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Abstract We propose an algebraic core calculus for naive or intuitive
set theory. We reconstruct a fragment of set theory via atomic distribu-
tive lattices. Semantically, atomic distributive lattices extend boolean
reasoning about sets by element-wise reasoning; the ontological commit-
ment to a universal set is avoided. Operationally, reasoning with atomic
distributive lattices yields abstract, concise, elegant proofs for sets from
a few elementary principles. We also present an algebraic treatment of
extensionality in terms of a lattice congruence. Our results are particu-
larly suited for automated proof search in set theory. Main application
is the proof support for set-based program development methods like B
or Z.

Keywords Naive set theory, set-based program development, lattice
theory, sectional complements, extensionality, atomicity.

1 Introduction

Intuitive or naive set theory is both an official mathematical ontology and a
universal mathematical tool. In computer science, it is the basis of popular and
successful formal methods like Z [Z1] or B [1]. But the quality of formal proof sup-
port for mathematics in general and of a formal method in particular crucially
depends not only on its flexibility and comprehensiveness for specifications, but
also on its degree of automation for reasoning. Therefore, the integration of intu-
itive set-theoretic reasoning into efficient focused automated deduction systems
is an important question, both for mechanizing mathematics and for enhancing
industrial strength formal hardware and software development. We believe that
it has so far not sufficiently been answered: There are a few systems that im-
plement axiomatic set theory (e.g. [A2OITRITY]), but these are either interactive
or designed for foundations rather than for applications as automated formal
methods. At the operational side, Hines [I3] proposes a resolution calculus for
restricted reasoning with some set-theoretic operations, but the problems of char-
acterizing the corresponding fragment of set theory and of proving completeness
of his calculus are now open for more than a decade. So the apparent lack of



answer to the above question indicates an interesting and challenging gap both
in the field of formal methods and in automated deduction.

Here, we develop the mathematical foundations of an operational core cal-
culus for intuitive set theory as used in formal methods that is intended to
close this gap. In [22], we integrate this calculus into a focused resolution-based
automated proof-search procedure. This solves the longstanding open problem
related to [I3].

Unlike the usual logical approaches, our core calculus is purely algebraic. It
is the calculus of atomic distributive lattices (ADL). Appropriateness of ADL for
intuitive set theory follows from the representation theorem for this class. Ac-
cordingly, every atomic distributive lattice can be isomorphically embedded into
a field of sets; the zero of the lattice represented by the empty set, join and meet
by union and intersection, the lattice order by set inclusion. But reasoning with
ADL differs from boolean reasoning about sets: The ontological commitment to a
universal set is avoided since there need not be a maximal element. Set-difference
can nevertheless be expressed since ADL has unique sectional complements. It
is even more important that ADL supports element-wise reasoning: elements of
sets are in one-to-one correspondence with singleton sets, which represent atoms.
Using techniques from the representation theorem we also show that atomicity
of the lattice captures precisely extensionality of the set theory. Moreover, we
reconstruct extensionality algebraically in terms of a lattice congruence. This is
of independent interest, since it introduces a notion of observational equivalence
for non-atomic and therefore intensional lattices or sets.

Our approach shares the usual benefits of other algebraic calculi for reason-
ing about hardware or software (c.f. [AI4IT55]): Economy of axioms, support of
abstract, concise, elegant calculations from few elementary principles and rela-
tion to standard algebraic decision procedures. It is therefore particularly suited
for automation.

The remainder of this text is organized as follows. In Section 2 we speculate
about the merits of algebraic approaches to formal methods. Section Blintroduces
and discusses some postulates for a core calculus for intuitive set theory. Section
revisits some basic notions of lattice theory. Section B discusses the notion of
complement, in particular sectional complement, for lattices; Section [6l presents
some of their useful calculatory laws. Section [ and Section B introduce the
notions of atoms and atomicity in lattices. Section [ discusses the correspondence
between atomicity and extensionality in set theory. Section [ presents some
meta-theorems about atomic distributive lattices; representability and closure
under direct products. Section [l briefly sketches the relation between atomic
distributive lattices and boolean rings. Section [[2 draws a conclusion.

2 The Point of Algebra

The quality of formal proof support for mathematics in general and for hard-
ware or software development in particular crucially depends on the combination
of simple readable specifications with powerful proof search. Complex problems



usually require man-machine interaction. Therefore, specifications and proofs
should be formally and informally rigorous. They should be both feasible for
a machine and simple, natural and understandable for a human. This require-
ment is far from straightforward. Humans prefer to use informal and semantical
arguments that are often not accessible for machines. They reason in terms of
pictures, diagrams and similar models or using methods like abstraction or anal-
ogy. They concentrate on creative aspects and are often sketchy or even silent
about routine parts. They are usually better trained with algebraic or arith-
metic reasoning than with logical arguments and the manipulation of quantifiers.
Machines, in contrast, drastically outperform a human with combinatorial and
symbolic search, syntactic manipulations or the evaluation of huge data sets. An
ideal formal method should integrate these complementary strengths.

For a smooth man-machine interaction, the expressive and computational
power of a formal method should be well-balanced. On the one hand, it should
provide simple intuitive formalisms that support a human’s development of spec-
ifications and proofs in the intended area of application. On the other hand, it
should provide powerful algorithms to verify or even decide arising proof obli-
gations with a machine. These two requirements are in opposition. Deduction
should however be replaced by computation as far as possible in order to min-
imize human interaction in favor of automation. In an ideal formal method, a
human should focus entirely on the creative parts and outlines of proofs; the
routine work should be left to the machine.

A key for achieving these requirements even for complex problem domains is
abstraction. This idea is fundamental also to other areas. Abstracting from the
individual behavior of particles to collective phenomena, for instance, gives rise
to the laws of thermodynamics. Abstracting from coordinates yields elegant cat-
egorical formalizations in differential geometry. Abstracting from variables leads
to concise and elegant programs and correctness proofs in functional program-
ming. In all these cases, abstraction establishes simple principles, often algebraic
laws, that rule the abstract behavior of a system. The structural complexity is
hidden in bridge lemmas that connect the different levels of abstraction

As our example of interest, consider set theory. In the usual axiomatic ap-
proach, this is the logical theory of the €-relation. It is appropriate for founda-
tional purposes like the reduction of mathematics to a minimal ontological basis.
But mathematical practice and software engineering tasks require an operational
approach to sets. And a considerable part of operational set-theoretic reasoning
takes place at a higher level of abstraction. It is entirely algebraic, using notions
like set-inclusion, set-union or set-intersection and properties like laws of or-
der, distributivity, complementation or monotonicity. Examples for bridge laws
between the foundational logical and the operational algebraic layer are for in-
stance the definition of set-inclusion a C b by Vx.x € a = x € b or the definition
of relational composition R - S by {(z,y) : 3z.(z,z) € RA (z,y) € S}. Here, the
abstraction leads in particular to the elimination of quantification. This enables
the replacement of deduction by computation. The verification of an existential
sentence or the falsification of a universal sentence requires a witness for the



quantified variable; a rather creative task which may be circumvented at the ab-
stract algebraic level. Conversely, for machine reasoning, the transition from the
algebraic to the logical level is in general not desirable, since the problem struc-
ture may be destroyed and in the extreme case, simple algebraic calculations
may be turned into complex logical deductions.

Abstraction is also a main mechanism in formal methods like Z or B. The
B method, for instance, uses four layers of abstraction: A layer of first-order
logic on which a typed set theory is built as a second layer. A set calculus as a
third layer on top of the set theory and a relational calculus as a fourth layer on
top of the set calculus. But experience shows that the quality of specifications
and proofs with these methods usually increases proportionally with abstraction:
The better they are, the less they are logical, the more they are algebraic. The
development of libraries of algebraic laws, usually in terms of bridge lemmas, is
therefore an important issue in this area. Hundreds of pages in Abrial’s book on
B [I] are devoted to this task. But the logic-based approach hides the natural
algebraic hierarchy among these laws.

So why not turn to a leaner method which avoids the lower logic-based levels
as far as possible and where reasoning focuses on the more abstract algebraic
ones? This algebraic turn might lead to several improvements. First, an increase
in the economy of axioms and the structure of libraries of lemmas. Second, sup-
port of standard algebraic concepts, proof techniques and decision procedures.
Third, commitment of users to a more abstract and concise algebraic or arith-
metic style of specification and analysis, which is also more in the tradition of
mathematics and engineering than logic. It therefore supports the replacement
of deduction by computation, may yield a better balance between expressive and
computational power and enables both formally and informally rigorous specifi-
cations and proofs. Concretely, we plan an algebraic set calculus in combination
with a modal Kleene algebra [B] at the level of the relational calculus. The latter
subsumes many traditional programming logics like Hoare logic, propositional
dynamic logic or temporal logics. This combination opens the way for integrating
powerful proof search methods into state of the art set-based program develop-
ment methods.

Here, we only consider the mathematical foundations of a core calculus for
intuitive set theory. Thus we restrict ourselves to the consideration of formal
and informal rigor. Evidence that expressive and computational power is well-
balanced and that deduction can be to a large extent replaced by computation
is given in [22]. More theoretical foundations will be provided in further papers.
The full integration of our calculus into an industrial strength formal method is
intended on the long run.

3 Postulates for a Core Calculus

But what are minimal requirements for an algebraic core calculus for intuitive
set theory as used in everydays mathematics and in formal methods? We propose
the following five postulates.



Postulate 1 The core calculus should model the empty set.

This requirement implies that there is at least one set. It needs no further ex-
planation.

Postulate 2 The core calculus should support boolean reasoning, but avoid an
ontological commitment to a universal set.

In particular, we would like to reason about set-union, set-intersection, set-
equality, set-inclusion and set-complementation or set-difference. Laws for these
operations and relations should yield elementary principles for building new sets
from given ones. Depending on the context, there should not be a universal set.
In [22] we present simplification techniques for set-theoretic expressions that are
based on the axiom that there is no universal set. In other contexts, however, it
may be desirable to add such a set.

Postulate 3 The core calculus should support element-wise reasoning.

Element-wise reasoning is not automatically available in a boolean world. El-
ements of sets are of course in one-to-one correspondence with singleton sets.
To enrich the ontology if necessary, such elements can be assumed as so-called
urelements. Singleton sets or urelements can of course not be described by the
above-mentioned operations.

Postulate 4 The core calculus should reflect extensionality of the corresponding
set theory.

Extensionality means that every set is completely determined by the behavior
of its elements. In particular, two sets are equal, if they are built from the
same elements. Extensionality is one of the most important properties both of
axiomatic and intuitive set theories. Operationally, extensionality is often used
for presenting a witness for a certain property, for instance, that one set is not
included in another one.

The fifth postulate is a placeholder for adding further postulates by need.

Postulate 5 The core calculus should be open to admit further set-theoretic
entities and properties.

The core calculus should allow the integration of, for instance, infinite sets, induc-
tion and comprehension principles, ordered pairs and elementary data-structures
like numbers, lists or trees. It should also provide means to rule out the well-
known paradoxes.

The following sections are devoted to the development of an algebra that
satisfies these postulates.

4 Lattices

This section introduces some basic notions from lattice theory. More information
can be found, for instance, in the textbooks [2T64UT?]. Here and in the remaining



sections, we always add examples which show that sets are among the models of
lattices. Consequently, we can do with sets at most what we can do with lattices.
Moreover, according to the representation theorems for the classes of lattices we
consider (c.f. [[), we can do with sets (and the respective operations) at least
what we can do with lattices. The reader should keep this in mind to follow our
arguments.
A structure (A4, <) is a quasiordered set (a quoset), if A is a set and <
a reflexive transitive relation on A. Accordingly, < is called a quasiordering.
Antisymmetric quasiorderings are called partial orderings and the associated
structures are called posets. A join semilattice is a poset A closed under least
upper bounds or joins (denoted by L) for all pairs of elements. Formally, for all
a,b,c € A,
a<cANb<c&salb<ec. (1)

A meet semilattice is defined dually as a quoset closed under greatest lower bound
or meets (denoted by M) for all pairs of elements. Formally, for all a,b,c € A,

c<aAhc<bsc<alb. (2)

The dual of a statement about lattices is obtained by interchanging joins and
meets and converting the ordering. A lattice is both a join and a meet semilattice.
It is distributive, if

afn(bUe) < (aMb)U (aMc)

holds for all a,b,c € A or its dual and therewith both. We denote the minimal
and the maximal elements with respect to < of a lattice, if they exist, by 0 and
1. A lattice with 0 and 1 is called bounded. Formally, for all a € L,

0<a, (3)
a<l. (4)

The class of lattices is denoted by L, the class of distributive lattices by DL.
If K is a class of lattices, then Ky denotes the subclass that has a zero, K; the
subclass that has a one and K the subclass that is bounded.

We consider lattices as orderings. Alternatively, the class can also be axiom-
atized equationally. The translation between the two classes is given by

a<b&alb=bsalb=a. (5)

In the equational definition, joins and meets are associative, commutative, idem-
potent (alMa = a = alla) and absorptive (all(alb) = a = aM(allb) operations.
Experience shows that order-based reasoning with lattices is more natural than
equational reasoning. By (@) we need not distinguish between equations and
inequalities. We will therefore use the term equation freely for both expressions.

Let P, and P, be posets. A mapping h : P, — P, is monotone, iff a < b
in P, implies h(a) < h(b) in P,. A monotone mapping is an order-embedding,
iff h(a) < h(b) in P, implies a < b in Py, that is h is also injective. An order-
tsomorphism is a surjective order-embedding.



Let Ly, Lo € L. A mapping h : Ly — Lo is a join-morphism, iff h(a U b) =
h(a) U h(b) for all a,b € L1, that is h preserves joins. It is a meet-morphism,
iff h(a Mb) = h(a) M h(b) for all a,b € Ly, that is h preserves meets. A lattice-
homomorphism (or homomorphism, more briefly) is both a join- and a meet-
morhphism. For bounded lattices, we also require h(0) = 0 and h(1) = 1. An
injective lattice homomorphism is called a (lattice-)embedding, a surjective lattice
embedding a (lattice-)isomorphism.

Note that h(a) U h(b) < h(aUb) and h(aMb) < h(a) N h(b) hold whenever h
is monotone. Moreover all homomorphisms are monotone, but not conversely.

It is easy to show that the operations of join and meet are monotone in both
arguments.

The following lemma characterizes distributive lattices (c.f. [2]).

Lemma 1. A lattice is distributive iff it has no sublattice isomorphic to a pen-
tagon or a diamond from Figure [l

Ezxample 1.

(i) A family of subsets of some set is called ring of sets, if it closed under (set-
theoretic) union and intersection. Every ring of sets is a distributive lattice.
A finite lattice is distributive iff it is isomorphic to a ring of sets. If the ring of
sets contains the empty set, then this element is the zero of the corresponding
lattice.
(ii) Every chain (for example the chain of natural numbers) is a distributive
lattice.
(iii) The lattices in Figure [l are not distributive.

(o) O,
o [e) o
pentagon diamond
Figurel.

Using distributive lattices with zero, we have thus achieved Postulate 1 and
part of Postulate 2: We are able to reason algebraically about the empty set and
about unions and intersections of sets.



5 Complements

For our intended application in mechanized intuitive set theory and in set-based
formal methods, in accordance with Postulate 2, we would like to be able to
reason also about set complements or set difference, but avoid the ontological
commitment to a universal set. Therefore we abstain from plain boolean algebra
and replace the well-known boolean complement by the much less popular sec-
tional complements, that may generally exist in lattices with a zero, but without
a unit. Sectional complements are usually not studied in detail in textbook. We
therefore present their most important properties and outline a calculus.

Let L € Lo1. A complement of an element a of L is an element b of L such that
alUb=1and aMb=0. L is complemented, if every element has a complement.
A boolean lattice is a complemented distributive lattice. The class of boolean
lattices is denoted by BL.

We are also interested in lattices with a weaker notion of complementation.
Let L € L and let a,b € L. We define the interval

[a,b] ={c€ L:a<c<b}.

Every interval in a lattice is a sublattice. Let ¢ € [a, b]. z is a relative complement
of cin [a,b], if cMx = a and cUz = b. L is relatively complemented, if every
a € L has a relative complement in every interval containing it. This is the case
iff every sublattice [a,b] of L is complemented. L is sectionally complemented,
if L € Ly and every sublattice [0,a] is complemented. We write L|a for the
sublattice [0,a] of L. A relatively complemented distributive lattice is usually
called a generalized boolean lattice.

Let K be a class of lattices. Then K" denotes the relatively complemented,
K5¢ the sectionally complemented and K¢ the complemented subclass. The class
of generalized boolean lattices is denoted by GBL.

Lemma 2. The following elements are uniquely defined (provided they exist).

(i) All relative complements in DL.
(i) All sectional complements in DLg.
(iii) All complements in DLy .

Proof. (ad i) Let by and b2 be relative complements of @ in the interval [c, d]. We
calculate

b1=b1|_lc=b1|_l(al'lb2)=(b1|_la)l'|(b1|_lb2)=dl_l(b1|_lb2)=bll_lb2§b2.

The proof of by < by is similar.
(ad ii) Similar to the proof of (i).
(ad iii) Similar to the proof of (ii). a

In DLy, the sectional complement of a in [0, allb] is denoted by b—a. In particular,
when a < b, then b — a is the sectional complement of a in [0,b]. In DLy, the
complement of a is denoted by a’. Obviously,

a=1-a. (6)



Lemma 3.

(i) If L € DLoy and a' is the complement of a € L, then b—a =a' M (aUb).
(i) If L € DLoy, a' is the complement of a € L and a € [b,c], then (@’ Ma)Uc is
the relative complement of a in [b, c].
(i1i) If L € DLo, ¢ — a is the sectional complement of a in [0,c] and a € [b,c],
then (c — a) U b is relative complement of a in [b, c].

The proof is by simple computations.

Lemma 4.

(i) Lie C L5, Lge C Le.
(ii) BL C DL C GBL.
(iii) GBLo = DL, GBLo; = BL.

Proof. (ad i) The inclusions are straightforward. Examples for strictness can be
found in [12], p. 49.

(ad ii) Immediate from Lemma

(ad iii) Immediate from (i) and (ii). O

By Lemma (iii), the notion of complementation to be used in DL depends on the
ontological commitments, the presuppositions on the existence of zero and one. In
Section B we will see that sectional complementation is very natural for atomic
distributive lattices. Also in the context of sets and Postulate Bl of Section Bl
sectional completeness are natural and appropriate. As we have pointed out,
the empty set corresponds to the zero, but we would like to avoid assuming the
existence of a one, that is a set of all sets. Moreover, Lemma ] (iii) shows that
the extension of DL®® to BL is conservative. We will see that all our constructions
work already in DL®.

Lemma 5. A lattice is distributive, iff all relative complements are unique.

Proof. The only if direction follows from Lemma B (i).

Every non-distributive lattices has, by Lemmalll a sublattice isomorphic with
a pentagon or a diamond. Both have an element with multiple complements.
Thus the lattice has multiple relative complements. O

Ezample 2.

(i) In a ring of sets, s; — so denotes set-difference, that is s; — s is the set of
all elements of s; that are not elements of sy. Let s3 be that set. We verify
the defining conditions of sectional complements, that is s3 U ss = s1 U s
and s3 N sy = (.

a € (s3Usy) & a€sz3Vac€ sy
S(aesiANags2)VacE sy
S(a€siVa€Es)AN(ad saVak€ ss)
S a€syVa€ sy
< ac (81 U 82).



a € (s3N8y) ©a€szNac€ so
Sa€EsgNad ssNa€ sy
Sacl.

(i1) A family of subsets of some set is called field of sets, if it closed under (set-
theoretic) union and intersection and set difference. Every field of sets is a
boolean lattice.

6 Computing with Complements

Besides their defining laws, three kinds of rules are important for computing
with complements in boolean lattices: simplification rules, de Morgan rules and
shunting rules. In this section, we first derive generalizations of these rules for
sectionally complemented lattices. We then show that the standard de Morgan
rules and shunting rules for boolean lattices arise as corollaries. The computa-
tions of this sections are interesting for two reasons. First, they can be used
for abstract algebraic reasoning with sets in the context of set-based program
development. Second, we will need them for the proof search procedures in [22].
The following lemma is a key for the computations that follow.

Lemma 6. Let L € GBLg. Then for all a,b,c € L,
a=b—csalc=bUcAalNc=0. (7)

This is immediate from the definition and uniqueness of differences.

The following two lemmas collect some rewrite rules for sectional comple-
ments, when read from left to right. We group them with respect to similarity.
Some of these laws appear already in [I206]. The first set of identities is mainly
auxiliary for proving those of later lemmas.

Lemma 7. Let L € GBLy. For all a,b € L,

(a—b)Ub=alb, (8)
(a—b)Mb=0, 9)
af(a—0b)=a—b, (10)
al(a—10)=a. (11)
Proof. (ad () Immediate from ().
(ad @) Immediate from ().
(ad () By Lemma B we must show
(an(a—5))Mb=0,
(aN(a—=b)Ub=alUb.
The first equality follows from (@), the second inequality follows from (&).
(ad () Using [) and the absorption law for lattices, we calculate
al(a—b)=al(aMN(a—0)) =a.
a

10



In particular, (I0) is very useful in the form a —b < a. The next lemma simplifies
nested sectional complements.

Lemma 8. Let L € GBLy. For all a,b,c € L,

a—a=0, (12)
a—(b—c)=(a—b)U(aNc), (13)
a—(a—b)=alb. (14)

Proof. (ad ) a —a=aM(a—a)=0 by [{).
(ad (@) By Lemma B we must show

((a=b)U(aNc))N(b—c) =0,
((a—b)U(aNe))U(b—c)=all(b—rc).

For the first inequality,
((a=b)U(@aNe)nNb—c)={(a=bN(b—c))U((aMec)N(b—rc))

<(la—b)ynb)uo

=0

by () and (@). For the second inequality,

((a—b)U(aNe))ub—c)={(a—b)Uub—c)Ua)N((a—b)LU(b—c)Uc)

(
=(aU(b—c)N((a—bdUbUc)
(aU(b—=c)M(alblec)
=al(b—rc)
using (B) and ().
(ad (@) A special case of (). 0

The first two identities in the next lemma state generalized de Morgan laws.

Lemma 9. Let L € GBLy. For all a,b,c € L,

a—(bMNe)=(a—b)U(a—c), (15)
a—(bUc)=(a—b)N(a—c), (16)
(anb)—c=(a—c)N(b—c), (17)
(aub)—c=(a—c)U(b—c). (18)

Proof. (ad (&) By Lemma B we must show

((a—b)U(a—¢)MNbMNec=0,
((a=b)U(a—c)U(bNec)=all(bMe).

11



The first equality follows from (@). For the second equality,

((a=b)U(a—e))UBNe)=((a—b)U(a—c)Ub)N((a—db)U(a—c)Uc)
albU(a—c))MN(aldcl(a—0>))
(aUb)MN(alc)

=al(bNc)

= (
= (

using &) and ().
(ad (I8)) By Lemma [f] we must show
(a—b)N(a—c)n(blec) =0,
((a—b)N(a—c)UbUc=alblUec.

The first equality follows from (). For the second equality,

(la—b)N(a—c)UblUc=((a—bubUce)N((a—c)UbUc)
=alUbUc

using @&).
(ad () By Lemma [l we must show

(a—c)(b—c)Ne=0,
((a—c)n(b—c)Uc=(anb)Uec.

((a—c)Na—c¢)Uec=(a—c)Uc)N(b—c)Uc)
=(alc)n(bUc)
=(aNb)lUec

using (B).
(ad (¥)) By Lemma B we must show

((a—c)U(b—c)MNec=0,
(a—c)U(a—c)Uc=alblUec.

The first equality follows from (@), the second one from (). O

The rules [[H)-([3) can also be read as follows. (&) and ([f) show that the
mapping Azx.a — z is anticonjunctive and antidisjunctive. () and ([I8) show
that the mapping Az.z — c is conjunctive and disjunctive.

The standard de Morgan laws of boolean lattices are recovered by setting
a =1 and using s’ =1 — s in (I3 and ([IH).

The disjunctivity and antidisjunctivity laws immediately imply monotonicity
and antimonotonicity laws for sectional complements.

12



Lemma 10. Let L € GBLy. For all a,b,c € L,

a<b=>a—-c<b-—e, (19)
a<b=>c-b<c—a. (20)

Proof. (ad (@) By ([[¥) and the assumption,
(a—c)u(b—c)=(alUb)—c=b—c.

Hence a—c<b—c.
(ad (20)) By (@) and the assumption,

(c—a)U(c—=b)=c—(anb)=c—a.
Hence c—b<c¢—a. O
The standard monotonicity law for complements is recovered by setting ¢ = 1

and using ' =1 — s in Z0).
We now prove generalized shunting rules for sectional complements.

Lemma 11. Let L € GBLg. For all a,b,c,d € L,

a—-b<c&a<lblUe, (21)
afl(c—b) <d<eaNce<bUd, (22)
a<(c—bUdsa<cUdANaNb<d, (23)

a<c—-b&sa<cAalndb<o. (24)

Proof. (ad 1)) Let a — b < ¢. By (@) and the assumption
a<alUb=bU(a—b)<bUc.
Let a < bUe. By (@), X)), (@), (@) and the assumption,
a-b<(bUce)=b=(b-b)U(c=b)=c—b=cN(c—b) <ec
(ad @) Let a1 (b—¢) < d. By [®),
aflNec<aN(cubd)=an(®dU(c—=>b)=(aMNb)U(aN(c—0)) <bUd.
Let aMe < bUd. By () and @),

afl(c—=b)=aNcN(c—0b)
<(bud)n(c—1b)
=bN(c=bU(dn(c—1))
=dn(c—b)
<d.

13



(ad [23)) Let a < (¢ — b) Ud. Then
a<(c=bUd=(cMN(c—b)Ud<cUd

by () and
anb< (c—b)Uud)nb=((c—b)Nbu®nd) =bnd<d

by @).
Let a < cUd and aMb < d. Then by @)

a=al(cUd)
<an((buUcld)
=aN(U(c—0b)LUd)
=(anb)U(aN((e—0d)Ud)]
=aN((c—b)Ud)
=(c—b)ud,

(ad 4) Let d = 0 in E3). 0

The standard shunting rules for complements are recovered by setting ¢ = 1 and
using s' =1 — s in ([Z2Z) and Z3).

The laws 1) and @3) are of particular interest. () is a Galois connection
with lower adjoint Az.z — b and upper adjoint Az.b U z. See [§ for an introduc-
tion to Galois connections. The computational interest of Galois connections is
that they can be used as theorem generators. In particular, lower adjoints of
Galois connections commute with all existing suprema, whereas upper adjoints
commute with all existing infima. Moreover, both adjoints are monotonic. This
immediately implies that the disjunctivity and monotonicity laws ([[¥) and ([[J)
hold. Moreover, the lower and upper adjoints of a Galois connection satisfy the
cancellation laws

a<bU(a-0), (25)
(blc)—b<e (26)

3) and [Z6) are weak forms of ) and ([IH), respectively. Note however, that
(1) alone does not completely characterize sectional complementation.

23) is very similar to ([@). It states that ¢ — b is the greatest solution in x
of the equation z M b < 0 with “boundary condition” z < ¢. In absence of the
boundary condition this reduces to the definition of a pseudo-complement as
used, for instance, in Heyting algebra [2]. Again, [£3) alone does not completely
characterize sectional complementation.

The final lemma of this section generalizes the following well-known fact from
boolean lattices.

a=bs (an?d)uU(dnd) =0.
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Lemma 12. Let L € GBLy. For all a,b € L,
a=bs (aN(a=0b)UBN((b-—a)=0. (27)
Proof. Let a = b. Then, by ([I2),
(@nN(a=b)u®dnN(b—a)=aN(a—a)=afn0=0.

Let (aM(a—0b))U (N (b—a)) =0. Then

a=aN(alb)N(ald)
Zal'l( U(b—a)n(bu(a—1)
=aN((anb)u(an(a=>5))u (N (b—a))u((@a=>b)n(b->5)))
=aN((anb)uou((a—>0)n(b—10)))
=(a|—|b) (an(a—b)N(b—a))
=alb
by @) and (). Hence a < b. The proof of b < a is similar. O

As a result of this section, we have now fulfilled Postulate 1 and Postulate 2 of
Section B with computational laws for sectional complements or set difference
that generalize those of the boolean complements.

7 Atoms

We now turn to Postulate 3 of Section Bl the integration of element-wise (or
point-wise) reasoning into our core calculus for intuitive set theory. This goes
beyond boolean reasoning, which only allows reasoning about set-inclusion. Lat-
tice theory, however, offers an entity corresponding to that of an element of a set.
This is the concept of an atom. In this and the following section, we do not only
recall the well-known facts about atoms in lattices. We develop specific laws for
calculating in the respective structures. These laws are in particular appropriate
for the proof-search procedures in [22].

Let (P, <) be a poset with 0 and let a,b € P. b covers a, iff a < b and
a <c<bimpliesc =a or ¢c = b for all c € P. An atom is a cover of 0. We
denote the set of atoms of P by A(P).

Lemma 13. Let P be a poset with 0. a € A(P), iff a £ 0 holds and b < «
implies a < b or b < 0 for all b € P.

Lemma 14. Let € Ly. An element a € L is an atom, iff a £ 0 and, for all

beL,
a<bVandb<o. (28)
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Proof. We first show that the conditions of Lemma [3 imply (25).

Let a be an atom and a < b £ 0. Then a £ 0 and by Lemmal[3 aMb < a
implies a < a M b and therefore a < b.

Let a be an atom and a € b. Then a £ aMb and aMb < a hold, thus aMb < 0
by Lemma

We now show that [8) and a £ 0 imply the conditions of Lemma

Let a £0,b<aand a £b. Then aMb <0 by EX) and therefore b=0Mb <
alb<O.

Let a £0,b<aand b £0. Then bMa £ 0 and a < b by ) O

Let L € Lg. An element ¢ € L, ¢ # 0, is join-irreducible, if for all a,b € L,
c=alb=c=aVc=b. (29)

We denote the set of all join-irreducible elements of L by J(L).
Lemma 15. Let L € DLy. Then c € J(L), iff c # 0 and for all a,b € L.

c<aldb=c<aVe<Lh. (30)

Proof. Let ¢ € J(L) and let ¢ < alUb. Thusc=cMN(alUd) = (¢cMa)l (¢Mb)
and therefore ¢ = ¢Ma or ¢ = ¢Mb by join-irreducibility. Consequently, ¢ < a or
c<b.

Let c=allb. Then a Ub < c and ¢ < a Ub. The first inequality implies that
a < c and b < ¢. The second inequality and the assumption imply that ¢ < a or
¢ < b. Thus both together imply that ¢ = a or ¢ = b. O

Lemma 16. Let L € Lg.
(i) A(L) C J(L).
(i) J(L) C A(L), if L € GBLy.
(iii) Let L € GBLy. Then a € A(L) iff, for all a,b € L,
a £0, (31)
a<aldbes a<aVa<hb (32)

Proof. (ad i) By reductio ad absurdum, let a be an atom, let & £ a and « £ b
and let « = alUb. Then aMa < a and aTb < b, which can only be the case, if
a=>b=0. Then « =0UL 0 =0, a contradiction to atomicity.

(ad ii) Let @ € J(L) and b < a. We show that b = a or b = 0 by Lemma [
By Lemma M (iii), we consider sectional complements. Using (B), we obtain

a=(aUb)Na=0BU(a—->b)MNa=>bU(aN (a—D)),

thus b = a or a = aM (a — b) = (a — b) by join-irreducibility and (). Then
b=aNb< (a—b)Nb=0 by the assumption b < ¢ and ().
(ad iii) This is immediate from Lemma [[§ Lemma [[3 (i) and (ii). a

The following properties are helpful as rewrite rules for eliminating certain neg-
ative inequalities.
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Lemma 17. Let L € L. For all o, € A(L) and a,b € L,

afbe alb<O,
alNfL0osa=4,
ala<b&sala<0Va<b,
alagbs andb<o.

w W
= W

NN SN S
w W
S Ot
— — ~— ~—

Proof. (ad (B3))) Let a £ b. Then aMb # a by definition of <. Thus M b =0,
since a M b must be smaller than o and « covers 0.

Let aMb # 0. Then aMb < «a by definition, hence aMb = a, since a covers
0. Thus a <b.

(ad B4)) Obvious.
(ad @B3)) Let aMa <0 or @ < b. In both cases, obviously, @ Ma < b holds.
Let aMa < band let aMa £ 0. Then a < a by ([B3) and consequently

a=alla<alla<b.
Let «Ms <t and let @« £t. Then aMt <0 by B3) and

afls=alals<alt<O0.
(ad (B8)) Immediate from (BH). O

The following lemma yields a helpful visualization of join-irreducible elements
in Hasse diagrams of finite lattices.

Lemma 18. An element of a finite lattice is join-irreducible, iff it has precisely
one lower cover.

Ezample 3.

(i) In a field of sets, the atoms are precisely the singleton sets.

(ii) In the chain of natural numbers, all elements are join-irreducible. 0 is the
only atom.

(iii) Consider the boolean lattice L, generated by ai,...,a,. Ly is finite. Every
element ¢; M...Mey,, where ¢; is one of a; and a}, is an atom of L,,. Using the
distributivity laws, every element s € L, is equivalent to a term ¢ which is
a join of meets of a; and a}. If the join contains at least two elements, then
t has at least two lower covers, hence t is not join-irreducible. If the join
contains only one element, then ¢t = ¢; M...Meg, where ¢; is one of a; and a
and k < n. If kK = n, then ¢ is an atom, hence join-irreducible. If £ < n, then
tMagyy and ¢ 1M a}H_l are lower covers of ¢t. Thus ¢ is not join-irreducible.
Thus the join-irreducible elements of L,, are precisely the atoms.
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8 Atomicity

In the previous section we have seen that atoms are appropriate for simulating
element-wise reasoning in lattices. In this section, we look for conditions that
guarantee that a lattice has enough atoms for this kind of reasoning.

We now give two definitions of atomicity for a lattice. These are the two
standard notions as used in textbooks. A lattice L € Lg is preatomic, if for each
non-zero a € L there exists an @ € A(L) such that a < a. L is atomic, if for each
non-zero a € L there is a nonempty subset T of A(L) such that a = [ |T'. For a
class K of lattices, the subclass of preatomic lattices is denoted by pAK and the
class of atomic lattices by AK.

We also define a mapping 7 : L — 240 that associates with each element
a € L the set of atoms below it.

n(a) ={a € A(L) : a < a}. (37)
L is n-stable, iff a = | |n(a) holds for all a € L. In particular, 5 preserves atoms,
that is n(a) = a for all a € A(L).
Lemma 19. Let L € L.

(i) n is monotone.
(i) 1 is a meet-homomorphism.
(iii) n is a join-homomorphism (thus a homomorphism), if L € DL.
(iv) There is a non-distributive lattz’c, where 1 is not a join-homomorphism.

Proof. (ad i) Let a < b. Then a < a implies a < b for all « € A(L), hence
n(a) Cn(b).
(ad ii)
aen(and) e a<and
Sa<aha<b
& aena)ANaend)
< a € nla) Nnb).
Moreover, n(0) = {a € A(L) : « <0} = 0.
(ad iii) By Lemma M8l (iii), « < aUb < a < aAa < b holds in DL for every

atom «. Then the proof goes through like that in (ii).
(ad iv) Consider again the diamond D, which is non-distributive.

/N
/

! even modular and complemented
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Obviously, A(D) = {a,b,c}. Moreover,

n(au b) =n(1) ={a,b, c} # {a,b} = {a} U{b} = n(a) Un(b).
O

Lemma 20. A lattice (with at least two elements) is preatomic, if 1 is injective.

Proof. Let L be a lattice with at least two elements. Then A(L) # (), since these
elements have different images under 7 by injectivity. Moreover, 0 € L, since the
definition of atoms presupposes a zero. Since 1(0) = §, n(a) must, for all a # 0,
contain at least one atom. Thus L is preatomic. O

We now give an alternative characterization of atomicity. L € Lg is extensional,
if for all a,b € L,

Vae A(L)(a<a=a<b) =a<b (38)

The meaning of extensionality is further discussed in Section

Lemma 21. L € Lg is extensional iff for all a,b € L,
afb=>3JaceAlL).(a<aNanb<0). (atomic)
Proof.
afb=>3JacAL)(a<anagh) e dac AL)(a<aralb<0).
The last step uses lemma [ O

Note that the converse implications to (BY) and (&famid) hold a forteriori in
atomic lattices. We therefore often use the corresponding bi-implications without
further mentioning.

Proposition 1. Let L € Ly with at least two elements. The following statements
are equivalent.

(i) L € AL.

(ii) L is n-stable.
(iii) n(a) < n(b) = a < b for all a,b € L.
(iv) n is injective.

(v) L is extensional.

Proof. (i) implies (ii). Let L € AL and let a € L. Then a = | |T for some
non-empty T' C A(L). Consequently, a < a for all & € T, hence T' C n(a) and
1T < ||n(a). This yields a < | |n(a). Since | |n(a) < a by definition, we have
a = | |n(a) and therefore n-stability.

(ii) implies (i). Let T' = n(a).

(i) implies (iii). n(a) C n(b) implies | [n(a) < | |n(b) and therefore a < b.
Note that the infinite joins exist by definition of n-stability.
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(iii) implies (ii) Monotonicity of n and (iii) yield
a <b <« nla) Cn(d) (39)
for all a,b € L and consequently
a=b nla) = n(b). (40)

Moreover, n(a) and 7(b) are non-empty, since by lemma Pl L is preatomic.

We now show that a is a least upper bound of 7(a). Since 7 is an embedding
of L into some subsemilattice of 24(%) (7 is a meet-homomorphism), we can carry
out the proof entirely on the set-side. Obviously, a is an upper bound of n(a). To
show that it is a least upper bound, assume, by reductio ad absurdum, another
upper bound b of n(a) such that a £ b. Thus n(a) Z n(b) by BF) and by boolean
reasoning n(a)N(A(L)—n(b)) # 0. So there is some atom « € n(a)N(A(L)—n(b)).
Consequently, o € n(a) and o € A(L) — n(b), hence on the one hand a & n(b).
On the other hand, a € n(a) implies « € 1(b), a contradiction.

(iii) implies (iv). Obvious.

(iv) implies (iii). Let 5 be injective, that is n(a) = n(b) = a = b. Thus

n(a) < n(b) & n(a) =nla) Nn(b)
=1

< n(a) (a D)
=a=alb
< a <b.

This uses the fact that n is a meet-homomorphism.
(iii) equivalent to (v). Using (BY), we calculate

a<benla) Cnb) &Vae A(L).(a<a=a<b) (41)
a

Note that the chain of reasoning from atomicity to extensionality is rather sim-
ple. Intuitively, if a lattice is atomic, then there are enough points for boiling
down every lattice element as a join of atoms. Thus this element is completely
determined by these atoms and therefore extensional. The converse direction
requires a deeper argument.

BY) and (Afomid) are important for normal form computations in the context
of the proof-search procedures in [22]. In particular, (afomid) is crucial here.
Its operational impact is the replacement of negative inequalities by positive
ones. The existential quantifier can be handled by skolemization. We can thus
circumvent using the second-order definition of atomicity.

Lemma 22.

(i) AL C pAL.
(i1) There is a (finite) distributive preatomic, but not atomic lattice.
(#11) L € pAL*® implies L is n-stable, hence pAL*® C AL.
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(iv) L € pABL implies L is n-stable, hence pABL C ABL.

Proof. (ad i) By Proposition [l atomicity implies that the lattice is n-stable. By
Lemma B0, n-stability implies preatomicity.

(ad ii) Consider the distributive preatomic lattice 0 < a < 1.

IN

IN
N

The mapping n = {0 — 0,a — {a},1 — {a}} is clearly not injective and
1# | {a} = a.

(ad iii) Like in the proof of Proposition [l we show that a is a least upper
bound of 7n(a). It is an upper bound by definition. We proceed by reductio ad
absurdum. Let b be another upper bound of 7(a) in L such that a £ b. Then
alb < a, but still | |n(a) < aMb. Let ¢ be a sectional complement of a M b in
[0,a]. ¢ # 0, since aMb < a. By weak atomicity there is some a € A(L) with
a < c. Since ¢ € [0, a], we have that a < a and a € n(a). Therefore a < aMb and
in particular a < b. This yields a < b ¢ = 0, a contradiction to the definition
of atoms. n-stability is equivalent to atomicity by Proposition [

(ad iv) By Lemma], every boolean lattice is sectionally complemented. Then
the result follows from (iii). O

The following lemma shows an interesting connection between atomicity and
complementation. In a sense, atoms induce sectional complements. This is only
natural, since in an atomic lattice, all kinds of complements can be constructed
from atoms. Atomicity guarantees that there are enough points for these con-
structions.

Lemma 23. ADL C GBLy. For L € ADL and a,b € L, b—a = | |(n(b) — n(a)).

Proof. First, we show that al(b—a) = 0. Since n(a) and n(b) —n(a) are disjoint,
the suprema of these sets are also disjoint. This holds, since in an atomic lattice,
amb#0iff a <a and a < b for some atom «, whence the set of atoms cannot
be disjoint. Therefore a M (b —a) < 0.
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Now we show that bU (a — b) = a Ub. We calculate
bU (a—b) = (|_|n®) u (| |n(a) —n®))
=|_|(®) U (n(a) = n(»)))
=|_|(n(a) un(»))
=| |n(@)u] |n®)

=alb

Thus b — a is a sectional complement of b with respect to a. By distributivity of
the lattice, the complement is unique (Lemma B (ii)). O

Consequently, we can use ([B2) instead of [Z8) as a defining property in ADL.

But [B2) is computationally more pleasant than (28), in particular, for our proof-
search procedures in [22].

We now give yet an alternative characterization of atomicity.

Lemma 24. L € BL is atomic iff A(L) is a partition of 1, that is 1 = | A(L).
Proof. Let L € ABL. Then 1= |n(1) =[] A(L).

Let 1 =| | A(L). Then
a=alll
=an| |A(L)
=| {b € L:b=ana for some o € A(L)}
=| {BeAL):B<a}

=| |n(a).

Hence L € ABL. O

Ezxample 4.

(i)
(i)

(iii)

The set of all subsets of some set is an atomic boolean lattice.

Let A be an infinite set. Define the congruence ~ on 24 by a ~ b iff @ and b
identical up to finitely many elements. Then L = 24/ ~ is a boolean lattice.
Its 0 is the set of finite subsets of 24. L is atomless. To see this, note that
every nontrivial element of L contains an infinite subset of a of A. Like every
infinite set, a can be partitioned in two infinite subsets a’ and a”. Obviously,
a' 0, since o' is infinite and a’ ¢ a, since a”, the difference of a’ and a is
infinite. Moreover, a’ C a, such that a is not an atom.

In Example B (i) we have shown, that in a field of sets, s; — s2 denotes the
set, of all elements of s; that are not in s». The proof was based on set theory
and used the epsilon relation. We now give an algebraic reconstruction in
ADL. First, we replace every statement of the form a € s by a, < s. Then, it
remains to show that a < s;—s9 iff @ < sy Aa £ s5. This follows immediately

from @4)) and (B3).
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We have now seen that atomic distributive lattices are structures that satisfy
our Postulates 1, 2 and 3 for a core calculus for intuitive set theory. The require-
ment of atomicity may impose the existence of some infinite joins, namely those
that determine some elements high up in a lattice. This however does not imply
the existence of arbitrary joins, since not even the existence of arbitrary joins of
atoms is required.

9 Extensionality

In this section we consider Postulate 4, the modeling of extensionality in lattice
theory. For L € GBLy, consider again the extensionality property

a<beVa(a<a=a<hb), B])
for all a,b € L. The right-hand side induces a relation < defined by
a<xbeVacAL).(a<a=a<hb), (42)
for all a,b € L. We also define ~=< N >, whence
a~b&sVae A(L).(a<as a<b), (43)

for all a,b € L.
Lemma 25. Let L € GBL,.

(i) The relation < is a precongruence on L.
(i5) The relation ~ is a congruence on L.

Proof. (ad i) Let a < b, thatisa < a = a <b.
We show that a Llec <bUec.

a<alcsa<aVa<c=>a<bVa<c&sa<blUe
The first step uses [B2). We now show that aMec <bMec.
a<alNcsa<aha<c=>a<bAha<cesa<bhe
We now show that ¢ — b < ¢ —a.
a<c—asa<cAhaNa<0=a<cAalnb<0&s a<c-01.

The first and third step uses @4)), the second step uses the assumption and the
fact that & < a = a < bis equivalent to aMb < 0= aMa < 0 by B3). We now
show that a —c~ b —c.

a<a—-csa<aAhalNe<0=a<bAalNc<0& a<a-0.

(ad ii) Immediate from (i). a
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By the arguments of the previous section, we can express the relations < and ~

in terms of the function 7.

Lemma 26. Let L € Lg. Let a,b € L.

(0)

(i) a < b nla) Cn(b).
=n(b).

(i) a ~b< nla)
Proof. Immediate from the definition of n.

Lemma 27. Let L € Lg. For all a,3 € L,

a~f=>a=40.
Proof. Immediate from the definition of atoms.

Thus Lemma 27 states that the congruence ~ separates atoms.

The following lemma relates the algebraic notion of extensionality with atom-

icity.

Lemma 28.

(i) Let L € Lo. For all a,b € L and o € A(L), L is atomic iff

a~b=a=0.

(45)

(ii) There is a preatomic distributive lattice, for which (38) (whence {{3)) does

not hold.

Proof. (ad i) Immediate from Proposition [l (v) and Lemma

(ad ii) Consider the distributive lattice

It is preatomic with atom a, but not atomic. (BY) and therefore (X)) does not

hold for b and c.
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By Lemma[Zd (i), ([#3) is an algebraic variant of the fact that 7 is injective, as ex-
pressed, for instance, in Proposition[ (iii). Remember that 7 is a homomorphism
on DLO

A rule of the form of [BY) is often called principle of indirect inequality in
order-theory. Four our purposes, extensionality is operationally very important,
since it allows the transition between atom-free and atom-wise reasoning. This
is similar to the dichotomy between point-free and point-wise reasoning about
programs or external and internal reasoning in mathematics using categories.

[E3) algebraically expresses an extensionality principle: two elements of an
atomic lattice are equal, iff they are built from the same atoms. In this sense, the
lattice from the proof of Lemma B8 (ii) might be called intensional. Similarly,
(lomid) expresses a separability principle: two elements of an atomic lattice are
different, iff they can be distinguished by an atom; that is, there is a witness in
terms of an atom which shows that the two elements are different. By Lemma 28
(ii), preatomicity does not suffice to guarantee separability and extensionality,
not even for a distributive lattice. Remember that by LemmaPZZ2 every preatomic
boolean lattice is atomic.

It is interesting that algebraically, extensionality arises as a special case of
a more general congruence. This congruence allows us to identify elements of
a lattice as far as their behavior can be observed by measurements on atoms.
Two elements who are equivalent with respect to this notion may be called
observational equivalent. Still, such element may behave differently as a result of
their internal or hidden behavior. In this sense, lattices who do not satisfy the
extensionality principle might be called intenstonal.

Given our three characterizations of extensionality, the logical one in terms
of atoms, our algebraic one in terms of a congruence and our set-theoretic one in
terms of the function n, it seems very interesting to compare it with the standard
definition in the A-calculus, that is in terms of n-equality (for a different notion
of ), which is in a sense a notion of functional abstraction.

Extensionality is of course a key property in set theory. Semantically, it
introduces—no entity without identity—a notion of equality for sets. Opera-
tionally, it allows the transition between element-free and element-wise reason-
ing. This connection is further discussed in the following example.

Example 5. In every field of sets, by Example Bl the singleton sets are precisely
the atoms. Hence instead of the set-theoretic expression a € s we can write
{a} C s according to set theory and more abstractly «, < s in AL. Existence of
this atom is guaranteed by atomicity. Conversely, in a field of sets, we can write
a € s = a € tinstead of a, < s = a, < t. Then [@H) becomes the standard
axiom of extensionality of set theory,

Ve (x €a&sxzeb) =>a=h.
We could also introduce the €-relation as syntactic sugar for L € AL, defining

a€EsSa<s. (46)
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for all @ € A(L) and a € L. However, the restriction to < and atoms yields
greater economy of expression.

We have now fulfilled Postulates 1 to 4 of Section Bl These are the main
requirements for a core calculus for intuitive set theory and in particular for set-
based program development. The remaining sixth postulate requires compatibil-
ity of our concepts and properties with extensions. We leave its demonstration
to future considerations.

10 Representation and Closure Under Direct Products

We now discuss the relation of our constructions of the previous section with the
well-known representation theorems. This is interesting for the following reason.
In the examples of previous sections, we have seen that we can do with sets
under union and intersection, but without a universal set at most what we can
do with lattices. The representation theorems show that we can also do with
them at least what we can do with sets.

Lemma 29. Let L € L be finite.

(i) L € pAL.
(ii)) L € AL if L € L*°.
(ii) L € AL, if L € BL.

Proof. (adi) By reductio ad absurdum, let L not be preatomic. Then there exists
an element ag € L such that for all b < ag, b € L bis not an atom. Consequently,
aop cannot be an atom and there must exist some a; < ag. Since a; is not an
atom, there must be some as < a; that also is not an atom. Iteration of this

argument yields an infinite chain ag > a; > as ..., a contradiction to finiteness.
(ad ii) Immediate from (i) and lemma P2 (iii).
(ad iii) Immediate from (i) and Lemma 22 (iv). a

Lemma 30. Let L € L be finite. Then for all a € L,
n(a) =0 & a=0.

Proof. Let a = 0. Then n(a) = 0 by definition.
Let a # 0. By Lemma3 (i), L is preatomic. Thus a < a for some o € A(L)
and therefore n(a) # 0. a

In particular, therefore every finite sectionally complemented lattice is atomic
and distributive and therefore boolean.

Remember that by lemma B2 (ii), there exists a finite preatomic but not
atomic distributive lattice. Lemma Z9 and the constructions of Section B yield
the following representation theorems.

Theorem 6. Let L € pAL*°. Then n is an meet-preserving isomorphism between
L and a complete sublattice of the ring of sets 2.
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Theorem 7.

(i) Every atomic boolean lattice is isomorphic to some field of sets. More pre-
cisely, every such lattice L can be embedded into the field of sets 24(L),
(i) Every atomic distributive lattice is isomorphic to some field of sets. More
precisely, every such lattice L can be embedded into the field of sets 24(L),
(iii) Every complete atomic boolean lattice L is isomorphic with the field of sets
24(L),

(i) Every complete atomic distributive lattice L is isomorphic with the field of
sets 24(L),

Hence the complete atomic distributive lattices and the complete atomic boolean
lattices coincide. Note that in general the supremum of A(L) is undefined. Re-
member that every finite boolean lattice is atomic and complete.

Corollary 1.

(i) Every finite boolean lattice is isomorphic with the field of sets 24(1).

(i) Every atomic finite distributive lattice is isomorphic with the field of sets
2A(L),

The representation theorems link atomic lattices with sets. On the one hand this
means that every identity between atomic lattice terms holds in the set-theoretic
model. On the other hand, every first-order boolean property of a field of sets
holds in the class of atomic lattices. Thus the elementary theories of atomic
lattices and fields of sets are precisely the same. We will use this fact for our
construction of focused calculi for sets.

Note that in particular, in atomic lattices, the computations of Section B can
be done entirely at the set-side.

Based on the representation theorems we immediately obtain the well-known
size bounds for finite lattices. The free boolean lattice, for instance, has 2™ atoms
and therefore 22" elements.

The following theorem of McKinsey is very interesting for restricting our
calculi in certain special cases.

Theorem 8 ([17]). Let K be a class of algebras closed under direct products
and let the clause ¢1,...,¢m — VP1,...,%, hold in K. Then ¢1,...,0m — Y;
holds in K for some 1 <i<mn.

In particular, the converse does also hold. For falsificational reasoning, the fol-
lowing variant is important.

Corollary 2. Let K be a class of algebras closed under direct products. The
clause ¢1,...,0m — U1,...,%, does not hold in K iff ¢1,...,¢m — ¥; does
not hold in K for all 1 <i<n.

Proof. It remains to show that ¢1,...,¢m — ¥1,...,%, does not hold in K
implies ¢1,...,¢n — ¥; does not hold in K. So let ¢1,...,¢m — Y1,..., %5
does not hold in K. Then there is an algebra A € K such that ¢; A--- A ¢, holds
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in A and ¥; V --- V1, does not hold in A. The latter condition is satisfied iff v,
does not hold in A for all 1 < i < n. But then, also ¢1, ..., ¢, — ¥; does not
hold in K. O

Proposition 2. The following classes are closed under direct products.

(i) L, DL, GBLg, BL.
(ii) pAL, pADL.
(iii) AL, ADL, ABL.

Proof. (ad i) This holds since L, DL, GBLy and BL are varieties and therefore
closed under direct products.

(ad ii) Let Ly and Lo be preatomic lattices. By (i) it remains to show that
L = L, x Ly is preatomic. Let

A(L) ={(a,b) € Ly x Ly : (a € A(L1) Ay =02)V (z =0, Ab € A(L2)}.

Obviously, all elements of A(L) are covers of (01, 02). Let (a,b) € L. By preatomic-
ity of Ly and Lo, there exist ay € A(L;) and ay € A(L,) such that ay < a and
ay < b. Thus (a1,02) < (a,b) and (01, a2) < (a,b).

(ad iii) Let Ly and Lo be atomic lattices. By lemma[ll atomicity is equivalent
to n-stability. By (i) it remains to show that L = Ly x L, is n-stable.

| |n((a,0)) = |_[{(2,9) € A(L) : (,y) < (a,b)}
=| H@y) eL: (€ AL1)Ay=0)V(z =0Ay € A(L)))
ANz <aAy<b}
=| {(@,0) € L: (v € A(L1) Aw < a}U
| J{(0,9) € L: ((y € A(L2) Ay < b}
= (m(@),0)u (0, |m®)
= (|m(),| |m))
= (a,b).
O

Note that the product of sectionally complemented lattices is not necessarily
sectionally complemented, since, when sectional complements are not uniquely
defined, they are defined by an existential statement.

We can therefore use McKinsey’s theorem for splitting all universal clauses
in the pure language of atomic lattices into universal Horn clauses in refutations.

Closure under products is also interesting for the following reason. Axiomatic
set theory is concerned with the foundations of mathematics and therefore with
ontological economy. The whole theory is therefore axiomatized using solely ax-
iom schemata of first-order logic (that is axioms of second-order logic) and,
besides the inventory of first-order logic, solely the €-relation.
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In the context of software engineering or in intuitive set theory, ontological
economy is only one goal among others. Ordered pairs are usually introduced in
set theory as expressions (a,b) = {a, {a,b}}. To justify appropriateness of this
definition, textbooks on set theory then usually verify the intuitive property

(a,b) = (¢,d) & a=cAb=d.

Here, we can use Proposition ] to define ordered pairs in ADL algebraically in
terms of direct products. According to Proposition [l we do not leave ADL when
building ordered pairs. The construction easily extends to (finite) tuples.

11 Atomic Distributive Lattices and Boolean Rings

In this section, we recapitulate some well-known facts from lattice theory, see
for instance [I0]. We recall some basic facts about congruences and ideals in
distributive lattices. We then put the similarity of behavior of congruences and
ideals in sectionally complemented distributive lattices and rings on a formal
basis.

As usual, an ideal I of a lattice L is a subset of L that is downwards closed
and closed under finite joins. Let I and J be ideals of a lattice L. We can then
define the meet of I and J by IMJ = {aMb:a € I,b € J}. Moreover,
IuJ={aUb:a€I,be J}iff Lis distributive.

A congruence on L is a relation on L such that a; = by modf and as =
bs mod 8 imply a; Las = by Lbs mod 8 and ay Mas = by Mby mod §. A particularly
interesting congruence on distributive lattices is the relation 6(I) for some ideal
I C L defined by a = bmod §(I) iff alLlc = bL d for some ¢,d € I. It follows that
6(I) is the smallest congruence on L for which I is contained in one congruence
class. The quotient lattice of a lattice L modulo a congruence 6§ on L is denoted
by L/6. The mapping from L to L/f that sends every a € L to its congruence
class is a homomorphism. Conversely, for every homomorphism f : L — L, the
(congruence) kernel ker(f) = {(a,b) € L x L : f(a) = f(b)} is a congruence on
L and L' is isomorphic to L/ ker(f).

Let now L € Ly. The (ideal) kernel of a homomorphism f is Ker(f) = {a €
L : f(a) = 0}. Then, every ideal kernel is an ideal on L. Conversely, every ideal
of a distributive lattice is the ideal kernel of some homomorphism. In a boolean
lattice, it is even the case that there is a one-to-one correspondence between
congruences and ideals, which is given by mapping sending the congruence to
the zero of the quotient lattice. This need not be the case in distributive lattices.
However, as a slight generalization, this correspondence holds in GBL,.

Proposition 3. Let L € GBLy and 8 a congruence on L. Then f : 6 — [0]p is
a one-to-one correspondence between congruences and ideals of L.

Proof. The proof is essentially due to [2]. First, let I be an ideal on L. Then
I is the zero of L/0(I), whence a congruence class of §(I). Second, let  be a
congruence on L and let (a,b) € 6. Then

a—b=aM(a—>b)=>bM(a—b)modh = 0mod§.
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The first step uses [Id). The third step uses [@). But the congruence class of 0
is an ideal. O

The following stronger result is proven in [L].

Proposition 4. Let L be a lattice. There is a one-to-one correspondence between
ideals and congruence relations of L under which the ideal corresponding to a
congruence 0 is a whole congruence class under 0 iff L € GBL,.

This situation is analogous to ring theory and in fact, as noticed in [I0], there
is a straightforward correspondence between sectionally complemented lattices
and boolean rings, which are multiplicatively idempotent rings with zero that
are consequently commutative and satisfy a + a = 0.

There is the following correspondence between GBLy and boolean rings. Let
L € GBLy and define the operations a-b=aMNband a+b= (aUb) — (aMb).
Then (L, -, +,0) is a boolean ring.

Conversely, let B be a boolean ring and define the operations aMb = a - b
and alUb=a+b+a-b Then (B,U,MN,0) € GBL,.

Let p and A be the mappings that send a member of GBLy to a boolean
ring and vice versa. Then Ao p =1 = po A. Moreover, I is a (lattice-theoretic)
ideal of L iff it is an (arithmetic) ideal of p(L); a mapping f : Ly — Lo is a
homomorphism iff f : p(L1) = p(L2) is a homomorphism and L; is a sublattice
of Ly iff p(Ly) is a subring of p(Ls).

12 Conclusion

We have developed the mathematical foundations of a core calculus for intuitive
set theory as used in operational contexts like mathematical practice and in for-
mal methods like Z or B. The core calculus is based on the theory of atomic
distributive lattices. Its axioms consist of a set for distributive lattices, axiom
@) for the zero, axioms (&) and [B2) for atoms and axiom (alomid) for atom-
icity. In opposition to mere boolean reasoning with sets, our calculus supports
element-wise reasoning and avoids the ontological commitment to a universal
set. The precise connection between our algebra and set-structures is given by
representation theorems. The axiom (Bfomid) motivates an algebraic treatment
of intensionality and extensionality in terms of a congruence. Operationally, the
axioms support the effective reduction and simplification of terms, inequalities
and clauses. The axioms ([B2) and (Riomid), for instance, allow us to completely
eliminate negative inequalities and to split certain inequalities containing atoms.
This makes our axiomatization particularly suited for an integration into an effi-
cient automated proof-search procedure, as shown in [22]. Moreover, it can also
easily be implemented in a standard interactive proof-checker, using equational
logic or more precisely the logic of inequalities [BIZ3].

Further interesting directions of work are the following. The development of a
focused automated proof-search procedure for atomic distributive lattices. This
has been done in [22]. A precise comparison with variants of naive and axiomatic
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set theory and with formal methods like Z and B. An extension of the calculi
with entities and principles like types for sets, pairs, comprehension, infinite
sets, induction, a choice function, elemenary data-types such as numbers, lists
and trees. An intgration of a second layer for relational reasoning based on modal
Kleene algebra. Implementations of our calculus in automated and interactive
deductive systems. On the long run, we plan to integrate our calculus into an
industrial strength formal method. The theoretical results from this paper then
open the way for efficient operational reasoning with sets.
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