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QUASI-OPTIMAL CONVERGENCE RATE FOR AN ADAPTIVE

FINITE ELEMENT METHOD

J. MANUEL CASCON, CHRISTIAN KREUZER, RICARDO H. NOCHETTO,
AND KUNIBERT G. SIEBERT

Abstract. We analyze the simplest and most standard adaptive finite ele-
ment method (AFEM), with any polynomial degree, for general second order
linear, symmetric elliptic operators. As it is customary in practice, AFEM
marks exclusively according to the error estimator and performs a minimal
element refinement without the interior node property. We prove that AFEM
is a contraction for the sum of energy error and scaled error estimator, be-
tween two consecutive adaptive loops. This geometric decay is instrumental
to derive optimal cardinality of AFEM. We show that AFEM yields a decay
rate of energy error plus oscillation in terms of number of degrees of freedom
as dictated by the best approximation for this combined nonlinear quantity.

1. Introduction

Let Ω be a bounded, polyhedral domain in Rd, d ≥ 2. We consider a homo-
geneous Dirichlet boundary value problem for a selfadjoint second order elliptic
partial differential equation (PDE)

(1.1)
Lu := − div(A∇u) + c u = f in Ω,

u = 0 on ∂Ω.

The choice of boundary condition is made for ease of presentation, since similar
results are valid for other boundary conditions. Precise conditions on given data
D := (A, c) and f of L are stated in § 2.1. We refer to [4] for more general operators.

We analyze here a standard adaptive finite element method (AFEM) of the form

(1.2) SOLVE → ESTIMATE → MARK → REFINE.

Even though adaptivity has been a fundamental tool of engineering and scien-
tific computing for about three decades, the convergence analysis is rather recent.
It started with Dörfler [7], who introduced a crucial marking, from now on called
Dörlfer’s marking, and proved strict energy error reduction for the Laplacian pro-
vided the initial mesh T0 satisfies a fineness assumption. Morin, Nochetto, and
Siebert [16, 17] showed that such strict energy error reduction cannot be expected
in general. Introducing the concept of data oscillation and the interior node prop-
erty, they proved convergence of AFEM without restrictions on T0. The latter
result, however, is only valid for A in (1.1) piecewise constant on T0 and vanishing
c. Inspired by the work by Chen and Feng [5], Mekchay and Nochetto [15] extended
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this result to general second order elliptic operators upon dealing with the new con-
cept of total error, namely the sum of energy error plus oscillation. They proved
that AFEM is a contraction for the total error, a property that will turn out to be
essential in this paper as well. Recently, Diening and Kreuzer [6] proved a similar
property for the p-Laplacian but avoiding marking for oscillation.

In this paper we go back to the basis of AFEM philosophy and consider the
simplest possible approach to adaptivity for (1.1). In §2 we first state precisely the
problem and describe the modules of AFEM: SOLVE computes the Ritz-Galerkin
approximation, i. e. we assume exact solution and integration; ESTIMATE computes
the standard residual estimator; MARK resorts to Dörfler marking solely based
on the estimator; and REFINE utilizes bisectioning of elements with the minimal
refinement condition that marked elements are bisected at least once. In this respect
AFEM is a really standard algorithm in that it avoids marking for oscillation and
circumvents the interior node property of [15, 16, 17] for marked elements.

When marking with respect to two quantities such as estimator and oscillation,
the role of marking becomes critical for proving optimality. To shed light on this
issue, we discuss in §3 the simultaneous adaptive approximation of two functions
with distinct asymptotic error decays and compare separate and collective marking.
The discussion reveals that separate marking might be sub-optimal and should thus
be avoided, whereas collective marking leads to optimal convergence rates.

To summarize the main results, let {Tk, Vk, Uk, ηk, osck}k≥0 be the sequence
of meshes, finite element spaces, discrete solutions, estimators, and oscillations
produced by AFEM in the kth step. Even though the energy error is monotone,
strict error reduction fails when Uk+1 = Uk, i. e. |||u − Uk|||Ω = |||u − Uk+1|||Ω; see
[16, 17] for further details. On the other hand, the residual estimator ηk = ηk(Uk)
exhibits a strict reduction when Uk+1 = Uk but no monotone behavior in general;
this is shown in §4. The new insight of this paper is that the sum of energy error

and scaled estimator, the so-called quasi-error (|||u − Uk|||
2
Ω + γ η2

k)1/2, is strictly
reduced by AFEM even though each term may not be. In fact, we prove in §5 that
AFEM is a contraction for this new error notion:

Main Result 1. There exist constants γ > 0, and 0 < α < 1, such that

|||u − Uk+1|||
2
Ω + γ η2

k+1 ≤ α2
(

|||u − Uk|||
2
Ω + γ η2

k

)

.

Quasi-optimal convergence rates for AFEM, expressing energy error decay in
terms of number of degrees of freedom (DOFs) as dictated by nonlinear approxi-
mation theory, were first proved by Binev, Dahmen and DeVore [3]. They resorted
to a crucial, but somewhat artificial, coarsening step. Coarsening was later removed
by Stevenson [22], who developed an optimality theory for a much more realistic
AFEM but still including an inner loop to deal with oscillation; see §3.3 for ba-
sic details. Both papers [3, 22] are restricted to the Laplace operator and rely on
suitable marking by oscillation and the interior node property.

To derive convergence rates we need to seek a suitable error quantity and as-
sociated approximation class As. First, we observe that the estimator dominates
oscillation which in conjunction with the global lower bound gives

osck ≤ ηk 4 |||u − Uk|||Ω + osck,

whence

|||u − Uk|||Ω + ηk ≈ |||u − Uk|||Ω + osck .



QUASI-OPTIMAL CONVERGENCE RATE FOR AN AFEM 3

Hence, the sum of energy error plus oscillation, the so-called total error, is equiva-
lent to the quantity being reduced by AFEM. This motivates the definition of the
approximation class As in §6 which roughly states that (u, f,D) belongs to As if
the total error can be approximated within any tolerance ǫ > 0 with O(ǫ−s) DOFs.
Note that for a linear PDE with variable coefficients, oscillation and solution couple
in a nonlinear fashion. As an outcome, an important pending issue is a complete
characterization of As; we refer to §6.1 for further discussion.

We conclude the article by proving a quasi-optimal convergence rate for AFEM
in §6. Assuming certain restrictions on the initial triangulation and the marking
parameter θ ∈ (0, θ∗), we show that AFEM achieves the same asymptotic decay
rate s in terms of DOFs as for elements in As:

Main Result 2. If (u, f,D) ∈ As, then there exists a constant C such that

|||u − Uk|||Ω + osck ≤ C
(

#Tk − #T0

)−s
.

The contraction property of AFEM, written as Main Result 1, plays an essential
role. In contrast to former optimality proofs [3, 22], the present analysis stays within
the class of conforming meshes. This is a necessary framework for the analysis when
dealing with oscillation in the jump residual. The proof of Main Result 2 relies on a
quasi-monotonicity property of oscillation as well as a localized upper bound, both
proved in §4. The latter refines a similar bound by Stevenson [22].

In this paper we start with a standard AFEM as it is used in practice and provide
a theory for convergence and optimality. The first convergence result for such a
standard AFEM is due to Morin, Siebert, and Veeser [19]. They proved recently,
for a larger problem class and more general marking strategies, plain convergence
of AFEM but without an error reduction property. Relying on Dörfler marking we
are able to prove a stronger result for selfadjoint elliptic operators of the form (1.1),
namely contraction of the quasi-error and quasi-optimal cardinality of AFEM.

In all other convergence and optimality results, the standard form of AFEM is
first altered and then the modified algorithms are analyzed. Because of theoretical
needs additional ingredients, such as the interior node property and marking for
oscillation [15, 16, 17, 18], a coarsening step [3], or an additional inner loop to
decrease oscillation relative to the estimator [22], are added to AFEM.

We would like to stress that removing these ingredients is very important from
a practical point of view. The interior node property enforces six bisections of
marked elements in three space dimensions and thus increases the number of DOFs
between two iterations drastically. In fact, computational resources can be used
more efficiently with fewer element refinements. Additionally, since oscillation is
not used by AFEM, it does not have to be computed. Although computing time
for oscillation may be negligible, this strongly improves on implementation require-
ments for AFEM. Computing oscillation gets inevitably more involved for higher
order discretizations, since one has to solve small linear systems on elements and
sides to find local projections. Last but not least, in contrast to modified versions of
AFEM, the standard form only needs one single parameter, namely the parameter
θ of Dörfler marking. Hence, we do not need to fit several parameters, which in
turn makes the resulting algorithm more robust.
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2. Problem and Adaptive Finite Element Method

We first introduce the underlying problem and state assumptions on given data.
We then describe the refinement framework and AFEM along with its modules.

2.1. Weak Formulation. Let Ω be a bounded, polyhedral domain in R
d, d ≥ 2,

that is triangulated by a conforming triangulation T0. We assume that data of (1.1)
has the following properties:

(a) A : Ω 7→ Rd×d is piecewise Lipschitz over T0 and is symmetric positive definite
with eigenvalues in 0 < a∗ ≤ a∗ < ∞, i.e.,

a∗(x) |ξ|2 ≤ A(x)ξ · ξ ≤ a∗(x) |ξ|2 , ∀ξ ∈ R
d, x ∈ Ω;

(b) c ∈ L∞(Ω) is nonnegative, i. e. c ≥ 0 in Ω;
(c) f ∈ L2(Ω).

Now we turn to the weak formulation of (1.1). For any set ω ⊂ Rd with non-
empty interior we denote by H1(ω) the usual Sobolev space of functions in L2(ω)
whose first derivatives are also in L2(ω), endowed with the norm

‖u‖H1(ω) :=
(

‖u‖2
L2(ω) + ‖∇u‖2

L2(ω)

)1/2

.

Moreover, we denote 〈. , .〉ω the L2(ω) scalar product. Finally we let V := H1
0 (Ω)

be the space of functions in H1(Ω) with vanishing trace on ∂Ω. A weak solution of
(1.1) is a function u satisfying

(2.1) u ∈ V : B[u, v] = 〈f, v〉Ω ∀v ∈ V,

where the bilinear form is defined to be

B[u, v] := 〈A∇u,∇v〉Ω + 〈c u, v〉Ω ∀u, v ∈ V.

In view of Poincaré-Friedrichs inequality, one has coercivity in V

B[v, v] = 〈A∇v,∇v〉Ω + 〈c v, v〉Ω ≥

∫

Ω

a∗ |∇v|2 + c v2 ≥ cB ‖v‖2
H1(Ω),

and cB depends only on data and Ω. The bilinear form B induces the so-called
energy norm:

|||v|||ω := B[v, v]1/2 ∀v ∈ H1(ω).

Note that the bilinear form also fulfills the local continuity

B[v, w] ≤
√

CB |||v|||ω ‖w‖H1(ω) ∀v, w ∈ H1(ω), supp(w) ⊂ ω ⊂ Ω.

This local continuity is essential in deriving local lower bounds in the a posteriori
error analysis. Furthermore it implies continuity of B[·, ·] on H1(Ω) at once. Thanks
to coercivity and continuity of B, the norm |||·|||Ω is equivalent to ‖·‖H1(Ω) on H1

0 (Ω).
Existence and uniqueness of (2.1) thus follows from Lax-Milgram theorem [8]. The
restriction to a symmetric bilinear form and c ≥ 0 can be relaxed provided (2.1)
admits a unique solution. This extension will be studied in [4].
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2.2. Refinement Framework. Refinement is based on shape-regular bisection of
single elements. Any given simplex is subdivided into two subsimplices of same size
such that the minimal angle is uniformly bounded from below; we refer to [2, 12, 13,
14, 23, 24] or the monograph [20] and the references therein. In 2d, this is the newest
vertex bisection. Bisectioning creates a unique master forest F of binary trees with
infinite depth, where each node is a simplex, its two successors are the two children
created by bisection, and the roots of the binary trees are the elements of the initial
conforming triangulation T0. The master forest F contains full information of all
possible subdivisions created from T0 by bisection, i. e. information about vertices,
neighbors, refinement edges, etc. for any simplex that can be generated.

A finite subset F ⊂ F is called forest if T0 ⊂ F and the nodes satisfy:

(a) all nodes in F \ T0 have a predecessor;
(b) all nodes in F have either two successors or none.

Any node of F is thus uniquely connected with a node of the initial triangulation
T0. Furthermore, any forest may have interior nodes, i. e. nodes with successors,
and does have leaf nodes, i. e. nodes without successors. Finally, each forest F
corresponds one-to-one to a subdivision T (F) of Ω into simplices by defining T (F)
as the set of leaf nodes of F . Note, that such a subdivison may be non-conforming.

If F ⊂ F∗ are two forests, we call T∗ = T (F∗) a refinement of T = T (F) and
denote this by T ≤ T∗. We define

RT →T∗
:= T \ (T∗ ∩ T )

as the set of refined elements, i. e. RT →T∗
is the set of leaf nodes of F that are

interior nodes of F∗. The class of all conforming refinements by bisection of T0 is

T := {T (F) | F ⊂ F is a forest and T (F) is a conforming triangulation of Ω}.

Given two forests F ,F∗ ⊂ F corresponding to subdivisions T and T∗ of Ω, we
define F ∪F∗ to be the union of the nodes of F and F∗. Obviously, F ∪F∗ ⊂ F and
T0 ⊂ F ∪ F∗. By construction, all nodes of (F ∪ F∗) \ T0 have a predecessor, and
all nodes of the union have either two successors or none: this implies that F ∪ F∗

is a forest. We call the resulting unique subdivision of Ω the overlay of T and T∗:

T ⊕ T∗ := T (F ∪ F∗).

For two conforming triangulations T , T∗ ∈ T we prove in Lemma 4.7 below that
T ⊕ T∗ ∈ T is the smallest conforming refinement of T , T∗ and satisfies

(2.2) #(T ⊕ T∗) ≤ #T + #T∗ − #T0.

We finally introduce some notations related to triangulations. For T ∈ T we
denote by hT := |T |

1
d the local meshsize, and by ωT the union of all elements in T

sharing one side with T . We further denote by S the skeleton of T , i. e. the union
of the inter-element sides and for an interior side σ ∈ S we let ωσ be the union of
the two adjacent elements sharing σ.

Thanks to properties of bisection, all constants depending on shape regularity
of T ∈ T are uniformly bounded by a constant solely depending on T0 [13, 24].

2.3. The Module SOLVE. Given any conforming triangulation T ∈ T we define
the finite element space

V(T ) := {V ∈ V | V|T ∈ Pn(T ), T ∈ T },
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where n ∈ N is a fixed polynomial degree and Pn denotes the space of all polynomials
of degree ≤ n. Since continuity and coercivity of B are inherited by any subspace of
V, the Lax-Milgram theorem implies existence and uniqueness of the Ritz-Galerkin
approximation in V(T ) defined by

(2.3) U ∈ V(T ) : B[U, V ] = 〈f, V 〉Ω ∀ V ∈ V(T ).

We suppose that the module SOLVE outputs the exact Ritz-Galerkin solution on T

U = SOLVE(T ),

i. e. U is computed via exact linear algebra and exact integration. Optimal multi-
level solvers can be incorporated as in [22], but quadrature is more delicate.

We observe that for any pair T , T∗ ∈ T with T ≤ T∗ there holds V(T ) ⊂ V(T∗),
i. e. the discrete spaces are nested. This turns out to be a crucial property in the
subsequent analysis in that the following orthogonality relation holds:

(2.4) |||u − U|||2Ω = |||u − U∗|||
2
Ω + |||U∗ − U|||2Ω .

This is a consequence of B[u − U∗, U∗ − U] = 0, or equivalently that u − U∗ and
U∗ − U are orthogonal with respect to the scalar product induced by B[·, ·].

2.4. The Module ESTIMATE. For T ∈ T and V ∈ V(T ) we define the element
residual and jump residual for V by

R(V )|T := (f + LV )|T , T ∈ T and J(V )|σ := ([[A∇V ]] · ν)|σ σ ∈ S.

Hereafter, [[q]] is the jump of q across an interior side σ, and ν denotes a unit normal
vector associate to side σ. The error indicator for V on T ∈ T is given by

η2
T (V , T ) := h2

T ‖R(V )‖2
L2(T ) + hT ‖J(V )‖2

L2(∂T∩Ω) ,(2.5)

where we recall hT = |T |1/d
. We assume that, given a triangulation T and the

Ritz-Galerkin solution U ∈ V(T ), the module ESTIMATE outputs the indicators

{ηT (U, T )}T∈T = ESTIMATE(U, T ).

The lower bound involves oscillation, which we define next. For m ∈ N0, we
denote by Πp

m the Lp-best approximation operator onto the set of discontinuous
polynomials of degree ≤ m over either T ∈ T or σ ∈ S, depending on the context.
If P p

m := id−Πp
m, then we define oscillation of V ∈ V(T ) to be

osc2
T (V , T ) := h2

T

∥

∥P 2
2n−2R(V )

∥

∥

2

L2(T )
+ hT

∥

∥P 2
2n−1J(V )

∥

∥

2

L2(∂T∩Ω)
.

Finally, for any subset T ′ ⊂ T we set

η2
T (V , T ′) :=

∑

T∈T ′

η2
T (V , T ) and osc2

T (V , T ′) :=
∑

T∈T ′

osc2
T (V , T ).

Remark 2.1. Let T ∈ T and V ∈ V(T ) be given. We first observe that the
indicator ηT (V , T ) dominates oscillation oscT (V , T ), i. e. oscT (V , T ) ≤ ηT (V , T )
for all T ∈ T . In addition, the definition of error indicator and oscillation are
fully localized to T , i. e. for any triangulation T∗ ∈ T with T ∈ T∗ there holds
ηT (V , T ) = ηT∗

(V , T ) and oscT (V , T ) = oscT∗
(V , T ). Moreover, if T∗ ≥ T is any

refinement of T , then combining the monotonicity of local meshsizes and properties
of the local L2 projection we deduce the monotonicity properties

ηT∗
(V, T∗) ≤ ηT (V, T ) and oscT∗

(V, T∗) ≤ oscT (V, T ) ∀V ∈ V(T ).
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We now recall the well-known upper and lower bounds for the energy error in
terms of the residual-type estimator [1, 15, 16, 17, 22, 26].

Lemma 2.2 (Global A Posteriori Upper and Lower Bounds). Let u ∈ V be the solution
of (2.1), T ∈ T, and U ∈ V(T ) be the Ritz-Galerkin solution (2.3).

Then there exist a constant C1, solely depending on T0 and 1/cB, such that

(2.6) |||u − U|||2Ω ≤ C1 η2
T (U, T ),

and a constant C2, solely depending on T0 and 1/CB, such that

(2.7) C2 η2
T (U, T ) ≤ |||u − U|||2Ω + osc2

T (U, T ).

2.5. The Module MARK. In the selection of elements we rely on Dörfler marking.
Given a grid T , the set of indicators {ηT (U, T }T∈T , and marking parameter θ ∈
(0, 1], we suppose that MARK outputs a subset of marked elements M ⊂ T , i. e.

M = MARK({ηT (U, T }T∈T , T , θ),

such that M satisfies Dörfler property

(2.8) ηT (U,M) ≥ θ ηT (U, T ).

2.6. The Module REFINE. We suppose that a function REFINE is at our disposal
that implements iterative or recursive bisection, see [2, 12, 13, 14, 23, 24]. When
relying on recursive bisection, the distribution of refinement edges has to fulfill some
compatibility conditions on T0. Given a fixed number b ≥ 1, for any T ∈ T and a
subset M ⊂ T of marked elements

T∗ = REFINE(T ,M)

outputs a conforming triangulation T∗ ∈ T, where at least all elements of M are
bisected b times. In particular, this implies M ⊂ RT →T∗

.
To ensure conformity of T∗ one usually has to refine additional elements in T \M

once or several times. In general, the number of these additionally refined elements
is not controled by #M, that is #T∗ − #T cannot be bounded by C #M with a
constant C independent of T ; C may depend on the refinement level. On the other
hand, arguing with the entire sequence {Tk}k≥0 of refinements, Binev, Dahmen, and
DeVore showed in 2d that the cumulative number of elements added by conformity
does not inflate the total number of marked elements [3, Theorem 2.4]. Stevenson
generalized this result to higher dimensions [23, Theorem 6.1] and also weakened
the assumptions on T0 in 2d.

Lemma 2.3 (Complexity of REFINE). Assume that T0 verifies condition (b) of §4
in [23]. For k ≥ 0 let {Tk}k≥0 be any sequence of refinements of T0 where Tk+1 is
generated from Tk by Tk+1 = REFINE(Tk, Mk) with a subset Mk ⊂ Tk.

Then, there exists a constant C0 solely depending on T0 and b such that

#Tk − #T0 ≤ C0

k−1
∑

j=0

#Mj ∀k ≥ 1.

The original result is proved for a sequence of meshes generated by a loop

Mark → Subdivision → Complete,

where Mark selects certain elements, Subdivision bisects marked elements only once
(b = 1), and Complete adds some additional subdivisions to generate a conforming
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triangulation. To apply the above result when REFINE performs b > 1 bisections,
the set Mk is to be understood as a sequence of single bisections recorded in sets
{Mk(j)}b

j=1, which belong to intermediate triangulations between Tk and Tk+1

with #Mk(j) ≤ 2j−1#Mk, j = 1, . . . , b. Then Lemma 2.3 is a direct consequence
of [23, Theorem 6.1] because

b
∑

j=1

#Mk(j) ≤
b

∑

j=1

2j−1#Mk = (2b − 1)#Mk.

2.7. Adaptive Algorithm. In this section we now collect the modules described
in the previous sections into the adaptive finite element method. In doing this,
we replace the dependence on the actual triangulation T by the iteration counter
k ≥ 0, for instance Vk = V(Tk). The basic loop of AFEM is then given by the
following iteration:

AFEM

Given the initial grid T0 and marking parameter 0 < θ ≤ 1
set k := 0 and iterate

(1) Uk = SOLVE(Tk);

(2) {ηk(Uk, T )}T∈Tk
= ESTIMATE(Uk, Tk);

(3) Mk = MARK({ηk(Uk, T )}T∈Tk
, Tk, θ);

(4) Tk+1 = REFINE(Mk, Tk); k := k + 1.

We want to stress that AFEM is really a standard algorithm in that it only
employs the error indicators {ηk(Uk, T )}T∈Tk

and does not use the oscillation indi-
cators {osck(Uk, T )}T∈Tk

. In addition, AFEM only relies on a minimal refinement,
i. e. an interior node property is not enforced for marked elements.

Several remarks are now in order:

• Recently, Morin, Siebert and Veeser proved convergence of the above iteration
for general marking strategies, including maximum and equidistribution besides
Dörfler strategy [19]. The main result is a plain convergence result, i. e.

lim
k→∞

‖u − Uk‖L2(Ω) = lim
k→∞

ηk(Uk, Tk) = 0.

This does not provide a strict total error reduction between two successive iter-
ations, which is one key ingredient in the optimality proof of §6.

• Using similar techniques as Diening and Kreuzer for the p-Laplacian [6], we

prove in §5 a contraction property for ‖u − Uk‖
2
L2(Ω) + γ η2

k(Uk, Tk) between

two successive iterations, with γ > 0 a suitable scaling factor; we observe that [6]
still requires the interior node property. This in turn implies linear convergence.
Crucial ingredients are the a posteriori global upper bound and Dörfler marking.

• We prove in §6 that Tk exhibits quasi-optimal cardinality provided that
(a) the marking parameter θ satisfies θ < θ∗ where θ∗, defined explicitly in

Assumption 6.6, depends on the ratio
√

C2/C1 of constants in (2.6) and
(2.7);

(b) Mk satisfies (2.8) with minimal cardinality;
(c) Tk+1 is the smallest refinement of Tk such that Mk ⊂ RTk→Tk+1

.
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The proof hinges on the a posteriori lower bound and a localized upper bound.

3. The Critical Role of Marking

Former convergence proofs of AFEM are based on the AFEM designed by Morin,
Nochetto, and Siebert [16, 17], from now on called MNS. This is an adaptive loop
of the form (1.2), which marks separately for both estimator and oscillation in
each iteration. It turns out that separate marking appears to be problematic for
proving optimality and thus variants of MNS are studied instead [3, 22] (see also
§3.3). The key issue is the delicate choice of marking parameters for estimator and
oscillation. To shed light on this intrinsic difficulty we first present some numerical
experiments, then discuss the effect of separate and collective marking, and finally
comment on marking for an optimal AFEM.

3.1. Separate Marking and MNS. The procedure ESTIMATE of MNS calculates
both error and oscillation indicators

{

ηk(Uk, T ), osck(Uk, T )
}

T∈Tk
and the proce-

dure MARK uses Dörfler marking for both estimator and oscillation. More precisely,
the routine MARK of MNS is of the form: Given parameters 0 < θest, θosc < 1

Mark any subset Mk ⊂ Tk such that ηk(Uk,Mk) ≥ θestηk(Uk, Tk);(3.1a)

If necessary enlarge Mk to satisfy osck(Uk,Mk) ≥ θosc osck(Uk, Tk).(3.1b)

Since oscillation is generically of higher order than the estimator, the issue at stake is
whether elements added by oscillation, even though immaterial relative to the error,
could ruin the optimality of MNS observed in experiments [16, 17, 15]. If ηk(Uk, Tk)
has large indicators in a small area, then Dörfler marking for the estimator (3.1a)
could select a set Mk with a small number of elements relative to Tk. However,
if osck(Uk, Tk) were globally distributed in Tk, then MNS would require additional
marking of a large percentage of all elements to satisfy (3.1b), i. e. #Mk could be
large relative to #Tk.

To explore this idea computationally, we consider a simple modification of the
2D Example 5.3 in [11, 16]

− divA∇u = f in Ω, u = g on Ω,

where Ω = (−1, 1)2, and A := aiI is a piecewise constant (checkerboard pattern)
with a1 = a3 in the first and third quadrants, and a2 = a4 in the second and
fourth quadrants. The exact solution u is given as a sum: u = uK + uS. Function
uK ∈ H1(Ω) is the weak solution of div(A∇uK) = 0 for parameters [11, 16, 17],

a1 = a3 = 161.4476387975881, a2 = a4 = 1;

the singularity uK ≈ r0.1, at the origin is so extreme that typically leads to marking
of a handful of elements per step to satisfy (3.1a) (see [16, 17] for details). Function
uS is given in each quadrant by

uS(x, y) = 10−2a−1
i (x2 + y2) sin2(4πx) sin2(4πy) 1 ≤ i ≤ 4,

is smooth and of comparable magnitude with uK , while the corresponding f =
− divA∇uS exhibits an increasing amount of data oscillation away from the origin.
Procedure MARK takes the usual value of θest = 0.5 [7, 16, 17, 20], and procedure
REFINE subdivides all elements in Mk using two bisections.

The behavior of MNS for several values of θosc is depicted in Figure 3.1.We
can visualize the sensitivity of MNS with respect to parameter θosc. For values of
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θosc ≤ 0.4 the rate of convergence appears to be quasi-optimal. However, beyond
this threshold the curves for both error and estimator flatten out thereby showing
lack of optimality. The threshold value θosc = 0.4, even though consistent with
practice of MNS, is tricky to find in general since it is problem dependent.

Lemma 3.1 below provides theoretical insight on this matter. Altogether this
indicates that an optimality proof for MNS is out of reach without restrictions on
θosc, and makes marking by oscillation (3.1b) questionable.
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Figure 3.1. Decay of error (left) and estimator (right) vs. DOFs for
θest = 0.5 and values θosc = 0.0, 0.2, 0.4, 0.6, 0.8. For values of θosc ≤ 0.4
the rate of convergence is quasi-optimal, but for θosc > 0.4 the curves
flatten out thereby showing lack of optimality.

3.2. Separate vs. Collective Marking. In this section we focus on the adaptive
approximation of two given functions in an idealized scenario. We compare the
effect of separate marking, similar to (3.1), with collective marking, i. e. one sin-
gle marking for the combined error. The discussion reveals that collective marking
leads to optimal convergence rates whereas separate marking might be sub-optimal.
However, a suitable choice of marking parameters may restore optimality for sep-
arate marking. The experiments of §3.1 confirm this theoretical insight in the
non-idealized case of MNS.

Throughout this section we use the notation a 4 b to indicate a ≤ C b, with
generic constants C not depending on the iteration counter. We denote a 4 b 4 a
by a ≈ b.

For the discussion, we assume that we have two functions ui, for i = 1, 2, and
have access to their local approximation error eT (ui; T )

eT (ui; T ) = |ui − IT ui|i;T ∀T ∈ T ,

and global error e2
T (ui) =

∑

T∈T e2
T (ui; T ); hereafter | · |i are unspecified norms and

IT is a local interpolation operator over T ∈ T. We define the total error to be

e2
T := e2

T (u1) + e2
T (u2),

and are interested in its asymptotic decay. If T = Tk, then we denote ek = eTk
.

To explore the use of (3.1), we examine the effect of separate marking for ek(ui)
on a sequence of meshes T i

k for i = 1, 2. We put ourselves in an idealized, but
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plausible, situation governed by the following three simplifying assumptions:

Independence: T 1
k and T 2

k are generated from T0 and are independent
of each other;

(3.2a)

Marking: Separate Dörfler marking with parameters θi ∈ (0, 1) imply
ek(ui) ≈ αk

i on T i
k with αi ∈ (0, 1);

(3.2b)

Approximability: ek(ui) ≈ (#T i
k − #T0)

−si with s1 ≤ s2 maximal.(3.2c)

We are interested in the decay of the total error ek on the overlay Tk := T 1
k ⊕ T 2

k .
This scenario is a simplification of the more realistic approximation of u1 and u2

with separate Dörfler marking on the same sequence of grids Tk but avoids the
complicated interaction of the two marking procedures.

Lemma 3.1 (Separate Marking). Let assumptions (3.2) be satisfied.
Then the decay of the total error ek on the overlay Tk = T 1

k ⊕ T 2
k for separate

marking is always suboptimal except when α1 and α2 satisfy

α2 ≤ α1 ≤ α
s1/s2

2 .

Proof. Assumption (3.2b) on the average reduction rate implies for the total error

(3.3) ek ≈ ek(u1) + ek(u2) ≈ max{ek(u1), ek(u2)} ≈ max{αk
1 , αk

2}.

Combining (3.2b) and (3.2c) yields αk
i ≈ (#T i

k − #T0)
−si , whence

(3.4) #T 1
k − #T0 ≈ α

−k/s1

1 = βkα
−k/s2

2 ≈ βk(#T 2
k − #T0)

with β = α
−1/s1

1 α
1/s2

2 . In view of (2.2), this gives for the overlay Tk = T 1
k ⊕ T 2

k

(3.5) #Tk − #T0 ≈

{

#T 1
k − #T0, β ≥ 1,

#T 2
k − #T0, β < 1.

The optimal decay of total error ek corresponds to ek ≈ (#Tk − #T0)
−s1 because

s1 ≤ s2. In analyzing the relation of ek to the number of elements #Tk in the
overlay Tk we distinguish three cases and employ (3.3), (3.4), and (3.5).

Case 1: α1 < α2. We note that α1 < α2 and s1 ≤ s2 yields β ≥ 1. We thus deduce

ek ≈ max{αk
1 , αk

2} = αk
2 = (α2/α1)

k
αk

1

≈ (α2/α1)
k
(#T 1

k − #T0)
−s1 ≈ (α2/α1)

k
(#Tk − #T0)

−s1 .

Since α2/α1 > 1, the approximation of ek on Tk is suboptimal.

Case 2: α1 ≥ α2 and β < 1. We obtain

ek ≈ max{αk
1 , αk

2} = αk
1 ≈ (#T 1

k − #T0)
−s1

≈ β−ks1 (#T 2
k − #T0)

−s1 ≈ β−ks1(#Tk − #T0)
−s1 ,

whence the approximation of the total error on Tk is again suboptimal.

Case 3: α1 ≥ α2 and β ≥ 1. We infer that

ek ≈ max{αk
1 , αk

2} = αk
1 ≈ (#T 1

k − #T0)
−s1 ≈ (#Tk − #T0)

−s1

and that Tk exhibits optimal cardinality. This exceptional case corresponds to the
assertion and concludes the proof. �
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We next investigate the effect of collective marking. We assume the following
properties for T , T∗ ∈ T with T ≤ T∗:

Monotonicity: eT∗
(ui; T ) ≤ eT (ui; T ) for all T ∈ T∗;(3.6a)

Error reduction: there exist constants λi < 1, such that e2
T∗

(ui; T ) ≤

λie
2
T (ui; T ) for all T ∈ RT →T∗

;
(3.6b)

Localized upper bound: |IT∗
ui − IT ui|i;Ω ≤ eT (ui;RT →T∗

);(3.6c)

Approximability: there exists si > 0 such that for any ǫ > 0 there is a

T i
ǫ ∈ T with #T i

ǫ − #T0 4 ǫ
− 1

si and eT i
ǫ
≤ ǫ.

(3.6d)

Variants of the assumptions on monotonicity (3.6a), error reduction (3.6b) and
localized upper bound (3.6c) are given for AFEM in §4. The proof of the following
lemma can be seen as a simplification of the convergence and optimality proofs in
§5 and §6. It thus serves as a road-map for the rest of the paper.

Lemma 3.2 (Collective Marking). Let assumptions (3.6) hold.
Then Dörfler marking with minimal cardinality for the total error yields a se-

quence of meshes Tk ∈ T with

ek 4 (#Tk − #T0)
−s

for all marking parameters 0 < θ < 1. The convergence rate s := min{s1, s2} is
quasi-optimal.

Proof. Let T ∈ T and M ⊂ T satisfy Dörfler property with parameter θ

(3.7) eT (M) ≥ θeT (T )

for the total error eT (T ). Let T∗ ≥ T satisfy M ⊂ R := RTk→T∗
. We prove now

the same key properties that are needed to derive the main results in §5 and §6:

1. Contraction Property. Let λ := min{λ1, λ2}. In view of (3.6b) and (3.7), we
have

e2
T∗

(T∗) ≤ λe2
T (R) + e2

T (T \R) = e2
T (T ) − (1 − λ)e2

T (R) ≤ α2e2
T (T ),

with α2 = (1 − θ2(1 − λ)) < 1. This mimics the estimate of Theorem 5.1.

2. Optimal Marking. If µ := 1 − θ and T∗ satisfies eT∗
≤ µeT , then (3.7) is valid

with R instead of M; this mimics Lemma 6.7. In fact, combining the triangle
inequality with (3.6c), we have

(1 − µ) eT ≤ eT − eT∗
≤ eT (R).

3. Quasi-Optimal Decay. Given ǫ > 0, let T i
ǫ ∈ T satisfy (3.6d). Then (2.2) gives

#Tǫ − #T0 4 ǫ−
1
s , eTǫ

≤ 2ǫ,

for the overlay Tǫ := T 1
ǫ ⊕ T 2

ǫ . Equivalently, we infer that eTǫ
4 (#Tǫ − #T0)

−s,
whence the quasi-optimal decay of the total error is dictated by s.

4. Cardinality of M. Let ǫ := 1
2µeT , µ = 1 − θ, let Tǫ be as in step 3, and let

T∗ := Tǫ ⊕T . In view of (3.6a), we deduce that eT∗
≤ eTǫ

≤ 2ǫ = µeT and, in view
of step 2, that T∗ satisfies (3.7) with R instead of M. This, in conjunction with
(2.2) and the minimality of #M, yields a result similar to Lemma 6.8:

#M ≤ #R 4 #T∗ − #T ≤ #Tǫ − #T0 4 ǫ−
1
s 4 µ− 1

s e
− 1

s

T .
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5. Counting DOFs. Since ek ≤ αk−jej , according to step 1, Lemma 2.3 gives

#Tk − #T0 4

k−1
∑

j=0

#Mj 4 µ− 1
s

k−1
∑

j=0

e
− 1

s

j ≤ µ− 1
s e

− 1
s

k

k
∑

j=1

α
j

s 4 µ− 1
s

α
1
s

1 − α
1
s

e
− 1

s

k ;

this mimics Theorem 6.9. This is the asserted quasi-optimal estimate in disguise,
and completes the proof. �

3.3. Marking for Optimal Cardinality. We conclude from §3.2 that collective
marking is preferable to separate marking in computing adaptive approximations of
functions with different asymptotic error decay. According to Lemma 3.1, separate
marking requires a critical choice of parameters θi to obtain optimal cardinality of
grids with respect to the total error ek. Revisiting MNS in light of Lemma 3.1, we
could identify the estimator ηk with the error ek(u1) and oscillation osck with the
error ek(u2). We observe that osck ≤ ηk combined with (3.2b) implies α2 ≤ α1 and
that osck is generically of higher order than ηk, thereby yielding s1 < s2.

We wonder whether or not the optimality condition α1 ≤ α
s1/s2

2 is valid. Note

that α
s1/s2

2 increases as the gap between s1 and s2 increases. Since the oscillation
reduction estimate of [16] reveals that α2 increases as θosc decreases, we see that
separate marking may be optimal for a wide range of marking parameters θest, θosc;
this is confirmed by the numerical experiments in §3.1 even though it is unclear
whether ηk and osck satisfy (3.2). However, choosing marking parameters θest, θosc

is rather tricky in practice because neither the explicit dependence of average re-
duction rates α1, α2 on θest, θosc is known nor the optimal exponents s1, s2.

In contrast, Lemma 3.2 shows that collective marking is always optimal. Using
the crucial observation that estimator dominates oscillation [6], we obtain

η2
k(Uk, Tk) + osc2

k(Uk, Tk) ≈ η2
k(Uk, Tk).

Hence, collective marking for estimator and oscillation simply reduces to just mark-
ing for the estimator, as proposed for AFEM in §2.7. We stress that oscillation does
not have to be computed, which turns out to be quite advantageous for its practical
realization.

We conclude by reviewing how alternative optimal AFEM compensate for the
lack of optimality of separate marking. Binev, Dahmen, and DeVore [3] added
a coarsening step to MNS to prove optimality. Veeser [25] was the first to mark
oscillation relative to the error estimator to prove convergence of AFEM for the
p-Laplacian. More recently, Stevenson [22] resorted to a similar marking to prove
optimality of AFEM. This algorithm is discussed next in more detail.

For the Poisson problem, Stevenson [22] replaces the separate marking for both
estimator and oscillation by the following conditional inner loop:

δk = 2 C1ηk(Uk, Tk);
do δk = δk/2

[Tk, fk] = RHS(f, Tk, δk);
Uk = SOLVE(Tk);
{ηk(Uk, T )}T∈Tk

= ESTIMATE(Uk, Tk);
if C1ηk(Uk, Tk) < tol, STOP;

until δk < ωηk(Uk, Tk).

The purpose of this iteration is to render data oscillation osck = ‖f − fk‖H−1(Ω)

small relative to the error estimator ηk(Uk, Tk), namely osck ≤ δk < ωηk(Uk, Tk)
with ω > 0 sufficiently small. The output of RHS is a conforming mesh Tk ∈ T and a
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piecewise constant function fk over Tk such that osck ≤ δk. Stevenson assumes that
oscillation can at least be approximated with the same rate as the energy error.
If oscillation is small, it may happen that RHS does not change the actual grid.
However, if oscillation is large, the inner loop may be traversed several times. This
loop enables Stevenson to prove optimality for non-zero oscillation at the price that
SOLVE and ESTIMATE may be called repeatedly in one adaptive iteration. This
is inconsistent with practice; in particular, SOLVE is typically the most expensive
procedure of AFEM and should be called only once per adaptive loop k.

4. Auxiliary Results

In this section we prove a quasi-reduction property of the estimator, which is
instrumental for convergence. We also show a perturbation result of oscillation
and a localized upper bound, both between two discrete functions, that play an
essential role in the optimality proof. Finally we discuss the overlay of two meshes
and thereby prove (2.2). In the remainder of the paper the constants hidden in ‘4’
solely depend on shape regularity, thus on T0, the number of bisections b of marked
elements, and the polynomial degree n. Dependence on data D = (A, c) and f of
(1.1) is traced explicitely.

4.1. Reduction of Error Estimator and Oscillation. We relate the error indi-
cators and oscillation of two nested triangulations to each other. The link involves
weighted maximum-norms of the coefficient functions D, or their oscillation. These
results are the basis for our analyses in §5 and §6.

We start by defining the weighted maximum-norm of the coefficients D and their
oscillation. For m ∈ N0, T ∈ T, and v ∈ L∞(Ω), we recall that Π∞

m v is the best
L∞(Ω)-approximation in the space of discontinuous polynomials of degree ≤ m.
We further set Π∞

−1v = 0, P∞
m v = v − Π∞

m v and

η2
T (D, T ) := h2

T

(

‖div A‖2
L∞(T ) + h−2

T ‖A‖2
L∞(ωT ) + ‖c‖2

L∞(T )

)

,

osc2
T (D, T ) := h2

T

(

∥

∥P∞
n−1 div A

∥

∥

2

L∞(T )
+ h−2

T ‖P∞
n A‖2

L∞(ωT )

+h2
T

∥

∥P∞
n−2c

∥

∥

2

L∞(T )
+

∥

∥P∞
n−1c

∥

∥

2

L∞(T )

)

;

note that P∞
m is defined elementwise. For any subset T ′ ⊂ T we finally set

ηT (D, T ′) := max
T∈T ′

ηT (D, T ) and oscT (D, T ′) := max
T∈T ′

oscT (D, T ).

Remark 4.1 (Monotonicity). The use of best approximation in L∞ in the defini-
tions of ηT (D, T ) and oscT (D, T ) implies the following monotonicity property: For
all T , T∗ ∈ T with T ≤ T∗, there holds

ηT∗
(D, T∗) ≤ ηT (D, T ) and oscT∗

(D, T∗) ≤ oscT (D, T ).

The following variant of the Bramble-Hilbert Lemma allows us to avoid any
smoothness assumption on the coefficients D of the PDE.

Lemma 4.2 (Implicit Interpolation). Let ω be either a d or a (d − 1) simplex. For
ℓ ∈ N denote by Πp

m : Lp(ω, Rℓ) → Pm(ω, Rℓ) the operator of best Lp-approximation
in ω and set P p

m = id−Πp
m. Then, for all v ∈ L∞(ω, Rℓ), V ∈ Pn(ω, Rℓ) and

m ≥ n, there holds
∥

∥P 2
m(vV )

∥

∥

L2(ω)
≤

∥

∥P∞
m−nv

∥

∥

L∞(ω)
‖V ‖L2(ω) .
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Proof. Since V ∈ Pn we obtain Π∞
m−n(v) · V ∈ Pm and thus the orthogonality of

the L2-projection yields
∫

ω

(vV − Π2
m(vV ))(vV − Π2

m(vV )) =

∫

ω

(vV − Π2
m(vV ))(v − Π∞

m−n(v)) · V

≤
∥

∥P 2
m(vV )

∥

∥

L2(ω)

∥

∥P∞
m−nv

∥

∥

L∞(ω)
‖V ‖L2(ω)

which finishes the proof. �

Proposition 4.3 (Local Perturbation). Let T ∈ T. For all T ∈ T and for any pair
of discrete functions V , W ∈ V(T ), we have

ηT (V , T ) ≤ ηT (W , T ) + Λ̄1 ηT (D, T ) ‖V − W ‖H1(ωT ),(4.1)

oscT (V , T ) ≤ oscT (W , T ) + Λ̄1 oscT (D, T )‖V − W ‖H1(ωT ),(4.2)

where ωT is the union of elements in T sharing a side with T . The constant Λ̄1 > 0
only depends on the shape-regularity of T0 and the polynomial degree n.

Proof. We only prove (4.2), estimate (4.1) is somewhat simpler and can be derived
similarly. Recall the definition of the element residual R(V ) = f + L(V ) and
the notation P p

m = id−Πp
m. Since the L2 projection Π2

m is linear, by adding and
subtracting W and using the triangle inequality, we obtain

oscT (V , T ) ≤ oscT (W , T ) + hT

∥

∥P 2
2n−2L(E)

∥

∥

L2(T )
+ h

1/2
T

∥

∥P 2
2n−1J(E)

∥

∥

L2(∂T )

with E := V −W . It remains to show that the second and third terms are bounded
by oscT (D, T ) times the local H1- norm of E. For L(E) = div A∇E − c E we have

∥

∥P 2
2n−2L(E)

∥

∥

L2(T )
≤

∥

∥P 2
2n−2(div A∇E)

∥

∥

L2(T )
+

∥

∥P 2
2n−2(cE)

∥

∥

L2(T )
.

We split the divergence term as

div(A∇E) = div A · ∇E + A : D2E,

where D2E is the Hessian of E. Invoking Lemma 4.2 with ω = T , and observing
that the polynomial degree of ∇E is n − 1, we infer for the first term that

∥

∥P 2
2n−2(div A · ∇E)

∥

∥

L2(T )
≤

∥

∥P∞
n−1 div A

∥

∥

L∞(T )
‖∇E‖L2(T ) .

Since D2E is a polynomial of degree ≤ n − 2, applying Lemma 4.2 again in con-
junction with an inverse inequality, we have for the second term

∥

∥P 2
2n−2(A : D2E)

∥

∥

L2(T )
4 h−1

T ‖P∞
n A‖L∞(T ) ‖∇E‖L2(T ) .

To analyse the reaction term we write
∥

∥P 2
2n−2(c E)

∥

∥

L2(T )
≤

∥

∥P 2
2n−2(c Π2

0E)
∥

∥

L2(T )
+

∥

∥P 2
2n−2(c P 2

0 E)
∥

∥

L2(T )
.

Applying again Lemma 4.2 we have for the first term
∥

∥P 2
2n−2(c Π2

0E)
∥

∥

L2(T )
≤

∥

∥P∞
2n−2c

∥

∥

L∞(T )
‖E‖L2(T ) ,

and for the last one
∥

∥P 2
2n−2(c P 2

0 E)
∥

∥

L2(T )
4 hT

∥

∥P∞
n−2c

∥

∥

L∞(T )
‖∇E‖L2(T ) .
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We now deal with the jump residual. Let T ′ ∈ T share an interior side σ with T .
We write J(E) = ((A∇E)|T − (A∇E)|T ′) · ν, use linearity of Π2

2n−1, Lemma 4.2

with ω = σ and the inverse inequality ‖∇E‖L2(σ) 4 h
−1/2
T ‖∇E‖L2(T ), to deduce

∥

∥P 2
2n−1(A∇E)|T · ν

∥

∥

L2(σ)
4 h

− 1
2

T ‖P∞
n A‖L∞(T ) ‖∇E‖L2(T ) .

The same argument holds for T ′ and, since T is shape regular, we can replace hT ′

by hT . Finally, collecting the above estimates for T and all its neighbors yields the
assertion (4.2). �

The following two Corollaries are global forms of the above Lemma.

Corollary 4.4 (Estimator Reduction). For T ∈ T and M ⊂ T let T∗ ∈ T be given
by T∗ := REFINE(T ,M). If Λ1 := (d + 1)Λ̄2

1/cB with Λ̄1 from Proposition 4.3 and

λ := 1 − 2−
b
d > 0, then there holds for all V ∈ V(T ), V∗ ∈ V(T∗) and any δ > 0

η2
T∗

(V∗, T∗) ≤ (1 + δ)
{

η2
T (V , T ) − λ η2

T (V ,M)
}

+ (1 + δ−1)Λ1η
2
T0

(D, T0) |||V∗ − V |||2Ω .

Proof. Applying Proposition 4.3 with V∗, V ∈ V(T∗) over T ∈ T∗, and using Young’s
inequality with parameter δ, we derive

η2
T∗

(V∗, T ) ≤ (1 + δ)η2
T∗

(V , T ) + (1 + δ−1)Λ̄2
1 η2

T∗
(D, T ) ‖V∗ − V ‖2

H1(ωT ).

Summing over all elements T ∈ T∗, using the finite overlap property of patches
ωT , and the equivalence of the H1-norm and the energy-norm in Ω, we have the
following direct by-product:

η2
T∗

(V∗, T∗) ≤ (1 + δ)η2
T∗

(V , T∗) + (1 + δ−1)Λ1η
2
T∗

(D, T∗) |||V∗ − V |||2Ω .

For a marked element T ∈ M, we set T∗,T := {T ′ ∈ T∗ | T ′ ⊂ T }. Since V ∈ V(T )
and A jumps only across sides of T0 we see that J(V ) = 0 on sides of T∗,T in the
interior of T . We then obtain

∑

T ′∈T∗,T

η2
T∗

(V , T ′) ≤ 2−
b
d η2

T (V , T ),

because refinement by bisection implies hT ′ = |T ′|
1
d ≤ (2−b|T |)

1
d ≤ 2−

b
d hT for all

T ′ ∈ T∗,T . For an element T ∈ T \ M, instead, Remark 2.1 yields ηT∗
(V , T ) ≤

ηT (V , T ). Hence, summing over all T ∈ T∗, we arrive at

η2
T∗

(V , T∗) ≤ η2
T (V , T \M) + 2−

b
d η2

T (V ,M) = η2
T (V , T ) − λη2

T (V ,M).

The assertion finally follows from the monotonicity ηT∗
(D, T∗) ≤ ηT0

(D, T0) stated
in Remark 4.1. �

Corollary 4.5 (Perturbation of Oscillation). Let T , T∗ ∈ T with T ≤ T∗ and let
Λ1 = (d + 1)Λ̄2

1/cB be as in Corollary 4.4. For all V ∈ V(T ), V∗ ∈ V(T∗), we have

osc2
T (V , T ∩ T∗) ≤ 2 osc2

T∗
(V∗, T ∩ T∗) + 2Λ1 osc2

T0
(D, T0) |||V − V∗|||

2
Ω .

Proof. Remark 2.1 yields oscT (V , T ) = oscT∗
(V , T ) for all T ∈ T ∩ T∗, whence

osc2
T (V , T ) ≤ 2 osc2

T∗
(V∗, T ) + 2Λ̄2

1 osc2
T∗

(D, T )‖V − V∗‖
2
H1(ωT ),

by (4.2) and Young’s inequality. We now sum over T ∈ T ∩T∗, use the equivalence
of H1 and energy norms in Ω, as well as the monotonicity property oscT∗

(D, T∗) ≤
oscT0

(D, T0) stated in Remark 4.1, to prove the assertion. �
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4.2. Localized Upper Bound. To prove the optimality of AFEM, we need a
localized upper bound for the distance between two nested solutions. This slightly
improves a similar result by Stevenson [22] in the sense that the error can be
estimated here only using the indicators of refined elements, without a buffer layer.

Lemma 4.6 (Localized Upper Bound). For T , T∗ ∈ T with T ≤ T∗ let R = RT →T∗

be the set of refined elements. Let U ∈ V(T ) and U∗ ∈ V(T∗) be the discrete
solutions of (2.1). Then the following localized upper bound is valid

|||U∗ − U|||2Ω ≤ C1 η2
T (U,R).

Proof. We start with an observation. Let Ω∗ =
⋃

{T : T ∈ R} be the union
of refined elements and let V(R) be the restriction of V(T ) to Ω∗. Denote by
PR : H1(Ω∗) → V(R) the Scott-Zhang interpolation operator over the triangula-
tion R [21]. The following interpolation estimate holds for all v ∈ H1(Ω∗)

(4.3)
∑

T∈R

h−2
T ‖v − PRv‖2

L2(T ) + hT ‖v − PRv‖2
L2(∂T ) 4 ‖∇v‖2

L2(Ω∗),

where the constant hidden in ‘4’ does not depend on Ω∗ but only on the shape-
regularity of the underlying triangulation R, and thus on T0. The operator PR

is a projection, i. e. PRV = V for all V ∈ V(R), and it preserves homogeneous
boundary values. Hence, it also preserves conforming boundary values, i. e. PRv =
v on ∂Ω∗ whenever v = V on ∂Ω∗ for some V ∈ V(R). For the error E∗ := U∗−U ∈
V(T∗) we construct an approximation V ∈ V(T ) by

V :=

{

E∗ in Ω \ Ω∗

PRE∗ in Ω∗.

Since E∗ has conforming boundary values on ∂Ω∗ in V(R), we conclude that V is
continuous in Ω implying V ∈ V(T ) and V is an H1-stable approximation to E∗.

Since V(T ) ⊂ V(T∗) are nested subspaces of V, by Galerkin orthogonality
B[E∗, E∗] = B[E∗, E∗ − V ], we obtain by standard arguments

B[E∗, E∗] =
∑

T∈R

〈R(U), E∗ − V 〉T + 1
2 〈J(U), E∗ − V 〉∂T 4 ηT (U,R)‖∇E∗‖L2(Ω∗),

where we have used (4.3) in the last step. This, in conjunction with the coercivity
of B, proves the proposition. �

4.3. Overlay of Meshes. We finish the auxiliary results with a counting argument
for the overlay T1⊕T2 of two triangulations T1, T2. As a consequence of the following
lemma we see that for two conforming triangulations T1, T2 ∈ T the overlay is the
smallest conforming triangulation T ∈ T with T1, T2 ≤ T .

Lemma 4.7 (Overlay of Meshes). For T1, T2 ∈ T the overlay T := T1 ⊕ T2 is
conforming, i. e. T ∈ T, and satisfies

#T ≤ #T1 + #T2 − #T0.

Proof. Assume, that T contains a non-conforming vertex z. Then there exist
T1, T2 ∈ T with a common edge such that z is a vertex of T1 and z ∈ T2 but
z is no vertex of T2. Without loss of generality let T1 ∈ T1. Since T1 is conforming,
there exists a T ′ ∈ T1, T ′ ⊂ T2 such that z is a vertex of T ′. Hence, T2 cannot be
a leaf node of F(T ), i. e. T2 /∈ T , a contradiction.



18 J.-M. CASCON, C. KREUZER, R.H. NOCHETTO, AND K.G. SIEBERT

For T ∈ T0 and i = 1, 2 we denote by Fi(T ) ⊂ F(T ) the binary trees with root
T corresponding to Ti and let Ti(T ) be the triangulation given by the leaf nodes
of Fi(T ). Since T (T ) ⊂ T1(T ) ∪ T2(T ), we infer that #T (T ) ≤ #T1(T ) + #T2(T ).
We now show #T (T ) ≤ #T1(T ) + #T2(T ) − 1 by distinguishing two cases:
Case 1: T1(T )∩T2(T ) 6= ∅. Then there exists T ′ ∈ T1(T )∩T2(T ), and so T ′ ∈ T (T ).
Counting T ′ only once in #(T1(T )∪T2(T )) we get #T (T ) ≤ #T1(T )+#T2(T )−1.
Case 2: T1(T ) ∩ T2(T ) = ∅. Then there exists T ′ ∈ T1(T ) (resp. T ′ ∈ T2(T )) so
that T ′ 6∈ T (T ), for otherwise T ′ ∈ T2(T ) (resp. T ′ ∈ T1(T )) thereby contradicting
the assumption. We obtain again #T (T ) ≤ #T1(T ) + #T2(T ) − 1.

Finally, since Ti =
⋃

T∈T0
Ti(T ), the assertion follows by adding over T ∈ T0. �

5. Contraction Property of AFEM

We now prove that AFEM is a contraction with respect to the sum of energy
error plus scaled error estimator, the so-called quasi-error. Consequently, the quasi-
error is reduced by a fixed rate at every step. This can be motivated heuristically
as follows: in light of (2.4) the energy error |||u − Uk|||Ω decreases strictly, unless
Uk+1 = Uk, in which case the estimator ηk(Uk, Tk) does according to Corollary 4.4.
The theorem below makes this observation quantitative.

Theorem 5.1 (Contraction Property). Let θ ∈ (0, 1] and let {Tk, Vk, Uk}k≥0 be
the sequence of meshes, finite element spaces, and discrete solutions produced by
AFEM.

Then, there exist constants γ > 0, and 0 < α < 1, depending solely on the
shape-regularity of T0, b, and the marking-parameter 0 < θ ≤ 1, such that

|||u − Uk+1|||
2
Ω + γ η2

k+1(Uk+1, Tk+1) ≤ α2
(

|||u − Uk|||
2
Ω + γ η2

k(Uk, Tk)
)

.

Proof. For convenience, we use the notation

ek := |||u − Uk|||Ω , Ek := |||Uk+1 − Uk|||Ω ,

ηk := ηk(Uk, Tk), ηk(Mk) := ηk(Uk,Mk), η0(D) := η0(D, T0).

We combine the orthogonality (2.4) with Corollary 4.4 to write

e2
k+1 + γ η2

k+1 ≤ e2
k − E2

k + (1 + δ) γ
(

η2
k − λ η2

k(Mk)
)

+ (1 + δ−1) γ Λ1 η2
0(D)E2

k .

We choose γ dependent on δ to be

γ :=
1

(1 + δ−1) Λ1 η2
0(D)

⇔ γ (1 + δ) =
δ

Λ1 η2
0(D)

(5.1)

to obtain

e2
k+1 + γ η2

k+1 ≤ e2
k + (1 + δ) γ η2

k − (1 + δ)λγ η2
k(Mk).

Invoking Dörfler marking (2.8), we deduce

e2
k+1 + γ η2

k+1 ≤ e2
k + (1 + δ) γ η2

k − (1 + δ)λ θ2 γ η2
k.

We rewrite this inequality as follows with any β ∈ (0, 1)

e2
k+1 + γ η2

k+1 ≤ e2
k + (1 + δ) γ η2

k − β (1 + δ)λ θ2 γ η2
k − (1 − β) (1 + δ)λ θ2 γ η2

k,

apply the upper bound (2.6) and replace γ according to (5.1) to obtain

e2
k+1 + γ η2

k+1 ≤ α2
1(δ, β) e2

k + γ α2
2(δ, β) η2

k
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with

α2
1(δ, β) := 1 − β

λ θ2

C1Λ1 η2
0(D)

δ, α2
2(δ, β) := (1 + δ)

(

1 − (1 − β)λ θ2
)

.

Now choosing δ > 0 small enough yields

α2 := max{α2
1, α2

2} < 1,

which is the desired result. �

Remark 5.2 (Ingredients for Convergence). We stress that this new proof of linear
convergence relies exclusively on the upper bound (2.6), the orthogonality relation
(2.4), the error estimator reduction property of Corollary 4.4 and the Dörfler mark-
ing (2.8) for the estimator. It does not need any marking due to oscillation which
turns out to be problematic for optimality in light of the discussion in §3. Equal-
ity (2.4) is only used to cancel, via (5.1), the contribution involving η0(D, T0) in
Corollary 4.4. Its role is much less prominent than in [7, 15, 16, 17, 22].

Moreover, we neither use the lower bound (2.7) nor a discrete lower bound for
proving convergence. The latter hinges on the rather demanding interior node
property: every element of Mk, as well as its adjacent elements, contains a node of
Tk+1 in their interior as well as in the interior of their common sides. However, the
global lower bound (2.7) will be instrumental to prove optimality in §6.

The treatment of oscillation and the interior node property is essential in [15,
16, 17], and so in [3, 22]. Our new approach simplifies the analysis and directly
applies to any polynomial degree n ≥ 1.

Remark 5.3 (Optimal Contraction Factor α). Consider

D := {(δ, β) ∈ R+ × [0, 1] : 0 ≤ α2
1(δ, β), α2

2(δ, β) ≤ 1}.

This set is nonempty, according to the proof of Theorem 5.1, is closed and bounded;
thus D is compact. Since α2

1, α
2
2 are continuous functions in D, α2 = max{α2

1, α
2
2}

attains its minimum in D. It turns out that α2|∂D = 1 by definition of D and
α2 < 1 in the interior of D from the proof of Theorem 5.1. Consequently, α2

attains an absolute minimum smaller than 1 and satisfies

α2 = α2
1 = α2

2.

To see this assume α2
1 < α2

2, and decrease the value of δ slightly. Since α2
1 increases

whereas α2
2 decreases, this yields a contradiction to the minimality of α2. The case

α2
1 > α2

2 is similar. In principle, this optimal value of α2 can be computed explicity.

Remark 5.4 (Range of γ and α). We see from (5.1) that γ ≈ η−2
0 (D, T0) provided

that η0(D, T0) is large; this provides a lower bound for γ. An upper bound results
from the condition α2

1 > 0 and δ ≤ 1, namely,

α2
1 = 1 −

(1 + δ)βλθ2

C1
γ ⇒ γ <

C1

2βλθ2
≈ C1.

On the other hand, it is clear from the definitions of α1 and α2 that α deteriorates
if either η0(D, T0) increases or θ decreases. In fact, take β = 1

2 and δ = 1
2λθ2 to get

α2
1 = 1 −

1

C1Λ1η2
0(D, T0)

(λθ2

2

)2

, α2
2 = 1 −

(λθ2

2

)2

.
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Thus by the definition of α there exist constants c, C > 0 not depending on θ with

1 − C θ4 ≤ α2 ≤ 1 − c θ4.

6. Quasi-Optimal Cardinality of AFEM

Building on fundamental ideas of Binev, Dahmen and DeVore [3] and Steven-
son [22], used in the first optimality proofs for variants of AFEM for the Poisson
equation, we prove now optimal cardinality of a standard AFEM for the general
symmetric elliptic problem (1.1). We thus improve and extend the results of [3, 22].

6.1. Approximation Class. To prove optimality in the present context, we need
to seek a suitable error quantity being controlled by AFEM and its associated
approximation class As. On the one hand, oscillation is dominated by the estimator
according to Remark 2.1, thereby yielding

|||u − Uk|||
2
Ω + osc2

k(Uk, Tk) ≤ |||u − Uk|||
2
Ω + η2

k(Uk, Tk).

On the other hand, the lower bound (2.7) implies

|||u − Uk|||
2
Ω + η2

k(Uk, Tk) ≤ (1 + C−1
2 )

(

|||u − Uk|||
2
Ω + osc2

k(Uk, Tk)
)

.

We thus realize that

|||u − Uk|||
2
Ω + η2

k(Uk, Tk) ≈ |||u − Uk|||
2
Ω + osc2

k(Uk, Tk),

and call the square root of the right-hand side the total error. This is equivalent to
the quantity being reduced by AFEM, the quasi-error, and satisfies a Cea’s Lemma.

Lemma 6.1 (Quasi-Optimality of the Total Error). Let u be the solution of (2.1)
and for T ∈ T let U ∈ V(T ) be the Ritz-Galerkin approximation of (2.3).

Then, there exists a constant CD only depending on data D and shape-regularity
of T0 such that

|||u − U|||2Ω + osc2
T (U, T ) ≤ CD inf

V ∈V(T )

(

|||u − V |||2Ω + osc2
T (V , T )

)

.

Proof. For ǫ > 0 choose Vǫ ∈ V(T ) with

|||u − Vǫ|||
2
Ω + osc2

T (Vǫ, T ) ≤ (1 + ǫ) inf
V ∈V(T )

(

|||u − V |||2Ω + osc2
T (V , T )

)

.

Corollary 4.5 with T∗ = T , V = U , and V∗ = Vǫ yields

osc2
T (U, T ) ≤ 2 osc2

T (Vǫ, T ) + 2 Λ1 osc2
T0

(D, T0) |||U − Vǫ|||
2
Ω .

Since U is the Galerkin solution, |||u − U|||2Ω + |||U − Vǫ|||
2
Ω = |||u − Vǫ|||

2
Ω, whence

|||u − U|||2Ω + osc2
T (U, T ) ≤

(

1 + 2 Λ1 osc2
T0

(D, T0)
)

|||u − Vǫ|||
2
Ω + 2 osc2

T (Vǫ, T )

≤ (1 + ǫ)C2
D

inf
V ∈V(T )

(

|||u − V |||2Ω + osc2
T (V , T )

)

with CD = max
{

2, 1 + 2 Λ1 osc2
T0

(D, T0)
}

. The assertion follows from ǫ → 0. �

This motivates the following definition of As. Let TN ⊂ T be the set of all
possible conforming triangulations generated from T0 with at most N elements
more than T0:

TN := {T ∈ T | #T − #T0 ≤ N}.
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The quality of the best approximation to the total error in the set TN is given by

σ(N ; u, f,D) := inf
T ∈TN

inf
V ∈V(T )

(

|||u − V |||2Ω + osc2
T (V , T )

)1/2

.

Notice that the solution u and coefficients D interact in a nonlinear fashion through
the oscillation term. We now define the nonlinear approximation class As to be

As :=
{

(u, f,D) | |u, f,D|s := sup
N>0

(

Ns σ(N ; u, f,D)
)

< ∞
}

.

An important pending issue is the characterization of As. This is beyond the scope
of this paper as well as unnecessary to examine optimality of AFEM. However, a
few remarks are in order to clarify the nature of As.

Remark 6.2 (Regularity H1+r). If u ∈ H1+r(Ω), which is always true for some
0 < r ≤ 1 in any dimension d [10, Theorem 3], then quasi-uniform refinement yields
a decay rate |||u − Uk|||Ω ≤ C (#Tk)−r/d for the energy error and osck(Uk, Tk) ≤

C (#Tk)−1/d for oscillation. In fact, applying (4.2) with V = Uk and W = 0, we
obtain

osck(Uk, T ) ≤ hT ‖P
2
2n−2f‖T + Λ̄1 osck(D, T )‖Uk‖H1(ωT )

≤ C hT

(

‖f‖T + ‖Uk‖H1(ωT )

)

by definition of oscillation osck(D, T ) and regularity of A. Thus (u, f,D) ∈ Ar/d

for any polynomial degree n ≥ 1 and dimension d.

Remark 6.3 (Regularity W 2
1 ). Let d = 2, n = 1, and u ∈ W 2

1 (Ω); this is true
provided that in addition to the assumptions on data of (1.1) stated in §2.1 A and
Ω are Lipschitz [9, Theorem 5.2.2]. Assume now that a mesh T equidistributes the
quantity Λ = ‖D2u‖L1(T ). Then

‖∇(u − IT u)‖T 4 ‖D2u‖L1(ωT ) ≈ Λ,

and
‖∇(u − IT u)‖2

Ω =
∑

T∈T

‖∇(u − IT u)‖2
T 4 Λ2#T .

Since ‖D2u‖L1(Ω) ≈ Λ#T , we deduce the error decay

‖∇(u − IT u)‖Ω 4 ‖D2u‖L1(Ω)(#T )−1/2.

On the other hand, as in Remark 6.2 we have an oscillation decay oscT (U, T ) ≤
C (#T )−1/2 for any quasi-uniform mesh T . Given N DOFs, we let T1 be an optimal
graded mesh for the energy error and T2 be a quasi-uniform mesh for oscillation,
such that #T1 − #T0, #T2 − #T0 ≤ N . According to Lemma 4.7, the overlay
T = T1 ⊕T2 is a mesh with #T −#T0 ≤ 2N that yields a total error decay N−1/2

and we infer that (u, f,D) ∈ A1/2.

Remark 6.4 (Preasymptotics). Let D = (I, 0), let f be the oscillating function
with checkerboard pattern of Example 3.6 in [16], and let n = 1 be the polynomial
degree. In this case, we have

σ(N ; u, f,D) := inf
T ∈TN

inf
V ∈V(T )

(

|||u − V |||2Ω + ‖h(f − Π2
0f)‖2

Ω

)1/2
,

the discrete solution Uk = 0 and |||u − Uk|||Ω is constant for as many steps k ≤ K
as desired. In contrast ηk(Uk, Tk) = ‖hf‖Ω reduces strictly for k ≤ K but overes-
timates the energy error because |||u|||Ω can be made arbitrarily small by increasing
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K. On the other hand, for k > K we have ‖h(f − Π2
0f)‖Ω = 0 and the total error

asymptotics is dictated by the energy error alone; thus (u, f,D) ∈ A1/2. The fact
that the preasymptotic regime k ≤ K can be made arbitrarily long is crucial for
adaptivity, but is not described by membership in As.

In practice, this effect is typically less dramatic because f is not orthogonal to
V(Tk). Figure 6.1 displays the behavior of AFEM for the smooth solution uS of §3.1
with frequencies 5, 10, 15. We can see that the error exhibits a frequency-dependent
plateau in the preasymtotic regime and later an optimal decay. In contrast, the
estimator decays with optimal rate. The class As misses to describe this behavior.
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Figure 6.1. Decay of error (left) and estimator (right) for the smooth
solution uS of §3.1 with frequencies 5, 10, 15. The error exhibits a
frequency-dependent plateau in the preasymptotic regime and later an
optimal decay. This behavior is not described by As.

Remark 6.5 (Conforming vs Non-conforming Meshes). In contrast to [3, 22], our
approach relies exclusively on conforming triangulations. When D = (I, 0) and
n = 1, the approximation class As is the same regardless of conformity [3]. The
situation is quite different, however, in dealing with oscillation of jump residual
unless the depth of nonconforming refinement is restricted beforehand.

We now assume that (u, f,D) ∈ As for some 0 < s ≤ n/d, and prove that
the approximation Uk generated by AFEM converges to u with the same rate
(#Tk−#T0)

−s as the best approximation up to a multiplicative constant. We need
to count elements marked by the estimator (the cardinality of Mk) as well as those
added to keep mesh conformity (see Lemma 2.3). To this end, we impose more
stringent requirements than for convergence of AFEM.

Assumption 6.6 (Optimality). We assume the following properties of AFEM:

(a) The marking parameter θ satisfies θ ∈ (0, θ∗) with

θ2
∗ =

C2

1 + C1(1 + 2Λ1 osc2
T0

(D, T0))
.

(b) Procedure MARK selects a set Mk of marked elements with minimal cardinality.
(c) The distribution of refinement edges on T0 satisfies condition (b) of §4 in [23].
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The limit value θ∗ depends of the ratio
√

C2/C1 ≤ 1, which quantifies the quality
of estimator ηTk

(Uk, Tk), as well as the oscillation oscT0
(D, T0) of coefficients of the

PDE on T0.

6.2. Cardinality of Mk. The following Lemma establishes a link between non-
linear approximation theory and AFEM through the Dörfler marking strategy.
Roughly speaking we prove that if an approximation satisfies a suitable total error
reduction from T to T∗ ≥ T , then the error indicators of the coarser solutions must
satisfy a Dörfler property on the set RT →T∗

. In other words, Dörfler marking and
total error reduction are intimately connected.

Lemma 6.7 (Optimal Marking). Assume that the marking parameter θ verifies (a)
of Assumption 6.6. Let T ∈ T and U ∈ V(T ) be the discrete solution of (2.3). Set

µ := 1
2 (1 − θ2

θ2
∗

) > 0 and let T∗ ∈ T be any refinement of T , i. e. T ≤ T∗, such that

the discrete solution U∗ ∈ V(T∗) satisfies

(6.1) |||u − U∗|||
2
Ω + osc2

T∗
(U∗, T∗) ≤ µ

{

|||u − U|||2Ω + osc2
T (U, T )

}

.

Then the set R := RT →T∗
satisfies the Dörfler property

(6.2) ηT (U,R) ≥ θ ηT (U, T ).

Proof. We first combine the lower bound (2.7) with (6.1) to obtain

(1 − 2µ)C2 η2
T (U, T ) ≤ (1 − 2µ)

(

|||u − U|||2Ω + osc2
T (U, T )

)

≤ |||u − U|||2Ω − |||u − U∗|||
2
Ω + osc2

T (U, T ) − 2 osc2
T∗

(U∗, T∗).
(6.3)

We estimate separately error and oscillation terms. We invoke the orthogonality
(2.4) and the localized upper bound of Lemma 4.6 to arrive at

(6.4) |||u − U|||2Ω − |||u − U∗|||
2
Ω = |||U∗ − U|||2Ω ≤ C1 η2

T (U,R).

For the oscillation terms we argue according to whether an element T ∈ T belongs
to the set of refined elements R or not. For T ∈ R we use the dominance

osc2
T (U, T ) ≤ η2

T (U, T )

of Remark 2.1. For T ∈ T ∩ T∗, Corollary 4.5 with V = U and V∗ = U∗ yields

osc2
T (U, T ∩ T∗) − 2 osc2

T∗
(U∗, T ∩ T∗) ≤ 2Λ1 osc2

T0
(D, T ∩ T∗) |||U∗ − U|||2Ω .

Combining these two estimates with (6.4) we infer that

(6.5) osc2
T (U, T ) − 2 osc2

T∗
(U∗, T∗) ≤ (1 + 2 C1Λ1 osc2

T0
(D, T0)) η2

T (U,R).

Collecting (6.3), (6.4) and (6.5), we finally deduce

η2
T (U,R) ≥

(1 − 2µ)C2

1 + C1(1 + 2 Λ1 osc2
T0

(D, T0))
η2
T (U, T ) = θ2 η2

T (U, T ),

in light of the definitions of θ∗, θ and µ. This concludes the proof. �

The key to relate the best mesh with AFEM triangulations is the fact that
procedure MARK selects the marked set Mk with minimal cardinality. This crucial
idea, due to Stevenson [23], is used next.
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Lemma 6.8 (Cardinality of Mk). Assume that the marking parameter θ verifies
(a) and procedure MARK satisfies (b) of Assumption 6.6. Let u be the solution of
(1.1), and let {Tk, Vk, Uk}k≥0 be the sequence of meshes, finite element spaces, and
discrete solutions produced by AFEM.

If (u, f,D) ∈ As, then the following estimate is valid

#Mk 4
(

1 −
θ2

θ2
∗

)− 1
2s |u, f,D|

1
s
s C

1
2s

D

{

|||u − Uk|||
2
Ω + osc2

Tk
(Uk, Tk)

}− 1
2s

.

Proof. We set ǫ2 := µ C−1
D

(

|||u − Uk|||
2
Ω + osc2

Tk
(Uk, Tk)

)

, where µ = 1
2 (1 − θ2

θ2
∗

) > 0

and CD is the constant in Lemma 6.1. Since (u, f,D) ∈ As, there exists a Tǫ ∈ T

and Vǫ ∈ V(Tǫ) such that

#Tǫ − #T0 4 |u, f,D|1/s
s ǫ−1/s,(6.6)

|||u − Vǫ|||
2
Ω + osc2

Tǫ
(Vǫ, Tǫ) ≤ ǫ2.(6.7)

Let T∗ := Tǫ ⊕ Tk be the overlay of Tǫ and Tk, and let U∗ ∈ V(T∗) be the discrete
solution of (2.3) on T∗. To show that there is a reduction by a factor µ of the total
error between U∗ and Uk, since T∗ ≥ Tǫ, we argue as in Lemma 6.1 and obtain

|||u − U∗|||
2
Ω + osc2

T∗
(U∗, T∗) ≤ CD

{

|||u − Vǫ|||
2
Ω + osc2

Tǫ
(Vǫ, Tǫ)

}

≤ CD ǫ2 = µ
{

|||u − Uk|||
2
Ω + osc2

k(Uk, Tk)
}

.

Hence, we deduce from Lemma 6.7 that the subset R := RTk→T∗
⊂ Tk verifies the

Dörfler property (6.2) for θ < θ∗. The fact that procedure MARK selects a subset
Mk ⊂ Tk with minimal cardinality satisfying the same property translates into

(6.8) #Mk ≤ #R ≤ #T∗ − #Tk ≤ #Tǫ − #T0,

where Lemma 4.7 have been employed in the last step. Finally, combining (6.8),
(6.6), and the definition of ǫ, we end up with

#Mk ≤ #Tǫ − #T0 4 µ− 1
2s |u, f,D|

1
s
s C

1
2s

D

{

|||u − Uk|||
2
Ω + osc2

k(Uk, Tk)
}− 1

2s

,

which is the asserted estimate. �

6.3. Quasi-Optimality. The following result is a consequence of the previous es-
timates and the fact that AFEM is a contraction for the quasi-error, namely the
sum of energy error and scaled error estimator.

Theorem 6.9 (Quasi-Optimality). Let Assumption 6.6 be satisfied by AFEM. Let
u be the solution of (1.1), and let {Tk, Vk, Uk}k≥0 be the sequence of meshes, finite
element spaces, and discrete solutions produced by AFEM.

Let (u, f,D) ∈ As and Θ(θ, s) := θ−4s
(

1 − θ2

θ2
∗

)−1/2
describe the asymptotics of

AFEM as θ → θ∗, 0 or s → 0. Then there exists a constant C, depending on data,
the refinement depth b, and T0, but independent of s, such that

{

|||u − Uk|||
2
Ω + γ osc2

k(Uk, Tk)
}1/2

≤ C Θ(θ, s)|u, f,D|s
(

#Tk − #T0

)−s
.

Proof. Combining Lemmas 2.3 and 6.8 we deduce

(6.9) #Tk − #T0 4

k−1
∑

j=0

#Mj 4 M

k−1
∑

j=0

{

|||u − Uj |||
2
Ω + osc2

j(Uj , Tj)
}− 1

2s

,
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with M :=
(

1 − θ2

θ2
∗

)− 1
2s |u, f,D|

1
s
s C

1
2s

D
. We infer from the lower bound (2.7)

|||u − Uj|||
2
Ω + γ osc2

j (Uj , Tj) ≤ |||u − Uj |||
2
Ω + γ η2

j (Uj , Tj)

≤

(

1 +
γ

C2

)

{

|||u − Uj |||
2
Ω + osc2

j(Uj , Tj)
}

.
(6.10)

On the other hand, the linear rate α = α(θ) < 1 of convergence of Theorem 5.1 for
the sum of energy error and scaled error estimator implies for 0 ≤ j ≤ k − 1

(6.11) |||u − Uk|||
2
Ω + γ η2

k(Uk, Tk) ≤ α2(k−j)
{

|||u − Uj |||
2
Ω + γ η2

j (Uj , Tj)
}

.

We combine (6.9), (6.10) and (6.11) to obtain

#Tk − #T0 4 M

(

1 +
γ

C2

)
1
2s {

|||u − Uk|||
2
Ω + γ η2

k(Uk, Tk)
}− 1

2s

k
∑

j=1

α
j

s .

Since α < 1 the geometric series is bounded by the constant Sθ = α1/s(1−α1/s)−1.
Recalling that the element residual dominates the oscillation, we end up with

(6.12) #Tk − #T0 4 SθM

(

1 +
γ

C2

)
1
2s {

|||u − Uk|||
2
Ω + γ osc2

k(Uk, Tk)
}− 1

2s

.

To examine the asymptotics as θ, s → 0, hidden in Sθ, we use Remark 5.4 to get

α ≤ (1 − t)
1
2 with t = cθ4 and observe that limt→0

t

1−(1−t)
1
2s

= 2s. Therefore

Ss
θ ≤

α

ts

( t

1 − (1 − t)1/2s

)s

≈ αssθ−4s,

whence Ss
θM s ≈ Θ(θ, s)|u, f,D|s C

1/2
D

. Raising (6.12) to the s-th power and re-
ordering, we finally obtain the desired estimate with C > 0 independent of s. �
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[2] E. Bänsch, Local mesh refinement in 2 and 3 dimensions, IMPACT Comput. Sci. Engrg. 3
(1991), 181–191.

[3] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence

rate, Numer. Math. 97 (2004), 219-268.
[4] J.M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, Quasi-optimal AFEM

for general elliptic operators, in preparation.
[5] Z. Chen, J. Feng, An adaptive finite element algorithm with reliable and efficient error

control for linear parabolic problems, Math. Comp. 73 (2004), 1167–1193.
[6] L. Diening and C. Kreuzer, Linear Convergence of an adaptive finite element method

for the p-Laplacian equation, Preprint No. 03/2007, Institut für Mathematik, Universität
Freiburg.

[7] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal.
33 (1996), 1106-1124.

[8] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Germany, 1983.

[9] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston 1985.
[10] F. Jochmann, An Hs regularity result for the gradient of solutions to elliptic equations with

mixed boundary conditions, J. Math. Anal. Appl. 238, (1999), 429–450.

[11] R. B. Kellogg, On the Poisson equation with intersecting interfaces, Appl. Anal. 4 (1975),
101–129.
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