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Abstract

This technical report presents an interactive proof method for the verification of
temporal properties of concurrent systems based on symbolic execution. Sym-
bolic execution is a well known and very intuitive strategy for the verification
of sequential programs. We have carried over this approach to the interactive
verification of arbitrary linear temporal logic properties of (infinite state) par-
allel programs. The resulting proof method is very intuitive to apply and can
be automated to a large extent. It smoothly combines first order reasoning
with reasoning in temporal logic. The proof method has been implemented in
the interactive verification environment KIV and has been used in several case
studies.
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1 INTRODUCTION

1 Introduction

Compared to sequential programs, the design and not only the verification of
concurrent systems is more difficult, mainly because the control flow is more
complex. Particularly, for reactive systems, not only the final result of exe-
cution but the sequence of output over time is relevant to system behavior.
Finding errors by means of testing strategies is limited, because, especially for
interleaved systems, an exponential amount of possible executions must be con-
sidered. The execution is nondeterministic, making it difficult to reproduce
errors. An alternative to testing is the use of formal methods to specify and
verify concurrent systems with mathematical rigor. Automatic methods — es-
pecially model checking — have been applied successfully to discover flaws in
the design and implementation of systems. Starting from systems with finite
state spaces of manageable size, research in model checking aims at mastering
ever more complex state spaces and to reduce infinite state systems by abstrac-
tion. In general, systems must be manually abstracted to ensure that formal
analysis terminates. An alternative approach to large or infinite state spaces
are interactive proof calculi. They directly address the problem of infinite state
spaces. Here, the challenge is rather to keep track of the proofs and to achieve
a high degree of automation. Existing interactive calculi to reason in temporal
logic about concurrent systems are generally difficult to apply. The strategy
of symbolic execution, on the other hand, has been successfully applied to the
interactive verification of sequential programs (e.g. Dynamic Logic [7, 9]). Sym-
bolic execution gives intuitive proofs with a high degree of automation.

Combining Dynamic Logic and temporal logic has already been investigated, e.g.
Process Logic [15] and Concurrent Dynamic Logic [14] and more recently [6,
8]. These works focus on combinations of logic, while we are interested in
an interactive proof method based on symbolic execution. Symbolic execution
of parallel programs has been investigated in [1], however, this approach has
been restricted to the verification of pre/post conditions. Other approaches
are often restricted to the verification of certain types of temporal properties.
Our approach presents an interactive proof method to verify arbitrary temporal
properties for parallel programs with the strategy of symbolic execution and
thus promises to be intuitive and highly automatic.

Our logic is based on Interval Temporal Logic (ITL) [13]. The chop opera-
tor ¢; ¥ of ITL corresponds to sequential composition and programs are just
a special case of temporal formulas. In addition, we have defined an interleav-
ing operator ¢ || 1 to interleave arbitrary temporal formulas. Furthermore, our
logic explicitly considers arbitrary environment steps after each system transi-
tion, which is similar to Temporal Logic of Actions (TLA) [11]. This ensures
that systems are compositional and proofs can be decomposed. In total, we
have defined a compositional logic which includes a rich programming language
with interleaved parallel processes similar to the one of STeP [5]. Important
for interactive proofs, system descriptions need not be translated to flat transi-
tion systems, the logic rather offers advanced programming constructs and the
calculus directly reasons about programs.

In this paper, we focus on the strategy of symbolic execution of concurrent sys-
tems and show how to verify safety and liveness properties with the same proof
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1 INTRODUCTION

strategy. Our claim is that with symbolic execution, interactive verification in
temporal logic becomes very intuitive in practice.

A short overview of our logic is given in Section 2. The calculus for symbolic
execution is described in Section 4. The strategy has been implemented in
KIV (see Section 5). As an example we consider an algorithm to calculate the
Binomial coefficient [12] (see Sections 3 and 6). Section 7 concludes. For more
details on the logic and calculus, especially on induction and double primed
variables to decompose proofs, we refer to [2].
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2 LOGIC

2 Logic

Similar to [13], we have defined a first order interval temporal logic with static
variables a, dynamic variables A, functions f, and predicates p. Let v be a static
or dynamic variable. Then, the syntax of (a subset of) our logic is defined

e

alA|A | A" fler,...,en)

o u= plen,-oen) @ lor Apa [ v
| step | 15 @2 | ©* §
| I—Alu"wA’ﬂ-' |901 ” ¥2

Dynamic variables can be primed and double primed. It is possible to quantify
both static and dynamic variables. The chop operator ¢1; @9 directly corre-
sponds to the sequential composition of programs. The star operator ¢* is
similar to a loop. We have added an operator [Ay,..., A, ] to define an explicit
frame assumption. Furthermore, operator ¢; ||~ @2 can be used to interleave
two “processes”. The basic operator ||< gives precedence to the left process, i.e.,
a transition of ¢ is executed first.

State: o9 o) o1 oy 02 oh 03 of o4
Interval I: O—"_r =O—_r =O—"_r =O—_r =0

— = system transition
— = = environment transition

Figure 1: An interval as sequence of states

In ITL, an interval is considered to be a finite or infinite sequence of states,
where a state is a mapping from variables to their values. In our settings, we
introduce additional intermediate states o to distinguish between system and
environment transitions. For intuition, compare the following to Figure 1. Let
n € N*°. An interval

/ /
I=(00,00,01,-,05_1,0%)

consists of an initial state oy, and a finite or infinite and possibly empty se-
quence of transitions (o7, UiH)iﬁ;Ol. In the intermediate states o} the values of
the variables after a system transition are stored. The following states ;1
reflect the states after an environment transition. In this manner, system and
environment transitions alternate. An empty interval consists only of an initial

state og.

Given an interval I, variables are evaluated as follows:

[vl; = oo(v)

. oA >0
r- oo(A)  otherwise
[A7], = o1(A) if|I] >0
- 00(A)  otherwise

Static and unprimed dynamic variables are evaluated in the initial state. Primed
variables are evaluated in of, and double primed variables in 7. In the last state,
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2 LOGIC

i.e. if I is empty, the value of a primed or double primed variable is equal to
the unprimed variable. It is assumed that after a system has terminated, the
variables do not change.

The semantics of the standard ITL operators can be carried over one-to-one to
our notion of an interval, and is therefore omitted here. In [13], however, assign-
ments only restrict the assigned variables, whereas program assignments leave
all other dynamic variables unchanged. This is known as a frame assumption.
In our logic, we have defined an explicit frame assumption [Ay, ..., A, | which
states that a system transition leaves all but a selection of dynamic variables
unchanged.

TE A, Ay iff ob(A) = op(A) forall A ¢ {Ay,..., A}

Details on frame assumptions can be found in [2].

The interleaving operator ¢ ||~ ¢ interleaves arbitrary formulas ¢ and 1. The
two formulas represent sets of intervals. We have therefore defined the semantics
of ¢ ||= ¥ relative to the interleaving [I; ||~ 2] of two concrete intervals I; and
Ip.

ITE@||S ¢ iff there exist Iy, I
with I € [I, ||~ L] and I |= p and I |= 4

For nonempty intervals Iy = (09, 0{,01,...), and Iy = (19,7, 71, ..), interleav-
ing of intervals adheres to the following recursive equations.

(00,04) @ [(o1,...) || I2], if I is not blocked
[[Il ||< IQ]] = (To,T(I))EB[[(Ul,...) || (Tl,...)]], if I is blocked, oo = 19
0, otherwise
L[ 2] = LS BIUL S L]

Interval I; is blocked, if of,(blk) # oo (blk) for a special dynamic variable bik.
The system transition toggles the variable to signal that the process is currently
blocked (see await statement below). If I; is not blocked, then the first transi-
tion of I is executed and the system continues with interleaving the remaining
interval with I. (Function @ prefixes all of the intervals of a given set with
the two additional states.) If I; is blocked, then a transition of I is executed
instead. However, the blocked transition of I; is also consumed. A detailed
definition of the semantics can be found in [2].

Additional common logical operators can be defined as abbreviations. A list
of frequently used abbreviations is contained in Table 1, where most of the
abbreviations are common in ITL. The next operator comes in two flavors. The
strong next o ¢ requires that there is a next step satisfying ¢, the weak next
e © only states that if there is a next step, it must satisfy ¢.

As can be seen in Table 1, the standard constructs for sequential programs can
be derived. Executing an assignment requires exactly one step. The value of e
is “assigned” to the primed value of A. Other variables are unchanged ([A]).
Note that for conditionals and loops, the condition ¥ evaluates in a single step.
For local variable definitions, the local variable is quantified (3 A), in addition,
the environment cannot access the local variable (0 A” = A’). The global value
of the variable is unchanged (O A’ = A).
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3 EXAMPLE

more := step;true O = finite; ¢
last := - more Op = O
inf := true; false op = step;yp
finite := - inf ey = o~y
A:=e A"=e A [A] A step

[1 A step

¥ A (skip; 1) V = b A (skip; p2)

(¢ A (skip; ¢))* A O (last — — 4)); skip
OA=AANTA orDOA =A

skip

if ¢ then ¢, else po
while ¢ do ¢

var A in ¢

bskip blk" # blk A [blk] A step
await ¢ do ¢ ((= ¢ A bskip)* A O (last — ¢)); ¥
await ¢ await ¢ do skip
plly = ellFp vyl

Table 1: Frequently used temporal abbreviations

Parallel programs communicate using shared variables. In order to synchronize
execution, the operator await i) do ¢ can be used. A special dynamic variable
blk is used to mark whether a parallel program is blocked. The await operator
behaves like a loop waiting for the condition to be satisfied. While the oper-
ator waits, no variable is changed except for variable blk which is toggled. In
other words, a process guarded with an await operator actively waits for the
environment to satisfy its condition. Immediately after condition 1) is satisfied,
construct ¢ is executed.

3 Example

The algorithm of Figure 2 is similar to the algorithm in [12] to calculate the bino-
mial coefficient B = (Z) It illustrates that our programming language closely
resembles the Simple Programming Language (SPL) of STeP. The procedure
Binom(n, k; b) with value parameters n, k calculates the binomial coefficient

B:(”) n nx(n—1)%..x(n—k+1)

k) kl'x(n—Fk) 1%2%...xk

using two parallel processes. After the variables have been initialised, the first
process takes care of the numerator and the second process of the denominator.
Separate assignments are used for read and write access to variable B, the
intermediate result being stored in local variables 7. Access to the shared
variable B is synchronised with a semaphore S. The semaphore is aquired in sub
procedure P(; S) and released in V(; S). An additional guard await Y1 +Y> < n
ensures that the remainder of the divisions B/Y5 in the second process is always
0. In Fig. 2, numbers have been added to refer to program positions in Section 6.
The numbers are only used for illustration purposes.

We have verified two temporal properties

k <n A Binom(n, k; B) — < last (1)
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3 EXAMPLE

Binom(n, k; B)
var S,Y7,Ys in begin

1:S:=1; 22Y,:=n; 3:Yo:=1; 4: B:=1;

5: while n — k <Y; do begin || 5: while Y5 < k do begin
6: P(;.9); 6: await Y] + Y5 < n;
var T in begin 7. P(;S);
7:T:= BxYr; var T in begin
8 B:=T 8: T := B/Y5;
end 9 B: =T
9: V(;.5); end
10: Y, =Y -1 10: V(;.9);
end 11: ' Y5 i =Ys 4+ 1
end
where
P;S) < l:await S>0doS:=S5-1
V;S) < 1:S:=5+1
Figure 2: Algorithm to calculate the binomial coeflicient
and

(2)

k <n A Binom(n,k; B) AO B" =B — 0O <1ast — B= (Z)) .

The first property states that the algorithm eventually terminates and the sec-
ond property ensures that the final result is correct. For both properties, we
have to assume that £ < n. The second property requires an additional envi-
ronment assumption 0 B” = B’ to ensure that the environment transition —
as the relation between primed and double primed variables — does not modify
variable B.

The example illustrates that program constructs are first order citizens in our
logic. Parallel programs are just a special case of temporal formulas. Both safety
and liveness properties can be expressed. In the example, interaction with the
environment is trivial: we assume that the environment does not interfere. More
complex environment interaction can be expressed.
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4.1 Normal form 4 CALCULUS

4 Calculus

Our proof method is based on a sequent calculus with calculus rules of the

following form:
MEA .0 ThFA,

kA

name .

Rules are applied bottom-up. Rule name refines a given conclusion I' H A with
n premises I'; F A;. Furthermore, we heavily rely on the possibility to rewrite
sub-formulas. A rewrite rule is given as

name: @ < .

With this rule, formula ¢ can be replaced by an equivalent formula ) anywhere
within a given sequent.

4.1 Normal form

Our proof strategy is to symbolically execute temporal formulas, parallel pro-
grams being just a special case thereof. In Dynamic Logic, the leading assign-
ment of a DL formula (v := e;a) ¢ is executed as follows:

I, v=cf F (a) ¢
'k (v:i=e) {a) @
'k {(vi=ea) p

asg r

normalize

The sequential composition is normalized and is replaced with a succession
of diamond operators. Afterwards, the assignment is “executed” to receive
I'o,v = ey as weakest precondition. In our settings, we normalize all the
temporal formulas of a given sequent by rewriting the formulas to a so called
normal form which separates the possible first transitions and the corresponding
temporal formulas describing the system in the next state. Afterwards, an
overall step for the whole sequent is executed (see below). More formally, a
program (or temporal formula) is rewritten to a formula of the following type

TNOP

with 7 being a formula in predicate logic describing a transition as a relation
between unprimed, primed and double primed variables. In general, a program
may also terminate, i.e., under certain conditions, the current state may be the
last. Furthermore, the next transition can be nondeterministic, i.e., different
T; with corresponding ; may exist describing the possible transitions and cor-
responding next steps. Finally, there may exist a link between the transition
7; and system ¢; which cannot be expressed as a relation between unprimed,
primed, and double primed variables in the transition alone. This link is cap-
tured in existentially quantified static variables a; which occur in both 7; and
;. The general pattern to separate the first transitions of a given temporal
formula is N
To/\last\/\/_ (Fa;. i No ;).
=1

We will refer to this general pattern as normal form.
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4.2 Executing an overall step 4 CALCULUS

o I'FA P, THA e ' A
dis | >~ erl
eV, I'EA Ja. o, ' A

where ag fresh with respect to free(y) \ {a} U free(T", A)

a,a,a - ai,a2,A
TA,A/,A” ; TA,A/,A”’(P ;
. st - S

T,last - T,0 @ I P

where a, a1, as fresh with respect to free(r, )

Table 3: Rules for executing an overall step

4.2 Executing an overall step

Assume that the antecedent of a sequent has been rewritten to normal form.
Further assume — to keep it simple — that the succedent is empty. (This can be
assumed as formulas in the succedent are equivalent to negated formulas in the
antecedent. Furthermore, several formulas in the antecedent can be combined
to a single normal form.)

70 A last Vv \/ 7_1(3 a;. T N o ;)

With the two rules dis [ and ex [ of Table 3, disjunction and quantification can
be eliminated. For the remaining premises,

70 N last T N\ o p; -

the two rules Ist and stp can be applied. If execution terminates, all free dynamic
variables A — no matter, if they are unprimed, primed or double primed — are
replaced by fresh static variables a. The result is a formula in pure predicate
logic with static variables only, which can be proven with standard first order
reasoning. Rule stp advances a step in the trace. The values of the dynamic
variables A and A’ in the old state are stored in fresh static variables a; and
as. Double primed variables are unprimed variables in the next state. Finally,
the leading next operators are discarded. The proof method now continues with
the execution of ;.
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4.3 Executing temporal logic 4 CALCULUS

alw: O¢ < @Aedp
ev: S = Vol

Table 5: Rules for executing temporal logic operators O and <

4.3 Executing temporal logic

The idea of symbolic execution can be applied to formulas in temporal logic. For
example, operator O ¢ is similar to a loop in a programming language: formula
© is executed in every step. An appropriate rewrite rule is alw of Table 5.
Formula ¢ must hold now, and in the next step O ¢ again holds. To arrive with
a formula in normal form, the first conjunct of the resulting formula ¢ A e O ¢
must be further rewritten. The rewrite rule above corresponds to the recursive
definition of O ¢. Other temporal operators can be executed similarly.
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4.4 Executing sequential composition 4 CALCULUS

L Rl chp lem
F o1 — o9
chp dis:  (p1 V @2)i <= @139V o250
chp ex: Fa. o) < Fag. 2; Y
chp lst: (7 Alast);yp < T;;‘/j:,, A
chp stp: (T Aog)yy = TAO(pY)

Table 7: Rules for executing sequential composition

4.4 Executing sequential composition

The execution of sequential composition of programs ¢; ¥ is more complicated
as we cannot give a simple equivalence which rewrites a composition to normal
form. The problem is that the first formula ¢ could take an unknown number
of steps to execute. Only after ¢ has terminated, we continue with executing 1.

Rules for the execution of ¢; 1) are given in Table 7. In order to execute com-
position, the idea is to first rewrite formula ¢ to normal form

(TQ A last Vv \/ (Fa;.m Ao cpi));w

The first sub-formula ¢ can be rewritten with rule chp lem of Table 7. If it
is valid that ;1 implies @2, then ¢1; 1 also implies @o; ¢. (This rule is a so-
called congruence rule.) After rewriting the first sub-formula to normal form,
we rewrite the composition operator. According to rules chp dis and chp ex,
composition distributes over disjunction and existential quantification. If we
apply these rules to the formula above, we receive a number of cases

(TO A\ laSt);’t/J V \/ 3 a;,0- (Ti,O A o (Pi,O); P

In the first case, program ¢ terminates, in the other cases, the program takes
a step 7; and continues with program ;. Rules chp Ist and chp stp can be
used to further rewrite the composition. Dynamic variables A stutter in the
last step, and therefore the primed and double primed variables A’ and A” of
7 are replaced by the corresponding unprimed variables if the first sub-formula
terminates. The two rules give

Toﬁ}::n ANV \/ Jaip. Tio Ao (gio;¥)

In the first case, ¢ has terminated and we still need to execute 1 to arrive with
a formula in normal form. In the other cases, we have successfully separated the
formula into the first transition 7; o and the corresponding rest of the program

©i,05 .

4.5 Interleaving

As with sequential composition, the interleaving of programs cannot be executed
directly, but the sub-formulas need to be rewritten to normal form first. The
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4.5 Interleaving 4 CALCULUS

basic operator for interleaving is the left interleaving operator ¢ ||< 1 which
gives precedence to the left process. In order to execute ||<, the first sub-formula
must be rewritten to normal form before the operator itself can be rewritten.

F o1 — @
ForllS v — e |IT 9

il lem

il dis: (p1 V) IS¢ = o [|SY Ve |
ilvl ex: Ga. @) ||T¢v < Fag ¥ [T

ag fresh with respect to (free(y) \ {a}) U free(w))
il Ist:  (r Alast) ||S ¢« T Ay

ilvl stp: (T A = blocked A o ) ||*
 Jas. (15 A - blocked A o (A =az A ) || 9))
ilvl blk: (1 A blocked A o @) ||< ¥

— Jdas;. (3 ai. Ta}:j:f/}l) A (A =az21 N QD) ||b< P

Table 9: Rules for executing left interleaving

For left interleaving, the rules of Table 9 are similar to the rules for sequen-
tial composition. Congruence rule ilvl lem makes it possible to rewrite the first
sub-formula to normal form. Similar to chop, left interleaving also distributes
over disjunction (ilvl dis) and existential quantifiers (ilvl ex). If the first formula
terminates, execution continues with the second (ilvl Ist). This is similar to rule
chp Ist. Otherwise, execution depends on the first process being blocked. If it is
not blocked, rule ilvl stp executes the transition and continues with interleaving
the remaining ¢ with . Note that the double primed variables of 7 are re-
placed by static variables ao which must be equal to the unprimed variables the
next time a transition of the first process is executed. This is to establish the
environment transition of the first process as a relation which also includes tran-
sitions of the second. If the first process is blocked, then rule ilvl blk executes
the blocked transition; the process actively waits while being blocked. How-
ever, the primed variables of 7 are replaced by static variables a;: the blocked
transition of the first process does not contribute to the transition of the overall
interleaving. Instead, a transition of the other process is executed.

The situation where the first process is blocked and it remains to execute a
transition of the second process is represented by a derived operator ¢ ||b< P
which is defined

plly @ = (blocked Ao )|~ ¢

and for which the rules of Table 11 are applicable. Again, the rules are very
similar to the rules above. A congruence rule ilvlb lem ensures that the second
sub-formula can be rewritten to normal form. With rules ilvlb dis and ilvlb ex,
the operator distributes over disjunction and existential quantification. If the
second process terminates, ilvlb Ist is applicable, otherwise ilvlb stp can be ap-
plied.

Similar rules have been defined for all the operators of our logic [2]. In total,
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4.6 Sequencing 4 CALCULUS

F o1 — ¢
Fo o1 — ¥l e

ilvlb lem

il dis: ¥ |l (1 Vp2) o Gy o1 VUl e
ilvlb ex: Ul Ga ) < Fag ¥y o
ap fresh with respect to (free() \ {a}) U free(v))
iwlb Ist: ||y (1 Alast) < false
il stp: P> (TAop) = Fags T47° Ao (V]| (A=agz A @)

Table 11: Rules for executing blocked left interleaving

every temporal formula can be rewritten to normal form, an overall step can be
executed, and the process of symbolic execution can be repeated over again.

4.6 Sequencing

The execution of interleaved parallel processes is nondeterministic. As a con-
sequence, a large number of different paths of execution have to be considered.
Very often, however, the order of execution has no effect on the computation;
following different paths leads to the same state. To minimize the number of
paths, the granularity of a system step can be redefined: two statements of a
process can be executed in a single step, if they do not affect the global state; if
a process only assigns local variables, then the global state is not changed, and
only the stuttering behavior of the process differs if statements are combined.
However, this approach depends on the type of property to verify; the prop-
erty must be invariant to stuttering steps. Therefore, we have taken a different
approach.

Our approach is simple but effective. Initially, all paths of execution are con-
sidered. However, if the same system configuration results from executing a
number of steps but in a different order, then the two resulting premises are
combined. We do not distinguish between program and property and only, if
the program configuration and the configuration of the temporal formulas are
equal, the premises are combined. As a consequence, our approach can be ap-
plied to any type of temporal property.

Two premises are combined, if the system is residing in the same configuration.
A system configuration is defined by the temporal formulas of a premise. In
order to automate sequencing, we have defined a syntactic criterion to determine
the current system configuration. For this purpose, function conf(p) extracts a
set of temporal formulas from a given sequent I' = A (see Table 12). Condition
conf(T'y F A1) = conf(T'2 - Aj) is a (computable) indication to combine two
premises. In order to combine two premises, we have generalized the concept
of a sequent rule to allow for several conclusions within a single rule. Our
sequencing rule reads:

FANT =V A)ANAT2 =V Ag)
I'iEA Tok Ag

seq, if conf(I'y F Ay) = conf(T'2 F Ag)
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4.7 Induction 4 CALCULUS

conf(I' = A) = U, erconf™ (v) UU,ea conf(y)
conf(ppr) = 0
conf(— @) = {neg(y))| ¥ € conf™(p)}
conf(op V 1) = conf(p) U conf(1))
conf(p — 1) := conf(— ¢) U conf(v)
conf(p) = {p}
conf™ (ppr) = 0
conf ( ¢) = {neg(y)| ¥ € conf(p)}
conf (p A ) = conf (¢)Uconf ()
conf™ (30) = {¢}
neg(— @) = @
neg(p) = -

Table 12: Definition of a system configuration conf(T" - A)

Only if the system configuration of the two conclusions are equal, the premises
are combined. In this case, the temporal formulas of both premises are equiv-
alent, and only the first order formulas differ. Thus, the conjunction of both
premises is subject to significant simplification.

4.7 Induction

If execution loops, the proof requires an inductive argument. Our induction
method is based on Noetherian induction. Given a well-founded ordering < and
an expression e, a general rule for induction is as follows:

e=aqa,e0 (e <a—ih), '+ A
r-A

ind(e)

where ih := A T — \/ A and a is fresh with respect to free(e,I", A). For any
proof obligation I' = A, rule ind can be applied to receive an induction hypoth-
esis as an additional precondition: starting with the next state, the hypothesis
can always be applied, if e has decreased, static variable a containing the original
value of e.

It is not necessary to provide an ordering in all cases. If a liveness property < ¢
is known, it is possible to induce over the number of steps it takes to reach the
first state satisfying ¢. A derived rule is as follows:

e ih until o, ' - A
S, I'EA

ind ev

Liveness properties can be derived from other temporal operators as well.

Thus, a safety property in the succedent can be turned into a liveness property
in the antecedent and induction is possible.
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4.7 Induction 4 CALCULUS

Our strategy of symbolic execution ensures that after a finite number of steps,
execution terminates or the system loops and induction can be applied. How-
ever, it might be necessary to generalize the first order formulas with an invari-
ant. It is an important principle of our induction method that only first order
formulas need to be generalized.
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5 IMPLEMENTATION

5 Implementation

The interactive proof method has been implemented in KIV [3], an interactive
theorem prover which is available at [10]. KIV supports algebraic specifications,
predicate logic, dynamic logic, and higher order logic. Especially, reasoning in
predicate logic and dynamic logic is very elaborate. Support for concurrent
systems and temporal logic has been added. Considerable effort has been spent
to ensure that the calculus rules are automatically applied to a large extent.
Almost all of the rules are invertible ensuring that, if the conclusion is provable,
the resulting premises remain valid. The overall strategy is

e to symbolically execute a given proof obligation,
e to simplify the PL formulas describing the current state,
e to combine premises with the same system configuration, and

e to use induction, if a system loop has been executed.

This strategy is illustrated with an example proof in the following section.
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6 EXAMPLE PROOFS
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Figure 3: Proof for property (1)

6 Example proofs

6.1 Verifying liveness

In order to verify the liveness property (1) for the algorithm of Fig. 2, we apply
the strategy of symbolic execution to receive the proof graph of Figure 3.

The different nodes of the proof graph are annotated with numbers to refer to
the program positions of the algorithm in Figure 2. Initially, the program is
at position 1 (bottom node). Executing the first step leads to position 2 and
so on. After the variables have been initialized, two processes are spawned and
consequently the following nodes are annotated with two numbers. The two
processes start out at positions 5, 5. In the following step, either a transition of
the first or the second process is executed. The while loops of both processes
either terminate or loop. Therefore, step execution gives four successor states
5, — (the second process has terminated), 6,5 (the first process loops), 5,6 (the
second process loops), and —,5 (the first process has terminated). Continuing
with executing the algorithm in the four states again results in one to three
successor states each; in total, we receive eight states. With sequencing, the
number of states can be reduced to five different states. The process of step
execution and sequencing is repeated until program positions are reached which
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6.2 Verilying safety 6 EXAMPLE PROOFS

have been encountered before. In this case, induction can be applied.

The resulting proof represents all possible execution paths. In Figure 3, a se-
lection of paths have been annotated with corresponding program positions.
(Note: if a sub procedure is executed, the corresponding program position a.b
consists of position a of the calling procedure followed by position b of the sub
procedure.) The empty space in the middle of the graph represents unreachable
program positions; because execution is synchronized with a semaphore it is
impossible for both processes to reside in their critical section at the same time.

The values of variables are represented by first order formulas. For executing
loops, these formulas must be generalized to be invariant. At program position
4, the variable settings read

E<nANS=1A"Y1=nAYe=1ANB=1.

For verifying the liveness property, the values of the two counters Y7 and Ys are
generalized appropriately:

E<nAS=1An—-k<Yi<nAl<Yy<k+1.

Knowledge about variable B can be discarded. In addition to the invariant, a
Noetherian ordering must be provided to ensure that the algorithm loops only
finitely often. In our case, the function

Y1—(n=k)+((k+1) - Y2)

is always greater or equal to zero and decreases after each loop execution.

Finding an invariant and providing an ordering are the only interactive steps
in our example. Step execution, sequencing, and application of the induction
hypothesis are fully automatic.

6.2 Verifying safety

The proof for property (2) is almost identical to the proof in Figure 3. The
same steps are executed and the same proof graph results. The only differences
are a more complex invariant, no necessity to provide a Noetherian ordering,
and more complex first order reasoning.

For the invariant, it is important to properly generalism B. Our invariant for
property (2) reads

E<nAS=1An—-k<YV1<nAl1<Y,<k+1
AVi4 Yz <41 A B=(Tyd)/ (T02 ) -

It is not necessary to provide an ordering for induction because of the following
reason. In property (2), the formula on the right hand side of the implication is
preceeded by an always operator O ¢ which is equivalent to a negated eventually
operator = & = . Thus, & = ¢ can be assumed: eventually (after a finite
number of steps) = ¢ holds. Induction is over the number of steps it takes to
reach a state where ¢ is violated.

19 of 24



6.3 Verification in KIV 6 EXAMPLE PROOFS

After each step execution, the first order formulas relate the values of variables
before and after the transition. This relation must be simplified as far as pos-
sible. For the simple invariant of the liveness property, simplification is fully
automatic. The more complex invariant of the safety property requires addi-
tional first order reasoning. For example, at program position 7,7 the first order
formula reads

E<nAS=0AYV1Z0An<YV1+EAYI<nAYsZO0AYo<EkEAYy<n
AVi4 Y2 SnAYa+1<VitkAB= Ty 0) /(127 9)

This formula slightly differs from the original invariant. Semaphore S is zero
and additional knowledge Y7 # 0 etc. has been derived. Furthermore, rules have
been applied to eliminate subtraction n — k. Immediately after the transition
to program position 8,7, we receive

/* new static variables store old value */

E<nAs=0ApnZ0An<y1+kAy1 <nAypZ0ANy <kAy<n
Ayptp<nAyp+l<y+kAb= (H?:y1+1i)/(H?i?i)

/* assignment turned into a relation */

ANT=bxY1T AB=bAY1=y1 ANYo=y NS =35

The assignment 7" := B x Y] has been executed. New static variables b, y1,y2, s
have been introduced to store the original values of the dynamic variables, and
the assignment has been turned into a relation between these static variables
and the dynamic variables in the next state. With equational reasoning, the
newly introduced static variables are automatically eliminated to receive

E<nAS=0AYV1ZZ0An<YV1+EAYI<nAYsZO0AYo<EkEAYy<n
AVi4YaSnAYa+1<Vith AB= Ty / (I051)

AT = [(H?:YIH i)/ (H:fifllﬂ Lt

Additional first order reasoning is required to simplify the value of T'. Functions

I] and / satisfy the following lemma:
n Y2—1 n Y2—1
Vi+Y<nYi<nt K 1T z)/(H z) * Yy = <Hz>/<H z) .
i=Y1+1 i=1 =Y i=1
If the two preconditions are satisfied, then the left hand side of the equation
can be replaced by the right hand side. With this lemma, the value of T' can
be simplified. A number of lemmas have been added to the library of simplifier

rules to complete the proof. The complexity of the lemmas vary from simple
lemmas, e.g. H?Zl 1 = 1, to more complex lemmas as above.

This second proof is a good example for a combination of complex first order
reasoning and reasoning in temporal logic. Again, the temporal logic steps are
fully automatic and it remains to supply an invariant and additional lemmas to
simplify the first order formulas.

6.3 Verification in KIV

Figure 4 contains a screen-shot to illustrate how to construct proofs in KIV. In
the lower right, the proof graph is displayed. The visible portion of the graph
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6.3 Verification in KIV 6 EXAMPLE PROOFS
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Figure 4: Verification of Binom example in KIV

corresponds to the upper part of Figure 3. The main area in the large win-
dow contains the sequent under verification with the partially executed parallel
program and the first order formulas describing the current state. A list of ap-
plicable proof rules is displayed to the left. Heuristics are used to automatically
apply these rules. Two set of heuristics TL Heuristics and TL Heuristics +
Exec implement the overall strategy of Section 5.
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7 CONCLUSION

7 Conclusion

We have successfully carried over the strategy of symbolic execution to verify
arbitrary temporal properties for concurrent systems. The proof method is
based on symbolic execution, sequencing, and induction. How to symbolically
execute arbitrary temporal formulas — parallel programs being just a special
case thereof — has been explained in this paper.

Our proof method is easily extendable to other temporal operators. For every
operator, a set of rules must be provided to rewrite the operator to normal
form. With rules similar to the ones of Tables 7 and 9, we support in KIV
operators for Dijkstra’s choice, synchronous parallel execution, and interrupts.
Furthermore, we have integrated STATEMATE state charts [16] as well as UML
state charts [4] as alternative formalisms to define concurrent systems. For
all of our extensions, the strategy of sequencing and induction has remained
unchanged and arbitrary temporal formulas can be verified.

Using double primed variables, we have defined a compositional semantics for ev-
ery operator including interleaving of formulas. With compositional operators,
proofs can be decomposed. This is very important to verify large case studies.
How to decompose proofs in our logic is subject to further investigations.

The implementation in KIV has shown that symbolic execution can be auto-
mated to a large extent. We have applied the strategy to small and medium
size case studies. Currently, the strategy is applied in a European project called
Protocure to verify medical guidelines which can be seen as yet another form
of concurrent system. Overall, we believe that the strategy has the potential to
make interactive proofs in (linear) temporal logic in general more intuitive and
automatic.
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