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Summary. We are concerned with structural optimization problems in CFD where
the state variables are supposed to satisfy a linear or nonlinear Stokes system and
the design variables are subject to bilateral pointwise constraints. Within a primal-
dual setting, we suggest an all-at-once approach based on interior-point methods.
The discretization is taken care of by Taylor-Hood elements with respect to a sim-
plicial triangulation of the computational domain. The efficient numerical solution
of the discretized problem relies on adaptive path-following techniques featuring a
predictor-corrector scheme with inexact Newton solves of the KKT system by means
of an iterative null-space approach. The performance of the suggested method is
documented by several illustrative numerical examples.

1 Introduction

Simplified problems in shape optimization have already been addressed by
Bernoulli, Euler, Lagrange and Saint-Venant. However, it became its own dis-
cipline during the second half of the last century when the rapidly growing
performance of computing platforms and the simultaneously achieved signif-
icant improvement of algorithmic tools enabled the appropriate treatment of
complex problems (cf. [1; 3; 6; 9; 13; 14; 15] and the references therein). The
design criteria in shape optimization are determined by a goal oriented oper-
ational behavior of the devices and systems under consideration and typically
occur as nonlinear, often non convex, objective functionals which depend on
the state variables describing the operational mode and the design variables
determining the shape. The state variables often satisfy partial differential
equations or systems thereof representing the underlying physical laws. Tech-
nological aspects are taken into account by constraints on the state and/or
design variables which may occur both as equality and inequality constraints
in the model.
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Shape optimization problems associated with fluid flow problems play an
important role in a wide variety of engineering applications [13]. A typical
setting is the design of the geometry of the container of the fluid, e.g., a
channel, a reservoir, or a network of channels and reservoirs such that a desired
flow velocity and/or pressure profile is achieved. The solution of the problem
amounts to the minimization of an objective functional that depends on the
state variables (velocity, pressure) and on the design variables which determine
the geometry of the fluid filled domain. The state variables are supposed
to satisfy the underlying fluid mechanical equations, and there are typically
constraints on the design variables which restrict the shape of the fluid filled
domain to that what is technologically feasible.

The typical approach to shape optimization problems relies on a separate
treatment of the design issue and the underlying state equation what is called
alternate approximation in [1]: For a given initial design the state equation is
solved, followed by a sensitivity analysis that leads to an update of the design
variables. This process is iteratively repeated until convergence. Moreover,
many methods, e.g., those based on the concept of shape derivatives [6; 15],
only use first order information by employing gradient type techniques. In
this paper, we focus on a so-called all-at-once approach where the numerical
solution of the discretized state equation is an integral part of the optimization
routine (cf, e.g., [4; 5; 10; 12]). Moreover, we use second order information by
means of primal-dual interior-point methods. In particular, we consider an
adaptive path-following technique for the shape optimization of stationary
flow problems as described by a linear or nonlinear Stokes system in channels
where the objective is to design the lateral walls such that a desired velocity
and/or pressure profile is obtained. The design variables are chosen as the
control points of a Bézier curve representation of the lateral walls.

The paper is organized as follows: Section 2 is devoted to the setup of
the shape optimization problem including its finite element discretization by
Taylor-Hood elements. In section 3, we focus on the primal-dual interior-
point approach and a path-following predictor-corrector type continuation
method with an adaptive choice of the continuation parameter. Finally, in
section 4 we illustrate the application of the algorithm for the design of a
channel with a backward facing step assuming a linear Stokes regime and for
the shape optimization of the inlet and outlet boundaries of the ducts of an
electrorheological shock absorber, where the states satisfy a nonlinear Stokes
equation.

2 Shape optimization of stationary Stokes flow

We consider Stokes flow in a bounded domain Ω(α) ⊂ R
2 with boundary

Γ (α) = Γin(α) + Γout(α) + Γlat(α) consisting of the inflow, the outflow and
the lateral boundaries with n and t denoting the outward unit normal and unit
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tangential vector, respectively. Here, α = (α1, · · · , αm)T ∈ R
m is the vector

of design variables which are chosen as the Bézier control points of a Bézier
curve representation of Γ (α) and which are subject to upper and lower bounds
αmin

i , αmax
i , 1 ≤ i ≤ m. The state variables are the velocity u and the pressure

p. Given desired velocity and pressure profiles ud and pd, an inflow uin at the
inflow boundary Γin(α) and weighting factors κi ≥ 0, 1 ≤ i ≤ 2, κ1 + κ2 > 0,
the shape optimization problem can be stated as follows:

minimize J(u, p, α) =
κ1

2

∫

Ω(α)

|u − ud|2dx +
κ2

2

∫

Ω(α)

|p − pd|2dx, (1a)

subject to −∇ · σ(u) = 0 in Ω(α), (1b)

∇ · u = 0 in Ω(α),

σ(u) = −pI + g(u,D(u))D(u), (1c)

n · u = uin on Γin(α),

n · u = 0 on Γlat(α),

t · u = 0 on Γ (α),

αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m. (1d)

We note that in the constitutive equation (1c) the tensor D(u) stands for the
rate of deformation tensor D(u) := (∇u + (∇u)T )/2 and g(u,D(u)) denotes
the viscosity function which is given by g(u,D(u)) = ν for linear Stokes flow
and depends nonlinearly on u,D(u) in the nonlinear regime.
We choose α̂ ∈ K as a reference design and refer to Ω̂ := Ω(α̂) as the associ-
ated reference domain. Then, the actual domain Ω(α) can be obtained from
the reference domain Ω̂ by means of an isomorphism

Ω(α) = Φ(Ω̂;α) , (2)

Φ(x̂;α) = (Φ1(x̂;α), Φ2(x̂;α))T , x̂ = (x̂1, x̂2)
T

with continuous components Φi, 1 ≤ i ≤ 2. Due to the reference domain, finite
element approximations of (1) can be performed with respect to Ω̂ without
being forced to remesh any time the design parameters are changed.
We introduce (Th(Ω̂))N as a shape regular family of simplicial triangula-
tions of Ω̂. In view of (2), these triangulations induce an associated family
(Th(Ω(α)))N of simplicial triangulations of the actual physical domains Ω(α).
For the discretization of the velocity u and the pressure p we use Taylor-Hood
P2/P1 elements. We refer to ud

h ∈ R
n1 and pd

h ∈ R
n2 as the vectors repre-

senting the L2-projections of ud, p onto the respective finite element spaces
giving rise to the discrete objective functional

Jh(yh, α) :=
κ1

2
(uh − ud

h)T I1,h(α)(uh − ud
h) +

κ2

2
pT

h I2,h(α)ph,

where yh := (uh, ph)T and Ii,h(α), 1 ≤ i ≤ 2, are the associated mass matrices.
Further, denoting by
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Sh(yh, α) :=

(

Ah(uh, α) BT
h (α)

Bh(α) 0

)(

uh

ph

)

=

(

g1,h

g2,h

)

=: gh, (3)

the Taylor-Hood approximation of the Stokes system (1a), the discretized
shape optimization problem can be stated as

minimize Jh(yh, α), (4a)

subject to Sh(yh, α) = gh, (4b)

αmin
i ≤ αi ≤ αmax

i , 1 ≤ i ≤ m. (4c)

For notational convenience, in the sequel we will drop the discretization
subindex h.

3 Path-following primal-dual interior-point method

We use a primal-dual interior-point method where the inequality constraints
(4c) are coupled by logarithmic barrier functions with a barrier parameter
β = 1/µ > 0, µ → ∞, resulting in the following parameterized family of
minimization subproblems

inf
y,α

B(y, α, µ) := J(y, α) − 1

µ

m
∑

i=1

[ln(αi − αmin
i ) + ln(αmax

i − αi)] (5)

subject to (4b). Coupling (4b) by a Lagrange multiplier λ = (λu, λp)
T , we

are led to the saddle point problem

inf
y,α

sup
λ

L(µ)(y,λ, α) = B(µ)(y, α) + 〈S(y, α) − g,λ〉. (6)

The central path µ 7−→ x(µ) := (y(µ),λ(µ), α(µ))T is given as the solution of
the nonlinear system

F (x(µ), µ) =







L
(µ)
y (y,λ, α)

L
(µ)

λ
(y,λ, α)

L
(µ)
α (y,λ, α)






= 0 , (7)

which represents the first order necessary optimality conditions for (5).
For the solution of (7) we use an adaptive path-following predictor-corrector
strategy following strategies developed in [7].

Predictor Step: The predictor step relies on tangent continuation along the
trajectory of the Davidenko equation

Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) . (8)
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Given some approximation x̃(µk) at µk > 0, compute x̃(0)(µk+1), where

µk+1 = µk + ∆µ
(0)
k , according to

Fx(x̃(µk), µk) δx(µk) = − Fµ(x̃(µk), µk) , (9a)

x̃(0)(µk+1) = x̃(µk) + ∆µ
(0)
k δx(µk) . (9b)

We use ∆µ
(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k ≥ 1

the predicted step size ∆µ
(0)
k is chosen by

∆µ
(0)
k :=

( ‖∆x(0)(µk)‖
‖x̃(µk) − x̃(0)(µk)‖

√
2 − 1

2Θ(µk)

)1/2

∆µk−1 , (10)

where ∆µk−1 is the computed continuation step size, ∆x(0)(µk) is the first
Newton correction (see below), and Θ(µk) < 1 is the contraction factor asso-
ciated with a successful previous continuation step.

Corrector step: As a corrector, we use Newton’s method applied to

F (x(µk+1), µk+1) = 0

with x̃(0)(µk+1) from (9) as a start vector. In particular, for ℓ ≥ 0 and jℓ ≥ 0
we compute ∆x(jℓ)(µk+1) according to

F ′(x̃(jℓ)(µk+1), µk+1) ∆x(jℓ)(µk+1) = − F (x̃(jℓ)(µk+1), µk+1)

and ∆x
(jℓ)

(µk+1) as the associated simplified Newton correction

F ′(x̃(jℓ)(µk+1), µk+1) ∆x
(jℓ)

(µk+1) = − F (x̃(jℓ)(µk+1)+∆x(jℓ)(µk+1), µk+1) .

We monitor convergence of Newton’s method by means of

Θ(jℓ)(µk+1) := ‖∆x
(jℓ)

(µk+1)‖/‖∆x(jℓ)(µk+1)‖ .

In case of successful convergence, we accept the current step size and proceed
with the next continuation step. However, if the monotonicity test

Θ(jℓ)(µk+1) < 1 (11)

fails for some jℓ ≥ 0, the continuation step has to be repeated with the reduced
step size

∆µ
(ℓ+1)
k :=

(

√
2 − 1

g(Θ(jℓ))

)1/2

∆µ
(ℓ)
k , g(Θ) :=

√
Θ + 1 − 1 (12)

until we either achieve convergence or for some prespecified lower bound
∆µmin observe

∆µ
(ℓ+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.
The Newton steps are realized by an inexact Newton method featuring right-
transforming iterations (cf., e.g., [10; 12]). The derivatives occurring in the
KKT conditions and the Hessians are computed by automatic differentiation
[8].



6 Ronald H.W. Hoppe et al.

4 Numerical simulation results

As a first example, we consider linear Stokes flow with viscosity ν = 1 and
given inflow uin in a channel with a backward facing step (cf. Fig. 1 (top)).
The initial shape corresponds to the straight line, whereas the desired velocity
profile ud has been chosen according to a shape represented by the dotted
line. We have used a total of six Bézier control points with given lower and
upper bounds. The results are displayed in Fig. 1. For details concerning the
convergence history we refer to [2].

dotted line:
optimal shape
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Fig. 1. Backward facing step with final shape (top) and computed velocity field
(middle) and pressure distribution (bottom).
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As an example for a shape optimization problem associated with nonlinear
Stokes flow, we consider the optimization of the inlet and outlet boundaries of
the ducts in an electrorheological shock absorber (cf. Fig. 2 (left). Such shock
absorbers are based on an electrorheological fluids (ERF). An ERF is a sus-
pension of small electrically polarizable particles dissolved in nonconducting
liquids which under the influence of an outer electric field changes its viscos-
ity within a few milliseconds in a reversible way. The viscosity function in
(1c) is of the form g(I(u), |E|), where I(u) is the second invariant of the rate
of strain tensor and |E| stands for the electric field strength (for details see
[11]). The issue is to avoid too large pressure fluctuations at the boundaries
of the duct both in the compression and the rebound mode. We have chosen
a desired pressure profile pd and used Bézier curve representations of the inlet
and outlet boundaries as illustrated in Fig. 2 (middle). A computed optimal
shape of the outlet boundary in the rebound mode is shown in Fig. 2 (right).
For details we refer to [10].

1

2
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Fig. 2. Electrorheological shock absorber (left), Bézier curve representation of the
inlet and outlet boundary of the right part of the fluid chamber (middle), and optimal
design of the outlet boundary in rebound mode (right)
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