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Computation of integral manifolds
for Carathéodory differential equations

CHRISTIAN PÖTZSCHE

Centre for Mathematical Sciences, Munich University of Technology,
85748 Garching, Germany.

MARTIN RASMUSSEN

Department of Mathematics, University of Augsburg,
86135 Augsburg, Germany.

We derive two numerical approximation schemes for local invariant manifolds of nonautonomous ordi-
nary differential equations which can be measurable in time and Lipschitzian in the spatial variable. Our
approach is inspired by previous work of Jolly & Rosa (2005), ‘Computation of non-smooth local center
manifolds’, IMA Journal of Numerical Analysis, 25, 698–725, on autonomous ODEs and based on trun-
cated Lyapunov-Perron operators. Both of our methods are applicable to the full hierarchy of strongly
stable, stable, center-stable and the corresponding unstable manifolds, and exponential refinement strate-
gies yield exponential convergence.
Several examples illustrate our approach.
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−2
−1

0
1

2

−1

−0.5

0

0.5

1
−4

−2

0

2

4

τξ

s+
(τ

,ξ
)
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1. Introduction

Invariant manifolds play a fundamental role for a deeper understanding of the asymptotic behavior of
nonlinear dynamical systems. In the local analysis, for instance, center manifolds are an essential tool
to reduce a given system to a domain relevant for studies in bifurcation and stability theory. Concerning
the global behavior, one is interested in unstable manifolds, yielding the skeleton of global attractors.
Furthermore, stable manifolds frequently form the boundary for the domains of attraction in multistable
systems. The computation of invariant manifolds in closed analytic form, however, is only possible in
very rare cases. Hence, many different approaches to the numerical approximation have been discussed
over the last years.

In this article, we propose two different numerical approximation schemes for invariant manifolds
of nonautonomous Carathéodory type differential equations, i.e., we consider equations with only mea-
surable time dependence, and in addition, we do not assume smoothness in the spatial variable, beyond
being Lipschitz. Due to the weak hypotheses on the right hand side, Carathéodory differential equations
provide a flexible tool in modern applications. In control theory, for instance, Carathéodory functions
are used to model control inputs with values in a compact and convex set, leading to a skew product
flow with a compact base set (see Colonius & Kliemann (2000)). Particularly, switching systems have
been of considerable interest for many years in the computing communities and are now intensively
studied by control and systems engineers (see, e.g., Liberzon (2003)). Moreover, random differential
equations driven by metric dynamical systems are path-wise nonautonomous Carathéodory type differ-
ential equations (see Arnold (1998)). Systems depending non-smoothly on their spatial variables occur,
for instance, in electrical engineering (cf., Maggio et al. (2000)). As introduction to Carathéodory dif-
ferential equations, we refer to the final chapter of the monograph Kurzweil (1986) or the well-written
article Aulbach & Wanner (1996).

Due to our general nonautonomous framework, the Lyapunov-Perron approach to construct invariant
manifolds appears to be adequate and sufficiently flexible. It is based on a dynamical characterization
as sets of trajectories with a particular asymptotic behavior. Indeed, such solutions can be classified via
fixed points of an infinite integral operator (the Lyapunov-Perron operator) in a space of exponentially
weighted functions, provided the Lipschitz-constant of the nonlinearity is bounded on bounded sets. For
numerical purposes, one has to truncate the integral over an infinite interval by a finite, but sufficiently
large one. Recently, this approach has already been examined in the context of nonautonomous differ-
ence equations or temporal discretizations of differential equations (see Pötzsche & Rasmussen (2008)).
In this reference, we formulated a numerical scheme based on the treatment of a nonlinear algebraic
equation of finite dimension.

In contrast to this case, the algorithms developed in the paper at hand do not require an initial time-
discretization of an ODE. As a result, the truncated continuous Lyapunov-Perron equations are Fred-
holm integral equations of second kind and consequently still infinite-dimensional problems. Although
it is possible to apply numerical solvers for such problems directly, we propose an iterative algorithm
to approximate the fixed point of the truncated Lyapunov-Perron operator in this article. Moreover,
we show that this fixed point is arbitrarily close to the invariant manifold under consideration (pro-
vided the length of the truncation interval is big enough). We point out that this approach is universally
applicable, including the full hierarchy of strongly stable, stable, center-stable, as well as the corre-
sponding unstable manifolds as special cases. Our second approximation scheme generalizes results of
Jolly & Rosa (2005) to nonautonomous equations and is based on the iteration of a discrete analogue
of the Lyapunov-Perron operator on piecewise constant functions under application of an exponential
refinement strategy. It works without a previous truncation process and is applicable in first instance
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only to center manifolds (and some other related manifolds). The approximation of arbitrary invariant
manifolds is then obtained by using appropriate nonautonomous spectral transformations. We prove an
approximation result showing exponential convergence to the invariant manifold.

This paper is organized as follows. Section 2 is devoted to statement of basic facts about Carathéo-
dory type differential equations, and we formulate our hypotheses on the linear and nonlinear part of the
Carathéodory differential equation. In addition, we introduce the truncated Lyapunov-Perron operator
and show that this operator admits a unique fixed point. We also summarize basic existence results
on invariant manifolds for the reader’s convenience. In Section 3, we show that the fixed point of the
truncated Lyapunov-Perron operator yields an approximation of the invariant manifold. The quality of
which depends on the length of the truncation interval and the spectral gap of the linearization, and
we propose an iterative method for the approximation of this fixed point. In Section 4, we introduce
our second algorithm which generalizes the work of Jolly & Rosa (2005), and finally, the results of
this paper are illustrated by means of several examples in Section 5. Among them is a 2-dimensional
nonautonomous epidemic model (cf. Dushoff et al. (2004)), which is discontinuous in time, and the
3-dimensional Colpitts oscillator (cf. Maggio et al. (2000)), whose right-hand side is not differentiable
in space. Clearly, when it comes to numerical implementation, a measurable time-dependence is not
feasible, and we only deal with a finite number of discontinuities in the temporal variable.

We close this introduction by giving a short overview of several other methods for the approxima-
tion of integral manifolds for autonomous ODEs. Fuming & Küpper (1994) use a discrete version of
the Lyapunov-Perron operator to approximate center manifolds; Guckenheimer & Vladimirsky (2004)
apply a PDE approach to obtain global invariant manifolds, and Henderson (2005) deals with differen-
tial equations by considering whole bundles of trajectories and describing an algorithm to control them
in order to approximate invariant manifolds. Moore & Hubert (1999) explain several methods for the
computation of stable manifolds of continuous systems, and they distinguish between indirect meth-
ods (which use a corresponding discrete system) and direct methods (which use the original system).
Robinson (2002) uses both the construction via the graph transform and the Lyapunov-Perron operator
to approximate inertial manifolds. Finally, Osinga et al. (2004) describe an algorithm for the computa-
tion of strongly unstable invariant manifolds. Various illustrative examples on this extensive area can be
found in the well-written and interesting survey paper Krauskopf et al. (2005), to which we also refer
for a more complete overview of the corresponding vast literature.

All of the above references deal with time-invariant equations, and thus, to our best knowledge the
list of references dealing with nonautonomous equations is rather sparse. Yet, Mancho et al. (2003)
derive algorithms for the computation of stable and unstable manifolds related to general hyperbolic
trajectories of smooth 2-dimensional ODEs. Nonautonomous Taylor approximations of integral mani-
folds have been dealt with in Pötzsche & Rasmussen (2006); in contrast to the autonomous situation,
the Taylor coefficients are not obtained as a solution of an algebraic equation but as a bounded solution
of a linear differential equation in the space of multilinear mappings.

Notation. As usual, Rd is the d-dimensional Euclidian space equipped with norm ‖·‖, and Rd×d denotes
the Banach algebra of d × d-matrices. We write Uε(x0) =

{
x ∈ Rd : ‖x− x0‖< ε

}
for the ε-neigh-

borhood of a point x0 ∈ Rd and abbreviate the intervals

I+
τ (T ) :=

{
[τ,τ +T ] , T < ∞,

[τ,∞) , T = ∞
, I−τ (T ) :=

{
[τ−T,τ] , T < ∞,

(−∞,τ] , T = ∞
.

For a real number x, we make use of the floor function bxc := max{k ∈ Z : k 6 x} and the ceiling
function dxe := min{k ∈ Z : x6 k}.
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2. Carathéodory differential equations and integral manifolds

For a nicely written introduction to the geometric theory of differential equations with measurable right-
hand side, we refer to Aulbach & Wanner (1996), which will be our standard reference. All measure-
theoretical terminology will refer to the Lebesgue-measure on real intervals.

We prescribe a nonempty open interval I unbounded above or below. Given a locally integrable
mapping A : I→Rd×d , formally A ∈L 1

loc(I,Rd×d), a linear Carathéodory differential equation reads as

ẋ = A(t)x. (2.1)

The transition matrix of (2.1) is the unique linear mapping Φ(t,τ) : Rd → Rd , continuous in t,τ ∈ I,
satisfying the integral equation

Φ(t,τ) = id+
∫ t

τ

A(s)Φ(s,τ)ds for all τ, t ∈ I.

We suppose a generalized (i.e., pseudo-hyperbolic) exponential dichotomy assumption for (2.1):

ASSUMPTION 2.1 Let α < β , K+,K− > 1, and consider (2.1) with A ∈L 1
loc(I,Rd×d). We assume that

there exist functions P−,P+ : I→ Rd×d of projections with P−(t)+P+(t)≡ id on I,

Φ(t,s)P−(s) = P−(t)Φ(t,s),

‖Φ(t,s)P+(s)‖ 6 K+eα(t−s) for all s6 t,

‖Φ(t,s)P−(s)‖ 6 K−eβ (t−s) for all t 6 s.

REMARK 2.1 In the autonomous case (i.e., A(t)≡A0), the linearized system (2.2) admits an exponential
dichotomy for growth rates α < β , if the real part of each spectral point for A0 does not lie in [α,β ].
If A is ω-periodic, one considers the moduli of the Floquet multipliers to obtain a similar statement.
Finally, in Dieci & van Vleck (2007), QR factorizations are used to verify exponential dichotomies for
nonautonomous systems numerically.

ASSUMPTION 2.2 Suppose F : I×Rd → Rd is a function satisfying the following conditions:

1. F(t,0) = 0 a.e. in I,

2. F(·,x) : I→ Rd is measurable for all x ∈ Rd (w.r.t. the Borel σ -algebras on I and Rd),

3. there exists a nondecreasing function l : [0,∞]→ [0,∞] such that one has the Lipschitz estimate

‖F(t,x)−F(t, x̄)‖6 l(r)‖x− x̄‖ for all x, x̄ ∈Ur(0) and a.e. in I.

Under these assumptions one can show that the Carathéodory differential equation

ẋ = A(t)x+F(t,x) (2.2)

is well-posed in the sense that for each τ ∈ I and ξ ∈Rd , there exists a maximal open interval J(τ,ξ )⊆ I
with τ ∈ J(τ,ξ ) and a so-called solution φ : J(τ,ξ )→ Rd satisfying the integral equation

φ(t) = ξ +
∫ t

τ

[
A(s)φ(s)+F(s,φ(s))

]
ds for all t ∈ J(τ,ξ )
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(see (Kurzweil, 1986, Theorem 18.4.2) or apply (Aulbach & Wanner, 1996, Theorem 2.4) using cut-off
techniques). Having this at hand, we denote ϕ(·;τ,ξ ) := φ as general solution of equation (2.2). In
case supr>0 l(r) < ∞, one has global existence of solutions, i.e., J(τ,ξ ) = I for all τ,ξ . Moreover, the
function ϕ :

{
(t,τ,ξ ) ∈ I× I×Rd : t ∈ J(τ,ξ )

}
→ Rd is continuous and a 2-parameter group:

ϕ(τ,τ,ξ ) = ξ , ϕ(t,s,ϕ(s,τ,ξ )) = ϕ(t,τ,ξ ) for all τ ∈ I, ξ ∈ Rd , s, t ∈ J(τ,ξ ) . (2.3)

In order to provide some geometric insight, the product I×Rd is called extended state space and a
subset S⊆ I×Rd is called nonautonomous set with t-fiber S(t) :=

{
x ∈ Rd : (t,x) ∈ S

}
. Such a nonau-

tonomous set is invariant, if ϕ(t,τ,S(τ)) = S(t) for τ, t ∈ I. An invariant nonautonomous set S⊆ I×Rd

is called an integral manifold of equation (2.2), if each fiber S(t), t ∈ I, is graph of a function.
Our next goal is to characterize nonautonomous sets consisting of exponentially bounded solutions

of (2.2) using fixed-point arguments. With given γ ∈ R, τ ∈ I and T ∈ (0,∞], the set

X ±
τ,γ(T ) :=

{
φ ∈ C (I±τ (T ),Rd) : sup

t∈I±τ (T )
eγ(τ−t) ‖φ(t)‖< ∞

}

is a Banach space w.r.t. the norm

‖φ‖±
τ,γ := sup

t∈I±τ (T )
eγ(τ−t) ‖φ(t)‖ . (2.4)

Note that the set X ±
τ,γ(T ) is independent of γ for T < ∞. We used the abbreviation X ±

τ,γ(T ) to denote one
of the spaces X +

τ,γ(T ) or X −
τ,γ(T ) — a convenient practice applied in various contexts for the remaining

paper. Moreover, one has the continuous embeddings

X +
τ,γ(T ) ↪→X +

τ,δ (T ) and X −
τ,δ (T ) ↪→X −

τ,γ(T ) for all γ 6 δ .

Our overall approach is to characterize and approximate integral manifolds as a fixed point problem
in X ±

τ,γ(T ). Thereto, the crucial objects are Lyapunov-Perron operators T ±
T : X ±

τ,γ(T )×Rd→X ±
τ,γ(T ),

T +
T (t,φ ,ξ ) := Φ(t,τ)P+(τ)ξ +

∫
τ+T

τ

G(t,s)F(s,φ(s))ds, (2.5)

T −
T (t,φ ,ξ ) := Φ(t,τ)P−(τ)ξ +

∫
τ

τ−T
G(t,s)F(s,φ(s))ds, (2.6)

where we used the abbreviation T +
T (t,φ ,ξ ) := T +

T (φ ,ξ )(t) and Green’s function G is defined by

G(t,τ) :=
{
−Φ(t,τ)P−(τ) for t < τ

Φ(t,τ)P+(τ) for t > τ
.

PROPOSITION 2.1 Let τ ∈ I, ξ ∈ Rd , γ ∈ (α,β ) and suppose Assumptions 2.1–2.2. If a function
φ ∈X ±

τ,γ(∞) satisfies

l
(

supt∈I±τ (∞) ‖φ(t)‖
)

< ∞,

then the following assertions are equivalent:

(a) φ solves the Carathéodory differential equations (2.2) with P±(τ)φ(τ) = ξ ,
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(b) φ is a fixed point of the Lyapunov-Perron operator (2.5) resp. (2.6).

Proof. We restrict to the case φ ∈X +
τ,γ(∞), since the dual situation φ ∈X −

τ,γ(∞) can be treated similarly,
and define R := supτ6t ‖φ(t)‖. Let us consider functions φ±(t) := P±(t)φ(t) for t ∈ I+

τ (∞).
(a)⇒ (b) If φ solves the Carathéodory equation (2.2), then φ+ satisfies the initial value problem

ẋ = A(t)P+(t)x+P+(t)F(t,φ(t)), x(τ) = ξ (2.7)

and the variation of constants formula (cf. (Aulbach & Wanner, 1996, Theorem 2.10)) yields φ+(t) =
P+(t)T +

T (t,φ ,ξ ) for all t > τ . Moreover, by Assumptions 2.1–2.2 and the triangle inequality, we have

‖F(t,φ(t))‖eγ(τ−t) 6 K−l(R)‖φ(t)‖eγ(τ−t) 6 K−l(R)‖φ‖+
τ,γ

for all τ 6 t, and hence, the inhomogeneous part of equation

ẋ = A(t)P−(t)x+P−(t)F(t,φ(t)) (2.8)

is exponentially bounded. By (Aulbach & Wanner, 1996, Lemma 3.6), this equation admits a unique
solution φ− ∈X +

τ,γ(∞), which additionally has the form φ−(t) = P−(t)T −
T (t,φ ,ξ ) for all τ 6 t. Then

φ = φ−+φ+ solves the fixed point problem for (2.5).
(b)⇒ (a) Conversely, let φ ∈X +

τ,γ(∞) be a fixed point of the mapping (2.5). Then the variation
of constants formula implies that φ+ is the unique forward solution of the initial value problem (2.7).
Furthermore, again (Aulbach & Wanner, 1996, Lemma 3.6) guarantees that φ− is an exponentially
bounded solution of the linear inhomogeneous system (2.8). �

PROPOSITION 2.2 Let τ ∈ I, ξ ∈ Rd , T ∈ (0,∞], suppose Assumption 2.1–2.2 with

` := (K−+K+)L <
β −α

2
, L := l(∞) (2.9)

and choose a real number σ ∈
(
`, 1

2 (β −α)
]
. Then, for γ ∈ [α +σ ,β −σ ] the Lyapunov-Perron operator

T ±
T : X ±

τ,γ(T )×Rd →X ±
τ,γ(T ) is a contraction in the first argument with∥∥T ±

T (φ ,ξ )−T ±
T (φ̄ ,ξ )

∥∥±
τ,γ
6

`

σ

∥∥φ − φ̄
∥∥±

τ,γ
for all φ , φ̄ ∈X ±

τ,γ . (2.10)

Moreover, its unique fixed point φ
±
T (ξ ) ∈X ±

τ,γ(T ) does not depend on γ and satisfies∥∥φ
±
T (ξ )

∥∥±
τ,γ
6

K±σ

σ − `
‖P±(τ)ξ‖ . (2.11)

Proof. Let τ ∈ I, ξ , ξ̄ ∈ Rd and φ , φ̄ ∈X ±
τ,γ(T ). The proof is conceptually similar to the analogous

result in the framework of nonautonomous difference equations (see Pötzsche & Rasmussen (2008) and
references therein), where complications due to the measurable time-dependence of (2.2) can be treated
as in Aulbach & Wanner (1996). Hence, we present only an outline of the proof. Indeed, direct estimates
for the mappings P+(t)T ±

T (t,φ ,ξ ) and P−(t)T ±
T (t,φ ,ξ ) yield the Lipschitz estimate (2.10), as well as∥∥T ±

T (φ ,ξ )−T ±
T (φ , ξ̄ )

∥∥±
τ,γ
6 K±

∥∥ξ − ξ̄
∥∥ . (2.12)

Thanks to (2.9) and (2.10), T ±
T (·,ξ ) is a contraction on X ±

τ,γ(T ) and Banach’s theorem yields a unique
fixed point φ

±
T (ξ ) ∈X ±

τ,γ(T ). Having this available, (2.11) is a direct consequence of (2.12). �
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THEOREM 2.3 (PSEUDO-STABLE AND PSEUDO-UNSTABLE INTEGRAL MANIFOLDS) Assume As-
sumption 2.1–2.2 hold with (2.9), and choose σ ∈

(
`, 1

2 (β −α)
]
. Then the following holds true:

(a) If I is unbounded above, then the so-called pseudo-stable manifold

S+ :=
{
(τ,ξ ) ∈ I×Rd : ϕ(·;τ,ξ ) ∈X +

τ,γ(∞) for all γ ∈ [α +σ ,β −σ ]
}

is an integral manifold of (2.2) possessing the representation

S+ =
{
(τ,ξ + s+(τ,ξ )) ∈ I×Rd : τ ∈ I,ξ ∈ R(P+(τ))

}
with a uniquely determined continuous mapping s+ : I×Rd → Rd , given by

s+(τ,ξ ) = P−(τ)φ+
∞ (τ,ξ ) for all τ ∈ I, ξ ∈ Rd . (2.13)

Furthermore, s+(τ,0)≡ 0 on I and s+ satisfies Lip2 s+ 6 K−K+L
σ−` .

(b) If I is unbounded below, then the so-called pseudo-unstable manifold

S− :=
{
(τ,ξ ) ∈ I×Rd : ϕ(·;τ,ξ ) ∈X −

τ,γ(∞) for all γ ∈ [α +σ ,β −σ ]
}

is an integral manifold of (2.2) possessing the representation

S− =
{
(τ,η + s−(τ,η)) ∈ I×Rd : τ ∈ I,η ∈ R(P−(τ))

}
with a uniquely determined continuous mapping s− : I×Rd → Rd , given by

s−(τ,η) = P+(τ)φ−∞ (τ,η) for all τ ∈ I, η ∈ Rd . (2.14)

Furthermore, s−(τ,0)≡ 0 on I and s− satisfies Lip2 s− 6 K−K+L
σ−` .

Proof. Proceed as in (Aulbach & Wanner, 1996, Theorem 4.1). �

REMARK 2.2 (1) We relate Theorem 2.3 to the standard autonomous situation, where it yields the
classical hierarchy of invariant manifolds: S+ is of center-stable type in case β > 0, of stable type in
the hyperbolic situation α < 0 < β and of strongly stable type for β < 0. In a dual fashion, S− is of
center-unstable type for α < 0, of unstable type in the hyperbolic situation α < 0 < β and of strongly
unstable type in case 0 < α . Finally, the intersection of center-stable and -unstable manifold yields
the center manifold. All these nonautonomous sets allow dynamical interpretations as in the discrete
situation of difference equations (cf. Pötzsche & Rasmussen (2008)).

(2) The global condition (2.9) is hardly met in applications, but for later reference we describe the
well-known procedure to circumvent this problem: Indeed, Theorem 2.3 is applicable to differential
equations (2.2) with an appropriately modified nonlinearity. More detailed, for functions F satisfying

lim
x,x̄→0

F(t,x)−F(t, x̄)
‖x− x̄‖

= 0 uniformly in t ∈ I



8 of 30 Ch. Pötzsche and M. Rasmussen

one defines Fρ(t,x) = F(t,rρ(x)) with a radial retraction mapping rρ : Rd → Rd , rρ(x) = x for ‖x‖6 ρ

and rρ(x) = x
‖x‖ for ‖x‖ > ρ . Then F(t, ·) and Fρ(t, ·) coincide on a ball of radius ρ > 0, it is possible

to choose ρ > 0 so small that Fρ satisfies (2.9) and we can apply our theory to

ẋ = A(t)x+Fρ(t,x). (2.15)

Inside this ball, (2.2) and (2.15) coincide, share the same dynamics, and the global invariant manifolds
S+,S− of (2.15) restricted to

{
(τ,ξ ) ∈ I×Rd : ‖ξ‖6 ρ

}
are locally invariant w.r.t. (2.2).

(3) Nonautonomous differential equations of the form (2.2) typically occur as equations of perturbed
motion related to (pseudo-) hyperbolic solutions. More detailed, suppose a Carathéodory differential
equation ẋ = f (t,x), where the right-hand side f is C1-smooth in the second variable, has a (pseudo-)
hyperbolic complete solution φ ∗ : R→ Rd in the sense that ẋ = D1 f (t,φ ∗(t))x admits an exponential
dichotomy as in Assumption 2.1. Then Theorem 2.3 can be applied to

ẋ = f (t,x+φ
∗(t))− f (t,φ ∗(t))

and the integral manifolds S−,S+ describe the saddle-point structure corresponding to φ ∗. Numerical
algorithms to compute hyperbolic solutions φ ∗ have been developed in Ju et al. (2003).

3. Truncated Lyapunov-Perron equations and their solution

We prove an error estimate for the solutions of a truncated Lyapunov-Perron equation. This reduces our
problem of finding a fixed point for T ±

T (·,ξ ) to a Fredholm integral equation of second kind.

PROPOSITION 3.1 Let τ ∈ I, ξ ∈ Rd , T > 0, suppose Assumption 2.1–2.2 hold with (2.9) and choose
σ ∈

(
`, 1

2 (β −α)
)
. Then the function s± : I×Rd → Rd defining the integral manifold S± satisfies

∥∥s±(τ,ξ )−P∓(τ)φ±T (τ,ξ )
∥∥6 σK2

∓K±L

(σ − `)2 ‖P±(τ)ξ‖e(2σ−(β−α))T . (3.1)

REMARK 3.1 (SPECTRAL GAP CONDITION) By the choice of σ , we achieve a good approximation
in (3.1) for small values of T > 0, if the difference β −α is large compared to L. In the autonomous
situation this means that real parts of the spectrum admit large gaps.

Proof. Due to analogy, we only prove the assertion for s− and φ
−
T . Choose a finite positive integer T ,

γ ∈ (α +σ ,β −σ ], and thanks to σ < 1
2 (β −α), we can select a δ ∈ [α +σ ,γ). Let τ ∈ I, ξ ∈ Rd be

fixed and φ
−
T ∈X −

τ,γ(T ), φ−∞ ∈X −
τ,γ(∞) be the unique fixed points of the Lyapunov-Perron operator as

defined in (2.6). Here we have suppressed the dependence on ξ . On the finite interval [τ−T,τ], one
clearly has φ

−
T ,φ−∞ |I−τ (T ) ∈X −

τ,δ (T ), and we deduce from Proposition 2.2 that

∥∥P+(t)
[
φ
−
∞ (t)−φ

−
T (t)

]∥∥eδ (τ−t)
(2.6)
6

∥∥∥∥∫ τ−T

−∞

Φ(t,s)P+(s)F(s,φ−∞ (s))ds
∥∥∥∥eδ (τ−t)

+
∥∥∥∥∫ t

τ−T
Φ(t,s)P+(s)

[
F(s,φ−∞ (s))−F(s,φ−T (s))

]
ds
∥∥∥∥eδ (τ−t)

(2.9)
6 K+Leδ (τ−t)

∫
τ−T

−∞

eα(t−s)∥∥φ
−
∞ (s)

∥∥ ds+K+Leδ (τ−t)
∫ t

τ−T
eα(t−s)∥∥φ

−
∞ (s)−φ

−
T (s)

∥∥ ds

6
K+L
γ−α

e(δ−γ)T ∥∥φ
−
∞

∥∥−
τ,γ

+
K+L

δ −α

∥∥φ
−
∞ −φ

−
T

∥∥−
τ,δ

for all t ∈ [τ−T,τ] ,
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and analogously we obtain

∥∥P−(t)
[
φ
−
∞ (t)−φ

−
T (t)

]∥∥eδ (τ−t)
(2.6)
6

K−L
β −δ

∥∥φ
−
∞ −φ

−
T

∥∥−
τ,δ

for all t ∈ [τ−T,τ] .

Referring to the definition of the ‖·‖−
τ,δ -norm and due to γ,δ ∈ [α +σ ,β −σ ], we arrive at

∥∥φ
−
T −φ

−
∞

∥∥−
τ,δ
6

K+L
σ

e(δ−γ)T ∥∥φ
−
∞

∥∥−
τ,γ

+
`

σ

∥∥φ
−
T −φ

−
∞

∥∥−
τ,δ

and consequently (note the inequality ` < σ ),

∥∥P+(t)
[
φ
−
∞ (t)−φ

−
T (t)

]∥∥eδ (τ−t) 6
K2

+L
σ − `

e(δ−γ)T ∥∥φ
−
∞

∥∥−
τ,γ

for all t ∈ [τ−T,τ] .

Therefore, the claim follows from inequality (2.11) in Proposition 2.2, if we use (2.14) and set t = τ ,
δ = α +σ , γ = β −σ in the above estimate. �

With a subset I ⊆ R and the function space

PC (I,Rd) :=
{

φ : I→ Rd
∣∣∣∣ φ is piecewise constant with a

finite number of discontinuities

}
,

our approximations of X ±
τ,γ(T ), T ∈ (0,∞], are given by the spaces

X̃ ±
τ,γ(T ) :=

{
φ ∈PC (I±τ (T ),Rd) : sup

t∈I±τ (T )
eγ(τ−t) ‖φ(t)‖< ∞

}

equipped with the norms (2.4). Note that the condition supt∈I±τ (T ) eγ(τ−t) ‖φ(t)‖< ∞ is always fulfilled
for finite values of T , and also that for γ < 0, the elements of the space X̃ +

τ,γ(∞) are eventually zero for
large positive times; the same holds in case of functions in X̃ −

τ,γ(∞) for large negative times and γ > 0.
In our following step, we try to compute fixed points of the Lyapunov-Perron operators (2.5) and

(2.6) for a finite T > 0. These problems are nonlinear Fredholm integral equations of second kind with
Green’s function G(t,s) as kernel. Although it is an interesting matter to apply numerical solvers for
Fredholm equations directly (cf. Atkinson (1976)), we undertake an ad hoc approach and suggest an
iterative scheme. Thereto, some preparations are necessary. First of all, we need an additional

ASSUMPTION 3.1 Suppose that the function A ∈L 1
loc(I,Rd×d) is essentially bounded, i.e., one has

a := esssupt∈I ‖A(t)‖< ∞ .

REMARK 3.2 The above boundedness assumption on A implies that Φ(t,s) satisfies the relations

‖Φ(t,s)‖6 ea|t−s|, ‖Φ(t,s)− id‖6 a |t− s|ea|t−s| for all s, t ∈ I. (3.2)

LEMMA 3.1 Suppose Assumptions 2.1, 2.2, 3.1 hold with (2.9), T ∈ (0,∞] and γ ∈ [α + σ ,β −σ ].
Then, for each τ ∈ I and ξ ∈ Rd , one has:
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(a) The fixed point φ
+
T (ξ ) ∈X +

τ,γ(T ) of the Lyapunov-Perron operator (2.5) satisfies

∥∥φ
+
T (t,ξ )−φ

+
T (s,ξ )

∥∥ 6 a(t − s)ea(t−s)
(

K+eα(t−s) ‖P+(τ)ξ‖+ 1+σ

σ
`
∥∥φ

+
T (ξ )

∥∥+
τ,γ

)
eγ(t−τ)

for all τ 6 s6 t,

(b) the fixed point φ
−
T (ξ ) ∈X −

τ,γ(T ) of the Lyapunov-Perron operator (2.6) satisfies

∥∥φ
−
T (t,ξ )−φ

−
T (s,ξ )

∥∥ 6 a(s − t)ea(s−t)
(

K−eβ (t−s) ‖P−(τ)ξ‖+ 1+σ

σ
`
∥∥φ
−
T (ξ )

∥∥−
τ,γ

)
eγ(t−τ)

for all t 6 s6 τ .

Proof. Let τ ∈ I, ξ ∈ Rd be fixed and T ∈ (0,∞].
(a) Let φ

+
T ∈X +

τ,γ(T ) be the unique fixed point of T +
T (·,ξ ), where we omit the dependence on ξ .

For τ 6 s6 t, we decompose the difference φ
+
T (t)−φ

+
T (s) as follows:∥∥φ

+
T (t)−φ

+
T (s)

∥∥6 I1 (I2 + I3 + I4)+ I5 + I6, (3.3)

with functions I1 := ‖Φ(t,s)− id‖, I2 := ‖Φ(s,τ)P+(τ)ξ‖ and

I3 :=
∥∥∥∥∫ s

τ

Φ(t,r)P+(r)F(r,φ+
T (r))dr

∥∥∥∥ , I4 :=
∥∥∥∥∫ τ+T

t
Φ(t,r)P−(r)F(r,φ+

T (r))dr
∥∥∥∥ ,

I5 :=
∥∥∥∥∫ t

s
Φ(t,r)P+(r)F(r,φ+

T (r))dr
∥∥∥∥ , I6 :=

∥∥∥∥−∫ t

s
Φ(s,r)P−(r)F(r,φ+

T (r))dr
∥∥∥∥ .

Using the bounded growth relation (3.2), we immediately obtain I1 6 a(t − s)ea(t−s), and by the di-
chotomy estimates, the Lipschitz condition for F , and the relation

∥∥φ
+
T (t)

∥∥6 eγ(t−τ)
∥∥φ

+
T

∥∥+
τ,γ

, we get

I2 6 K+eα(s−t) ‖P+(τ)ξ‖eγ(t−τ),

I3 6
K+L
γ−α

∥∥φ
+
T

∥∥+
τ,γ

eγ(t−τ), I4 6
K−L
β − γ

∥∥φ
+
T

∥∥+
τ,γ

eγ(t−τ),

I5 6 K+L(t− s)
∥∥φ

+
T

∥∥+
τ,γ

eγ(t−τ), I6 6 K−L(t− s)
∥∥φ

+
T

∥∥+
τ,γ

eγ(t−τ).

Then the claim follows by assembling these estimates into (3.3).
(b) Referring to (a), we omit the proof of assertion (b) due to duality reasons. �

In order to transform (2.5) and (2.6) into a finite-dimensional problem, we introduce a discrete
analogue to the Lyapunov-Perron operators T ±

T as follows: Consider N ∈ N, pick a finite T > 0, and
note that T ±

T can also be defined on the function space X̃ ±
τ,γ(T ). Then, for τ ∈ I, ξ ∈ Rd and φ ∈

X̃ ±
τ,γ(T ), we define the operator T̃ ±

T,N by

T̃ ±
T,N(t,φ ,ξ ) := T ±

T (k±N (t),φ ,ξ ) for all t ∈ I±τ (T ),

where

k+
N (t) := τ + T

N

⌊
(t−τ)N

T

⌋
, k−N (t) := τ + T

N

⌈
(t−τ)N

T

⌉
.
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Before stating the next result, we introduce the abbreviations

χ
+
γ (h) := sup

06x6h
eγx = max

{
1,eγh

}
, χ

−
γ (h) := sup

−h6x60
eγx = max

{
1,e−γh

}
for reals h> 0, γ , observe limh↘0 χ±γ (h) = 1 and obtain the following

LEMMA 3.2 We suppose that Assumptions 2.1, 2.2 and 3.1 hold with (2.9), T > 0, N ∈ N and γ ∈
[α +σ ,β −σ ]. Then, for each τ ∈ I, ξ ∈ Rd , one has:

(a) The mapping T̃ +
T,N : X̃ +

τ,γ(T )×Rd → X̃ +
τ,γ(T ) is well-defined and satisfies

∥∥∥φ
+
T (ξ )− T̃ +

T,N(φ ,ξ )
∥∥∥+

τ,γ
6 `

σ
χ

+
−γ

( T
N

)∥∥φ
+
T (ξ )−φ

∥∥+
τ,γ

+a T
N χ

+
a
( T

N

)(
K+χ

+
α

( T
N

)
+ `

1+σ

σ − `

)
‖P+(τ)ξ‖ for all φ ∈ X̃ +

τ,γ(T ), (3.4)

(b) the mapping T̃ −
T,N : X̃ −

τ,γ(T )×Rd → X̃ −
τ,γ(T ) is well-defined and satisfies

∥∥∥φ
−
T (ξ )− T̃ −

T,N(φ ,ξ )
∥∥∥−

τ,γ
6 `

σ
χ
−
−γ

( T
N

)∥∥φ
−
T (ξ )−φ

∥∥−
τ,γ

+a T
N χ

+
a
( T

N

)(
K−χ

−
β

( T
N

)
+ `

1+σ

σ − `

)
‖P−(τ)ξ‖ for all φ ∈ X̃ −

τ,γ(T ). (3.5)

Proof. Let τ ∈ I, ξ ∈ Rd , γ ∈ [α +σ ,β −σ ] and T > 0 be finite and fixed.
(a) Choose t ∈ [τ,τ +T ], φ ∈ X̃ +

τ,γ(T ), and let φ
+
T ∈X +

τ,γ(T ) be the unique fixed point of T +
T (·,ξ );

we suppress the dependence on ξ , and the inclusion T̃ +
T,N(φ ,ξ ) ∈ X̃ +

τ,γ(T ) = PC (I+
τ (T ),Rd) follows

directly. Then we have by definition of T̃ +
T,N that∥∥∥φ

+
T (t)− T̃ +

T,N(t,φ ,ξ )
∥∥∥6 ∥∥φ

+
T (t)−φ

+
T (k+

N (t))
∥∥+

∥∥φ
+
T (k+

N (t))−T +
T (k+

N (t),φ ,ξ )
∥∥ .

For the first summand, we notice that 0 6 t − k+
N (t) 6 T

N and apply Lemma 3.1(a) with s = k+
N (t) to

obtain

eγ(τ−t)∥∥φ
+
T (t)−φ

+
T (k+

N (t))
∥∥6 a T

N χ
+
a
( T

N

)(
K+χ

+
α

( T
N

)
‖P+(τ)ξ‖+ ` 1+σ

σ

∥∥φ
+
T (ξ )

∥∥+
τ,γ

)
(2.11)
6 K+a T

N χ
+
a
( T

N

)(
χ

+
α

( T
N

)
+ `

1+σ

`−σ

)
‖P+(τ)ξ‖ .

In second instance, we consider the second term in the above estimate and readily observe the identity
φ

+
T (k+

N (t)) = T +
T (k+

N (t),φ+
T ,ξ ). Thanks to 06 t− k+

N (t)6 T
N , this implies that

eγ(τ−t)∥∥φ
+
T (k+

N (t))−T +
T (k+

N (t),φ ,ξ )
∥∥6 χ

+
−γ

( T
N

)
eγ(τ−k+

N (t))∥∥φ
+
T (k+

N (t))−T +
T (k+

N (t),φ ,ξ )
∥∥

6 χ
+
−γ

( T
N

)∥∥φ
+
T −T +

T (φ ,ξ )
∥∥+

τ,γ

(2.10)
6 χ

+
−γ

( T
N

) `

σ

∥∥φ
+
T −φ

∥∥+
τ,γ

.
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Hence, we obtain

eγ(τ−t)
∥∥∥φ

+
T (t)− T̃ +

T,N(t,φ ,ξ )
∥∥∥6 χ

+
−γ

( T
N

) `

σ

∥∥φ
+
T −φ

∥∥+
τ,γ

+K+a T
N χ

+
a
( T

N

)(
χ

+
α

( T
N

)
+ `

1+σ

`−σ

)
‖P+(τ)ξ‖ for all τ 6 t,

and this yields the desired estimate.
(b) Using Lemma 3.1(b) and Proposition 2.2, this is shown analogously to (a). �

Now let (Nn)n∈N be a strictly increasing sequence of positive integers and consider the recursion

ψ
±
n := T̃ ±

T,Nn
(ψ±n−1,ξ ) for all n ∈ N (3.6)

with constant initial function ψ
±
0 (t)≡ P±(τ)ξ satisfying ψ

±
0 ∈X ±

τ,γ(T ). Convergence of the sequence
(ψ±n )n∈N0 will be shown now.

THEOREM 3.2 Suppose that Assumptions 2.1, 2.2, 3.1 hold with (2.9), assume T > 0 and choose a
decay rate q ∈

(
`
σ
,1
)
. If the sequence (Nn)n∈N is as above with

cq−n 6 Nn for all n ∈ N, `χ
±
−γ

(
T
N1

)
6 σq, χ

+
a

(
T
N1

)
6 2 (3.7)

for some c > 0, then for all τ ∈ I, ξ ∈ Rd , the following holds:

(a) Under the assumption χ+
α

(
T
N1

)
6 2, one has∥∥φ

+
T (τ,ξ )−ψ

+
n (τ)

∥∥6 (C+
1 +C+

2 n
)

qn ‖P+(τ)ξ‖ for all n ∈ N , (3.8)

(b) and under the assumption χ
−
β

(
T
N1

)
6 2, one has∥∥φ

−
T (τ,ξ )−ψ

−
n (τ)

∥∥6 (C−1 +C−2 n
)

qn ‖P−(τ)ξ‖ for all n ∈ N ,

where C±1 ,C±2 > 0 are given by

C±1 := χ
+
γ (T )+

K±L
σ − `

, C±2 := 2acT
(

2K±+ `
1+σ

σ − `

)
.

Proof. Let τ ∈ I, ξ ∈ Rd and γ ∈ [α +σ ,β −σ ].
(a) Using mathematical induction, one gets from Lemma 3.2(a) that, provided χ+

α (T/N1) 6 2, the
sequence (ψ+

n )n∈N in X̃ +
τ,γ(T ) satisfies the estimate

∥∥φ
+
T (ξ )−ψ

+
n
∥∥+

τ,γ
6 qn∥∥φ

+
T (ξ )−ψ

+
0

∥∥+
τ,γ

+2aT
(

2K+ + `
1+σ

σ − `

)
‖P+(τ)ξ‖

n−1

∑
j=0

q j

Nn− j
for all n ∈ N.

Then, our choice of the initial condition ψ
+
0 implies

∥∥ψ
+
0

∥∥+
τ,γ
6 χ+

γ (T )‖P+(τ)ξ‖, and due to Proposi-
tion 2.2, we obtain from the triangle inequality that∥∥φ

+
T (ξ )−ψ

+
n
∥∥+

τ,γ

(2.11)
6

(
χ

+
γ (T )+

K+L
σ − `

)
qn ‖P+(τ)ξ‖

+2aT
(

2K+ + `
1+σ

σ − `

)
‖P+(τ)ξ‖

n−1

∑
j=0

q j

Nn− j
for all n ∈ N.
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Referring to (3.7), this implies our relation (3.8).
(b) Similarly to (a), one uses Lemma 3.2(b) and mathematical induction to deduce the estimate

∥∥φ
−
T (ξ )−ψ

−
n
∥∥−

τ,γ
6 qn∥∥φ

−
T (ξ )−ψ

−
0

∥∥−
τ,γ

+2aT
(

2K−+ `
1+σ

σ − `

)
‖P−(τ)ξ‖

n−1

∑
j=0

q j

Nn− j

for all n ∈ N. Then the remaining proof results as in (a) using Proposition 2.2. �

Algorithm 3.3 (approximation of s±) Choose an accuracy ε > 0, initial pairs τ ∈ I, ξ ∈ R(P±(τ)) and
σ ∈

(
`, β−α

2

)
.

(1) Set n := 1, ψ
±
0 (t) :≡ ξ and a real T > 0 sufficiently large with

σK2
∓K±L

(σ − `)2 ‖P±(τ)ξ‖e(2σ−(β−α))T <
ε

2
; (3.9)

(2) choose a sequence (Nn)n∈N according to the assumptions of Theorem 3.2 and that (3.7) holds;

(3) compute ψ±n := T̃T,Nn(ψ
±
n−1,ξ );

(4) if (C±1 +C±2 n)qn ‖P±(τ)ξ‖> ε

2 , then increase n by 1 and go to (3);

(5) set s̃±(τ,ξ ) := P∓(τ)ψ±n (τ).

Thus, the distance between the approximate integral manifold s̃±(τ,ξ ) and s±(τ,ξ ) satisfies∥∥s±(τ,ξ )− s̃±(τ,ξ )
∥∥< ε. (3.10)

4. Approximation of center-like integral manifolds

We introduce another method to approximate integral manifolds, which is strongly inspired by the au-
tonomous center-manifold situation considered in Jolly & Rosa (2005). Thereto, we have to impose a
further assumption which seemingly restricts our considerations to center-like manifolds.

ASSUMPTION 4.1 Suppose β > σ (in case S+ is concerned) and α >−σ (in case S− is concerned).

REMARK 4.1 Assumption 4.1 can always be satisfied by applying the so-called spectral transformation
y = eκ(t−τ)x to (2.2), which yields the shifted system

ẏ = (A(t)+κ · id)y+ eκ(t−τ)F(t,e−κ(t−τ)y) , (4.1)

where κ ∈R has to be chosen such that β +κ > σ (in case S+ is concerned) or α +κ >−σ (in case S−

is concerned), and τ is used for the approximation of the τ-fiber. One easily verifies that the assumptions
of Theorem 2.3 also hold for system (4.1), and this gives rise to invariant pseudo-stable and -unstable
manifolds S̃+ and S̃− of (4.1), respectively. It is shown in (Aulbach et al., 2006, Theorem 5.1) that we
have the relations

S̃+(t) = eκ(t−τ)S+(t) and S̃−(t) = eκ(t−τ)S−(t) for all t ∈ I ,

and this means that the τ-fibers of the manifolds coincide. Hence, the τ-fiber of S+ or S− can be
approximated by computing the τ-fiber of S̃+ or S̃+, respectively, and this is possible with the algorithm
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proposed in this section, since Assumption 4.1 is fulfilled for system (4.1). We like to emphasize that
such a transformation is of no use in a purely autonomous context, since the resulting system (4.1) is
nonautonomous even if (2.2) is an autonomous system.

In our present set-up, a discretized version of the Lyapunov-Perron operators T ±
∞ can be constructed

as follows: Let us consider h > 0, N ∈ N and γ ∈ [α +σ ,β −σ ], and note that the original map T ±
∞ is

also well-defined on X̃ ±
τ,γ(∞). Then, for τ ∈ I, ξ ∈ Rd and φ ∈ X̃ ±

τ,γ(∞), we set

T̃ ±
h,N(t,φ ,ξ ) := T ±

∞ (k±N (t),φ ,ξ ) for all t ∈ I±τ (∞),

where

k+
N (t) :=

{
τ +hb t−τ

h c, 06 t− τ < hN
τ +hN, hN 6 t− τ

, k−N (t) :=

{
τ +hd t−τ

h e, −hN < t− τ 6 0
τ−hN, t− τ 6−hN

.

Note that the definition of the functions k±N differs from the definition used in the previous section.
We start with an elementary, yet useful lemma. It will be applied to the solutions φ±∞ (ξ ) ∈X ±

τ,γ(∞)
of (2.2) and consequently could be deduced from Lemma 3.1. Nevertheless, for the sake of simpler
constants, we give a direct proof.

LEMMA 4.1 Let γ ∈ [α +σ ,β −σ ], and suppose that Assumptions 2.1, 2.2, 3.1, 4.1 hold.

(a) If γ > 0, then any solution φ ∈X +
τ,γ(∞) of (2.2) satisfies

‖φ(t)−φ(s)‖6 (a+L)(t− s)eγ(t−τ) ‖φ‖+
τ,γ for all τ 6 s6 t, (4.2)

(b) if γ 6 0, then any solution φ ∈X −
τ,γ(∞) of (2.2) satisfies

‖φ(t)−φ(s)‖6 (a+L)(s− t)eγ(t−τ) ‖φ‖−
τ,γ for all t 6 s6 τ.

Proof. Given τ,s, t ∈ I, we have

‖φ(t)−φ(s)‖=
∥∥∥∥∫ t

s
(A(r)φ(r)+F(r,φ(r)))dr

∥∥∥∥6 ∫ t

s
(a+L)‖φ(r)‖ dr

=(a+L)
∫ t

s
eγ(r−τ) ‖φ‖+

τ,γ dr 6 (a+L)‖φ‖+
τ,γ

∫ t

s
eγ(t−τ) dr

=(a+L)‖φ‖+
τ,γ (t− s)eγ(t−τ) for all τ 6 s6 t .

This implies (a); assertion (b) can be shown similarly. �

REMARK 4.2 Note that the integral
∫ t

s eγ(r−τ) dr in the above proof can be computed explicitly, provid-
ing a sharper estimate. For the sake of clarity, however, we use the inequality as stated in the lemma in
our following considerations.

LEMMA 4.2 Suppose Assumptions 2.1, 2.2, 3.1, 4.1 hold with (2.9) and h > 0, N ∈ N, γ ∈ [α +σ ,β −
σ ]. Then, for each τ ∈ I, ξ ∈ Rd , one has:
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(a) If 06 δ < γ , then the mapping T̃ +
h,N : X̃ +

τ,γ(∞)×Rd → X̃ +
τ,γ(∞) is well-defined and satisfies

∥∥∥φ
+
∞ (ξ )− T̃ +

h,N(φ ,ξ )
∥∥∥+

τ,γ
6

`

σ

∥∥φ
+
∞ (ξ )−φ

∥∥+
τ,γ

(4.3)

+(a+L)max

{
h
∥∥φ

+
∞ (ξ )

∥∥+
τ,γ

,
e(δ−γ)Nh−1

γ−δ

∥∥φ
+
∞ (ξ )

∥∥+
τ,δ

}
for all φ ∈ X̃ +

τ,γ(∞),

(b) if γ < δ 6 0, then the mapping T̃ −
h,N : X̃ −

τ,γ(∞)×Rd → X̃ −
τ,γ(∞) is well-defined and satisfies

∥∥∥φ
−
∞ (ξ )− T̃ −

h,N(φ ,ξ )
∥∥∥−

τ,γ
6

`

σ

∥∥φ
−
∞ (ξ )−φ

∥∥−
τ,γ

+(a+L)max

{
h
∥∥φ
−
∞ (ξ )

∥∥−
τ,γ

,
e(γ−δ )Nh−1

δ − γ

∥∥φ
+
∞ (ξ )

∥∥−
τ,δ

}
for all φ ∈ X̃ −

τ,γ(∞).

Proof. Let τ ∈ I, ξ ∈ Rd and γ ∈ [α +σ ,β −σ ].
(a) Choose t > τ and φ ∈ X̃ +

τ,γ(∞). We clearly have the inclusion T̃ +
h,N(φ ,ξ ) ∈ X̃ +

τ,γ(∞). Moreover,
by definition of T̃ +

h,N we get∥∥∥φ
+
∞ (t)− T̃ +

h,N(t,φ ,ξ )
∥∥∥6 ∥∥φ

+
∞ (t)−φ

+
∞ (k+

N (t),ξ )
∥∥+

∥∥φ
+
∞ (k+

N (t),ξ )−T +
∞ (k+

N (t),φ ,ξ )
∥∥ .

Proceeding like in the proof of Lemma 3.2(a) we can bound the second term as

eγ(τ−t)∥∥φ
+
∞ (k+

N (t),ξ )−T +
∞ (k+

N (t),φ ,ξ )
∥∥6 `

σ

∥∥φ
+
∞ (ξ )−φ

∥∥+
τ,γ

.

For the first term, we consider the case t ∈ [τ,τ + Nh). By construction, the fixed point φ+
∞ (ξ ) is a

solution of (2.2) in X +
τ,γ(∞). Thus, we can apply Lemma 4.1(a) with s = k+

N (t) and obtain

eγ(τ−t)∥∥φ
+
∞ (t)−φ

+
∞ (k+

N (t),ξ )
∥∥ (4.2)
6 eγ(τ−t)(a+L)(t− k+

N (t))eγ(t−τ)∥∥φ
+
∞ (ξ )

∥∥+
τ,γ

6 h(a+L)
∥∥φ

+
∞ (ξ )

∥∥+
τ,γ

.

For the remaining situation t > τ + Nh, apply Lemma 4.1(a) with a growth rate δ ∈ [0,γ) instead of γ .
Thanks to the inclusion δ ∈ [α +σ ,β −σ ], we have φ+

∞ (ξ ) ∈X +
τ,δ (∞), and the elementary estimate

xe(δ−γ)x 6 e−1

γ−δ
for all x> 0 leads to

eγ(τ−t)∥∥φ
+
∞ (t)−φ

+
∞ (τ +Nh,ξ )

∥∥ (4.2)
6 eγ(τ−t)(a+L)(t− τ−Nh)eδ (t−τ)∥∥φ

+
∞ (ξ )

∥∥+
τ,δ

= (a+L)e(δ−γ)Nh(t− τ−Nh)e(δ−γ)(t−τ−Nh)∥∥φ
+
∞ (ξ )

∥∥+
τ,δ

6 (a+L)
e(δ−γ)Nh−1

γ−δ

∥∥φ
+
∞ (ξ )

∥∥+
τ,δ

.
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From this one immediately obtains the final estimate

eγ(τ−t)
∥∥∥φ

+
∞ (t)−T +

h,N(t,φ ,ξ )
∥∥∥6 `

σ

∥∥φ
+
∞ (ξ )−φ

∥∥+
τ,γ

+(a+L)max

{
h
∥∥φ

+
∞ (ξ )

∥∥+
τ,γ

,
e(δ−γ)Nh−1

γ−δ

∥∥φ
+
∞ (ξ )

∥∥+
τ,δ

}
for all τ 6 t ,

which implies our claim.
(b) Assertion (b) can be shown analogously using Lemma 4.1(b). �

For given initial data τ ∈ I and ξ ∈ Rd , the above statement concerning the well-definedness of
T ±

h,N allows us to compute the fixed point φ±∞ (ξ ) recursively. Thereto, we prescribe a nonnegative real
sequence (hn)n∈N and a sequence of nonnegative integers (Nn)n∈N. Then our recursion reads as

ψ
±
n := T̃ ±

hn,Nn
(ψ±n−1,ξ ) for all n ∈ N , (4.4)

where we choose the constant initial function ψ
±
0 (t) ≡ P±(τ)ξ . It is quite natural to assume that the

sequence (hn)n∈N is decreasing such that (Nnhn)n∈N increases. Due to a compact notation, we define
N0 := 0 and set h0 > 0 arbitrarily.

After all these preparations, we can show the following approximation result.

THEOREM 4.1 Suppose Assumptions 2.1, 2.2, 3.1, 4.1 hold with (2.9). Let the sequence (hn)n∈N de-
crease exponentially and the length of the time intervals (hnNn)n∈N increase linearly, i.e., more precisely,
assume that there exist reals c1,c2 > 0 such that

0 < hn 6 c1
(

`
σ

)n
and Nnhn > c2n for all n ∈ N, (4.5)

where

∆+ := β −σ −max{0,α +σ} , ∆− := min{0,β −σ}−α−σ .

Then, for each τ ∈ I, ξ ∈ Rd and all n ∈ N, it holds∥∥s±(τ,ξ )−P∓(τ)ψ±n (τ)
∥∥6 K∓

(
C±1
(

`
σ

)n
+C±2 nqn

)
‖P±(τ)ξ‖ ,

where q := max
{

`
σ
,e−c2∆±

}
∈ (0,1) and C±1 ,C±2 > 0 are given by

C±1 := 1+
K±σ

σ − `
, C±2 := (a+L)max

{
c1,

e−1

∆±

}
K±σ

σ − `
.

Proof. Let τ ∈ I, ξ ∈ Rd and γ ∈ [α +σ ,β −σ ].
(I) Mathematical induction and Lemma 4.2(a) yields that in case 06 δ < γ , the sequence (ψ+

n )n∈N
in X̃ +

τ,γ(∞) satisfies the estimate

∥∥φ
+
∞ (ξ )−ψ

+
n
∥∥+

τ,γ
6

(
`

σ

)n∥∥φ
+
∞ (ξ )−ψ

+
0

∥∥+
τ,γ

+(a+L)
n−1

∑
j=0

(
`

σ

) j

max

{
hn− j

∥∥φ
+
∞ (ξ )

∥∥+
τ,γ

,
e(δ−γ)Nn− jhn− j−1

γ−δ

∥∥φ
+
∞ (ξ )

∥∥+
τ,δ

}
.
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Since our choice of the initial condition ψ
+
0 implies

∥∥ψ
+
0

∥∥+
τ,γ
6 ‖P+(τ)ξ‖, we consequently obtain from

Proposition 2.2, and the triangle inequality that

∥∥φ
+
∞ (ξ )−ψ

+
n
∥∥+

τ,γ

(2.11)
6

(
1+

K+σ

σ − `

)(
`

σ

)n

‖P+(τ)ξ‖

+(a+L)
K+σ

σ − `
‖P+(τ)ξ‖

n−1

∑
j=0

(
`

σ

) j

max

{
hn− j,

e−1−(γ−δ )Nn− jhn− j

γ−δ

}
.

We minimize the right hand side by choosing γ := β −σ , δ := max{0,α +σ} to arrive at

∥∥φ
+
∞ (ξ )−ψ

+
n
∥∥+

τ,γ
6

(
1+

K+σ

σ − `

)(
`

σ

)n

‖P+(τ)ξ‖

+(a+L)
K+σ

σ − `
‖P+(τ)ξ‖

n−1

∑
j=0

(
`

σ

) j

max
{

hn− j,
e−1−∆+Nn− jhn− j

∆+

}
.

Under the hypotheses for the convergence behavior of the sequences (hn)n∈N and (Nnhn)n∈N, one obtains
uniform convergence for bounded values of ξ . More precisely, we have

∥∥φ
+
∞ (ξ )−ψ

+
n
∥∥+

τ,γ
6

(
1+

K+σ

σ − `

)(
`

σ

)n

‖P+(τ)ξ‖+(a+L)
K+σ

σ − `
C3nqn ‖P+(τ)ξ‖ for all n∈N

with the constant C3 := max
{

c1,
e−1

∆+

}
and the assertion follows, since we have

∥∥s+(τ,ξ )−P−(τ)ψ+
n (τ)

∥∥ (2.13)
6 K−

∥∥φ
+
∞ (τ,ξ )−ψ

+
n (τ)

∥∥6 ∥∥φ
+
∞ (ξ )−ψ

+
n
∥∥+

τ,γ
for all n ∈ N.

(II) In case γ < δ 6 0, we deduce from Lemma 4.2(b) that the sequence (ψ−n )n∈N in X̃ −
τ,γ(∞) satisfies

∥∥φ
−
∞ (ξ )−ψ

−
n
∥∥−

τ,γ
6

(
`

σ

)n∥∥φ
−
∞ (ξ )−ψ

−
0

∥∥−
τ,γ

+(a+L)
n−1

∑
j=0

(
`

σ

) j

max

{
hn− j

∥∥φ
−
∞ (ξ )

∥∥−
τ,γ

,
e(γ−δ )Nn− jhn− j−1

δ − γ

∥∥φ
−
∞ (ξ )

∥∥−
τ,δ

}

for all n ∈ N. Then the proof for s− follows analogously to (I) by Proposition 2.2. �

Algorithm 4.2 (approximation of s±, center-like case) Choose an accuracy ε > 0, initial pairs τ ∈ I,
ξ ∈ R(P±(τ)), σ ∈

(
`, 1

2 (β −α)
)

and sequences (hn)n∈N, (Nn)n∈N according to (4.5).

(1) Set n := 1, ψ
±
0 (t) :≡ ξ ;

(2) compute ψ±n := T̃ ±
hn,Nn

(ψ±n−1,ξ );

(3) if K∓
(
C±1
(

`
σ

)n
+C±2 nqn

)
‖P±(τ)ξ‖> ε , then increase n by 1 and go to (2);

(4) set s̃±(τ,ξ ) := P∓(τ)ψ±n (τ).

Then the distance between the approximate integral manifold s̃±(τ,ξ ) and s±(τ,ξ ) fulfills (3.10).
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5. Implementation, examples and illustrations

Our overall approach is based on the premise that the transition matrix Φ(t,s) ∈ Rd×d of (2.1) is avail-
able. In practice, it has to be approximated using ODE solvers applied to equation (2.1), whereat higher
order numerical schemes for possibly only piecewise continuous coefficient functions A have been de-
veloped in Grüne & Kloeden (2006).

Provided the transition matrix and the invariant projector P+(t) associated with the exponential di-
chotomy of (2.1) are known, we implemented both Algorithm 3.3 and 4.2 using MATLAB. Here, it
is sufficient to restrict to the pseudo-stable manifolds only, since the corresponding pseudo-unstable
manifolds are pseudo-stable manifolds of the time-reversed system (2.2), which is given by

ẋ =−A(−t)x−F(−t,x). (5.1)

Under Hypothesis 2.1 and 2.2 it is defined on −I, has the transition operator Φ̄(t,s) = Φ(−t,−s) and
its linear part admits an exponential dichotomy with −β ,−α , K−,K+ and projectors P̄±(t) = P∓(−t).

Moreover, a couple of further comments are due:

• The quintessence of Theorem 2.3 is that the invariant vector bundles given by the ranges of the
dichotomy projectors of (2.1), persist as integral manifolds under perturbation with the nonlinear-
ity F . For this reason, it might seem advantageous to replace the initial function ψ

±
0 (t) ≡ ξ by

ψ
±
0 (t) = Φ(t,τ)ξ . However, numerical evidence for this remark is rather small as demonstrated

in the example discussed in Subsection 5.1 (Figure 2 (left)).

• The main numerical effort in Algorithm 3.3 and 4.2 is to evaluate the integrals in the definition
of the discretized Lyapunov-Perron operators T̃ ±

T,N and T̃ ±
h,N , respectively. In order to avoid

the discontinuity of Green’s function G(t,s) along the diagonal t = s, we split the corresponding
integrals into two parts and individually apply the following quadrature methods to both integrals:

mid: Composite midpoint rule with 2Nn subintervals at recursion depth n

trap: Corresponding composite trapezoid rule

quad: MATLAB routine quadv (cf. Gander & Gautschi (2000)) applied to one subinterval

quad(n): MATLAB integration routine quadv applied to n subintervals

• Since quadrature schemes do not perform well for nonsmooth (or even discontinuous) integrands,
we also replaced the piecewise constant iterates ψ±n in the recursions (3.6) and (4.4) by piecewise
affine continuous functions. We illustrate in Subsection 5.1 (Figure 2 (right)) that this improves
our accuracy significantly.

Finally, we remark that the estimate (3.9) for the length T of the truncated integration interval, as well
as the radius ρ > 0 (cf. Remark 2.2(2)) on which the local integral manifolds are defined, and which
yields from (2.9), are frequently too pessimistic. As shown below, one might obtain accurate results
for smaller values of T and convergence on balls considerably larger than ρ . Therefore, we applied our
algorithms to (2.2) directly, instead of to the modified problem (2.15).

5.1 A rotated autonomous example

Assume that α,β are reals with α < min{0,β}, and let ω : R→ R be a C1-function with bounded
derivative. We apply the Lyapunov transform Λ(t) :=

(
cosω(t) sinω(t)
−sinω(t) cosω(t)

)
to the planar autonomous sys-
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tem {
ẋ1 = αx1
ẋ2 = βx2 +(2α−β )x2

1
(5.2)

and arrive at a nonautonomous ODE of the form (2.2) with

A(t) =
(

α cos2 ω(t)+β sin2
ω(t) (β −α)cosω(t)sinω(t)+ ω̇(t)

(β −α)cosω(t)sinω(t)− ω̇(t) β cos2 ω(t)+α sin2
ω(t)

)
,

F(t,x) = (2α−β )(cosω(t)x1− sinω(t)x2)2
(

sinω(t)
cosω(t)

)
.

This problem fits well into the framework of Section 2, where the linear part (2.1) has the transition

matrix Φ(t,s) :=
(

eα(t−s) cosω(t)cosω(s)+eβ (t−s) sinω(t)sinω(s) −eα(t−s) cosω(t)sinω(s)+eβ (t−s) sinω(t)cosω(s)
−eα(t−s) sinω(t)cosω(s)+eβ (t−s) cosω(t)sinω(s) eα(t−s) sinω(t)sinω(s)+eβ (t−s) cosω(t)cosω(s)

)
. In

particular, we obtain an exponential dichotomy with α,β , K± = 1 and invariant projectors

P+(t) =
(

cos2 ω(t) −cosω(t)sinω(t)
−cosω(t)sinω(t) sin2

ω(t)

)
, P−(t) =

(
sin2

ω(t) cosω(t)sinω(t)
cosω(t)sinω(t) cos2 ω(t)

)
.

The specific form of (5.2) yields that its pseudo-stable and -unstable integral manifolds are given by

Ŝ+ =
{
(τ,ξ ,ξ 2) ∈ R3 : (τ,ξ ) ∈ R2} , Ŝ− =

{
(τ,0,η) ∈ R3 : (τ,η) ∈ R2} ,

respectively. Therefore, the corresponding integral manifolds of the transformed equation (2.2) read as

S+ =
{
(τ,cosω(τ)ξ − sinω(τ)ξ 2,sinω(τ)ξ + cosω(τ)ξ 2) ∈ R3 : (τ,ξ ) ∈ R2} ,

S− =
{
(τ,−sinω(τ)η ,cosω(τ)η) ∈ R3 : (τ,η) ∈ R2} ,

and these nonautonomous sets are visualized in Figure 1. We computed them using Algorithm 3.3 with
α =−1,β = 1. Indeed, in the following, we use this toy problem to illustrate Algorithm 3.3 and 4.2.
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4 1
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6 −1
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−1τ
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τ

ξ

FIG. 1. Pseudo-stable (left) and -unstable (right) integral manifold from Subsection 5.1 for ω(t) = t/2 and τ ∈ [0,2π]

First of all, for the nonlinearity F , it is not difficult to verify the local Lipschitz estimate

‖F(t,x)−F(t, x̄)‖6 2ρ |2α−β |‖x− x̄‖ for all t ∈ R, x1, x̄1 ∈ [−ρ,ρ] , x2, x̄2 ∈ R ,
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and thus, we can modify F(t, ·) outside the set [−ρ,ρ]×R such that the above inequality holds globally.
To compute the length T of the integration interval according to (3.9), we choose ρ = β−α

9|2α−β | , get

L = 2
9 (β −α), ` = 2L = 4ρ |2α−β |= 4

9 (β −α) < β−α

2

and set σ = 17
36 (β −α). For given accuracy ε > 0 and ‖ξ‖< ρ these data require an integration interval

of lengths T > 9
α−β

ln
(

ε

612
|2α−β |

β−α

)
.

We used Algorithm 3.3 to compute the stable fiber bundle of (2.2) for different parameters. Keeping
the function ω(t) = t/2, τ = 0 and the maximal recursion depth 10 fixed, we plotted the number of
F-evaluations versus the reached relative error for each iteration step. This led to the following results:
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FIG. 2. Subsection 5.1: Relative error vs. number of evaluations in Algorithm 3.3 — Left: Initial function ψ
+
0 (t) ≡ ξ (�) and

ψ
+
0 (t) = Φ(t,τ)ξ (∗). Right: Piecewise constant (∗) or linear integrands (�)

• Figure 2 (left) shows that different initial functions ψ
+
0 (t) ≡ ξ (constant, as suggested in Algo-

rithm 3.3) and ψ
+
0 (t) = Φ(t,τ)ξ have minimal influence on the obtained efficiency. The data

have been ξ = (0.5,0), T = 10, α =−1, β = 1, Nn = 9+2n, and we used linear interpolation to
obtain continuous iterates ψ±n .

• On the other hand, Figure 2 (right) illustrates that linear affine continuous functions ψ+
n yield

better results than in the piecewise constant case for integration schemes trap and quad. The
data have been ξ = (0.5,0), T = 10, α =−1, β = 1, Nn = 9+2n and ψ

+
0 (t) = Φ(t,τ)ξ .

• Figure 3 demonstrates that convergence is generically better in the hyperbolic case α < 0 < β

than in the strongly stable situation α < β < 0. Moreover, a slightly larger spectral gap does
not necessarily imply better convergence. The data have been ξ = (0.5,0), T = 10, Nn = 9+2n,
ψ

+
0 (t) = Φ(t,τ)ξ , and we used linear interpolation.

• From Figure 4 (left), we see that Algorithm 3.3 is quite insensitive under the kind of refinement
sequence Nn. The data have been ξ = (0.5,0), T = 10, α = −1, β = 1 and Nn = 9 + 2n, and
we used linear interpolation. For exponential refinement Nn = 9 + 2n, the recursion depth was
10 (and thus, N10 = 1033), in contrast to 32 for polynomial refinement Nn = 10 + n2 (and thus,
N32 = 1034).
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FIG. 3. Subsection 5.1: Relative error vs. number of evaluations in Algorithm 3.3 — Left: α = −1, β = 1 (�) and α = −2,
β =−1 (∗). Right: α =−1, β = 1 (�) and α =−3, β = 1 (∗)
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FIG. 4. Subsection 5.1: Relative error vs. number of evaluations in Algorithm 3.3 — Left: Nn = 9+2n (�) and Nn = 10+n2 (∗).
Right: T = 10 (�) and T = 5 (∗)

• As shown in Figure 4 (right), the performance was better for smaller values of the truncation
length T > 0. Consequently, the estimates for T required from (3.9) are too pessimistic. The data
have been ξ = (0.5,0), α =−1, β = 1, Nn = 9+2n and ψ

+
0 (t) = Φ(t,τ)ξ .

• Figure 5 demonstrates that Algorithm 3.3 with an adaptive integration scheme quad is robust
and yields convergence for large values of ξ (also in comparison to the corresponding discrete
examples discussed in Pötzsche & Rasmussen (2008)). Here, as predicted in Theorem 3.2, the
error grows linearly with ‖P+(τ)ξ‖, whereas the number of evaluations grows logarithmically.
We chose ξ = (0.5,0), T = 10, α =−1, β = 1 and Nn = 9+2n and used linear interpolation.
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FIG. 5. Subsection 5.1: Performance vs. the argument ξ ∈ [1,20] in Algorithm 3.3 with quad — Left: ξ vs. the relative error.
Right: ξ vs. number of evaluations

5.2 A nonautonomous test example

While the above nonautonomous example was continuously differentiable in t, we now allow a more
general time dependence. Here, suppose that α,β are reals with α < 0 < β and ω ∈L ∞(R,R). Instead
of (5.2), we consider the nonautonomous planar ODE{

ẋ1 = αx1
ẋ2 = βx2 +

[
1+(2α−β )2

]
ω(t)x2

1
, (5.3)

which also fits into the framework of Section 2. The general solution for (5.3) is

ϕ(t;τ,ξ ) :=
(

eα(t−τ)ξ1

eβ (t−τ)ξ2 + eβ te−2ατ ξ 2
1
[
1+(2α−β )2

]∫ t
τ

ω(s)e(2α−β )s ds

)
for all t,τ ∈ R, ξ ∈ R2.

Initial pairs (τ,ξ ) ∈ R3 leading to solutions starting on the stable integral manifold of (5.3) can be
obtained from the limit relation limt→∞ ϕ(t;τ,ξ ) = 0, which reduces to the condition

lim
t→∞

(
eβ (t−τ)

ξ2 + eβ te−2ατ
ξ

2
1
[
1+(2α−β )2]∫ t

τ

ω(s)e(2α−β )s ds
)

= 0. (5.4)

As in equation (5.2), the unstable integral manifold of (5.3) is S− = R×{0}×R and therefore of little
interest for approximation purposes. Yet, our approximation technique is applicable to (5.3) if we set

A(t)≡
(

α 0
0 β

)
, F(t,x) =

[
1+(2α−β )2]

ω(t)
(

0
x2

1

)
,

and as in Subsection 5.1, we can verify

‖F(t,x)−F(t, x̄)‖6 2ρ
[
1+(2α−β )2]‖ω‖

∞
‖x− x̄‖ for all t ∈ R, x1, x̄1 ∈ [−ρ,ρ] , x2, x̄2 ∈ R

with ρ = 2
9 (β −α); the assumptions of Theorem 2.3 are met for the modified equation (2.15) with

` = 4
9 (β −α), σ = 17

36 (β −α).
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In case we choose ω as characteristic function of the interval [−1,1], i.e., ω(t) = χ[−1,1](t), the above
limit relation (5.4) yields the explicit representation S+ =

{
(τ,ξ ,s+(τ,ξ )) ∈ R3 : (τ,ξ ) ∈ R2

}
with

s+(τ,ξ ) =
1+(2α−β )2

2α−β
e(β−2α)τ

ξ
2


e2α−β − e−(2α−β ), τ 6−1,

e2α−β − e(2α−β )τ , |τ|6−1,

0, τ > 1.

Having this available, we tested Algorithm 3.3 for the computation of the stable manifold S+ with
T = 10, Nn = 9 + 2n and different integration schemes. The following table shows the mean absolute
error, the mean number of evaluations and the mean difference of the final two iterations over a 31×21-
grid for τ ∈ [−3,2], ξ ∈ [−1,1]. Here, for fixed (τ,ξ ) and maximal iteration depth d the difference of
the final two iterations is given by the norm of P−(τ)[ψ+

d (τ)−ψ
+
d−1(τ)] and can serve as criterion to

terminate the iteration in Algorithm 3.3.

method d error evaluations difference remark
mid 7 4.22e-3 1.41e+5 5.76e-3
trap 7 2.74e-2 1.42e+5 2.51e-2
quad 6 1.06e-1 4.72e+3 2.46e-3
quad 7 1.05e-1 8.98e+3 2.41e-4 Nn = 100+n2

quad(10) 4 5.85e-4 3.37e+4 8.14e-5
quad(10) 5 5.04e-4 3.66e+4 8.14e-5
quad(10) 6 4.34e-4 4.00e+4 7.07e-5

The poor performance with the routine quad is illustrated in Figure 6. The adaptive method overlooked
the discontinuity of the function ω at t = 1 leading to unacceptably large errors (cf. Figure 6 (right)) for
τ ∈ [0,1]. Also a refinement sequence Nn = 100+n2 starting with a larger number of subintervals led to
no significant improvement. Yet, this problem was circumvented by subdividing the integration interval
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FIG. 6. Erroneous computation of the stable integral manifold from Subsection 5.2 using quad in Algorithm 3.3 with α = −1,
β = 1 for ω(t) = χ[−1,1](t), τ ∈ [−3,2] — Left: stable manifold. Right: absolute error.

to evaluate the integral operator in Algorithm 3.3 into several subintervals and applying quad to each
subinterval. We consequently used quad(10), which led to the better results illustrated in Figure 7.

In Figures 8 and 9, we used Algorithm 3.3 with quad(10) and recursion depth 6 to compute the
stable manifolds S+ of (5.3) for hyperbolic growth rates α =−1, β = 1 and different functions ω:
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FIG. 7. Number of evaluations (left) and absolute error (right) from Subsection 5.2 computed using quad in Algorithm 3.3 with
α =−1, β = 1 for ω(t) = χ[−1,1](t), τ ∈ [−3,2].

ω(t) tmin tmax evaluations difference
discontinuous sgnsin(4t2) 0 1.77 53715 7.84e-5 (61×41 grid)

discontinuous bump χ[−1,1](t) −3 2 40021 7.08e-5
discontinuous periodic sgnsin t −π π 41323 1.61e-4

−2π 2π 41299 1.59e-4
sgnsin(2t) −π π 41985 1.43e-4

piecewise constant sgn t −2 2 40923 1.64e-4
smooth transition arctan t −3 3 40599 1.53e-4

Finally, we compared Algorithm 3.3 and Algorithm 4.2, as well as different refinement schemes in
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FIG. 8. Stable integral manifold from Subsection 5.2 with α = −1, β = 1 computed using Algorithm 3.3 with quad(10) —
Left: ω(t) = χ[−1,1](t), τ ∈ [−3,2]. Right: ω(t) = sgnsin(2t), τ ∈ [−π,π]

Algorithm 4.2, by plotting the relative error versus the number of evaluations for the autonomous version
of (5.3) with the parameters α =−1, β = 1 and constant ω(t)≡− 3

10 on R. In both cases, we computed
the value of the stable manifold s+(ξ ) at ξ = 1 with a maximal recursion depth of 10; the quadrature
method was quad.
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FIG. 10. Subsection 5.2: Computation of s+(ξ ) for ξ = 1 — Left: Algorithm 3.3 (�) and Algorithm 4.2 (∗). Right: Algo-
rithm 4.2 with refinement strategies hn = 1/n, Nn = n2 (�) and hn = 1/2n, Nn = n2n (∗)

• Figure 10 (left) illustrates the performance of Algorithm 3.3 (with T = 10 and Nn = 9+2n) versus
Algorithm 4.2 (with refinement hn := 1/n and Nn := n2).

• On the other side, Figure 10 (right) shows the results of Algorithm 4.2 for the two refinement
strategies hn := 1/n, Nn := n2 and hn := 1/2n, Nn := n2n. In the latter strategy we qualitatively
follow the requirement (4.5), i.e., (hn)n∈N decays exponentially, while (hnNn)n∈N grows linearly.

Due to the better performance, we preferred Algorithm 3.3 for our computations in the next subsections.

5.3 SIRS epidemic model

The following SIRS model to describe influenza epidemics is adapted from Dushoff et al. (2004). Pro-
vided x1 denotes the number of susceptible and x2 is the number of infected individuals, it is given by
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the nonautonomous planar ODE {
ẋ1 = µ(ν− x1− x2)− ω(t)

ν
x1x2

ẋ2 =−δx2 + ω(t)
ν

x1x2
, (5.5)

where δ−1 > 0 is the mean infectious period, µ−1 the average duration of immunity, ν > 0 the total
population size and ω ∈ L∞(R,R) is the time-dependent contact rate. Throughout, we suppose

ess inft∈R ω(t) > δ .

Above all, we have to transform (5.5) into our standard form (2.2). Clearly, (ν ,0) is an equilibrium,
and we apply the transformation x 7→Λ(t)(x− (ν ,0)) to (5.5), where

Λ(t) :=
(

1 λ (t)
0 1

)
, λ (t) :=

∫ t

−∞

(µ +ω(s))e
∫ t

s (δ−µ−ω(r))dr ds.

Note that λ is the unique bounded solution of the scalar ODE ẋ = (δ − µ − ω(t))x + µ + ω(t)
(cf. (Aulbach & Wanner, 1996, Lemma 3.2)) yielding that Λ is a Lyapunov transform (meaning that
Λ , Λ(·)−1 and Λ̇ are bounded) and that the transformed equation (5.5) is of the form (2.2) with

A(t)≡
(
−µ 0
0 −δ +ω(t)

)
, F(t,x) = (x1−λ (t)x2)x2

ω(t)
ν

(
λ (t)−1

1

)
.

Consequently, (2.1) admits an exponential dichotomy on R with rates α =−µ , β = ess inft∈R ω(t)−δ

and invariant projectors

P+(t) =
(

1 −λ (t)
0 0

)
, P−(t) =

(
0 λ (t)
0 1

)
.

It is not difficult to see that the stable integral manifold of (2.2) is Ŝ+ = R×R×{0}, and consequently,
the stable manifold of (5.5) corresponding to the equilibrium (ν ,0) is given by

S+ =
{
(τ,ξ ,ν) ∈ R3 : (τ,ξ ) ∈ R2} .

Hence, our goal is to compute the unstable manifold S− for (2.2) resp. (5.5). Differing from the test
examples discussed above, S− is not known explicitly.

We worked with growth rates µ = 1, δ = 1, a population size ν = 1 and various functions for the
time-dependent contact rate ω . In Algorithm 3.3, we fixed T = 10, Nn = 9 + 2n and tested the above
integration schemes. The subsequent experiments show the mean number of evaluations and the mean
difference of the final two iterations. Here, d is the maximal iteration depth.

For a constant contact rate ω(t) ≡ 2 (and τ ∈ [−1,1], ξ ∈ [−0.2,0.2] over a 21× 21-grid), we
obtained

λ (t)≡ 3
2

method d evaluations difference
mid 5 10804 5.96e-5
trap 5 10952 5.21e-4
quad 6 4387 4.15e-5
quad(10) 6 36127 3.88e-5
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For piecewise constant ω(t) ≡ 2 + 1
2 sgn t (and τ ∈ [−0.5,1], ξ ∈ [−0.15,0.05], 21× 21-grid), we

get

λ (t) =

{
5
3 , t 6 0
46
15 −

7
5 e−

5
2 t , t > 0

method d evaluations difference
quad 6 4739 1.20e-4
quad 7 9100 4.08e-5
quad(10) 6 36070

Finally, for a 2π-periodic contact rate ω(t) ≡ 2 + 1
2 sin t (and τ ∈ [−π,π], ξ ∈ [−0.15,0.1] over a

41× 21-grid) it is not possible to compute the function λ explicitly. Hence, in order to evaluate the
transformation Λ(t), we applied a Gauß-Laguerre formula with 20 nodes to approximate

λ (t) =
∫

∞

0 (µ +ω(t− s))e
∫ t
t−s(δ−µ−ω(r))dr ds

method d evaluations difference
quad 6 4373 2.81e-4
quad(10) 6 36115 2.77e-4

The unstable integral manifolds for the Λ -transformed system (5.5) are depicted in Figure 11. Applying
the inverse transformation Λ(·)−1 to these results yields the unstable manifolds for the initial system.
The corresponding number of function evaluations is illustrated in Figure 12.
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FIG. 11. Unstable integral manifold from Subsection 5.3 with µ = 1, δ = 1, ν = 1 computed using Algorithm 3.3 with quad(10)
— Left: ω(t)≡ 2+ 1

2 sgn t, τ ∈ [−0.5,1]. Right: ω(t) = 2+ 1
2 sin t, τ ∈ [−π,π]

5.4 Colpitts oscillator

The following example illustrates our methods using an autonomous ODE, whose right-hand side is
globally Lipschitz but not continuously differentiable. The Colpitts oscillator (see, for instance, Maggio
et al. (2000)) is one of the most widely used single-transistor circuits to produce sinusoidal oscillations.
Mathematically, it is given by a 3-dimensional system

ẋ1 = 1
ε
(x3−n(x2))

ẋ2 = k−1
ε

x2
ẋ3 =− ε

k (x1− x2)−2qx3

(5.6)
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with parameters ε,q > 0, k > 1 and a piecewise-defined, but continuous nonlinearity

n(x) :=

{
−x, x6 1
−1, x > 1

.

Obviously, (5.6) admits the trivial solution, and we can write it in semilinear form ẋ = Ax+F(x) with

A :=

 0 0 1
ε

0 0 k−1
ε

− ε

k − ε

k −2q

 , F(x) :=−1
ε

n(x2)
0
0

 .

Since the spectrum of A is given by σ(A) = {0,−q±ω}, ω :=
√

q2−1, we know that Assumption 2.1
holds with growth rates α,β satisfying ℜ(−q+ω) < α < β < 0, and we can fulfill Assumption 2.2 pro-
vided 2

ε
< ℜ(q−ω) holds. Thus, equation (5.6) possesses a 2-dimensional stable and a 1-dimensional

center manifold. The computation of these manifolds get simplified if we apply the transformation

T :=

 1 1 −1
k−1 k−1 1

ε(−q+ω) ε(−q−ω) 0


to (5.6), and we arrive at an equivalent system with decoupled linear part

ẋ =

−q−ω

−q+ω

0

x− n((k−1)(x1 + x2)+ x3)
kε

 q+ω

2ω−q+ω

2ω

1− k

 .

Due to the autonomous nature, its integral manifolds do not depend on time, i.e., they are invariant
manifolds. The Lipschitz-continuous 2-dimensional stable manifold S+ = {(ξ ,s+(ξ )) ∈ R3 : ξ ∈ R2},
as well as the 1-dimensional center manifold S− = {(s−(η),η)∈R3 : η ∈R} are depicted in Figure 13.
Here, we used parameters q = 2, ε = 8 and k = 5.

Let us use the present example (with the same parameters as above) to compare both Algorithm 3.3
and 4.2 with maximal iteration depth d to obtain the following results:
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FIG. 13. Stable manifold (left) and center manifold (right) from Subsection 5.4 with q = 2, ε = 8 and k = 5.

• Algorithm 3.3: We fixed T = 50, Nn = 9 + 2n and tested our integration schemes in case of the
stable manifold S+. The following table contains the mean number of evaluations and the mean
difference of the final two iterations over a 41×41-grid with ξ ∈ [−1,1]2.

S+ d evaluations difference
mid 7 59000 1.92e-2
trap 7 60180 6.43e-3
quad 7 35770 1.36e-2

• Algorithm 4.2: This algorithm is not directly applicable for the stable manifold S+, since As-
sumption 4.1 is not fulfilled. However, we used the spectral transformation y = eκtx with κ = 0.3
as described in Remark 4.1 and approximated the 0-fiber of the transformed system (4.1) which
coincides with the stable manifold S+. We fixed hn := 1/n and Nn := n2, n ∈ N, and the sub-
sequent table shows the mean number of evaluations and the mean difference of the final two
iterations over a 41×41-grid with ξ ∈ [−1,1]2.

S+ d evaluations difference
mid 7 43050 1.61e-1
trap 7 43911 1.60e-1
quad 7 242913 1.63e-1

In each case, the number of evaluations lies in the same region; however, the mean difference of the
final two iterations is significantly higher for Algorithm 4.2. This underlines the observations from
Subsection 5.2, where we have also compared both algorithms.
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L. Grüne & P.E. Kloeden (2006). ‘Higher order numerical approximation of switching systems’. Syst. Control

Lett. 55(9): 746–754.
B. Krauskopf, H.M. Osinga, E.J. Doedel, M.E. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz &

O. Junge (2005). ‘A survey of methods for computing (un)stable manifolds of vector fields’. International
Journal of Bifurcation and Chaos 15(3):763–791.

J. Kurzweil (1986). Ordinary Differential Equations. Studies in Applied Mathematics 13. Elsevier, Amsterdam.
D. Liberzon (2003). Switching in Systems and Control. Birkhäuser, Basel.
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