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Abstract

Algorithms for the proportional rounding of a nonnegative vector, and for the bipro-
portional rounding of a nonnegative matrix are discussed. Here we view vector and matrix
rounding as special instances of a generic optimization problem that employs an additive
version of the objective function of Gaffke and Pukelsheim (2007). The generic problem
turns out to be a separable convex integer optimization problem, in which the linear equal-
ity constraints are given by a totally unimodular coefficient matrix. So, despite the integer
restrictions of the variables, Fenchel duality applies. Our chief goal is to study the implied
algorithmic consequences. We establish a general algorithm based on the primal optimiza-
tion problem. Furthermore we show that the biproportional algorithm of Balinski and
Demange (1989), when suitably generalized, derives from the dual optimization problem.
Finally we comment on the shortcomings of the alternating scaling algorithm, a discrete
variant of the well-known Iterative Proportional Fitting procedure.

Short title: Apportionment and separable integer optimization.

Key words. Totally unimodular matrix – Elementary vector – Graver basis – Convex
programming duality – Alternating maximization procedure

1 Introduction

A separable objective function is of the form

F (x) =
∑

e∈E

fe(xe) ,

where x = (xe)e∈E ∈ RE is a (column) vector variable whose components we label, for conve-
nience, by the elements e of some finite set E, and fe (for e ∈ E) are real functions of a real
variable. By Z we denote the set of all integers, and by ZE the set of all integer vectors in RE .
Let µ = (µe)e∈E ∈ ZE be a positive vector, i.e., its components are positive integers, which will
define a componentwise upper bound for the vector variable x. We assume that each function
fe is a convex function on the interval [ 0 , µe].
Let A be a given totally unimodular V ×E matrix, where V is another finite set, (so the rows
of A are labelled by the elements v ∈ V and the columns of A are labelled by the elements
e ∈ E). Recall that total unimodularity of A means that all square submatrices of A have
determinants −1, 0, or +1. In particular, all the entries of A are in {−1, 0,+1}. Let b ∈ ZV

be given such that linear system

Ax = b , 0 ≤ x ≤ µ , (1.1)

1
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has a solution for x ∈ RE and hence also a solution x(0) ∈ ZE , (cf. Schrijver (1999, Theorem
19.3)). Note that ‘≤’ between vectors stands for the usual componentwise semi-ordering. So
0 ≤ x ≤ µ means 0 ≤ xe ≤ µe for all e ∈ E. We will consider the integer extremum problem,

minimize F (x) =
∑

e∈E

fe(xe) (1.2)

subject to x = (xe)e∈E ∈ ZE , 0 ≤ x ≤ µ , Ax = b . (1.3)

Clearly, only the values of fe at the integers points in {0, 1, . . . , µe} enter into the problem, and
the convexity of fe enters only by its Z-convexity, (cf. Hemmeke (2003)), i.e., the increments
∆fe(n) = fe(n) − fe(n − 1) are nondecreasing in n ∈ {1, . . . , µe}. For technical reasons we
extend the definition of the increments to n = 0 and n = µe + 1 by

∆fe(n) =





−∞ , if n = 0
fe(n) − fe(n− 1) , if 1 ≤ n ≤ µe

+∞ , if n = µe + 1
(1.4)

So, without loss of generality, we may assume the convex functions fe to be piecewise linear,

fe(t) = fe(n− 1) + ∆fe(n)
(
t− (n− 1)

)
, if n− 1 ≤ t ≤ n and n ∈ {1, . . . , µe} . (1.5)

In fact, since the slopes ∆fe(n) are nondecreasing in n, the function fe from (1.5) is convex on
[ 0 , µe]. Two special cases are of particular interest.

Vector apportionment problem
A simple special case is given when V a one-point set, E = {1, . . . , p}, and A = [1, . . . , 1]. The
contraints in (1.3) then read as

x = (x1, . . . , xp)′ ∈ Zp , 0 ≤ x ≤ µ

p∑

j=1

xj = h , (1.6)

for a given positive integer h, the “house size”. Trivially, consistency of (1.1) means here that
h ≤ ∑p

j=1 µj . A problem of minimizing (1.2) (with E = {1, . . . , p}) subject to (1.6) will be
referred to as a vector apportionment problem. For this problem, but without upper bounds
µj , the optimal solutions were characterized in Saaty (1970, p.184), and for special functions
fj the problem was treated by Te Riele (1978) and Thépot (1986). As it is shown in Gaffke
and Pukelsheim (2007), proportional rounding of a positive vector w = (w1, . . . , wp)′ ∈ Rp can
be written as a vector apportionment problem employing functions fe = fj (1 ≤ j ≤ p) such
that

fj(n) =
n∑

k=1

log
s(k)
wj

, (n = 0, 1, . . . , µj) ,

whence fj(0) = 0 and ∆fj(n) = log
s(n)
wj

, (n = 1, . . . , µj) ,

where s(n), n = 1, 2, 3, . . . , is a given signpost sequence defining the rounding law, i.e.

0 < s(1) < s(2) < s(3) < . . . , and n− 1 ≤ s(n) ≤ n for all n ≥ 1 .

(Actually, this is the case of a pervious rounding law in that s(1) > 0; the impervious case
s(1) = 0 can be treated similarly). ¤
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Matrix apportionment problem
Another particular (but more difficult) case is given when V = {R1, . . . , Rk, C1, . . . , C`}, a set
of size k + `, where k ≥ 2 and ` ≥ 2, E is a nonempty subset of the set of all (ordered) pairs
(i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ `, and A = (av,e)v∈V, e∈E is given by

av,e =





1 , if v = Ri and e = (i, j) for some j
1 , if v = Cj and e = (i, j) for some i
0 , else

(1.7)

That is, A is the vertex-edge incidence matrix of a bipartite (undirected) graph with vertices
R1, . . . , Rk and C1, . . . , C`, and there is an edge between Ri and Cj iff (i, j) ∈ E. Thus A is
totally unimodular, (cf. Schrijver (1999, Section 19.3, Example 1)). The contraints in (1.3)
turn into

x = (xi,j)(i,j)∈E ∈ ZE , 0 ≤ x ≤ µ , xi,+ = ri ∀ i , x+,j = cj ∀ j , (1.8)

where we have used the notation

xi,+ =
∑

j : (i,j)∈E

xi,j , x+,j =
∑

i : (i,j)∈E

xi,j ,

and where b = (r1, . . . , rk, c1, . . . , c`)′, the ri and cj being positive integers. Of course, it is
assumed that

∑k
i=1 ri =

∑`
j=1 cj = h, the house size. A problem of minimizing (1.2) under

(1.8) will be referred to as a matrix apportionment problem. In Gaffke and Pukelsheim (2007) it
was shown that biproportional rounding of a nonnegative real matrix W =

(
wi,j

)
1≤i≤k
1≤j≤`

can be

written as a matrix apportionment problem employing E =
{
(i, j) : wi,j > 0

}
and functions

fe = fi,j such that

fi,j(n) =
n∑

k=1

log
s(k)
wi,j

, (n = 0, 1, . . . , µi,j) ,

whence fi,j(0) = 0 and ∆fi,j(n) = log
s(n)
wi,j

, (n = 1, . . . , µi,j) . ¤

There is a considerable body of literature on separable convex programming (integer or con-
tinuous) with linear constraints, providing efficient algorithms for solution, (cf. Hochbaum and
Shantikumar (1990)). These results are still to be exploited for (bi)proportional rounding pur-
poses. More general nonlinear integer optimization problems are considered in Murota, Saito,
Weismantel (2004) and in Hemmecke (2003). We will concentrate on separable convex integer
programming problems under totally unimodular linear equations.

Our present paper is organized as follows. In Section 2 a characterization of the optimal solu-
tions to the primal integer problem (1.2)-(1.3) is given offering a basis for the primal algorithm
outlined in Section 3. A duality result is derived in Section 4, and a conceptual dual algo-
rithm is formulated in Section 5. In Sections 6 and 7 we concentrate on the two instances
mentioned above, vector and matrix apportionment problems. For vector apportionment prob-
lems, the dual algorithm coincides with the one of Happacher and Pukelsheim (1996, p. 378;
2000, p. 154), and Dorfleitner and Klein (1999). For matrix apportionment problems, the dual
algorithm is akin to the one described by Balinski and Demange (1989), and by Balinski and
Rachev (1997, Section 5), see also Balinski (2006) and Rote and Zachariasen (2007). Section 8
is concerned with an alternative dual method, the alternating scaling algorithm, which requires
relatively low computational effort. However, in general it may fail to find the optimum due to
non-smoothness of the dual objective function. Despite this deficiency, the alternating scaling
method is a useful heuristics which provides a nearly optimal solution, and in many instances
even an optimal solution.
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2 The primal problem

We address problem (1.2)-(1.3) under the assumptions stated in Section 1. For the (totally
unimodular) matrix A its nullspace and the orthogonal complement of the latter, which is the
range of the transposed A′, will be of particular interest,

N (A) =
{
x ∈ RE : Ax = 0

}
,

R(A′) =
{
y ∈ RE : ∃ λ ∈ RV with y = A′λ

}
.

The support of a vector x = (xe)e∈E ∈ RE is defined by

supp(x) =
{
e ∈ E : xe 6= 0

}
.

Below we will have to further classify the supporting indices of a vector x = (xe)e∈E ∈ RE by
introducing

E+(x) =
{
e ∈ E : xe > 0

}
and E−(x) =

{
e ∈ E : xe < 0

}
.

Let L be a linear subspace of RE . An elementary vector of L is defined to be a nonzero vector
z ∈ L which has minimal support within L \ {0}, i.e., 0 6= z ∈ L and for all 0 6= x ∈ L :

supp(x) ⊆ supp(z) implies supp(x) = supp(z) ,

cf. Rockafellar (1972, pp. 203-204). From the total unimodularity of the matrix A we get:

Lemma 2.1 If z is an elementary vector of N (A) then, for some positive scalar γ, the vector
γ z has all components in {−1, 0,+1}.
Proof. Let z = (ze)e∈E be an elementary vector of N (A). Denote Ẽ = supp(z) and consider
the subvector z̃ = (ze)e∈ eE ∈ R

eE . Let ae, (e ∈ E), be the columns of A and consider the V × Ẽ
submatrix Ã with columns ae, e ∈ Ẽ. Clearly, Ã is again totally unimodular. The nullspace
of Ã has dimension equal to 1 (and consists thus of all scalar multiples of z̃), which can be
seen as follows. Let x̃ = (xe)e∈ eE ∈ R eE with Ãx̃ = 0, and let x̃ 6= 0. Then, we augment x̃
by zero components xe = 0, e ∈ E \ Ẽ, to obtain a vector x ∈ RE . We have x ∈ N (A) and
supp(x) ⊆ supp(z), and hence supp(x) = supp(z). So x is also an elementary vector of N (A)
with the same support as z which implies, (cf. Rockafellar (1972, Lemma 22.4)), that x = βz
for some nonzero scalar β, and thus x̃ = βz̃. Hence the nullspace of Ã is spanned by z̃.
Now we identify, for the nullspace of Ã, another basis vector which has all components equal
to ±1 or zero. Consider the polytope

P̃ =
{
x̃ = (xe)e∈ eE ∈ R

eE : Ãx̃ = 0 , −1 ≤ xe ≤ 1 ∀ e ∈ Ẽ }
.

By total unimodularity of Ã all of the vertices of P̃ are integral, (cf. Schrijver (1999, Theorem
19.3)). Since αz̃ ∈ P̃ for some nonzero scalar α, we have P̃ 6= {0}, and so there is a nonzero
vertex x̃∗ of P̃ with all components equal to ±1 or zero. In particular, x̃∗ is an element of the
nullspace of Ã and thus x̃∗ = γz̃ for some nonzero scalar γ. Augmenting x̃∗ by zero components
to obtain a vector x∗ of RE , we have γz = x∗ which has all components in {−1, 0,+1}. If γ < 0
then the same is true for (−γ)z = −x∗. ¤

We will call an elementary vector of N (A) which has all components equal to ±1 or zero an
elementary sign vector of N (A). Using the results of Graver (1975) it can be shown that the
elementary sign vectors of N (A) constitute the Graver basis of A which is defined as follows
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(and actually refers to any integer matrix A). The Graver basis of A consists of all vectors
which are minimal in the set of all nonzero integer vectors of N (A) w.r.t. the semi-ordering
“¹” defined by:

x = (xe)e∈E ¹ y = (ye)e∈E ⇐⇒ xeye ≥ 0 and |xe| ≤ |ye| for all e ∈ E ,

(cf. Hemmecke (2003), p. 1). A slightly weaker notion we will also use is that of a sign vector
of N (A), which is any nonzero vector of N (A) having all components equal to ±1 or zero. For
a sign vector z = (ze)e∈E of N (A) we obviously have

E+(z) =
{
e ∈ E : ze = +1

}
and E−(z) =

{
e ∈ E : ze = −1

}
.

Lemma 2.2 Let ce ∈ R ∪ {−∞} and de ∈ R ∪ {+∞} with ce ≤ de for all e ∈ E be given.
Then one and only one of the following two alternatives (a) and (b) holds:

(a) There exists a vector y = (ye)e∈E ∈ R(A′) with ce ≤ ye ≤ de for all e ∈ E.

(b) There exists a sign vector z of N (A) such that
∑

e∈E−(z)

ce >
∑

e∈E+(z)

de .

Moreover, condition (b) is equivalent to the following condition (b∗) :

(b∗) There exists an elementary sign vector z of N (A) such that
∑

e∈E−(z)

ce >
∑

e∈E+(z)

de .

¤

The result of Lemma 2.2 is a fairly direct consequence from Rockafellar (1972, Theorem 22.6),
and our Lemma 2.1, (see the proof of Theorem 7.1 in Gaffke and Pukelsheim (2007)). It can
also be derived from strong duality in linear programming.
Note that the inequality in (b) and (b∗) of Lemma 2.2 in particular implies that ce > −∞ for
all e ∈ E−(z) and de < +∞ for all e ∈ E+(z) .

Using Lemmas 2.1 and 2.2 we now derive two (equivalent) characterizations of an optimal solu-
tion to problem (1.2)-(1.3). The first shows the elementary sign vectors of N (A) to constitute
a universal test set in the sense of Hemmecke (2003); this follows also from the more general
results of that paper (see p. 4 in Hemmecke (2003)). The second characterization is of dual
(Lagrangian) type; this is related to a result in Sun, Tsai, and Qi (1993, Proposition 2.3) who
deal with the case of a network matrix A. However, we will give a short proof of our next
theorem by means of Lemmas 2.1 and 2.2. Recall the definition in (1.4) of the increments
∆fe(n), n ∈ {0, 1, . . . , µe + 1}, which are nondecreasing in n.

Theorem 2.3 Let x∗ =
(
x∗e

)
e∈E

be a feasible solution to problem (1.2)-(1.3), (i.e., x∗ satisfies
(1.3)). The following three conditions (i), (ii), and (iii) are equivalent:

(i) x∗ is an optimal solution to problem (1.2)-(1.3).

(ii) For all elementary sign vectors z of N (A) with E+(z) ⊆ {e : x∗e < µe} and
E−(z) ⊆ {e : x∗e > 0} one has F (x∗) ≤ F (x∗ + z) .

(iii) There exists a vector y∗ = (y∗e)e∈E ∈ R(A′) such that

∆fe(x∗e) ≤ y∗e ≤ ∆fe(x∗e + 1) ∀ e ∈ E .
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Proof.
(i) =⇒ (ii) Assume (i). Let z = (ze)e∈E be an elementary sign vector of N (A) such that
E+(z) ⊆ {e : x∗e < µe} and E−(z) ⊆ {e : x∗e > 0}. Then x∗ + z is again feasible for problem
(1.2)-(1.3), and thus F (x∗) ≤ F (x∗ + z).
(ii) =⇒ (iii) Assume (ii). Let z = (ze)e∈E be an elementary sign vector of N (A) such that
E+(z) ⊆ {e : x∗e < µe} and E−(z) ⊆ {e : x∗e > 0}. Then,

0 ≤ F (x∗ + z) − F (x∗) =
∑

e∈E

(
fe(x∗e + ze)− fe(x∗e)

)

=
∑

e∈E+(z)

(
fe(x∗e + 1)− fe(x∗e)

)
+

∑

e∈E−(z)

(
fe(x∗e − 1)− fe(x∗e)

)

=
∑

e∈E+(z)

∆fe(x∗e + 1) −
∑

e∈E−(z)

∆fe(x∗e) ,

which shows that ∑

e∈E−(z)

∆fe(x∗e) ≤
∑

e∈E+(z)

∆fe(x∗e + 1) . (2.1)

Inequality (2.1) remains true for any elementary sign vector z of N (A), since if one or both of
the inclusions E+(z) ⊆ {e : x∗e < µe} and E−(z) ⊆ {e : x∗e > 0} are not satisfied then the
right hand side of (2.1) becomes +∞ or the left hand side of (2.1) becomes −∞. Now Lemma
2.2 applies to

ce = ∆fe(x∗e) and de = ∆fe(x∗e + 1) , (e ∈ E) ,

and shows that alternative (a) of that lemma must hold, which is condition (iii).
(iii) =⇒ (i) Assume (iii) for some y∗ ∈ R(A′). Let x = (xe)e∈E be any feasible point to
problem (1.2)-(1.3). By the convexity of the functions fe we have for every e ∈ E,

fe(xe)− fe(x∗e) ≥ ∆fe(x∗e + 1) (xe − x∗e) ≥ y∗e(xe − x∗e) , if xe ≥ x∗e ,
fe(xe)− fe(x∗e) ≥ ∆fe(x∗e) (xe − x∗e) ≥ y∗e(xe − x∗e) , if xe < x∗e .

Summing over e ∈ E, and observing that y∗ = A′λ∗ for some λ∗ ∈ RV and Ax = Ax∗ = b,
we obtain

F (x) − F (x∗) ≥ (A′λ∗)′(x− x∗) = λ∗′(Ax−Ax∗) = 0 .

Thus, F (x∗) ≤ F (x) for every feasible point x to problem (1.2)-(1.3). ¤

3 A conceptual primal algorithm

Suppose that we have an algorithm, let us call it an Oracle X, which decides between the
alternatives (a) and (b) of Lemma 2.2. More precisely, for any given input values ce and de,
(e ∈ E), as in Lemma 2.2, suppose that Oracle X either returns a vector y ∈ R(A′) with
ce ≤ ye ≤ de ∀ e ∈ E, or it returns a sign vector z of N (A) such that

∑

e∈E−(z)

ce >
∑

e∈E+(z)

de .

By linear programming methods it should be possible to construct an Oracle X of polynomially
(in #V + #E) bounded running time. For vector and matrix apportionment problems specific
Oracles X will be given in Sections 6 and 7. However, a primal algorithm stated next for
solving problem (1.2)-(1.3), which is based on an Oracle X, will not be polynomial due to an
exponentially increasing size of the feasible region (1.3).
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Conceptual primal algorithm, (needs an Oracle X).
Start with any feasible point x =

(
xe

)
e∈E

to problem (1.2)-(1.3). Set

ce = ∆fe(xe) and de = ∆fe(xe + 1) ∀ e ∈ E ,

and apply Oracle X. If the oracle yields a point y ∈ R(A′) satisfying

ce ≤ ye ≤ de ∀ e ∈ E ,

then, by Theorem 2.3, x is optimal. If the oracle yields a sign vector z = (ze)e∈E of N (A) such
that ∑

e∈E−(z)

ce >
∑

e∈E+(z)

de ,

then define a new point by x̃ = x+ z . Clearly, x̃ is feasible to problem (1.2)-(1.3), and

F (x)− F (x̃) =
∑

e∈E−(z)

∆fe(xe) −
∑

e∈E+(z)

∆fe(xe + 1)

=
∑

e∈E−(z)

ce −
∑

e∈E+(z)

de > 0 .

Hence x̃ is strictly better than x, F (x̃) < F (x). Replace x by x̃ and repeat. Since the feasible
region (1.3) is finite, the algorithm will terminate with an optimal solution after a finite number
of iterations. ¤

4 The dual problem

Strong duality of convex programming applies to the primal problem (1.2)-(1.3), despite the
integer restriction in (1.3). This is due to the total unimodularity of the matrix A. For, as
pointed out in Section 1, the (convex) functions fe may be taken to be the piecewise linear
functions from (1.5). Doing so, we consider the relaxed version of the primal problem by
removing the integer restriction,

minimize F (x) =
∑

e∈E

fe(xe) (4.1)

subject to x = (xe)e∈E ∈ RE , 0 ≤ x ≤ µ , Ax = b , (4.2)

which is a convex separable piecewise-linear program as studied in Fourer (1985). In fact, by
the total unimodularity of A (and since b and µ are integer vectors), an optimal solution to the
relaxed problem (4.1)-(4.2) is close to an optimal solution to the integer problem (1.2)-(1.3),
and the two problems share the same optimal value. So, the integer problem and the relaxed
version are nearly equivalent. This is shown by the following lemma.

Lemma 4.1 Let fe (e ∈ E) be the piecewise linear convex functions from (1.5). If x∗ is
an optimal solution to the relaxed problem (4.1)-(4.2) then there exists a rounding of the non-
integer components of x∗ to one of the neighboring integers such that the obtained (rounded)
point x∗∗ is again an optimal solution to problem (4.1)-(4.2) and thus also an optimal solution
to the primal integer problem (1.2)-(1.3).

Proof. Let x∗ = (x∗e)e∈E be an optimal solution to problem (4.1)-(4.2), (which exists by
compactness of the feasible region (4.2) and by continuity of the objective function F ). Let
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a∗e = bx∗ec (the greatest integer not exceeding x∗e), ξ∗e = x∗e−a∗e, a∗ = (a∗e)e∈E , and ξ∗ = (ξ∗e )e∈E .
Then ξ∗ belongs to the polytope defined by

P =
{
ξ ∈ RE : 0 ≤ ξ ≤ σ , Aξ = d

}
,

where σ = (σe)e∈E and d are given by

σe =
{

1 , if a∗e < x∗e
0 , if a∗e = x∗e

, d = b−Aa∗ .

Note that d has integer components. Since A is totally unimodular, each vertex of the polytope
P is an integer vector, (cf. Schrijver (1999, Theorem 19.3)), and thus a vector of zeros and ones.
The function ξ 7−→ F (a∗ + ξ) is linear on P and therefore attains its minimum at some vertex
of P. So there is a vector ξ∗∗ of zeros and ones in P such that

F (a∗ + ξ∗∗) ≤ F (a∗ + ξ∗) = F (x∗) .

Hence x∗∗ = a∗ + ξ∗∗ is also an optimal solution to problem (4.1)-(4.2) and x∗∗ is an integer
vector. ¤

Consider the conjugate function of the piecewise linear convex function fe,

ge(t) = max
{
ξ t − fe(ξ) : 0 ≤ ξ ≤ µe

}
= max

{
n t − fe(n) : n = 0, 1, . . . , µe

} ∀ t ∈ R .
(4.3)

More explicitely: ge is a convex piecewise-linear function on R whose breakpoints are the slopes
of fe and whose slopes are the breakpoints of fe (cf. Fourer (1985), Section 4),

ge(t) = n t − fe(n) , if t ∈ Ie(n) and n ∈ {0, 1, . . . , µe} , (4.4)

with intervals Ie(n) =





(−∞ , ∆fe(1) ] , if n = 0
[∆fe(n) , ∆fe(n+ 1) ] , if 1 ≤ n < µe

[ ∆fe(µe) , ∞) , if n = µe

. (4.5)

The dual objective function is given by, (cf. Fourer (1985), Section 5),

G(λ) = b′λ −
∑

e∈E

ge(ye) , where y = (ye)e∈E = A′λ , ∀ λ ∈ RV , (4.6)

and the dual problem is to maximize G(λ) over λ ∈ RV . Note that G(λ) depends on λ only
through y = A′λ ∈ R(A′), since b = Ax(0) for some x(0) ∈ RE and hence b′λ = x(0)′y. Also, by
(4.4), we may write G as

G(λ) = (b−Aν)′λ + F (ν) , with ν = (νe)e∈E such that
νe ∈ {0, 1, . . . , µe} and ye ∈ Ie(νe) ∀ e ∈ E , (where y = A′λ) ). (4.7)

Now, strong duality can directly be verified:

Theorem 4.2 The minimum value minF (x) of the primal problem (1.2)-(1.3) equals the
maximum value maxG(λ) of the dual problem and that maximum value is attained.
If x∗ is a point satisfying (1.3) and λ∗ ∈ RV , then a necessary and sufficient condition for x∗ to
be an optimal solution to problem (1.2)-(1.3) and λ∗ to be a maximizer of G is that y∗ = A′λ∗

satisfies
∆fe(x∗e) ≤ y∗e ≤ ∆fe(x∗e + 1) ∀ e ∈ E .
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Proof. Let x be a feasible point to problem (1.2)-(1.3) and let λ ∈ RV , y = A′λ. By (4.3)
and (4.4)-(4.5), for any e ∈ E,

ge(ye) ≥ xeye − fe(xe)

with equality if and only if ∆fe(xe) ≤ ye ≤ ∆fe(xe + 1). Hence, by (4.6),

G(λ) ≤ b′λ − x′y + F (x)

with equality if and only if

∆fe(xe) ≤ ye ≤ ∆fe(xe + 1) ∀ e ∈ E . (4.8)

But x′y = x′A′λ = (Ax)′λ = b′λ, and we have thus obtained: G(λ) ≤ F (x) with equality if
and only if (4.8) holds. Together with Theorem 2.3 the result follows. ¤

The dual algorithm for maximizing G(λ) to be established below utilizes that, by (4.7), the
function G(λ) is linear on each polyhedral subset

Λ(ν) =
{
λ ∈ RV : (A′λ)e ∈ Ie(νe) ∀ e ∈ E

}
,

for any fixed ν = (νe)e∈E , νe ∈ {0, 1, . . . , µe}, (e ∈ E). Solving the linear program of maximizing
G(λ) over Λ(ν) for a fixed ν will produce a solution λ̂, with ŷe = (A′λ̂)e hitting the left or the
right boundary of Ie(νe) for some (or several) e ∈ E. If e ∈ E and ŷe equals the left boundary
of Ie(νe), then we are free to replace νe by νe− 1. If e ∈ E and ŷe equals the right boundary of
Ie(νe), then we are free to replace νe by νe + 1. The goal is to assign these changes of the νe

in such a way that the (integer) vector

θ = θ(ν) = b−Aν

decreases in its l1-norm, δ(θ) =
∑

v∈V |θv|. Then, by repeating the procedure, we will end up
with a vector ν∗ of integers ν∗e ∈ {0, 1, . . . , µe}, (e ∈ E), such that θ∗ = 0, i.e., Aν∗ = b, and a
vector λ∗ ∈ Λ(ν∗). That is, ν∗ is feasible for the primal problem (1.2)-(1.3) and G(λ∗) = F (ν∗),
hence ν∗ and λ∗ are optimal solutions to the primal and the dual problem, resp. In fact, the
goal can be achieved, in principle, as we show next. Moreover, it turns out that in each linear
programming step (for fixed ν) it suffices to compute a weak Pareto solution λ̂ rather than an
optimal solution to the linear program

maximize θ(ν)′λ subject to λ ∈ Λ(ν) .

By a weak Pareto solution we mean the following.

Definition 4.3 Let θ = (θv)v∈V ∈ RV be a given nonzero vector and Λ ⊆ RV a given
nonempty subset. Consider the problem

maximize θ′λ subject to λ ∈ Λ . (4.9)

Define V + = {v ∈ V : θv > 0} and V − = {v ∈ V : θv < 0}. A point λ̂ = (λ̂v)v∈V ∈ Λ is
said to be a weak Pareto solution to (4.9) iff there is no λ = (λv)v∈V ∈ Λ such that

λv > λ̂v ∀ v ∈ V + and λv < λ̂v ∀ v ∈ V − . ¤

Lemma 4.4 Let θ = (θv)v∈V ∈ RV be a nonzero vector, and let ce ∈ R ∪ {−∞}, de ∈
R ∪ {+∞} with ce ≤ de for all e ∈ E. Consider the linear program

maximize θ′λ subject to ce ≤ ye ≤ de ∀ e ∈ E , where y = A′λ . (4.10)
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As in Definition 4.3 we denote

V + = {v ∈ V : θv > 0} , V − = {v ∈ V : θv < 0} , and also V 0 = {v ∈ V : θv = 0} .
Let λ̂ be a feasible point to (4.10), and ŷ = A′λ̂. Define E= = {e ∈ E : ce = de}, and

E+(λ̂) =
{
e ∈ E \ E= : ŷe = de

}
, E−(λ̂) =

{
e ∈ E \ E= : ŷe = ce

}
,

and E0(λ̂) =
{
e ∈ E \E= : ce < ŷe < de

}
.

Then: λ̂ is a weak Pareto solution to (4.10) if and only if there exists a vector σ = (σe)e∈E

with components σe ∈ {−1, 0,+1}, (for all e ∈ E), and such that:

σe ≥ 0 ∀ e ∈ E+(λ̂) , σe ≤ 0 ∀ e ∈ E−(λ̂) , σe = 0 ∀ e ∈ E0(λ̂) ;
the vector Aσ = a = (av)v∈V is nonzero, av ∈ {−1, 0,+1} ∀ v ∈ V ,
and av ≥ 0 ∀ v ∈ V + , av ≤ 0 ∀ v ∈ V − , av = 0 ∀ v ∈ V 0 .

Proof. The vector λ̂ is not a weak Pareto solution to (4.10) if and only if there exists a vector
ξ = (ξv)v∈V such that, denoting η = (ηe)e∈E = A′ξ,

ξv > 0 ∀ v ∈ V + , ξv < 0 ∀ v ∈ V − ,

ηe ≤ 0 ∀ e ∈ E+(λ̂) , ηe ≥ 0 ∀ e ∈ E−(λ̂) , ηe = 0 ∀ e ∈ E= .

This can also be expressed by saying that λ̂ is not a weak Pareto solution to (4.10) if and only
if the following condition (a) holds.
(a) There exists a vector (

ξ
η

)
∈ R

([
IV
A′

] )

such that ξv ∈ ( 0 , ∞) ∀ v ∈ V + , ξv ∈ (−∞ , 0 ) ∀ v ∈ V − , ξv ∈ R ∀ v ∈ V 0 ,

ηe ∈ (−∞ , 0 ] ∀ e ∈ E+(λ̂) , ηe ∈ [ 0 , ∞) ∀ e ∈ E−(λ̂) , ηe ∈ {0} ∀ e ∈ E= ,
ηe ∈ R ∀ e ∈ E0(λ̂) .
So, by Theorem 22.6 in Rockafellar (1972), the vector λ̂ is a weak Pareto solution to (4.10) if
and only if the alternative condition (b) holds.

(b) There exists an elementary vector
(
a
ω

)
of N

( [
IV , A

] )
, where a = (av)v∈V and

ω = (ωe)e∈E , such that
∑

v∈V +

av ( 0 , ∞) +
∑

v∈V −
av (−∞ , 0 ) +

∑

v∈V 0

av R +
∑

e∈E+(bλ)

ωe (−∞ , 0 ]

+
∑

e∈E−(bλ)

ωe [ 0 , ∞) +
∑

e∈E=

ωe {0} +
∑

e∈E0(bλ)

ωeR > 0 . (4.11)

This is converted into the format stated in the assertion. Namely, (4.11) means

av ≥ 0 ∀ v ∈ V + , av ≤ 0 ∀ v ∈ V − , av = 0 ∀ v ∈ V 0 ,

ωe ≤ 0 ∀ e ∈ E+(λ̂) , ωe ≥ 0 ∀ e ∈ E−(λ̂) , ωe = 0 ∀ e ∈ E0(λ̂) ,
and the vector a = (av)v∈V is nonzero.

Since A is totally unimodular, so is the matrix
[
IV , A

]
, (cf. Schrijver (1999, p. 267)). Hence,

by Lemma 2.1, in condition (b) the elementary vector
(
a
ω

)
of N

( [
IV , A

] )
can be chosen

to have all its components in {−1, 0,+1}. Furthermore, by

0 =
[
IV , A

] (
a
ω

)
= a + Aω ,
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and taking σ = −ω, we have a = Aσ. Now condition (b) emerges in the required format. ¤

Remark. Below, we will mostly be concerned with a linear program (4.10) whose maximum
value is finite, i.e., the feasible region of (4.10) is nonempty and the objective linear function
is bounded above on that region. Then, necessarily, θ ∈ R(A). For, suppose θ 6∈ R(A). Then
θ = θ(1) + θ(2) with θ(1) ∈ R(A) and θ(2) ∈ N (A′), θ(2) 6= 0. Choose any feasible point λ to
(4.10). Then, for an arbitrary scalar t > 0, the point λ+ tθ(2) is again feasible and

θ′ (λ+ tθ(2)) = θ′λ + t θ(2)′θ(2) −→∞ for t→∞ ,

which is a contradiction.

5 A conceptual dual algorithm

Suppose that we have have an algorithm, we call it an Oracle Y, which achieves the following.

Oracle Y
Let a problem (4.10) be given (with θ 6= 0) such that its maximum value is finite. Let a feasible
point λ be given. Then Oracle Y returns a weak Pareto solution λ̂ to (4.10) and a vector
σ = (σe)e∈E according to Lemma 4.4.

By linear programming methods it should be possible to construct an Oracle Y with polyno-
mially (in #E + #V ) bounded running time. For vector and matrix apportionment problems
specific Oracles Y will be described in Sections 6 and 7. However, the dual algorithm below
(based on an Oracle Y) for solving the dual and the primal problem of Theorem 4.2 will call
Oracle Y up to δ(b − Aν0) times, where ν0 is determined by the starting point λ0. So the
method will benefit from a foregoing heuristics, as the alternating scaling algorithm in case of
a matrix apportionment problem (see Section 8), which provides a starting point λ0 such that
the l1-distance δ(b−Aν0) is small or moderate.

Conceptual dual algorithm, (needs an Oracle Y)

(o) Start with any λ ∈ RV . Let y = (ye)e∈E = A′λ. For each e ∈ E compute a νe ∈
{0, 1, . . . , µe} such that ye ∈ Ie(νe), and let ν = (νe)e∈E and θ = b−Aν.
(i) If θ = 0 then λ and ν are optimal solutions to the dual and the primal problem, resp.
Otherwise (θ 6= 0) go to (ii).
(ii) Apply Oracle Y to problem (4.10) with ce and de being the left and the right boundary
point, resp., of Ie(νe), (e ∈ E). So we get a weak Pareto solution λ̂ to (4.10) and a vector
σ = (σe)e∈E according to Lemma 4.4. Set ŷ = A′λ̂, ν̂ = ν + σ, and θ̂ = b − Aν̂. By the
properties of σ we have

ν̂e ∈ {0, 1, . . . , µe} , and ŷe ∈ Ie(ν̂e) ∀ e ∈ E ,

and moreover, since θ = b−Aν and θ̂ = θ − a, where a = (av)v∈V = Aσ :

δ(θ̂) =
∑

v∈V

|θ̂v| =
∑

v∈V +

(θv − av) +
∑

v∈V −
(av − θv)

=
∑

v∈V

|θv| −
∑

v∈V

|av| ≤
∑

v∈V

|θv| − 1 = δ(θ)− 1 .

Replace λ by λ̂, ν by ν̂, θ by θ̂ and go to step (i).
Since δ(θ), the l1-norm of the integer vector θ, is decreased each time by (ii) the algorithm will
terminate after finitely many cycles with optimal solutions to the dual and the primal problem.
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6 Vector apportionment problems

Let V be a one-point set, E = {1, . . . , p}, where p ≥ 2, and A = [1, . . . , 1], i.e., the primal
problem reads as

minimize F (x) =
p∑

j=1

fj(xj) (6.1)

subject to x = (x1, . . . , xp)′ ∈ Zp , 0 ≤ x ≤ µ ,

p∑

j=1

xj = h , (6.2)

where µ = (µ1, . . . , µp)′ is a given positive integer vector and h, (the house size), is a given
positive integer such that

∑p
j=1 µj ≥ h. Obviously, the elementary sign vectors z of N (A) are

those having exactly one component equal to +1, exactly one component equal to −1, and the
remaining components equal to zero. So conditions (ii) and (iii) of Theorem 2.3, characterizing
the optimality of a feasible point x∗, say the same, namely:

max
1≤i≤p

∆fi(x∗i ) ≤ min
1≤j≤p

∆fj(x∗j + 1) ,

cp. Saaty (1970, p. 184). Let cj ∈ R ∪ {−∞} and dj ∈ R ∪ {∞} with cj ≤ dj , (1 ≤ j ≤ p),
be given. An Oracle X which decides between alternatives (a) and (b) of Lemma 2.2 is easily
established:

Oracle X
Compute max1≤i≤p ci and min1≤j≤p dj ; if the former does not exceed the latter then choose a
real λ between the max and the min, and y = (λ, . . . λ)′ satisfies (a) of Lemma 2.2. Otherwise,
find an i0 and a j0 such that ci0 > dj0 ; then the elementary sign vector z of N (A) with zi0 = −1,
zj0 = 1, and zj = 0 else, satisfies (b) of Lemma 2.2. ¤

The dual objective function G from Section 4 is a function of a scalar variable λ ∈ R and (4.7)
rewrites as

G(λ) =
(
h−

p∑

j=1

νj

)
λ + F (ν) ,

if λ ∈ Ij(νj) and νj ∈ {0, 1, . . . , µj} , ∀ j = 1, . . . , p .

An Oracle Y is simple to establish since θ and λ in (4.10) are scalars, and the linear program
(4.10) becomes:

maximize θ λ s.t. cj ≤ λ ≤ dj ∀ j = 1, . . . , p ,

where θ is a given nonzero real number and cj , dj , (1 ≤ j ≤ p), are as above. Assume that the
maximum value of that linear program is finite, i.e.,

max
1≤i≤p

ci ≤ min
1≤j≤p

dj ,

min
1≤j≤p

dj < +∞ if θ > 0 , and max
1≤i≤p

ci > −∞ if θ < 0 .

Oracle Y
A weak Pareto solution is the same as an optimal solution, which is given by

λ̂ =
{
dj0 = minj dj , if θ > 0
ci0 = maxi ci , if θ < 0

,
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and a vector σ = (σ1, . . . , σp)′ according to Lemma 4.4 is given by

σj0 = +1 and σj = 0 ∀ j 6= j0 , in case θ > 0 ,
σi0 = −1 and σj = 0 ∀ j 6= i0 , in case θ < 0 .

¤

The resulting dual algorithm was studied by Happacher and Pukelsheim (1996, p. 378) and
Dorfleitner and Klein (1999), and implemented in the Java program Bazi
(www.uni-augsburg.de/bazi). A favourable choice of the initial value for λ was suggested by
Happacher and Pukelsheim (2000, p. 154).

7 Matrix apportionment problems

Let V =
{
R1, . . . , Rk, C1, . . . , C`

}
a set of k + ` elements, where k ≥ 2 and ` ≥ 2, and let

E be a given nonempty subset of the set of all (ordered) pairs (i, j), (1 ≤ i ≤ k, 1 ≤ j ≤ `).
That is, (V,E) constitutes a bipartite (undirected) graph. Let A = (av,e)v∈V, e∈E be its vertex-
edge incidence matrix, whose entries av,e are defined by (1.7). Let b = (r1, . . . , rk, c1, . . . , c`)′

and µ = (µi,j)(i,j)∈E be given (column) vectors of positive integers ri, cj , and µi,j , such that
the feasible region (1.8) is nonempty, (which implies, of course, that

∑k
i=1 ri =

∑`
j=1 cj = h,

the house size). The elementary sign vectors z = (zi,j)(i,j)∈E of N (A) correspond to the
elementary cycles in the bipartite graph (V,E), (cf. Rockafellar (1972, p. 204)). Therefore we
will call those vectors z elementary cycle vectors, the precise definition of which is as follows.
A vector z = (zi,j)(i,j)∈E is an elementary cycle vector iff there are an integer n ≥ 2, pairwise
distinct i0, i1, . . . , in−1 ∈ {1, . . . , k}, and pairwise distinct j1, . . . , jn ∈ {1, . . . , `} such that, with
in := i0 and some s ∈ {±1}, one has

(im, jm+1) ∈ E (0 ≤ m ≤ n− 1) , (im, jm) ∈ E (1 ≤ m ≤ n) , and

zi,j =





s , if i = im, j = jm+1, 0 ≤ m ≤ n− 1
−s , if i = im, j = jm , 1 ≤ m ≤ n

0 , else
∀ (i, j) ∈ E . (7.1)

Here we write vectors λ ∈ RV as

λ = (α′, β′)′ , where α = (α1, . . . , αk)′ ∈ Rk and β = (β1, . . . , β`)′ ∈ R` .

The linear subspace R(A′) of RE consists of all vectors y = (yi,j)(i,j)∈E such that

yi,j = αi + βj ∀ (i, j) ∈ E for some α1, . . . , αk, β1, . . . , β` ∈ R.

Let ci,j ∈ R ∪ {−∞} and di,j ∈ R ∪ {+∞} with ci,j ≤ di,j , for all (i, j) ∈ E, be given. The
alternatives (a) and (b∗) of Lemma 2.2 rewrite as follows.

(a) There exist real numbers α1, . . . , αk and β1, . . . , β` such that

ci,j ≤ αi + βj ≤ di,j ∀ (i, j) ∈ E .

(b∗) There exists an elementary cycle vector z = (zi,j)(i,j)∈E such that

∑

(i,j)∈E−(z)

ci,j >
∑

(i,j)∈E+(z)

di,j ,

where E+(z) =
{
(i, j) ∈ E : zi,j = +1

}
and E−(z) =

{
(i, j) ∈ E : zi,j = −1

}
.
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The Oracle X described next is an adapted version of the Compatible Tension Algorithm from
graph theory, (cf. Berge (1991, pp. 94-96)).

Oracle X

Given: ci,j ∈ R ∪ {−∞} and di,j ∈ R ∪ {+∞} with ci,j ≤ di,j , for all (i, j) ∈ E.

(o) Start with any α1, . . . , αk, β1, . . . , β` ∈ R such that αi + βj ≤ di,j ∀ (i, j) ∈ E . Let
y = (αi + βj)(i,j)∈E .
(i) Consider the set of noncompatible components of y,

Enc(y) =
{

(i, j) ∈ E : αi + βj < ci,j
}
.

If Enc(y) = ∅ then y satisfies alternative (a).
Otherwise, choose an (i0, j0) ∈ Enc(y) and go to (ii).
(ii) Apply the following labelling process to the elements of V = {R1, . . . , Rk, C1, . . . , C`},
where, after the initial step (L0), the steps (L1) and (L2) are cycled through until Ri0 is
labelled or no further labelling is possible.

(L0) Label Cj0 .
(L1) If (i, j) ∈ E such that Cj is labelled, Ri is unlabelled, and αi + βj = di,j then Ri is

labelled and gets the label Cj .
(L2) If (i, j) ∈ E such that Ri is labelled, Cj is unlabelled, and αi + βj ≤ ci,j , then Cj is

labelled and gets the label Ri.
Let I =

{
i : Ri is labelled

}
and I = {1, . . . , k} \ I ;

J =
{
j : Cj is labelled

}
and J = {1, . . . , `} \ J .

If i0 ∈ I, i.e., Ri0 is labelled, then go to (iii). Otherwise, i.e., Ri0 is unlabelled, then go to (iv).
(iii) (if i0 ∈ I). Backtracking from Ri0 to Cj0 according to labels yields a finite sequence

i0 , j1 , i1 , j2 , . . . , in−1 , jn = j0 ,

for some n ≥ 2, pairwise distinct i0, i1, . . . , in−1 ∈ I, pairwise distinct j1, . . . , jn ∈ J , and such
that Rim is labelled by Cjm+1 (0 ≤ m ≤ n − 1) and Cjm is labelled by Rim (1 ≤ m ≤ n − 1).
That is, we have (im, jm+1) ∈ E (0 ≤ m ≤ n− 1), (im, jm) ∈ E (1 ≤ m ≤ n− 1), and

αim + βjm+1 = dim,jm+1 (0 ≤ m ≤ n− 1) , αim + βjm ≤ cim,jm (1 ≤ m ≤ n− 1) ;

we also have (i0, j0) ∈ E and αi0 + βj0 < ci0,j0 . Define the elementary cycle vector
z =

(
zi,j

)
(i,j)∈E

by (7.1) with s = +1 (and in := i0). Then,

∑

(i,j)∈E−(z)

ci,j =
n∑

m=1

cim,jm >

n∑

m=1

(
αim + βjm

)
, (note: in = i0, jn = j0),

∑

(i,j)∈E+(z)

di,j =
n−1∑

m=0

dim,jm+1 =
n−1∑

m=0

(
αim + βjm+1

)
=

n∑

m=1

(
αim + βjm

)
,

and hence ∑

(i,j)∈E−(z)

ci,j >
∑

(i,j)∈E+(z)

di,j .

So the elementary cycle vector z satisfies alternative (b∗).
(iv) (if i0 ∈ I). By (L1) and (L2) of the labelling process from (ii) we have, for (i, j) ∈ E,

αi + βj < di,j if i ∈ I , j ∈ J , and αi + βj > ci,j if i ∈ I , j ∈ J .
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Define ε1 = min
{
di,j − (αi + βj) : (i, j) ∈ E, i ∈ I, j ∈ J}

and ε2 = min
{
αi + βj − ci,j : (i, j) ∈ E, i ∈ I, j ∈ J

}
, with the usual conventions

+∞ − γ = +∞, γ − (−∞) = +∞, (for any real number γ) and min ∅ = +∞. Clearly,
0 < ε1, ε2 ≤ +∞. If ε1 < +∞ or ε2 < +∞ then define ε = min{ε1, ε2}, Otherwise (if
ε1 = ε2 = +∞) define ε = ci0,j0 − (αi0 + βj0). Define for all 1 ≤ i ≤ k, 1 ≤ j ≤ `,

α̃i =
{
αi − ε , if i ∈ I
αi , if i ∈ I , β̃j =

{
βj + ε , if j ∈ J
βj , if j ∈ J ,

and ỹ = (α̃i + β̃j)(i,j)∈E . Then, for all (i, j) ∈ E,

α̃i + β̃j =





αi + βj − ε , if (i, j) ∈ I × J

αi + βj + ε , if (i, j) ∈ I × J
αi + βj , else

.

So, by the choice of ε, the vector ỹ = (α̃i + β̃j)(i,j)∈E again satisfies α̃i + β̃j ≤ di,j ∀ (i, j) ∈ E
and, moreover,

Enc(ỹ) =
{
(i, j) ∈ E : α̃i + β̃j < ci,j

} ⊆ Enc(y) .

If (i0, j0) 6∈ Enc(ỹ) then replace the αi, the βj , and y by the α̃i, the β̃j , and ỹ, resp., and return
to step (i). Otherwise (if (i0, j0) ∈ Enc(ỹ)) then replace the αi, the βj , and y by the α̃i, the β̃j ,
and ỹ, resp., and return to step (ii), (note that the labelling process in (ii) needs not be started
afresh, but the labelling obtained previously may be kept and additional labelling occurs due
to the construction of the new point ỹ). ¤

Note: A rough analysis shows that Oracle X has running time O
(

(k + `) (#E)2
)

. ¤

Let us consider the dual problem. The objective function G from (4.7) turns into

G(α, β) =
k∑

i=1

(ri − νi,+)αi +
∑̀

j=1

(cj − ν+,j)βj + F (ν) ,

if αi + βj ∈ Ii,j(νi,j) and νi,j ∈ {0, 1, . . . , µi,j} ∀ (i, j) ∈ E , (7.2)

where for ν = (νi,j)(i,j)∈E we have denoted νi,+ =
∑

j : (i,j)∈E νi,j and ν+,j =
∑

i : (i,j)∈E νi,j ,
and the intervals Ii,j(νi,j) are from (4.5). For establishing an Oracle Y, we firstly describe the
weak Pareto solutions to a linear program (4.10) for the present situation.

Lemma 7.1 Let θ = (φ′, ψ′)′ ∈ Rk+`, θ 6= 0, where φ = (φ1, . . . , φk)′ ∈ Rk and ψ =
(ψ1, . . . , ψ`)′ ∈ R`, and let ci,j ∈ R ∪ {−∞} and di,j ∈ R ∪ {+∞} with ci,j ≤ di,j for all
(i, j) ∈ E. Consider the linear program in the variable λ = (α′, β′)′ ∈ Rk+`,

maximize θ′λ = φ′α+ ψ′β subject to ci,j ≤ αi + βj ≤ di,j ∀ (i, j) ∈ E .

Define I+ = {i : φi > 0} , I− = {i : φi < 0} , J+ = {j : ψj > 0} , and J− = {j :
ψj < 0} . Let λ̂ = (α̂′, β̂′)′ be a feasible point to the linear program. Define a directed graph
D(λ̂) with vertex set V = {R1, . . . , Rk, C1, . . . , C`} and whose arcs are given as follows:
There is an arc with initial point Ri and end point Cj iff (i, j) ∈ E and α̂i + β̂j = di,j;
there is an arc with initial point Cj and end point Ri iff (i, j) ∈ E and α̂i + β̂j = ci,j.
Then: λ̂ is a weak Pareto solution to the linear program if and only if in D(λ̂) there is a
directed path from some vertex of {Ri : i ∈ I+} ∪ {Cj : j ∈ J−} to some vertex of
{Ri : i ∈ I−} ∪ {Cj : j ∈ J+}.
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Proof. 1. Assume that λ̂ is a weak Pareto solution. Suppose that there does not exist a pair
v, w of vertices v ∈ {Ri : i ∈ I+} ∪ {Cj : j ∈ J−} and w ∈ {Ri : i ∈ I−} ∪ {Cj : j ∈ J+}
such that there is a directed path in D(λ̂) from v to w. Consider the subset V1 of all vertices
w ∈ V such that w ∈ {Ri : i ∈ I+} ∪ {Cj : j ∈ J−} or there exists a directed path in D(λ̂)
from some vertex v ∈ {Ri : i ∈ I+} ∪ {Cj : j ∈ J−} to w. So, in particular, Ri 6∈ V1 for all
i ∈ I− and Cj 6∈ V1 for all j ∈ J+. Moreover, we have:

If (i, j) ∈ E, Ri ∈ V1, and Cj 6∈ V1 then α̂i + β̂j < di,j ;

if (i, j) ∈ E, Ri 6∈ V1, and Cj ∈ V1 then α̂i + β̂j > ci,j .

So we can choose a positive real ε such that

ε ≤ di,j − (α̂i + β̂j) for all (i, j) ∈ E with Ri ∈ V1 and Cj 6∈ V1,

ε ≤ α̂i + β̂j − ci,j for all (i, j) ∈ E with Ri 6∈ V1 and Cj ∈ V1.

Define a new point λ = (α′, β′)′ ∈ Rk+` by

αi =
{
α̂i + ε/2 , if Ri ∈ V1

α̂i − ε/2 , else
, βj =

{
β̂j − ε/2 , if Cj ∈ V1

β̂j + ε/2 , else
.

Then, by the choice of ε, the point λ is feasible to the linear program. Moreover, consider the
positive components of the coefficient vector θ which are φi for i ∈ I+ and ψj for j ∈ J+, and
consider the negative components of θ which are φi for i ∈ I− and ψj for j ∈ J−. If i ∈ I+ then
Ri ∈ V1 and hence αi = α̂i + ε/2 > α̂i; if j ∈ J+ then Cj 6∈ V1 and hence βj = β̂j + ε/2 > β̂j ;
if i ∈ I− then Ri 6∈ V1 and hence αi = α̂i − ε/2 < α̂i; if j ∈ J− then Cj ∈ V1 and hence
βj = β̃j − ε/2 < β̂j . This shows that the point λ̂ is not a weak Pareto solution, contradicting
the assumption.

2. Assume that there exist v ∈ {Ri : i ∈ I+} ∪ {Cj : j ∈ J−} and w ∈ {Ri : i ∈ I−} ∪ {Cj :
j ∈ J+} and a directed path in D(λ̂) from v to w. We distinguish the four cases:
(i) v = Rp and w = Rq for some p ∈ I+ and q ∈ I−;
(ii) v = Rp and w = Cq for some p ∈ I+ and q ∈ J+;
(iii) v = Cp and w = Rq for some p ∈ J− and q ∈ I−;
(iv) v = Cp and w = Cq for some p ∈ J− and q ∈ J+.
In either cases we can conclude that λ̂ is a weak Pareto solution; examplarily we show this for
case (i), while the other three cases are handled analogously.
Case (i): There is a finite sequence Ri1 , Cj1 , Ri2 , . . . , Cjn−1 , Rin , where n ≥ 2, such that
i1 = p, in = q, and there is an arc in D(λ̂) from each vertex of the sequence (except the last)
to its successor. That is,

(im, jm) ∈ E and α̂im + β̂jm = dim,jm , 1 ≤ m ≤ n− 1 ,

(im+1, jm) ∈ E and α̂im+1 + β̂jm = cim+1,jm , 1 ≤ m ≤ n− 1 .

For any point λ = (α′, β′)′ feasible to the linear program we have thus

αp − αq =
n−1∑

m=1

(αim + βjm) −
n−1∑

m=1

(αim+1 + βjm) ≤
n−1∑

m=1

dim,jm −
n−1∑

m=1

cim+1,jm ,

and equality holds for λ = λ̂. So there cannot exist a feasible point λ such that αp > α̂p and
αq < α̂q, and therefore λ̂ is a weak Pareto solution, (recall that φp is a positive component of
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θ and φq is a negative component of θ ). ¤

The Oracle Y given next achieves the following.
Given a linear program as in Lemma 7.1 which is assumed to have a finite maximum value,
and given a feasible point λ = (α′, β′)′ to that linear program. Then, a weak Pareto solution
λ̂ = (α̂′, β̂′)′ to the linear program and a directed path in D(λ̂) according to Lemma 7.1 is found.
From this a vector σ = (σi,j)(i,j)∈E according to Lemma 4.4. is obtained by

σi,j =





+1 , if the path contains an arc from Ri to Cj

−1 , if the path contains an arc from Cj to Ri

0 , else
∀ (i, j) ∈ E . (7.3)

Remark
If the maximum value of the linear program from Lemma 7.1 is finite, then:

I+ ∪ J− 6= ∅ and I− ∪ J+ 6= ∅ , (7.4)

which can be seen as follows. By the final remark in Section 4, θ = (φ′, ψ′)′ ∈ R(A), and hence∑k
i=1 φi =

∑`
j=1 ψj , which we can rewrite as

∑

I+

φi −
∑

J−
ψj =

∑

J+

ψj −
∑

I−
φi ,

and that value is positive since θ 6= 0. Hence (7.4) follows. ¤

Oracle Y

Given the linear program from Lemma 7.1 which is assumed to have a finite maximum value,
and given a feasible point λ = (α′, β′)′ to that program. Let I+, I−, J+, and J− be defined as
in Lemma 7.1

(i) Apply the following labelling process to the elements of V = {R1, . . . , Rk, C1, . . . , C`},
where, after the initial step (L0), the steps (L1) and (L2) are cycled through until some Ri∗

with i∗ ∈ I− is labelled, or some Cj∗ with j∗ ∈ J+ is labelled, or no further labelling is possible.
(L0) Label all Ri for i ∈ I+ and label all Cj for j ∈ J−.
(L1) If (i, j) ∈ E is such that Ri is labelled, Cj is unlabelled, and αi + βj = di,j then Cj is

labelled and gets the label Ri.
(L2) If (i, j) ∈ E is such that Cj is labelled, Ri is unlabelled, and αi + βj = ci,j then Ri is

labelled and gets the label Cj .
Let I =

{
i : Ri is labelled

}
and I = {1, . . . , k} \ I ;

J =
{
j : Cj is labelled

}
and J = {1, . . . , `} \ J .

If I ∩ I− 6= ∅ or J ∩ J+ 6= ∅ then go to (ii). Otherwise go to (iii).

(ii) (if I ∩ I− 6= ∅ or J ∩ J+ 6= ∅)
Backtracking from some Ri∗ with i∗ ∈ I ∩ I− or from some Cj∗ with j∗ ∈ J ∩ J+ according to
labels yields a directed path in D(λ) from some vertex v ∈ {Ri : i ∈ I+} ∪ {Cj : j ∈ J−} to
that vertex w = Ri∗ or w = Cj∗ . By Lemma 7.1, λ is a weak Pareto solution. Choose σ by
(7.3).

(iii) (if I ∩ I− = J ∩ J+ = ∅). By (L1) and (L2) from (ii) we have:

If (i, j) ∈ E, i ∈ I, j ∈ J then αi + βj < di.j ;
if (i, j) ∈ E, i ∈ I, j ∈ J then αi + βj > ci.j .
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Let ε1 = min
{
di,j − (αi + βj) : (i, j) ∈ E , i ∈ I , j ∈ J }

and
ε2 = min

{
αi + βj − ci,j : (i, j) ∈ E , i ∈ I , j ∈ J }

,
where the usual conventions +∞− t = +∞, t− (−∞) = +∞ (for a real t), and min ∅ = +∞
are used. Clearly, 0 < ε1 ≤ +∞ and 0 < ε2 ≤ +∞. Not both of them are equal to +∞
which can be seen as follows. Suppose that ε1 = ε2 = +∞. For an arbitrary real ε > 0 define
α̃ = (α̃1, . . . , α̃k) and β̃ = (β̃1, . . . , β̃`) by

α̃i =
{
αi + ε , if i ∈ I
αi , if i ∈ I , and β̃j =

{
βj − ε , if j ∈ J
βj , if j ∈ J . (7.5)

Then

α̃i + β̃j =





αi + βj + ε , if (i, j) ∈ I × J

αi + βj − ε , if (i, j) ∈ I × J
αi + βj , else

∀ (i, j) ∈ E , (7.6)

and thus λ̃ = (α̃′, β̃′)′ is again feasible to the linear program. Now,

θ′λ̃ = φ′α̃+ ψ′β̃ = θ′λ + ε
(∑

I

φi −
∑

J

ψj

)
.

Since I ∩ I− = ∅ and J ∩ J+ = ∅, (and I+ ⊆ I, J− ⊆ J), we have
∑

I

φi −
∑

J

ψj =
∑

I+

φi −
∑

J−
ψj ,

and that value is positive by (7.4). So θ′λ̃ gets arbitrarily large by choosing ε arbitrarily large,
which is a contradiction. Thus, ε1 < +∞ or ε2 < +∞. Let ε = min{ε1, ε2}, and again define
α̃ and β̃ by (7.5) which entails (7.6). By the choice of ε the point λ̃ = (α̃′, β̃′)′ is again feasible
to the linear program and, moreover, there is an (i, j) ∈ E with i ∈ I, j ∈ J , and α̃i + β̃j = di,j ,
or there is an (i, j) ∈ E with i ∈ I, j ∈ J , and α̃i + β̃j = ci,j . Replace α and β by α̃ and β̃,
resp., and return to step (i), (note that the labelling process needs not be started afresh, but
the previously obtained labelling may be kept and additional labelling occurs). ¤

Note: A rough analysis shows that Oracle Y has running time O
(

(k + `)#E
)

. ¤

The Oracle Y and the resulting dual algorithm include (and generalize) the method for bipro-
portional rounding of matrices of Balinski and Demange (1989, pp. 205ff.), see also Balinski
and Rachev (1997, pp. 20ff.), and Rote and Zachariasen (2007).

8 Dual alternating scaling algorithm

Let us consider still another approach for matrix apportionment problems, to maximize the
dual objective function G(α, β) from (7.2) over (α, β) ∈ Rk+`. The approach is simple as well
as tempting: Use the alternating maximization procedure, i.e., maximize first over α for a
fixed β, then maximize over β while keeping the before obtained α fixed, and so on. The name
“alternating scaling algorithm” comes from biproportional rounding in its original multiplicative
formulation, (cf. Gaffke and Pukelsheim (2007)), which includes the variables αi and βj via
multipliers ρi = exp(αi) and γj = exp(βj).

As we will show next, each maximization “half-step” consists in solving k or `, resp., vector
apportionment problems and their duals as discussed in Section 6. However, the function
G is nondifferentiable, and thus the sequence of points (α, β) generated might not converge
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to a maximizer of G, (cf. Bazaraa, Sherali, Shetty (1993, pp. 285-287)). In fact, we shall
demonstrate by example that the alternating maximization procedure may stall at a nonoptimal
point (α(0), β(0)). Despite this deficiency, the method can be used as a first optimization part
to approach the optimum, then followed by the dual algorithm from Sections 5 and 7.

Let us examine the half-steps of the alternating procedure in detail. We restrict attention to a
first half-step, a second half-step is analogous. Let β = (β1, . . . , β`)′ ∈ R` be considered fixed
and consider G(α, β) from (7.2) as a function of α = (α1, . . . , αk)′ ∈ Rk. For each i ∈ {1, . . . , k},
we denote E(i) = {j : (i, j) ∈ E} which is nonempty since the feasible region (1.8) is assumed
to be nonempty. Writing

∑̀

j=1

(cj − ν+,j)βj = c′β −
k∑

i=1

∑

j∈E(i)

νi,jβj ,

and observing the definition (4.5) of the intervals Ii,j(νi,j), we can rewrite (7.2) as

G(α, β) = c′β +
k∑

i=1

[ (
ri −

∑

j∈E(i)

νi,j

)
αi +

∑

j∈E(i)

(
fi,j(νi,j)− νi,jβj

) ]
,

if ∆fi,j(νi,j)− βj ≤ αi ≤ ∆fi,j(νi,j + 1)− βj and νi,j ∈ {0, 1, . . . , µi,j} ∀ (i, j) ∈ E .

Introducing the functions

fi,j,β(t) = fi,j(t) − βjt , t ∈ [ 0 , µi,j ] , (i, j) ∈ E ,

we have ∆fi,j,β(n) = ∆fi,j(n)− βj for all n = 0, 1, . . . , µi,j + 1, and thus

G(α, β) = c′β +
k∑

i=1

Gi,β(αi) , where for each i = 1, . . . , k :

Gi,β(αi) =
(
ri −

∑

j∈E(i)

νi,j

)
αi +

∑

j∈E(i)

fi,j,β(νi,j) ,

if ∆fi,j,β(νi,j) ≤ αi ≤ ∆fi,j,β(νi,j + 1) , νi,j ∈ {0, 1, . . . , µi,j} ∀ j ∈ E(i).

We see, firstly, that maximizing G(α, β) over α ∈ Rk can be done by maximizing separately
for each i = 1, . . . , k the function Gi,β(αi) over αi ∈ R, and secondly, in view of Section 6, that
for each i the function Gi,β is just the dual objective function to the vector apportionment
problem,

minimize Fi,β(xi) =
∑

j∈E(i)

fi,j,β(xi,j)

subject to xi = (xi,j)j∈E(i) ∈ ZE(i) , 0 ≤ xi,j ≤ µi,j ∀ j ∈ E(i) ,
∑

j∈E(i)

xi,j = ri ,

(note that i is considered fixed). So, solving each of the k vector apportionment problems,
yields a maximizer α of G( · , β) along with an x = (xi,j)(i,j)∈E ∈ ZE satisfying 0 ≤ x ≤ µ, one
half of the equality restrictions, i.e., xi,+ = ri for all i, and

∆fi,j(xi,j) ≤ αi + βj ≤ ∆fi,j(xi,j + 1) ∀ (i, j) ∈ E . (8.1)

Analogously, a second half step of maximizing G(α, β) over β ∈ R` for a fixed α (obtained from
the foregoing first half-step) means to solve ` vector apportionment problems. This yields a
maximizing β and (another) integer point x = (xi,j)i,j∈E ∈ ZE satisfying 0 ≤ x ≤ µ, the other
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half of the equality restrictions, i.e., x+,j = cj for all j, and (8.1). If it happens that the point
x obtained in a half-step satisfies all the equality restrictions, xi,+ = ri for all i and x+,j = cj
for all j, then by Theorem 4.2 the point x and the point (α, β) at hand are optimal solutions to
the primal and the dual problem, resp. However, as remarked above, that occurrence cannot
be guaranteed in general. Next we will give a negative example, built by an artificial instance
of biproportional rounding. For biproportional rounding of a positive matrix W = (wi,j) 1≤i≤k

1≤j≤`

the functions fi.j , 1 ≤ i ≤ k, 1 ≤ j ≤ `, are such that

fi,j(0) = 0 , and ∆fi,j(n) = log
s(n)
wi,j

, (n = 1, . . . , µi,j) ,

where 0 < s(1) < s(2) < s(3) < . . . is a given sign-post sequence. The primal problem is to

minimize
k∑

i=1

∑̀

j=1

fi,j(xi,j)

subject to xi,j ∈ Z , xi,j ≥ 0 ∀ i, j , xi,+ = ri ∀ i , x+,j = cj ∀j ,
where r1, . . . , rk and c1, . . . , c` are given positive integers. Note that here no upper bound µ
occurs, i.e., µmay be any integer vector whose components are large enough to define redundant
upper bounds.

Example 8.1
Let k = ` = 5 , ri = 1 (1 ≤ i ≤ 5) , cj = 1 (1 ≤ j ≤ 5), and

W =




s(1) s(1) ε ε ε
s(1) s(1) ε ε ε
s(1) s(1) ε ε ε
ε ε s(1) s(1) s(1)
ε ε s(1) s(1) s(1)




, for some 0 < ε < s(1) .

We start the dual alternating method with initial points α(0) = β(0) = 0 = (0, 0, 0, 0, 0). The
first half-step of maximizing G(α, 0) over α has solutions α(1) characterized by (8.1) with some
nonnegative integer point x = (xi,j)1≤i,j≤5 such that xi,+ = 1 for all i = 1, . . . , 5, i.e. x is a
0-1-matrix with precisely one 1 in each row. Now, (8.1) rewrites as

max
1≤j≤5

log
s(xi,j)
wi,j

≤ α
(1)
i ≤ min

1≤j≤5
log

s(xi,j + 1)
wi,j

for all i = 1, . . . , 5 ,

where we define s(0) = 0 and log(0) = −∞. We conclude that α(1) = 0 (uniquely), and x is
such that

x =
(

B1 03×3

02×2 B2

)
, (8.2)

with any 0-1-matrices B1 (3× 2) and B2 (2× 3) which have precisely one 1 entry in each row.
The second half-step is thus to maximize G(0, β) over β. The solutions β(1) are characterized
by (8.1) with some nonnegative integer point x = (xi,j)1≤i,j≤5 such that x+,j = 1 for all
j = 1, . . . , 5, i.e. x is a 0-1-matrix with precisely one 1 in each column. Since (8.1) rewrites as

max
1≤i≤5

log
s(xi,j)
wi,j

≤ β
(1)
j ≤ min

1≤i≤5
log

s(xi,j + 1)
wi,j

for all j = 1, . . . , 5 ,

we conclude that β(1) = 0 (uniquely), and x is such that

x =
(

C1 03×3

02×2 C2

)
, (8.3)
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with any 0-1-matrices C1 (3× 2) and C2 (2× 3) with precisely one 1 entry in each column.
So the procedure stalls at the point (α, β) = (0, 0), which is nonoptimal: For any possible
choices of B1, B2 the matrix x from (8.2) does not satisfy the column sums equations, and for
any possible choice of C1, C2 the matrix x from (8.3). does not satisfy the row sums equations.
So there is no feasible point x∗ to the primal problem such that (8.1) holds for (α, β) = (0, 0).
Thus, by Theorem 4.2, the point (0, 0) is nonoptimal.
For example, if s(1) = 0.5 and ε = 0.2 (and 1 ≤ s(2) ≤ 2), then an optimal dual solution
(α∗, β∗) is given by

α∗1 = α∗2 = α∗3 = log(2.5) , α∗4 = α∗5 = 0 ,
β∗1 = β∗2 = log(0.4) , β∗3 = β∗4 = β∗5 = 0 ,

and one optimal primal solution (among a total of 33 optimal solutions) is given by

x∗ =




0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0




,

which can easily be verified by checking the optimality condition (8.1) for the (feasible) pair
x∗ and (α∗, β∗) . ¤
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