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Maximum likelihood methodology for diff fit
measures for quasi orders

Ali Unlii ¥, Anatol Sargin

University of Augsburg, D-86135 Augsburg, Germany

Abstract

Three inductive item tree analysis algorithms have been proposed for deriving quasi
orders from dichotomous data. These procedures have been treated descriptively,
without examining theory. In this paper, we introduce maximum likelihood method-
ology for the inductive item tree analysis methods. The diff fit measures of these
methods can be interpreted as maximum likelihood estimators. We show that the
estimators are asymptotically efficient, and hence they are asymptotically normal,
asymptotically unbiased, and consistent. In simulation studies, the algorithms are
compared regarding finite sample consistency, population ranks, and population
symmetric differences. The approach to fit measures presented in this paper can be
applied to any, sufficiently smooth, coefficient for multinomial count data. In partic-
ular, it allows introducing maximum likelihood methodology for measures assessing
the fit of general knowledge structures.

Key words: Inductive item tree analysis, diff fit measures, knowledge space
theory, quasi order, multinomial count data, maximum likelihood, asymptotics

1 Introduction

Deriving quasi orders (reflexive and transitive binary relations) on sets of di-
chotomous items plays an important role in knowledge space theory (KST)
(Albert & Lukas (1999); Doignon & Falmagne (1999)), introduced in Section 2.
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In Sargin & Unlii (2008), we correct and improve the original version of induc-
tive item tree analysis (IITA) (Schrepp (1999, 2003)), which is a data-analytic
method for building quasi orders. That paper introduces two new algorithms,
corrected and minimized corrected IITA, and compares these three algorithms
in a simulation study. It is seen that, on average, the corrected and minimized
corrected versions perform better than the original, in terms of both smaller
dist values and numbers of erroneously detected implications.

So far, these IITA procedures have been treated descriptively, without exam-
ining theory. In the present paper, we focus on theoretical aspects and further
comparisons of the three algorithms. We demonstrate that the diff coefficients
of these methods can be transformed into maximum likelihood estimators,
by division through the square of sample size. We discuss the quality prop-
erties asymptotic efficiency, asymptotic normality, asymptotic unbiasedness,
and consistency. Consistency in finite samples is illustrated in simulation, and
comments on the use of asymptotic normality in practice are given. Remark-
ably, the approach of this paper is a general one, in the sense that it can be
applied to any, sufficiently smooth, coefficient for multinomial count data. In
Section 6, we briefly exemplify that with the discrepancy index, which can be
used as a measure for general knowledge structures.

Theoretical considerations in population quantities are important. Supposing
the population completely to be known seems to be the way to begin in con-
structing sound fit measures for quasi orders. After providing justification for
a measure in a known population, one should consider sampling problems con-
cerning estimation and testing (Goodman & Kruskal (1979)). Literature on
the IITA algorithms, however, has dealt with samples rather than the popu-
lation.

In this paper, we discuss population analogs of the diff coefficients, and we pro-
pose evaluating these fit measures based on rank ordered population values.
This approach is justified given the consistency property of the estimators.
We compare the IITA algorithms in extensive simulation studies regarding
finite sample consistency, population ranks for the diff fit measures, and pop-
ulation symmetric differences of the true and obtained quasi orders and their
corresponding knowledge structures. In almost all cases, the original IITA ver-
sion is clearly outperformed by the two new versions; this confirms the results
obtained in Sargin & Unlii (2008). We close with a discussion containing a
summary, concluding remarks, and some suggestions for future research.

2 Basic concepts of knowledge space theory

This section reviews some of the basic deterministic and probabilistic concepts
of KST (Albert & Lukas (1999); Doignon & Falmagne (1999)), which are
relevant for this work.



2.1 Deterministic concepts

Assume a set ( of n dichotomous items. Mastering an item j € () may imply
mastering another item ¢ € (). If no response errors are made, these impli-
cations, j — i, entail that only certain response patterns are possible. Those
response patterns are called knowledge states, and the set of all knowledge
states (including () and @), K, is called a knowledge structure. Note that K
is a subset of 2¢, where 29 is the power set of . When a knowledge struc-
ture is closed under union, it is called a knowledge space. Knowledge spaces
closed under intersection are called quasi ordinal. Implications are assumed to
form a quasi order on the item set (). Quasi orders are referred to as surmise
relations in KST, and they bijectively correspond to quasi ordinal knowledge
spaces (Doignon & Falmagne (1999)).

An application of these concepts is, for example, an aptitude test, where peo-
ple can solve or fail to solve a question. Throughout, we use this interpretation
to illustrate the algorithms.

2.2 Probabilistic concepts

Implications are latent and not directly observable, due to random response
errors. A person who is actually unable to solve an item, but does so, makes
a lucky guess. On the other hand, a person makes a careless error, if he fails
to solve an item which he is capable of mastering. A probabilistic extension of
the knowledge structure model covering random response errors is the basic
local independence model in KST.

A quadruple (@, K, p,r) is called a basic local independence model (BLIM)
(Doignon & Falmagne (1999)) if and only if

(1) (Q,K) is a knowledge structure,

(2) pis a probability distribution on &, i.e., p: K — 0,1, K — p(K), with
p(K) >0 for any K € K, and Y e p(K) = 1,

(3) r is a response function for (Q,K,p), ie, r: 29 x K — [0,1],
(R,K) — 7r(R,K), with 7(R,K) > 0 for any R € 29 and K € K,
and Y pese r(R, K) =1 for any K € K,

(4) r satisfies local independence, i.e.,

r(R,K) = H Bl - | H (1—=5)] - H Ng) + [ H (1= my)],

geK\R geKNR gER\K g€Q\(RUK)

with two constants (,,7, € [0,1[ for each ¢ € @, respectively called
careless error and lucky guess probabilities at q.



To each state K € K is attached a probability p(K) measuring the likelihood
that an examinee is in state K (point 2). For R € 29 and K € K, r(R, K)
specifies the conditional probability of response pattern R for an examinee
in state K (point 3). The item responses of an examinee are assumed to be
independent given the knowledge state of the examinee. The response error
probabilities 5,71, (¢ € Q) are attached to the items and do not vary with
the knowledge states (point 4).

The resulting probability distribution on the set of all response patterns is

p(R) = > r(R, K)p(K).

KekK

We consider a random sample of size m. The data are the absolute counts
m(R) of response patterns R € 29, i.e., x = (m(R))pgese. The examinees are
assumed to give their responses independent of each other. The true probabil-
ity of occurence p(R) of any response pattern R is assumed to stay constant
across the examinees, and to be strictly larger than zero. Then the data x
are the realization of a random vector, X = (Xg)pese, which is distributed
multinomially over 29. In other words, the probability of observing the data
X, i.e., the realizations Xr = m(R), is

P(X = x) ZP(X@ =m(0),..., Xq =m(Q))

H p(R)™),

HRE2Q m( RGQQ

where p(R) > 0 for any R € 29, Y pese p(R) = 1, and 0 < m(R) < m for any

3 IITA algorithms

The three IITA algorithms are exploratory methods for extracting surmise
relations from data. In each algorithm, competing binary relations are gener-
ated (in the same way for all three versions), and a fit measure is computed
for every relation in order to find the quasi order that fits the data best. In
the following, the algorithms are briefly reviewed and their differences pointed
out.

3.1  Generating the selection set

The first step for all three algorithms is the inductive generation of surmise
relations. For two items ¢ and j, b;; := |{R € D|i € RAj € R}| is the number



of counterexamples, that is, the number of observed response patterns in the
data matrix D contradicting j — ¢. Based on these values, binary relations
C, for L =0,...,m are defined. Let ¢ & j :¢ b;; = 0. The relation C is tran-
sitive, and based on that, all the other transitive relations C, are constructed
inductively.

Assume C, is a transitive relation. Define the set Spy1 = {(¢,7)|b;; < L +
1A Z, j}. This set consists of all item pairs that are not already contained
in the relation C, and have at most L + 1 counterexamples. From these item
pairs those are excluded that cause an intransitivity in C,U S741, and the re-
maining item pairs are referred to as 5&)1. This process continues iteratively,
say k times, until no intransitivity is caused anymore. The generated relation
C,.=CU S}’iﬁl is then transitive by construction. Because C is reflexive,

=L+1"
all generated relations are. Hence C, is a quasi order for every L =0, ..., m.

Besides the construction of the quasi orders, it is very important to find that
quasi order which fits the data best. In all algorithms, the idea is to estimate
the numbers of counterexamples for each quasi order, and to find, over all
competing quasi orders, the minimum value for the discrepancy between the
observed and expected numbers of counterexamples.

3.2 Determining the best fitting quasi order

Let p; := |{R € DJi € R}|/m be the relative solution frequency of an item i.
A violation of an underlying implication is only possible due to random errors.
To compute the expected numbers of counterexamples, bj;, error probabilities
are needed. In all three algorithms, the error probabilities are assumed to be
equal for all items. In the original and corrected IITA versions, that single

error rate is estimated by

_ b/ (em)li E, 5 A i # )
. (IE.1=n) ’

where |C, | — n is the number of non-reflexive item pairs in C, .
In the minimized corrected IITA version, minimizing the diff coefficient as a
— _x1+t®o

function of the error probability v, gives v, = A, where

Tii= Y —2bypim + 2pip;m® — 2pim?,
i, 3 ANJEL G

To 1= Z —2bijpjm,
iC, g



._ 2.2
T3:= Z 2p;m”,
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o 2.2
ryi= ) 2pim’.
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For details on the derivation, see Sargin & Unlii (2008).

Under every relation, the algorithms compute the expected numbers of coun-
terexamples for each (non-reflexive) item pair. First, we present the estima-
tors used in the original IITA algorithm. If the relation C, provides an im-
plication 5 — 14, the expected number of counterexamples is computed by
bi; = pjy,m. It (i,7)¢ C,, no dependency between the two items is assumed,
and b;; = (1 — p;)pym(1 — 7, ). In this formula, (1 — p;)p;m is the usual prob-
ability for two independent items, and the factor 1 — v, is assumed to state
that no random error occurred. For criticism on these estimates, see Sargin &
Unlii (2008).

For the corrected and minimized corrected IITA versions, the same estimates
are used.

o If (i,5) € C,, set bj; = pjy,m.
o If (i,7) ¢ C, and (j,i) € C,, set bi; = (1 —pi)p;m.
o If (17]) € EL and (]72) € EL’ set b;kj = (pj — Di +pi7L)m'

Motivation for and derivation of these estimates can be found in Sargin &
Unli (2008).

Three measures for the fit of each relation T, to the data matrix D are the
diff coefficients defined by

(€, D)= 30

i#]

where corresponding estimates b;; are used. They give the average sums of the
quadratic differences between the observed and expected numbers of coun-
terexamples under the relation T, . The smaller the diff values are, the better
is the fit of the relation to the data. Therefore, the IITA algorithms look for
the smallest values of the diff coefficients and return the corresponding quasi
orders.

4 Maximum likelihood methodology

In this section, we introduce the population analogs of the diff fit measures, in-
terpret the coefficients as maximum likelihood estimators for the correspond-
ing population values, and show for these estimators the quality properties



asymptotic efficiency, asymptotic normality, asymptotic unbiasedness, and
consistency. The use of asymptotic normality in practice is further commented
on in Section 6.

4.1 The diff coefficients as mazximum likelihood estimators

Consider the transformed sample diff coefficients diff, := diff/m?. The division
is necessary to cancel out sample size m in replacements of sample quantities
with population quantities. Given the multinomial probability distribution
on the set of all response patterns, make the following replacements in the
arguments, b;; and p;, of the sample diff, coefficients:

7_)]11)(@.:07]‘:1): Z p(R)7
Re2QigR A jER

pi—Pli=1)= Z p(R).

Re2Q iR

This gives three population diff, coefficients corresponding to the sample diff,
coefficients.

The sample diff, coefficients are the obvious sample analogs of these popula-
tion fit measures. They are reobtained by replacing the arguments p(R) of the
population diff, measures with the maximum likelihood estimates m(R)/m of
the multinomial distribution. According to the invariance property of max-
imum likelihood estimation, the sample diff, coefficients are the maximum
likelihood estimators for the corresponding population diff, coefficients. The
invariance property states that if 0 is the maximum likelihood estimator for
6, then for any function f(6), the maximum likelihood estimator for f(#) is

~

f(0) (Casella & Berger (2002); Zehna (1966)).

4.2 Asymptotic properties of the diff; coefficients

Next we present an application of established maximum likelihood asymp-
totics. Though this is a straightforward application, it is novel and impor-
tant in the so far ad-hoc discussion of data-analytic methods in KST. Since
the following techniques are well-known, the explanations are kept succinct.
For technical details on asymptotic properties and regularity conditions, see
Bishop, Fienberg, & Holland (1975), Casella & Berger (2002), and Witting &
Miiller-Funk (1995).

Maximum likelihood estimators possess a number of asymptotic quality prop-
erties, given certain regularity conditions are satisfied. Important properties



are asymptotic efficiency (the most precise estimates are produced), and im-
plied by this property, asymptotic normality, asymptotic unbiasedness (esti-
mates converge in expectation to the true values), and consistency (estimates
converge in probability to the true values). It can be verified that the max-
imum likelihood estimator for the multinomial distribution fulfills required
regularity conditions and hence is asymptotically efficient.

The population diff, coefficients are continuous functions of the multinomial
cell probabilities p(R).! Therefore the corresponding sample diff, coefficients
are asymptotically efficient, asymptotically normal, asymptotically unbiased,
and consistent estimators for the population values.

4.8 Illustrating consistency

One possibility to assess and compare the quality of asymptotic properties for
finite samples for the three IITA algorithms is by simulation. We exemplify
that with the consistency property. First, we visually illustrate consistency
using one quasi order. Theoretically, consistency is formulated and holds for
any single quasi order. The rate of convergence may vary from quasi order
to quasi order. Second, to get a rough structure-independent evaluation, we
aggregate the results obtained for 100 quasi orders.

In this paper, the performances of the original, corrected, and minimized cor-
rected IITA algorithms are compared in simulation studies. Throughout, sim-
ulations were realized using the R statistical computing environment (R De-
velopment Core Team (2006); http://www.r-project.org/). The source files are
freely available from the authors.

The simulation study illustrating consistency is based on nine items and is as
follows.

(1) All reflexive pairs are always added to the relation R. A constant § is set
randomly (Sargin & Unlii (2008)), which gives the probability for adding
each of the remaining 72 item pairs to the relation. The transitive closure
C of this relation R is computed, and is the underlying (true) quasi order.

(2) Fifty data matrices are simulated for each of the increasing sample sizes
100, 1000, 10000, and 25000 in the following way. From the set {K € 29 :
(1tCjAje K)—ie K} of all response patterns consistent with C an
element is drawn randomly. For this drawn pattern all entries are changed
from 1 to 0 or from 0 to 1, with a same prespecified error probability 7.
This is simulating with a special case of the BLIM.

(3) Under all three algorithms, the sample and population diff, coefficients
are computed.

I Note that p(R) > 0 for all response patterns R € 2%. This assumption is essential
for assuring continuity of the population diff, coefficients.



Figure 1 gives a graphical display of consistency for one quasi order (for 7 =
0.10); running the previous three simulation steps once.

[Insert Figure 1 about here]

Figure 1 shows boxplots for all three IITA algorithms, within each of the
sample sizes of the 50 computed sample diff, values. The three population
diff, values are shown as horizontal lines in the plots. This graphic illustrates
that the population values are better attained and the sample values are less
dispersed with increasing sample size, for all three algorithms. The results
are better for the corrected and minimized corrected IITA versions than for
the original. The corrected and minimized corrected algorithms have a higher
speed of convergence. In particular, they achieve the population values with
a much higher accuracy than the original algorithm, which shows, even for
a sample size of 25000, clear discrepancies between sample and population
values. Hence consistency, which is guaranteed by theory, manifests in smaller
finite sample sizes for the two new IITA versions.

Table 1 summarizes the aggregated results obtained for 100 quasi orders (for
7 = 0.10); running the three simulation steps 100 times.

[Insert Table 1 about here]

Table 1 shows, for each combination of € (0.01, 0.001, 0.0001) and sample size,
the relative frequencies of 5000 data matrices satisfying \én — 0| > ¢, where
6, and 6 stand for the sample and population diff, coefficients, respectively.
The entries represent estimates of the probabilities P(|0, — 0] > ¢) used in
the definition of consistency, where the probability is taken with respect to
the true multinomial distribution. For instance, the first entry says that the
probability for obtaining a sample diff, value, for a sample size of 100, differing
more than 0.01 from the population diff, value is, approximately, 0.0010. This
is on average, independent of the underlying quasi order.

Under all three algorithms, for each e, the relative frequencies are decreasing
with increasing sample size (except for one case, mentioned below). Again, the
two new II'TA versions outperform the original. The original version shows the
lowest speed of convergence, and for e = 0.0001, from sample sizes 10000 to
25000, the relative frequency is even increasing. The corrected and minimized
corrected IITA algorithms perform well and quite similar, with a slight ad-
vantage for the minimized corrected.

In sum, we have seen that the diff coefficients of the IITA algorithms can be
interpreted as maximum likelihood estimators possessing desirable asymptotic
properties. Based on the consistency property, next we propose evaluating the
diff fit measures via rank ordered population values.



5 Comparisons of the three algorithms

In prior publications, only sample, not population, quantities have been con-
sidered. The simulation study in this section is theoretical, in the sense of solely
dealing with values for a known population. The following summary statistics
(evaluation criteria) are investigated in population, not sample, quantities.
The symmetric difference, at the level of items (dist), of the obtained and
underlying quasi orders is used as a distance measure. Since there is a bijec-
tion between quasi orders and their corresponding knowledge structures, the
symmetric difference can also be considered at the level of knowledge states
(dist®). The results obtained at the two levels may differ; for example, the
original IITA algorithm may have moderately lowest dist but considerably
highest dist* values (see Table 2). Therefore we introduce the rank statistic
(rk) as a third useful measure. Given a set of competing quasi orders, which
is required to include the underlying one, this statistic computes the rank of
the true quasi order in the ordered list of population diff, values.

This population based approach is justified according to the asymptotic theory
discussed in Section 4. The sample diff, values converge in probability (and
expectation) to the population diff, values.

5.1 Procedure of the simulation study

In the simulation study nine items are used. The general simulation scheme
consists of five parts. First, the underlying quasi order is generated randomly.
Second, the set of competing quasi orders is constructed according to the
inductive procedure of the IITA algorithms. Third, the underlying quasi or-
der is added to the selection set. Fourth, the population diff, coefficients are
computed. Fifth, the three algorithms are compared regarding symmetric dif-
ferences and ranks. More precisely:

(1) All reflexive pairs are always added to the relation R. A constant ¢ is set
randomly (Sargin & Unlii (2008)), which gives the probability for adding
each of the remaining 72 item pairs to the relation. The transitive closure
C of this relation R is computed, and is the underlying quasi order.

(2) To generate a selection set of quasi orders, a binary 5000 x 9 data matrix
is simulated. From the set {K € 29 : (i CjAj € K) — i € K} of all
response patterns consistent with C an element is drawn randomly. For
this drawn pattern all entries are changed from 1 to 0 or from 0 to 1,
with a same prespecified error probability 7. The inductive construction
procedure is applied to the simulated data matrix. 2

2 The idea is to obtain a large as possible number of quasi orders in the selection
set. Experimentation (not reported here) has shown that for sample sizes greater
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(3)
(4)
()

If the underlying quasi order C is not contained in the selection set, it is
added.

Under all three algorithms, the population diff, coefficients are computed
for all quasi orders of the selection set.

The three algorithms are compared with respect to three criteria: the
symmetric differences dist and dist* of the obtained (with smallest popu-
lation diff, value) and underlying quasi orders and corresponding knowl-
edge structures, respectively, and the rank rk of the underlying quasi
order among the population diff, values.

The error probabilities take the values 0.03, 0.05, 0.08, 0.10, 0.15, and 0.20.
For each of these error probabilities, the previous five simulation steps are run
1000 times.

5.2

Results of the simulation study

For each of the three algorithms, for every error probability, three population
summary statistics are computed. They are the means of the 1000 dist, dist*,
and 7k values. These summary statistics are reported in Table 2.

[Insert Table 2 about here]

Table 2 shows the following results:

(1)

Summary statistic dist: For the small error rates 0.03 and 0.05, the orig-
inal algorithm gives better average dist results than the corrected and
minimized corrected. For all other 7 values, the two new versions per-
form clearly better than the original. This is especially the case for the
large error probabilities 0.15 and 0.20.

The average population dist values show a similar pattern as the average
sample dist values reported in Sargin & Unli (2008). Those descriptive re-
sults hence are substantiated through theoretical considerations. In both
simulation studies, the two new versions outperform the original, yet the
difference in performance is larger in terms of population quantities.
For any 7 value, the minimized corrected IITA algorithm performs slightly
better than the corrected. This shows that the minimized corrected ver-
sion is better asymptotically.

Summary statistic dist*: For all error probabilities, the average dist*
statistic gives the same ranking; listed from worst to best, original, cor-
rected, and minimized corrected IITA. The results are quite similar for the
corrected and minimized corrected algorithms. Compared to the original

than 5000 barely any improvement of the selection set is achieved. Sample sizes
smaller than 5000 have led to smaller selection sets.
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version, the corrected and minimized corrected IITA algorithms perform
very well. For error probabilities up to 0.10, their average dist* values are
smaller than 3. The original version, however, shows a bad performance
already for 7 = 0.05. The results strongly worsen, reaching a maximum
average dist” value of 174.80 for 7 = 0.20. For the corrected and mini-
mized corrected versions, the corresponding average dist* values are 14.76
and 10.81, respectively.

Summary statistic 7k: For all error probabilities, the average rk statistic
gives the same ranking; listed from worst to best, original, corrected, and
minimized corrected IITA. The corrected and minimized corrected IITA
algorithms perform quite similar. Compared to the original version, they
produce good results, especially for larger error rates. For 7 = 0.20, the
corrected and minimized corrected versions give average rk values of 4.79
and 3.86, respectively, while the original algorithm shows a considerably
larger average rk value of 16.96.

Some remarks are in order regarding the results of the simulation study.

(1)

Overall, the minimized corrected version performs best, second comes the
corrected, and worst is the original (with respect to all three summary
statistics). We have obtained similar results for the two new algorithms.
For each of the three summary statistics, the original version has shown
considerably bad results for larger error probabilities.

Further analyses made using ranks (of underlying quasi orders) show
that the original version, compared to the other two algorithms, not only
performs worse based on average ranks, but also has higher maximum
ranks. For every error probability, the maximum of the 1000 rk values
is greater. For instance, we obtained the maximum ranks 22, 7, 6 (for
7 = 0.03) and 40, 31, 15 (for 7 = 0.10) for the original, corrected, and
minimized corrected algorithms. Moreover, the original version is outper-
formed concerning the number of 7k values that are at most as large as
3 (first three ranks). For instance, we obtained the first three ranks 893,
940, 960 times (for 7 = 0.03) and 645, 830, 919 times (for 7 = 0.10) for
the original, corrected, and minimized corrected algorithms. These sum-
mary statistics measure rank variability and show that the original IITA
algorithm has a wider range for the rk values.

That the original algorithm gives better average dist results in population
quantities for the error probabilities 0.03 and 0.05 can be explained in
the same way as we did for sample quantities in Sargin & Unlii (2008).
The incorrect estimation scheme of the original algorithm produces good
results specifically when the size of the underlying quasi order is large.
For a large quasi order C, there are predominantly the cases i C j, for
which correct estimators are used. For the cases ¢ [Z j, however, incorrect
estimators are applied, and the discrepancies between the observed and
expected numbers of counterexamples are large. This implies that, for

12



an underlying large quasi order, the diff, values for small quasi orders
of the selection set are large (pulling apart the diff, value for the true
quasi order from the diff, values obtained for the other relations). As a
result, the underlying quasi order is more frequently recovered. This is
true particularly for smaller error probabilities. In addition, note that in
the case of a large number of implications in the underlying quasi order,
there are large differences of the sizes of the true and the neighboring
relations in the selection set (due to transitivity). For instance, for nine
items used in the simulation study, an underlying quasi order consisting
of 64 implications has possible nearest neighbors which contain 58 or 72
implications, and the former even may not be included in the selection
set. As a consequence, for an underlying large quasi order, missing the
true relation already implies a large dist value.

6 Discussion

6.1 Summary

The original, corrected, and minimized corrected IITA algorithms (respec-
tively, diff fit measures) have been proposed for building quasi orders from
dichotomous data. Up until now, they have been treated descriptively, with-
out examining theory underlying these procedures. In this paper, we have
introduced maximum likelihood methodology, as a possible framework for in-
vestigating the methods theoretically. More precisely, the diff fit measures are
seen to be maximum likelihood estimators for their corresponding population
values (after some transformation using sample size). These estimators satisfy
the desirable property of being asymptotically efficient, and hence they are
asymptotically normal and unbiased, and consistent. In simulation studies,
the three algorithms have been compared regarding finite sample consistency,
and ranks and symmetric differences in population—mnot sample—quantities.
The corrected and minimized corrected versions are seen to provide consider-
able improvements on the original algorithm.

6.2  Asymptotic variances, confidence intervals, and hypotheses testing

In a next step, we plan to derive population and estimated asymptotic vari-
ances of the maximum likelihood estimators diff,. Consistent estimators for
the population asymptotic variances can be obtained based on the expected
and observed Fisher information matrices. The asymptotic variances can also
be estimated using resampling methods such as the bootstrap. Large sample

13



normality with associated standard errors can be used to construct confidence
intervals for the population values of and to test hypotheses about the diff
coefficients. Confidence intervals allow for more informative estimation of the
population values, compared to the maximum likelihood point estimates. This
could be helpful in comparing diff values for different elements of a selection
set. Moreover, one could, for instance, propose approximate significance tests
for testing whether the population diff value for one quasi order is greater than
the population value obtained for another (which is the crucial hypothesis to
be tested when choosing among competing quasi orders). The quasi orders
could, for example, be derived from different psychological theories.

6.3 Application of the paper’s approach to other descriptive measures

The maximum likelihood approach to fit measures presented in this paper is
a general one, in the sense that it can be applied to any, sufficiently smooth,
coefficient for multinomial count data. After possibly performing necessary
transformations to the coefficient, simply replace the relative cell frequen-
cies by their corresponding population multinomial probabilities, and utilize
the invariance property. In particular, this approach allows introducing maxi-
mum likelihood inference methodology for measures assessing the fit of general
knowledge structures (not necessarily being a space or quasi ordinal).

We briefly exemplify that with the discrepancy index, di, by Kambouri, Kop-
pen, Villano, & Falmagne (1994). The di coefficient (from the data to the
knowledge structure) can be transformed and written as

0. = Y ™ar k).

re2e M

where d(R,K) = mingex d(R, K) and d(R,K) = |(R\ K) U (K \ R)|. The
corresponding population di coefficient, obtained replacing m(R)/m by p(R),
is > pese p(R)A(R, K). According to the invariance property, the sample di co-
efficient is the maximum likelihood estimator for this population value. Anal-
ogously as we have discussed for the diff coefficients, maximum likelihood
inference methodology can be introduced for the di coefficient.

In other words, the approach of this paper is not restricted to quasi orders or
quasi ordinal knowledge spaces, but can be applied to any, sufficiently smooth,
measure that aggregates the multinomial cell counts according to an input rule
for combining them, for instance, as determined by a quasi order or knowledge
structure.
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6.4 Résumé

The fit measures around in KST, whether they are formulated at the level of
items or at the level of knowledge states, all aggregate the manifest multino-
mial cell counts into a single real number. This is why, uniformly, they can
be based theoretically using the maximum likelihood approach. However, it is
important to note that, in practice, the quality of the asymptotics has to be
checked for finite sample sizes. In this paper, we have exemplified that with
the consistency property for the diff coefficients, in simulation. For simpler
aggregations (coefficients), closed form expressions for the finite sample mo-
ments of the estimators are possible of course.

Incorporating latent parameters into the formulations of the diff coefficients
(or of other fit measures) is important. The manifest v, parameter in diff is
used as an estimate of the latent response error probability. Instead, the ex-
pected numbers of counterexamples could be parameterized directly in terms
of latent (e.g., careless error and lucky guess) parameters. Though the intro-
duction of latencies may complicate theory and computation, it can provide
for more realistic and interpretable results.

In future research, the present unitary approach using maximum likelihood
should definitely be compared with other approaches to evaluating fit mea-
sures for KST models (e.g., Heller (2008), Schrepp (2007)).
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7 Tables

Table 1

Relative frequencies of 5000 data matrices (50 data matrices per one out of
100 quasi orders) satisfying |6,, — 0] > ¢; first, second, and third lines refer to
the original, corrected, and minimized corrected IITA algorithms, respectively.

Sample size

100 1000 10000 25000

0.01 0.0010 0 0 0
0 0 0 0
0 0 0 0
0.001  0.2402 0.0278 0 0
0.0466 0 0 0
0.0326 0 0 0

0.0001 0.9266 0.5636 0.4910 0.5240
0.9540 0.2306 0.0158 0.0066
0.9646 0.1878 0.0032 0.0002
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Table 2
Average dist, dist*, and rk values; first, second, and third lines refer to the
original, corrected, and minimized corrected IITA algorithms, respectively.

Summary statistic

dist dist* rk

0.03 0.74 242 1.78
3.10  1.72 1.60
299 077 1.43
0.06 1.16 11.73 2.30
2,76 2.23 1.68
231 091 1.35
0.08 4.05 40.85 3.88
3.72 217 1.95
3.50 1.13 1.57
0.10 6.17 79.44 6.54
3.59  2.89 2.35
3.00 1.65 1.67
0.15 15.11 14290 11.76
3.62  6.56 3.18
3.49  3.54 2.42
0.20 32.79 174.80 16.96
456 14.76  4.79
3.82  10.81 3.86
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8 Figure caption

Fig. 1. Boxplots for the three IITA algorithms, within each of the sample sizes
of the 50 computed sample diff, values. The three population diff, values are
shown as horizontal lines in the plots.
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9 Figure

Fig. 1
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