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Abstract A semiclassical method to determine if the classical limit of a quantum system
shows a chaotic behavior or not based on Pesin theorem, is presented. The method is applied
to a phenomenological Gamow–type model and it is concluded that in the classical limit the
dynamics exhibited by its effective Hamiltonian is chaotic.
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1 Introduction

The presence of Lyapunov exponents in quantum systems has been reported in several
papers [1–6] and the positiveness of them is a necessary condition for chaos. In classically
chaotic quantum systems, decoherence formalism can be used to define quantum chaos. In
such case the purity exponentially decreases at a Lyapunov rate [7, 8].

A complete definition of classical chaos can be found in [9], where the three most impor-
tant features of chaos, Lyapunov exponents, Ergodic Hierarchy (EH) and complexity are
studied. Brudno theorem is the link between Kolmogorov–Sinai (KS) entropy and com-
plexity, while Pesin theorem is the link between Lyapunov exponents and KS–entropy as
defined in EH [10].

In this paper we focus on the Pesin theorem, which states that KS–entropy of the system,
i.e. the average unpredictability of information of all possible trajectories in the phase space,
is equal to the sum of all positive Lyapunov exponents.

A reasonable definition of quantum systems with a chaotic classical description has been
given by M. Berry: “A quantum system is chaotic if its classical limit is chaotic” [11]. This
quantum caology, as has been named originally by Berry, is what later came to be called
quantum chaos.

In previous works [12, 13] some of us studied the quantum ergodic hierarchy (QEH). It
ranks the chaotic level of quantum systems according to how quantum correlations between
states and observables are canceled for large times. From mixing level of QEH we can define
a classical statistical limit which allows to reconcile chaos with the Correspondence Princi-
ple [14]. In [13] we used QEH to characterize typical chaos phenomena, like the exponential
localization of kicked rotator and the quantum interference destruction of Casati–Prosen
model in terms of ergodic and mixing levels. Moreover, QEH is an attempt, among several
theoretical and phenomenological approaches (like WKB approximation or random matrix
theory [15–19]), to define a framework for quantum chaos which admits a chaotic classical
description assuming Berry’s definition.

In this paper we use QEH idea of ranking quantum chaos with quantum mean values,
to present a semiclassical condition for chaos by means of Pesin theorem. More pre-
cisely, we express classical quantities by means of quantum mean values, using the Wigner
transformation. In particular, we apply this technique to Pesin theorem.

The paper is organized as follows. In Section 2 we present the KS–entropy and Pesin
theorem. In Section 3 we review the Wigner transformation, that we employ in the next
sections. In Section 4 we express the Pesin theorem by quantum mean values and we obtain
a semiclassical condition for chaos that gives a method to determine chaos in the classical
limit. In Section 5 we apply this method to a phenomenological Gamow model [20, 21] and
we conclude that in the classical limit the dynamics exhibited by its effective Hamiltonian
is chaotic. Finally, in Section 6 we discuss and draw some conclusions.

2 Kolmogorov–Sinai Entropy and Pesin Theorem

We give the general notions of KS–entropy and Pesin theorem within the standard frame-
work of measure theory. We consider a dynamical system (�,�, μ, {Tt }t∈J ), where � is
the phase space, Σ is a σ -algebra, μ : Σ → [0, 1] is a normalized measure and {Tt }t∈J

is a semigroup of preserving measure transformations. For instance, Tt could be the classi-
cal Liouville transformation or the corresponding classical transformation associated to the
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quantum Schrödinger transformation. J is usually R for continuous dynamical systems and
Z for discrete ones.

Let us divide the phase space Γ in a partition Q of m small cells Ai of measure μ(Ai) .
The entropy of Q is defined as

H(Q) = −
m�

i=1

μ(Ai) log μ(Ai). (1)

The KS-entropy of partition Q is given by1

hμ(T ,Q) = lim
n→∞

1

n
H(∨n

j=0T
−jQ). (2)

From this, the KS–entropy hKS is defined as the supreme of hμ(T , Q) over all measurable
initial partitions of Γ ,

hKS = sup
Q

hμ(T ,Q) = sup
Q

{ lim
n→∞

1

n
H(∨n

j=0T
−jQ)}. (3)

Moreover, from Brudno theorem it can be proved that KS–entropy is the average unpre-
dictability of information of all possible trajectories in the phase space.

On the other hand, it is well–known that chaos in classical dynamics can be defined by
the exponential increase of the distance between two trajectories that start from neighboring
initial conditions. Quantitatively, it is related with the largest positive Lyapunov exponent of
the system [4]. The positiveness of largest Lyapunov exponent implies exponential instabil-
ity of motion. In turn, exponential instability of motion is chaotic since almost all trajectories
are unpredictable in the sense of information theory.

These two quantities, KS–entropy and the Lyapunov exponents, are related to each other
by Pesin theorem, which establishes that [22–24]

hKS =
�

�

⎡

⎣
�

σi (φ)>0

σi(φ)

⎤

⎦ d2(N+1)φ, (4)

where σi(φ) are the Lyapunov exponents of the dynamical system and 2(N+1) is de
dimension of the phase space. When σ is constant over all phase space we have

hKS =
�

σ>0

σ.

At this point, it is appropriate to make a comment on the interest of formula (4) and
its precise physical meaning. Pesin theorem relates the KS–entropy, i.e. the average unpre-
dictability of information of all possible trajectories in the phase space, with the exponential
instability of motion. Then, the main content of Pesin theorem is that hKS > 0 is a sufficient
condition for chaotic motion.

In Section 4, the condition hKS > 0 will be used to determine chaos in the classical limit
of a quantum system, where hKS will be given by a semiclassical condition in the limit
� → 0.

1Given two partitions A and B the partition A ∨ B is {ai ∪ bj : ai ∈ A, bj ∈ B}. That means A ∨ B is a
refinement of A and B. Given a semigroup of preserving measure transformations Tt t∈J , T −j is the inverse
of Tj , i.e. T −j = T −1

j .
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3 Weyl–Wigner–Moyal Formalism

We review the main tools of Wigner transformation for the development of next sections.
Given a quantum system we consider its quantum algebra A. If f̂ ∈ A, then the Wigner
transformation of f̂ is [25, 26]

f (φ) =
�

RN+1
�q + Δ| f̂ |q − 	�e2i

p	
� dN+1	,

where φ = (q, p) ∈ R2(N+1), p, q,	 ∈ RN+1 and f (φ) is a distribution function over
R2(N+1). From now on we denote f (φ) by symb(f̂ ).

The set of all distribution functions Aq = symb(A) is called the quasiclassical algebra.
Given a pure state ρ̂ψ = |ψ��ψ |, its Wigner transformation symb(ρ̂ψ) can be negative, then
the algebra Aq is not classical. For this reason ρ(φ) = symb(ρ̂) is called a quasi-probability
distribution, where ρ̂ is any density matrix of the quantum system.

Given two operators f̂ , ĝ ∈ A, we can also introduce the star product [27]

symb(f̂ ĝ) = symb(f̂ ) ∗ symb(ĝ) = (f ∗ g)(φ) = f (φ) exp

�
− i�

2
←−
∂ aω

ab−→∂ b

	
g(φ),

where f (φ) = sym(f̂ ), g(φ) = sym(ĝ) and ωab is the metric tensor of the phase space Γ .
The Moyal bracket is the symbol corresponding to the quantum commutator, i.e.

{f, g}MB = 1

i�
(f ∗ g − g ∗ f ) = symb

�
1

i�
[f̂ , ĝ]
	

.

It can be proved that

(f ∗ g)(φ) = f (φ)g(φ) + O(�) and {f, g}MB = {f, g}PB + O(�2), (5)

where

{f, g}PB =
N+1�

i=1

�
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

	

is the Poisson bracket.
The transformations symb and symb−1 define an isomorphism between the quantum

algebra A and the quasiclassical algebra of distribution functions Aq

symb : A → Aq , symb−1 : Aq → A.

The mapping so defined is the Weyl–Wigner–Moyal symbol. When � → 0, Aq tends to Acl ,
where Acl is the classical algebra of observables2.

A relevant property of the Wigner transformation is [25]

�Ô�ρ̂ = (ρ̂|Ô) =


symb(ρ̂), symb(Ô)

�
= �ρ(φ), O(φ)� =

�
R2(N+1)d

2(N+1)φρ(φ) O(φ), (6)

where �f, g� is the scalar product between f and g, and (ρ̂|Ô) is a notation for the mean
value of Ô in ρ̂. In other words, (ρ̂|Ô) = �Ô�ρ̂ = tr(ρ̂Ô) is the action of the functional

ρ̂ on the observable Ô. Let us make a brief remark about formula (6). It says that the

2By “Aq tends to Acl” we mean that in the classical limit, � → 0, the quassiclassical algebra Aq tends
to the commutative algebra of functions defined over �, i.e. Acl , where � is the parameter of deformation
quantization.
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mean value of an observable Ô in a state ρ̂ can be calculated, equivalently, in the quantum
algebra A or in the quasiclassical algebra Aq , i.e. as the trace of ρ̂Ô or as the scalar product�

R2(N+1)d
2(N+1)φρ(φ) O(φ).

A particular case of (6) is when Ô is the identity Î ,

�Î �ρ̂ = (ρ̂|Î ) = �symb(ρ̂), symb(Î )� = �ρ(φ), I (φ)� =
�

R2(N+1)

d2(N+1)φρ(φ) = 1,

which is nothing but the normalization condition for the state ρ̂.
In next section we use the Wigner transformation property given by (6) to express Pesin

theorem by means of quantum mean values.

4 Pesin Theorem Expressed in Terms of Quantum Mean Values: A Semiclassical
Condition for Chaos

With the mathematical background of previous section and the definitions of Section 2 we
will write the Pesin theorem in terms of quantum mean values.

As a starting point we make the following assumptions. Let S be a quantum system with
its quantum algebra A. We assume S has a classical limit Scl

3, which is a dynamical system
with a phase space Γ and a classical group of transformations {Tt }. Since the process of
generating the KS–entropy involves a discrete sequence of steps, the quantum evolution of

S is forced to be discretized4. We consider Û (j) = e−i Ĥ
�

αj as the discretized evolution
operator5 associated with the classical transformation Tj , where T is taken as T1 and the
real parameter α defines the time steps.

Then, we show a property that is the key point to express Pesin theorem by means of
quantum mean values. Given a partition Q = {A1, ..., Am} of �, we write the measure of
an element Ai of Q at time t as the trace of an appropriate operator ÎAi

at time t . More
precisely, let IAi(t)(φ) be the characteristic function of Ai(t), where Ai(t) = Tt (Ai) and
Ai(t) is Ai at time t . Then, by definition we have

μ(Ai(t)) = � d2(N+1)φIAi(t)(φ) = �IAi(t)(φ), I (φ)� =
�symb(ÎAi

(t)), symb(Î )� = (ÎAi
(t)|Î ) = �Î �

ÎAi
(t)

, (7)

where we have used the Wigner transformation property, see (6).
Therefore, μ(Ai(t)) = (ÎAi

(t)|Î ), which means that the measure of Ai at time t is equal
to the trace of the operator ÎAi

at time t , where ÎAi
(t) is the Wigner transformation of the

characteristic function of Ai(t).
Next step is to write a semiclassical version (� ≈ 0) of the KS–entropy of any partition

using the formula (7). Consider a partition Q = {A1, ..., Am} of �. Then, we have the
partition B(−n) = ∨n

j=0T
−jQ. Let B(k0, k1, ..., kn) = n

j=0 T −jAkj
be an element of

3The classical algebra Acl of Scl is the limit of the quasiclassical Aq of S when � → 0, i.e. lim�→0Aq =
Acl .
4For instance, discretized evolutions are used in Hamiltonians with a time-dependent potential. In such cases,
it is common to take Û(n) = F̂ (τn), where F̂ is the Floquet operator and τ is the periodicity of the potential.
5In an irreversible process effective Hamiltonians are commonly used to describe open quantum systems, i.e.
a quantum system in interaction with its environment. In general, it is not a self-adjoint operator, Ĥ �= Ĥ †.
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B(−n). Using (22) of Appendix A we can give an expression for μ(B(k0, k1, ..., kn)). We
have

μ(B(k0, k1, ..., kn)) =
⎛

⎝
n�

j=0

ÎAkj
(j)|Î
⎞

⎠ when � ≈ 0, (8)

that is the trace of the product of operators ÎAkj
(j) where ÎAkj

(j) = Û (j)ÎAkj
(0)Û(j)† is

ÎAkj
(0) after j steps.

Therefore, if we replace μ(B(k0, k1, ..., kn)) by
��n

j=0 ÎAkj
(j)|Î
�

in (2), we obtain

hμ(T , Q) = limn→∞ 1
n
H(B(−n)) =

− limn→∞ 1
n

�Rn

(k0,k1,...,kn) μ(B(k0, k1, ..., kn)) log μ(B(k0, k1, ..., kn)) =
− limn→∞ 1

n

�Rn

(k0,k1,...,kn)

��n
j=0 ÎAkj

(j)|Î
�

log
��n

j=0 ÎAkj
(j)|Î
�

,

where Rn is the number of elements of B(−n)6.
Then, from (3) and (4), we obtain the Pesin theorem in terms of quantum mean values

supQ

�
− limn→∞ 1

n

�Rn

(k0,k1,...,kn)

��n
j=0 ÎAkj

(j)|Î
�

log
��n

j=0 ÎAkj
(j)|Î
��

= �
�

��
σi (φ)>0 σi(φ)

�
d2(N+1)φ when � ≈ 0. (9)

Formula (9) implies that if we have a quantum system S, with a classical limit Scl , the
positive Lyapunov exponents of Scl are related with the supreme of an expression which

involves the mean values
��n

j=0 ÎAkj
(j)|Î
�

. Moreover, it gives an alternative method for

calculating Lyapunov exponents of the classical limit of a quantum system.
As the number Rn is usually hard to calculate, usefulness of (9) seems to be restricted

to simple cases where Rn is trivial.7 However, if we are only interested in knowing if Scl

is chaotic or not, we do not need to perform the supreme of (9) explicitly. Instead, with the
help of the following lemma, it is enough to focus in the asymptotic behavior (n → ∞) of
μ(B(k0, k1, ..., kn)) to ensure the existence of positive Lyapunov exponents and to conclude
that Scl is chaotic. The lemma states [22]

μ(B(k0, k1, ..., kn)) decreases exponentially =⇒ KS − entropy > 0. (10)

This lemma is a sufficient condition for chaos. It says that chaos is governed by the expo-
nential decay of μ(B(k0, k1, ..., kn)) in the limit n → ∞. Physically, this asymptotic limit
means looking at the system for large times, without taking into account the details of the
chaotic dynamics at finite times, like the formation of fractal structures in a chaotic sea or the

6Rn is well known as the topological entropy of B(−n). Roughly speaking, Rn “measures” the degree of
mixing of a dynamical system as it evolves in time. Typically, in a fully chaotic system the formation of
fractal structures in a chaotic sea can produce numerous sets B(k0, k1, ..., kn) and therefore an increasing of
Rn.
7For instance, if Rn is uniformly bounded for all n, then from (3) it follows that supQ{...} = 0. From (4) we

obtain
�
�

��
σi (φ)>0σi(φ)

�
d2(N+1)φ = 0, which implies that σi(φ) = 0 for all i. Therefore, in such case

there is no chaotic behavior.
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folding of trajectories. Taking into account that μ(B(k0, k1, ..., kn)) =
��n

j=0 ÎAkj
(j)|Î
�

when � ≈ 0 (see (8)), then lemma of (10) becomes
⎛

⎝
n�

j=0

ÎAkj
(j)|Î
⎞

⎠ decreases exponentially =⇒ KS − entropy > 0, (11)

which provides a condition for chaos in the classical limit Scl .
Summing up, from the previous steps up to (11) we can obtain a method to determine if

the dynamics of Scl is chaotic or not. The prescription of the method is as follows:

(a) Take a generic partition Q = {Ai : i = 1, ..., m} of phase space Γ of Scl .

(b) For any n–tuple (k0, k1, ..., kn) with kj ∈ {1, ..., m} calculate the operators
ÎAkj

(j) = Û (j)ÎAkj
(0)Û(j)†, where ÎAkj

(0) = sym−1(IAkj
(φ)).

(c) Then, perform
��n

j=0 ÎAkj
(j)|Î
�

for all n.

(d) Finally, if
��n

j=0 ÎAkj
(j)|Î
�

decreases exponentially when n → ∞, then KS-entropy

of Scl is positive. Therefore, the dynamics exhibited by Scl is chaotic.

In next section we see how prescription (a) − (d) works with an example.

5 Physical Relevance

In order to illustrate the physical relevance of the condition given by (11), we apply the pre-
scription (a)−(d) to an example of the decoherence literature: a phenomenological Gamow
model type [20, 21]. This model consists of a single oscillator embedded in an environ-
ment composed of a large bath of noninteracting oscillators, which can be considered as a
continuum.

The degeneration of this system prevents the application of perturbation theory. Instead,
we can apply an analytical extension of the Hamiltonian [21, 28–32] to obtain an
non-hermitian effective Hamiltonian Ĥeff . Non-hermiticity of Heff yields two set of eigen-
vectors {��m|}∞m=0 and {|n�}∞n=0 (left and right eigenvectors, respectively), which satisfy
[33]

Ĥeff |n� = zn|n�, ��n|Heff = ��n|zj , n ∈ N0,

��m|n� = δmn (bi − orthogonality),

∞�

n=0

|n���n| = Î (completeness).

The effective Hamiltonian Ĥeff is given by

Ĥeff =
∞�

n=0

zn|n���n|,

where zn = n(ω0 − iγ0) are complex eigenvalues, except z0 = ω0, γ0 is associated with the
decoherence time tR = �

γ0
and ω0 is the natural frequency of the single oscillator [20].
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From formula (23) of Appendix B, we can expand the operators ÎAkj
(j) in the

bi-orthogonal basis {|r���s|}r,s∈N0

ÎAkj
(j) = αAkj

(0, 0)|0��0| +
∞�

r=1

αAkj
(r, r)e−2

γ0
�

rαj |r���r| +

+
∞�

s=1

αAkj
(0, s)ei

ω0
�

(s−1)αj e− γ0
�

sαj |0���s| +

+
∞�

r=1

αAkj
(r, 0)e−i

ω0
�

(r−1)αj e− γ0
�

rαj |r��0| +

+
∞�

r,s>0,r �=s

αAkj
(r, s)e− γ0

�
(r+s)αj |r���s|. (12)

From (12), we see that for j � �

αγ0
= tR

α
all the sums decay exponentially. Then, we

can neglect these terms and obtain

ÎAkj
(j) � αAkj

(0, 0)|0��0| f or all j � tR

α
with j = 1, ..., n. (13)

The coefficient tR
α

can be interpreted as an adimensional relaxation time, where parameter
α defines the time steps of the discretized evolution.

From (13), we can obtain an asymptotic expression for
�n

j=0 ÎAkj
(j), when n � tR

α
8,

n�

j=0

ÎAkj
(j) �

⎛

⎝
n�

j=0

αAkj
(0, 0)

⎞

⎠ |0��0| f or n � tR

α
, (14)

and therefore,
⎛

⎝
n�

j=0

ÎAkj
(j)|Î
⎞

⎠ �
n�

j=0

αAkj
(0, 0) f or n � tR

α
. (15)

Up to (15) we have completed the steps (a) − (c) of our prescription. The last step is to

check that
��n

j=0 ÎAkj
(j)|Î
�

decays exponentially when n → ∞.

First, we note that when j −→ ∞ we have

μ(Akj
(j)) = (ÎAkj

(j)|Î ) = αAkj
(0, 0) +

+�∞
n=1αAkj

(n, n)e−2
γ0
�

nαj −→ αAkj
(0, 0). (16)

Since we consider classical motion is bounded9, we can consider phase space � is
normalized. Then, from (16), we have

μ(Γ ) = 1 > μ(Akj
(j)) −→ αAkj

(0, 0). (17)

8From (12), it follows that if n � tR
α

, then ÎAkn
(n) � αAkn

(0, 0)|0��0| is diagonal. Thus,
�n

j=0 ÎAkj
(j) =

ÎAk0
(0).ÎAk1

(1)...ÎAkn
(n) � ÎAk0

(0).ÎAk1
(1)...αAkn

(0, 0)|0��0| =
��n

j=0 αAkj
(0, 0)
�

|0��0| is diagonal,

regardless if operators ÎAk0
(0), ÎAk1

(1), ..., ÎAkn−1
(n − 1) are diagonals or not.

9Typically, the phase space of a non-integrable chaotic system is a compact manifold. If motion is regular
and integrable, the phase space can be taken as a torus.
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Also, given that μ(Akj
(j)) ≥ 0 for all j , it follows that 0 ≤ αAkj

(0, 0) < 1.

Moreover, if μ(Akj0
(j0)) = 0 for some kj0 , since μ(Akj0

(j0)) =
��n

j=0 ÎAkj0
(j0)|Î
�

,

then
��n

j=0 ÎAkj0
(j0)|Î
�

= 0. Therefore,10

⎛

⎝
n�

j=0

ÎAkj0
(j0)|Î
⎞

⎠ log(

n�

j=0

ÎAkj0
(j0)|Î ) = 0, (18)

and it does not contribute to the semiclassical version of KS–entropy of (9). This means
that we can consider μ(Akj

(j)) > 0 for all j . Thus, we have

0 < αAkj
(0, 0) < 1 f or all j = 1, ..., n. (19)

If we call δ1 = min{αAkj
(0, 0) : kj = 1, ..., m} and δ2 = max{αAkj

(0, 0) : kj =
1, ..., m}, then from (19) we have

δn+1
1 <

n�

j=0

αAkj
(0, 0) < δn+1

2 . (20)

Finally, from (15) and (20), we obtain

δn+1
1 <

⎛

⎝
n�

j=0

ÎAkj
(j)|Î
⎞

⎠ < δn+1
2 f or n � tR

α
. (21)

Equation (21) implies that (
�n

j=0 ÎAkj
(j)|Î ) decreases exponentially. Therefore, by pre-

scription (a) − (d), we conclude the positiveness of Lyapunov exponents of classical limit
of the phenomenological Gamow model. Then, in the classical limit the dynamics exhibited
by its effective Hamiltonian is chaotic.

6 Conclusions

In this paper we used properties of Wigner transformation in order to express classical quan-
tities by means of quantum mean values. In particular, we translated the quantities involved
in Pesin theorem and we obtained a version of Pesin theorem expressed in terms of quantum
mean values, which relates the Lyapunov exponents of the classical limit of a system with
the mean value of the projectors that correspond to characteristic functions on phase space.

Moreover, from the modified version of Pesin theorem, we obtained a method (the pre-
scription (a)− (d) of Section 4) to determine if in the classical limit the dynamics exhibited
by the Hamiltonian of a quantum system is chaotic or not. The core of this method is the

step (d), which establishes that if we have a quantum system where
��n

j=0 ÎAkj
(j)|Î
�

exponentially decays when n → ∞, then in the classical limit the KS-entropy of the
quantum system is positive. This also implies that the system must have positive Lyapunov
exponents and, therefore, its classical limit must present a chaotic behavior. Summing up,
⎛

⎝
n�

j=0

ÎAkj
(j)|Î
⎞

⎠ exponentially decreases =⇒ in the classical limit the dynamics
exhibited by its Hamiltonian is chaotic

10If f (x) = x log(x), then by definition f (0) = 0.
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Finally, in Section 5, we applied our method to a phenomenological Gamow-type model
and we concluded that in the classical limit the dynamics exhibited by its effective Hamil-

tonian is chaotic. The exponential decay of
��n

j=0 ÎAkj
(j)|Î
�

occurs for n >> tR
α

, where

tR is the decoherence time and α the real parameter which defines the time steps.
Furthermore, from Pesin theorem expressed in terms of quantum mean values, the

quantity
��n

j=0 ÎAkj
(j)|Î
�

can be related with the positive Lyapunov exponents. This

suggests that decoherence time of Gamow-type model could be related with positive
Lyapunov exponents of its classical limit. Here we see an interesting hypothesis about
a possible relationship between decoherence time and Lyapunov exponents and we
hope it will be corroborated in future researches with more examples and theoretical
essays.
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Appendix A: The Classical Quantity μ(B(k0, k1, ..., kn)) Expressed as a Quantum
Mean Value

In order to evaluate the KS entropy, we have to generate the following partition

B(−n) =
n�

j=0

T −jQ =
⎧
⎨

⎩

n 

j=0

T −jAkj
: Akj

∈ Q

⎫
⎬

⎭ ,

If B(k0, k1, ..., kn) =n
j=0 T −jAkj

is a generic element of B(−n), then the measure of
B(k0, k1, ..., kn) is

μ(B(k0, k1, ..., kn)) = μ
�n

j=0 T −jAkj

�
= �n

j=0 T −j Akj
d2(N+1)φ = �

�
In

j=0 T −j Akj
(φ)d2(N+1)φ

= �
�

�n
j=0 IAkj

(T j φ)d2(N+1)φ =

�n

j=0 IAkj
◦ T j (φ), I (φ)

�
=


symb
��n

j=0
�IAkj

◦ T j
�

, symb(Î )
�

=
��n

j=0
�IAkj

◦ T j |Î
�

=
��n

j=0 ÎAkj
(j)|Î
�

, (22)

where we have used the following properties:

• The characteristic function of an intersection of sets is the product of the characteristic
functions of each set.

• If T is bijective, then IT −j Akj
(φ) = IAkj

(T jφ).

• If � ≈ 0, then symb
��n

j f̂j

�
(φ)��n

j fj (φ), where we have neglected terms of order

O(�)). This property is the generalization of (5) for a product of n functions fi .
• �IAkj

◦ T j = ÎAkj
(j) = Û (j)ÎAkj

(0)Û(j)†, where Û (j) = e− i
�

Ĥαj is the evolution
operator and α is a real parameter which defines the time steps. This property is a
consequence of the formula (6).
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Appendix B: An Expansion for Operators ÎAkj

We consider a Hamiltonian of the form

Ĥ =
�

r

zr |r���r|,

where zr = Re(zr ) + iIm(zr ) are complex eigenvalues and {|r�}, {��s|} are its two sets of eigenvectors, left
and righ respectively [33]. Then we have

ÎAkj
(0) =

�

r,s

αAkj
(r, s)|r���s|.

Therefore,

ÎAkj
(j) = e− i

�
Ĥαj
��

r,sαAkj
(r, s)|r��s̃|

�
e

i
�

Ĥ †αj =
e
−( i

�

�
pzp |p���p|)αj

��
r,sαAkj

(r, s)|r���s|
�

e
( i
�

�
q z∗

q |q���q|)αj

=�p

�
qαAkj

(p, q)e(− i
�

zp)αj e( i
�

z∗
q )αj |p���q|, (23)

where we have used the exponential of an operator (eÂ = �∞
k=0

Âk

k! ) and the orthogonal relations of the
projectors |r���s|, that is

(|r���r|)k = |r���r|, and

��s|r� = 0 if r �= s. (24)
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