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Abstract

Algorithms for the proportional rounding of a nonnegative vector, and for the bipro-
portional rounding of a nonnegative matrix are discussed. Here we view vector and matrix
rounding as special instances of a generic optimization problem that employs an additive
version of the objective function of Gaffke and Pukelsheim (2007). The generic problem
turns out to be a separable convex integer optimization problem, in which the linear equal-
ity constraints are given by a totally unimodular coefficient matrix. So, despite the integer
restrictions of the variables, Fenchel duality applies. Our chief goal is to study the implied
algorithmic consequences. We establish a general algorithm based on the primal optimiza-
tion problem. Furthermore we show that the biproportional algorithm of Balinski and
Demange (1989), when suitably generalized, derives from the dual optimization problem.
Finally we comment on the shortcomings of the alternating scaling algorithm, a discrete
variant of the well-known Iterative Proportional Fitting procedure.

Short title: Apportionment and separable integer optimization.

Key words. Totally unimodular matrix — Elementary vector — Graver basis — Convex
programming duality — Alternating maximization procedure

1 Introduction

A separable objective function is of the form

F(z) = Zfe(xe) )

ecE

where 2 = (z.)eep € R is a (column) vector variable whose components we label, for conve-
nience, by the elements e of some finite set E, and f. (for e € E) are real functions of a real
variable. By Z we denote the set of all integers, and by Z¥ the set of all integer vectors in R¥.
Let 11 = (ite)ecr € ZF be a positive vector, i.e., its components are positive integers, which will
define a componentwise upper bound for the vector variable . We assume that each function
fe is a convex function on the interval [0, p.].

Let A be a given totally unimodular V' x E matrix, where V is another finite set, (so the rows
of A are labelled by the elements v € V and the columns of A are labelled by the elements
e € E). Recall that total unimodularity of A means that all square submatrices of A have
determinants —1, 0, or +1. In particular, all the entries of A are in {—1,0,+1}. Let b € ZV
be given such that linear system

Az =b, 0<z<uyp, (1.1)
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has a solution for z € R” and hence also a solution z(*) € ZF, (cf. Schrijver (1999, Theorem
19.3)). Note that ‘<’ between vectors stands for the usual componentwise semi-ordering. So
0<x<pmeans 0 <z, < p, for all e € E. We will consider the integer extremum problem,

minimize F(z) = Zfe(ﬂfe) (1.2)
eclk
subject to t=(T)eep €ZF¥, 0<x<p, Az =10. (1.3)

Clearly, only the values of f. at the integers points in {0, 1,..., .} enter into the problem, and
the convexity of f. enters only by its Z-convexity, (cf. Hemmeke (2003)), i.e., the increments
Afe(n) = fe(n) — fe(n — 1) are nondecreasing in n € {1,..., e }. For technical reasons we
extend the definition of the increments to n = 0 and n = p. + 1 by

—00 ,ifn=0
Afe(n) = ¢ fe(n) — fe(n—=1) ,if 1 <n < pe (1.4)
400 yifn=pe+1

So, without loss of generality, we may assume the convex functions f. to be piecewise linear,
fe(t) = fe(n—1) + Afe(n) (t—(n—=1)), if n—1<t<n and ne{l,...,pu}. (1.5)

In fact, since the slopes Afc(n) are nondecreasing in n, the function f, from (1.5) is convex on
[0, pe]. Two special cases are of particular interest.

Vector apportionment problem

A simple special case is given when V' a one-point set, £ = {1,...,p},and A = [1,...,1]. The
contraints in (1.3) then read as

P
r=(21,...,m,) €ZP, 0<z<u Za;j:h, (1.6)
j=1

for a given positive integer h, the “house size”. Trivially, consistency of (1.1) means here that
h < 3% pj. A problem of minimizing (1.2) (with E = {1,...,p}) subject to (1.6) will be
referred to as a wvector apportionment problem. For this problem, but without upper bounds
i, the optimal solutions were characterized in Saaty (1970, p.184), and for special functions
f; the problem was treated by Te Riele (1978) and Thépot (1986). As it is shown in Gaffke
and Pukelsheim (2007), proportional rounding of a positive vector w = (w1, ..., wp)" € RP can
be written as a vector apportionment problem employing functions f. = f; (1 < j < p) such
that

fi(n) = Zlogi(f), (n=0,1,...,15),
k=1 J

whence fj(0) =0 and Afj(n) = logi(jﬁ) , (n=1,..., 1),
j

where s(n), n =1,2,3,..., is a given signpost sequence defining the rounding law, i.e.

0 <s(l) <s(2)<s@B)<..., and n—1<s(n)<n foralln>1.

(Actually, this is the case of a pervious rounding law in that s(1) > 0; the impervious case
s(1) = 0 can be treated similarly). O
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Matrix apportionment problem

Another particular (but more difficult) case is given when V' = {Ry,..., R, C1,...,Cy}, a set
of size k + ¢, where k > 2 and ¢ > 2, E is a nonempty subset of the set of all (ordered) pairs
(1,§), 1 <i<k,1<j<{l and A = (ave)vev,ecE is given by

1 ,ifv=R;and e = (3,j) for some j
aye = ¢ 1 ,ifv=Cj and e = (i,7) for some ¢ (1.7)
0 ,else

That is, A is the vertex-edge incidence matrix of a bipartite (undirected) graph with vertices
Ry,...,Ry and C1,...,Cy, and there is an edge between R; and Cj; iff (4,5) € E. Thus A is
totally unimodular, (cf. Schrijver (1999, Section 19.3, Example 1)). The contraints in (1.3)
turn into

T = (x@j)(i,j)eE € ZE: 0<z<pu, m4=rmVi, Ttj = € Vi, (1'8)

)

where we have used the notation

it = E : Lij s Tj = E : Lij >

ji(ij)eE i:(ij)€E
and where b = (r1,...,7%,¢1,...,¢7), the r; and ¢; being positive integers. Of course, it is
assumed that Zle r; = Z§=1 c¢; = h, the house size. A problem of minimizing (1.2) under
(1.8) will be referred to as a matriz apportionment problem. In Gaffke and Pukelsheim (2007) it

was shown that biproportional rounding of a nonnegative real matrix W = (wi,j) 1<i<k can be
1<<e

written as a matrix apportionment problem employing F = {(z, J) s w; ;>0 } and functions
fe = fij such that

= s(k
fz,](n> = Zlog ’UE) ’ (7’L = O)L"'vui,j)a
k=1 -

whence f%](O) =0 and Afm(n) = log i()n) s (n = 1,... vui,j) . 0

There is a considerable body of literature on separable convex programming (integer or con-
tinuous) with linear constraints, providing efficient algorithms for solution, (cf. Hochbaum and
Shantikumar (1990)). These results are still to be exploited for (bi)proportional rounding pur-
poses. More general nonlinear integer optimization problems are considered in Murota, Saito,
Weismantel (2004) and in Hemmecke (2003). We will concentrate on separable convex integer
programming problems under totally unimodular linear equations.

Our present paper is organized as follows. In Section 2 a characterization of the optimal solu-
tions to the primal integer problem (1.2)-(1.3) is given offering a basis for the primal algorithm
outlined in Section 3. A duality result is derived in Section 4, and a conceptual dual algo-
rithm is formulated in Section 5. In Sections 6 and 7 we concentrate on the two instances
mentioned above, vector and matrix apportionment problems. For vector apportionment prob-
lems, the dual algorithm coincides with the one of Happacher and Pukelsheim (1996, p. 378;
2000, p. 154), and Dorfleitner and Klein (1999). For matrix apportionment problems, the dual
algorithm is akin to the one described by Balinski and Demange (1989), and by Balinski and
Rachev (1997, Section 5), see also Balinski (2006) and Rote and Zachariasen (2007). Section 8
is concerned with an alternative dual method, the alternating scaling algorithm, which requires
relatively low computational effort. However, in general it may fail to find the optimum due to
non-smoothness of the dual objective function. Despite this deficiency, the alternating scaling
method is a useful heuristics which provides a nearly optimal solution, and in many instances
even an optimal solution.
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2 The primal problem

We address problem (1.2)-(1.3) under the assumptions stated in Section 1. For the (totally
unimodular) matrix A its nullspace and the orthogonal complement of the latter, which is the
range of the transposed A’, will be of particular interest,

N(A) = {zeRY: Az =0},
R(A) = {yeRF:INeRY withy=A\}.

The support of a vector z = (z.)ecr € R¥ is defined by

supp(z) = {eeE : xe%O}.

Below we will have to further classify the supporting indices of a vector z = (z.)cer € RE by
introducing

Et(z)={e€cFE :2.>0} and E (z) ={e€E:2.<0}.

Let £ be a linear subspace of RE. An elementary vector of £ is defined to be a nonzero vector
z € L which has minimal support within £\ {0}, i.e., 0 # 2z € L and for all 0 Az € L:

supp(z) C supp(z) implies supp(z) = supp(z) ,

cf. Rockafellar (1972, pp. 203-204). From the total unimodularity of the matrix A we get:

Lemma 2.1 If z is an elementary vector of N (A) then, for some positive scalar vy, the vector
v z has all components in {—1,0,+1}.

Proof. Let z = (z¢)ccr be an elementary vector of N'(A4). Denote E = supp(z) and consider
the subvector 2 = (2¢) .5 € R¥. Let a°, (e € E), be the columns of A and consider the V x E

submatrix A with columns a®, e € E. Clearly, Ais again totally unimodular. The nullspace
of A has dimension equal to 1 (and consists thus of all scalar multiples of Z), which can be

seen as follows. Let T = (z¢)_ .5 € RE with A7 = 0, and let £ # 0. Then, we augment ¥

by zero components z, = 0, e € E \ E, to obtain a vector z € RP. We have = € N(A) and
supp(z) C supp(z), and hence supp(z) = supp(z). So z is also an elementary vector of N(A)
with the same support as z which implies, (cf. Rockafellar (1972, Lemma 22.4)), that x = (2
for some nonzero scalar 3, and thus = 2. Hence the nullspace of A is spanned by 2.

Now we identify, for the nullspace of A, another basis vector which has all components equal
to £1 or zero. Consider the polytope

P = {5:(336)665611{5:255:0, —1§xe§1Ve€E}.

By total unimodularity of A all of the vertices of P are integral, (cf. Schrijver (1999, Theorem
19.3)). Since az € P for some nonzero scalar o, we have P # {0}, and so there is a nonzero
vertex 2% of P with all components equal to +1 or zero. In particular, * is an element of the
nullspace of A and thus * = «Z for some nonzero scalar y. Augmenting z* by zero components
to obtain a vector z* of R¥, we have vz = 2* which has all components in {-1,0,+1}. Ify <0
then the same is true for (—vy)z = —x*. O

We will call an elementary vector of N'(A) which has all components equal to +1 or zero an
elementary sign vector of N'(A). Using the results of Graver (1975) it can be shown that the
elementary sign vectors of N'(A) constitute the Graver basis of A which is defined as follows
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(and actually refers to any integer matrix A). The Graver basis of A consists of all vectors
which are minimal in the set of all nonzero integer vectors of N'(A) w.r.t. the semi-ordering
“=<" defined by:

xr = (l'e)eEE y= (ye)eEE > TYe >0 and ‘xe’ < |ye| foralle € E/,

(cf. Hemmecke (2003), p. 1). A slightly weaker notion we will also use is that of a sign vector
of N(A), which is any nonzero vector of N'(A) having all components equal to 1 or zero. For
a sign vector z = (z¢)eer of N(A) we obviously have

Et(z) ={e€E:z2=+41} and E (2) ={e€FE:z=-1}.

Lemma 2.2 Let c. € RU{—00} and d. € RU {400} with c. < d. for all e € E be given.
Then one and only one of the following two alternatives (a) and (b) holds:

(a) There exists a vector y = (Ye)eer € R(A") with ce <ye < d. for alle € E.
(b)  There exists a sign vector z of N'(A) such that

Zce> Zde.

e€E~(2) e€ET(z)

Moreover, condition (b) is equivalent to the following condition (b*) :

(b*)  There exists an elementary sign vector z of N'(A) such that

Zce> Zde.

e€E~(2) e€E*(z) O

The result of Lemma 2.2 is a fairly direct consequence from Rockafellar (1972, Theorem 22.6),
and our Lemma 2.1, (see the proof of Theorem 7.1 in Gaffke and Pukelsheim (2007)). It can
also be derived from strong duality in linear programming.

Note that the inequality in (b) and (b*) of Lemma 2.2 in particular implies that ¢, > —oo for
all e € E~(z) and d. < +o0 for all e € E*(z).

Using Lemmas 2.1 and 2.2 we now derive two (equivalent) characterizations of an optimal solu-
tion to problem (1.2)-(1.3). The first shows the elementary sign vectors of N'(A) to constitute
a universal test set in the sense of Hemmecke (2003); this follows also from the more general
results of that paper (see p. 4 in Hemmecke (2003)). The second characterization is of dual
(Lagrangian) type; this is related to a result in Sun, Tsai, and Qi (1993, Proposition 2.3) who
deal with the case of a network matrix A. However, we will give a short proof of our next
theorem by means of Lemmas 2.1 and 2.2. Recall the definition in (1.4) of the increments
Afe(n), n € {0,1,..., e + 1}, which are nondecreasing in n.

Theorem 2.3 Let z* = (wZ)eeE be a feasible solution to problem (1.2)-(1.3), (i.e., z* satisfies
(1.3)). The following three conditions (i), (ii), and (iii) are equivalent:

(i) " is an optimal solution to problem (1.2)-(1.3).

(ii) For all elementary sign vectors z of N'(A) with E™(z) C {e : x* < pe} and
E~(z) C{e : xf >0} one has F(z*) < F(z*+z) .

(i)  There exists a vector y* = (y})ecr € R(A") such that

Afe(z) < yo <Afe(ac+1) Veek.
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Proof.

(i) = (ii) Assume (i). Let 2 = (2¢)ecp be an elementary sign vector of N(A) such that
Et(z) C{e : ¥ < pe} and E~(2) C {e : ¥ > 0}. Then x* + 2 is again feasible for problem
(1.2)-(1.3), and thus F(z*) < F(z* 4 z).

(ii) = (iii) Assume (ii). Let 2 = (2¢)cep be an elementary sign vector of N'(A) such that
Et(z) C{e: af < pe} and E~(z) C{e : ¥ > 0}. Then,

0 < F(x*+2z) — F(z") = Z(fe(l‘z‘l‘ze) _fe($2))

eelE
= Z (fe(al +1) = fe(x})) + Z (fe(xp = 1) = fe(x}))
e€Et(z) e€E—(2)
= > Afelai+1) = D Afelal),
e€E+t(2) e€E~(2)

which shows that
Yo Af@l) <> Afi+1). (2.1)

e€E~(2) e€Et(z)

Inequality (2.1) remains true for any elementary sign vector z of N'(A), since if one or both of
the inclusions E*(z) C {e : a¥ < p.} and E~(2) C {e : =} > 0} are not satisfied then the
right hand side of (2.1) becomes +oc or the left hand side of (2.1) becomes —co. Now Lemma
2.2 applies to

ce = Afe(zr) and de = Afe(zi+1), (e€E),

and shows that alternative (a) of that lemma must hold, which is condition (iii).
(iii) = (i) Assume (iii) for some y* € R(A’). Let z = (z.)cer be any feasible point to
problem (1.2)-(1.3). By the convexity of the functions f. we have for every e € E,

fe(@e) — fe(xe)
fe(we) — fe(z7)

Summing over e € E, and observing that y* = A’\* for some \* € RV and Az = Az* = b,
we obtain

Afe(re +1) (e —22) = ye(ve —ae) , i we > a7,

>
> Afe(z) (e —zh) > yi(ze —xk), ifze <z},

F(z) — F(z*) > (AN (x—2%) = \¥(Az — A2*) = 0.
Thus, F(x*) < F(z) for every feasible point = to problem (1.2)-(1.3). O

3 A conceptual primal algorithm

Suppose that we have an algorithm, let us call it an Oracle X, which decides between the
alternatives (a) and (b) of Lemma 2.2. More precisely, for any given input values ¢, and d,
(e € E), as in Lemma 2.2, suppose that Oracle X either returns a vector y € R(A’) with
ce <ye <d.Veé€F,orit returns a sign vector z of N'(A) such that

Zce> Zde.

e€E—(2) e€Et(z)

By linear programming methods it should be possible to construct an Oracle X of polynomially
(in #V + #FE) bounded running time. For vector and matrix apportionment problems specific
Oracles X will be given in Sections 6 and 7. However, a primal algorithm stated next for
solving problem (1.2)-(1.3), which is based on an Oracle X, will not be polynomial due to an
exponentially increasing size of the feasible region (1.3).
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Conceptual primal algorithm, (needs an Oracle X).
Start with any feasible point 2 = (xe)eeE to problem (1.2)-(1.3). Set

ce = Afe(ze) and de = Afe(ze +1) VeeF,
and apply Oracle X. If the oracle yields a point y € R(A’) satisfying
ce <Y <d. Veek,

then, by Theorem 2.3, z is optimal. If the oracle yields a sign vector z = (2¢)ecr of N(A) such

that
Z Ce > Z de ,

e€E~(2) e€E*(z)

then define a new point by # = x + z. Clearly, 7 is feasible to problem (1.2)-(1.3), and

Flz)=F@) = > Afdwe) — Y. Afe(ze+1)

e€E~(2) e€ET(z)
= D> - > d >0.
e€E~(2) e€E*(z)

Hence 7 is strictly better than z, F(z) < F(z). Replace x by = and repeat. Since the feasible
region (1.3) is finite, the algorithm will terminate with an optimal solution after a finite number
of iterations. 0

4 The dual problem

Strong duality of convex programming applies to the primal problem (1.2)-(1.3), despite the
integer restriction in (1.3). This is due to the total unimodularity of the matrix A. For, as
pointed out in Section 1, the (convex) functions f. may be taken to be the piecewise linear
functions from (1.5). Doing so, we consider the relaxed version of the primal problem by
removing the integer restriction,

minimize F(x) = Zfe(a:e) (4.1)
eck
subject to = = (zc)eep € RE, 0<az<pu, Az =0, (4.2)

which is a convex separable piecewise-linear program as studied in Fourer (1985). In fact, by
the total unimodularity of A (and since b and p are integer vectors), an optimal solution to the
relaxed problem (4.1)-(4.2) is close to an optimal solution to the integer problem (1.2)-(1.3),
and the two problems share the same optimal value. So, the integer problem and the relaxed
version are nearly equivalent. This is shown by the following lemma.

Lemma 4.1 Let fo (e € E) be the piecewise linear convex functions from (1.5). If x* is
an optimal solution to the relaxed problem (4.1)-(4.2) then there exists a rounding of the non-
integer components of ©* to one of the neighboring integers such that the obtained (rounded)
point ©** is again an optimal solution to problem (4.1)-(4.2) and thus also an optimal solution
to the primal integer problem (1.2)-(1.3).

Proof. Let z* = (z})ccr be an optimal solution to problem (4.1)-(4.2), (which exists by
compactness of the feasible region (4.2) and by continuity of the objective function F'). Let
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al = |z}] (the greatest integer not exceeding x}), £ = x5 —al, a* = (a})ecr, and & = (£))ccp-
Then £* belongs to the polytope defined by

P={¢ecRF . 0<¢<0o, Ac=4d},

where 0 = (0¢)cep and d are given by

: * *
oe:{l lac <we 0 agr
e

0 ,ifa*=2x
Y e

Note that d has integer components. Since A is totally unimodular, each vertex of the polytope
P is an integer vector, (cf. Schrijver (1999, Theorem 19.3)), and thus a vector of zeros and ones.
The function £ — F(a* 4 &) is linear on P and therefore attains its minimum at some vertex
of P. So there is a vector £ of zeros and ones in P such that

Fla*4+ &™) < F(a*+¢*) = F(z") .
Hence z** = a* 4+ £** is also an optimal solution to problem (4.1)-(4.2) and z** is an integer

vector. O

Consider the conjugate function of the piecewise linear convex function f.,

ge(t) = max{ﬁt — fe(§) = 0 Sﬁg,ue} = max{nt — fe(n) : nzO,l,...,ue} VieR.
(4.3)
More explicitely: g. is a convex piecewise-linear function on R whose breakpoints are the slopes
of f. and whose slopes are the breakpoints of f. (cf. Fourer (1985), Section 4),

ge(t) = nt — fe(n), if te€l.(n)and n € {0,1,... e}, (4.4)
(—OO,Afe(l)] 7lfn:0

with intervals I.(n) = < [Afe(n), Afe(n+1)] ,ifl1<n<p. . (4.5)
[Afe(pe) , o0) ifn = pe

The dual objective function is given by, (cf. Fourer (1985), Section 5),

G(\) = '\ — de(ye) . where y = (Ye)ecr = A'A, VAeRY, (4.6)
ecll

and the dual problem is to maximize G(\) over A € RV. Note that G()\) depends on \ only
through y = A’X € R(A’), since b = Az for some 2 € RF and hence '\ = m(o),y. Also, by
(4.4), we may write G as

G\ = (b—Av)\ + F(v), with v = (V¢)eer such that
Ve €{0,1,...,pc} and ye € I.(ve) Ve € E, (where y= A')\)). (4.7)

Now, strong duality can directly be verified:

Theorem 4.2 The minimum value min F(x) of the primal problem (1.2)-(1.3) equals the
mazimum value max G(\) of the dual problem and that maximum value is attained.
If x* is a point satisfying (1.3) and \* € RY, then a necessary and sufficient condition for x* to
be an optimal solution to problem (1.2)-(1.3) and \* to be a mazimizer of G is that y* = A'\*
satisfies

ML) < uf < Afai+1) VeeR.
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Proof. Let  be a feasible point to problem (1.2)-(1.3) and let A € RV, y = A’\. By (4.3)
and (4.4)-(4.5), for any e € E,

ge(ye) > Tele — fe(fe)
with equality if and only if Afe(z.) < ye < Afe(ze + 1). Hence, by (4.6),

G\) < WX — 2y + F(x)
with equality if and only if
Afe(ze) < ye < Afe(ze+1) VeeFE. (4.8)

But 2’y = 2/ A’\ = (Az)’\ = V'), and we have thus obtained: G()\) < F(z) with equality if
and only if (4.8) holds. Together with Theorem 2.3 the result follows. |

The dual algorithm for maximizing G(A) to be established below utilizes that, by (4.7), the
function G()) is linear on each polyhedral subset

Av) = {)\ERV : (A’)\)eele(ye)VeeE},

for any fixed v = (ve)eck, Ve € {0,1,..., le}, (e € E). Solving the linear program of maximizing
G()) over A(v) for a fixed v will produce a solution A, with §, = (A’A). hitting the left or the
right boundary of I.(v,) for some (or several) e € E. If e € E and ¥, equals the left boundary
of I.(ve), then we are free to replace v, by v, — 1. If e € E and ¥, equals the right boundary of
I.(ve), then we are free to replace v, by v + 1. The goal is to assign these changes of the v,
in such a way that the (integer) vector

0=0(v) =b—Av

decreases in its I'-norm, 6(0) = > vev |0u]. Then, by repeating the procedure, we will end up
with a vector v* of integers v} € {0,1,...,uc}, (e € E), such that 6* =0, i.e., Av* =, and a
vector A* € A(v*). That is, v* is feasible for the primal problem (1.2)-(1.3) and G(\*) = F(v*),
hence v* and \* are optimal solutions to the primal and the dual problem, resp. In fact, the
goal can be achieved, in principle, as we show next. Moreover, it turns out that in each linear
programming step (for fixed v) it suffices to compute a weak Pareto solution X rather than an
optimal solution to the linear program

maximize 6(v)'\ subject to A € A(v).
By a weak Pareto solution we mean the following.

Definition 4.3 Let 0 = (0,)very € RY be a given nonzero vector and A C RV a given
nonempty subset. Consider the problem

maximize 6\ subject to A€ A . (4.9)

Define Vt = {veV :0,>0}and V- = {veV : 6, <0} A point X = (}\\v)vev €A is
said to be a weak Pareto solution to (4.9) iff there is no X = (\y)vev € A such that

Ao > X YoeVT and A\, <A, YoeV™. 0

Lemma 4.4 Let 0 = (0,)vev € RY be a nonzero vector, and let c. € RU {—o0}, d. €
R U {400} with c. < de for all e € E. Consider the linear program

maximize 6\ subject to c. <y <d.Ve€E, wherey=A\. (4.10)
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As in Definition 4.3 we denote
Vi={veV:0,>0}, V ={veV:0,<0},andalso V'={veV :0,=0}.
Let \ be a feasible point to (4.10), and y = AN, Define E= = {e € E : ¢ce =d.}, and
E*(\) ={ecE\E :g.=d.}, E-(\) ={ccE\E :j.=c},
and E°(}) = {e€c E\E™ : ce <P <dc} .

Then: X is a weak Pareto solution to (4.10) if and only if there exists a vector o = (0¢)ecE
with components o, € {—1,0,+1}, (for all e € E), and such that:

~

0o >0VecET(N), 0.<0VecE (N, ce=0VecE');
the vector Ao = a = (ay)yey is nonzero, a, € {—1,0,+1} Vv eV,
and a, >0VoeVT, a,<0VoveV ay,=0v0veV.

Proof. The vector \ is not a weak Pareto solution to (4.10) if and only if there exists a vector
&€ = (&)vev such that, denoting n = (1e)ecr = A’E,

£, >0 VoeVT, & <0 VoeV ™,

e <0 VeeET(A), n.>0 VeEE_(X), ne=0 VeecE™.
This can also be expressed by saying that X is not a weak Pareto solution to (4.10) if and only
if the following condition (a) holds.

(a) There exists a vector

A

such that &, € (0,00) YoeVt | &€ (—0,0) YoeV~—, &eER Yoe VY,
Ne € (=00, 0] YVee EY(A\), n.€[0,00) YecE~(\), n.€ {0} VecE~™,
ne€R Vee EOQN) .

So, by Theorem 22.6 in Rockafellar (1972), the vector \ is a weak Pareto solution to (4.10) if
and only if the alternative condition (b) holds.

(b) There exists an elementary vector < z ) of N( [IV, A]) , where a = (ay)yey and

w = (we)eck , such that

ZaU(O,oo) + Zav(—oo,()) + ZaUR+ Z we (—00, 0]

veV+ veEV ™ veV?o ecET(N)
+ Z we [0, 00) + Z we {0} + Z we R > 0. (4.11)
ecE- () ecE= ecEO(N)

This is converted into the format stated in the assertion. Namely, (4.11) means

ay>0VYoeVt, a,<0VoeV , a=0VYoeV?,
we <0 VeEE'F(/)\\), we >0 VeEE_(X), we =0 VeEEO(X),

and the vector a = (ay)yey is nonzero.
Since A is totally unimodular, so is the matrix [Iy, A], (cf. Schrijver (1999, p. 267)). Hence,
by Lemma 2.1, in condition (b) the elementary vector ( Z ) of N ( [IV, A] ) can be chosen

to have all its components in {—1,0,+1}. Furthermore, by

0= [Iv, Al <Z>:a+Aw,
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and taking 0 = —w, we have a = Ao. Now condition (b) emerges in the required format. O

Remark. Below, we will mostly be concerned with a linear program (4.10) whose maximum
value is finite, i.e., the feasible region of (4.10) is nonempty and the objective linear function
is bounded above on that region. Then, necessarily, # € R(A). For, suppose 6 ¢ R(A). Then
0 =600 + 63 with A1) € R(A) and 62 € N(A’), 83 # 0. Choose any feasible point A to
(4.10). Then, for an arbitrary scalar ¢ > 0, the point A + t0(®) is again feasible and

O (A+t0P) = oA + t0@'0® — 0 for t — oo,

which is a contradiction.

5 A conceptual dual algorithm

Suppose that we have have an algorithm, we call it an Oracle Y, which achieves the following.

Oracle Y

Let a problem (4.10) be given (with 6 # 0) such that its mazimum value is finite. Let a feasible
point X be given. Then Oracle Y returns a weak Pareto solution A to (4.10) and a vector
0 = (0¢)ecr according to Lemma 4.4.

By linear programming methods it should be possible to construct an Oracle Y with polyno-
mially (in #F + #V') bounded running time. For vector and matrix apportionment problems
specific Oracles Y will be described in Sections 6 and 7. However, the dual algorithm below
(based on an Oracle Y) for solving the dual and the primal problem of Theorem 4.2 will call
Oracle Y up to 6(b — AvY) times, where ¥ is determined by the starting point A°. So the
method will benefit from a foregoing heuristics, as the alternating scaling algorithm in case of
a matrix apportionment problem (see Section 8), which provides a starting point A° such that
the [1-distance d(b — ArY) is small or moderate.

Conceptual dual algorithm, (needs an Oracle Y)

(o) Start with any A € RYV. Let y = (y)ece = A’A. For each ¢ € E compute a v, €
{0,1,..., e} such that y. € I.(ve), and let v = (ve)ecp and 0 = b — Av.

(i) If & = 0 then A and v are optimal solutions to the dual and the primal problem, resp.
Otherwise (6 # 0) go to (ii).

(ii) Apply Oracle Y to problem (4.10) with c. and d. being the left and the right boundary
point, resp., of I.(v), (e € E). So we get a weak Pareto solution \ to (4.10) and a vector
0 = (0c)ecr according to Lemma 4.4. Set y = AN 7 =v+o,and § = b— AD. By the
properties of o we have

ve€40,1,...,puc}, and y. € I.(V.) Ve€EFE,

and moreover, since # = b — Av and 0 = 0 — a, where a = (ay)yey = Ao:

5(/\) = Z’é\v‘ = Z (av_av) + Z (av_ev)

veV veV+ veV—

=) 10 = D laul < D 1] —1 = 5(6) 1.
veV veV veV
Replace A by /):, v by U, 6 by 9 and go to step (i).
Since 6(6), the I'-norm of the integer vector 6, is decreased each time by (ii) the algorithm will
terminate after finitely many cycles with optimal solutions to the dual and the primal problem.
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6 Vector apportionment problems

Let V' be a one-point set, E = {1,...,p}, where p > 2, and A = [1,...,1], i.e., the primal
problem reads as

P
minimize F(z) = ij(mj) (6.1)
j=1
P
subject to z = (z1,...,2p) €ZP, 0<z<pu, ij =h, (6.2)
j=1
where 1 = (p1,...,H1p) is a given positive integer vector and h, (the house size), is a given

positive integer such that Z?:l pj > h. Obviously, the elementary sign vectors z of N/(A) are
those having exactly one component equal to +1, exactly one component equal to —1, and the
remaining components equal to zero. So conditions (ii) and (iii) of Theorem 2.3, characterizing
the optimality of a feasible point z*, say the same, namely:

max Afi(z;) < min Afj(xj+1),

1<i<p 1<j<p

cp. Saaty (1970, p. 184). Let ¢; € RU{—oo} and dj € RU {oo} with ¢; < d;, (1 < j < p),
be given. An Oracle X which decides between alternatives (a) and (b) of Lemma 2.2 is easily
established:

Oracle X

Compute maxj<;<j, ¢; and minj<j<pd;; if the former does not exceed the latter then choose a
real A between the max and the min, and y = (), ... \) satisfies (a) of Lemma 2.2. Otherwise,
find an i and a jo such that ¢;, > dj,; then the elementary sign vector z of N'(A) with z;; = —1,
zj, = 1, and z; = 0 else, satisfies (b) of Lemma 2.2. O

The dual objective function G' from Section 4 is a function of a scalar variable A € R and (4.7)
rewrites as

p

G\ = (h_zyj) A+ Flv),

=1
if X e Ij(v;) and v; € {0,1,...,p;},Vj=1,...,p.

An Oracle Y is simple to establish since 6 and A in (4.10) are scalars, and the linear program
(4.10) becomes:
maximize 6 st. ¢;<A<d; Vji=1,...,p,

where 6 is a given nonzero real number and ¢;, dj, (1 < j < p), are as above. Assume that the
maximum value of that linear program is finite, i.e.,

max ¢; < min d; ,
1<i<p 1<j<p

min d; < 400 if6 >0, and maxec¢ > —oo if 6 <0.
1<5<p 1<i<p

Oracle Y

A weak Pareto solution is the same as an optimal solution, which is given by

)

/)\\: djozminjdj ,if 0 >0
ci, =max;c; ,if 6 <0



Submitted to: Mathematical Methods of Operations Research February 21, 2007 13

and a vector o = (01, ...,0p)" according to Lemma 4.4 is given by

0jo=+1 and 0; =0V j#jo, incasef >0,
0i,=—1 and 0; =0V j#ip, incasef <O0.

O

The resulting dual algorithm was studied by Happacher and Pukelsheim (1996, p. 378) and
Dorfleitner and Klein (1999), and implemented in the Java program Bazi
(www.uni-augsburg.de/bazi). A favourable choice of the initial value for A was suggested by
Happacher and Pukelsheim (2000, p. 154).

7 Matrix apportionment problems

Let V = {Rl,...,Rk,Cl,...,C’g} a set of k + £ elements, where k > 2 and ¢ > 2, and let
E be a given nonempty subset of the set of all (ordered) pairs (i,7), (1 <i <k, 1 <j < /).
That is, (V, E) constitutes a bipartite (undirected) graph. Let A = (ay.c)vev, cer be its vertex-
edge incidence matrix, whose entries a, . are defined by (1.7). Let b = (r1,..., 7%, ¢1,...,¢0)
and p = (1i5)(,j)ee be given (column) vectors of positive integers 74, ¢j, and p; j, such that
the feasible region (1.8) is nonempty, (which implies, of course, that Zle T = Z§:1 cj =h,
the house size). The elementary sign vectors z = (2;;); )er of N(A) correspond to the
elementary cycles in the bipartite graph (V, E), (cf. Rockafellar (1972, p. 204)). Therefore we
will call those vectors z elementary cycle vectors, the precise definition of which is as follows.
A vector z = (Zi,j)(i,j)e g is an elementary cycle vector iff there are an integer n > 2, pairwise
distinct 49,1, ...,in—1 € {1,...,k}, and pairwise distinct j1,...,Jn € {1,..., £} such that, with
in := 1o and some s € {£1}, one has

S 71f1:2m)]:]m+150§m§n_1
zig = —s Sifi=in, j=jm, 1<m<n Vv (i,j) € E. (7.1)
0 ,else

Here we write vectors A € RV as
A= (.0, where a=(aq,...,a;) €RFand 8= (B1,...,3) eR".
The linear subspace R(A’) of R¥ consists of all vectors y = (%i,5)(i,j)eE such that
vij = a;+p5; Y (i,j) € E for some ai,...,ax,01,...,0 €R.

Let ¢;j € RU{—o0} and d;; € RU {400} with ¢; ; < d, ;, for all (4,j) € E, be given. The
alternatives (a) and (b*) of Lemma 2.2 rewrite as follows.

(a) There exist real numbers aq,...,ax and fq,..., B¢ such that
cj < oai+0; <diy V(i,j)€E.
(b*) There exists an elementary cycle vector z = (2; ;) (; j)er such that
Z cij > Z dij,
(i.4)EE~(2) (i.4)EET(2)

where ET(2) = {(i,j) €FE :z;= —|—1} and E~(z) = {(i,j) €EE : zj;= —1}.
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The Oracle X described next is an adapted version of the Compatible Tension Algorithm from
graph theory, (cf. Berge (1991, pp. 94-96)).

Oracle X

Given: ¢;j € RU{—o0o} and d; ; € RU {400} with ¢;; < d, ;, for all (i, j) € E.

(o) Start with any oq,..., o, 01,...,0; € Rsuch that o+ 5; < d;; V (i,j) € E. Let
y = (i + Bj) i )eE-

(i) Consider the set of noncompatible components of y,

Enc(y) = {(27.7) S ai—i_ﬁj <Cz',j} :

If Ene(y) = 0 then y satisfies alternative (a).
Otherwise, choose an (g, jo) € Enc(y) and go to (ii).
(ii) Apply the following labelling process to the elements of V' = {Ry,..., Ry, C1,...,Cs},
where, after the initial step (LO), the steps (L1) and (L2) are cycled through until R;, is
labelled or no further labelling is possible.
(LO) Label Cj,.
(L1) If (4,5) € E such that C; is labelled, R; is unlabelled, and «o; + 8; = d; j then R; is
labelled and gets the label C}.
(L2) If (4,5) € E such that R; is labelled, C} is unlabelled, and o; + §; < ¢; j, then Cj is
labelled and gets the label R;.
Let I = {i: R;islabelled} and I = {1,...,k}\I;
J={j:Cjislabelled } and J = {1,...,0}\J.
If ip € 1, i.e., R;, is labelled, then go to (iii). Otherwise, i.e., R;, is unlabelled, then go to (iv).
(iii) (if 4o € I). Backtracking from R;, to C}, according to labels yields a finite sequence

i07j17i17j27‘--7in—17jn:j07

for some n > 2, pairwise distinct ig, i1, ...,i,—1 € I, pairwise distinct ji,...,J, € J, and such
that R;,, is labelled by Cj, ., (0 < m < n —1) and Cj,, is labelled by R;,, (1 <m <n —1).
That is, we have (i, jm+1) € E (0<m <n—1), (im,jm) € E (1 <m<n-1), and

we also have (ig,jo) € E and a;, + (B, < ¢iy,jo - Define the elementary cycle vector

z= (zivj)(i,j)eE by (7.1) with s = 4+1 (and iy, := ig). Then,

n n
Z Cij = Z Clprjm > Z (i + Bj,) »  (nOte: iy =g, jn = jo),
m=1 m=1

(i,5)€EE~ (2)
n—1 n—1 n
Z dzv] = Z dim)jerl = Z (aim + /Bjerl) = Z (Oéim + ﬁ]m) 9
(i,J)€ET(2) m=0 m=0 m=1

and hence

Z Cij > Z di,j .

(i.5)€E~ () (i.j)€E*(2)

So the elementary cycle vector z satisfies alternative (b*).
(iv) (ifig € I). By (L1) and (L2) of the labelling process from (ii) we have, for (i, j) € E,

Ct,‘—l-ﬁj < d,"j ifiGT, j€J, and Cti—l-ﬂj > Cij ifiel, jej
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Define &1 = min{d;; — (a;+ 8;) : (i,§) € E, i1, jeJ}

and &9 = min{ o+ 6 —cj - (i,j) e E, i€, je€ j} , with the usual conventions
+00 — 7y = 400, ¥ — (—00) = +o0, (for any real number v) and min) = +oo. Clearly,
0 < e1,69 < 400. If 61 < 400 or g3 < 400 then define ¢ = min{e,ea}, Otherwise (if
€1 = €2 = +00) define € = ¢4, 5, — (i + Bj,)- Define for all 1 <i <k, 1< j <,

~  Jai—e ifiel 3 = Bj+e ,ifjed
@i = (7} ,ifiET ’ 7 ,6]' ,ifjej ’
and y = (a; + Bj)(z‘,j)eE- Then, for all (i,7) € E,

Qi+ 0 =< ai+Bj+¢e ,if (i,§) €1 x
a; + B , else

ai+5j—€ ,if(i,j)GIXj
J

So, by the choice of ¢, the vector y = (a; + 5j)(i’j)€E‘ again satisfies a; + Bj <d;; V (i,j) e E
and, moreover, B
Enc(g’D = {(7’7]) Sy :&i'i_ﬂj <Ci,j} gEnc(y) .

If (40, jo) & Enc(y) then replace the «;, the 8;, and y by the o, the 5;‘7 and vy, resp., and return
to step (i). Otherwise (if (4o, jo) € Enc(y)) then replace the «;, the §;, and y by the a;, the 5]-,
and ¥, resp., and return to step (ii), (note that the labelling process in (ii) needs not be started
afresh, but the labelling obtained previously may be kept and additional labelling occurs due
to the construction of the new point ). O

Note: A rough analysis shows that Oracle X has running time O( (k+10) (#E)2) . O

Let us consider the dual problem. The objective function G from (4.7) turns into

k 14
G(a, ) = Z(rl —Vi4)oy + Z(Cj —vi )3 + F(v),
i=1 j=1
if o; + ﬂj S Ii,j(Vi,j) and Vij € {0, 1,... ,,um-} A (l,j) S (72)
where for v = (vi;)(ij)er we have denoted vy = 7. ; yepviy and vij = 37 hep Vi,

and the intervals I; j(v; ;) are from (4.5). For establishing an Oracle Y, we firstly describe the
weak Pareto solutions to a linear program (4.10) for the present situation.

Lemma 7.1 Let § = (¢,¢') € R¥, 0 £ 0, where ¢ = (¢1,...,¢r) € R¥ and ¢ =
(P1,..., ) € RY, and let ¢;; € RU{—o0} and d;; € RU {+oc} with ¢;; < d;; for all
(i,§) € E. Consider the linear program in the variable A = (o/, 3') € R,

maximize '\ = ¢'a+1'3 subject to ¢ j <o+ B; <di; V (i,j) € E.

Define I™ ={i: ¢; >0}, I- ={i: ¢ <0}, Jt ={j:¢;>0},and J = {j:
W <0} . Let X = (CAJ/,B’)’ be a feasible point to the linear program. Define a directed graph
D(X) with vertex set V.= {Ry,..., Ry, C1,...,C¢} and whose arcs are given as follows:

There is an arc with initial point R; and end point C; iff (i,j) € E and o; + Bj =d;;;

there is an arc with initial point C; and end point R; iff (i,j) € E and & + Bj =¢j.

Then: X is a weak Pareto solution to the linear program if and only if in D(X) there is a

directed path from some vertex of {R; : i € IT}U{C; : j € J} to some vertex of
{R; : iGI_}U{Cj : j€J+}.
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Proof. 1. Assume that \ is a weak Pareto solution. Suppose that there does not exist a pair
v,w of verticesv € {R; : i € IT}U{C; : je J tandw e {R;, : i€ I"}U{C; : j€J}

o~

such that there is a directed path in D(A) from v to w. Consider the subset V; of all vertices

o~

w € V such that w € {R; : i € [T} U{C; : j € J} or there exists a directed path in D())
from some vertex v € {R; : i € IT}U{C; : j € J} to w. So, in particular, R; ¢ V; for all
i €I and C; ¢ V; for all j € J*. Moreover, we have:

If (i,7) € E, R; € Vi, and Cj & V; then &; + B3; < d; ;;
if (i,j) € E, R; € Vi, and C; € Vi then @; + f; > ¢; ;.

So we can choose a positive real € such that

e < dij—(ai+B;) forall (i,j) € E with R; € Vi and C; & W,
e < q; —i—Bj — Cij for all (Z,j) € F with R; € V1 and Cj e V.

Define a new point \ = (¢, §') € R¥ by

q;+e/2 ifR €W Bi—e/2 ,ifCjeV
Q= ~ R B]: A~
a;—e/2  else Bj+¢e/2 , else

Then, by the choice of €, the point A is feasible to the linear program. Moreover, consider the
positive components of the coefficient vector § which are ¢; for ¢ € I'" and v, for j € JT, and
consider the negative components of § which are ¢; for i € I~ and ¢; for j € J~. If i € I'" then
R; € V; and hence a; = @; +¢/2 > @;; if j € JT then Cj ¢ V; and hence f3; = Bj +e/2 > Ej;
if i € I~ then R; ¢ Vi and hence oy = &; —¢/2 < ay; if j € J~ then C; € Vi and hence
B = Bj —e/2< Bj- This shows that the point \ is not a weak Pareto solution, contradicting
the assumption.

2. Assume that there exist v € {R; : i € IT}U{C; : jeJ }andw e {R; : i€ }U{C; :
j € JT} and a directed path in D(X) from v to w. We distinguish the four cases:

(i) v=Rp,and w= R, for somep e [T and g€ [ ;

(i) v= Ry, and w = C, for some p € I'* and g € J;

(iii) v=Cp and w = R, for some p € J~ and g € I;

(iv) v=Cp and w = C, for some p € J~ and g € JT.

In either cases we can conclude that \ is a weak Pareto solution; examplarily we show this for
case (i), while the other three cases are handled analogously.

Case (i): There is a finite sequence R;,Cj,,R;,,...,Cj,_,, R;,, where n > 2, such that
i1 = p, ip, = ¢, and there is an arc in D(X) from each vertex of the sequence (except the last)
to its successor. That is,

(im,Jm) € E and a;,, +Bjm —d

(im+1,jm) € F and az'm+1 + ﬁjvn = Cipy1gm s L <m<n-—1.

1<m<n-—1,

imvjm ?

For any point A = (o, 8’)’ feasible to the linear program we have thus

n—1 n—1 n—1 n—1
ap - aq = Z (aim + ﬂ]m) - Z (aim+1 + IBJm) S Z dinujm - Z cim+hjm Y
m=1 m=1 m=1 m=1

and equality holds for A\ = X. So there cannot exist a feasible point A such that o, > @, and
aq < g, and therefore A is a weak Pareto solution, (recall that ¢, is a positive component of
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6 and ¢, is a negative component of 6 ). O

The Oracle Y given next achieves the following.

Given a linear program as in Lemma 7.1 which is assumed to have a finite mazimum value,
and given a feasible point A = (o, ") to that linear program. Then, a weak Pareto solution
A= (&, ") to the linear program and a directed path in D(\) according to Lemma 7.1 is found.
From this a vector o = (0i5) . j)er according to Lemma 4.4. is obtained by

+1 , if the path contains an arc from R; to C}
oij = ¢ —1 , if the path contains an arc from Cj to R;  V (i,j) € E. (7.3)
0 ,else

Remark

If the maximum value of the linear program from Lemma 7.1 is finite, then:
I"TUJ  #0 and I"UJ" #£0, (7.4)

which can be seen as follows. By the final remark in Section 4, § = (¢,1’)" € R(A), and hence
Zle O; = Z§:1 1;, which we can rewrite as

DThi =D v =D U =) ¢,
I+ J- Jt+ I—

and that value is positive since § # 0. Hence (7.4) follows. O

Oracle Y

Given the linear program from Lemma 7.1 which is assumed to have a finite maximum value,
and given a feasible point A = (¢, 8’)’ to that program. Let I, I~, JT, and J~ be defined as
in Lemma 7.1

(i) Apply the following labelling process to the elements of V' = {Ry,..., Ry, C1,...,Cs},
where, after the initial step (LO), the steps (L1) and (L2) are cycled through until some R;-
with ¢* € I~ is labelled, or some C}» with j* € J* is labelled, or no further labelling is possible.
(LO) Label all R; for i € It and label all C; for j € J~.
(L1) If (i,7) € E is such that R; is labelled, C; is unlabelled, and a; + 8; = d; j then Cj is
labelled and gets the label R;.
(L2) If (i,7) € E is such that Cj is labelled, R; is unlabelled, and a; + 8; = ¢; ; then R; is
labelled and gets the label C}.
Let I = {i: R;islabelled} and I = {1,...,k}\I;
J={j:Cjislabelled } and J = {1,...,0}\J.
IfINI~#@or JNJt #0 then go to (ii). Otherwise go to (iii).
(ii) GfINI-#Qor JNJT #0)
Backtracking from some R;» with i* € NI~ or from some Cj« with j* € J N JT according to
labels yields a directed path in D(\) from some vertex v € {R; : i € IT}U{C; : j € J } to
that vertex w = R or w = Cj~. By Lemma 7.1, X is a weak Pareto solution. Choose o by
(7.3).
(iii) (f INI-=JnJ"=0). By (L1) and (L2) from (ii) we have:

If (i,j) €E,i €1, j€Jthen a; + 3 < d;;
if (i,j) € E,i€l,j€Jthen a; + B > cij.
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Let g1 = min{d;j — (i + ;) : (i,j)€E,i€l, jeJ} and

go =min{o; +8;—cj: (i,j)eE,i€el, jelJ},
where the usual conventions +o0o — t = +00, t — (—00) = 400 (for a real t), and min (§ = +oo
are used. Clearly, 0 < g1 < 400 and 0 < €2 < +00. Not both of them are equal to +oo
which can be seen as follows. Suppose that 1 = €2 = +00. For an arbitrary real € > 0 define

&= (1,...,ax) and B = (B1,...,B) by

~  Jooa+e itiel = | Bi—e ,itjed
“ { a; Lifiel and ﬂj_{ B; Lifjed - (7.5)
Then _
N aj+Bj+e if(i,j)elxJ
i+ B =< ai+pBi—¢e ,if(i,j)elxJ V(i,j€EE, (7.6)
a; + B , else

and thus \ = (o, )4 )’ is again feasible to the linear program. Now,
0N = da+y/B=0X\+e (Z¢,- —Zzpj) .
I J
Since INI~ =Pand JNJT =0, (and IT C I, J- C J), we have

Sdi=> = > ¢i— > Uy,
I+ J-

1 J

and that value is positive by (7.4). So ¢’ A gets arbitrarily large by choosing ¢ arbitrarily large,
which is a contradiction. Thus, €1 < 400 or g3 < +00. Let ¢ = min{ej, ez}, and again define
& and [ by (7.5) which entails (7.6). By the choice of & the point A = (&, 3') is again feasible
to the linear program and, moreover, there is an (i,5) € E withi € I, j € J, and &; +055 = d; j,
or there is an (i,7) € E withi € I, j € J, and &; + Bj = ¢; ;. Replace o and by a and B,
resp., and return to step (i), (note that the labelling process needs not be started afresh, but
the previously obtained labelling may be kept and additional labelling occurs). ([

Note: A rough analysis shows that Oracle Y has running time O( (k+0)#E ) . O

The Oracle Y and the resulting dual algorithm include (and generalize) the method for bipro-
portional rounding of matrices of Balinski and Demange (1989, pp. 205ff.), see also Balinski
and Rachev (1997, pp. 20ff.), and Rote and Zachariasen (2007).

8 Dual alternating scaling algorithm

Let us consider still another approach for matrix apportionment problems, to maximize the
dual objective function G(a, 8) from (7.2) over (a, ) € R¥*¢, The approach is simple as well
as tempting: Use the alternating maximization procedure, i.e., maximize first over a for a
fixed 8, then maximize over § while keeping the before obtained « fixed, and so on. The name
“alternating scaling algorithm” comes from biproportional rounding in its original multiplicative
formulation, (cf. Gaftke and Pukelsheim (2007)), which includes the variables «; and f; via
multipliers p; = exp(a;) and v; = exp(f;).

As we will show next, each maximization “half-step” consists in solving k or ¢, resp., vector
apportionment problems and their duals as discussed in Section 6. However, the function
G is nondifferentiable, and thus the sequence of points («, 3) generated might not converge
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to a maximizer of G, (cf. Bazaraa, Sherali, Shetty (1993, pp. 285-287)). In fact, we shall
demonstrate by example that the alternating maximization procedure may stall at a nonoptimal
point (9, 3©)). Despite this deficiency, the method can be used as a first optimization part
to approach the optimum, then followed by the dual algorithm from Sections 5 and 7.

Let us examine the half-steps of the alternating procedure in detail. We restrict attention to a
first half-step, a second half-step is analogous. Let 8 = (f1,...,0¢) € R be considered fixed
and consider G(a, 8) from (7.2) as a function of & = (o, ..., ) € R¥. Foreachi € {1,...,k},
we denote F(i) = {j : (i,7) € E} which is nonempty since the feasible region (1.8) is assumed
to be nonempty. Writing

l
Z — Vi ﬁ] = Cﬁ Z Z Vz,]ﬁ] s

J=1 1=1 jeE(i)

and observing the definition (4.5) of the intervals I; j(v; ;), we can rewrite (7.2) as

Gla, B) = ﬁ:[( > Vz‘,j)ai + ) (fi,j(’/i,j)—l/z',jﬁj)] )
<a

JEE(i) JEE()
if Afzg(l/z,j) ﬁ SAf,j(Vi,j‘i‘l)—ﬁj and Vij S {0717"'>Mi,j} V(Z,j) ck.
Introducing the functions

fijp(t) = fig(t) = Bit . te€ [0, pig], (i,4) € E,
we have Af; jg(n) = Af;j(n) — B for alln =0,1,...,u;; + 1, and thus

k
G(a, B) ZC/ﬁ+ZG¢g «;), where foreachi=1,... k :

Gipgloy) = ( Z V”>OzZ + Z fiip(Wij)

JEE(4) JEE(D)
if Afijpvig) <o <Afijpig+1), vig €{0,1,..., i} Vje€E®).

We see, firstly, that maximizing G(a, ) over a € R¥ can be done by maximizing separately
for each ¢ = 1,..., k the function G; g(c;) over a; € R, and secondly, in view of Section 6, that
for each i the function Gj; g is just the dual objective function to the vector apportionment
problem,

minimize F; g(x;) = Z fij.8(i ;)
JeE()
subject to  x; = (%ij)jerq) € ZP0 0 < x5 < iV j € E(i Z Tijg = Tis
JEE(®)

(note that 7 is considered fixed). So, solving each of the k vector apportionment problems,
yields a maximizer o of G( -, 3) along with an & = (z;;)(; j)er € ZF satisfying 0 < x < p, one
half of the equality restrictions, i.e., ; + = r; for all 7, and

Afij(xij) < ai+p; <Afij(wi;+1) V(i,j) € E. (8.1)

Analogously, a second half step of maximizing G(a, 3) over 3 € R for a fixed a (obtained from
the foregoing first half-step) means to solve ¢ vector apportionment problems. This yields a
maximizing 8 and (another) integer point x = (z;,); jer € Z¥ satisfying 0 < x < , the other
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half of the equality restrictions, i.e., x4 ; = ¢; for all j, and (8.1). If it happens that the point
x obtained in a half-step satisfies all the equality restrictions, x; + = r; for all < and =4 ; = ¢;
for all 7, then by Theorem 4.2 the point x and the point («, 3) at hand are optimal solutions to
the primal and the dual problem, resp. However, as remarked above, that occurrence cannot
be guaranteed in general. Next we will give a negative example, built by an artificial instance
of biproportional rounding. For biproportional rounding of a positive matrix W' = (wj ;) 1<i<k

1<5<e
the functions f; ;, 1 <i <k, 1 < j </, are such that

i) =0, and Afiyn) = log ™ (n =1y,

Wi, j

where 0 < s(1) < s(2) < s(3) < ... is a given sign-post sequence. The primal problem is to

k£
minimize Z Z fij(zij)
i=1 j=1
subject to Tij € 7z, ZTi j >0V 1,7, Ti4 = Ty Vi, Ty j= Cj VJ,
where r1,...,7; and ¢y, ..., cp are given positive integers. Note that here no upper bound u

occurs, i.e., i may be any integer vector whose components are large enough to define redundant
upper bounds.

Example 8.1

s(1) s(1) e € €
s(1) s(1) € € €
W =1 s(1) s(1) ¢ € € , for some 0 < e < s(1).
€ e s(1) s(1) s(1)
€ e s(1) s(1) s(1)

We start the dual alternating method with initial points a® = 0 = = (0,0,0,0,0). The
first half-step of maximizing G(a,0) over a has solutions a!) characterized by (8.1) with some
nonnegative integer point = (z;;)1<; j<s such that z; y = 1 foralli=1,...,5, i.e. x is a
0-1-matrix with precisely one 1 in each row. Now, (8.1) rewrites as

ij . ij T 1 )
mauxlogM §a§1)§ min logm foralli=1,...,5,
1<j<5 Wy, 5 1<j<5 Wi, j
where we define s(0) = 0 and log(0) = —oo. We conclude that a(!) = 0 (uniquely), and z is
such that
By 03x3
= ) 8.2
v ( O2x2 B2 > (82)

with any 0-1-matrices B; (3 x 2) and Bz (2 x 3) which have precisely one 1 entry in each row.
The second half-step is thus to maximize G(0, 3) over . The solutions BW are characterized

by (8.1) with some nonnegative integer point = (x;;)1<i <5 such that x4 ; = 1 for all
j=1,...,5 ie. xis a 0-1-matrix with precisely one 1 in each column. Since (8.1) rewrites as
maxlogM §ﬁ§1)< min logm forall j=1,...,5,

1<i<5 w; ~ 1<i<5 w;

we conclude that 3() = 0 (uniquely), and z is such that

C1  0O3x3 )
= ) 8.3
* ( O2x2  Co (83)
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with any 0-1-matrices C; (3 x 2) and Cy (2 x 3) with precisely one 1 entry in each column.
So the procedure stalls at the point («,3) = (0,0), which is nonoptimal: For any possible
choices of Bj, By the matrix = from (8.2) does not satisfy the column sums equations, and for
any possible choice of C, Cy the matrix x from (8.3). does not satisfy the row sums equations.
So there is no feasible point z* to the primal problem such that (8.1) holds for («, 3) = (0,0).
Thus, by Theorem 4.2, the point (0, 0) is nonoptimal.

For example, if s(1) = 0.5 and ¢ = 0.2 (and 1 < s(2) < 2), then an optimal dual solution
(a*, 3%) is given by

o] =ay =a3=10g(2.5), aj=a;=0,

B =Py =1log(04), B3=p1=0; =0,

and one optimal primal solution (among a total of 33 optimal solutions) is given by

01000
1 0 00O
z=|(00010 ],

0 0001

00100
which can easily be verified by checking the optimality condition (8.1) for the (feasible) pair
x* and (a*, 5%). O
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