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Abstract

We study the statistical properties of overdamped particles driven by two cross-correlated multi-

plicative Gaussian white noises in a time-dependent environment. Using the Langevin and Fokker-

Planck approaches, we derive the exact probability distribution function for the particle positions,

calculate its moments and find their corresponding long-time, asymptotic behaviors. The generally

anomalous diffusive regimes of the particles are classified, and their dependence on the friction

coefficient and the characteristics of the noises is analyzed in detail. The asymptotic predictions

are confirmed by exact solutions for two examples.
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I. INTRODUCTION

Diffusive behavior is intrinsic to many physical, chemical, biological, economical and

other systems [1, 2, 3]. One of the most rigorous approaches for its description that takes

into account the dynamical origin of diffusive motion is based on the Langevin equation,

i.e., the stochastic equation of motion. For a large variety of systems that are stochastically

equivalent to free Brownian particles, this equation has the simplest form, namely a constant

friction coefficient and additive Gaussian white noise. Such systems exhibit normal diffusion,

i.e., the long-time asymptotics of the dispersion of the state parameter are proportional to

time.

However, plenty of systems exhibit anomalous diffusion (for a review, see Refs. [4, 5, 6, 7]).

In general, there exist several approaches to describe this phenomenon. A first one is based

on fractional calculus and involves fractional diffusion equations [8, 9, 10], fractional Fokker-

Planck equations [11, 12, 13, 14] or fractional Langevin equations [15, 16, 17]. Yet another

other relies on generalized ordinary Langevin equations. The latter is very attractive for

the treatment of diffusive behavior, and it is especially informative if those equations can

be solved exactly [18, 19]. This approach has been employed to study anomalous diffusion

for a variety of systems, including systems described by the generalized Langevin equation

with a friction memory kernel [20, 21, 22, 23, 24, 25, 26], free undamped [27, 28, 29] and

damped particles [30] driven by additive noise, overdamped particles driven by one [31] and

two [32] multiplicative colored noises, and overdamped particles with time-dependent drift

driven by additive Gaussian white noise [33].

The Langevin approach is also an efficient tool to study various effects in systems driven

by correlated noises. The correlation can exist, for example, if the two noises possess a

common origin [34, 35], as in the case of bistable systems where fluctuations of some model

parameters are equivalent to the action of correlated additive and multiplicative noises [35].

Such noises play an important role in the description of stochastic resonance [36, 37, 38], non-

equilibrium phase transitions [39, 40], and noise-induced transport [41, 42]. We expect that

correlated noise will impact significantly the anomalous diffusive behavior. To investigate

this problem in the general case of a time-dependent environment, we consider the long-time
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behavior of an overdamped particle governed by the Langevin equation

λ(t)ẋ(t) =
2

∑

i=1

gi(x(t))ξi(t) [x(0) = x0], (1.1)

where x(t) is the particle position, λ(t) denotes an arbitrary, positive-valued time-dependent

friction coefficient, and gi(x) are deterministic functions that characterize the state-

dependent action of Gaussian noises ξi(t). We suppose that all parameters and variables in

Eq. (1.1) are dimensionless and that the noises are white with 〈ξi(t)〉 = 0 and

〈ξi(t)ξj(t
′)〉 = 2∆ijδ(t − t′). (1.2)

Here 〈. . .〉 denotes averaging with respect to the noises ξi(t), ∆11 ≡ ∆1(≥ 0) and ∆22 ≡
∆2(≥ 0) are the intensities of the noises ξ1(t) and ξ2(t), respectively, ∆12 = ∆21 ≡ r

√
∆1∆2,

r is the parameter characterizing the cross-correlation of the noises, |r| ≤ 1, and δ(t) is

the Dirac delta-function. For generality, we assume that the noises ξi(t) are external and

so the time-dependent friction and stochastic forces in Eq. (1.1) are not related to the

fluctuation-dissipation theorem. Hence, if internal noises are negligible in comparison with

external ones, this equation can be used, e.g., for the description of Brownian particles in a

liquid with a time-dependent temperature. It is important to note, however, that Eq. (1.1)

has a physical meaning for internal noises as well. Indeed, since according to the Stokes

formula the friction coefficient depends on the particle radius, this equation describes in

the overdamped regime the Brownian dynamics of spherical particles with time-dependent

radii. Therefore, Eq. (1.1) with internal noises can be used, e.g., for the study of stochastic

dynamics of nucleating and reacting particles, see in this context also related works and the

given applications therein which considers instead a fluctuating friction [43, 44]. Equation

(1.1) does not include inertial effects since in most cases they are important only for a very

short initial time interval and can be safely neglected for larger time scales.

The paper is organized as follows. In Sec. II, using the Langevin approach, we derive the

time-dependent probability distribution function (PDF) of x(t) and calculate its moments.

In Sec. III, we find the long-time asymptotic behavior for moments and classify the diffusive

regimes of the particles. We obtain some exact solutions in Sec. IV. In the same section we

compare the exact and asymptotic results. We summarize our results in Sec. IV. Finally, we

derive the PDF by the Fokker-Planck method in the Appendix.
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II. PROBABILITY DISTRIBUTION FUNCTION AND ITS MOMENTS

According to the results of Refs. [34, 35, 45], the two-noise Langevin equation (1.1) is

statistically equivalent to a one-noise Langevin equation. Its form depends on how Eq. (1.1)

is interpreted [40]. In the case of the Stratonovich interpretation [46, 47] we obtain

λ(t)ẋ(t) = G(x(t))ζ(t) [x(0) = x0], (2.1)

where

G(x) =

√

√

√

√

2
∑

i=1

2
∑

j=1

∆ijgi(x)gj(x) (2.2)

and ζ(t) is Gaussian white noise with zero mean and correlation function

〈ζ(t)ζ(t′)〉 = 2δ(t − t′). (2.3)

In general, the function G(x) will be nonnegative. Here, we consider the slightly more

stringent case that G(x) > 0 for all x, and consequently x(t) ∈ (−∞,∞).

In order to find the PDF of x(t), we use an explicit expression for x(t) that follows

from Eq. (2.1). (An alternative derivation of the PDF via the solution of the corresponding

Fokker-Planck equation is presented in the Appendix.) The Wang and Zakai theorem [47, 48]

states that the conventional rules of calculus are applicable to Langevin equations if they are

interpreted as Stratonovich stochastic equations. Accordingly we solve for x(t) by separating

the variables and integrating Eq. (2.1) to obtain

∫ x(t)

x0

dx′

G(x′)
=

∫ t

0

ζ(t′)dt′

λ(t′)
. (2.4)

If we define

Ψ(x) − Ψ(x0) =
∫ x

x0

dx′

G(x′)
(2.5)

and

w(t) =
∫ t

0

ζ(t′)dt′

λ(t′)
, (2.6)

then Eq. (2.4) can be rewritten in the form

Ψ(x(t)) = w(t) + u0 (2.7)

[u0 = Ψ(x0)]. According to the definition (2.5), the function u = Ψ(x) is continuous and

monotonically increasing; consequently, we obtain minu = Ψ(−∞), max u = Ψ(∞). On
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the other hand, the range of the function w(t) is over all real-valued numbers. Therefore,

Eq. (2.7) is applicable at all times only if Ψ(−∞) = −∞ and Ψ(∞) = ∞. We assume

that these conditions are met and take into account that the inverse function x = Ψ−1(u) is

single-valued, i.e. it is also continuous and monotonically increasing, to obtain the unique

solution of Eq. (2.1) in the form

x(t) = Ψ−1(w(t) + u0). (2.8)

The relation (2.8) shows that the statistical properties of x(t) are defined by the Gaussian

process w(t), which is fully characterized by its zero mean and the correlation function

〈w(t)w(t′)〉 = 2
∫ min(t,t′)

0

dτ

λ2(τ)
. (2.9)

Let Px(x, t) and Pw(w, t) be the univariate PDFs that x(t) = x and w(t) = w, respectively.

Since a one-to-one correspondence exists between x(t) and w(t), the condition Px(x, t)|dx| =

Pw(w, t)|dw| must hold. Taking into account that Pw(w, t) = [
√

2π σ(t)]−1 exp[−w2/2σ2(t)],

where

σ2(t) = 2
∫ t

0

dτ

λ2(τ)
(2.10)

is the dispersion of w(t), and using the relation that dx/dw = G(x), which follows from

Eqs. (2.5) and (2.7), we obtain for the desired PDF:

Px(x, t) =
1√

2πG(x)σ(t)
exp

[

− (Ψ(x) − u0)
2

2σ2(t)

]

. (2.11)

This distribution function is properly normalized, namely,
∫

∞

−∞
Px(x, t)dx = 1, and its

moments, defined as

〈xn(t)〉 =
∫

∞

−∞

dx xnPx(x, t) (2.12)

(n = 1, 2, . . .), contain valuable information about the stochastic system dynamics. Substi-

tuting Eq. (2.11) into Eq. (2.12) and introducing the new variable y = (Ψ(x)− u0)/σ(t), we

reduce Eq. (2.12) into the convenient form

〈xn(t)〉 =
1√
2π

∫

∞

−∞

dy
[

Ψ−1(yσ(t) + u0)
]n

e−y2/2. (2.13)

Depending on the time-dependence of the friction coefficient λ(t), the particles can be

localized or delocalized as t → ∞. If σ(∞) < ∞, i.e., if λ(t) grows fast enough, then the

stationary PDF Px(x,∞) exists, and the particles are localized. Brownian particles in a

freezing liquid serve as an example. On the contrary, if σ(t) → ∞ as t → ∞, then the

particles are delocalized. We focus on the latter situation in the following.
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III. ASYMPTOTIC BEHAVIOR FOR THE MOMENTS

To study the long-time behavior of x(t), including various diffusive regimes, we derive

the asymptotic behavior of 〈xn(t)〉 for t → ∞. This is a rather complex problem because

the integrand in (2.13) contains the inverse function Ψ−1(u) of the integral function Ψ(x).

Since the dispersion σ2(t) tends to infinity in the long-time limit, the inverse function at

y > 0 and y < 0 can be replaced by its asymptotics at u → ∞ and u → −∞, respectively.

To find these asymptotic behaviors, we assume that

G(x) ∼
√

∆ρ |x|αρ (x → ρ∞), (3.1)

where ρ = + or −, ∆ρ is the effective white noise intensity at x = ρ∞, and αρ ≤ 1 to ensure

that Ψ(±∞) = ±∞. Then for x → ρ∞, Eq. (2.5) yields

Ψ(x) ∼ ρ
√

∆ρ



























ln
|x|
aρ

, αρ = 1,

|x|1−αρ

1 − αρ

, αρ < 1.

(3.2)

[The normalizing parameter aρ can be found if the explicit form of the function Ψ(x) is

known (see Sec. IV).] Finally, from Eq. (3.2) we obtain

Ψ−1(u) ∼ ρaρ exp(
√

∆ρ |u|) (u → ρ∞) (3.3)

for αρ = 1, and

Ψ−1(u) ∼ ρ[
√

∆ρ (1 − αρ)|u|]
1

1−αρ (u → ρ∞) (3.4)

for αρ < 1. Next we consider separately these two cases.

1. αρ = 1

In this case, we replace the inverse function Ψ−1(yσ(t) + u0) by its asymptotic behavior,

i.e., a+ exp[
√

∆+(yσ(t) + u0)] at y > 0 and −a− exp[−√
∆−(yσ(t) + u0)] at y < 0, and

Eq. (2.13) thus yields

〈xn(t)〉 ∼ 1√
2π

∑

ρ

(ρaρ)
n

∫

∞

0
dy exp(n

√

∆ρ (yσ(t)

+ ρu0) − y2/2) (3.5)
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as t → ∞. Using the standard integral formula [49]

∫

∞

0
dy e−py−y2/2 =

√

π

2
ep2/2 erfc

(

p√
2

)

, (3.6)

where erfc (z) = (2/
√

π )
∫

∞

z dt e−t2 is the complementary error function, and taking into

account the relation erfc(−∞) = 2, we reduce the asymptotic formula (3.5) to the form

〈xn(t)〉 ∼
∑

ρ

(ρaρ)
n exp(ρn

√

∆ρ u0 + n2∆ρσ
2(t)/2). (3.7)

It is important to note that, since (3.3) represents the leading term of the asymptotic

expansion of Ψ−1(u), we should keep only the largest term in the right-hand side of (3.7).

In particular, if ∆+ > ∆− then

〈xn(t)〉 ∼ an
+ exp(n

√

∆+ u0 + n2∆+σ2(t)/2) (3.8)

(t → ∞), i.e., the particles tend to plus infinity, and if ∆+ < ∆− then

〈xn(t)〉 ∼ (−1)nan
−

exp(−n
√

∆− u0 + n2∆−σ2(t)/2) (3.9)

(t → ∞), i.e., the particles tend to minus infinity. We emphasize that such a behavior of

x(t) results as a direct consequence of the multiplicative nature of the noise.

If ∆+ = ∆− = ∆ then a+ = a− = a. Both terms in the right-hand side of (3.7) have the

same order, and the asymptotic relation (3.7) is reduced to

〈xn(t)〉 ∼ 2an cosh(n
√

∆ u0) exp(n2∆σ2(t)/2) (3.10)

(t → ∞) for even n and to

〈xn(t)〉 ∼ 2an sinh(n
√

∆ u0) exp(n2∆σ2(t)/2) (3.11)

(t → ∞) for odd n. The last relation shows that, in contrast to the previous discussed cases,

no systematic growth of 〈x(t)〉 occurs for u0 = 0, i.e., x0 = Ψ−1(0). In other words, in this

case the particle position x(t) exhibits purely diffusive behavior that can be characterized

by the dispersion σ2
x(t) = 〈x2(t)〉 − 〈x(t)〉2. Since σ2

x(t) ∼ 2a2e2∆σ2(t) as t → ∞, different

long-time regimes of diffusion can exist.

We describe these regimes for the case that λ(t) ∼ ltβ (t → ∞), where l is a positive

parameter and β ≤ 1/2 (the last condition guarantees that σ(∞) = ∞). Using Eq. (2.10),

for β < 1/2 we obtain

ln σ2
x(t) ∼

4∆

l2(1 − 2β)
t1−2β (3.12)
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(t → ∞). Accordingly, we call the diffusive behavior a stretched exponential one if 0 <

β < 1/2, exponential if β = 0, and a compressed exponential if β < 0. If β = 1/2, then

σ2(t) ∼ (2/l2) ln(t/t̃) [t̃ is some characteristic time scale] and so

σ2
x(t) ∼ 2a2(t/t̃)

4∆

l2 (3.13)

as t → ∞. This asymptotic formula demonstrates a truly remarkable feature of this physical

system, namely: the character of its diffusive regime depends on the effective white noise

intensity ∆ which in the general case depends on the correlation coefficient r. Following the

conventional terminology, we say that the system exhibits subdiffusion if ∆ < l2/4, normal

diffusion if ∆ = l2/4, and superdiffusion if ∆ > l2/4. We expect that these diffusion regimes

can exist in the systems of nucleating particles whose radii grow as t1/2.

2. αρ < 1

In this case, using the standard integral formula [49]

∫

∞

0
dy yµe−y2/2 = 2

µ−1

2 Γ
(

µ + 1

2

)

(3.14)

[µ > −1, Γ(z) =
∫

∞

0 dx xz−1e−x is the gamma function] and the asymptotic relation (3.4),

Eq. (2.13) yields

〈xn(t)〉 ∼ 1

2
√

π

∑

ρ

(ρ1)n Γ(ηρ/2)

×[
√

2∆ρ (1 − αρ)σ(t)]ηρ−1 (3.15)

(t → ∞), where ηρ = 1 + n/(1 − αρ). We emphasize that in this asymptotic relation only

the dominant term on the right side should be kept. Specifically, if α+ > α− then

〈xn(t)〉 ∼ Γ(η+/2)

2
√

π
[
√

2∆+ (1 − α+)σ(t)]η+−1, (3.16)

and if α+ < α− then

〈xn(t)〉 ∼ (−1)n Γ(η−/2)

2
√

π
[
√

2∆− (1 − α−)σ(t)]η−−1. (3.17)

Finally, if αρ = α (ηρ = η) then both terms have the same order and so

〈xn(t)〉 ∼ Γ(η/2)

2
√

π
[∆

η−1

2

+ + (−1)n∆
η−1

2

− ]

×[
√

2 (1 − α)σ(t)]η−1. (3.18)
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These relations show that for ∆+ 6= ∆− all moments of x(t) diverge as t → ∞.

Next, we assume that αρ = α and ∆ρ = ∆. In this case, using the asymptotic relation

(3.4), Eq. (2.13) for t → ∞ is reduced to

〈xn(t)〉 ∼ Γ(η/2)√
π

[
√

2∆ (1 − α)σ(t)]η−1 (3.19)

if n is even, and to

〈xn(t)〉 ∼ u0
η − 1√

2π
Γ

(

η − 1

2

)

[
√

2∆ (1 − α)]η−1ση−2(t) (3.20)

if n is odd. The last relation and the exact formula (2.13) confirm the fact that 〈x(t)〉 = 0

for u0 = 0, i.e., under these conditions the particles display diffusive behavior. Since in this

case

σ2
x(t) ∼

Γ(1/(1 − α) − 1/2)√
π

[
√

2∆ (1 − α)σ(t)]
2

1−α (3.21)

as t → ∞, its character depends on the exponent α and on the asymptotic behavior of

σ(t). Specifically, if λ(t) ∝ tβ (t → ∞, β ≤ 1/2) and so σ2(t) ∝ t1−2β for β < 1/2 and

σ2(t) ∝ ln(t/t̃) for β = 1/2, then the particles exhibit superdiffusion if α > 2β and β < 1/2,

normal diffusion if α = 2β and β < 1/2, subdiffusion if α < 2β and β < 1/2, and logarithmic

diffusion [σ2
x(t) ∝ ln

2

1−α (t/t̃)] if β = 1/2.

Thus, multiplicativity of noises and time dependency of the friction coefficient can give

rise to anomalous behavior of the system. Specifically, if λ = const then the conditions

G(x)|x→±∞ → ∞ and G(x)|x→±∞ → 0 are responsible for the fast and slow diffusion,

respectively. On the contrary, if G(x) = const (white noises are additive) then diffusion

is fast if λ(t)|t→∞ → 0 and is slow if λ(t)|t→∞ → ∞. Remarkable, the presence of both

these factors can lead to new stochastic phenomena, like the dependence of the character

of anomalous diffusion on the effective white noise intensity. We note also that the nature

of anomalous diffusion in this system, due the features of the stochastic and friction forces

mentioned above, is quite different from that observed for random walks with long-tail

jump-length and/or waiting-time distributions.

IV. SPECIFIC EXAMPLES

To confirm our asymptotic results, we calculate explicit the expressions for the moments

of x(t) for two particular cases.
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A. Two additive noises

As a first example, we consider the case that both white noises are additive, i.e., g1(x) =

g2(x) = 1. Then, G2(x) = ∆1 + ∆2 + 2r
√

∆1∆2 ≡ G2, Ψ(x) = x/G, Ψ−1(u) = Gu,

u0 = x0/G, and Eq. (2.13) is reduced to

〈xn(t)〉 =
1√
2π

∫

∞

−∞

dy [yGσ(t) + x0]
n e−y2/2. (4.1)

Using in (4.1) the binomial formula and taking into account the relation (3.14), we obtain

after some calculations

〈xn(t)〉 =
xn

0√
π

[n/2]
∑

k=0

C2k
n Γ

(

k +
1

2

)[

√
2 G

x0

σ(t)
]2k

, (4.2)

where [n/2] is the integer part of n/2 and Cm
n = n!/(n − m)!m! is the binomial coefficient.

According to this formula, the leading term of the long-time asymptotic expansion of

〈xn(t)〉 is given by the term in the sum that corresponds to k = [n/2], i.e.,

〈xn(t)〉 ∼ 1√
π

Γ
(

n + 1

2

)

[
√

2Gσ(t)]n (4.3)

for even n and

〈xn(t)〉 ∼ x0√
π

nΓ
(

n

2

)

[
√

2 Gσ(t)]n−1 (4.4)

for odd n. Since ∆ = G2, α = 0 and η = n + 1, the same asymptotic behavior follows also

from the formulas (3.19) and (3.20), respectively.

B. Additive and multiplicative noises

As a second example, we consider a linear Langevin equation where one noise is multi-

plicative, g1(x) = x, and the other one is additive, i.e., g2(x) = 1. According to the definition

(2.2), in this case

G(x) =
√

∆1(x2 + 2rνx + ν2) (4.5)

(ν =
√

∆2/∆1 ) and for |r| < 1 we obtain

Ψ(x) =
1√
∆1

arcsinh
(

x + rν

ν
√

1 − r2

)

(4.6)

and

Ψ−1(u) = ν
√

1 − r2 sinh(
√

∆1 u) − rν. (4.7)
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Then, using Eqs. (2.13) and (4.7), the relation

sinh(
√

∆1 u0) =
x0 + rν

ν
√

1 − r2
(4.8)

that follows from Eq. (4.7), and the standard integral formula [49]

∫

∞

−∞

dy e−by2+cy

[

sinh(py)

cosh(py)

]

=

√

π

b
exp

(

c2 + p2

4b

)

×
[

sinh(cp/2b)

cosh(cp/2b)

]

(4.9)

(b > 0), we find the first moment

〈x(t)〉 = (x0 + rν) exp(∆1σ
2(t)/2) − rν, (4.10)

which shows that x(t) exhibits purely diffusive behavior only if r = −x0/ν, and the second

one

〈x2(t)〉 = [(x0 + rν)2 + ν2(1 − r2)/2] exp[2∆1σ
2(t)]

− 2rν(x0 + rν) exp(∆1σ
2(t)/2)

+ ν2(3r2 − 1)/2 . (4.11)

For t → ∞, these exact results readily yield

〈x(t)〉 ∼ (x0 + rν) exp(∆1σ
2(t)/2) (4.12)

and

〈x2(t)〉 ∼ [(x0 + rν)2 + ν2(1 − r2)/2] exp[2∆1σ
2(t)]. (4.13)

On the other hand, the same long-time representations for 〈x(t)〉 and 〈x2(t)〉 follow as well

from the more general asymptotic formulas (3.10) and (3.11). To verify this, we compare

(3.1) with the asymptotic relation G(x) ∼
√

∆1 |x|, which follows from Eq. (4.5) as |x| → ∞;

this yields ∆ρ = ∆ = ∆1 and αρ = α = 1. Next, since arcsinh z ∼ ρ ln 2|z| as z → ρ∞,

from Eq. (4.6) we find the asymptotic formula

Ψ(x) ∼ ρ√
∆1

ln
(

2|x|
ν
√

1 − r2

)

(4.14)
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(x → ρ∞), which by comparison with (3.2) yields aρ = a = ν
√

1 − r2/2. Finally, substitut-

ing the values for ∆ and a into the formulas (3.11) [with n = 1] and (3.10) [with n = 2] and

using the relation (4.8), we indeed recover the asymptotic behavior (4.12) and (4.13).

Thus, our exact results corroborate the general asymptotic formulas obtained in the

previous section.

V. CONCLUSIONS

We have studied analytically the statistical properties of a special class of exactly solv-

able stochastic models represented by an overdamped particle that is driven by two cross-

correlated multiplicative Gaussian white noises in a time-dependent environment. As a first

step, we have reduced the initial two-noise Langevin equation that describes the particle

dynamics in the Stratonovich sense to a stochastically equivalent one-noise Langevin equa-

tion. Then, solving the latter equation and the corresponding Fokker-Planck equation, we

have derived the exact probability distribution function for the particle positions.

To study the long-time behavior of the particle dynamics, we have calculated the asymp-

totic behavior for the moments of the distribution function. Their analysis results in a rich

behavior of differing regimes of anomalous particle diffusion; namely we find regimes with

normal diffusion, subdiffusion, superdiffusion, exponential diffusion, stretched exponential

diffusion, compressed exponential diffusion, and, as well, logarithmic diffusion. We have

established conditions for these diffusion behaviors to occur and in some special cases we

were able to derive exact formulas for the moments of order 2 and higher that confirmed the

general asymptotic results. Also, we have discovered the truly remarkable feature for sys-

tems described by a special class of linear Langevin equations that their diffusive behavior

becomes determined by the effective white noise intensity.
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APPENDIX: ALTERNATIVE DERIVATION OF THE PDF (2.11)

To derive the PDF (2.11) by the Fokker-Planck method, we assume that each Gaussian

white noise ξi(t) is characterized by its own parameter γi (0 ≤ γi ≤ 1) that determines the

points of time at which gi(x(t)) is evaluated in the corresponding integral sum. Then the

Fokker-Planck equation associated with the Langevin equation (1.1) takes the form [40]

λ2(t)
∂

∂t
Px(x, t) = − ∂

∂x
h(x)Px(x, t) +

∂2

∂x2
d(x)Px(x, t) (A.1)

[Px(x, 0) = δ(x − x0)], where

h(x) = 2
2

∑

i=1

2
∑

j=1

γi∆ijg
′

i(x)gj(x) (A.2)

is the drift coefficient,

d(x) =
2

∑

i=1

2
∑

j=1

∆ijgi(x)gj(x), (A.3)

is the diffusion coefficient, and the prime denotes the derivative with respect to the argument

of the function.

In order to solve Eq. (A.1), we introduce a new variable u = U(x), where the function U(x)

remains to be defined. If the functions U(x) and U−1(u) are single-valued and U ′(x) > 0,

then

Px(x, t) = Pu(u, t)U ′(x). (A.4)

According to Eq. (A.1), the PDF Pu(u, t) of the random process u(t) = U(x(t)) satisfies

the Fokker-Planck equation whose drift and diffusion coefficients (as functions of the old

variable x) are given by

h̃(x) = h(x)U ′(x) + d(x)U ′′(x), d̃(x) = d(x)[U ′(x)]2. (A.5)

If we chose d̃(x) = 1, then U ′(x) = 1/
√

d(x) and

h̃(x) =
2h(x) − d′(x)

2
√

d(x)
. (A.6)

Remarkably, if γi = 1/2, i.e., if the Stratonovich interpretation of the Langevin equation

(1.1) is used, then h̃(x) = 0 and the Fokker-Planck equation for Pu(u, t) takes the simplest

form

λ2(t)
∂

∂t
Pu(u, t) =

∂2

∂u2
Pu(u, t). (A.7)

13



Solving it, for example, by the generating function method and using the initial condition

P (u, 0) = δ(x − x0)
√

d(x) [recall that x = U−1(u)], we find

Pu(u, t) =
1√

2π σ(t)
exp

[

− (u − u0)
2

2σ2(t)

]

. (A.8)

Finally, substituting this result into Eq. (A.4) and taking into account that U(x) = Ψ(x),

d(x) = G2(x) and u = Ψ(x), we again obtain Eq. (2.11).
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