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Abstract

Given the extension E/F of Galois fields, where F = GF(g) and £ = GF(q"), we prove that,
for any primitive b € F~, there exists a primitive element in E which is free over F and
whose (., F)-norm is equal to b. Furthermore, if (¢.n) # (3.2), we prove that, for any nonzero
b € F, there exists an element in £ which is free over £ and whose (£, F)-norm is cqual to b.
A preliminary investigation of the question of determining whether, in searching for a primitive
element in £ that is free over F, both the (E.F )}-norm and the (£, F }-trace can be prescribed is
also made: this is so whenever n>=9. © 2000 Elsevier Science B.V. All rights reserved.
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1. The problems PFN, FN and PFNT

To any pair (¢q,n), where g>1 is a prime power and n>1 is an integer, there
corresponds the extension E/F of the Galois fields F = GF(g) and £ = GF(g"). It is
well known that the multiplicative group £~ of £ is cyclic; each generator is called
a primitive element of E. 1t is also a classical result that there exists an F-basis of
E of the form {w, 11“/.....1»"/"71} (for some w € E). Such a basis is called a normal

hasis of E orer F i d free in E orver ! i
basis of E over F. w is called free in E over F.' In completion of

of Carlitz [1] and Davenport [5] it was proved only in 1987, by Lenstra and Schoof
[10] that there always exists a primitive clement w in £ which is also free over F,
L.e., a primitive normal basis for E over F always exists. Equivalently, for every pair
(g.n), there exists a monic polynomial g =x" + g, (x""'+ -+ px + iy of degree n
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"'In [4] and several other papers w is called normal over F. but we here prefer the term free.
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in GF(g)[x] which is irreducible over GF(g) and whose roots are primitive in GF(g")
and linearly independent over GF(g). u is thercfore called a primitive free polyvnomial
for GF(g") over GF(q).

In {4] the authors proved a conjecture of Morgan and Mullen [12] which states
that, for every pair (g.n) and for every nonzero a € F = GF(q), there exists a
primitive c¢lement w in £ = GF(¢") which is free over F and whose (£, F)-trace
Tre p(w)= Z:':O' wl is equal to a. As p,_; = —Trz s(w) if w is a root of u, this is
equivalent to the fact that the coefficient w,_, of a primitive-free polynomial for F
over F can be prescribed as long as it is nonzero (of course, the trace of a free cle-
ment is always nonzero). (This solved what might be described as the PFT-problem.)
It is natural to ask whether certain other coefficients of a primitive-free polynomial
can also be prescribed. An obvious choice 1s g, since pg = (—1)'Ng p(w) where
Nerp(w) = H;’:—Ol wi denotes the (E.F)-norm of w. As the (£,F)-norm of a primi-
tive element of E is always primitive in F, we are therefore led to the following
problem.

Problem PFN. Given a finite extension E/F of Galois fields and a primitive element
b in F, does there exist a primitive element w in E which is free over F and whose
(E,F)-norm is equal to b?
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If the answer is ‘ves’ for each primitive b, then the pair {(q,n) corresponding to

E/F is called a PFN-pair.
One of the main results of the present paper is the solution of the PFN-problem.

Theorem 1.1. Let g > 1 be a prime power and n=1 be an integer. Then (q,n) is a
PEFN-pair.

The proof of Theorem 1.1 cor arts. In Section 2 (see Theorem 2.1), we
first characterize those pairs (¢,n) for which the existence of a primitive free element
is already sufficient for the pair to be a PFN-pair, i.e.,, when the PFN-problem can
be reduced to the Primitive Normal Basis Theorem of Lenstra and Schoof [10] (for
simplicity, we denote the latter as Problem PF). The reduction applies to all cases
where n is small, e.g., for all pairs (¢,n) where n<[5 and n # 9. This is an important
step, since possible exceptions are expected for extensions of small degrees rather than
large degrees. In Section 3, we complete the proof of Theorem 1.1 by solving Problem
PEN for all pairs (q.n), where n =9 or n=16. We shall achieve the latter through

consideration of the following stronger problem.

Problem PFNT. Given a finite extension E/F of Galois fields, a primitive element b
in F and a nonzero element a in F, does there exist a primitive element w in E which
is free over F, whose (E,F)-norm is equal to b and whose (E,F)-trace is equal to a?

If the answer is “ves® for each pair (a,b), then the pair (g,n) corresponding to E/F
is called a PFNT-pair.
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In Section 4, we will characterize those instances (g.n) for which Problem PFNT
can be reduced to Problem PFN. Together with the results obtained in Section 3, this
yields the second main result of the present paper.

Theorem 1.2. Let g > | be a prime power and n=7 be an integer. Assume that (q,n)
does not belong to the following list of pairs:

(89,8),(41.8),(25,8),(17.8),(13.8).(7.8),(64,7),(4,7).
Then (g,n) is a PENT-pair.

In a further paper [3], sieve-methods are employed in order to handle Problem PFNT
for the possible exceptions occurring in Theorem 1.2 as well as for the cases n =6
and 5. In particular, it is proved that (64,7) and (4,7) are PFNT-pairs, whence, by
Theorem 1.2, (g.#) is a PFNT-pair for each primc power ¢ > 1 and each prime r>=7.
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The latter result is important for [7], where, in order to demonstrate the existence

of trace- and norm-compatible sequences of primitive {completely) free elements for

prime power extensions, a generalization of the PFNT-problem, is considered.
Finally, in Section 5, we study Problem FN, which is not merely a relaxation of Prob-

lem PFN, since 4 is assumed to be any nonzero element of F, not necessarily primitive.

Problem FN. Given a finite extension E/F of Galois fields and a nonzero element b
in F, does there exist a free element w in E whose (E,F)-norm is equal to b?

If the answer is “yes’ for all b, then the pair (q,n) corresponding to E/F is called
an FN-pair.

The third main result is the following.

Theorem 1.3. Let g > 1 be a prime power and n=1 be an integer. Assume that (q.n)
is not equal to (3,2). Then (q,n) is an FN-pair. With regard to the case (q.n)=(3.2).
if w € GF(9) is free over GF(3), then the (GF(9), GF(3))-norm of w is —1.

We remark that the existence of primitive elements with arbitrary trace (which would
be Problem PT in our notation) was completely solved in Cohen [2]: if n=3 and
(g.n)#(4.3), then, for every a € F, there exists a primitive element w € E such that
Tre p(w) = a. Moreover, if n =2 or (q.n) =(4,3), then, for every nonzero a € F.
there exists a primitive element w € E such that Trgp(w) = a. (Concerning primitive
elements with nonzero trace, for n>3 the latter result was independently proved by
Jungnickel and Vanstone [9] (see also Section 7.5 in [8]).)

Finally, on the philosophy of tackling problems in this serics, we comment that,
although in every case, the number of relevant objects can be expressed in terms of
character sums of various kinds (thereby yielding a solution for all but finitely many
values of g and n), it is by exploiting non-counting theoretical arguments (such as
links between the problems) that we can obtain complete solutions without excessive
computation or direct verification.
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2. Reducing Problem PFN to Problem PF

In the present section we consider those pairs (¢,#n) for which Problem PFN can be
reduced to Probiem PF.

Theorem 2.1. Ler g > | be a prime power and n=1 an integer. Let q — 1 = 274
and n = 2PB where AB is odd Assume that o=f — 1| if =2 and that
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Corollary 2.2. Assume that n=2ngy, where nq is odd and square-free and where e <3.
Then (g,n) is a PEN-pair for all prime powers q > 1.

Example 2.3. Let ¢g>1 be a prime power and

ne {1,2,3.....311\{9.16,18,25,27}.

For the proof of Theorem 2.1, we quote a result from [10]. Given the pair (q.n),
let again £ = GF(¢") and F = GF(q). For a divisor d of ¢" — 1, let C; be the unique
subgroup of order d of E*; furthermore, let I'; be the set of generators of Cy, t.e., the
set of all x € £* having multiplicative order ord(x) equal to d. There are exactly ¢(d)
such elements, where ¢ denotes Euler’s totient function. The following result, drawn
from [10] (see (1.12)), characterizes the largest subgroup of E* which leaves the set
of free elements over F invariant under multiplication. Throughout, given (g,n), we
let o:=(g — 1) - ged(g — L, n): observe that ¢ divides ¢” — 1.

Proposition 2.4. For a given pair (q.n) let E,F.d be as above. Assume that 7. € Cg
and that y € E is free over F. Then 1y likewise is free in E over F.

Proof of Theorem 2.1. Consider a prime divisor » of ¢ — 1, and denote by 7 and r”,
respectively, the largest power of » dividing ¢ — 1 and n, respectively. We assume first
that either » is odd, or that » =2 and ¢ — 1 is divisible by 4. Then (see e.g., Lemmas
19.4 and 19.5 in [6]), R:=r“"" is the largest power of r dividing ¢" — 1, i.e., Cy is
the Sylow-r-subgroup of E*. Assume further that »<a. Then R divides 0 and thus, if
v € E is any primitive clement which is free over F, Proposition 2.4 implies that yCp
entirely consists of elements which are free in £ over F. We write y in the form y,y,
where y; € I'y and where ord(y3,) = (¢" — 1)/R is relatively prime to R. If { € Ck,
then {y is primitive in £ if and only if {y, € I'g. Since I'x=Cg\Cg , the latter holds if
and only if { is not contained in the coset yl_]CR . of Cg.. in Cg. This allows exactly
R — R/r = p(R) choices for { in Cr such that {y remains primitive. We next consider
properties ot the (£, F )-norm (which for simplicity 1s denoted by N throughout). Let
J:=N({) and x:=N(y) = y¢ D=1 Similar to the above, we write x = x x, with
x; € I'.« being equal to N(y;) and with ord(x>) = (¢ — 1)/7“ being indivisible by r.
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Then /x is primitive in £° if and only if 4 does not belong to the coset of x;'C,..z.»\
of C..-1 in C., which gives r* — r*~! = @(r?) suitable choices for .. Since r” is the
largest power of » dividing (¢” — 1)/(¢ — 1) (see Lemmas 19.4 and 19.5 in [6] and
their proofs), the restriction of N to Cy gives an epimorphism onto C.. with kernel
C,+, and the preimage of /. in Cgr under N is thus equal to {C.. which has cardinality
" Similarly, the restriction of N to Cy, gives an epimorphism onto C,.— with kernel
C,». We therefore conclude that

(N ) € Cr\yy "ol = {dxy: 2 € G\, ' Crami } = T,

which means that each element of I',. occurs as the C.-part of the norm of some
primitive element in £ which is free over F£.

Assume next that b > a. (By our assumptions, this case is needed only if » =2.)
Then ¢ is the largest power of » dividing J, whence the Sylow-#-subgroup C, of Cs
is a proper subgroup of Cz. As N(C,: )= C,x—:, the Primitive Normal Basis Theorem
of Lenstra and Schoof even guarantees the existence of r2 % <r*! < (r*) elements
occurring as the Cy.-part of a primitive element of £ which is free over F. Thus, if
b=ua+ 1 and r =2, then r“~" = (r*) and therefore, as above,

N(y1C) = x1Coumr = Tao.

We finally consider the case where » =2 and where ¢ = 3(mod4) (i.e., a =1). But
here, the C,-part of the norm of each primitive element in £ is always equal to —1
(no matter how large b is). This completes the study of the Sylow subgroups of £*
belonging to prime divisors of ¢ — 1.

Observe now that F* is equal to the direct product of its Sylow-r-subgroups C.
(where now for r dividing ¢ — 1, #“V" denotes the largest power of » dividing ¢ — 1).
Observe also that I,_|, i.e., the set of primitive elements in F, is equal to the product
of the sets [,«.. We are therefore able to combine the above results to deduce that
each element of I',_, occurs as the norm of some primitive element in £ which is free
over F provided the following conditions hold, where now 7"’ denotes the largest
power of r dividing n:

(a) b(r)y<a(r), if r is an odd prime divisor of ¢ — 1, and
(b) b(2)<a(2)+ 1, if ¢ — 1 is divisible by 4.

Since this is a reformulation of the contents of Theorem 2.1, everything is
proved. [

3. PFNT-pairs and the solution of Problem PFN

In the present section we shall complete the proof of Theorem 1.1. For this purpose,
we consider the stronger Problem PFNT.
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Throughout, for a given pair (g,n), let P = P(g.n) be the largest divisor of ¢" — 1
which is relatively prime to ¢ — 1, and let @ = w(P) be the number of distinct prime
divisors of P. Furthermore, let ¢ = t(g,n) be the largest divisor of x" — 1 which is
relatively prime to x — 1, and let Q = Q(¢) be the number of distinct monic divisors
d # 1 of ¢ which are irreducible over F = GF(g). The following result provides a
sufficient criterion for (¢,n) to be a PFNT-pair; it is a special case of Proposition 3.1
in [7] (which is proved by examining the characteristic functions of primitive and free
elements with prescribed norm and trace which are given in terms of Gauss sums and
other character sums). For the basic theory of such characters and sums over finite
fields, we refer to [11, Chapter 5; 8, Chapter 7].

Proposition 3.1. For a given pair (q,n) let P,w,t,Q be defined as above. Assume that

g"? (o~ Ny L) -
e o\ T \F ) 3.

Then (q,n) is a PFNT-pair.

Using Proposition 3.1, we shall show that for n>7 there are at most 18 pairs (g,n)
which fail to be a PFNT-pair. (In Section 4, this list of possible exceptions is eventually
reduced to the 8 members listed in Theorem 1.2.)

In order to apply Proposition 3.1, it is useful to have upper bounds for the parameters
w and Q. First, an application of Lemma 2.6 in [10] gives the following: if />1 is an
integer and A a set of primes s </ such that each prime divisor » </ of P is contained
in A, then, with L =L(A):=]],. s and |4] being the cardinality of A it holds that

logP — 1
W< logP — logL
log [

Since P is odd, we may always take A to be a set of odd primes. Secondly, we use
upper bounds for Q which are given in the form

+14]. (3.2)

Q<on + f, (3.3)

where, depending on the situation, >0 and f§ are suitable rational numbers (see e.g.,
Lemma 4.3 in [4]). Proposition 3.1 in combination with (3.2) and (3.3) yield the
following equivalent sufficient criteria for (¢,n) to be a PFNT-pair. We leave the
simple calculations to the reader.

Lemma 3.2. If for some choice of 1, A, x and f either (3.4) or (3.5) is true, then
(g,n) is a PFNT-pair.

n—4 n—1 log L
— 1 > Al — ——, 4
(10g4 logl) ogg=an+f+| log !/ G4)
logg logg 2logg logg logL
=2 _ 22y > - =7 Al — : :
<log4 log/ ) log2 log/ B+ log/ (3-3)
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We are now going to analyse these conditions for n>7. The necessary calculations
can be done with a computer algebra system (Maple for instance).

Case 1. Assume first that #>10 and that ¢ > 11. We choose / = 72 and, observing
that P is always odd, let A be the set of all odd primes less than 72.

Case la: Assume further that ¢ is congruent to | mod »n. Then Q=n—1, whence, as-
suming that (g,n) is not a PFNT-pair, (3.4) implies n<22. For each n € {10,11,...,22}
we use (3.5) to obtain a concrete upper bound for ¢, i.e., ¢ <407 if n =10, or g<231
if n =11, etc. For each pair in this range we either use (3.4) (yet with A being the
set of all primes r less than 72 which are prime to ¢ and for which » is divisible by
the multiplicative order of ¢ modulo ») or Proposition 3.1. The assumption that (g,n)
is not a PFNT-pair thus leaves the following pairs for which (3.1) fails:

(16,15),(13,12),(11.10). (3.6)
Case 1b: We assume next that ¢ — 1 is not divisible by ». If the characteristic p

of F does not divide n, we may take « = 3/4 and = —1 (see Lemma 4.3 in [4])
and obtain n <24 by (3.4). An analysis analogous to Case 1 shows that all pairs under
consideration are in fact PFNT-pairs. If p divides n, we may choose a=1/2 and f=—1
to satisfy (3.3) and to obtain n< 13 from (3.4). Again, all pairs under consideration
turn out to be PFNT-pairs.

Case 2: We now consider all cases where n>10 and where ¢ € {9.8,7.5,4}. For
q=9.8 we again choose /=72, while for g =7,5,4 we choose /= 200. Furthermore,
for ¢ =9,8,7 we may take « =3/4 and f§ = —1, while for g =5, x=1/3 and =5
are suitable (see again Lemma 4.3 in [4]). f g=4 and n # 15, let x=1/3 and f=1.
If ¢ =9 we may assume that 3 ¢ A. An application of (3.5) shows that the failing
of (¢g,n) to be a PFNT-pair implies »n<<125. As in the foregoing cases, we test all
remaining pairs to determine whether condition (3.4) (using a modified choice of A)
or (3.1) is satisfied. It turns out that all pairs under consideration are PFNT-pairs. For
g € {8,7,5,4} we proceed similarly: we may assume that 7¢ A if ¢ =8,7; 3 & A if
g=17.4; and 5 ¢ A if ¢ =5. The only pairs (g,n) which do not satisfy (3.1) are the
following three pairs:

(4,15),(7.12),(5,12). (3.7)

Case 3: We finally consider all cases where n € {9,8,7} and where ¢ >4. Again, for
a given n, we use (3.4) to get an upper bound for g, where, depending on ¢ modulo
1, we have various bounds for Q. We omit the routine details here, and simply report
that the pairs (¢.n) under consideration which do not satisfy (3.1) are precisely the
following:

(4.9),
(89,8).(41,8).(25.8).(17.8).(13.8).(9,8),(7,8).(5.8). (3.8)
(64,7).(8,7).(4.7).

We are now able to complete the proof of Theorem 1.1.
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Since every PFNT-pair obviously is a PFN-pair, by Theorem 2.1 and the results of
the present section, it suffices to show that (2.#) and (3.n) are PFN-pairs for each
n=1 and that (4,9) is a PFN-pair.

Firstly, it is clear that (2,n) is also a PFNT-pair for each » > 1: trivially, this follows
already from [10] since trace and norm have to be equal to 1. Secondly, it follows
from [4] that (3.n) is also a PFNT-pair for all n>1, since each primitive element
has fixed norm equal to —1 in this case. It finally remains to show that (4,9) is a
PFN-pair. We will see in the next section that (4,9) is also a PFNT-pair. Here, we
shall prove directly that each pair (4,n) is a PFN-pair: if w is primitive and free in
GF(4") over GF(4), then w- is likewise primitive and free in GF(4") over GF(4), but
w? has a different norm from w. Since there are only two primitive elements in GF(4),
everything is proved. [

4. Reducing Problem PFNT to Problem PFN

By Theorem 1.1, the following 10 pairs (¢,n) (which are among the 18 pairs in
(3.6), (3.7) and (3.8)) are all PFN-pairs.

(16.15).(4,15).(13.12),(7.12),(5.12),(11,10),(4.9).(9.8).(5,8),(8, 7).

Since they fail (3.1) in Section 3, we were not able to show there that these are
PFNT-pairs. In the present section we will see that all these pairs are in fact PFNT-pairs:
this is a consequence of Proposition 4.1, which, under the assumption that ¢ — 1 divides
n, characterizes instances of Problem PFNT which can be reduced to Problem PFN.
Together with the analysis of Problem PENT in Section 3, this completes the proof of
Theorem 1.2.

Proposition 4.1, Ler g > 1 be a prime power and let n>1 be an integer. Assume

that q — 1 divides n. Then (q,n) is a PFNT-pair if and only if (q.n) is a PFN-
pair.

Proof. Let F'=GF(gq) and £ =GF(g"), let b € F* be primitive and a € F be nonzero.

Since (g,n) is a PFN-pair (by Theorem 1.1), there exists a primitive element y of £

which is free over F and whose (E. F)-norm is equal to b. Let x:=Try () 'ay. Then

x is free in £ over F and Trg p(x) = ¢. Furthermore, [by Lemma 2.5 and Proposition
nnnnnnnnn

Moreover, since g—1 divides n by assumption, we have that ¢—1 divides (¢”"—1)/(¢g—1)

(see e.g., Lemmas 19.4 and 19.5 in [6]). Therefore,

N/—"A‘L'(l‘) = (TrE,F(}’)_IG)w”—]) (g—1) b—bh

and everything is proved. [
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5. The solution of Problem FN

In this last section we consider Problem FN and prove Theorem 1.3. Given (g,n),
let 0 be as in Proposition 2.4, let P be as in Proposition 3.1 and let D:=(¢" — 1)/P
(whence o divides D). Proposition 5.1 can be seen as an analogue of Theorem 2.1.

Proposition 5.1. Assume that for a given pair (g.n) it is the case that 6 = D. Then
(g.n) is an FN-pair.

Proof. We use the same notation as in the proof of Theorem 2.1. The restriction of
N onto Cp gives an epimorphism onto F* with kernel Cp (,—1). If y is free in £ over
F, then, under the assumption that D = d, by Proposition 2.4, yCp consists entirely of
elements which are free in £ over F. As N(Cpy)= F*y, the norm of a free element
can be prescribed. [

Corollary 5.2. If n is a square-free odd number, then (q.n) is an FN-puair for each
q. Further. if (q.n) is an FN-pair, where n is odd and ¢ = 1 (mod4), then (q.2n) and
(q.4n) are FN-pairs.

Proposition 5.3 below provides a sufficient criterion for (¢,n) to be an FN-pair. It
can be seen as an analogue of Proposition 3.1 and is likewise proved by examining
the characteristic functions of free elements with prescribed norm given in terms of
Gauss sums character sums. We omit the proof and refer to Proposition 4.1 in [4] and
Proposition 3.1 in [7] for similar reasoning.

Proposition 5.3. For a given pair (q,n), let I' be the number of distinct monic divisors
d # 1 of x" — 1 that are irreducible over F = GF(q). Assume that

g"* > 2" = 1)g-2). (5.1)

Then (g,n) is an FN-pair.

It is easy to see that each pair satisfying (3.1) likewise satisfics (5.1). Thus, for
n=7, in order to show that (g,n) is an FN-pair, it is sufficient to test (5.1) for the
18 pairs listed in (3.6), (3.7) and (3.8), which fail (3.1). Moreover, since 12 of these
pairs fall within the scope of Proposition 5.1 and Corollary 5.2, for n>7, it remains
to check the following pairs:

(11,10),(7,12),(4,9),(13,8).(7.8),(5,8).
It is easy to see that (5.1) is satisfied in all six cases, whence Theorem 1.3 holds
whenever n>7.
In order to complete the proof of Theorem 1.3, using again Proposition 5.1 and

Corollary 5.2, it remains to check the cases n=6.4,2 for ¢ Z 1 (mod4). Trivially, we
may assume that g # 2. First let n = 6. Then ¢° > 63(q — 2) is satisfied for all ¢=>7,
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implying (5.1) for all g=7. The pairs (4,6) and (3, 6) likewise satisfy (5.1). Next let
n=4. Then ¢° > 15(¢ — 2) is satisfied whenever ¢>13, and (5.1) is likewise satisfied
for the pairs ¢ = 11,8.7,4,3. This establishes Theorem 1.3 for n =6 and n = 4.

Finally let n =2. Since ¢ > g — 2, (5.1) is satisfied if ¢ is even. Assume therefore
that ¢ is odd, indeed, by Corollary 5.2 that ¢ = 3 (mod 4). Evidently, an element w of
E that is free over F and has (&, F )-norm equal to b € £, is the root of an irreducible
quadratic x° +ax+5b (a € F*) over F. If y is the quadratic character of F, the number
of such irreducible quadratics is

1 5 -1
5 (@ =4 =To= =y,

d 2
ae - £4b

because > ., y(a® —4b)=—1 (see [11, Theorem 5.48]) and y(4h)= —y(—4b). since
g = 3(mod4). The result follows and the proof of Theorem 1.3 complete. [
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