
bijection between their conjugacy classes and this gives existence and uniqueness of
Cartan decompositions of real forms of complex smooth affine Kac-Moody algebras.

The affine Kac-Moody algebras introduced by Kac and Moody are isomorphic to a
2-dimensional extension of the algebra of twisted loops in g whose Fourier expansion is
finite (assuming o to be of finite order). We show that our methods work equally well
also in this case when combined with a basic result of Levstein and lead essentially to

the same results.
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1 Introduction

We study in this paper automorphisms of finite order and real forms of “smooth” affine Kac-
Moody algebras, that is of certain extensions of the algebra of smooth twisted loops (for a
precise definition see below). These objects have been considered already extensively in the
algebraic category, where the loops are assumed to have finite Fourier expansion (|BP], [Kob],
[Lev], [Baul, [BR], [Roul], [Rou2|, [Rou3], [Corl], [Cor2|, [Cor3|, [And], [BsR], [KW], [Bat],
[JZ], [BMR], [BMR’]). In particular involutions and real forms have finally been classified
in the algebraic case in [BsR| and [BMR].

Our approach is very different, much more elementary and direct. It does not use the
structure theory of Kac-Moody algebras but rather reduces the problems as fast as possible
to the finite dimensional case. Interesting enough, it also works in the algebraic setting
and seems to give even there more complete answers and new insights. For example it
turns out that involutions and real forms of affine Kac-Moody algebras are either in close
connection with hyperpolar actions on compact Lie groups or else with the group m((Autg)?)
of connected components of the centralizer of an involution p in the group of automorphism
of a simple Lie algebra g (cf. Chapter 6).

To describe our approach and results in more detail, let g be a finite dimensional simple Lie
algebra over F := R or C and ¢ € Autg be an arbitrary automorphism, not necessarily of

finite order. We then call
L(g,0) ={u:R — g |u(t+2n) =ou(t),u € C*}

a twisted loop algebra and L(g, ) := L(g, 0)+Fc+Fd a (smooth) affine Kac-Moody algebra.
Here c lies in the center, d acts on the loops as derivation and the bracket between two loops
is the pointwise bracket plus a certain multiple of ¢ (cf. Chapter 3).

An isomorphism ¢ : L(g,0) — L(g,5) between two such algebras induces an isomorphism

¢ : L(g,0) — L(g,5) between the loop algebras. The isomorphisms ¢ or ¢ are called



standard if pu(t) = @ (u(A(t))) where A : R — R is a diffeomorphism and ¢; : g — g is a
smooth curve of isomorphisms. Our first main result (Theorem 2.10) says that isomorphisms
between loop algebras are always standard. The essential point of the proof consists in
showing that for each fixed ¢y € R there exists an sy € R such that ¢(fu)(to) = f(so) - pu(to)
for all w € L(g,o0) and all 27-periodic smooth functions f. This follows by means of a
classical theorem of Burnside. In order that pu(t) is 6-periodic for all u one necessarily has
At + 2m) = A(t) + €27 for some € € {£1} and 0, = dpro . The isomorphism ¢ (as
well as ¢ if it induces ¢) is called of first kind if € = 1 and of second kind if ¢ = —1, i.e. if
A is orientation preserving, resp. reversing. Conversely, given A and ¢; which satisfy the
above conditions, the mapping ¢ : L(g,0) — L(g,0) with pu(t) = @;(u(A(t)) defines an
isomorphism. It extends to an isomorphism between the Kac-Moody algebras precisely if
N(t) is constant, i.e. A\(t) = et +to for some t, € R. Moreover the extension is almost unique
and this implies that conjugacy classes of automorphisms of finite order on L(g, o) and L(g, o)
are in bijective correspondence. Thus the study of isomorphisms between affine Kac-Moody
and loop algebras is essentially reduced to the study of curves of isomorphisms between the
corresponding finite dimensional simple Lie algebras. This result offers the possibility to
classify automorphisms of finite order up to conjugation in an elementary way, since one
easily sees how ¢; and A(¢) change if an automorphism ¢ of the form pu(t) = @ (u(A(t)))
is conjugated by another automorphism ¢ with u(t) = ¢ (u(u(t))) (Lemma 3.10). The
problem that has to be solved then, is to extract an invariant out of ¢; and A which does not
change under these modifications and which determines the conjugacy class. This is done in
Chapter 4 for automorphisms of the first kind and in Chapter 5 for automorphisms of the
second kind. To this end we define for each i € {1,2} and each ¢ € N (q even if i = 2)

so-called sets of invariants J!(g, o) as follows:
3t(8,0) == {0, () | p€{0,1,....a =1}, 0 € A", B € (Autg)®, L(g,d'5") = L(g. o)} ,
35%(g,0) = {lps, -] | vx € Autg, 2 = ¢2, ord(¢?) =g, L(g, 9" p1) = L(g,0)}

where r,[ and ¢ are certain integers depending only on p and ¢ (cf. 4.3), A" is a set of
representatives of conjugacy classes of automorphisms of g of order r and [3] and [py, ¢_]

denote equivalence classes with respect to some equivalence relation. Note that z(g, o) and
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L(g, &) are isomorphic if and only if 0 and & are conjugate in Autg/Intg (3.5). We then define
a mapping Aut?L(g, o) — 3%(g, 0) from the set of automorphisms of order ¢ and kind 7 to the
set of invariants which is constant along conjugacy classes. Actually this mapping gives the
same value if ¢ € Aut?[:(g, o) is conjugated more generally by an isomorphism e i(g, o) —
i(g,&), in which case we call 1&@1&‘1 to be quasiconjugate to ¢. This remark is useful in
proving surjectivity of the above mapping since it is fairly easy to find for each invariant a
& € Autg with L(g, ) isomorphic to L(g, o) and a ¢ € Aut?L(g, 5) with the given invariant.
Moreover ¢ and ¢ can be chosen in such a way that u(t) = pou(et + to) with ¢y € Autg
(constant). But the main point is to show that two automorphisms with the same invariant
are conjugate (Theorems 4.11 and 5.7) and that hence the sets of invariants parametrize the
conjugacy classes. From the remark above it follows then that any automorphism of finite
order of L(g, o) is quasiconjugate to one with u(t) = @o(u(et + to)) where g is constant
(and pc = ec, ¢d = ed). In [HPTT] these special automorphisms had been studied and it
had been asked whether any automorphism of finite order is conjugate to such a special one.
The answer is “no” in general as examples show (cf. Remarks 4.14 and 5.11) but “yes” if we
allow to change o, i.e. to apply a quasiconjugation.

In Chapter 6 we specialize the above results to involutions i.e. to automorphisms of order two.
We classify these explicitly up to conjugation if g is compact or complex. The classification
is in both cases the same and amounts to determine explicitly J3(g, o) and J3(g, o), which
in turn follows from a refinement of E. Cartan’s classification of involutions of g. While one
has to determine for each involution o € Autg representatives of the conjugacy classes of
7o((Autg)?) in the first case one has to determine pairs (o4, 0_) of o+ € Autg with 02 = id
up to a certain equivalence relation in the second case. The finite groups my((Autg)?) of
connected components of the centralizer of ¢ in Autg have already been computed by Cartan
and Takeuchi and are listed e.g. in [Loo|. An explicit determination of their conjugacy classes
is relegated to Appendix A where also a careful discussion of these groups together with a
simplified computation of them is given.

If g is complex then conjugate linear automorphisms of finite order of ﬁ(g,a), i.e. auto-
morphisms of the realification that anticommute with multiplication by i = y/—1, can be

treated as in Chapter 4. They are also standard and one can associate invariants to them



that parametrize their conjugacy classes in a completely analogous way. The conjugate linear
involutions are in bijection with real forms of ﬁ(g, o), which are precisely their fixed point
sets. We denote by M?f/(g, o) the conjugate linear involutions of type i = 1 or 2 (according
to whether the induced mapping between the loop algebras preserves or reverses orientation,
respectively). If u is a o-invariant compact real form of g then L(u, ) (and its images under

an isomorphism )are called compact real forms of f/(g, o). The mappings

AuttL(u,0) U Aut?L(u,0) — Aut; L(g,0) and  AutiL(u,0) — AutyL(g, o)

which map ¢ to its conjugate linear extension p¢ o @ where @ denotes complex conjugation
with respect to z(u, o), induce a bijection between conjugacy classes. This fact that follows
easily by inspecting the corresponding mappings between the sets of invariants. In particular
the (equivalence classes of ) non compact real forms are in bijection with (conjugacy classes
of) involutions of the compact real form, like in finite dimensions. If L(u,0) = K + P is an
eigenspace decomposition of an involution then IC+ 7P is a noncompact real form of j}(g, o),
and in this way all real forms are obtained. Moreover, each real form has therefore a Cartan
decomposition K+ P with K+ 4P compact and this is unique up to conjugation as the above
mappings are injective on the set of conjugacy classes.

In Chapter 8, the last chapter of the paper we carry over our methods from the smooth to
the algebraic setting and prove that also in this case automorphisms of finite order and real
forms are parametrized by the same invariants as in the C'*°-case. The arguments are similar
but need at several points modifications. For example not all isomorphisms are standard in

the algebraic case. We let
Lalg(g,a) = {U S L<970> ’ u<t) = Z uneint/l7N € N7 Up, € g(C}
In|<N
where ¢ is of finite order, ¢! = id, and

[A/alg(g, 0) = Lag(g,0) ®Fc @ Fd .
It then follows that automorphisms of L,j,(g, o) are compositions of standard automorphisms
with automorphisms 7, which map > u,e™! to - u,r"/'e™/! where r > 0. But the main

difficulty is to show that two automorphisms of finite order with the same invariants (which



in spite of the 7, can be defined as in the C*°-case) are conjugate. It is at this point where
we use a basic result of F. Levstein [Lev| which says that automorphisms of finite order of
f/alg(g, o) leave some Cartan algebra invariant. This implies that any automorphism of finite
order is conjugate to a very special one and after a further quasiconjugation in fact to one
of the form gu(t) = po(u(et +ty)) where ¢y € Autg is constant. The conjugacy problem can
then be solved by using certain hyperpolar actions on compact Lie groups.

The results of this paper have been announced in [Heil| and [Hei2]. Most of them had been

obtained many years ago, but it took us some time to fill in all details.

2 Isomorphisms between smooth loop algebras

Let g be a finite dimensional Lie algebra over F = R or C and o € Autg (not necessarily of

finite order). Then the (smooth, twisted) loop algebra
L(g,0) :={u:R - g|u(t+2r) =0u(t) Vi, uec C}

is a Lie algebra with pointwise bracket

L(g) := L(g, id) is also called the untwisted algebra.

Remark 2.1. One may weaken the regularity assumption in the definition of L(g, o) and

consider e.g.
Li(g,0) == {u:R — g | u(t +27) = ou(t), u locally of Sobolev class H*}

for any k& > 1. Although [Ly, L] C Li_; and thus the bracket is contained in Ly, only after
restriction it to dense subspaces like L X Lgi1, the results of this paper nevertheless go
through also for Li(g, o) without difficulties.

Another regularity class of interest is the class of algebraic loops which are given by finite
Laurent series, assuming o to be of finite order. The corresponding algebra L, (g,c) and

its automorphisms will be studied in Chapter 8.



A homomorphism ¢ : L(g,0) — L(g,5) between to loop algebras is only supposed to be
F-linear and to preserve brackets, no continuity assumptions are made. Simple examples
of homomorphisms are mappings ¢ : L(g,0) — L(g,0) with (pu)(t) = ¢i(u(A(t))) where
¢y © @ — @ are homomorphisms and A : R — R is a function such that ¢t — ¢, and A are

smooth (= C™).

Definition 2.2. A homomorphism ¢ : L(g,0) — L(g,0) is called standard if it is of the

above form
(pu)(t) = @r(u(A(t))) -

The main goal of this chapter is to show that all isomorphisms L(g, o) — L(g, &) are standard
if g is simple.

The following result is obvious.

Lemma 2.3. Let tg € R and I be an open interval around ty. Then there exists for each
smooth function v : I — g an 4 € L(g,0) with u(t) = u(t) in a neighborhood of ty. In

particular the evaluation map L(g,0) — g, u — u(ty), is surjective. ]

The assumption that ¢, and \; are smooth in the definition of a standard homomorphism

can be almost deleted.

Lemma 2.4. Let ¢ : L(g,0) — L(g,7) be a surjective homomorphism. If ¢ is of the form
ou(t) = pi(u(A(t))) for some homomorphisms ¢, : g — @ and some function X : R — R then
¢ is standard, that is there exist ¢, and (t) depending smoothly on t with pu(t) = @,(u(A(t)))
for allu € L(g,0).

Proof. By assumption ¢(f - u) = (f o A) - pu for all 2r-periodic smooth f : R — F and all
u € L(g,0). Since there exists for each to € R a u € L(g,0) with gu(ty) #0, fo\is
smooth. In particular e? : R — S' is smooth and thus has a smooth lift ) : R — R. Hence
e = ¢ and (1) — \(t) = 2k, with k, € Z. Let ¢, := @,0%. Then Guu(A(t)) = @uu(A(t)) =
u(t). Moreover t +— @, is smooth as u can be chosen to be locally constant by 2.3 and

t — Quu(A(t)) is smooth. O

Remark 2.5. The representation of a standard homomorphism as pu(t) = pu(A(t)) with
¢, and A smooth is still not unique. In fact, ¢, (u(A(t))) = Gu(u(A(t))) (with @ and X also
smooth) if and only if there exists k € Z such that ¢, = ;0" and A(t) = \(t) — 2km.



Let C2.(R,F) :={f:R = F | feC® f(t+2r) = f(t) Vte R} be the algebra of

per

2m-periodic smooth functions.

Lemma 2.6. A surjective homomorphism ¢ : L(g,0) — L(g,5) is standard if and only if

there exists a (not necessarily smooth) mapping A : R — R with

p(fu) = (fol) pu)

for all f € C2 (R, F) and u € L(g,0).

per

Proof. The condition is clearly necessary. Conversely, if satisfied let ¢, € R be fixed and
So := A(tp). By 2.4 it suffices to show that pu(tyg) depends only on u(sy) or equivalently that
wu(ty) = 0 if u(sg) = 0.

If u vanishes even in a neighborhood of sy then there exists f € Cpg (R, F) with f-u =0
and f(so) = 1. Hence 0 = ¢(fu) = (f o A) - ¢(u) and thus @u(ty) = 0. Therefore gu(ty)
depends only on u(t) in a neighborhood of sy for any u € L(g, o).

Finally let u(so) = 0. By means of 2.3 there exist uy, . .., u, in L(g, o) such that u;(s), ..., u,(s)
are a basis of g for all s close to sg. Thus u(s) = 3 f;(s)u(s) in a neighborhood of sy for some

fi € C2(R,F) and f;(so) = 0. Hence pu(ty) = (2(fi o A) - p(u;))(to) = 0. O

per
The next lemma is needed to extend the main result from F = C to F = R.
Lemma 2.7. Let g =g, @ g_ be a decomposition of g into two ideals and o € Autg.
(i) If o leaves the ideals invariant then
L(g: ®9-,0) = L(g+,04) ® L(g—,0-)

where o4 denote the restrictions. The isomorphism is given by u — (uy,u_) if u(t) =

uy (t) + u_(t).
(i1) If o interchanges the ideals then
L(g+ S g—, 0) = L(g+7 Ui) = L(g,, O-%)

The isomorphisms are given by uy (t) + u_(t) — us(2t).



The proofs are almost straightforward. Note that in case (ii) uy(t) + u_(t) € L(g+ B g—,0)
implies that ug (t + 47) = 0?ug(t) and us(t) = o(ux(t — 27)). In particular ug(2t) are in

L(g+,0%) and determine each other. O

Lemma 2.8. Let a : C55(R,C) — C be a (not necessarily continuous) homomorphism of

algebras which does not vanish identically. Then there exists s € R with a(f) = f(s¢) for
all f € C2L(R,C).

per

Proof. Since « is not identically zero, (1) = 1 where 1 denotes the function f(t) = 1.
We first show that « is continuous with respect to the sup-norm ||.||, more precisely that
la(f)] < |||l for all f. In fact, if [a(f)| > ||f|| for some f then g := a(f) -1 — f vanishes
nowhere. Hence 1/g € Cp5,(R,C) and thus a(g) # 0 because of a(g) - a(1/g) = 1 in
contradiction to a(g) = a(a(f)I — f) = 0.

Let zp := a(e). Then |z'| = |a(e*™)| < 1 and hence zy = € for some sy € R. Moreover
N N

a(d>a,e™) = Y ae™, that is a(f) = f(so) if f has a finite Fourier expansion. By
N N

continuity a(f) = f(so) then holds for all f € C3, (R, C). O

Theorem 2.9. Let ¢ : L(g,0) — L(g,5) be a surjective homomorphism with g simple. Then

@ 1s standard.

Proof. (i) Let F =C.

By Lemma 2.6 it suffices to find for each t; € R an sy € R with

p(fu)(to) = f(s0)pulto)

forallu € L(g,o) and all f € C3g.(R,C). Let uand f be fixed and a := ¢(fu)(to), b=
ou(ty) and x; == @u;(ty) where uy,...,ux € L(g,0) and k € N are arbitrary. Then
ada adz;---adxy adb = adb adz; ---adzy, ada since [fu, [uq,. .., [ug, [u,v]o--]o =
[w, [u1, ..., [ug, [fu,v]o--]o for all v € L(g,0). The associated subalgebra of Endg
spanned by the products adx; - - - adzy acts irreducibly on g because g is simple. By a
theorem of Burnside (cf. [Lan], XXVII 3.3 and 3.4) it therefore coincides with Endg.
Thus ada X adb = adb X ada for all X € Endg implying that ada and adb are

linearly dependent. Hence also a and b are linearly dependent as g has no center. In
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particular if uy € L(g, o) satisfies pug(ty) # 0 then ¢(fug)(to) = alf)puo(ty) for all
f € C2(R,C), where o : C2(R,C) — C is linear with (1) = 1. We claim that

per per

p(fu)(to) = a(f)pulto)

holds in fact for all u € L(g, o), whence « is an algebra homomorphism and the theorem

follows from 2.8 and 2.6.

To prove the claim we consider two cases. If pu(ty) and pug(ty) are linearly depen-
dent then p(u — Aug)(ty) = 0 for some A € C and thus o(f(u — Aug))(to) = 0 as
[o(fo)(ta), pw(to)] = [pv(to), w(fw)(to)] = 0 for all v,w € L(g,0) with @u(ty) = 0.
From this the claim follows.

If pu(ty) and pug(ty) are linearly independent then o(f(u + ug))(to) = p(fu)(to) +
a(f)e(up)(to) on one hand and a multiple of p(u + ug)(ty) on the other hand. From

this again the claim follows.

(i) If F = R we consider the complexification ¢¢ : L(gc,oc) — L(gc, oc) of . If gc is
simple ¢¢ and hence also ¢ are standard by (i). If gc is not simple then g has a complex
structure J and gc is the direct sum of the two ideals g4 := {X +£4JX | X € g} which
are simple. X — (X +iJX) + (X — iJX) defines an isomorphism between gc and
g+ @ g_. Either o¢ preserves or interchanges these ideals. In the first case Lemma 2.7
yields the homomorphism

L(ge,00) = D, 54), ult) > 5 (oul) + iTpul?))

and in the second case
- .9 1 .
L(gc, oc) = L(g+, 03), ult) = 5(pu(2t) +iJeu(2t)) .

Since these homomorphisms are surjective they are standard by (i) and it follows that

also ¢ is standard. =

Specializing to the case of isomorphims we can sharpen our results.

Theorem 2.10. Let g, g be simple.
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(1) If ¢ : L(g,0) — L(g,0) is an isomorphism then there exist e € {£1}, a diffeomorphism
AR — R with A(t+27) = A(t)+€27m, and a smooth curve of automorphisms ¢ : g — @

with Y490 = 0o~ such that

pul(t) = eru(A(t))
for allu e L(g, o).

(i) Conversely, €, \ and {p;} as above define an isomorphism ¢ : L(g,0) — L(g,0) by
pu(t) = pi(u(A(t)))-

(iii) €N and {@;} define the same isomorphism if and only if € = € and there exists k € Z
with \(t) = \(t) — 2km, @ = @0t

Proof. ¢ as well as ¢! are standard by Theorem 2.9, that is u(t) = pu(A(t)), ¢ lu(t) =
yu(p(t)) for some smooth maps A, pi: R — R and some homomorphisms ¢;: g — g, ¢;: § —
g depending smoothly on ¢. Therefore p o o~ =id is equivalent to @ihrpv(po A(t)) = v(t)
for all v € L(g, 7). Hence by 2.5 there exists m € Z with oA = id —2mm and @)rg) = ™.
In particular the ¢, are isomorphisms. Now pu € L(g,5) for all u € L(g,0) is equivalent
to @rroru(A(t + 2m)) = dp,u(A(t)) for all u and hence to A(t + 2m) = A(t) + 2k7 and
ipor = 0o F for some k € Z. Similarly u(t + 27) = u(t) + 2iw for some [ € Z. From
poX=1id — 2mm we get k-1 = 1. Hence € := k = [ € {£1}. This proves (i), (ii) follows

easily, and (iii) is a consequence of 2.5. O

Remark 2.11. The X\ in the representation of ¢ as pu(t) = ¢ (u(\(t))) is orientation

preserving (reversing) if and only if € = 1 (resp. € = —1). In particular A determines e.

Definition 2.12. Let g and g be simple. An isomorphism ¢ : L(g,0) — L(g,5) is called to
be of first (resp. second) kind if e =1 (resp. e = —1).

For example pu(t) := u(—t) defines an isomorphism of the second kind between L(g, o) and

L(g,07"). In particular L(g,0) and L(g,o~!) are isomorphic.
Corollary 2.13. Let g and g be simple.

(i) If L(g,0) and L(g,5) are isomorphic then g and g are isomorphic.
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(i) L(g,0) and L(g,&) are isomorphic if and only if o and & are conjugate in Autg/Intg,
i.e. 0 = afBoBt with o € Intg and § € Autg.

Proof. (i) follows directly from Corollary 2.10.

(i) If ¢ : L(g,0) — L(g,5) is an isomorphism then pu(t) = ¢ (u(A(t))) for some smooth
family {¢;} of automorphisms of g and ¢;o, = G0~ for some ¢ € {+1}. Hence
G = Pir2:0p; ' and & is conjugate to o€ in Autg/Intg. But each element in Autg/Intg
is conjugate to its inverse as will be noted in the following remark. Conversely if o and
o are conjugate in Autg/Intg there exist a € Autg and 3 € Intg with 6 = afoa™'.
Since o and «af lie in the same connected component of Autg there exists a smooth
mapping [0, 27] — Autg, ¢ — ¢4, with ¢, = a near t = 0 and ¢; = o near t = 27. It
extends smoothly to all of R by ¢y o := 650" for k € Z and t € [0, 27] satisfying

_ = -1
Ptor = OP0 .

L(g,5). =

Thus pu(t) := pu(t) yields an isomorphism between L(g, o) and

Remark 2.14. If g is simple and either compact or complex then Autg/Intg is isomorphic to
1,Z5 or the symmetric group S3 and any element in these groups is conjugate to its inverse.
If g is real and simple but non compact and g = € + p is a Cartan decomposition with
corresponding involution ¢ then Autg/Intg = (Autg)?/((Autg)?)o = (Autg*)?/((Autg*)?)o
where g* = £ 4 ¢p* is the associated compact algebra with corresponding involution and G
denotes for any group G the connected component containing the identity (cf. B.2 (i) of
the Appendix). It is known that these groups are isomorphic to either 1,Zs,Zy X Zs, the
dihedral group D, or the symmetric group Sy, cf. [Loo| or Appendix A. Also in these groups

any element is conjugate to its inverse (cf. the discussion in Chapter 6).

Corollary 2.15. Let g be a simple Lie algebra over F =R or C and o € Autg. Then there

exists an automorphism & of g of finite order with

L(g,0) = L(g,0) .

Proof. By 2.13, it suffices to show that any connected component of Autg contains an element
of finite order. But this follows from the next lemma using that the compact group (Autg)®

in 2.14 meets every connected component of Autg. O



13

Lemma 2.16. Let G be a Lie group and H a compact subgroup that meets every connected

component of G. Then each connected component of G contains an element of finite order.

Proof. Let G be a connected component of G and h € G; N H. Then the closure of
{h™ | n € Z} is compact and abelian and thus isomorphic to 7" x F' where T is a torus and F'
is finite. After changing h by an appropriate element of T" we get an element of finite order

and this still lies in G;. O

To study real forms of complex loop algebras we extend the main result to conjugate linear

automorphisms ¢, i.e. with ¢(iu) = —ip(u) for all u.

Corollary 2.17. Let g be a complex simple Lie algebra and o € Autg. Then the conjugate
linear automorphisms of L(g, o) are precisely the ¢ of the form @u(t) = ¢i(u(A(t))) for all
u € L(g,0) where A : R — R is a diffeomorphism with \(t + 2w) = A(t) + €27 for some
e € {£1} and the ¢, are conjugate linear automorphisms of g with ¢y10, = o0~ ¢ depending

smoothly on t.

Proof. Since the composition of two conjugate linear automorphisms is C-linear, it is by 2.10
enough to prove the existence of one conjugate linear automorphism of the above form. To
this end let u be a compact real form of g and w : g — g the conjugation with respect to
u. Since there exists a € Intg with o7'u = au, 6 := o« leaves u invariant and L(g, o)
and L(g, &) are isomorphic. We therefore may assume that ¢ leaves u invariant. But then

pu(t) := w(u(t)) is a conjugate linear automorphism of the desired form. O

3 Isomorphisms of smooth affine Kac-Moody algebras

Let g be from now on a simple Lie algebra over F = R or C and ¢ € Autg. On L(g,0)
2m

there exists a natural symmetric bilinear form given by (u,v) = 5= [ (u(t),v(t))o dt where
0

(,)o denotes the Killing form on g. It satisfies ([u, v]o, w) = (u, [v,w]p) and (v',v) = —(u,v’)

for all u,v,w € L(g, o), where ' denotes differentiation. Let

~

L(g,0) := L(g,0) @ Fcd Fd
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as vector space with bracket
[u+ ac+ Bd, v+ ye+dd] = [u,v]o+ Bv' — ou' + (v, v)c

for all w,v € L(g,0) and «a,f3,7,0 € F. Then j}(g,a) is a Lie algebra which we call a
(smooth, twisted) affine Kac-Moody algebra. The natural bilinear form on L(g, o) extends
to a natural bilinear form on L(g, o) by (u 4 ac+ fd, v+ vec+ 0d) == (u,v) + ad + By ie.
with ¢,d L L(g,0) and (c,¢) = (d,d) =0, (¢,d) = 1. It is biinvariant in the sense that

([z.9],2) = (2, ]y, 2])

for all z,y,z € L(g,0).
Note that L(g, o) is only a subspace, not a subalgebra of L(g, o).

Proposition 3.1.
(i) The derived algebra L'(g,0) of L(g, o) is equal to L(g, o) & Fe
(ii) Fe is the center of L(g, o) and L'(g, o)
(iii) L(g,o) is isomorphic to L'(g,0)/Fe
(iv) L(g,0) is equal to its derived algebra.

Proof. (ii) and the implications (iv) = (i) = (iii) are straightforward.
To prove (iv), let u € L(g,o). By using the lift of a smooth partition of unity on S to

R we may assume that supp(u) N [0, 27] is arbitrarily small, in particular that there exist

U1, ..., u, € L(g, o) by 2.3 which are constant on this set and equal to the elements z;, . .., z,

of a basis of g. Expressing u as ) fiu; with f; € C50.(R,F) and the x; as ) ag [v;, 2]
i ok

(which is possible since g’ = g) gives u = > a;jr [fiv;, ugl. O

ijik
The goal of this chapter is to extend the results of the previous one to (linear and conjugate
linear) isomorphisms between affine Kac-Moody algebras. In an intermediate step we first
consider isomorphisms between the derived algebras.
Let g be a second simple Lie algebra over F and ¢ € Autg. A linear or conjugate linear

isomorphism ¢ : L(g,0) — L(g,5) is by Theorem 2.10 and Corollary 2.17 of the form
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ou(t) = @i(u(A(t))) with A(t 4+ 2m) = A(t) + €27 for some ¢ € {£1} and isomorphisms
¢ g — §. Bach ), ' 1 g — g (where ] = £¢) is a derivation (even if ¢, is conjugate
linear) and hence of the form ad x(t) for a unique z(¢) € g depending smoothly on t.
Moreover @iyo, = oo~ € implies x(t+27) = dx(t) and hence x € L(g, ). In order to stress
the dependancy on the isomorphism ¢, let €, := €, A\, := A, and z, := x. Due to Theorem

2.10 (iii) €,, A/, and z, are well defined.

Proposition 3.2. Let ¢ : I/(g,0) — L'(g,5) be a linear or conjugate linear map. Then ( is
an isomorphism (of Lie algebras) if and only if there exists a linear (resp. conjugate linear)

isomorphism ¢ : L(g,0) — L(g,5) such that

pc = €,C

and Qu = pu+ (x,, pu)c

for allu e L(g, o).

Proof. Since isomorphisms map centers to centers we may restrict our attention to those ¢
with

pc = ac
ou = pu+ p(u)c
where o € F, a« # 0, ¢ : L(g,0) — L(g,0) is a linear (resp. conjugate linear) vector
space isomorphism and p : L(g,0) — F is linear (resp. conjugate linear). Then ¢ is

an isomorphism if and only if [pu, pv Plu,v] for all u,v € L(g,0) or equivalently if

0)c + ¢((v',v)c). This in turn is equivalent to
¢ being an isomorphism and ((pu), ¢v) — pu([u,v,]o) = a(w/,v) (resp. = a(u/,v)). Thus
pu(t) = pru(A(t) and (pu)'(t) = @ler (pu(t)) + o)) - X (t) = ([2,, pulo + Np(u)(t).

Hence ((pu)', pv) = (24, plu, v]o) + (Np(u'), pv). Since ($z,¢y)o = (x,y)o (resp. (2,y),) if

| =
[pu, pvo + ((pu)', pv)e = plu,v]o + p([u, v

) =
(

¥ : g — g is an isomorphism (resp. conjugate linear isomorphism) we have X" - (¢(u'), pv) =
o A(2m)

ep(',v) (resp. = e,(w,v)) due to [(«/(AF)),v(A(t))oN ()dt = [ (v (x),v(z))odx
0 A(0)

2me, (U, v).
Therefore ¢ is an isomorphism if and only if ¢ is an isomorphism and (z, plu,v]y) —

([, v)o) = (@ — €)(e,v) (resp. plfu,vlo) = (@ — ), v)) for all u,v € L(g, o).
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Choosing u € L(g, o) such that (u/,u)y is not identically zero, and v := fu for some f €
2w

C>.(R,F) with [ f(u/,u)o # 0, we get o = e. Hence 3.1 (iv) yields pu(u) = (x,, pu) for all
0

per

u € L(g,0). O

Corollary 3.3. The mapping ¢ — @ which associates to any isomorphism ¢ : f)’(g,a) —
IA/(Q,(}) the induced isomorphism between the loop algebras, is a bijection. In particular

Aut(L'(g,0)) and Aut(L(g, o)) are isomorphic.

Theorem 3.4. Let ¢ : f/(g, o) — [:(Q, &) be a linear or conjugate linear map. Then ¢ is an
isomorphism (of Lie algebras) if and only if there exist v € F and a linear (resp. conjugate

linear) isomorphism ¢ : L(g,0) — L(g,5) with X, = €, constant such that

pc = €uC
od = e,d— € xy, +C
ou = u+ (z,,pu)c

for allu € L(g, o).

Proof. Let ¢d = Sd+wu,+~yc. Then ¢ is an isomorphism if and only if 3 # 0, ¢ maps ﬁ’(g, o)
to L'(g,5), the induced map ¢ is an isomorphism and [¢d, pu] = @[d,u] for all u € L(g, o).
By 3.2, ¢c = e,c, and pu = pu+(z,, pu)c for a (unique) isomorphism ¢ : L(g,0) — L(g,5).
Thus [¢d, pu] = ¢[d, u] is equivalent to S(pu)' + [u,, pulo— (uy, (pu))e = (') + (24, p(u'))c
and hence to (i) (82, + g gulo = (1 — GX,)p(w) and (i) (g, (90)) = —(zr p() a5
(ou) = [z, pulo + A (u).

Let ty € R. Then there exists u € L(g, o) with ¢u(tg) = 0 and (¢pu)'(ty) # 0 and thus also
with p(u')(to) # 0 by the last equation. This shows that (i) is equivalent to u, = —fz,

2m

and A, = % and hence to u, = —€,7, and X\, = €, as ¢, = %{)\:&(t)dt. Therefore (ii) is a

consequence of (i) and the theorem follows. O

We will call the ¢ above to be induced by ¢. It is equal to the restriction of ¢ to L(g, o)
followed by the projection u + ac + fd +— wu.

The theorem shows in particular that any isomorphism ¢ : L(g,0) — L(g,5) with A
constant, can be extended to an isomorphism ¢ : L(g, o) — L(g,5). Hence Corollary 2.13

and Corollary 2.15 extend immediately to the affine Kac-Moody case:



17

Corollary 3.5. (i) If L(g,0) and L(g,5) are isomorphic then g and § are isomorphic.

(1) f/(g, o) and i(g, 7) are isomorphic if and only if o and & are conjugate in Autg/Intg.
O

Corollary 3.6. For any o € Autg there exists an automorphism ¢ € Autg of finite order
with L(g,0) = L(g, ). O

Specializing 3.4 to automorphisms let

Aut(L(g,0), L") ={p e Autl(g,0) | ¢ =idon L'(g,0)}

|
= {¢ € AutL(g,0) | ¢ =1idon L(g,0)},
Aut()L(g,0)  :={p € AutL(g,0) | (¢pz,%y) = (v,y) ¥V 2,y € L(g,0)}, and
|

Aut'L(g, o) = {p € AutL(g,0) constant } .

Note that A/, constant yields A, = €.
Corollary 3.7. (i) Aut(L(g,0), L') =F.

(ii) Aut(L(g,0), L') is contained in the center of AutL(g, o).
(iii) AutL(g,o) = Aut(yL(g,0) x F.

(iv) The mapping Aut(v)[z(g,a) — Aut'L(g, o) that associates to each ¢ the induced map-

ping ¢ on L(g,0) is an isomorphism.

Proof. (i) The ¢ € Aut(L(g,0),L’) are the automorphisms with ¢¢ = ¢ and ¢u = u and
thus with ¢d = d 4+ ~vc by 3.4. Hence ¢ +— 7 defines an isomorphism.

(ii) Let ¢ € AutL(g, o) with ¢c = ¢, ¢pd = d + ~vc and pu = u for all u € L(g, o). Then
¢ commutes with all = Endﬁ(g, o) which leave Fc and L (g,0) invariant and satisfy

(ﬁc, d) = (c, @d) In particular it commutes with all automorphisms.

(iii) ¢ € AutL(g,o) with pec = €.C, Pd = €,d — e,1, + e, and pu = pu + (x,, pu)c
leaves the bilinear form (,) invariant if and only if (¢d, ¢d) = 0 or equivalently if

2y = —€,(2y,v,). Thus the claim follows from (i) and (ii).

(iv) follows from 3.4 and (iii) above.
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3.7 (iii) shows that elements of finite order in AutL(g, o) are contained in Aut(,)f/(g, o) and
are conjugate in AutL(g, o) if and only if they are conjugate in Aut(y)f}(g, o). Thus we have

Proposition 3.8. There is a natural bijection between conjugacy classes of elements of finite

order of AutL(g, o) and Aut'L(g, o). O

In case F = C let A_ut[:(g, o) and AutL(g, o) be the sets of conjugate linear automorphisms
of L(g, o) and L(g, o), respectively and Aut L(g, o) := {p € AutL(g, o) | A, constant }.

Proposition 3.9. There is a natural bijection between conjugacy classes of elements of finite
order of AutL(g, o) and Aut/L(g,o) (where conjugation means conjugation with respect to

elements of AutL(g, o) and Aut'L(g, o), respectively).

Proof. The proof is in complete analogy to that of 3.7 by considering the enlarged groups
AutL(g, o) UAutL(g,o) and Aut'L(g, o) U A_ut/L(g, o), respectively. The mapping @ — ¢
is surjective and has kernel Aut(ﬁ(g,a),ﬁ’ ) = C which again splits off as a direct factor

(the other factor being Aut()L(g, o) UAut)L(g, o) where Aut(,L(g,0) = { € AutL(g,0) |

(pz,0y) = (z,y) V 2,y}). 0

Later (cf. Corollaries 4.12 and 5.9) we will show that Aut’L(g, ) can be replaced by AutL(g, o)
in 3.8 (and Aut L(g, ) by AutL(g,o) in 3.9). Here we will prove part of this statement in
Proposition 3.11.

Lemma 3.10. Let ¢ : L(g,0) — L(g,0) and ¢ : L(g,0) — L(g,5) be isomorphisms
(possibly conjugate linear) of the form pu(t) = @i(u(A(t))) and Yu(t) = Py(u(u(t))). Then
Yo (w)(t) = Gu(u(A(t))) where X = ™" o Mo and Gy = by 0 P © (U5)

Proof. Observe that vo(u)(t) = ¥i(@u(u(t))) = Yepuw (u(A o u(t))) and thus in particular
() = (Gur) T (w(p(1))- =
Proposition 3.11. Let ¢ € AutL(g,o) (resp. AutL(g,o)) be of finite order. Then there

exists 1 € AutL(g, o) of the first kind such that 1p~" € Aut'L(g, o) (resp. Aut L(g, o))
If v is of the second kind the order of ¢ is even.

Proof. Let ¢ be of order ¢ and pu(t) = ¢ (u(A(t))) with ¢, and A(¢) smooth and A(t+27) =
A(t) 4+ e2m. Then p*u(t) = @iox@) - - - i1 (w(A*(t))) for all k € N where A" := Xo---0 A
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denotes the k' iterate. Thus M\ = id + p27 for some p € Z. If ¢ is of the second kind

(e = —1) then ¢ is necessarily even as €“A\* is an orientation preserving diffeomorphism of R
for all k£ € N.
qg—1
Let v := %Zek)\k. Then also v is an orientation preserving diffeomorphism of R (note
k=0

that its derivative is positive everywhere) with v(t 4+ 27) = v(t) 4+ 27. It moreover satisfies
v(A(t)) = ev(t)+ £ p27 and thus volovi(t) = et+ ¢ p2m. Hence Yu(t) := u(v=1(t)) defines
by Theorem 2.10 an automorphism of the first kind on L(g, o) and ypyp~! € Aut’'L(g, o)
(resp. Aut L(g, o)) by 3.10. O

The main idea of the proof of 3.11 is a variation of the proof that diffeomorphisms of S*
of finite order are conjugate to rotations or reflections. Since this is false for arbitrary

diffeomorphisms of S*, also 3.11 would be false for arbitrary ¢ € AutL(g, o).

4 Automorphisms of the first kind of finite order

Let g be as before a simple Lie algebra over F = R or C and 0,6 € Autg. Let Autlg :=
{v € Autg | ord(p) = ¢}

Definition 4.1. Two automorphisms ¢ € AutL(g,o) and x € AutL(g,&) are called qua-
siconjugate if there exists an isomorphism v : L(g,0) — L(g,5) such that x = oL
Similarly ¢ € Autf/(g,a) and X € Autﬁ(g,&) are called quasiconjugate if there exists an
isomorphism @/A) with Y = @@@g@fl.

We call ¢ and x (resp. ¢ and Y) only conjugate if they are quasiconjugate and ¢ = o.
It will turn out (Corollary 4.13) that any automorphism of the first kind of finite order is
quasiconjugate (but not necessarily conjugate) to one with ¢, constant. From this it seems
to be clear that conjugacy classes of these automorphisms can be parametrized by simple

invariants. But we will prove this first and deduce 4.13 as a corollary.

Let Aut)L(g,0) := {¢ € AutL(g,0) | ¢ of the first kind} and Aut]L(g,0) = {¢ €
Aut,L(g,0) | A, = 1}. Recall that any ¢ € Aut,L(g, o) of finite order is conjugate within
Aut;L(g, o) to an element of Aut}L(g,o) (Proposition 3.11).
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Lemma 4.2. Let ¢ € Aut]L(g,0) be of order q. Then there exist unique p € {0,...,q— 1}
and ¢, € Autg (t € R) such that

pult) = pi(ult +  2m))
for all uw € L(g,0), and this ¢; depends smoothly on t.

Proof. By Theorem 2.10 gu(t) = ¢;(u(A(t))) and by assumption A(t) = t + ¢, for some
to € R. 7 = id implies N\ = id + p27 for some p € Z and thus ty = §2W. By replacing A
eventually by A + 2mr for some m € Z (and ¢; by ¢;0~"™) we may assume 0 < p < ¢. This

p is then unique and hence ¢; as well. Since A is smooth also ¢, is smooth. O]
We now associate to each ¢ € Aut|L(g, o) of order ¢ an “invariant” as follows.

Definition 4.3. For ¢ € N and p € {0,1,...,q — 1} let r = r(p,q), p' = P (p,q), ¢ =
d(p,q), | =1Up,q) and m = m(p,q) be the uniquely determined integers with r > 0, p =
o, q=rq, lp)+mqd =1 and 0 <1 < q. (In particular r = (p,q) is the greatest common

divisor of p and q).

Let ¢ € AutyL(g,0) of order q with pu(t) = pi(u(t +to)), to = E2r, and r,p',q',[,m as
defined above. We then have % u(t) = P,(u(t)) and @'u(t) = Ay(u(t + 27)) where

Pt = (;Dt(pt-‘rto . @t—&—(q’—l)too'pl and

Ay = 90t90t+t0"'§0t+(l—1)t00'7m

Since ¢ is of order ¢, this implies that P, is of order r. Hence P, = oyopa; ' for some
00 € Aut"g and some «; € Autg depending smoothly on ¢. For g has only finitely many
automorphisms of order r up to conjugation. From ¢'p? = ¢7 ¢! we get A Pyiox /¢ = P\

and thus o, , ,A; 'y € (Autg)?. In the following we fix for each r € Naset A"(g) C Aut’g

t+2m/q’
of representatives of conjugacy classes of automorphisms of g of order r. If p € A"(g) we
consider in (Autg)? the equivalence relation g ~ $ if and only if 5 and 3 are conjugate
in 7o((Autg)?) = (Autg)?/((Autg)?)o, i.e. if 3 = v3y~ 1 for some v € (Autg)? and § €
((Autg)?)y. We denote by [5] the equivalence class containing #. There are only finitely

many equivalence classes as mo((Autg)?) is finite (cf. Appendix A).
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Definition 4.4.

(i) For q € N let 31(g) :== {(p, 0, [8]) | p €1{0,...,q — 1},0 € AP9(g), 3 € (Autg)?}

(ii) If ¢ € Aut|L(g,0) is of order q¢ and p, 09, u,q" and A; are chosen as above then

(b, 00, [0y A ) € 3(g)
15 called the invariant of .
Remark 4.5. J{(g) is a finite set.

Example: The invariant of ¢ € Aut}L(g,o) with ¢; = ¢ (note that this requires pgo =

1

o) is (p,apl o? ot [apglo™a ) where a is chosen such that aglo?a~! € A7(g). If

moreover ¢ is an involution (¢ = 2) and ¢y € A"(g) then its invariant is (0, ¢y, [0]) or

(1,id, [ '])-

Proposition 4.6. Each element of 3{(g) occurs as the invariant of some ¢ € Aut}L(g, o)

of order q for some o.

Proof. Let (p, 00, [0]) € 3%(g). Then gy and 3 commute and hence also ¢ := o’ 377 and
o = 0h37 where p/, ¢/, and m are determined by 4.3. Therefore pu(t) := cpou(t+§27r) defines
an element of Aut]L(g, o) of order ¢q. By the example above it has invariant (p, go, [3]).

]

Proposition 4.7. (i) The invariant of each p € Aut| L(g, o) of finite order is well defined.

(ii) Automorphisms ¢ € AutiL(g,0) and ¢ € Aut|L(g,5) that are of finite order and
quasiconjugate by an isomorphism 1 : L(g,0) — L(g,&) of the first kind have equal

muariants.
Proof.

(i) Only the a4 in the definition of the invariant of ¢ is not determined completely and

could be replaced by a;3; where 3, € (Autg)®. But this does not affect [, !, v Lay].



22

(ii) Let ¢ and @ be of order ¢ and of the form pu(t) = ¢ (u(t+to)) and Gu(t) = @ (u(t+to))
where 0 < p < g and ¢y, = §27r,fo = 73271 Let Yu(t) = ¥y (u(p(t))) with p(t + 27) =
p(t)+2mr. Then ¢y = @/}tgou(t)@/);lfo and t+1y = = (u(t) +to) by Lemma 3.10. Therefore
p(t 4 2m) = p(t) + 27 implies p = p and p(t + to) = p(t) + to. Let r,p',¢',1 and m be
defined as in 4.3. Then

p(t+2r/q) = p(t) +2r/q

as i = l§ +m. Let P, Ay, a4, 00, P, Ay, and o be as in the definition of the in-
variants of ¢ and @ respectively. Then P, = UVt u(e) Pult)y+to * ** Spu(t)+(q’—1)to¢,5_4r1p/27r5-p/ =
Ui Py 1 ¢tau(t)90a;(1t)¢t_ ! which implies ¢:p,27r&p' — o), !, Similarly we obtain
/N\t = th#(t)w;% Jq Therefore we can choose &y := 9y, ;) which yields gy = oo and

at . ANla, = a;(l AL

trom /g am/a DNy Q) - Hence the invariants of ¢ and ¢ coincide.

]

If ¢ € Aut;L(g,0) has finite order we choose ¥ € Aut;L(g, o) with ¢yt € Aut|L(g, o)
(cf. Proposition 3.11) and define the invariant of ¢ to be that of 1y ~1. By Proposition 4.7

(ii) this is well defined and invariant under quasiconjugation with isomorphisms of the first

kind.

We next describe how the invariant behaves under quasiconjugation with isomorphisms of
the second kind.

Let 14 : 31(g) — J1(g) be the involution with 1,((0, ¢, [8])) = (0,0, [67"]) and 1,((p, ¢, [8])) =
(¢—p o [67d) forpe{l,....¢— 1}

Definition 4.8. We call two elements a,b € J}(g) opposite if b = 1,(a).

Proposition 4.9. Let ¢ € Aut;L(g,0) be of order q and v : L(g,0) — L(g,5) be an
isomorphism of the second kind. Then the invariant of 1o~ is opposite to that of ©.

Proof. Tt is enough to consider the special case ¢u(t) = u(—t) and 6 = o~ since any other
isomorphism of the second kind is a composition of this with an isomorphism of the first

kind (which does not change the invariant). Now a direct calculation gives the result. [

Remark 4.10. If ¢ = 2 then 12((p, 0,[8))) = (p, 0, [3) for all (p, 0,[8)) € J2(g) (note
o = id if p = 1). Hence 1 is the identity if for each ¢ € Autg with ¢* = id each element
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of mo((Autg)?) is conjugate to its inverse. This is for example the case if g is compact or
complex as will be explained in Chapter 6. Hence the invariant of an involution of the first

kind does not change in this case under quasiconjugations with arbitrary isomorphisms.

Theorem 4.11. Let p € AutyL(g,0) and ¢ € AutyL(g,5) be two automorphisms of order q
with the same (resp. opposite) invariants. Then they are quasiconjugate by an automorphism
Y of the first (resp. second) kind. Moreover, if p € Aut|L(g,0) and ¢ € Aut|L(g,5) then ¢
can be chosen to be of the form Yu(t) = Yyu(£t).

Proof. We may assume the invariants of ¢ and ¢ to coincide since otherwise we could first
conjugate ¢ by v : L(g,0) — L(g,0~!) with ¢yu(t) = u(—t) and apply 4.9. After a first
conjugation we may assume pu(t) = pu(t + £2m), Qu(t) = ¢uu(t + 22m) with 0 < p < ¢.
To find ¢ with vu(t) = ¢u(t) it thus suffices to find a smooth curve 1, in Autg with

(1) @Z)t_;'_Qﬂ— = 5‘#&0‘71 and
(2) wtwtwt_-klto = ¢,

where t, = §2W as before. Using our standard notations r,p’,¢,l,m (with p = rp/, ¢ =
rql7 lp/ + mql = ]-a 0 S I < ql)a -PtaataAt (Wlth @q/u(t) = Pﬂb(t), Pt = O-/tQOat_la @lu(t) =
Awu(t+27/q')) and P,, &y, A, correspondingly, (1) and (2) are equivalent to

(1) Yiyon)g = /~\[1¢t/\t and
(27) @Z)t = Pflwt P

In fact, if we extend the mappings ¥, ¢, P, A to all smooth u : R — g by the same formulas
and let Tu(t) := ou(t —2) and define ¢, P, A, 7 correspondingly then o1 = 7, P = @777,
A=t p=A'P™ 7=A7Pl Hence (1) and (2) are equivalent to

(*) T =47 and ¢y = Yy
while (1’) and (2’) are equivalent to
A = YA and Py = ¢P .

and thus to (*).
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With P, = oy000; P, = d000; " and xy := & "y, (27) is equivalent to x; € (Autg)e
and (1°) to
Xt+2r/q = B By

where 3, 1= oy "Ny on /g and By = ay 1/~\to~zt+2ﬂ /g are curves in (Autg)?. But this equation
for x; € (Autg)? can be solved since by assumption [3,] = [3], i.e. B = 7By 6, for some
v € (Autg)? and some smooth curve J; in ((Autg)?)y. In fact, for small ¢ we may choose
Xt =7 and Xeror/q = B3, = 0; 'y and connect these pieces smoothly in [0, 27/¢]. The
periodic extension from [0,27/¢] to all of R by Xij0x/¢ = Bt_ YB3, gives then the desired

solution. u

For any o € Autg, let

Ji(9,0) == {(p,0,[0] € J(g) | @57 is conjugate to o in Autg/Intg}

where I = I(p, q) and ¢’ = ¢/(p, q) are as in 4.3. Then J{(g, o) contains precisely the invariants
of those automorphisms of the first kind of order ¢ which are defined on algebras j}(g, &) and
L(g, &) isomorphic to f)(g, o) resp. L(g,0). In fact, if two automorphisms have the same
invariant then they are quasiconjugate, and in particular the algebras on which they are
defined are isomorphic. Thus the invariant determines the isomorphism type of the algebra.
On the other hand, the invariant (p, o, [3]) can be realized on L(g, o'37 (resp. L(g, ¢'6¢))
by 4.6.

We denote by Aut?L(g, o) and Aut?L(g, o) the sets of automorphism of L(g, o), resp., L(g, o)
of the first kind of order ¢. The invariant of a ¢ € Aut?L(g, o) is by definition the invariant
of the induced ¢ € Aut{L(g, ). Then Proposition 4.6, 4.7, 4.9 and Theorem 4.11 hold corre-
spondingly for automorphisms of affine Kac-Moody algebras. By combining Proposition 4.6

and Theorem 4.11 we thus have:

Corollary 4.12. The mapping that associates to each automorphism its invariant induces
the following bijections

Aut{L(g,0)/Aut,L(g,0) — J{(g,0)

and

AutiL(g, o)/Aut: L(g,0) — Ji(g,0) ,
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A

where the quotients denote conjugacy classes. Moreover in case ¢ = 2 AutiL(g,0) (resp.

Aut,L(g,0)) can be replaced by AutL(g,o) (resp. AutL(g,o)). O

Corollary 4.13. Any element of Aut(fﬁ(g, o) (resp. AutiL(g,0)) is quasiconjugate to some
¢ € Aut!L(g,6) with ¢c = ¢, ¢d = d and $u being a twisted loop of the form pu(t) =
wo(u(t + £2m)) for all w € L(g,5) where o € Autg is constant and p € {0,1,...,q — 1}
(resp. to some ¢ with pu(t) = @o(u(t + £2)).

Remark 4.14. In general it is not possible to conjugate an element of Aut{L(g, o) to some
¢ € Aut{L(g, o) with pu(t) = po(u(t+L£2m)). For example let o = id and (0, o, [8] € J{(g,id)
(i.e. p € A? and (3 € Intg) with § & ((Autg)?)o (such (o, B exist, see e.g. Chapter 6). Since
any ¢ € Aut!L(g,id) with pu(t) = @ou(t) has invariant (0, apea™, [id]) (cf. the example
after 4.5) an automorphism of L(g,id) with the above invariant 0, o, []) can not be conjugate

to such a ¢.

5 Automorphisms of the second kind of finite order

We follow the same strategy as in the last chapter and define also for automorphisms of the
second kind of finite order an invariant, prove that it parametrizes (quasi)conjugacy classes,
and derive from this a series of consequences as in Chapter 4.

Let g be a simple Lie algebra over F = R or C and o € Autg. Let Autgf/(g, o), AuteL(g, o),
Aut?L(g, o) and Autd(g, o) be the sets of automorphisms of the second kind on L(g, ) and

L(g, o) of arbitrary order and of order ¢, respectively.

Lemma 5.1. (i) Let ¢ € AutdL(g,0). Then q is even and there exists ¥ € AutyL(g, o)
with Yo~ (u)(t) = @i (u(—=t)) for some smooth curve ¢; in Autg.

(i) ¢ € AutaL(g,0) and ¢ € AutyL(g,5) are quasiconjugate by an isomorphism of the
first kind if and only if they are quasiconjugate by an isomorphism of the second kind.
In particular AutiL(g,0)/Aut L(g,0) = AutiL(g,0)/AutL(g, o). The same is true if
L(g,0) is replaced by f)(g,o).
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Proof. (i) By 3.11, ¢ is even and there exists 11 € Aut;L(g,0) with ¥ u(t) =
wi(u(—t + tg)) for some smooth curve ¢, € Autg and t; € R. A further conjuga-
tion by 1y with (¢u)(t) = u(t + to/2) yields therefore the result.

(ii) Conjugation of ¢ by an isomorphism ¢ : L(g,0) — L(g, ) or by 1 is the same. But
Y is of the second kind if and only if ¢ is of the first kind. The same is true for ¢

and 1& N

Let ¢ € Auti'L(g,0) with pu(t) = @i(u(—t)). Then u(t) = p(u)(t) = (pip_)?(u(t))
whence (¢ip_;)? = id. Since g has up to conjugation only finitely many automorphisms of
order < ¢ the order of p;p_; is constant and thus equal to ¢q. Hence there exists a smooth

curve «y in Autg and gy € Aut?g with

YrP—t = Oy 0o at_l .

Let oy = ap woag and p_ := o '¢r0 'ay. Then ©r =¢? =ppas ¢_r =0 ‘.o " which

in turn follows from ¢, 9, = oo (cf. Theorem 2.10).

Definition 5.2. Two pairs (¢4, 0-), (¢4, p-) € (Autg)? with 7 = ¢* and P2 = @* are
called equivalent if there exist o, 3 € Autg with o™ 13 € ((Autg)“’i)o such that ¢ = ap o™t
and g_ = Bo_B 1 or oL = ap_a~t and p_ = By, B, This defines an equivalence relation

and we denote the equivalence class of (o4, o) by [p1,p_].

In particular (¢4, 0-) ~ (p-,04) ~ (apra™tap_a™) ~ (¢, Bp-_B7) for all a € Autg
and 3 € ((Autg)?t),.

Definition 5.3. (i) For any q € N let

357(8) == {lps, -] | v+ € Autg, ¢} = ¢ ,ord(p}) = g} -
(Note that ordp? = q is equivalent to ordy = 2q if q is even and to ordy € {q,2q} if q
is odd).

(i) If ¢ € Aut}’L(g, o) with pu(t) = ¢,(u(—t)) and oy are defined as above we call

[or, o] € 35%(g) the inwvariant of p.
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Remark 5.4. (i) The invariant of ¢ is well defined. For py0_; = 00, * = Gy dody; ' im-
plies 3,3, € ((Autg)®), where 3, = a; 'a;. Hence (¢4, @] = [B5 " b0, b7 "o 0] =
B85 o800, o] = [p4, -] since @ = gq.

(i) 35%(g) is a finite set.

Proposition 5.5. Any [p,,0_] € 33%(g) is the invariant of some o € Auty'(L(g, o)) with
ou(t) = @, (u(—t)) for some o € Autg. In fact, one may take o := p_*p, and ¢, = @,

Proof. Let ¢, := ¢, and 0 = ¢ 'p,. Then @10, = oy for all t and hence ¢ with
pu(t) == ¢;(u(—t)) is contained in Auty’L(g, o). Since p;p_; = ¢> we may take oy = id.
Thus ¢ has invariant [og oo, 07 ' 0x0 o] = [4, 01 (9= o) 7! = oy, 0] O

Proposition 5.6. The invariant of ¢ € Auti?L(g,o) with ou(t) = @(u(—t)) does not
change under quasiconjugation. More precisely, if ¥ : L(g,0) — L(g,0) is an isomorphism
such that ¢ := =" is also of the form pu(t) = @i(u(—t)) then ¢ and ¢ have the same

mvariant.

Proof. Let pu(t) = ¢;(u(—t)) and @;p_; = azoo; . By 5.1 (ii) we may assume 1 to be
of the first kind and hence by 2.10 of the form Yu(t) = u(u(t)) where 1, and pu(t) are
smooth, 10, = dtpyo™t, and u(t + 27) = u(t) + 27 for all t. Lemma 3.10 implies @¢; =
VoVt op0" and —t = p~ ' (—p(t)) — 2k for some k € Z. Thus p(—t) = —p(t) —2km and
in particular ;(0) = —km, u(r) = —(k—1)m. Moreover ¢:3_; = YsPuin)P-piny¥y - = G000y "
with & := 1yay,r). This yields ¢ = dg ' Goto = @}, p—gr0 a_jr and G_ := a5 P10, =

-1 1

a:%k_l)ﬁgo_(k_l)wak Q_(p—1)r- From pyionp_t o0r = o0~ " we get a;rl%aat € (Autg)®
and by conjugating @, by o}, 0o, and ¢_ by a:bﬁ_l)ﬂ%aa_(k_l)ﬂ we see that [@4, p_]
depends only on k£ modulo 2. Thus it suffices to consider the cases k = 0 and &k = 1. If

k = 0 then ¢, = ¢, o = ¢_ and the invariants of ¢ and ¢ coincide. If & = 1 then
(D4, 0-) = (@Tzp-r00_r, 05 po00) = (aZ70 ' Prar, 04) = (07" 0-¢n, @y o) Where

Oy = ozt_lgpta_t. Note that gpi = 0o and ¢; € (Autg)® as ¢y = ¢_4¢y = 0o. Hence
[@-ﬁ-a 95—] = [90-1-790—]‘ L]

If ¢ € Auti?L(g, o) is arbitrary we may choose ¢ € AutL(g, o) by 5.1 with ¢~ (u)(t) =

@ru(—t) and define the invariant of ¢ to be that of 1 ~!. By the last proposition this is
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well defined and invariant under quasiconjugation. The invariant of ¢ € Autgqi(g, o) is that

of the induced .

Theorem 5.7. Two automorphisms ¢ € Auty’L(g, o) and ¢ € Autz/L(g, &) are quasicon-
Jugate if and only if they have the same invariant. Moreover, if in addition ¢ € Aut'L(g, o)
and ¢ € Aut'L(g,c) the conjugating isomorphism v : L(g,0) — L(g,5) can be chosen to be
of the form Yu(t) = Yy (u(t)).

Proof. Let ¢ and ¢ have the same invariants, the other direction being clear by the above
remarks. After a first conjugation (see Lemma 5.1) we may assume gu(t) = pu(—t) and
Pu(t) = gru(—t) With @i 0x = 0@i0, Prior = 00 and prp_; = 0%@004;1> Orp—t = 54:5@054;1
for some gy, 5o € Aut?(g). Let ¢, := ag oo, v = a;lero oy, Py = dp Pody, and
G = a ' pr0 ta,. Then @2 = gy and @2 = gy. Equality of the invariants is equivalent to
O =apratand o_ = Bo_Btor ¢y =ap_a~t and ¢_ = By, B! for some «, 5 € Autg
with a™'3 € ((Autg)e)y. We may assume the first possibility holds. For otherwise we could
first conjugate ¢ by ¥ju(t) := u(t — 7) which would replace ¢; by ;0 and (¢4, ¢_) by
(7Y _dr, b5 pido) where ¢ = a; oy € (Autg)® is as above. Since @2 and @2 are
conjugate we may assume gy = go. This implies a, 3 € (Autg)<.

We now try to find an automorphism v : L(g,0) — L(g,d) of the form vu(t) = ¢ (u(t))
with ™! = @. This amounts to find a smooth curve v; in Autg with

(1) Yryor = 0ot and (2) ¥y = &; "bppy.

From (2) we get ¢, = ¢~1@; "o, and hence x, := a; “h,ap € (Autg)?. Working with
X: instead of vy, (1) and (2) are equivalent to

(1') Xtyor = 5tXtCTt_1 and (27) x— = QEt_Ithbt
where 0, = o, +127r0at and ¢, = o7 'p,a_y, and Gy, &; are correspondingly defined. The
advantage of these equations over (1) and (2) is that (2’) at ¢ implies (2’) at —t because of
G1d_s = 00 = Gd_. The idea now is to define y, in [0, 7], to extend it by (2') to [—, ]
and then by (17) to all of R. To make this well defined we have to ensure that yg = gzga Y odo
and Xr = G_-X_r0_L, the last equation being equivalent to x, = &,ﬂ&; rdro~L. Both

conditions can be matched by choosing xo := a and x, := 3 where «, 5 € (Autg)? are as



29

above. Since « and ( lie in the same connected component we can smoothly connect them
by a curve in (Autg)?. By the above described extension we thus get y; in (Autg) for all
t € R and this satisfies (1’) and (2’). Moreover it is smooth except possibly at the integer
multiples of 7. But this can also be achieved by choosing y; more carefully around 0 and
7 according to the following lemma (at 7 one has to apply it to ¢,_,0, " and Gr_yF7 L in

order to get a smooth solution of y, ; = 5t_7rqg,’rltxw_t¢ﬁ_ta; 17,). O

Lemma 5.8. Let ¢; and &t be smooth curves in (Autg)? with ¢;p_y = 0o = été,t for small
t and ¢y = agoa™! for some o € (Autg)?®. Then x_; = qgt_lxtgzﬁt has a smooth solution near
t =0 with yo = a.

Proof. Let ¢, := ¢pedot, gz~5t = <;~Soeadi’t near ¢t = 0 with smooth z;, 7; € g% and xy = 79 = 0.
Then ¢;¢p_; = 09 = q~5t¢~5_t impliesz_; = —¢ox; and T_; = ggofct. Now yx; := e(-33d%-1 . pzado—t

is a solution. H

For any o € Autg, let

35%(8,0) = {lpy, o] € 35'(9) | ¢=" o4 is conjugate to o in Autg/Intg}.
Then the elements of 33°(g, o) are due to 5.5 precisely the invariants of elements of Aut3?L(g, o)
and as in the case of automorphisms of the first kind we have:
Corollary 5.9. There are natural bijections

Aut3?L(g,0)/AutL(g, o) < Aut3'L(g,0)/AutL(g, o) < 33'(g,0) .

Corollary 5.10. Any element of Autgqﬁ(g, o), resp. Auti?L(g, o) is quasiconjugate to some
¢ € Auta?L(g, &) with ¢c = —¢, pd = —d, pu € L(g, ) and ¢u(t) = po(u(—t)), resp. to
some @ € Aut3’L(g, &) with pu(t) = @o(u(—t)) where @y € Autg is constant.

Remark 5.11. Also in this case it is not always possible to conjugate ¢ € Autqu(g, o) (or
¢ € Aut3’L(g, o)) to one with ¢, constant. For example an involution ¢ of the second kind
on L(g) with invariant [p,,p_] where ¢y € Intg and ¢, is not conjugate to ¢_ in Intg is

not conjugate to a ¢ € AutiL(g) with ¢, constant.

Remark 5.12. The mapping ¢ — ¢? from Aut3/L(g, o) to Aut?L(g, o) induces the mapping
3349, 0) = 31(9,0), [p+,9-] — (0,0,[¢ " ¢,]) where o € A7 is conjugate to ¢ = 2.
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6 Involutions

In this chapter we specialize our results to involutions (automorphisms of order 2) and de-
rive an explicit classification of all involutions of L(g, o) and I:(g, o) up to conjugation (more
generally quasiconjugation) in case g is compact or complex. Actually we may restrict our-
selves to the compact case and moreover to the case of loop algebras. For the classifications
in the other cases are in a natural bijection with this by Theorem 7.5 of the next chapter,
Corollary 3.3 and Proposition 3.8. Thus let g be a real compact simple Lie algebra and
hence of type a,(n > 1), b,(n > 2), ¢,(n > 3), 0,(n > 4), ¢, e7, es, f4 or go. The group
mo(Autg) = Autg/Intg of connected components of Autg is isomorphic to the group of iso-
morphisms of the Dynkin diagram of g and therefore isomorphic to 1,Z, or the symmetric
group S3. In particular the conjugacy classes of my(Autg) are determined by their order.
Hence according to 2.13, L(g, o) and L(g, &) are isomorphic if and only if 6(¢) = o(¢) where
o(c) denotes the order of o in Autg/Intg (i.e. the smallest k such that o* € Intg). We

denote by g®) (resp. §*)) any L(g, o) (resp. L(g, o)) with 6(c) = k.

6.1 Involutions of the first kind

By the general results of chapter 4, involutions of the first kind are up to quasiconjugation
with isomorphisms of the first kind (actually with arbitrary isomorphisms, see below) in

bijective correspondence with the set of triples

(p, 0, [3])

where p € {0,1} and ¢ € Aut"g represents a conjugacy class of automorphisms of order
r = (p,2), the greatest common divisor of p and 2, where § € (Autg)? and [3] denotes the
conjugacy class of 3 - ((Autg)?)o in mo((Autg)?). We call involutions of the first kind with
p =0 (resp. p=1) of type la (resp. 1b). In case la, r = 2 and p is an involution while in
case 1b, r =1 and p = id.

Thus the list of conjugacy classes of involutions of type 1la is a certain refinement of
Cartan’s list of involutions g by the conjugacy classes of my((Autg)?). We therefore start by

recalling Cartan’s list, thereby fixing a list A?(g) of representatives of conjugacy classes of
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involutions on each simple g. This will be used throughout this chapter and will be called
the standard list of involutions. For later use we also indicate the outer involutions in this

list. Note that p is outer if and only if the rank of € := g¢ is less than the rank of g.

STANDARD LIST OF INVOLUTIONS A%(g)

g 0 o outer
a; = su(2) 01 := Adm -
ag, =s5u(2n+1) (n>1)| gp:=Ad7, (1 <p<n),on41:=p On+1
Gon1 =5U(2n) (P >2) | gp:=Ad7, (1 <p<n),0n1 =, Ont1; On+2
Ont2 = pAdJ
b, =502n+1) (n>2)]|p,:=Adr, (1<p<n) -
¢ = 5p(n) (n=3) | 0p:=Adm, (1 <p<I[3]), 0z)41 = AdiE, | -
04 = 50(8) 0p = Adr, (1 <p<4) 01, 03
0, = s0(2n) (n>5) | g, :=Ad7, (1 <p<n),on =AdJ 0p; (podd, 1 <p <mn)
€6 01, 02, 03, 04 01, 04
€7 01, 02, 03 -
€s 01, 02 -
fa 01, 02 -
g2 01 -

The notations are as follows. 7, denotes the diagonal matrix of appropriate size whose

first p diagonal elements are —1 and whose other diagonal elements are 1. J denotes the

E
matrix " | where E, is the n x n unit matrix and p € Aut(su(n)) is complex

—E,
conjugation. Note that in case a;, 4 = AdJ and AdJ is conjugate to Adm while in case

04, AdJ is conjugate to Adr, (corresponding to Cartan’s isomorphisms of symmetric spaces
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in low dimensions). The symplectic algebra sp(n) is viewed as a subalgebra of the n x n
quaternionic matrices. If g = e¢g the involutions g, ..., g4 are chosen to commute, which
is possible by Lemma A.8 of Appendix A. In case of the exceptional algebras the order
of succession of the p; is chosen in the standard way corresponding to Cartan’s symmetric
spaces E I - E XII. In particular - and only this will be used - o; and o4 are outer in case of
¢¢ and the fixed point algebra of gy in case of e; is isomorphic to s0(12) + su(2).

The group mo((Autg)?) of connected components of (Autg)? has been determined by Cartan
[Car| and Takeuchi [Tak|. It is isomorphic to 1,Zs, Zy X Zy, Dy (the dihedral group with 8
elements) or Sy (the symmetric group in 4 letters). Dy, which may be identified with the
symmetries of the standard unit square, has 5 conjugacy classes: {id}, {—id}, the reflections
along the two axes, the reflections along the two diagonals, and the rotations by angles +7/2.
Also S, has 5 conjugacy classes, namely the sets of cycles of order 1 to 4 and the set of
products (a,b)(c,d) of two cycles with {a,b,¢c,d} = {1,...,4}. In particular any element
in mo((Autg)?) is conjugate to its inverse. According to 4.9 and 4.11 the classification of
involutions of the first kind up to conjugation with arbitrary automorphisms is therefore the
same as up to conjugation only with automorphisms of the first kind.

The group mo((Autg)?) contains the group mo((Intg)?) of connected components of (Intg)e
as a normal subgroup and is actually the semidirect product of this with a subgroup F' of
Autg/Intg. These groups are listed in [Loo| p. 156, and by this list one can find representa-
tives of the conjugacy classes of my((Autg)?) in most cases easily. The results are contained
in Table 1. For more details (including a simplified calculation of these groups) we refer to
Appendix A. We denote the representatives of the conjugacy classes of mo((Autg)?) in this list
by o and their order in Autg/Intg by k (i.e. k= 0(c)). In case of g = ¢7 we let o, := e?dXr
where X, € g is an arbitrary non zero element with ,X, = —X,, and (adX,)? = —7? adX,,
(cf. Appendix A).

An involution corresponding to (p, o) is given by u(t) — o(u(t)) on L(g, o) = g®). It has
fixed point algebra L(¥,0),), where £ = g2, and extends to ﬁ(g, o) by c— c¢,dw— d.

By simply rearranging Table 1 we get the classification of conjugacy classes of involutions
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” . ro((Intg)?) | m((Autg)?) | olhi=1) | o(h=2) | o(k=3)
a o1 Zs Zs id, i -
ag, (m>1) | gp (1<p<n+1) |1 Zs id On+t1 -
agn—1 (R >2) | 0p 1 <p<mn) 1 Zo id Oni1 -
On Lo Ly X Ly id, AdJ On+1s Ont2 -
On+1 Ly Ly X Ly id, 01 On+t1,010n+1 -
On+2 1 Ty id On+2 -
b, n>2)| g (1<p<n) Zo Ziy id, 01 Ad7p41 - -
o1 M >2) | gp 1<p<mn) 1 1 id - -
On Lo Zo id, AdjF - -
on (n>2) | gp (1<p<n) 1 1 id - -
On Zo Zo id, AdJ - -
On+1 Ly Zs id, AdjFE - -
04 op (p=1or3) 1 Zo id Op -
02 Lo Lo X Zs id, o103 01,03 -
04 Zio X Zio Sy id, AdJ 01, 01AdJ Y
9, (Mm>3) | 0p (1<p<2n)
p even Lo Ty X Ty id, 010p+1 01, Op+1 -
p odd 1 Zo id Op -
02n Lo X Lo Dy id, 01AdT2n11, | 01, 0102041 -
02n+1
02n+1 Zo Zo id, g2n - -
02,1 (n>3) | 0p (1<p<2n—1)
p even Lo Ly X Ty id, 010p+1 01, Op+1 -
p odd 1 Zs id Op -
02n—1 Lo Lo X Zs id, o2n, 02n—1, 02n—102n -
O2n 1 Zs id 02n—1 -
€6 01,02, 03, 04 1 L id 01 -
e op (p=1or3) Zo Zo id, op - -
02 1 1 id - -
es 01, 02 1 1 id - -
fa 01, 02 1 1 id - -
g2 01 1 1 id - -

The notations are that of the Standard List. In case e7, op = e for some X € g with 0, X = —X, X # 0, and
(adX)® = —n%(adX).




34

of type la given in Table 2. It lists under g*) all pairs (g, ) from Table 1 where g is from
the standard list of involutions on g and o represents a conjugacy class of mo((Autg)?) with
o(o) =k.

Involutions of type 1b are classified by the conjugacy classes [3] of Autg/Intg and are
represented by u(t) — Bu(t 4+ ) on L(g, 37%) = g¥) where k = 6(472). In particular k = 1
or 3, and 3 only occurs once, namely in case g = s0(8) and [ the triality automorphism.
On L(g) = gV there are up to conjugation one or two involutions of type 1b depending on
whether g admits no or one outer involution. The results are also listed in Table 2.

The fixed point algebra of u(t) — Bu(t + ) is {u(t) | u(t +7) = 7 u(t)} C L(g, 372%) and

is thus isomorphic to g with [ = o(f3).

Remark 6.1. By means of the fixed point algebras it can be checked easily that the above
classification of involutions of the first kind is in bijection with that of Bausch and Rousseau
(IBR|, Tables p. 133 - 138) although the latter was obtained in the algebraic case, i.e. by
working with algebraic instead of smooth loops. But we will give an a priori proof in chapter
8 that both classifications coincide, thus obtaining in particular a simplified proof of their

classification.

6.2 Involutions of the second kind

By the results of chapter 5 the quasiconjugacy classes of involutions of the second kind are
in bijection with the equivalence classes [p., o] of pairs (o4, 0_) of automorphisms of g with
02 = id. Two equivalence classes [o;,0_] and [0,, 0_] coincide if and only if g, = ap,a™?
and o_ = fo_Btor o, = ap_a! and o_ = Bo,. B! for some o, 3 € Autg with a1 €
Intg. An involution corresponding to [0y, 0_] is given for example by u(t) — o4 (u(—t)) on
L(g,0) = g® where ¢ = 0_py and k = 6(0_p,) is the order of o_p, in Autg/Intg. It
extends to L(g,0) = §*) by ¢ — —c,d — —d.

To determine the equivalence classes [0, 0] more explicitly we first describe the involutions

on each g up to conjugation with inner automorphisms.



TABLE 2

INVOLUTIONS OF THE FIRST KIND

gt (0,0) (type la) 0 (type 1b) number

aft (01,id), (01, 1) id 241

ab) (n>2) | (gpid), 1<p<n+1 id, (n+1)+2

aéln)—l n>2) | (op,id), 1<p<n+2 id, p (n+4)+2
(0n,AdJ), (0n+1,01)

b (n>2) | (gpid), 1<p<n id 2n + 1
(0p, 01AdTy 1), 1<p<nm

¢Sy (n>2) | (gpid), 1<p<n id (n+1)+1
(on, AdjE)

) (n>2) | (0pid), 1<p<n+1 id (n+3)+1
(0n, AdJ), (0n+1, AdJE)

oV (0,id), 1<p<4 id, o, 6+2
(02, 0103), (04, AdJ)

) (n>3) | (epid), 1<p<2n+1 id, o1 (3n +3) + 2
(021, 01AdT141), 1 <1<
(02n, 02n+1), (02n+1, 02n)

%)1(”23) (0p,id), 1 <p<2n id, 01 3n+2
(021, 0102141), 1 <1 <n—-1
(02n—1, 02n)

el (0p,id), 1< p<4 id, o, 442

egl) (0p)id), 1<p<3 id 541
(01,01), (03,03)

ey (01,1d), (02,1d) id 241

% (01,id), (02,id) id 211

g5 (01,id) id 141

as,, (0ps 0nt1), 1<p<n+1 - (n+1)+0

agi)—l (0psOns1), 1<p<n+1 - (n+4)+0
(On> On+2)s (On+15010n+41), (Ont2, Ont2)

0(%) (n>2) | (021-1,021-1), 1 <1 <n - 3n+0
(021,01), 1 <1 <n
(021, 02141), 1 <1 <n—1
(02n; 0102n41)

o) L (n>3) | (021-1,0m-1), 1<1<n - 3n 40
(021,01), 1 <1<n—1)
(021, 02141), 1 <1 <n—1
(02n—1, 02n—102n), (020, 02n—1)

e (0p,01), 1<p<4 - 440

o) (04,9) v 1+1

35
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Proposition 6.2. A list of representatives of involutions on each g up to conjugation with

inner automorphisms is obtained from the standard list as follows.

(1) If g is not isomorphic to Ve, = s0(4m) then one can take the same list (two involutions

which are conjugate are also conjugate by an inner automorphism in this case).
(ii) If g = so(4m) and m > 3 then one gets a complete list by adding 0, ,, = 0102m+101-

(i) If g = s0(8) a list is given by op, 0,, 0, (1 < p < 3) and o4 where g, = Yo,07 ", 0y =

920,072 and 9 denotes the triality automorphism.

Proof. 1f 01,..., 0r € Aut(g) are the involutions from the standard list and oy := id,
Qo,...,qp € Autg are representatives of the elements of Autg/Intg then any involution is
conjugate by an inner automorphism to at least one of the o;0;a; 1 (1<i<l,1<j<k).
This proves in particular (i) since in all cases there, either [ = 1, or [ = 2 and ay can be
chosen to commute with the ;. In fact, in the cases su(n), so(4m+2) and e one may take
g = pt, Ad7y,,11, and g1, respectively.

(ii) If g = s0(4m) and m > 3 we also have [ = 2 and may take oy := Ad7y, which commutes
with all g, except 2,41 = AdJ. Moreover g 02,+105 ' = Adr Jr is not conjugate to Ad.J
by an inner automorphism as {A € O(4m) | AJA™' = £J} = U(2m) U < Fam . ) :
U(2m) C SO(4m).

(iii) Finally, if g = s0(8) then Autg/Intg = S5 and for any x,y € Autg/Intg with ord = = 2

=y ' and Autg/Intg = {1, z, yz = y?zy 2, v*x = yay~ ', y, ¥}

and ord y = 3 one has xyx~
This applies to z = g; = 03 and y = ¥ where @ denotes the image of o € Autg in Autg/Intg
and shows in particular that oy, 0}, ¢, are pairwise not conjugate by an inner automorphism
in case p = 1 and 3. Since g4 commutes with ¥ (cf. [Loo]) a complete list of representatives
can therefore be found among the g,, 0, 0y (1 < p < 3) and g4, and the only question is
whether g}, and ¢ have to be deleted. But this is not the case. For oo = Adry and AdJ (which
are conjugate by an outer automorphism) are not conjugate by an inner automorphism as

75 and +J have different eigenvalues. Thus ¢}, and g3 can not both be deleted and from this

it follows easily that neither of them can be deleted. O
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Theorem 6.3. The conjugacy classes of involutions of the second kind on each g*) are in
bijection with the pairs (o1, 0_| of Table 3. A representative corresponding to [o4, 0_] is given
by u(t) — o (u(—t)) on L(g,0-04+) and this extends to an automorphism of i(g, 0_o04) by

c— —c,d— —d.

Proof. By the discussion above we have to determine the equivalence classes [g., o_] of the
0+ € Autg with g% =id, and k := 6(p_0, ). This can be done easily in most cases by means
of Cartan’s list in combination with Proposition 6.2. Each such [oy, 0_] then corresponds to

(k) and vice versa.

a unique conjugacy class of involutions of the second kind on g
More precisely, if g is not isomorphic to so(4m) then o, and ¢_ may be taken from the
standard list (say {o1,...,0-}) enlarged by gy := id. Hence the [g,,0,] with 0 <p < qg <r
represent all equivalence classes [0y, 0], and without repetition. Moreover k = 1 if p_p, is
inner and k& = 2 otherwise.
If g = s0(4m) and m > 3 then gy may be chosen from {g, = Adr, | 0 < p < 2m} U
{02m41 = AdJ, 0h,,.1 = AdrJ7i}. Since Adm commutes with g, if p < 2m (and hence
[0ps Obmi1] = [0p) 02m+1]), & complete list of equivalence classes is given by the [g,, o,] With
0<p<qg<2m+1 together with [0om 1, 0miq]- Again, k = 11if o_p, is inner and k = 2
otherwise.
The most interesting case is g = s0(8). Here we may take o from {0y = id, 04} U
3
Ul{gp, g, 0y}, and gy actually from {g, | 0 < p < 4} as we may conjugate oy, o simulta-
p:
neously by ¢ or ¥?. Since gy and g4 commute with 9, since [0, 0] = [9?0,07%, 0V ™?] =
[0, 04) = [0g, 0], and [0, 0] = [Do10,0197 ", W0100,0 " 0107'] = [0),, 04] (note 010 = 9 gy
for some a € Int s0(8)), a complete list of representatives is given by the [g,, 0,] with
0 < p < g < 4 together with the [g,, g;] with 1 <p < ¢ < 3. Also note that [0y, 04] # [0p, )]
as g, and ¢ are not conjugate by an inner automorphism. If [o;,0-] = [0, 0,] then k =1
or k = 2 according to p+ ¢ being even or odd. Since g, and g}, are inner the k of [ga, Q;,] and
[0y, 0] is 1 if p is even and 2 if p is odd. Finally the [g,, o] with p,q € {1,3} have k = 3 as
V0,9 L0, = 9%0,0, = ¥? in Autg/Intg. O



TABLE 3
INVOLUTIONS OF THE SECOND KIND

g™ [04,0-] number
agl) [0p;04 (0<p<q<1) 3
a5, (n=1)| [op 0 0<p<qg<norp=g=n+1) in(n+3)+2
aéln)—1 (n>2) | [op,0g 0<p<g<norn+1<p<qg<n+2) |In(n+3)+4
b5 (n>2) | [op.0] (0<p<q<n) Ln+1)(n +2)
) (n22) | [opod 0<p<g<n+l) Ln+2)(n+3)
Sl (n=2) | oo (0<p<g<n) ln+1)(n+2)
o} [0ps 4] (0 <p < q<4,p+qeven), [0z, 05)] 10
0&) (n>3) | [0p,0q] (0<p<gq<2n,p+ qeven), n?+3n+4
[0, 02n41] (0 < ¢ < 2n,p even),
[02n+1; 02n+1], (02041, 05041
0(1)71 (n>3) | [0p,04) (0<p<g<2n+1,p+q even) (n+1)2
eél) [0p, 0p] (0 < p <4),[00,02], [00, 03] [01, 04], [02, 03] | 9
et [0p:04) (0<p<q<3) 10
) o904 (0<p<g<2) 6
& lop:0q] (0<Pp<q<2) 6
25" lop:0) (0<p<q<1) 3
aéi) 2 [0ps Ont1] (0<p <n) n+1
agi)q n>2) | [op,ont1] (0<p<n)fop,0n42](0<p<n) 2(n+1)
0} [0, 04) (0<p < g < 4,p+qodd), o1, 0], 02, 0}] | 8
0(2) (n>3) | [0p,04] (0<p<gq<2n,p+qodd), n(n + 2)
[0ps 02n+1] (0 < p < 2n,p odd)
00 (n>3) | [op0q] (0<p<gq<2n,p+qodd) n(n+1)
eé?) [00, 01], [@0, 04]; [01, 02][01, 03], [02, 04][03, 04]
U% [01, 4], [01, 05], [03, 04] 3
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The notations are that of the standard list with the additional conventions go := id, 05,11 = 0102n+101 if g = D2n,

n > 3, and g, = 99~
on L(g, 0-0+) = g*

to §*) by ¢ — —¢, d — —d.

Lif g = 94. A conjugacy class corresponding to [0, 0—] is represented by u(t) — o4 (u(—t))
) where k is the smallest positive integer such that (o_ 0+)* € Intg. This representative extends



39

Remark 6.4. There is a close connection between involutions of the second kind on affine
Kac-Moody algebras and Hermann examples of hyperpolar actions on compact Lie groups.
An Hermann example of a hyperpolar action is the action of K, x K_ on G by (ky,k_).g =
k,gk~' where G is a compact Lie group and K. are symmetric subgroups, i.e. (open
subgroups of) fixed point groups of involutions g4+ on G. This action is hyperpolar in
the sense that there exists a torus in G which meets every orbit and always orthogonally.
Kollross [Kol| has classified hyperpolar actions on compact simple, simply connected Lie
groups G and proved that they are either Hermann examples, o actions (the action of
{(g,0(9)) | g € G} on G for some o € Aut GG) or cohomogeneity 1 actions. Moreover he
has classified Hermann actions up to a natural equivalence (cf. also [MatT|) and his list
coincides with our list of equivalence classes [p, 0—] with g+ # id. Thus there is (almost)
a bijection between Hermann examples and involutions of the second kind. In [HPTT)|
this has been already observed for a special class of involutions, namely those which leave
the subspace Rc + Rd of a Kac-Moody algebra f}(g, o) invariant; but as we proved above,
any involution is quasiconjugate to such a special one. An explanation for this surprising
bijection lies in Terng’s construction of P(G, H) actions on Hilberts spaces which associates
to each hyperpolar action of H C G x G on G the action of the group P(G, H) of H'-curves
in G with endpoints in H on the Hilbert space L?([0, 1], g) by gauge transformations. Under
this mapping the Hermann example of K, x K_ on G with K1 = G corresponds to the
isotropy representation of the "Kac-Moody symmetric space defined by the involution of the
second kind with invariant [g,, o] while the o-actions correspond to the group case, i.e. to
the adjoint action of the associated Kac-Moody group on L(g, o) (cf. [HPTT] and [Heil]).
In [Gro| it has been shown that the isotropy representation of any Kac-Moody symmetric

space is (hyper)polar.

Remark 6.5. Involutions of the second kind have been classified in the algebraic case
by [BsR, Tables I, II, p. 85 — 94]. These authors obtained exactly the same number of
involutions of the second kind in each case as we do, except for DS) where they seem to have

overlooked some redundancies and obtained 14 instead of 10. Actually they classified almost
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split real forms of complex affine Kac-Moody algebras. But as we will see later these are in
bijection with involutions of the second kind (Chapter 7) and the classifications coincide in

the smooth and algebraic case (Chapter 8).

7 Real forms

In this chapter let g be a complex simple Lie algebra, o € Autg and G either the loop algebra
L(g, o) or the affine Kac-Moody algebra L(g, o).

Our purpose is to show that real forms of G correspond, like in finite dimensions, to involu-
tions of a "compact real form* U of G and are hence classified by the results of the last chapter,
and furthermore that each real form of G has a Cartan decomposition which is unique up to
conjugation. To this end we prove that extensions of automorphisms of finite order of U to
linear, resp. conjugate linear automorphisms of G induce bijections between their conjugacy
classes, also as in finite dimensions. Some relevant finite dimensional background material
is given in Appendix B.

We first note that in the complex case (as well as in the compact case), J}(g, o) only depends
on the order o(o) of [o] in Autg/Intg (cf. 2.14 and the introduction of Chapter 6). We
therefore define J7(g, k) to be Ji(g,0) if o(c) = k.

Now let ¢ € AutL(g,o) or ¢ € AutL(g,o) with induced ¢ be a conjugate linear auto-
morphism. Then ¢ is standard by 2.17 and 3.4, that is of the form yu(t) = ¢i(u(A(t)))
where ¢, € Autg depends smoothly on ¢ and A : R — R is a diffeomorphism with
At + 2m) = A(t) + e2r (actually\(t) = et + ¢y if ¢ is induced by @) for some € € {£1}

and @rior = 0P °,

To avoid confusion with the existing literature we call ¢ or ¢ to be
of type 1 (resp. type 2) if € = 1 (resp. ¢ = —1) (in |[R...] those of type 1 are called of
2" kind and those of type 2 of 1* kind). We denote by Aut;G the set of conjugate linear
automorphisms of G of type i and by A_ut?qg the subset of those of order 2¢. Recall that the

order of a conjugate linear automorphism is always even (if finite).

In the following let u C g be a fixed compact real form of g and w the conjugation with respect
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to u. Furthermore let for each » € N, A" be a fixed set of representatives of the conjugacy
classes of Aut"g U Aut g. Of course A" = A" U A" where A" C Aut’g and A" C Aut g are

sets of representatives of conjugacy classes of Aut"g and Aut g, respectively.

Definition 7.1. Let ¢ € N and k := o(0).

(i) 31(g, k) == {(p.oo, [8) | p € {0,1,...,2¢ — 1},0 € A" w”Autg, 3 € («'Autg)e,
0(0'p7) = k} where r = r(p,2q),qd = ¢'(p,2q) and | = I(p,2q) are as in 4.3 and [[3]

denotes the conjugacy class of the image of 3 in mo((Autg U Autg)®).

(i) 33'(9,k) == {lps, o] | v+ € Autg, @3 = @2, ord(p}) = q,0(p"p1) = k}, where
(o, 0-) and (pi,p_) like in 5.2 are called equivalent if ¢, = apra™ and ¢_ =
Borft for some a,f € Autg with a3 € ((Autg)?*)y and ¢, ¢_] denotes the

equivalence class.

Then we can associate to each ¢ € M?qL(g, o) an invariant in 37(g, k) in the same manner
as in the complex linear case. If ¢ € A_ut?qﬁ(g, o), the invariant of ¢ is by definition that
of the induced ¢ € m?q[/(g, o). Like in the complex linear case the following result holds
(ct. 5.9, 4.9).

Theorem 7.2. Foranyq € N andi € {1,2}, the mapping Aut?qg — ij(g, k) that associates

to each ¢ or @ its invariant, induces bijections

Auty'G/Aut G — (g, k)
Aut,'G/AutG  — 33(g, k)

where the quotients denote the sets of conjugacy classes with respect to Aut G and Autg,
respectively. Moreover Aut?qg/Autg is in bijection with J3%(g,k)/~ where ~ denotes an

equivalence relation which s trivial in case ¢ = 1. Il

If u C g is a compact real form of g invariant under o we call L(u, o)) or Lu, o)) a compact
real form of L(g, o), resp., ﬁ(g, o), where o) denotes the restriction of o to u. More generally

we make the following definition:
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Definition 7.3. U C G is called a compact real form of G if there exists ¢ € Autg, a

compact &-invariant real form w of g, and an isomorphism ® : G — G with ®U = U where

G =L(g,5) and U = L(u, a|) (resp. L(g,5) and L(u, a|)).

Proposition 7.4. G has a compact real form and this is unique up to conjugation: If Uy, Us

are two compact real forms of G then there exists ® € AutG with Uy, = Us.

Proof. For simplicity we restrict to the case G = L(g,0). Since we may assume o to be
of finite order, g has a compact o-invariant real form u (cf. (B) of Appendix B) and thus
G a compact real form Uy = L(u,0)). If Uy = WL(u,0)) is a second, where & € Autg,
U : L(g,6) — L(g,0) is an isomorphism, and u is a d-invariant compact real form of g we
may assume u = u after eventually conjugating u and &.

Since G and G are isomorphic, o(¢) = (), and hence also o(0)) = o(6y) as Autu/Intu is
naturally isomorphic with Autg/Intg (cf. Appendix B). Thus there exists an isomorphism
from L(u,0)) to L(u,d|) and this extends to an isomorphism x : G — L(g,5). Therefore

®:=Voyx:G— G isan isomorphism with ®(U) = U. O

In the following we fix one compact real form U of G and denote by 2 € AutG the conjugation
in G with respect to . The complex linear and conjugate linear extensions of automorphisms
® € Autld to ¢ € AutG and P € AutG, respectively, induce mappings between the
conjugacy classes. Similar as in finite dimensions (cf. Appendix B) we have the following

result.

Theorem 7.5. Complex linear resp. conjugate linear extensions of automorphisms of U

from U to G induce the following bijections between conjugacy classes.
(1) AutiU /Autid — Aut]G/Aut G (@ €N, if i =1, resp., q even if i =2)
(ii) Aut?U/Aut, U — M?qg/Autlg (q even, if i =1, resp., ¢ € N, ifi =2)
(iii) (AutfU U Aut®U)/AutiUd — Aut,'G/Aut,G  (q odd)

where 1 € {1,2}.
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Remark 7.6. The theorem also holds if Aut;&/ and Aut;G in the denominators are replaced
by Aut! and AutG. This is clear if ¢ = 2 by 5.1, and also if ¢ = 1 and the automorphisms

have order < 2 by 4.9. It follows otherwise by a slight extension of the proof below.

Proof of Theorem 7.5. Since conjugacy classes of automorphisms of order ¢ are parametrized
by their invariants it is enough to show that the above mappings induce bijections between

the corresponding sets of invariants.

1. We begin with automorphisms of the first kind (¢ = 1). The induced mappings between

the invariants are
(i) (p,o,[8]) = (p, 0c, [Bc])
(i) (p, o, [0]) — (p, ocw?, [Bcw']) |
(iif) J7(w, k) 3 (B, 0, [8]) — (p := 2P, 0cw?, [Bew]) ,

3w, k) > (p, 0, 18]) — (p, 0cw?, [Bew'])

where ¢' = ¢/(p, 2q) and | = I(p, 2q) are determined from p and 2¢ by 4.3. Here we have
chosen the representatives of the conjugacy classes of automorphisms of finite order on

u and g in such a way that

(a) A"(g) ={vc|p e A'(u)}
(b) A% (g) = {pcw | ¢ € A7 (u)} if r is even, and

(c) A% (g) = {ocw | p € A" (W)} U {pcw | p € A% (u)} if 7 is odd.

This is possible due to Proposition B.1 from the Appendix.

Thus for fixed p, the bijectivity ¢ « oc is clear in (i) from (a) and that of ¢ < gcw?
in (ii) from (a) if ¢ = 2¢/(p, 2q) even and from (b) if ¢’ is odd as the order r = (p, 2q)
of o is divisible by 4 in this case. Similarly the bijectivity ¢ +» gcw? follows in (iii)
from (a) if p is odd (and hence ¢’ even) and from (c) if p is even (hence ¢’ odd). Note
that in the first line of (iii) above the order of p, i.e. the greatest common divisor of p

and ¢ is odd, while in the second line it is even if p is even.
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The bijectivity of the mappings between the sets of invariants follows from Proposition

B.2.

2. We now consider automorphisms of the second kind (i = 2). The induced map-
pings 330(u, k) — J3%(g, k) resp. J3%(g, k) are given by [py, o_] — [pio, -] Tesp.
[o1cw, o_.w]. The proof of surjectivity amounts to show that for any [¢,,1_] €
32(g, k)UJ2 (g, k) there exist o, § € Autg with a~'3 € ((Autg)??), such that ayy !
and ($y_3~! leave u invariant. After a first conjugation of ¢, and v)_ with the same
automorphism (o = () we may assume ¥_u = u as 1_ has finite order (cf. (B) of Ap-
pendix B). Thus 92 = 9?2 leaves u invariant and we are looking for an o € ((Autg)¥*),
with arp, o t(u) = u. Let ¥y = e with ¢p(u) = u and X € u (cf. (A)
of Appendix B). Then ¢2e 2% = ygerdXyyy = 220 X and hence ¢2 = 42 and
X = —X by the uniqueness of this decomposition (cf. (A) of Appendix B). Thus we

adl/2X

may choose a := e which conjugates 1, to 1y and is contained in ((Autg)*?),

as Y1 X = ¢YiX = X.

To prove injectivity, let [pi, ¢_], [P+, ¢-] € Fal(u, k) with [, ] = [zﬁ,f@,] where
¥y and ¢, are the complex resp. conjugate linear extensions of Y+, ps to g. After
eventually interchanging ¢, with ¢_, there hence exist ay € Autg with Uy = asrag!
and a'a_ € ((Autg)wi)o. For each o € Autg® = Autg U Autg there exist unique
o € Autg® and X € iu with o/(u) = u and a = o/e®¥ (cf. Appendix B). Let
ar = o/ e*X* with o/, (1) = u and Xy € iu. Then (Ypal,) - 24X+ = (a’iwi)eadwilxi.
Hence ¢y = o ¢oo/f !, and e X4 = X, implying e+ € ((Autg)¥?), and o/Ttal €
((Autg)¥?)o. In other words we may assume that oy leave u invariant. If ¢ € Autg
leaves u invariant then it follows from the decomposition of the elements of Autg®
described above that (Autg)¥ = {a € (Autg)? | cu = u} - {e*X | X € ¥} and hence
that {a € (Autg)) | ou = u} = {o € (Autg)¥ | au = u}y. Thus the restriction of
a7la_ to u is contained in ((Autu)?+)o. This finally shows [py,¢_] = [¢1, $_] and
finishes the proof of the injectivity of J5%(u, k) — J3%(g, k) (resp. J2%(g, k)). O

We now restrict to the case of conjugate linear involutions. Their fixed point sets are the
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real forms of G. The real forms of G corresponding to conjugate linear involutions of type 1
are called almost compact and those corresponding to involutions of type 2 almost split.

According to 7.5 (iii) the almost compact real forms are in bijection with {idy YUAuti /Autld,
where of course idy corresponds to the compact real form. The conjugacy classes of almost
split real forms are by 7.5 (i) in bijection with Aut3//Autl{. Thus we have the following

result, completely analogous to the finite dimensional case:

Corollary 7.7. Let U be a compact real form of G. Then the conjugacy classes of non-
compact real forms of G are in bijection with the conjugacy classes of involutions on U.
The correspondence is given by U = K + P — K + P where K and P are the (+1)- and

(—1)-eigenspaces of the involution. O

Corollary 7.8. Each element of 3(g, k) can be represented by a conjugate linear involution
of the form @u(t) = wou(et + to) with o € Autg, (and ty = 0 if e = —1 , to € {0,7} if

e =+1) on some L(g,0).

Proof. The corresponding statement is true for J7(u, k) and Ji(u, k) and thus follows for

32(g, k) from 7.5 (ii) and (iii). -

There are two obvious candidates of real forms of L(g, o) (and similarly for L(g, o)), namely
L(g*,0*) where g* is a o-invariant real form of g and ¢* denotes the restriction of o to g*,
and L.(g,9) == {u: R — g | u(t+7) = gu(t), u € C°} = L(g,p) where p € Autg
satisfies > = 0. Note that in the last case any u € L(g, o) can be uniquely decomposed
as uy +u_ with uy (t + 7) = £pus(t) (by taking uy = 1(u(t) £ gu(t — m))) and thus as

uy + g := uy + u_ with ug, ug € L(g, @).

Proposition 7.9. Up to quasiconjugation the real forms L(g*,c*) and L.(g,9) of L(g,0)

are precisely the real forms which correspond to involutions of type 1a and 1b, respectively.
Of course the analogous statements hold for L(g, o).

Proof. (i) L(g*,o*) is the fixed point set of the conjugate linear involution u(t) — w*u(t)

where w* € Autg denotes conjugation with respect to g*. Conversely, a conjugate linear
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involution of type la is quasiconjugate by 7?7 to one of the form u(t) — w*u(t) on some
L(g, ) where w* € Autg is an involution which commutes with &. Its fixed point set
is {u € L(g,5) | u(t) € g*} = L(g*,0*) where g* is the real form corresponding to w*

and o* is the restriction of &.

(i) Lr(g, ) is the fixed point set of the conjugate linear involution u(t) — @ 'u(t + ) of
L(g, »*). Conversely, a conjugate linear involution of type 1b is quasiconjugate by ??
to one of the form u(t) — ¢ 'u(t+ ) on some L(g, o) where ¢ € Autg and p—%0 = id,

ie. o=@ L

Hence, given g and o € Autg the following objects are in bijective correspondence:
(i) Non compact real forms of L(g, o) (or L(g, o)) of type 1 a up to isomorphism

(ii) Pairs (o, [3]) where o € A%(g), B € (Autg)?, 8 is conjugate to o in m(Autg), and [3]

denotes the conjugacy class of 5 in my((Autg)?)

(iii) Affine Kac-Moody algebras L(g*, o*) (or loop algebras L(g*, %)) up to isomorphism
where g* is a non compact real form of g, o* € Autg®, and of is conjugate to o in

mo(Autg).

Note that the bijection between (ii) and (iii) also follows from Corollaries 3.5 and 2.13,
respectively, since o € A?(g) corresponds to an isomorphism class of a non compact real
form g* of g and ﬁ(g*, 0*) is isomorphic to f/(g*, o*) if and only if o* and ¢* are conjugate
in mo(Autg*) which is isomorphic to 7((Autg)?) (cf. Proposition B.2 (i) of the Appendix).

The almost split real forms of L(g, o) are in bijection with J3(g, k) and thus with J3(u, k)
where u is a compact real form of g and k = o(c). If 04, 0_] € J5(u, k) then the corresponding

real form of L(g,0_04) = L(g,0) is

G' = fue Lo o) orult) = u(—0)} @ ifu € Liw,00y) | orult) = —u(—1)}
= {u:R—-u|oult)=u(—t),0_u(t+7n)=u(—t+n),uec C°}d

@ i{u:R—u|oiu(t) =—u(-t),o_u(t+r)=—u(—t+m),uec C*} .
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Remark 7.10. If p_p, has finite order, which we may assume by 8.14, and ordo_p, = [

then G* may be described by developing each u into its Fourier series also as follows.

G = D une™" |u, € 9,0 01ty = My, 04w, = wuy}
nez
_ {Zuneint/l | u, € gi’unenm'/l e g*_}
neZ

where the sums are supposed to represent C*°-functions, w : g — g denotes complex conju-

gation with respect to u, and g% := g°*“. In particular the finite sums > wu,e™/! € G*,
In|<N

which can be viewed by replacing /! by z as functions on C, take values in g% and g*

when restricted to the real line and the line Re™/!, respectively.

As an example let g = s[(2, C). Since g has no outer automorphisms all f/(g, o), resp., L(g, o)

are isomorphic to L(g), resp., L(g). Up to conjugation g has only one involution, and this

1
may be represented by 7 := Ad or u with A = —A*. A compact real form of g

—1

is u := su(2) and this is invariant under p and 7. Let w be the conjugation with respect to
u, i.e. wA = —A*. Up to conjugation, the only noncompact real form of g is g’ = sl(2,R).
Moreover (Aut sl(2, C))* has two connected components, represented e.g. by id and 7. Thus

the almost compact real forms of L(sl(2,C)) are up to quasconjugation
La) L(su(2)), L(sl(2,R)), L(sl(2,R),7)
1b) L.(s1(2,C),w).

There are three almost split real forms of L(s((2, C)) corresponding to {[id,id], [u, p], [, 1d]} =
J2(s1(2,C)), and these may be described as

{Zune™ | u, € su(2)}

{Sune™ | u, € sl(2,R)}

{Su,e™? | u, € sl(2,R) and (i) u, € su(2)}

where all sums are assumed to represent C'*°-functions.

We finally consider Cartan decompositions. Let G := L(g, o) or L(g, o) be as above where g

is complex (and simple) and o € Autg.
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Definition 7.11. Let G* be a real form of G. Then a vector space decomposition G* = K+ P

is called a Cartan decomposition of G* if there exists a compact real form U of G such that

K=6G"NUand P=G"NiU.

As in finite dimensions it follows that /C and P are the (+1)- and (—1)-eigenspaces of an
involution on G* and that conversely such an eigenspace decomposition G* = K + P with
respect to some involution is a Cartan decomposition if and only if i/ := K+ 4P is a compact

subalgebra of G.

Corollary 7.12. Any real form G* of G has a Cartan decomposition and this is unique up

to conjugation.

Proof. Existence follows from the fact that noncompact real forms G* correspond to in-
volutions on a compact real form U and thus arise as K + P where U = K + P is the
eigenspace decomposition of I with respect to some involution. Hence G* = K + iP is a
Cartan decomposition. If G* is compact we take K := G* and P := {0}.

To prove uniqueness let G* = K1 + P; = Ko + P2 be two Cartan decompositions. Then
Uy := K1 + 1Py and Uy := Ky + iP5 are two compact real forms of G and hence isomorphic
by 7.4. Let a : Uy — Uy be an isomorphism and K| := a(K;), P; := ac(P1). The two
decompositions of Uy into Ky + Py and K + iP] yield isomorphic real forms G* = Ky + P
and acG* = K| + P;. Hence injectivity of the mapping in 7.5 (iii) yields an isomorphism [
of Uy with B(K}) = Ky and B(iP;) = iPy. Thus fo «a : Uy — Uy maps K; to Ky and P,
to 1Py. Its complex linear extension therefore preserves G* and conjugates the two Cartan

decompositions. ]

8 The algebraic case

Involutions, finite order automorphisms and real forms of affine Kac-Moody algebras have
been studied in the algebraic setting (cf. below) by numerous authors, starting with a paper
by F. Levstein [Lev| and culminating in the classification of involutions and real forms in

[BsR| and [BMR|. Our aim here is to show that our elementary methods also work in this
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case and lead to the same results as in the C*°-case if suitably modified and combined with
a basic result of Levstein. In particular conjugacy classes of automorphisms of finite order
as well as real forms are also classified in this situation by the invariants introduced above

and are thus in bijection with their smooth counterparts.

8.1 Preliminaries

Let g be an arbitrary simple Lie algebra over F = R or C. Only from 8.4 onwards we will
restrict g to be compact if F = R. Let 0 € Autg be an automorphism of finite order with
ol =1id (I not necessarily the order of ). Then we call
Lag(g,0) :={u:R — g|u(t+2r) = ou(t), u(t) = Z u,e™', N €N, u, € gc}
[n|<N

the algebraic loop algebra where gc denotes the complexification of g if F =R and gc = g
if F = C. Note that for F = R the sum is contained in g if and only if v_,, = u,, where the
bar denotes conjugation with respect to g. The algebraic loop algebra is a Lie algebra with

the pointwise bracket [u, v]o(t) := [u(t), v(t)].

Remark 8.1. Usually one embeds L,,(g,0) into L(g) := Lag(g,id) as {u : R — g |

u(t + 27 /1) = ou(t),u(t) = > ue™ € g, N € N,u, € gc} by u(t) — u(l-t). But for our
In|<N

purposes the above definition is more convenient. Note also that the embedding depends on

[ while Lyg(g, o) is independent of [. In fact

Lag(9,0) = {u: R — g | u(t +27) = ou(t), u(t) = Y une’, N €N, u, € gc, ¢n € Q}

In| <N

as u(t + 2ml) = u(t) implies g, € 17Z.

Remark 8.2. The last description of L,i(g, o) would make sense also for a ¢ € Autg which
is not necessarily of finite order. But since the sums are finite there would exist for each u
an [ = [(u) with u(t 4+ 27l) = u(t) implying u(t) € s := {z € g | ofx = z for some k € N}.

Thus g could be replaced by s which is a o-invariant subalgebra on which ¢ has finite order.



50
Definition 8.3. If o € Autg and | € N with o' = id we let
dn = gn(0,1) == {z € g¢ | o = ¥/}
for alln € Z.

Of course, gpp; = gn and g = go® - - -@g;_1. Moreover, u(t) = > u, e/ satisfies u(t+27) =
ou(t) if and only if u, € g, for all n. Since o leaves the Killing form (.,.)o of g invariant,
(gn, 8m)o = 0 unless [ divides n + m.

We now extend L,i,(g, o) to the affine Kac-Moody algebra ialg(g, o) in the usual way by

A

Lag(g,0) = Lag(g,0) + Fe+ Fd

with
[c,z] == [z,¢] =0
[d,u] == —[u,d] ==
[u,v] := [u,v]o + (v, v)c

for all z € Layy(g,0) and u, v € Lag(g, o), where ' denotes the derivative of u and (u,v) =

2w R
o= [ (u(t),v(t))odt is the averaged Killing form. Then Lag(g,0) is a Lie algebra and the
0

following well known result is easily proved.

Proposition 8.4.

A

(i) The derived algebra L', (g,0) of Lag(g, o) is equal to Ly,(g,0) ® Fe

alg

(ii) Fec is the center of Lag(g, o) and [A/glg(g, o)
(iii) Lag(g,0) is isomorphic to [A/glg(g, o)/Fe

() Lag(g,0) is equal to its derived algebra. O

A

L. (g, 0) carries the natural symmetric biinvariant form (.,.) which extends the biinvariant

form on Lag(g, o) by the requirements ¢, d L La,(g,0), (¢,c) = (d,d) =0, and (¢, d) = 1.
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8.2 Isomorphisms between loop algebras

Let g be another simple Lie algebra over F and ¢ € Autg with &' = id. Then we have the

following examples of isomorphisms:

(1) 7 : Lag(g,0) — Lag(g, o) with
Tr( Z uneint/l) _ Z unrn/leint/l
In|<N In|<N
where r > 0 and F = C. Note that this example does not exist if F = R (unless r = 1,
i.e. 7, = id) since u_,, = U, in that case. Note also that the definition of 7, does not

depend on [ (with ¢! = id).

(i) ¢ : Lag(g,0) — Lag(g,0) standard, i.e.

pu(l) = @i(u(el +to))

where € € {£1}, to € R, ¢, : ¢ — @ is an isomorphism for all ¢ € R such that ¢,
depends “algebraically” on ¢, that is ¢, = > @,e™/" for some L, N € N and ¢, €
Hom(g, g), and ¢i0r = G0 ¢ (the “peril(gl‘dgi]c\:]ity condition”) holds. The periodicity
condition is equivalent to pu € L,,(g,7). The L in the description of ¢; can be chosen
to be the smallest common multiple of [ and  (if o' = 5l = id) and in particular to be
lifo=a.

Note that with ¢; also ¢;* depends algebraically on t. For the ¢, may be viewed as
invertible matrices whose entries are finite Laurent series and whose determinants are

constant as the ¢, preserve the nondegenerate Killing forms of g and g. The inverse of

u(t) — pi(u(et +to)) is thus also standard and given by
u(t) = gl a, (ulet — eto)) -
Theorem 8.5. Any isomorphism

(0 Lalg(ga U) - Lalg@, 5)
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is of the form 1 = @ o 7, where ¢ is standard and r > 0, and this decomposition is unique.

Moreover, 1 is standard (i.e. r =1) if F = R.

Proof. We first assume F = C.

(i)

"t we obtain

(Uniqueness) Let ¢ be standard, 7 > 0 and ¢ = 7,. From u := u,e’
@1 () et = g pn/lemt/ for all u, € g,. Since g, = g, We may replace n by n -+
and get |r| = 1 and hence r = 1 and thus 7, = id = ¢. Since 7, o 73 = 7,15 and the

composition and inverses of standard isomorphisms are standard, uniqueness follows.

(Existence) Let ¢ : Lag(g,0) — Lag(g,5) be an isomorphism. Let C28(R,C) :=

per

{ > a,e™ | N € N, a, € C}. The essential point is to prove for each ¢t € R the
[n|<N

existence of a mapping a; : C*8(R, C) — C such that

per

(fu)(t) = ou(f) - (u)(t)

for all f € C¥8(R,C) and u € L.g(g,0). This follows exactly as in the smooth case,

per

cf. the proof of 2.9. From this we get

(fu) = a(f) - P(u)

for all f € C28(R,C) and u € Lag(g, 0) where o : C2(R,C) — CA8(R, C) is defined
by a(f)(t) := au(f) since we can choose for example ¥ (u) to be a constant different
from zero to see that a(f) is periodic and algebraic. The mapping « is necessarily
an algebra homomorphism with «(1) = 1. From a(e®) - a(e™™) = 1 we conclude
a(e) = be' for some b € C* and € € Z. Since 1) and hence « are isomorphisms we
actually get ¢ € {£1}. Let a be a complex number with a' = b and ¢, : g — g be
defined by

w(ukeikt/l> _ ¢t<uk)ak€iekt/l
where uy € g and k € {0,...,l —1}. If k € Z is arbitrary and uy, € g, we write k as
k =k +ml with k € {0,...,k — 1} and m € Z and obtain
w(ukeikt/l) _ w(ukez‘fet/l . eimt) _ (beiet)m . (pt(uk)aléez‘el}t/l

— th(Uk)akeiekt/l
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as well. Let a = r'/'e®/! for some r > 0 and ty € R. Then ¢(u) = ¢, (7 (u(et + o)) for

all u € L,,(g,0) and the theorem follows.

If F = R we decompose the complexification ¢¢c of ¥ as )c = ¢ o 7, by means of (i).
Since 1¢ commutes with the conjugation we have ¢ (tre™*") = 1he(upet*t/!) for any

2%k/1

u € gr and hence r=*/ p(uge /1) = r*/lp(upe*/t). This implies ¢, (Tg) = r2*/ oy (uy,)

and thus r = 1, since we may replace k by k£ + [ in the last equation without changing

A direct calculation gives:

Lemma 8.6. Let F = C and ¢ : Lay(g,0) — Lag(g,0) be a standard automorphism with

ou(t) = @i(ulet + o)) and o, = . @me™/* for some L, N € N. Let r > 0. Then
[n|<N

T, 0= "0 T

where " is the standard automorphism with the same € and to but with "¢, = S@,r™ et/ L,

We call an isomorphism ©) = @ o7, : Lag(8,0) — Lag(8,7) with ou(t) = @i (u(et +1to)) be of
the first (second) kind if € = 1 (resp. € = —1). By the last lemma and our previous results

about standard isomorphisms (3.10) this notion is invariant under conjugation.

Corollary 8.7. (i) Any automorphism ¢ of Las(g,0) of finite order and of the first kind

T

is standard. Moreover 1,07, ="¢.

(ii) For each automorphism ¢ of the second kind there exists a unique r > 0 such that

o1t is standard.

Proof. (i) Let ¢ = ¢ o7, be of order k with ¢ standard and 7 > 0. Then id = ¢* =Y oT,x
where v is standard. Hence ¥ = 1 and thus » = 1. The second statement follows

from 8.6.

r

(i) Let ¢ = ¢ o 7, with ¢ standard and s > 0. Then 7,7, ' = "¢ o 7,2., by 8.6 and the
O

claim follows.
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8.3 Isomorphisms between affine Kac-Moody algebras

We show in this subsection that there is a bijection between the sets of automorphisms
of finite order of La,(g,0) and L.g(g, o) also in the algebraic case. This is known (and
follows from [PK]|, Theorem 2 and Corollary 11 and [Rou2|, Proposition 2.5). We include an
elementary proof also to make the paper self contained as much as possible.

Any isomorphism ¢ : Lag(g,0) — Lag(g, &) induces an isomorphism ¢ : f/glg(g, o) —
ﬁ;lg(ﬁ, &) and any isomorphism ¢ between the derived algebras induces an isomorphism ¢
between the loop algebras by ignoring elements in the center. In particular we have natural

homomorphisms Aut L, (g, o) — Autlzﬂg(g, o) and Autﬁglg(g, o) — AutLag,(g, o) which we

simply denote by ¢ +— ¢ and ¢ — @, respectively.

Theorem 8.8. (i) Any isomorphism ¢ : Lage(8,0) — Lag(8,0) extends to an isomor-

phism ¢ : j}alg(g, o) — f)alg(ﬁ, 7), that is ¢ — @ is surjective.
(i1) The mapping Autﬁglg(g, o) — AutLa,(g, o) given by @ — ¢ is an isomorphism.
(11i) The kernel of the mapping Autﬁalg(g, o) — AutIA/alg(g, o) given by ¢ — @ is
{¢ € AutLay(g,0) | eF: pe=c, ¢d=d+ve, pu=u, for all u € Lyy(g,0)}
and thus isomorphic to (F,+).

(iv) AutLag(g, o) = Aut(’)ﬁalg(g, o) xF where Aut( denotes the subgroup of automorphisms

preserving the natural bilinear form (.,.) of [:alg(g, o).

To prepare the proof we note that any isomorphism ¢ : f/alg(g, o) — ﬁalg(ﬁ, ) is of the form

pc = Ac (8.1)
od = pd+z,+rve (8.2)
ou = ou+alu)c (8.3)

since it preserves the center and the derived algebra. Here \,u € F\ {0}, v € F, o :

Lag(g,0) — Fis linear, x, € Lag(g,0), and ¢ is the induced isomorphism between the loop
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algebras. Conversely, given A, i, v, o, x, and ¢ as above, the linear mapping ¢ described by

(8.1) - (8.3) is an isomorphism if and only if

1 1

o(u) = —;[%wu}ﬁpw(w) (8.4)
o) = —%(%s&u’) (8.5)
((pu),v) = Au',v) + a([u,v]o) (8.6)

for all u,v € Lag(g, o).

By means of (8.4), (8.6) is equivalent to

(p(u'), 0(v)) = (', v) = pa([u, v]o) + (4, elu, v]o) -

Furthermore (¢x, py) = (z,y) for all x € ﬁglg(g, o) and y € I:alg(g, o) if and only if Ay =1,
(pu, pv) = (u,v), and a(u) = —i(:v@, ou) for all u,v € Ly,(g, o). Moreover ¢ preserves the

bilinear form if and only if v = —ﬁ(xw, z,) in addition .

Lemma 8.9. Let F = C, a: Lag(g,0) — C be linear and € C. If (v, v) = a([u, v]y) for
all u,v € Lyg(g,0) then oo =0 and 5 = 0.

imt/l

Proof. Let o' = id. The equation yields for u := u,,e and v 1= v,e™! with u, € gm

27
and v, € gn: B(tum, vn)o%%ofei(’”*”)t/l = ([t, v,]€' ™M) and in particular
1m

ﬁ(uma U—m)OT

= a([tm,v_m]) -

If we replace m by m + [ without changing u,, and v_,, and take the difference we get

B (U, V—m)o = 0 and thus f = 0 which finally implies o = 0 by 8.4 (iv). O

Proof of Theorem 8.8. We may assume F = C. The real case follows from this essentially

by complexification.

(i) It is enough to consider the cases ¢ = 7, and ¢ standard. Now 7, can be extended to
a 7, as described in (8.1) - (8.3) with A =p =1, v =10, z, =0, and a = 0. Since

7.(u)" = 7.(v') and 7, preserves the natural bilinear form, the equations (8.4) - (8.6)
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sadd

are satisfied. Actually the extension is equal to e**?“ where s := —i logr. It also

preserves the natural bilinear form.

If ¢ is standard with pu(t) = @i(u(et + ty)) then we define ¢ by A := u := € and
a(u) == —e(z,, pu) where z,, is determined by ¢}, ' = —eadr,. The conditions (8.4)
- (8.6) are obviously satisfied (for any v). If in addition we choose v := —£(zy, 7,,)

then ¢ also preserves the natural bilinear form.

(ii) Surjectivity follows from (i) and injectivity from Lemma 8.9. In fact, any ¢ from the

kernel is of the form

pc = Ac
ou = u+a(u)c
and therefore satisfies (1 — \)(u/,v) = a([u, v]p) for all u,v € Ly,(g, o) as follows from

[Pu, pv] = @lu, v].

(iti) If ¢ € AutLag(g, o) restricts to the identity on L'(g, o) then ¢c = ¢, ¢pd = pd+x,+ve
and ou = u and hence
(1—pu' = [zy,ulo,
(xp,u') =0
for all w € L,(g,0). This implies ¢ =1 and z, = 0 by Lemma 8.9.

~

(iv) Since the above constructed extensions of automorphisms from Ly, (g, o) to Lae(g, o)
as well as the elements of the kernel of ¢ — ¢ satisfy A = p and (¢z, py) = (z,y) for
all © € fjglg(g,a) and y € Lagy(g,0) (equivalently X = p € {#1}, (pu, pv) = (u,v),
alu) = —i(m¢,g0u) for all u,v € Lag(g, o)) this is true for all ¢ € AutL,y,(g,0). In
particular the kernel of ¢ — ¢ lies in the center of Autf/alg(g, o) and ¢ € Autf/alg(g, o)
preserves the natural bilinear form if and only if v = —e€(z,,2,) in (8.2). Hence the

product decomposition of Aut[:alg (g, 0) follows readily. ]

By the last part of the proof, a linear mapping ¢ : ﬁalg(g, o) — ﬁalg(g, 7) as given by (8.1)

- (8.3) is an isomorphism if and only if ¢ is an isomorphism between the loop algebras,
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A=p=:€€ {1} and

p(u) = =€y, pulo+ ep(u) (8.7)

olw) = —ez,pu) (8.8)

for all uw € Ly,(g,0).
The theorem implies that ¢ +— @ — ¢ induces isomorphisms Aut(Jf/alg(g, o) — AutL.(g,0) —
AutL,g,(g,0) and shows that automorphisms of finite order of L.y(g, o) are contained in

A

Aut()Lag(g, o). Thus we have:

Corollary 8.10. The mappings ¢ — @ and @ — ¢ induce bijections between the sets of
elements of finite order in Autf/alg(g,a), Autf/glg(g,o) and AutL,,(g,0), respectively, as

well as between their conjugacy classes.

8.4 Automorphisms of finite order

From now on we assume g to be compact if F = R. Thus g is either complex or compact
(and simple). In this subsection we are going to attach to each automorphism of finite order
an invariant like in the smooth case and to prove surjectivity of the map from the set of
conjugacy classes to the set of invariants. Injectivity (the hard part) will be shown in the
following subsection.

Thus let ¢ € AutL,,(g, o) be of finite order. If ¢ is of the first kind then it is standard
by Corollary 8.7 and thus extends to a unique automorphism of L(g,o) whose invariant
we define to be the invariant of ¢. If ¢ is of the second kind there exists a unique r > 0
such that 7,.¢7! is standard and we define the invariant of ¢ to be the invariant of (the
extension of) 7,7, . It follows from our previous results (Propositions 4.7 and 5.6) that this
invariant indeed is invariant under quasiconjugation with isomorphisms of the first kind (and
arbitrary isomorphisms if ¢ is of the second kind or ¢ is an involution). For the only problem

is conjugation with 7, (if ¢ is of the first kind). But the invariant of 7,7, ' = "¢ varies by

construction smoothly with r and hence is constant as the set of invariants is discrete.



58

If » € AutL,,(g,0) is of finite order we define the invariant of ¢ to be that of the induced
P.

We have already observed in the smooth case that each element of J!(g) can be realized
on L(g, o) for some o € Autg as the invariant of an automorphism ¢ of the form ¢u(t) =
wo(u(et + ty)) where o € Autg is constant (Propositions 4.6 and 5.5). Since this ¢ is

algebraic the only problem is to show that ¢ can be chosen to be of finite order.

Lemma 8.11. Let G be a compact Lie group and gy € G with g7 = g*>. Then there exists
h € Gg such that hg"*h~'g, is of finite order.

Proof. The compact abelian group {(g-'g, )" | n € Z} is isomorphic to the product of a torus
T and a finite group F. In particular g~'g, = X - f for some f € F and some X from the

Lie algebra of T. Now, g% = ¢2 is equivalent to

9-(g""9+)9~" = (9-"g4) "

whence conjugation with ¢g_ induces the inverse mapping on 7. In particular g_e**¢=! =

e~'X for all t. Let h := e~2X. Then hg~'h~lg, = h2g_'g, = f has finite order. O
Remark 8.12. If g is complex (i.e. F = C) and u is a compact real form of g, recall that

Aut,g x i —  Autg
(0, X) = ¥y

is a diffeomorphism where Aut,g = {¢ € Autg | pu = u} and that moreover any compact

subgroup of Autg is conjugate to a subgroup of Aut,g (cf. Appendix B).

Lemma 8.13. Let F = C and ¢y € Autg with ¢ = ¢ and of finite order. Then there

exists o € ((Autg)?h)o and a compact real form of g that is invariant under ¢, and ap_a~".

Proof. Since ¢4 are of finite order there are compact real forms u invariant under ¢, and
©_, respectively. Let u := u,. Then u_ = o 'u for some o € Autg as compact real forms

are conjugate, and thus ap_a~!(u) = u. By the remark above, we may assume a = ¥ for

ad

some X € iu. Since u is invariant under ¢, and e*¥p_e~2d% and hence also under their
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squares 1 = gpi and y 1= e2Xpe X Now e2dX . y = e72d¥X .4y implies by Remark 8.12

above ¥ X = X and hence a € ((Autg)¥)o. O

Theorem 8.14. Any element of 3 (g) (wherei € {1,2} and ¢ € N with q even if i = 2) can be
realized on L (g, o) for some o of finite order as the invariant of a standard automorphism

of the form pu(t) = po(u(et +to)) where po € Autg is constant. In particular the mappings
Auti Lag(g,0) — Ji(a,0)
are surjective.

Proof. (i) The last statement follows from the claim before as any element of J!(g, o) can
be realized as the invariant of an automorphism on some L,j4(g, ) which is isomorphic

to Laig(g, o). But the corresponding automorphism on L, (g, o) has the same invariant.

(i) Let (p,0,[3]) € Ji(g) where g has finite order and 5 € (Autg)?. We realize this
invariant as in the C*-case by pu(t) = @o(u(t + £2m)) on La(g, o) where ¢ and o
are certain products of powers of o and (3. Therefore it suffices to show that 3 can be
replaced in its equivalence class by an element of finite order, i.e. to show the existence
of an a € ((Autg)?), with - « of finite order. If g is compact this can be achieved by
Lemma 2.16 directly. If g is complex we first remark that o leaves a compact real form
u invariant and that hence (Autg)? = (Aut,g)? - {e** | X € iu¢} by 8.12. Therefore

Lemma 2.16 with G := (Autg)? and H := (Aut,g)? yields the result.

(iii) Let [¢4,p-] € J4(g). An automorphism with this invariant is given by ou(t) =
@1 (u(—t)) on Lag(g, p—"¢,) provided p-'¢, has finite order. Since (¢, ¢_) is equiv-
alent to (¢, ho_h1) for any h € ((Autg)#+)o it is therefore enough to find such an
h with ho~'h='¢, of finite order. If g is compact we can apply 8.11 directly. If g is
complex we may assume by 8.13 that ¢, leave a compact real form u invariant and

can then apply 8.11 to G := Aut,g and ¢, € G.
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8.5 Injectivity of Aut!L.,(g,0)/Aut;Lag(g,0) — Ji(g,0)

To prove injectivity, we use Levstein’s result that in case g complex, any automorphism of
finite order of Lay,(g, o) leaves a Cartan subalgebra invariant [Lev]. This also holds if g is
compact by almost the same reasoning as was shown in [Rou2|, Theorem 3.8. From these

results we get:

Proposition 8.15. Any automorphism of Lag(g, o) of finite order is conjugate to a standard

adtX

automorphism ¢ with pu(t) = (u(et +tg)) and ¢, = e - o where X is contained in

some Cartan subalgebra a of g7 and pg € Autg leaves a invariant.

Proof. Let ¢ € Autf/alg(g,a) be the (unique) extension of finite order of the given auto-
morphism which we may assume to be standard of the form pu(t) = ¢i(u(et + o)) by 8.7.
Due to Levstein and Rousseau, ¢ leaves a Cartan subalgebra invariant. Since Cartan sub-
algebras are conjugate (see 4.4 of [Rou2| in case g compact) we may assume that ¢ leaves
b= {u € Lag(g,0) | u(t) € a constant} @ Fc @ Fd invariant. Since ¢d = ed + z, + ve is
contained in this Cartan subalgebra, =, is constant and lies in a. Equation (8.7) therefore

adtX

implies ;' = —eadx, and hence ¢, = e - o for X = —ex, € a and some ¢y € Autg.

Moreover ¢o(a) = a as ¢ leaves b invariant. O

In the next step we even get rid of the ¥ factor by a quasiconjugation (i.e. a change of

o).

adtX . o is algebraic if and

Lemma 8.16. A curve ¢; of automorphisms of g of the form e
only if e29?™X has finite order. This condition is satisfied if Qiion = G0 holds for all

t € R for some 0,0 € Autg of finite order and some z € 7.

Proof. (i) Recall that ¢, is algebraic if o, = > @,e™/* for some N, L € N and ¢,, €
|m|<N
End(g) in case g is complex, and ¢, is algebraic if (¢;)c is algebraic in case g is real.

In particular we may assume g complex in what follows.

(ii) If ¢, = X . ) is algebraic like in (i) then ¢y 0.1 = ¢; and thus (e242™¥)L = id.
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ad2rLX — i for some L € N then adX is semisimple and X is contained

(iii) Conversely, if e
in some Cartan subalgebra. On each root space gq, €*¥X acts as e!**).id and e2d27LX =

id implies a(X) € £Z. Thus e*¥* and hence ¢, are algebraic.

€

(iv) Prpon = G0 ¢ is equivalent to 42X = Gpoo~p, ' and X = X. Therefore 227X

ad2rX s of finite order if

and & commute. Hence also & and py0 “¢;"' commute and e
o and ¢ are of finite order.

]

Proposition 8.17. Any automorphism of Lag(g,0) of finite order is quasiconjugate (by
a standard automorphism) to an isomorphism of the form pu(t) = @o(u(et + to)) where

o € Autg is constant.

Proof. By 8.15 we may assume that the given automorphism ¢ of finite order is of the form
Qu(t) = @i(u(et+1g)) with @, = 24X .y where X is contained in some Cartan subalgebra a
of g7 and pg(a) = a. We are then looking for a 6 € Autg of finite order and an isomorphism
¥+ Lag(g,0) — Lag(g, ) such that ¢ := ¢pyp~! is of the form pu(t) = @o(ulet +tp)). With
the ansatz Yu(t) = 1 (u(t)) this is equivalent to find &, v, € Autg with

(1) YPibayy, is constant
(ii) Yyyon = 0o~ and
(iil) t — )y is algebraic.
Assuming vy = €Y for some Y € a these equations are in turn equivalent to
i)Y —epY + X =0
(ii") 6 = 22 g
(iii’) e*4?™Y has finite order.

-1
These can be solved by YV := %Zé JjoX and ¢ = €*?™ g where ¢ is the order of @.
=1

ad2m X ad27r<péX J ead27rX

In fact, since ¢, is algebraic, e as well as e = ¢ ©o 7 have finite order
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by 8.16. Therefore also €*?™ and G are of finite order and (ii’) and (iii’) are satisfied.

q . =1
Finally, Y — epY = ézlefgpf)X — el X = —X as 7 = id implies ;)e]goéX = 0 and hence
= j=
a
dplX =0 and elplX = X. O
j=1

Lemma 8.18. Let g be complex (F = C) and ¢ € AutL,,(g,0) be an automorphism of
finite order with pu(t) = @o(u(et + ty)) for some py € Autg, € € {£1}, and to € R. Then g

has a compact real form invariant under ¢y and o.

Proof. Since ¢ has finite order there exists ¢ € N and p € Z such that pdo? = id. Therefore

€

o has finite order since ¢ has finite order by assumption. Now, ¢y = ogpoo~¢ implies that
the group generated by ¢y and o is finite. It therefore leaves a compact real form of g

invariant (cf. Appendix B). O

The next lemma is well known and essentially says that the so-called - and Hermann actions

on a compact Lie group are hyperpolar ([HPTT]).

Lemma 8.19. Let G be a compact connected Lie group with Lie algebra g and o,04,,0_ €

Autg with 02 =id. Then there exist for any g € G.

(i) h € G and X € §° such that
hgo(h)™t = e*

(ii) ky € (G )y and X € § such that 0. X = 0_X = —X and
kygo_(kpg)™h =e¥ .

Proof. We endow G with a biinvariant metric which is also invariant under automorphism
by using a multiple of the Killing form. If a compact group H acts isometrically on G then
the image of the normal space to the orbit H(e) at e under the exponential mapping meets
all other orbits. In fact, a shortest connection from an arbitrary ¢ € G to H (e) is a geodesic
that meets H(e) orthogonally and thus can be moved by the group action to a geodesic that
hits H (e) orthogonally at e and starts on H(g).

We now consider the following two isometric actions on G:
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(") The o-action of G on itself by
h.g := hgo(h)™!

and

(ii") The action of K, x K_, where K := (G¢*)g, by
(kg ko).g:=kyghZ".

The tangent spaces to their orbits at e are {X —oX | X € g} and g2+ + g2~ and hence their
normal spaces are g7 and {X € g | 0+ X = — X}, respectively. Thus (i) follows immediately
and in case (ii) we find for any g € G elements k. € Ky and Y € {X € g | 02X = —X}

with kygk~' = €Y. The last equation implies (k;g) - o_(krg)™" = ?'. O

Proposition 8.20. Two automorphisms ¢ € AutLa,(g,0) and ¢ € AutL.,(g,d) of order

q with the same invariants are quasiconjugate by an isomorphism of the first kind.

Proof. Since invariants do not change under quasiconjugation we may assume by 8.17 ¢ and
@ to be of the form gu(t) = pou(et + tg) resp. Qu(t) = Pou(et + to) where ¢g, po € Autg,
e € {+1} and ty = p/q27 with p € {0,1,...,¢—1} and p = 0 if e = —1. We may furthermore
conjugate ¢y and o simultanously by an arbitrary ©, € Autg because this corresponds to
a quasiconjugation of ¢ by ¢ : Lae(g,0) — Lag(g, Yooy ') with u(t) = o(u(t)), and
the same remark applies to @9 and 6. In particular, in case F = C, we may assume by
Lemma 8.18 that ¢g, pg, 0 and ¢ leave a compact real form of g invariant and that thus ¢
and ¢ are complexifications of real automorphisms. Since these have also equal invariants
(cf. the proof of 7.5 (i)) it is enough to consider the case g compact as we shall do in the
following.

We study the two cases € = £1 separately.

Uy lo™at]) where a € Autg and p/, ¢, 1, m

If ¢ = 1 the invariant of ¢ is (p, ochg/ap/of
are the integers with p’'/¢’ = p/q, Ip) + mq¢’ = 1 and 0 < [ < ¢ (cf. 4.3). By eventually

conjugating ¢y and ¢ simultanously by o we may assume « = id. Applying the same to @,



64

~{1" ~ 5!

equality of the invariants yields (p, goglap/, [oglo™) = (B, @167, [y ic}m]) which means p = p,
i¢=d,F=p 1=l m=m,
#o” =plo” =0,
and
Gole™ = yopglo™at

where v € ((Autg)?)p and § € (Autg)?. By eventually conjugating ¢y and o further by ¢
we may assume 0 = id. Let [ := goalam, B = @além, and G := (Autg)?. Since ¢y and o
as well as ¢y and & commute (due to € = 1), ¢q, P9, 0,7, 3, B are contained in G. Moreover
v = 3671 € Gy. We now try to find an isomorphism ¢ : L,s(g,0) — Lag(g,0) of the form
Yu(t) = Ypu(t) with =" = @, that is an algebraic curve vy in Autg with ¢y ,o, = G0~

and @/thoO@ZJ;:E 5, = Po. Since i =1 § + m these two equations imply
q

Urpzr = P! (8.9)

and in fact are equivalent to (8.9) if we choose ¢y € G. We therefore make the ansatz

Yy = oeMX with X € g¢ and ¢y € G. Then (8.9) is equivalent to

a2l — —
7N = Yyt and X = X .

This equation has a solution (¢, X) by Lemma 8.19 (i), and by 8.16 v, is algebraic.

If € = —1 the invariants of ¢ and @ are [pg, Yoo~ '] and [@g, Pod '], respectively. Note that
quasiconjugation of ¢ by ¢ : La,(g,0) — Lag(g, 0~ ") with ¢u(t) := u(—t 4+ 7) reverses the
order of o and oo™t as Y~ tu(t) = poot(u(—t)). Thus we may assume that equality
of the invariants implies ¢y = apoa! and @y~ ! = Byo~ !B~ for some o, 3 € Autg
with a1 € ((Autg)#0),. Furthermore we may assume a = id by quasiconjugating ¢ by

1

Lag(8,0) — Lag(g, aca™), u(t) — a(u(t)), which maps (o, 0) to (apea™, aca™). Let

2 = ¢ and

G := (Autg)#0. Since ¢ and ¢ are of the second kind, ¢y = g0, i.e. (o)
similarly (@o6~ )% = @2 = 2. Thus o, oo ", ¢o, and Gea~' € G. Moreover Goo "' =

Bpoo~137t for some 3 € Go and thus ¢ = ﬁacpglﬁ*1g00.
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Let ¢, = ¢y and p_ := @oo~ . Conjugation with ¢ defines automorphisms o+ : G — G
with o2 = id. Hence there exist by Lemma 8.19 (ii) ¢y € G° = G¥0 and X € g with
@0+ X = —X such that 2™ = (¢ B)o_ (¢ '), that is with

77Z}Oead%rX — 5_,¢)00_—1 )

Let ¥y 1= tpe*dX. Then ¢y 9, = 60,0t and Y000 "} = o = @o. Therefore ¥ : Ly, (g, 0) —
Lag(g,6) with ¢u(t)) = ¢u(t) is an isomorphism of the first kind that conjugates ¢ into @.
]

Combining the results of Theorem 8.14, Proposition 8.20 and Corollary 8.10 we obtain:

Theorem 8.21. The mappings
AUtglA—/alg(g7 U)/AUtllA-/alg(g7 U) - 33(97 O-)

and

Aut{Lag(g, 0)/Auti Lag (g, 0) — J{(g,0)

induced by associating to each automorphism its invariant, are bijections. Moreover in case
i =2 o0rq=2, Autli}alg(g,a) and Aut1L(g,0) can be replaced by Auti}alg(g,a), resp.,
AutL,,(g,0). O

The theorem together with Corollaries 4.12 and 5.9 imply that the classification of automor-
phisms of finite order is the same in the smooth and the algebraic category. This applies in
particular to involutions which are hence classified by Tables 2 and 3 also in the algebraic

case.

8.6 Real forms and Cartan decompositions

The discussion of conjugate linear automorphisms and real forms in Chapter 7 carries over
to the algebraic setting almost word by word.
In particular compact real forms of Ealg(g,a) and L, (g,0), where g is complex, are de-

fined and unique up to conjugation. The conjugacy classes of real forms of type i € {1,2}
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are e.g. on La,(g, o) in bijection with m?ﬁalg(g, 0)/AutL.g,(g, o) and if u is a o-invariant
compact real form of g, complex conjugate extensions of automorphisms of j}alg(u, o) induce
bijections Aut! Lug (1, 0) UAW? Loy (1, )/ Attt Lo (1, o) — Attty Lag(g, o)/ Aut Lo (g, o) and
Aut? Lo, (1, 0)/Aut Ly, (u, o) — A_ui;;I:alg(g, o)/ AutL,g(g, o), respectively. Moreover surjec-
tivity of these mappings yields the existence of Cartan decompositions of real forms while

injectivity yields their uniqueness up to conjugation.
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Appendix A

mo((Autg)?) and representatives of its conjugacy classes

Let g be a compact (real) simple Lie algebra and ¢ € Autg an involution. The group
mo((Autg)?) of connected components of (Autg)? has been determined by Cartan [Car| and
Takeuchi [Tak| (cf. also [Mur|, [MatH]). A simplified, but still quite involved computation
of these groups is contained in [Loo| where one can also find a table of them.

Our purpose here is to describe representatives of their conjugacy classes and thereby verify-
ing Table 1 of Section 6. But actually we will determine also the groups themselves since it
turns out that this does not need much extra work. Moreover some of the extra work (Lem-
mas A.2 and A.8) is needed also for other purposes, namely the classification of involutions
of the second kind.

In the following we fix g and p and let g = €+ p be the splitting of g into the +1 eigenspaces
of 0. We let 7, J and p as in Section 6.

If g is classical we only use the following well known facts (Lemmas A.1 — A.4) to determine

mo((Autg)?) and representatives of its conjugacy classes.

Lemma A.1. mo((Intg)?) is a normal subgroup of mo((Autg)?). The quotient F' is isomorphic

to a subgroup of Autg/Intg.

Proof. The first statement is clear since (Intg)¢ is normal in (Autg)?. The second statement
follows from 7y ((Autg)?)/mo((Intg)?) being isomorphic to (Autg)?/(Intg)? which is embedded

naturally in Autg/Intg. O

In particular 7o((Autg)?)/mo((Intg)?) is 1 or Zs unless g = s0(8) (in which case it is a

subgroup of S3).
Lemma A.2. Let Intk = {e*¥ : ¢ — €| X € &}. Then the mapping

mo((Autg)?) — Autt/Inte

induced by restriction is injective if o is inner and has kernel {1, o} if o is outer. Here we

denote the image of o € (Autg)? in mo((Autg)?) also by o.
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Remark A.3. Note that € is not necessary semisimple. This happens precisely if the cor-
responding symmetric space is Hermitian, in which case £ = R 4 £* with £ semisimple and
Autt/Intt = AutR x Autt*/Inte*. Since mo((Autg)?) is finite its image lies in that case in
{#£id} x Aute*/Inte*.

Proof of Lemma A.2. An element from the kernel can be represented by a ¢ € (Autg)? with
@), € Inté and thus even with ¢|, = id since (Int€) — ((Autg)?), naturally. The action of
this ¢ on p commutes with the restriction of the action of K := {e*X : g — g| X € £} on p
which is irreducible and either (i) a real or (ii) a complex representation. The latter occurs
precisely in the Hermitian case. Therefore either (i) ¢|, = %id (hence ¢ = id or ¢ = p and
the claim follows) or (ii) ¢ lies in the circle {240 |t € R} (and thus ¢ represents a trivial
element) where .Jy spans the center of . [
Lemma A.2 already implies m((Autg)?) = {1, 0} if o is outer unless the corresponding
symmetric pair is (s0(2n),s0(n) + so(n)) with n odd or (su(2n),so(2n)). For in all other

cases Autt/Inte is trivial.

Lemma A.4. The triality automorphism ¥ of $0(8) commutes with Adry.

Proof. Let X, := 0 v, Xy = ; o be a basis of the stan-

0 1
0 —1 0
dard torus of s0(8) and [y, ...,l, the dual linear forms. Then +I, £1; (1 <i < j < 4) are
the roots and aq (=11 — ls, ag := 1y — I3, ag := I3 — ly, ay := I3+ 14 is a basis of the root
system with diagram

Q4

a3z

The triality automorphism ¥ corresponds to the diagram automorphism which cyclically
permutes oy, g, oy and fixes ag. It therefore fixes (X7 — Xo) + (X5 — Xy) + (X5 + Xy) +
2(X5 — X3) = X1 + X, and hence commutes with e*®(X1+X2) for all t € R. But e27(X1+X2) —

AdT4.

U
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It is now completely elementary to determine mo((Autg)?) and representatives of its conju-

gacy classes for classical g. We do this case by case, using Cartan’s classification (cf. [Hel]).

AT =su(n) (n>3), o=pu, ¢ =so0(n)

o is outer since n > 2. If n is odd then my((Autg)?) = {1, o} by Lemma A.2.

If n is even then (Intg)? = {AdX | X € U(n), X = AX for some A\ € C with |\| =
1} ={AdX | X =aY € Un), Y =Y, a € C} = {AdX | X € O(n)}. It has two
connected components as the restriction of Adr € (Intg)? to € is not inner. Thus id, Adn

(resp. id, Adry, o, pAdry) are representatives of the conjugacy classes of my((Intg)?) = Z,
(resp. mo(Autg)? = Zy X Zs).

ATl g=su(2n) (n>2), o= pAdJ, t=sp(n)

Since £ has no outer automorphisms m((Autg)?) = {1, o} by Lemma A.2.

ATl g=su(n) (n>2), o=Adn, t=s(ulp)+ulq) (p+q¢=n)

o0 is inner and commutes with p which is outer if n > 3. Now, (Intg)? = {AdX | X =
(A B) € U(n) with A of size p x p and (AC B) :)\(2 i) for some A € C}.

C D D
O B

Necessarily A = 1 or —1 and (Intg)? has one connected component if p # ¢ (X = o o

would be singular) and two if p = ¢ with non trivial representative AdJ. Hence

{1, u} =7, if p#£qorn=2,
{1,AdJ, u, pAdJ} = Zy X Zs otherwise.

mo((Autg)?) =

Note that AdJ = p if n = 2.
BI g=s02n+1) (n>2), o=Adr, t=so(p)+s0(q) (p+qg=2n+1)

o is inner and from Lemma A.2 and Remark A.3 (if p = 2 or ¢ = 2) we have |m((Autg)?)| < 2.

Since Ad7 7,41 induces an outer automorphism on €, 7((Autg)?) = {id, Adm 7,41} = Zs.
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CI g=spn) (n>3), o=Ad(iFE), ¢t =u(n) (where sp(n) and Sp(n) below are viewed
as sets of quaternionic matrices)

Let Ay = iE. Then (Autg)? = (Intg)? = {AdX | X € Sp(n), AgXA;' = X} = {AdX |
X eU(n)or X € jU(n)}. Thus mo((Autg)?) = {id, AdjE} = Zo.

CII  g=sp(n) (n=3), 0=Adn, t=sp(p)xsp(q) (p+q=n)

o is inner and Autt/Intt = 1 if p # ¢ and = Zy if p = ¢. In the latter case AdJ € (Autg)?
restricts to an outer automorphism on €. Hence my((Autg)?) = 1 if p # ¢ and 7mo((Autg)?) =
{id,AdJ} = Zy if p = q.

DI g=s0(2n) (n>3), o=Adr, t=so(p)+so(q) (p+q=2n)
For simplicity we only consider the case p = ¢ = n with n even. The other cases are similar

but easier. Then (Autg)? O {AdX | X € O(2n), 7, X7, = £X} = {AdX | X = ( 4 . )

or ( 5 4 ) with A, B € O(n)} and equality holds if n # 4. Moreover (Intg)? consists

precisely of those elements with det A = det B. Hence (Intg)? has 4 connected components
represented e.g. by AdX; with X; = ( F o ), Xy = ( m ), X3 = ( o g ), and
T1 -

Xy = ( . " ), and mo((Intg)?) = Zsy X Zs.

Let n > 4. Then (Autg)? has 8 connected components, represented by AdX; with X,..., X}
as above, X5 = ( o 5 ),Xﬁz ( i . ),X7: ( . o ),anngz ( . i ),which
form a group isomorphic to Dy. Moreover the AdX; with ¢ € {1,2,3,5, 7} are representatives
of the conjugacy classes of this group and hence of my((Autg)?).

Now let n = 4. Since p is inner my((Autg)?) is isomorphic to a subgroup of Autt/Inté
by Lemma A.2, which in turn is isomorphic to the group of symmetries of the Dynkin
diagram of so0(4) 4+ s0(4) and thus to Sy (the symmetric group). Moreover ¥ € (Autg)? by
Lemma A.4 and hence mo((Autg)?) = S,;. For |m((Intg)?)| = 4 while (Autg)?/(Intg)? is
isomorphic to a subgroup of Autg/Intg = S5 by Lemma A.1 and contains elements of order

two and three and is thus isomorphic to S3. The conjugacy classes of Sy consist of the sets
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of cycles of order 1 to 4 and Z := {(1,2)(3,4), (1,3)(2,4),(1,4)(2,3)} of cardinality 1,6,8,6,
and 3, respectively. Therefore my((Intg)?), which is a normal subgroup of my((Autg)?) with
four elements, corresponds to {(1)} U Z and any two non trivial elements of m((Intg)?) are
conjugate in mo((Autg)?). Thus ¢ and the AdX; above with i € {1,3,5,7} represent the

conjugacy classes of mo((Autg)?).

D IIT g=s0(2n), o=AdJ, ¢t =u(n)

In this case (Autg)? 2 {AdX | X € O(2n),JXJ ' =4+X} ={AdX | X € U(n)} U{AdX |
X € 1,U(n)} with equality if n # 4. But equality also holds if n = 4 as |m((Autg)?)| < 2 by
Lemma A.2. Thus (Autg)? has two connected components represented e.g. by id and Adr,

and Adr, is inner precisely if n is even.

We now study the exceptional case. Our main tool here is the following result (cf. [Hel],

chapter VII, 7.2).

Theorem A.5. The fized point set G of an involution o on a compact, connected and simply

connected Lie group G is connected. ]

Corollary A.6. Let G be the universal cover of Intg. Then mo((Intg)?) is isomorphic to a

quotient of a subgroup of the center of G.

Proof. Let p : G — Intg be the universal covering and G := p~'((Intg)?) = {g € G |
0(9)g~" € Z(G)} where Z(G) is the center of G. The mapping G — Z(G), g — o(g)g™", is

a homomorphism and induces an exact sequence
1—-G°—G— Z(G) .

Since (3¢ is connected by A.5, mo(G) = G/G? is isomorphic to a subgroup of Z(G). Moreover

mo((Intg)?) is isomorphic to a quotient of this subgroup as G' — (Intg) is surjective. O

From this and Cartan’s computations of the centers (cf. [Hel|, Table IV) we immediately

get mo((Intg)?) = 1 or Zs3 if g = e5, mo((Autg)?) = mo((Intg)?) = 1 or Z, if g = e¢; and
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mo((Autg)?) = mo((Intg)?) = 1 if g = eg, f4 or go. By the next lemma the Zs in case of g = ¢4

is excluded.
Lemma A.7. m((Intg)?) = (Zy)! for some | > 0.

Proof. Let K := {e** : g — g | X € t}. Then K = ((Intg)?)y, Intg = K - {*¥ | X € p}
(as the exponential mapping of Intg/ K is surjective), and thus (Intg)? = K -{e*X | X € p}e.
If X € p then e*¥ € (Intg)? if and only if e 24X = 24X je. (¢24¥)2 = id. Hence each non

trivial element of 7y((Intg)?) is of order 2. O

Lemma A.8. The conjugacy classes of involutions on g = eg can be represented by com-

muting elements.

Proof. Up to conjugacy there are four involutions on ¢g, two inner and two outer. If p
is an outer involution and t; a maximal abelian subalgebra of (e5)? then the second outer
involution may be chosen to be of the form p - Ade® with X € t; (cf. [Loo|, Theorem 3.3,
Chapter VII, [Wol] Theorem 8.6.9) and hence to commute with p. Therefore it suffices to
prove the existence of two non-conjugate involutions of the form Ade® with X € t,.

We choose p to be the diagram automorphism of eg, after fixing a maximal torus t of eg

and a basis, say ai,...,ag of the root system. In general, if Y  m;a; is the maximal root
and Xi,...,X, are the elements in t with «;(X;) = m%_ﬁij then Ade® with X = X, and
m; =2or X = %(Xl + X;) and m; = m; = 1,i # j, are involutions. Moreover, involutions
corresponding to the first case (m; = 2) are not conjugate to those of the second (m; = m; =

1) as their fixed point algebras are semisimple and not semisimple, respectively (cf. [Loo],

p. 121 - 123). Hence the desired result follows from the diagram

of eg, in which the superscripts denote the numbers m;. Note that Xg and X; + X5 are

contained in t°. OJ
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From Lemmas A.7 and A.8 we get mo((Autes)?) = {1, 01} = Z for all i € {1,...,4} where
01 is an outer automorphism and o1, ..., 04 are commuting representatives of the conjugacy
classes of involutions on eg.

The most intricate case is g = e¢; which we consider now. Up to conjugacy g has three
involutions g1, 02, 03 With fixed point algebras (i) su(8), (i) so(12) + su(2) and (iii) es + R,

respectively. Since e; has no outer automorphisms my((Autg)?) = mo((Intg)?).
Lemma A.9. In case (i), mo((Autg)?) = 1.

Proof. Let ¢ € (Autg)? \ ((Autg)?)o. Thus ¢ restricted to € = s0(12) + su(2) is outer by
Lemma A.2 and after multiplying it by an appropriate element from ((Autg)?)y = {2 |
X € t} we may assume that ¢ is the standard involution on ¢ = so(12) + su(2) with
£¥ = 50(11) + su(2) and dim &” = 58. Then ¢ is also an involution on g. For ¢? = id on £
implies that g0|2p commutes with the €-action on p, which is irreducible. Therefore gpi =id
(as claimed) or p?(X) # X for all X € p\ {0}. But in the latter case £¥ = g¥ which is in
contradiction to rank ¥ < rank €. Let p. be the +1 eigenspaces of ¢ on p. Then the fixed
point algebras £¥ 4+ p. of ¢ and op are symmetric and thus of dimension 63, 69 or 79. Hence

dimpy € {5,11,21} in contradiction to dimp, + dimp_ = dimp = 64. O]
The other two cases of ¢; are handled by the next two results.

Lemma A.10. Let ¢ be an inner involution on g and X € p\ {0} with (adX)3 = —7r?adX.

Then 23X represents a non trivial element of mo((Autg)?).

Proof. The eigenvalues of adX are 0 and + 7. Therefore ¢ := ¢*!X has eigenvalues £1 and
ker(adX) is the eigenspace of 1. Thus ¢ is an involution and hence commutes with p. Since
[X,87] = 0 but X & €2, rank £¥ < rank g = rank ¢ and the restriction of ¢ to £ is not inner.

Thus ¢ represents by Lemma A.2 a non trivial element of m((Autg)?). O

The X € p with (adX)? = —w?adX are strongly related to extrinsic symmetric spaces in
the sense of Ferus ([Fer|, cf. also [EH|) and it is known that their existence can be read off

from the highest root of the symmetric space. More precisely, let ¥ be the restricted root
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system of (g, ) with respect to a maximal abelian subspace a of p, € C a a Weyl chamber,
and a,...,a, the corresponding basis of ¥. Up to conjugation we may assume X € €. On
each root space g, = {Y € gc | [H,Y]| =mia(H)Y V H € a}, adX has eigenvalues mia(X).
Hence (adX)? = —72adX is equivalent to a(X) € {0,£1}. Let Xi,...,X, € a be dual
to ay,...,a, and X = > 2;X;. Then x; > 0 (because X € €) and (adX)? = —7w2adX is
equivalent to z; € {0,1} (because a;(X) € {0, £1}) and > m;z; € {0,1} where 6 = > m;«y

is the maximal root. Hence we have the following result.

Lemma A.11. A non trivial X € p with (adX)? = —7w?adX ewists if and only if at least

one of the coefficients m; of the highest root 0 of ¥ is equal to one. ]

Now in cases (i) and (iii) of g = e7, 3 is of type e; and c3, respectively, and in both cases
the highest roots have a coefficient m; = 1 (see e.g. [Hel|, ch. X). Hence my((Autg)?) =
7o((Intg)?) = Zy by Lemmas A.7 and A.11. Moreover any ¢** with X € p, X # 0 and

(adX)3 = —7% ad X represents the non trivial element.
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Appendix B
Conjugate linear automorphisms of g

We recall and outline here some results about finite dimensional complex simple Lie algebras,
in particular the relation between their complex linear and conjugate linear automorphisms.
Thus let g be a complex simple Lie algebra, u a compact real form of g and w the conjugation
with respect to u. Let g® be the realification of g. Then u is a maximal compact subalgebra
of g® and u + iu is a Cartan decomposition of g®. Moreover Autg® = Autg U Autg, where
Autg := wAutg denotes the set of conjugate linear automorphisms of g (since (g¥)¢ is the sum
of two simple ideals g+ which are either left invariant or interchanged by ¢, V ¢ € Autg®).
Let Aut,g® := {p € Autg® | ou = u}. Then, by classical results of Cartan (cf. e.g. [GOV]
Ch. 4, 3.2 and 3.3), the following holds

adX

(A) The mapping Aut,g® x iu — Autg®, (p, X) — 0e?dX is a diffeomorphism.

(B) Each compact subgroup of Autg® is conjugate to a subgroup of Aut,g® (and the

conjugation can be achieved by an element from Intg by (A)).

In fact, (A) follows from the Hadamard-Cartan Theorem applied to the symmetric space of
nonpositive curvature Autg®/Aut,g® while (B) follows from the Cartan fixed point Theorem.

As a consequence of (A) we have

(C) If p, ¢ € Aut,g® are conjugate (resp. conjugate by an inner automorphism) in Autg®

then they are already conjugate (by an inner automorphism) in Aut,g®.

Indeed, if § = apa~! for some o = ape*dX with ap € Aut,g® and X € iu then ag 'Gage?dX =

@erd? ' X and thus ap '@ag = ¢ by (A).
We denote the sets of automorphisms of order ¢ by Aut?. The mapping Autu — Aut?g that

maps ¢ to its complex linear extension ¢ induces mappings

Autu/Autu — Aut?g/Autg and

Aut?u/Intu —  Aut?g/Intg
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between the conjugacy classes. It follows from (B) that these mappings are surjective and
from (C) that they are injective.

If instead of ¢¢ the conjugate linear extension pcw of ¢ € Autu is used one gets mappings

Aut9g/Autg(Intg) ¢ even

Autu/Autu(Intu) — ¢
Aut g/Autg(Intg) ¢ odd

which are by the same reasoning injective. By (B) they are also surjective if ¢ is even and

induce a surjective and hence bijective mapping
(Autfu U Aut?u) /Autu(Intu) — Aut g/Autg(Intu)

if ¢ is odd. Note that the order of ¢ € Autu is equal to the order of pcw or to half of it

depending on whether the latter is divisible by 4 or not.

Summarizing, we have.

Theorem B.1. The following mappings which are induced by complex linear, resp. conjugate

linear extensions are bijective:
(1) Aut?u/Autu(u) — Aut?g/Autg(g) , ¢ € N
(ii) Aut®u/Autu(u) — Aut 'g/Autg(g), ¢ even
(iii) (Aut?uU Aut®u)/Autu(u) — Aut’(g)/Autg(g), ¢ odd.
Autu and Autg in the denominators may be replaced by Intu and Intg, respectively. ]

In particular, ¢ = 2 gives the well known bijections
Aut?g/Autg « Aut’u/Autu < {non compact real forms of g}/Autg .

Note that Aut'u = {id} corresponds to the compact real forms. If o € Aut®u is an involution
then the corresponding real form is the fixed point set of ocw and thus € 4 7p, where ¢ and

p are the +1 eigenspaces of o.
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Proposition B.2. Let p € Autu. Complex linear resp. conjugate linear extensions induce

bijections between the conjugacy classes of the following (subsets of ) groups
(1) mo((Autu)?), mo((Autg)ec), and mo((Autg)?c®)
(i3) mo((Autu)?), mo((Autg)ec), and mo((Autg)ec).

Proof. (A) implies (Autg®)ec = (Aut,g®)% - {e2X | X € it} and (Autg®)ec” = (Aut,g®)ec -
{e*X | X € ip}. Thus the proposition follows from the isomorphism {id,w} x (Autu)? —
(AutugR)QC) ) (Oé, 6) = Qo ﬁ(c . L

Here mo((Autg)?c), for example, is considered as a subset of m((Autg®)?c), the set of con-

nected components of (Autg®)ec.
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