-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by OPUS Augsburg

UNIVERSITAT AUGSBURG

A Calculus for Set-Based Program Development
Part 1I: Proof Search

Georg Struth

Report 2003-16 Oktober 2003
|nst|tut ;
informatik

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

https://core.ac.uk/display/35095837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Georg Struth
Institut fiir Informatik
Universitdt Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

A Calculus for Set-Based Program Development
Part II: Proof Search

Georg Struth

Institut fiir Informatik, Universitat Augsburg
Universitatsstr. 14, D-86135 Augsburg, Germany
Tel:+49-821-598-3109, Fax:+49-821-598-2274,
struth@informatik.uni-augsburg.de

Abstract The first part of this work introduced a calculus for atomic
distributive lattices. It is tailored for operational reasoning in naive or in-
tuitive set theory and in set-based program development methods like Z
or B. Here, we use this calculus for developing several focused automated
proof-search procedures for atomic distributive and atomic boolean lat-
tices. The procedures are based on ordered resolution; proof-search is
guided by rewriting techniques. We derive simple deduction and power-
ful reduction and simplification rules, in particular decision procedures
for several subclasses. Our results solve a longstanding open problem in
automatic deduction and close an interesting gap in the proof support
for formal methods.

Keywords Naive set theory, set-based program development, lattice
theory, automated deduction, ordered resolution, term rewriting, decision
procedures.

1 Introduction

In the first part of this work [2Z], we have developed a core calculus for oper-
ational reasoning in naive set theory and for set-based program development
methods like B or Z. The calculus is based on atomic distributive lattices (ADL).
The representation theorem for this class implies that the calculus satisfies some
basic requirements for the intended applications. It models the empty set and
the operations of set-union, set-intersection and set-difference. It avoids the onto-
logical commitment to a universal set. It supports element-wise reasoning, since
elements of sets are in one-to-one correspondence with atoms of lattices. Finally,
atomicity of the lattice captures precisely extensionality of the set theory.

This algebraic turn to set theory is interesting on its own. It supports human
reasoning about sets that is entirely calculatory and based on a few elementary
principles. It provides abstraction, composition and extension facilities that are
much less explicit in logic. Moreover, our algebraic core calculus opens the way
to automated operational reasoning with sets. Such support of the needs of a
working mathematicians and software engineer is one of the main desiderata of
set-based formal methods and automated deduction. See [22] for further discus-
sion. Among various attempts, an approach by Hines [I1] has received consider-
able attention more than a decade ago. It is based on a series of investigations on

automated proof-search procedures for arithmetics [BIT6/GIT?] during the Eight-
ies. Adapting these results to sets, Hines provides quite intuitive transformation,
inference and simplification rules. He reports on interesting applications, for in-
stance in analysis. However, while already completeness proofs of the arithmetics
systems were rather involved (e.g. [A]), Hines was not able to characterize the
underlying fragment of set theory or even prove completeness of his calculus.
Even the progress in resolution-based theorem provers in the Nineties that re-
sults from adding syntactic orderings and using rewriting techniques in the work
of Rusinowitch [I7] and others did not significantly improve this situation. The
reason is that the usual approaches to theory integration, to postulate a set of
inferences rules and verify them post hoc in semantic completeness proofs, does
not sufficiently scale from simple structures to more complex ones like sets. Thus
the questions related to Hines calculus are still open; the lack of automated proof
support for intuitive set theory and set-based software development persists as
an interesting and challenging gap both in the field of formal methods and in
automated deduction.

In a series of papers [20J21] based on [IR], an alternative approach to the-
ory integration has therefore be developed. In contrast to previous post hoc
approaches, theory-specific inference rules can now be formally and systemati-
cally derived from natural specifications. Here, we use this derivation method to
integrate our calculus for ADL into focused resolution-based proof search proce-
dures. The procedures are intended to close the aforementioned gap. They also
solve the problems with [I1].

Focusing means integrating mathematical and procedural knowledge, here
via specific inference rules, rewriting techniques, ordering constraints, simplifi-
cation techniques and decision procedures. The inference rules of our procedures
are specific ordered chaining rules (c.f. [3]) for ADL that extend a Knuth-Bendix
completion procedure for distributive lattices [I9]. They are restricted to manip-
ulations with maximal terms in maximal literals. Focusing seems indispensable
for structures of a complexity comparable to ADL. Axiomatic reasoning would
lead to an explosion of the search space. Our term-oriented ordering constraints,
for instance, control the proliferation by theory unifications that would otherwise
arise for joins and meets. The main idea of the derivation method from [20] is to
replace axioms by inference rules by establishing a separation property on axioms
in refutations by ordered resolution and then internalizing the axioms into de-
rived inference rules by inspecting their proof-patterns with non-theory clauses.
Completeness of the resulting focused procedures then follows from faithfulness
of the construction. Fortunately, since the derivation method is modular with
respect to extensions, the development of our procedures need not be done from
scratch: we can base it on an intermediate focused procedures for distributive
lattices [Z1]. By carefully choosing an appropriate representation of ADL, all
inference rules of our procedures are restrictions of those for distributive lat-
tices. Using a variant of extensionality for eliminating all negative literals, the
most prolific rules of the previous procedure even disappear. Moreover, the ADL-
axioms dealing with atoms are entirely casted into simplification and reduction

rules. We provide two focused procedures for ADL. They procedures differ as
follows. The first one introduces atoms only lazily instead of boiling down the
whole structure. Intuitively, new atoms are only used to witness that two sets
are different. The second one, in contrast, eagerly atomizes expressions. This
further simplifies the inference rules, but it also causes larger initial clause sets
and a loss of structure. The particular benefits of both alternatives should be
evaluated in practice. In both cases, atoms are introduced carefully enough to
make our procedures decide certain subclasses, in particular finite structures.

Forgetting the ordering constraints, the inference rules of one of our proce-
dures encompass those of [I1]. Conversely, ADL provides an algebraic semantics
to Hines’ procedure. We can also transfer the two main simplification techniques
of [T1] to the ordered resolution framework and to ADL. In particular, the order-
ing constraints give restrictions on certain inferences on variables for free that
would otherwise be difficult to verify and the simplification rules of ADL can be
justified in a rather straightforward way using the standard generic notion of
redundancy [2]. This is another considerable improvement over [I1].

Our procedures for ADL can easily be extended to procedures for atomic
boolean lattices and finite boolean lattices. In particular, this last result im-
proves a previous calculus [21]. Our calculi automatically specialize to decision
procedures for certain subclasses, notably finite stuctures.

The remainder of this text is organized as follows. To make the paper self-
contained with respect to references, we briefly recapitulate the relevant proper-
ties of our core calculus for ADL from [22] in Section Pl to Section@ The remaining
sections are devoted to the automation of ADL. Section [recalls the basic prop-
erties of ordered resolution and redundancy elimination; Section [sketches the
derivation method for focused proof-search procedures. In Section [lattice in-
equalities are reduced using the ADL-axioms. Section [[develops clausal axioms
for ADL based on our results from Part I. Section [lintroduces specific syntactic
orderings for ADL-terms in order to integrate rewriting techniques. Section [
recalls the focused ordered chaining calculi for distributive lattices from [21].
These are the basis for our development of two focused ordered chaining calculi
for finite ADL in Section Soundness and Completeness of these procedures
are proved in Section [[4} their ordering constraints are further strengthened in
Section [[Al Decidability for some special cases is proved in Section [[8 The cal-
culi are lifted to the non-ground case in Section [[7 Simplification and variable
elimination techniques for the calculi are developed in Section Section 9
contains a conclusion and an outlook.

2 Lattices

A lattice [AJI1)] is a poset (L, <) closed under least upper bounds or joins (denoted
by U) and under greatest lower bound or meets (denoted by M) for all pairs of

elements. Formally, for all a,b,c € L,

a<cANb<ceaUb<eg, (1)
c<aANc<bsc<alb. (2)

The dual of a statement about lattices is obtained by interchanging joins and
meets and converting the ordering. Thus (@) and () are dual statements. L is
distributive, if

afn(bUe) < (aMb)U (aMc)

holds for all a, b, c € L or its dual and therewith both.

We denote the minimal and the maximal elements with respect to < of L, if
they exist, by 0 and 1. A lattice with 0 and 1 is called bounded. Formally, for all
a €L,

0<a. (3)

The class of lattices is denoted by L, the class of distributive lattices by DL.
If K is a class of lattices, then Ky denotes the subclass that has a zero, K; the
subclass that has a one and Ky; the subclass that is bounded.

We consider lattices as orderings. Alternatively, the class can also be axiom-
atized equationally. The translation between the two classes is given by

a<b&alb=b&alb=a. (4)

In the equational definition, joins and meets are associative, commutative, idem-
potent (alMa = a = alla) and absorptive (all(alb) = a = aM(allb) operations.
Experience shows that order-based reasoning with lattices is more natural than
equational reasoning.

Let Ly,L, € L. A mapping h : Ly — Lo preserves joins, if h(a U b) =
h(a)Uh(b) for all a,b € L. It preserves meets, if h(amb) = h(a)Mh(b) for all a,b €
L,. A lattice-homomorphism (or homomorphism) preserves joins and meets. We
also require h(0) = 0 and h(1) = 1, if present. Homomorphisms with these
additional properties are sometimes called hemimorphisms. An injective lattice
homomorphism is called a (lattice-)embedding, a surjective lattice embedding a
(lattice- Jisomorphism. Every join or meet preserving mapping is monotone, that
is a < b implies h(a) < h(b) for all a,b € L.

Ezample 1.

(i) A family of subsets of some set is called ring of sets, if it is closed under (set-
theoretic) union and intersection. Every ring of sets is a distributive lattice.
A finite lattice is distributive iff it is isomorphic to a ring of sets.

(ii) Every chain (for example the chain of natural numbers) is a distributive
lattice.

3 Complements

Let L € Lo1- A complement of an element a € L is an element b € L such that
alUb=1and aMb=0. L is complemented, if every element has a complement.
A boolean lattice is a complemented distributive lattice. The class of boolean
lattices is denoted by BL.

Our main interest are lattices with a weaker notion of complementation. Let
L € Ly and consider the sublattice Llja = {b € L : b < a}. L is sectionally
complemented, if L|a is complemented for every a € L.

In DL, sectional complements and complements are uniquely determined (if
they exist). In DLy, we write b — a for the sectional complement of a in L|(aUb).
In DLy, we write a’ for the complement of a. Every complemented distributive
lattice is sectionally complemented with b—a = a'M(aUd) and @’ = 1 —a. Every
sectionally complemented distributive lattice with 1 is boolean. In Section Bl we
will see that sectional complementation is very natural for atomic distributive
lattices. Also in the context of intuitive set theory, sectional complements are
natural concepts. There, the empty set corresponds to the zero, but we would
like to avoid assuming the existence of a one, that is a universal set.

Ezample 2.

(i) In a ring of sets, s; — so denotes set-difference, that is s; — s2 is the set of
all elements of s; that are not elements of ss.

(ii) A ring of set is called field of sets, if it closed under set-difference. Every
field of sets is a sectionally complemented distributive lattice.

We now present laws for computing with sectional complements. First, we in-
troduce some identities for simplifying expressions with sectional complements.
Then we generalize some standard laws for complements to sectional comple-
ments: de Morgan laws, monotonicity laws and shunting laws. Some of them can
be found in the literature [I0MR]. Most of the laws are based on the following
property of sectional complements, which is immediate from the definition.

a=b—c&alec=bUcAalc=0.

— Simplification of sectional complement expressions.

(a—b)Ub=allb, (5)
(a—b)Nb=0, (6)
af(a—b)=a-—0b, (7)
al(a—b)=a, (8)

a—a=0, 9)
a—(b—c)=(a—b)U (aMc), (10)
a—(a—>b)=anb (11)

— Generalized de Morgan laws.

a—(bMc)=(a—>b)U(a—c), (12)
a—((bUc)=(a—b)N(a—rc), (13)
(amnb)—c=(a—c)N(b—c), (14)
(alUb)—c=(a—c)U(b—c). (15)

— Generalized monotonicity laws.
a<b=>a—-c<b-—eg, (16)
a<b=>c—-b<c—a. (17)

— Generalized shunting laws.

(a—b) <cea<ble,
afl(c—b) <deaNe<blUd,
a<(c-bUdsa<cUdAanb<d,
a<c—bsa<cAaNdb<o.

(@) is very useful in the form a — b < a. Each of these laws can be proven in a
few lines of lattice calculus. The usual laws for complements are recovered by
setting @’ =1 — a.

The laws @)—(EI) are interesting for two reasons. First, they are used in the
normal form computations of our focused calculus in Section @l There they allow
us to completely eliminate sectional complements. Second, they support abstract
algebraic reasoning with sets, for instance in set-based program development
methods like Z and B.

4 Atoms

Intuitively, an atom of a lattice with zero is an element that lies immediately
above (hence covers) the zero. Formally, let L € Lg. Then a € L is an atom of
L,ifforallbe L,

a %0, (22)
b<a=a<bVb<O. (23)

Simple lattice calculus shows that 3) is equivalent to
a<alUb&sa<aVa<ld, (24)

if L is also distributive and sectionally complemented. A(L) denotes the set of
atoms of L.

(24 relates atoms with join-irreducible elements. An element a in a lattice L
is join-irreducible, if for all b,c € L, a = b ¢ implies a = b or a = ¢. All atoms

of a lattice are join-irreducible and all join-irreducible elements of a distributive
sectionally complemented lattice with zero are atoms. Example B (ii) presents a
finite distributive lattice with join-irreducible elements that are not atoms.

The following properties are helpful as rewrite rules for eliminating certain
negative inequalities.

Lemma 1. Let L € Ly. For all o, € A(L) and a,b € L,

afbealb<o,
alNfL£0e a=4,
ala<b&sala<0Va<b,
alNagLbs and<O0.

AN AN SN S
N N DN
~ O Ot

[\
oo
o — —

Ezample 3.

(i) In a field of sets, the atoms are precisely the singleton sets.

(ii) In the interval [0,n] of natural numbers, all elements except O are join-
irreducible. 1 is the only atom.

(iii) Consider the finite boolean lattice L,, generated by a1, ...,a,. The atoms of
L,, are the elements ¢;M.. .Me,, where ¢; is one of a; and a}. By distributivity,
every element s € L,, is equivalent to some ¢t € L,, which is a join of meets of
a; and a}. If the join contains at least two elements, then ¢ has at least two
lower covers and is not join-irreducible. If the join has only one element, then
t =c1M...Mcy, where ¢; is one of a; and a} and k < n.If k = n, then ¢ is an
atom, hence join-irreducible. If & < n, then ¢ Magy, and ¢t Majy , are lower
covers of t. Thus ¢ is not join-irreducible. Consequently, the join-irreducible
elements of L,, are precisely the atoms.

5 Atomicity

A lattice L € Ly is atomic, if for each non-zero a € L there is a nonempty
T C A(L) such that a = | |T. For a class K of lattices, the subclass of atomic
lattices is denoted by AK. We also define a mapping n : L — 24() that associates
with each element a € L the set of atoms below it.

n(a) ={a € A(L) : a < a}. (29)

L is n-stable, iff a = | |n(a) holds for all a € L.

It is easy to show that a lattice with zero is atomic iff it is n-stable. Using
&) is also easy to show that 7 is a homomorphism, if L € DL. If L is is non-
distributive, n preserves zero and joins, but not necessarily meets.

Lemma 2. Let L be a lattice with at least two elements. If n is injective, then
n(a) Z0 for alla € L, a # 0.

We now present an alternative characterization of atomicity. L € Ly is exten-
stonal, if for all a,b € L,

a<bsosVae AL).(a<a= a<b). (30)
By ([3) and first-order logic, (Bl) is equivalent to

afbe JacAL).(a<aANanb<0). (atomic)

Theorem 1. A lattice with zero (and at least two elements) is atomic iff it is
extensional.

Note that there is a finite L € DL with n(a) # 0 for all @ # 0 that is not
extensional and therefore not atomic (c.f [22]).
We can restate Theorem [0l as follows. Define the relation ~ for all a,b € L
by
a~b&Vae A(L).(a<as a<b). (31)

~ is a congruence on sectionally complemented distributive lattices and L € L
is atomic iff a = b & a ~ b holds for all a,b € L. This congruence is interesting
in its own right. For non-atomic lattices, it yields a notion of observational
equivalence induced by measurements of lattice properties via atoms.

Algebraically, ([B) expresses an extensionality principle: two elements of an
atomic lattice are equal, iff they are built from the same atoms. Similarly,
(Blomid) expresses a separability principle: two elements of an atomic lattice
are different, iff they can be distinguished by an atom.

Operationally, [B0) allows the transition between atom-free and atom-wise
reasoning. Moreover, in Section @ B0) and (afomid) are important for normal
form computations with our focused calculi. (afamid) allows us to replace all
negative inequalities by positive ones.

According to he following statement, atoms of distributive lattices induce
sectional complements.

Lemma 3. Every atomic distributive lattice is sectionally complemented. For
L e ADL and a,b€ L, a <b, | |(n(b) —n(a)) is the sectional complement of a in
Lib.

Consequently, we can use ([Z4) instead of [Z3) in ADL and we need no special
axioms for sectional complements.

Ezxample 4.

(i) The set of all subsets of some set is an atomic boolean lattice.

(ii) In every field of sets, the singleton sets are precisely the atoms. Hence instead
of the set-theoretic expression a € s we can write {a} C s according to
set theory and more abstractly o, < s in AL. Existence of this atom is
guaranteed by atomicity. Conversely, in a field of sets, we can write a € s =

a € t instead of a, < s = a, < t. Then @) is equivalent to the standard
axiom of extensionality of set theory,

a=beVe.(xr€asxebd).

Conversely again, we can introduce the €-relation as syntactic sugar for
L € AL, defining o € s & a < s for all a« € A(L) and a € L.

(iii) In Example [(i) we have stated that in a field of sets, s; — so denotes the
set of all elements of s; that are not in s;. This can be easily verified in
ADL. First, we replace every statement of the form a € s by a, < s, using
atomicity. Then, it remains to show that a < s;1 — sy iff a < sy Aa £ ss.
This follows immediately from (ZII) and (Z3).

6 Some Meta-Theorems

The techniques of Theorem [l usually serve for proving the well-known repre-
sentation theorems for atomic lattices, which are variants of Stone’s theorem
(c.f [). The following facts are proven in [22] for L € L.

— If L is finite, then n(a) # () for every non-zero a € L.

— If n(a) # 0 for every non-zero a € L and L is sectionally complemented, then
L is atomic.

— L is distributive iff all sectional complements are unique.

It follows that every finite sectionally complemented lattice is atomic and dis-
tributive and therefore boolean. Moreover, every finite boolean lattice is atomic.

Theorem 2.

(i) Every atomic distributive lattice and every atomic boolean lattice L can be
embedded into the field of sets 24(L),

(i) Every finite atomic distributive lattice and every finite boolean lattice is iso-
morphic with the field of sets 24,

Our previous examples show that ADL has at least sets as models. The rep-
resentation theorem shows that it has at most these models. Thus first-order
reasoning about fields of sets is precisely first-order reasoning about ADL. But
this is more than boolean reasoning. It is stronger, since via atoms, we are able to
reason element-wise and it is weaker, since we avoid the ontological commitment
to a universal set.

Given the representation theorems and the standard translation between
objects of of set theory and those of ADL, we can prove all statements of Section Bl
to Section Bl entirely at the set-side.

Finally, well-known size bounds for finite lattices follow immediately from the
representation theorems. The free boolean lattice with n generators, for instance,
has 2" atoms (c.f Example [(iii)) and therefore 22" elements.

The following theorem of McKinsey is very interesting for restricting our
calculi in certain special cases.

Theorem 3 ([15]). Let K be a class of algebras closed under direct products
and let the clause ¢1,...,¢pm — W1, ..., 0y hold in K. Then ¢1, ..., ¢m — U;
holds in K for some 1 <i<mn.

In particular, the converse does also hold. For falsificational reasoning, the fol-
lowing variant is important.

Corollary 1. Let K be a class of algebras closed under direct products. The
clause ¢1,...,0m — Y1,...,%, does not hold in K iff ¢1,...,¢m — ; does
not hold in K for all 1 <i <n.

Proposition 1. The classes ADL and ABL are closed under direct products.

This finishes the recapitulation of results from [22].

7 Ordered Resolution and Redundancy

We now turn to the discussion of the focused calculi for ADL. Ordered resolution
is not only one of its main ingredients, it is also used as a metaprocedure for
its development. We first recall some basic facts about ordered resolution and
redundancy elimination. The main ideas are due to Rusinowitch [I7]. They have
been further variated, for instance, by [2]. Ordered resolution calculi are among
the most powerful and successful automated deduction procedures. Particular
benefits are their potential to decide many problem classes and to integrate
theory-specific reasoning facilities.

Let Tx(X) be a set of terms with signature X and variables in X, let P be

a set of predicate symbols. A clause ¢1,...,¢, is a finite multiset of literals.
A literal is an expression p(t1,...,tm) or =p(t1,...,ty) where p is an m-ary
predicate symbol from P and ty,...,t,, are terms from T'5;(X). Literals of the

first form are called positive, those of the second form negative. Clauses are
denoted by capital Greek letters, positive literals by small Greek letters. We also
write £¢ to denote that ¢ is either positive or negative and I',£¢ instead of
I' U {%¢}. Logically, a clause denotes the universal closure of the disjunction of
its literal. A clause set denotes the conjunction of the clauses it contains. We
write S U I" instead of SU {I'}. A Horn clause contains at most one positive
literal. The size |I'| of a clause I' is the number of its literals.

We consider calculi constrained by syntactic orderings. This may considerably
narrow the search space. A term and a literal ordering < is a well-founded total
ordering on the respective set of ground expressions. < is lifted to non-ground
expressions by stipulating e; < ey iff e;0 < eyo for all ground substitutions o.
A literal +¢ is mazimal with respect to a multiset I" of literals, if ¢ £ v for all
Y € I'. Tt is strictly mazimal with respect to I', if ¢ A ¢ for all ¢ € I'. The
non-ground orderings are still well-founded, but need no longer be total.

Literal orderings are extended to clauses, measuring clauses as multisets of
literals and comparing them via the multiset extension of the literal ordering.
Literals are disambiguated by assigning to negative ones a greater weight than to
positive ones. See section [l for more details. A clause ordering inherits totality

10

and well-foundedness from the literal ordering. Again, the non-ground extension
need not be total. We usually denote all orderings by <.

Definition 1 (Ordered Resolution Calculus). Let < be a literal ordering.
The ordered resolution calculus OR consists of the deduction inference rules

F7¢ F’a_'w
I'o, "o

I'e. ¢
I'o,¢o’

, (Res) (Fact)

— In the ordered resolution rule [Bed), o is a most general unifier of ¢ and v,
oo is strictly mazimal with respect to I'oc and mazimal with respect to I''o.

— In the ordered factoring rule (Eacll), o is a most general unifier of ¢ and
¥ and ¢o is strictly maximal with respect to the set of positive literals and
mazimal with respect to the set of negative literals in I'o.

In all inference rules, side formulas are the parts of clauses denoted by capi-
tal Greek letters. Literals occurring explicitly in the premises are called minor
formulas, those in the conclusion principal formulas.

Let S be a clause set and < a clause ordering. A clause I is <-redundant or
simply redundant in S, if it is a semantic consequence of instances from S which
are all smaller than I" with respect to <. A ground inference is redundant in S,
if either the maximal premise is redundant or else its conclusion is a semantic
consequence of instances from S which are all smaller than the maximal premise
with respect to <. An inference is redundant if all its ground instances are.

Closing S under OR up to redundant inferences and eliminating redundant
clauses on the fly transforms S into an ordered resolution basis (an orb) orb(S).
The transformation orb need not terminate. We call an orb inconsistent, if it
contains the empty clause and consistent otherwise.

As usual, OR-proofs are defined inductively as finite trees with nodes labeled
by clauses and edges determined by derivability with the OR-inference rules. The
size of a proof is the number of its inferences; hence its number of edges. A clause
I' is the k-ancestor of a clause A, if I is an ancestor of A and there is a path with
k edges between I and A. A refutation from a clause set S in OR is a proof with
all leaves labeled by elements of S and with the empty clause as root. We say
that OR refutes S, if there is a refutation of S in OR. The set of OR-refutations
from S is denoted by ref(S). We write refc(S), if OR is augmented with a set
C of domain-specific inference rules. Inferences with redundant conclusions need
not be considered in refutations.

The following properties are interesting for our purposes.

Proposition 2.

(i) Orbs of inconsistent clause sets are inconsistent.
(i) Fair OR-implementations refute inconsistent clause sets in finite time.
(iii) Conclusions of OR-inferences with both premises from an orb are redundant.
(iv) For every inconsistent clause set containing an orb there is a refutation with-
out any OR-inference that has both premises from the orb.

11

8 The Derivation Method

Completeness of ordered resolution calculi with inference rules similar to the one
above in combination with focused inference rules have been previously shown by
two alternative approaches. The first one [I3] extends and adapts the standard
semantic-trees method for resolution. The second one [B] is a model construc-
tion that is more inspired by completeness proofs for logic programming and
can be seen as an application of the technique of model-theoretic forcing [I]].
Both methods were successfully applied to simple theories like equality or pre-
congruence. But already extensions to structures like abelian semigroups [25]
or cancellative abelian monoids [24] lead to difficulties worth a Ph.D.thesis. A
significant problem is that both approaches are post hoc: Inference rules must be
guessed and justified a posteriori in the respective semantic completeness proofs.
For complex theories, this guessing seems rather hopeless and even showing com-
pleteness of a candidate calculus can be very difficult, as the problems with [I1]
and several errors in published completeness proofs show. As is well-known, post
hoc approaches to the specification and analysis of (security) protocols or concur-
rent algorithms show similar problems. There, the solution consists in developing
sophisticated protocols or efficient algorithms in a formal and systematic way
from natural specifications. In a similar spirit, a derivation method for focused
calculi based on ordered resolution has been developed in [20]. In this section,
we recall and further formalize this method.

Consider a set T of theory clauses and a set S of non-theory clauses that is
disjoint from 7. Our intention is to replace T" by a set of inference rules. We call
T focused, if there is some set C of inference rules such that for all S, ref(SUT)
is inconsistent iff refc(S) is inconsistent. The following two properties capture
focusing operationally in terms of proof transformations.

Let IT be a refutation from SUT.

Let I and A be two clauses in a proof II whose least common ancestor is a
kr-ancestor of I and a ka-ancestor of A. Then I and A are k-separated in 11,
where k = max(kp,ka). IT is T-separable, if every pair I and A in T is at least
k-separated, where k = max(|I'],|4|) — 1.

By Proposition B (iv), for every inconsistent clause set containing an orb
there is a refutation in which all elements of the orb are 2-separated.

IT is T-serial, if every instance I" of a clause from T of size k that occurs in
IT occurs in a subproof of IT of size k — 1 in which one minor formula of each
inference is an instance of a literal from I'.

Proposition 3. A clause set T is focused if for every clause set S such that
SNT =0 and SUT is inconsistent, there exists a T-separable and T-serial
refutation. When T is finite, then so is C.

Proof. Let II be a T-separable T-serial refutation. By seriality, for each leaf
of IT labeled by a clause I' € T of size k there is a subproof of size k — 1
such that at least one minor formula of each inference is an instance of a literal
from I'. By separability, this is also the case for at most one minor formula.

12

Therefore this subproof is completely determined by the premises from S, the
ordering constraints of OR and the combination of resolution steps and factoring
steps that occur in it. Moreover, the minor formulas of the premises from S are
completely determined by the literals of I, up to unification.

With each such subproof we associate an inference rule that takes the premises
of the subproof S as premises and the conclusion of the subproof as conclusion.

Now let T be finite. For each I' € T', there are finitely many combinations of
using ordered resolution and ordered factoring in a k —1-size subproof. Moreover,
there are up to unification finitely many minor formulas from S that can occur
in the subproof. Then the number of inference rules is also finite. O

Intuitively, T-separability guarantees that the distance between members of 7" in
a refutation is big enough to partition the refutation into subproofs that consume
all but one literal from each instance of a member of T separately. Seriality
guarantees that this consumption is not interrupted by inferences between non-
theory clauses. The inference rules constructed this way correspond to theory-
resolution rules in the unordered case. Here, as we will see, the situation is much
more complex because of the ordering constraints.

So the main work is the construction of a focused set, that is the enforcement
of separability and seriality. Fortunately, in the examples under consideration,
clauses have at most size 3. Thus only subproofs of size 3 must be considered; it
suffices to guarantee that theory clauses are at most 3-separated. This consid-
erably restricts the combinatorics of inferences. Moreover, by Proposition B (iv)
we have 2-separateness, if the set of theory clauses is an orb.

This suggests the following scenario that divides the development into three
phases.

1. Construct the orb of an input theory.

2. Derive a focused ground calculus: Establish 3-separateness and seriality of
the orb in the ground case. Extract inference rules from patterns arising in
refutations with the focused theory.

3. Lift the ground calculus to the non-ground case (by standard techniques).

The extraction of inference rules from the interaction of theory and non-theory
clauses in the second phase is very similar to the technique of symmetrization
in computer algebra (c.f [7]). The first two phases of this scenario are further
illustrated by the following simple example.

Ezxample 5. Take the theory of a transitive relation <. A focused ordered chain-
ing calculus for this class has already been developed in [20]. Here, we reca-
pitulate the most important ideas. In this case, T has only one element, the
transitivity axiom, which is written in clausal form as

rLy,yfz,r<z. (trans)

Consider the first phase of the scenario. In [20]] we have proposed syntactic
orderings on terms, literals and clauses for which (fzand) is an orb for T'. Thus,

13

by Proposition B (iv), T is 2-separated and we can dispense with inferences of
the form
T, £ To, 20 £ 23,21 < I3 T, £ 23,23 £ 4,71 < X4
71 £ T2, s £ 13,23 £ T4,T1 < T4

This is desirable, since such an inference eagerly introduces fresh variables—here
x4—while intuitively, this should only happen by need, that is when forced by
some non-theory clause. See [20] for a deeper discussion.

Consider now the second phase of the scenario. The focused inference sys-
tem for transitive relations from [20] contains two Negative Chaining rules. We
consider a ground variant

I'a<b I'asc
T bec

(32)

This rule is further subject to ordering constraints. (B2) is a derived rule in OR;
a macro built from the pattern arising in the two-step proof

ITa]l<b [a]gbbgca<c
I'b£cla]<c I'Ja]£ ¢
T b4c

We put maximal terms in boxes, where they occur in minor formulas. The other
inference rules are derived in a similar way from the interaction of non-theory
clauses with (frand) and OR. Completeness of the calculus means that every
refutation can be completely covered by such patterns.

But is this really the case? A first answer is no. Precisely two obstacles may
arise in deriving the negative chaining rule (B2) from a proof pattern. First, it
may happen that I, a £ cis a second instance of (trans), a £ ¢,c £ d,a < d, say.
This is the case when T is not 3-separated. Second, it may happen that some
negative literal in I" is bigger than a < ¢. Then the second inference in (B2)
violates the ordering constraints and every two-step proof in a refutation using
the first OR-inference corresponding to ([B2) must continue with an inference on
a bigger literal. This is the case when the refutation is not serial. Thus, in order
to extract ([B2) from a refutation pattern, from proof patterns the existence of
3-separated serial refutations remains to be shown. Only under this additional
condition does the derivation of (B2) go through.

In [20], seriality has been established in a generic way. It has been shown, that
one may always select an inference on an instance of a literal of a theory clause
instead of resolving with a clause that blocks seriality. Such selections locally
forget the ordering constraints, but they globally preserve the structure of proofs
and refutations in particular. They can therefore be completely internalized in
the derived inference rules such that the selection is not visible in the derived
focused calculus. 3-separability has been shown in a second step, using particular
properties of the transitivity law. This establishes the inference rules of the
ground ordered chaining calculus for transitive relations in [20].

14

In the third phase of the scenario, this calculus must be to the non-ground
case. In [20], it has been shown that this can be done using standard techniques.

Apart from transitive relations, the three-phase scenario of the derivation
method has also been applied to derive focused calculi for various lattices [Z1].
These calculi are very important for our purposes, since our calculi for ADL and
ABL are strongly based on them. Remind that the former are subclasses of the
latter.

This is possible, since the derivation method is intrinsically modular. This
feature makes it incrementally dynamic with respect to theory extensions. When
new axioms are added to an orb in such a way that a changes of the syntactic
ordering do not affect the orb, then, in order to complete the orb, only inferences
between elements of the orb and the new axioms must be considered, the previous
orb need not be recompiled. Thus the first phase of the scenario is modular with
respect to extensions. Also the second phase is modular: separability need only be
checked for the new axioms and therefore the macro building can be accordingly
restricted. This feature has already been demonstrated in [ZI] by axiomatizing
a concept of ideal for distributive and boolean lattices. In general, modularity
is an important feature of the derivation methods, which supports the modular
development and incremental extension of theory hierarchies.

9 Reduction of Lattice Inequalities

We now present transformations for inequalities over terms in ABL and ADL.
In particular all lattices in ADL are sectionally complemented by Lemma Bl We
therefore assume a signature with sectional complements.

Let L = {U,M,—,«,0} be a signature for lattice terms. In particular, the
unary function a denotes that some element is an atom. We confuse this use of
a as a function symbol with our previous use of o as a constant denoting an
atom, wherever this may not lead to confusion. That is, we identify the function
symbol a with the element « that denotes a term denoting an atom.

For the sake of simplicity, we flatten terms, that is we consider joins and
meets as operation symbols of polyadic arity. We also consider terms modulo
associativity and commutativity (AC). Let X be a signature of free functions
disjoint from L. As usual, we identify terms with trees. A term ¢t € T (X)
is pure, if for all subterms ¢’ of ¢, if the root of ¢ has a label from X, then
t' € T (x). A literal, clause or clause set is pure, if all terms that occur in it are
pure. A lattice term is a pure term whose root is labeled by a lattice operation
symbol. A term is elementary, if it is pure and the label of its root is neither LI,
Mor —.

An inequality s <t is reduced if s is a (polyadic) join and ¢ a (polyadic) meet
of elementary terms. We write

81...SmSt1...tn

instead of 1M ... Ms,, <t U...Ut,. We also write sy < #1t2 instead of
s1Mss < t1Uts. A clause or clause set is reduced if all the inequalities it contains

15

are reduced. A formula is in weak reduced clause normal form (in RCNF,,), if
it is in clause normal form (CNF') and every clause it contains is reduced. A
clause set is in reduced clause normal form (in RCNF), if it is in RCNF,, and
all inequalities it contains are positive.

An inequality is atomized, if it is positive, reduced and of either the form

a(s)t <0, a(s) <t,

where a(s) denotes an atom. A clause or clause set is atomized if all the inequal-
ities it contains are atomized. A formula is in atomized clause normal form (in
ACNF), if it is in RCNF and every clause is atomized.

We now present, equivalence transformations from CNF to different reduced
normal forms for DL, ADL and ABL expressions. The transformations are stated
in terms of inference rules.

Definition 2. Let S be a clause set, let I' be a clause and ¢ be a (positive or
negative) literal. We write (S, (I, ¢)) instead of SU{I"U{¢p}}. Let o denote U,
M or —. We write [so]t to denote alternatively the term t and the term sot. A
statement must be read uniformly for the short or the long variant.

a denotes an atom, r, s, S1, Sa, t, t1 and ty denote pure terms.

i"ghe transformation viy, on clause sets is given by the following inference
ruledd.

1. The following rule purifies the clause set.

(S, (I £p[f(w)])) — (S, (I £ u,u £ @, £p[f (2)]))- (v1)

Here, p denotes an arbitrary predicate, f is neither U, nor I, nor —, u is
either O or labeled with LU, T or — at the root and x is a fresh variable.
2. The following rules eliminate negative lattice inequalities.

(S, (Lu £ 1) — (S, (La(f(@) <u), (La(f(@) Nt <0), (r2)
(S, (I',a[Ms] £ t)) — (S,(Iant <0)). (v3)
In @3), u is a pure term that does not contain an atom, f is a fresh Skolem

function and T denotes the set of free variables in u and t,
3. The following rules introduce atoms and split certain terms containing atoms.

(Sa (F,’LL < t)) — (Sa (F,Oé(:lf) Mu < 0,04(11?) < t)): (V4)
(S,(Ians<t) — (S, (LaNs <0,a <)), (vs)
(S,(F,agtll_th))—)(S,(F,agtl,ath)). (I/G)

In @a), u is a pure term that does not contain an atom and x is a fresh

variable. In [@g), s # 0 # t.

! The notation v§ denotes that the transformation v is intended for class K and yields
reduced inequalities, when & = r and atomized inequalities, when x = a.

16

4. The following rules eliminate sectional complements.

(Sa (Fa :|:[’r‘|_|](81 - 32) < t)) — (Sa (Fa :i:[T|_|]81 < sy U t))a

(v7)

(S, (Iys < [rU](t1 — t2))) — (S, ([, s < [rU]t1), (I, s Mty < [rU]0)),

(S, (Iys L [rU](t1 —t2))) — (S, (I, s £ [rU]t1, s Mt £ [rU]0)),

5. The following rules split with respect to joins and meets.

(S, (I, [rM](s1 U s2) <)) — (S, ([, [rM]s1 < &), (I, [rM]s2 < 1)),
(S, (I [rM](s1 U sa) £ 1)) — (S, (I, [rM]s1 £ ¢, [rM]s2 £ 1)),
(S,(I,s < [rl](t1 Mt2))) — (S, (I, s <
(S, (I8 £ [rU](ty M t2))) — (S, (I, s £ [rU]t1, s £ [rU]E2)),
6. The following rules simplify clauses.
(S,(INs<s) — S
(S,(Iys £ 5)) — (S, 1)
(S,(I,0<s)) — S
(S, (I,0 £ s)) — (S, 1)
(S, (ILa<0)) — (5, 1)
(S, (INa£0)) — S
7. The following rules simplify lattice terms.
(S, (I, £p[s L O])) — (S, (I', £p[s]))
(S, (I, £p[s T10])) — (S, (L3 £p[0]))
(S, (I, £p[s = 0])) — (S, (I, £p[s]))
(S, (I, £p[0 — s])) — (S, (I', £p[0]))
(S, (I £pls U s])) — (S, (I’ £p[s]))
(S, (I, £p[s T s])) — (S, (I, £p[s]))

Here, p denotes an inequality.

(vo)

Further simplification rules for sectional complements can be stated using the

results on sectional complements from [22)].

Before proving correctness of the transformation, we add a few remarks.
First, note that there is some non-determinism in the specification. This supports
further optimization. In general, the purification rule and the simplification rules

for clauses and lattice terms should be eagerly applied.

Second, the rules (F5) and (3) require special attention. They eliminate
negative inequalities from clauses. () does so by introducing a fresh Skolem
term and therewith a fresh atom at left-hand sides of inequalities. This rule is
only applied, when no atom occurs in the left-hand side of the inequality to be

17

eliminated. (pg) deals with the cases, when the left-hand side does contain an
atom. Then, no new atom is introduced. Note that no rule will ever shift an atom
from the left-hand side to the right-hand side of an inequality. These properties
are not only important for controlling the search space, they are also crucial for
the decision procedures in Section The number of atom introductions can be
further minimized, when () is eagerly applied.

Third, note that the same argument applies to the rules (@) and (@g) that
simplify with respect to positive atoms. Again, the introduction of new atoms is
restricted as far as possible. This is again important for decision procedures.

We now define variants of this transformation that are further specialized to
different lattices and different normal forms.

Definition 3.

(i) The transformation vip, 1is the restriction of vap, to the rules (m)-(@@z) and
)=
ii) The transformation vy, is the restriction of viy, to the rules s -
DL ADL
=),), =) ond (z2), @z)-
11) The transformations vy, and vg, are the extensions of vy, and vy, by the
ABL BL ADL DL
rules

(5, (Is <1)) — S5, (S, (I's £1)) — (S5, 1),

where x is one of a or r. Moreover, rules for complements can be used instead
of @a)-@@a) or s1 = t1 = 1 should be set in these rules for dealing with
complements.

Lemma 4.

(i) All rules of vip, except [3) preserve equivalence with respect to ADL; (@31
preserves inconsistency.
(it) vap (S) is in ACNF for every clause set S.
(iit) vap (S) terminates, if the clause set S is finite.

Proof. (ad i) We show that each rule of vy except ([@z) transforms the clause
set S into an equivalent clause set with respect to ADL; whereas (@3) trans-
forms an inconsistent clause set into an inconsistent one. We only mention the
respective property that justifies the transformation and leave the associated
CNF-transformation to the reader.

The transformation () yields an equivalent clause set, using the first-order
property

o(s) & Vr.(r =s = ¢(x)).

for renaming positive literals and

#(s) & x.(x = s A ¢(z)).
for renaming negative literals. Note that

-Jz.(x = s A ¢(z)) & Vr.(z = s = ~¢(x)).

18

The transformations (p3)) and ([Fg) yield equivalent clause sets, using (Biomid),
(28) and [H), when the existential quantifier in (g is kept. Skolemization of
this quantifier in () is not an equivalence preserving transformation, but it
preserves inconsistency.

The transformations (@z)—-@a) yield equivalent clause sets, using (B0), (0
and (24)).

The transformations (z)— (g yield equivalent clause sets, using the shunting
laws (@) and ().

The transformations (pm)- (@) yield equivalent clause sets, using (), &)
and distributivity.

The transformations (Piz)—(@m) yield equivalent clause sets. (Fiz) and ER)
use reflexivity of the partial ordering. (Fig) and ([@rz) use the fact that 0 is a
minimal element of the lattice. (i) and (pm) are based on (22).

The transformations ([pzg)—([Pz7) yield an equivalent clause set, applying the
identities all0 =a,aMN0=0,s—0=5,0—s=0,alda=aand ala =a to
terms, replacing equals by equals.

(ad ii) Assume that S is not in ACNF. Then some inequality is not atomized.
By induction on the structure of lattice terms it is easy to see that some rule of
v is applicable.

(ad iii) Let |a| = |0] = 0 for all atoms « and for zero. Let |t| = 2 for every
constant or variable. Let terms from T's;(X) be compared by an ordering that
contains the subterm ordering. Let |sot| = 1+ |s|+|¢|, where o stands for LI, M or
—. Let |s < t| = |s| + |t|. We measure an inequality by the triple (p, s, sc), where
p = 1 if the inequality is negative and p = 0 if it is positive, s denotes the size of
the inequality and sc denotes the number of sectional complements. Literals are
compared lexicographically with respect to this measure. Clauses are compared
as multisets of literals and clause sets as multisets of clauses. All these orderings
are well-founded. Inspection shows that (E)—([pz5) are decreasing with respect
to the well-founded ordering. Hence v3p terminates, whenever the initial clause
set is finite. O

Analogous statements holds for the other transformations. The following lemma
considers the transformation of ADL expressions to RCNF'.

Lemma 5.

(i) All rules of vip, except [3) preserve equivalence with respect to ADL; ()
preserves inconsistency.
(ii) vap (S) is in RCNF for every clause set S.
(iii) vap (S) terminates, if the clause set S is finite.

The following lemma considers the transformation of ABL to RCNF and ACNF'.

Lemma 6.

(i) All rules of vig and vig, except [z1) preserve equivalence with respect to
ABL; [3)) preserves inconsistency.

19

(it) vig (S) is in ACNF for every clause set S.
(iti) Vg (S) is in RCNF for every clause set S.
(iv) vag (S) and vig, terminate, if the clause set S is finite.

The following lemma considers the transformation of DL and BL to RCNF.
Here, of course, there are no atoms. The transformations have already been used
in [210.

Lemma 7.

(i) All rules of v, preserve equivalence with respect to DL.
(i1) All rules of vg, preserve equivalence with respect to BL.
(iit) v (S) and v§, are in RCNF, for every clause set S.
(iv) v5, (S) and v, terminate, if the clause set S is finite.

In practice, our transformations leave much space for improvement. In several
rules, for instance ([Tig)—(Pia), lattice terms or even clauses are copied. This can
be avoided by renaming of subterms at the level of first-order formulas, along the
lines of (7). By renaming, the normalization or atomization of inequalities leads
to a linear increase of the size of the initial formula. Moreover the transformation
is structure-preserving. This renaming can be integrated into a linear structure-
preserving transformation to clause normal form. However, this is beyond the
scope of this paper. Moreover, the generalized de Morgan laws from Section can
be used to push all sectional complements into the lattice terms before applying
the transformation.

In the sequel, we will denote all the above transformations simply by v,
whenever confusion is not possible.

10 Clausal Axioms for Atomic Distributive Lattices

In Section Plwe have defined lattices as posets. Here, we define lattices on quosets.
In general, in a quoset, joins and meets are unique up to the congruence ~ =
(€N >). In case of reduced and atomized inequalities, ~ reduces to equality
modulo associativity and commutativity. Moreover operationally, the only role
of antisymmetry is to split equations into inequalities. We therefore disregard
antisymmetry in our considerations and consider terms modulo associativity and
commutativity instead.

In DL, that is in the non-atomic case, we cannot apply the transformation
rule () and similar ones to eliminate negative inequalities. As we have seen, by
vp., a clause set can only be reduced to RCNF,,, but not to RCNF or ACNF.

Definition 4. We define the following sets of axioms for DL, ADL and ABL.

20

(i) For distributive lattices, let the set D consist of the Horn clauses

r <z, (ref)
rLyyLzrz, (fzans)

z £ z,2y <z, (ml)

r Ly, <yz, (jr)

r1 L£y12,2 £ Y2, 21 < Y1y, (jeut)
11 £ 2,722 £ Y2, 1122 < Yo, (mcut)
1 £ 912,722 £ Y2, 172 < Y1y2. (cut)

(i) For atomic distributive lattices, let the set AD consist of D together with

0<a @
and clausal variants of (Z4), (Z4) and (alomid).

(iii) For atomic boolean lattices, let the set AB consist of AD together with
a<l1 (33)

Note that by Lemma 16 (iii) of [22], there is no need for further axioms for
characterizing atoms. See also the remark at the beginning of Section El

Proposition 4. The following sets aziomatize the (weakly) reduced clausal the-
ories of the following classes up to normalization with idempotence and modulo
associativity and commutativity.

(i) D for DL,
(ii)) AD for ADL,
(iii) AB for ABL.

Proof. (ad i) This has been shown in [20].

(ad ii) Obvious from (i), since sectional complements do not appear in re-
duced clauses.

(ad iii) Obvious from (ii), since complements do not appear in reduced
clauses. O

11 The Syntactic Orderings

The computation of an orb, its termination and the procedural behavior of our
calculi crucially depend on the syntactic term, literal and clause orderings. Here,
we use the orderings that have been developed for DL and BL in [21]. Only the
term ordering must be slightly modified to appropriately handle atoms. This ex-
tension is however, conservative. See [21] for a detailed discussion and motivation
of this ordering.

For the term ordering, let < be the multiset extension of some total ordering
on the set of constants. We assign minimal weight to 0 and 1, if present. We also

21

force atoms to be smaller than all other terms. This can be done for example
using a pair (a, g), such that a = 1 if the respective term is an atom and otherwise
a = 0. g is the usual measure for a term. < is trivially well-founded, if the set
is finite or denumerably infinite. We measure both components of a reduced
inequality as a multiset. By construction, < is well-founded and compatible
with AC: terms which are equal modulo AC are assigned the same measure.

We now consider the literal ordering. Let B be the two-element boolean
algebra with ordering <p. Let m = G x B x B x GG, where G denotes a multiset
of constants. Let A be a set of literals occurring in some clause I'. The ordering
<1C mxm is the lexicographic combination of < for the first and last component
of m and <p for the others. A ground literal measure (for clause I') is the
mapping ur : A — m defined by ur : ¢ = (t.(¢), p(@), s(¢),t.(¢)) for each
(ground) literal ¢ € A occurring in I'. Hereby ¢, (¢) (¢,(¢)) denotes the maximal
(minimal) term with respect to < in ¢. p(¢) = 1 (p(¢) = 0), if ¢ is negative
(positive). s(¢) =1 (s(¢) = 0),if ¢ = s <t and s = ¢ (s < t). The (ground)
literal ordering <2C A x A is defined by ¢ <o ¢ iff ur (@) <1 pr () for ¢, € A.
Hence <5 is embedded in <; via the literal measure. The ordering <; is total and
well-founded by construction. Via the embedding, <- inherits these properties.

All these orderings are extended to the non-ground level and the clause level
according to section [In particular the polarity p assigns greater weight to an
negative occurrence of a term than to a positive one. In unambiguous situations
we denote all orderings by <.

12 Chaining Calculus for Finite Distributive Lattices

In [21], chaining calculi for finite distributive and boolean lattices were developed
with the derivation method, using the syntactic orderings < from Section [}

Theorem 4 ([21]). D is an orb for the reduced clausal theory of distributive
lattices. D = orb(D).

In the calculus DC of [Z1], the effect of the orb D is completely internalized
into the derived theory-specific rules. These rules are more focused than mere
reasoning with the standard lattice axioms. In particular, this means that ea-
ger introduction of variables stemming from resolving the transitivity law, for
instance, can be avoided.

We again introduce indexed brackets to abbreviate the presentation of the
calculi. A pair of brackets [.] in a clause denotes alternatively the clause without
the brackets and the clause, where the brackets together with their content have
been deleted. For instance, the clause I',[r]s < ¢ denotes I,rs < tor I',s < t.
In inference rules, brackets with the same index are synchronized. For instance,
the inference rule

Irlis<t Irs<t I's<t
denotes —_— or

I' [u]ijv £ w’ I'uw £ w I'vgw

22

We now recall the ordered chaining calculus DC for finite distributive lattices.
Here, we use v, for establishing weak reducedness. For the sake of simplicity,
we just write v.

Definition 5 (Distributive Lattice Chaining). Let > be the atom and clause
ordering of sectionl Let all clauses be in RCNF',,. The ordered chaining cal-
culus for finite distributive lattices DC consists of the deductive inference rules
and the redundancy elimination rules of ORE and the following inference rules.

Irs £t I'r £ st

- ML - JR

Ir £t (ML) Ir £s (JR)
Here the minor formula is mazximal with respect to the negative literals in I' and
strictly maximal with respect to the positive literals in I'.

Iisi <[]z I [s2]mx < o
(I, I, s1[s2)m < [t1]jt2)v

(Cut+)

Here the terms containing x are strictly mazimal in the minor formulas. The
minor formulas are strictly mazimal with respect to the side formulas in their
respective premises.

I sy <[]z I, s1[s2]m & [ta]jt2
(0,1, [ulme £ ta)v

Here the terms containing s1 are strictly mazimal in the minor formulas. In
the first premise, the minor formula is strictly mazimal with respect to the side
formulas. In the second premise, the minor formula is mazimal with respect to
the side formulas. Moreover, [u],x # ta mod AC, u = sy or else u = s1, if so
is absent in the minor formula.

F, [SQ]m(E ﬁ t2 F/, Sl[SQ]m S [tl]jtg
(Fa Flvsl g [’LL]].I')I/

(Cut-)

(Cut-)

Here the terms containing t1 are strictly mazimal in the minor formulas. In the
first premise, the minor formula is mazimal with respect to the side formulas.
In the second premise, the minor formula is strictly mazimal with respect to the
side formulas. Moreover, s1 # [u]jo mod AC, u = t; or else u = ta, if t1 is
absent in the minor formula.

I s < [t]jz, s < [t];te
(Fa [S]ml‘ ﬁ 2,8 < [tl]th)V”
Here, x is an elementary term, either ty is strictly mazimal in the minor formulas
or s is strictly mazimal in the minor formulas and s can be set to 1 in the
antecedent of the conclusion. The leftmost minor formula is strictly maximal
with respect to the side formulas and the rightmost minor formula.
I [s1]mz <t [s1]ms2 <t
(Fa 52 g [t]jmv [31]m32 < t)V

% Section [Monly defines a semantic notion of redundancy. Every set of inference rules
implementing this notion is admitted.

(DF)

(DF)

23

Here, x is a elementary term, either s1 is strictly mazimal in the minor formulas
or t is strictly mazimal in the minor formulas and t can be set to 1 in the
conclusion. The leftmost minor formula is strictly mazimal with respect to the
side formulas and the rightmost minor formula.

The calculus is meant modulo AC at the lattice level.

([IB) and (ML) stand for join right and meet left, in analogy to the sequent
calculus. ([Cutf)) and uLd) stand for positive and negative cut, (OF) for dis-
tributivity factoring. The two ([Cuid) rules and the two (DE) rules are dual, if
also the indices of brackets are exchanged.

For distributive lattices with zero or one, and for boolean lattices, we add
the inference rules

IoLa

F)
I'a<1
—T

(Zero)
(One)

For detecting triviality, that is 0 = 1 we add the inference rule

I1<0

T (Trivial)

We still call the resulting calculi DC.

Proposition 5. Let all clauses be in RCNF,,. The ground ordered chaining
calculus DC is sound for finite distributive (and boolean) lattices: For every OR-
proof using the inference rules of DC there is a OR-proof from the same premises
to the same conclusion that uses the axioms in D.

Theorem 5. Let all clauses be in RCNF',,. The ground ordered chaining calcu-
lus DC is refutationally complete for (the elementary theory of) finite distributive
(and boolean) lattices: For every ground prereduced clause set that is inconsistent
in the first-order theory of distributive lattices there exists a refutation in DC.

13 Focused Calculi for Finite ADL

We now present two ordered chaining calculi for finite atomic distributive lat-
tices. In the finite case, all non-theory clauses are ground, since existential and
universal quantification can be replaced by joins and meets. The extension to
the non-ground case is discussed in Section 1 We use the bracket notation
introduced in Section

The first calculus uses v, with lazy introduction of atoms.

Definition 6. Let > be the atom and clause ordering defined above. Let all
clauses be in RCNF'. Let vy, be the transformation defined in Section [The
ordered chaining calculus for finite atomic distributive lattices ADC, consists

24

of the deductive inference rules and the redundancy elimination rules of orf]
and the focused inference rules (Cul) and (JH), normalizing with vip, . The
calculus is meant modulo AC at the lattice level.

Comparing ADC, with DC shows that addition of mathematical structure has
lead to a simpler calculus. The elimination of negative inequalities by (Bfomid)
via (pg) is very beneficial, since the negative chaining rules are the most prolific
rules of DC (c.f. [21I] for a discussion). Moreover, the entire impact of sectional
complements, atoms and atomicity could be integrated into the simplification
rules of v;pc. This justifies the mathematical efforts in [22] for defining rules for
sectional complements and particularly useful axioms for atoms and atomicity.

We now present a second calculus which is based on vy, with eager intro-
duction of atoms, whence atomized clauses.

Definition 7. Let > be the atom and clause ordering defined above. Let all
clauses be in ACNF. Let viy, be the transformation defined in Section [The
ordered chaining calculus for finite atomic distributive lattices ADC, consists of
the deductive inference rules and the redundancy elimination rules of ORfl and
the following focused inference rules. [Cuf) is restricted to
INa<zx I [s]le <0 Ia<pg <t
(I, I, afs] < 0)vip, I'r'a<t

(DA) is restricted to

I'asjz <0,as)s2 <0
(Iys2 £ z,as1s2 < 0)vap,
The constraints are also further strengthened. Neither s| nor x may contain an
atom and as] must be strictly mazimal. There is the additional rule

F’a’/B’S S 0
(I'o,aoso < 00)vip,’

(MI)

where o is a most general unifier of a and 3, ac is mazximal in the respective
term and the o-instance of the minor formula is strictly mazimal in the left-hand
rule and mazimal in the right-hand rule.

The calculus is meant modulo AC at the lattice level.

At the present stage of work it is difficult to compare ADC,. and ADC,. ADC, is
more economic and algebraic. It avoids introducing new atoms as far as possible,
and is therefore less element-wise. ADC, is more reductive with respect to the
term structure and applications of inference rules. It is however, due to the
use of (), non-ground (although only syntactic unification is involved). We
believe that the usefulness of the calculi should be best compared by practical
experiments.

3 Section [only defines a semantic notion of redundancy. Every set of inference rules
implementing this notion is admitted. Many such rules have already been encoded
into vap, .

4 Section M only defines a semantic notion of redundancy. Every set of inference rules
implementing this notion is admitted. Many such rules have already been encoded
into vap,.

25

14 Soundness and Completeness

Soundness of ADC, and ADC, is straightforward.

Proposition 6. The ground ordered chaining calculi ADC,. and ADC, are sound
for finite atomic distributive lattices.

(i) Let all clauses be in RCNF. For every OR-proof using the inference rules of
ADC, there is a OR-proof from the same premises to the same conclusion
that uses the axioms in D.

(i1) Let all clauses be in ACNF . For every OR-proof using the inference rules of
ADC, there is a OR-proof from the same premises to the same conclusion
that uses the axioms in D.

Proof. Obviously, all inference rules of ADC,. and ADC, are special cases of in-
ference rules from DC. The rule (M) is a special case of the non-ground calculus
for DL. These inference rules are sound for the reduced clausal theory of dis-
tributive lattices [ZI]. Since every atomic distributive lattice is a distributive
lattice and every clause set in ACNF or RCNF is also in RCNF',,, the inference
rules of ADC, and ADC, are also sound for finite atomic distributive lattices.
Moreover, by Lemma Bl and Lemma Bl all transformation rules in v}, and vip,
are sound. O

In order to prove completeness, we now apply the derivation method to con-
struct the focused calculi ADC, and ADC,. The derivation is modular with re-
spect to the derivation of the calculus DC for finite distributive lattices in [21].
We construct an orb for ADL relative to that for DL and derive the inference
rules of ADC,. and ADC, relative to those of DC. But first, we prove a technical
lemma.

Lemma 8. Fvery ordered resolution inference with a clausal variant of (3),

22), (Z4) and (alomid) is redundant.

Proof. Every such inference leads to a clause set that is smaller than and equiv-
alent to the premise clause set. This is immediately evident for @), 2) and
E4). In case of (alomid), a clause negative I',u £ t is split into I« < u, and
I''at < 0. If u > t, then both resolvents are smaller than the premise. If u < ¢,
then we may assume that ¢ is not an atom. Then the first conclusion is smaller
than the premise. To make the second premise smaller, we replace I',u < t by the
equivalent expression I',u < tt everywhere in the higher part of the proof. O

Lemma B immediately implies the following result, which yields the first step of
the derivation of the inference rules, the construction of the orb.

Proposition 7. AD is an orb for the theory of reduced clauses and atomized
clauses of ADL.

Proof. By Proposition B (i), D is an orb for the reduced clausal theory of DL.
By Lemma B every ordered resolution inference between (£2), (afomid) and

members of D and among ([2) and (afomid) is redundant. Therefore AD is an
orb for the theory of reduced clauses and atomized clauses of ADL. O

26

We now proceed to the second step of the derivation method.

Lemma 9. The set AD is focused.

Proof. By Proposition Bl we must show the existence of a T-separable and T-
serial refutation. The orb D is focused by Theorem Bl By Lemma B also all
elements of AD are AD-separated. The proof of T-seriality is by induction on the
size of clauses in a refutation. The argument is independent from the particular
structure of the orb. It has already been given in [19]. The main idea is that the
needed inference can be permuted up in the refutation tree, whereas the second
step of the blocking inference can be permuted down. One then obtains a new
refutation with the desired macro inference at the appropriate place. Due to
factoring it may be the case that some subtrees of the proof tree must be copied.
This construction is iterated on the proof tree. The proof immediately applies
to the present case. Hence AD is focused. O

We are now prepared for our main theorems. The first theorem expresses
completeness of ADC,..

Theorem 6. . Let all clauses be in RCNF. The ground ordered chaining calculus
ADC, is refutationally complete for (the elementary theory of) finite atomic
distributive lattices: For every ground clause set in RCNF that is inconsistent in
the first-order theory of finite atomic distributive lattices there exists a refutation
i ADC,..

Proof. By Proposition @, AD is focused. It consists of the focused set A for
distributive lattices plus clauses corresponding to the equivalences @), [2), and
(aLomid). There is no need to derive further inference rules for (Z2) and (afamid),
since by Lemmal these expressions yield equivalence transformations on clauses
that yield smaller clauses. They are therefore not deduction, but reduction or
simplification rules that have been integrated into the transformation vy, .

By this transformation, every clause set is transformed into a set of clauses
in RCNF'. Therefore the negative cut rules (Cut-), the meet left rules and join
right rules (ML) and (JR) and the (Zero) rule of DC are no longer applicable,
only the positive cut rule (Cut+) and the distributivity factoring rules (DF) of
DC must be kept.

It remains to argue why deduction steps are intertwined with simplification
steps from v}, . This is the case, since in the conclusion of (Cut+), there can
be multiple occurrences of an elementary term in a side of a reduced inequality.
Moreover, in the conclusion of (DF), a negative inequality must be eliminated
and the resulting positive inequalities must be further transformed. ad

The second theorem expresses completeness of ADC,.

Theorem 7. . Let all clauses be in ACNF. The ground ordered chaining calcu-
lus ADC,, is refutationally complete for (the elementary theory of) finite atomic
distributive lattices: For every ground clause set in ACNF that is inconsistent in
the first-order theory of finite atomic distributive lattices there exists a refutation
in ADC,.

27

Proof. Obviously, ADC, is a further specialization of ADC,., with the exception
of the rules () and (MI)). We show how the (Cut+) rules and the (DF) rule of
ADC, arise from the special format of atomized inequalities.

(i) Consider the (Cut+) rule

I''s; <z I [s9]x < to
(F, F/,Sl[SQ] S tQ)V

()

First, there is no inference for z = 0. It then follows from the shape properties
of atomized inequalities, that s = a. Moreover, these properties imply that
[s2]x < to specializes to either [s]z < 0 or § < t, where = f denotes an
atom. The first restriction yields the left-hand inference rule, the second case
the right-hand one.

INa<zx I'[s]le<0 Ia<pg <t
(I, I, afs] < 0)v I'r'a<t

The constraints are inherited from those of ADC,..
(ii) Consider the first (DF) rule,

F,S S tl(E,S Stth
(I [s]lx £ ta,8 < tita)v

(312)

Similar arguments to (i) show that the left minor formula of the premise special-
izes to a < x and the right one to a < ¢t. The constraints require that « is greater
than z. Hence must be another atom, x = 3, say. If a # (3, then o < z is false
and the premise I,z < ¢, <t reduces to I, a < t. Hence (DF) is not applica-
ble (without simplifying the premise, the conclusion would be I', ft < 0,a < t,
which is subsumed by the premise and therefore redundant).

If @ = f, then the premise becomes a tautology and can be discarded by v.

Consequently, the first (DF) rule is not applicable to clause sets in ACNF.

(iii) Consider the second (DF) rule,

I [si]z <t [s1]s2 < t
(I} 52 <tz [s1]s2 < t)v

(DF)

If t # 0, then s;2 = « and s1s2 = 3 (s1 could be 0). Thus the inference specializes
to
Ia<it,p<t

(IaB <0,8 <ty

It is redundant. In the conclusion, either a # . Then af < 0 holds and the
conclusion reduces to true. Or else, a = 8 and the conclusion reduces to the first
premise.

If t = 0, there are two further possibilities. The first possibility is given by
the inference

I''s;a <0,s1(8s) <0
(Fa IBSI2 f a,SlBSQ S O)l/

28

It is redundant. We may assume that s, contains no further atom. If @ # £,
then the conclusion becomes a tautology. If a = 3, then the premise subsumes
the conclusion.

The second possibility is given by the inference

I'asiz <0,as)s2 <0
(I, s2 £ z,as)s2 < 0)v

(DF)

This inference is irredundant. The constraints from ADC,. can be further strength-
ened. Neither s nor £ may contain an atom and as} must be strictly maximal.
These are all possibilities for (Cut+) and (DF).
(iii) The rule (MI) arises as a special case of similar rules for infinite dis-
tributive lattices [20]. These rules can be restricted to atoms at left-hand sides
of inequalities, since these atoms are the only non-ground terms in this case. O

Our completeness results immediately transfer to boolean lattices.

Corollary 2. Consider the transformations vig, and vaBL®. Given these adap-
tations, ADC,. and ADC, are refutationally complete for (the elementary theory
of) the following classes.

(i) Finite atomic boolean lattices.
(ii) Finite preatomic boolean lattices (c.f. [Z9] for a definition).
(i) Finite boolean lattices.

Proof. (ad i) Every atomic distributive lattice with a maximal element is atomic
boolean. Dually to the case of [) in Lemmal every ordered resolution inference
with B3) is redundant. Thus AD U{([B3))} is an orb for ABL. Moreover, it follows
that the set is focused. Since the effect of ([B3) is completely handled by v35, and
vagL, the inference rules of ADC, and ADC, need not be changed. They apply
immediately to the respective boolean cases.

(ad ii) Every preatomic boolean lattice is atomic boolean.

(ad iii) Every finite boolean lattice is atomic. a

Lemma B improves the completeness result of DC for finite boolean lattices
in [21]. Note that it is not the case that every finite distributive lattice is atomic.
It is therefore not possible to eliminate negative literals in the distributive case
like in the boolean case.

15 Strengthening the Ordering Constraints

In this section we show that the ordering constraints on inequalities in ADC,.
and ADC, can further be strengthened to maximal terms of reduced inequalities
in (Cut+). This is analogous to the case of (cut)-based solutions to the uniform
word problem for distributive lattices obtained by Knuth-Bendix completion
in [T9].

Theorem 8. In ADC, and ADC,, the ordering constraints of ([CufH) can be
strengthened to x strictly maximal in the respective inequalities.

29

Proof. We consider only the case of ADC,., since ADC, is a special case thereof.
We show by induction on the size of proofs that every refutation in ADC, can
be rearranged to a refutation in which the stronger ordering constraints are
satisfied. We proceed in two steps. First we show that the rearrangement is
possible for all refutations without (OE]). Second we show that whenever there
is a (DE)-inference between two ([Cut)-inferences to be rearranged, then the
(DE)-inference can be pushed to the top of this three-step sequence.

So let us assume a refutation without any (DE)-inferences. Since the trans-
formations are local in the minor formulas, we disregard all side formulas. The
base case is split into four cases. Let s and ¢ be elementary terms. Note that
reduction to a literal a < 0 is the only possible last step of a refutation in ADL.

a<st t<0 a<t t<s
a<s s<0 a<s s<0
<0 a<0
a<t st<0 s<t t<0
a<s s<0 a<ls s<0
a<0 a<0

In each case, when t > s, there is nothing to rearrange. Otherwise, if s > ¢, one
simply permutes the resolution steps. The first proof, for instance, is replaced
by
a<st s<0
a<t t<0
a<0

For the induction step we assume that all smaller proofs have been rear-
ranged and we can consider the top-most inference in the tree. The two possible

derivations are
s1 <zxayty Sy <12

S182 S ﬂftltz 532 S t3
s18283 < titats

sizy <t1 s2 S yh
S$182% S tltz S3 S .T,'tg
818283 < t1iat3

Again, if y > z, there is nothing to rearrange. Otherwise, if z > y, on simply
permutes the derivation steps. The first proof, for instance, is replaced by

s1 <zylty s3x <t3
8183 < ytits S2y < to
818283 < tyiat3

Note that we have always performed the idempotence steps implicitly, but also
explicit factoring could be used. The situation is then precisely like that of
elimination of blocking inferences (c.f. [211).

We now argue that a (DE)-inference can always be pushed to the top of a
three-step sequence with a potential rearrangement. We restrict our attention

30

to the first of the (DE) inference rules. The argument with the second one is
precisely dual.

According to the ordering constraints, there is precisely one situation, when
there is a “sandwich” (DE)-inference between two ([Cutf)-inferences. It is

Iisy <tyz,s; <ty I'z<ty
I, s1 < tita,s1 <ty
I\ IMs1ty L y,81 < t1y I, sot < t3
LI, T, 51ty £y, 8182 < yts

Here, z is a generator and ¢ is a generator that is strictly maximal in the minor
formulas of ([DF). We replace the inference by

F,Sl Stl.’E,Sl Stly
Isiz Lys: <ty I, sotp <t3
I, s1x £y, s183 < yt3

Using negative chaining with I, s1s2 < yt3, we obtain the same conclusion as
that of the first inference. Also the strong ordering constraints are then satisfied.
Or else we can use (alomid) to transform the conclusion and use ([Cuff). We
then obtain an equivalent result. O

16 Decidability

In this section we briefly address the use of ADL, and ADL, as decision proce-
dures. These properties arise as corollaries to Theorem Bl and Theorem [

Corollary 3. ADC, and its extension from Theorem[8 decide the reduced clausal
theories of the following classes.

(i) Finite ADL.
(i) Finite BL.

Proof. Note that by Mc Kinsey’s theorem (Theorem Bl) and Proposition [we
can restrict our attention to the respective Horn theories. Thus in particular the
(DF) rules are not applicable.

(ad i) Finitely presented atomic distributive lattices are finite. Modulo ACI,
the inferences of ADC, introduce only finitely many new atoms. Since the initial
clause set is ground, Skolemization does not introduce variables. Moreover, only
finitely many Skolem constants must be introduced. This is justified by the fol-
lowing argument. First, new atoms only arise at left-hand sides of inequalities by
(alomid). Second, by Lemmal[ll (iv), an inequality as £ ¢ is equivalent to at < 0.
This can be used in hypothesis elimination. Thus new atoms must only be intro-
duced for inequalities whose left-hand sides do not contain an atom. But only
finitely such terms can be built up to ACI in a finite atomic distributive lattice
and also only finitely many right-hand sides, since nothing new is added there.
Thus there are only finitely many Skolem functions that can be introduced for

31

these finitely many inequalities. Since besides this, the inference rules of ADC,
do not add any new symbols, only finitely many inferences lead to irredundant
conclusions. Together with refutational completeness this implies that the proce-
dure terminates after finitely many steps. The resulting orb contains the empty
clause if and only if the initial clause set was inconsistent.

(ad ii) Immediate from (i) and refutational completeness of the extension of
ADL, to finite boolean lattices (Corollary B). a

Corollary 4. ADC, and its extension from Theorem [@ decide the following
classes.

(i) Finite ADL.
(ii) Finite BL.

Proof. Again, we can restrict our attention to the Horn theories.

(ad i) The proof is similar to that of Corollary Bl Now, the rules ([3) and
(@) corresponding to (alomid) and extensionality B) introduce new atoms at
left-hand sides of inequalities for each inequality that does not contain already
an atom. Since negative and positive inequalities with this property are disjoint,
also the scopes of the Skolemization is disjoint. Thus all atoms generated by
(Bfomid) are Skolemized by constants and therefore of the form a(c), whereas
all atoms generated by [B0) are of the form a(z), for some fresh variable z. Now
when two atoms are unified, the substitution either identifies two variables or
maps a variable to a constant. Thus again, only finitely many different atoms
are generated and therefore the number of lattice inequalities generated by the
procedure is finitely bounded modulo ACI. Since besides this, the inference
rules of ADC, do not add any new symbols, only finitely many inferences lead
to irredundant conclusions. Together with refutational completeness this again
implies that the procedure terminates after finitely many steps. The resulting
resolution basis contains the empty clause if and only if the initial clause set was
inconsistent.

(ad ii) Again immediate from (i). a

Corollary 5. ADC,. and ADC, have the following properties.

(i) They decide the uniform word problem for ADL and ABL
(i5) They decide the universal theories of ADL and ABL.

Proof. (ad i) By Corollary Bl and Corollary B since every finitely presented dis-
tributive and boolean lattice is finite.

(ad ii) Immediate from (i) together with McKinsey’s theorem B and Propo-
sition [O

It seems very interesting to extend these decision procedures to further classes,
for instance by integrating more simplification rules into ADC. The elementary
theory of distributive lattices, for instance, is undecidable [9], while the elemen-
tary theory of boolean lattices and atomic boolean lattices is decidable [23UT4].

32

17 The Non-Ground Case

In this section we extend ADC, to the non-ground case. This means in partic-
ular, that the lattices under consideration can be infinite. For the case of DC,
the negative chaining rules now involve ACI-unification, which may lead to an
explosion of the search space, since the number of most general unifiers may be
enormous. In the atomic case, fortunately, these chaining rules are fortunately
unnecessary, like in the finite case.

In order to avoid the variable-critical pairs that arise in non-symmetric rewrit-
ing and completion, we restrict ourselves to the case that all free function are
non-monotonic. This holds in particular for Skolem-functions.

Finally, some care has to be taken with idempotence, which can no longer
be handled implicitly by a simplification rule. This yields factoring rules also at
the lattice level.

Definition 8 (Chaining for Atomic Distributive Lattices). Let > be the
(non-ground) literal and clause ordering of section. Let all clauses be reduced.
The ordered chaining calculus for atomic distributive lattices ADC,, consists of
the deductive inference rules and the redundancy elimination rules of OR and
the following inference rules. We also write v instead of vjp, .

Ia(s) <t
T (Atom1)
where o : t — 0.
Isy...8;...8¢...8,m <t (M)

(I'o,s10...58i0...8m0 < to)v’

where o is a most general unifier of s; and sy, s;o is maximal in the respective
term and the o-instance of the minor formula is strictly mazimal in the left-hand
rule and mazimal in the right-hand rule.

F,Sgtl...ti...tk...tm
(I''so < tio...to. .. tmo)v’

(JI)

where o is a most general unifier of t; and ty, t;o is mazximal in the respective
term and the o-instance of the minor formula is strictly mazimal in the left-hand
rule and mazimal in the right-hand rule.

Iisi <tiw IV [so)a" <o
(I'c,I'o, s10[s20] < tiotao)v’

(Cut)

Here, neither © nor x' is a variable, o is a most general unifier of © and x’,
xo s strictly mazimal in the respective terms, tioxo 2 s10, [s20]x’'c £ ta0 and
the o-instances of the minor formulas are strictly mazimal with respect to the
o-instances of the side formulas in their respective instances.

F,Sl S tix F/, [32]312 S to
(FU, F’U,Sl [82] S tth.I'l)I/

(Cut)

33

Here, x is a variable, sb is not a variable, o : x — shUx', 2’ is a fresh variable,
sh is strictly mazimal in the respective terms, tioxo A s10, [s20]x’c A tao and
the o-instances of the minor formulas are strictly mazimal with respect to the
o-instances of the side formulas in their respective instances.

A dual rule exists, if the variable occurs at the left-hand side of the second
minor formula.

I'sy <tixy I, [s2]xe <ty
(I'o, I'o, s1[s2]aly < titoa)v

(Cut)

Thereby, x1 and z2 are variables, o : 1 w— xj Uz xq — 2\ N2y, o, 2, and =}
are fresh variables, x| is strictly mazimal in the respective terms, tioxo A s10,
[; .) . .

saolx'o A too and the o-instances of the minor formulas are strictly mazimal
with respect to the o-instances of the side formulas in their respective instances.

F,S S [tl].’E,S/ S [tll]t2
(I, soxo £ tao, so < [tro]teo)v

(DF)

Here, x is not a join, o is a most general unifier of s and s' and of t1 and t},
either t1o0 A soxo and tio A s'otao or so A [tiolzo and so A [t|o]mtao and s
can be set to 1 in the conclusion. The o-instance of the leftmost minor formula
is strictly mazximal with respect to the o-instances of the side formulas and the
o-instance of the rightmost minor formula.

Is < [ta]th, s" < [z]t
(I, sotio £ tax'o, s0 < [ti0]taa’o)v

(DF)

Here, t is not a join, o : x — t} Uz’ is a most general unifier of s and s' and of
t1 and x, either t10 £ sotio and xo A s'oteo or so £ [tio]zo and so A [zoltao
and s can be set to 1 in the conclusion. The o-instance of the leftmost minor
formula is strictly mazimal with respect to the o-instances of the side formulas
and the o-instance of the rightmost minor formula.

The rules introducing new variables can be very prolific. It is therefore indis-
pensable to eliminate them as far as possible. This is the subject of Section

Theorem 9. ADC,, is refutationally complete.

Proof. The proof is based on lifting ADC,.. One must therefore show the follow-
ing. Let C; and Cs be clauses. For all ground instances Cy0 and Cy0 such there
is an inference in ADC, with conclusion C30, there is an inference between C
and Cy in ADC,, with conclusion C3 such that C3o is a ground instance of Cs.

The proof is a simple adaptation of that for the non-gound case of DC in [Z]].
It is straightforward for most of the inference rules. Some rules of v are now no
longer simplifications. This is the case for (Tzz) and (@5g) . The first rule now
becomes (Afamll). It is derived from (ZZ). The second rule becomes ([l and
(M. These factoring rules are due to the fact that we always worked modulo
idempotence in the ground case.

34

In case of ([Cuil), when the term to be cut out is a variable, the situation is
more involved. Consider the clauses

F,Sl S tll', FI,SQSIQ S tz.

Then x can be substituted for any ground instance s} LI}, where s}, is a generator
and ¢ an arbitrary join of generators. We obtain the ground instance

F,Sl S tlsétll FI,SQSIZ S 1o
F, F’,8182 S tltlth)

of (Cuil. Since t] is arbitrary, we can represent it by a fresh variable z'. The
corresponding substitution o maps z to shUz'. This yields one of the non-ground
(CuiD)-rules. The other cases are similar.

A final remark concerns the ordering restrictions of the factoring rules (JI)
and (MI). It is obvious that they can be synchronized with those of resolution
and chaining. O

18 Simplification and Variable Elimination

Simplification techniques are indispensable for efficient ordered resolution cal-
culi. Resolution blows up the search space and may lead to a combinatorial
explosion whereas simplification cuts it down. The more powerful the simplifi-
cation techniques a prover provides, the greater the chance to receive an answer
from the prover instead of getting lost in space-time. Some simplification tech-
niques, like for instance subsumption, concern only the clausal structure. They
are common to all ordered resolution calculi. We do not discuss them in this
text. See [B] for a discussion. We also do not discuss the various simplification
rules that are applicable to DL in general, (c.f. [21]). We restrict our attention
to theory-specific and therefore focused simplification techniques for ADL and
extensions.

The main idea of simplification is that a clause I' in a clause set S is simplified
by a clause A, if adding A to S makes I' redundant and if A is a consequence
of S. Then of course A can be added to S and I" can be discarded.

Hines [I1] discusses several simplification rules. We show that we can repro-
duce them in the ordered-resolution framework.

The first method is called chainless sets. Let a be some atom introduced by
one of ([3) or ([Pz). Thus « is introduced at the left-hand side of an inequality.
The transformations v have the invariant, that « will never be shuffled to a
right-hand side. We now show that also the inference rules (Cut) and (DF) have
this invariant.

For (Cut)—either in the ground or the non-ground case—consider the in-
equality @ < t. The only way to shuffle a to the right-hand side of a premise
would be that the second premise is of the form s < zf(z). But then f(z) must
be bigger than x and the (Cut)-inference would violate the ordering constraints.

35

The first (DF) rule also does not shuffle a to a right-hand side. In the second
one, this can temporarily happen, if a = x, but the normalization with v shuffles
a back to the left-hand side again. Such an atom is therefore called chainless.

We now show that a cannot be removed by chaining in a < 0. Consider again
a < 0. In order to chain on «, the second premise must be either of the form
B < xy or f < x, where v and § are also smaller than a. In the first case, the
second premise is maximal and redundant: it is entailed by # < . In the second
case, the premise is already false.

Thus the only way to eliminate a literal af < 0 with chainless « is by
reduction with v by rule (1g) and unification with respect to (MI). Thus if the
premise is false, then the conclusion is false and consequently, if the conclusion
holds, then so does the premise. That is adding the conclusion makes the premise
redundant. It can therefore be discarded.

Another simplification rule works for distributive lattices. Consider the chain-
ing inference

F,Sl Stlw FI,SQSQStQ
FU, F’,31082 S t10t2

If z is a variable that occurs neither in s; and ¢, nor in I'" and A, then the
conclusion of reduces to

I TV 5189 < tits.

It is already properly subsumed by the first premise according to our above
considerations or it is identical to it up to renaming of variables. Thus this
variable chaining is redundant and need not be performed.

A very interesting simplification holds under the additional assumption that
there is no universal set =JyVz.z < y, or equivalently Vz3y.x £ y. Then, every
clause of the form I', x < a is subsumed by I, if the variable x does not occur in
I" or a. Hines [I1] has shown that the two above simplifications can be combined.

F;\/aifbim:\/xfci@f‘;aifbi

Provided z does not occur in a;, b;, ¢; or I'. This simplification is also possible
in our setting. We must show that the following formula holds.

Vabe.(a £ b 3x.(a L bx Az £ c).

We do not present a formal argument. Instead we refer to the representation
theorem and to set-theoretic intuition. If there is no universal set and if a £ b
and c is some other set, then we can always find an atom « that is neither below
a, nor b and ¢. Thus adding « to b still does not force a < b U a. Conversely,
given an element such that a € bU z, of course a £ b also holds.

Using these simplification rules, we can restrict to a certain extend the prolific
chaining inferences with variables. The development of more such rules is a main
task for the future. The ultimate goal is of course the avoidance of all variable
chainings. It is a very challenging open question whether this goal can be reached.

36

19 Conclusion

In [22], we proposed atomic distributive lattices as an algebraic core calculus for
reasoning about sets in program development methods like B or Z. Here, we have
developed axiomatizations that support the effective reduction and simplifica-
tion of terms, inequalities and clauses and yield several modular extensions of a
focused ordered resolution calculus for distributive lattices to atomic distributive
and atomic boolean lattices. In particular, these extensions simplify their pre-
decessors. This nicely mirrors the fact that atomic lattices are mathematically
simpler than non-atomic ones. We do not know of any other theories of com-
parable complexity that have been integrated into an automated proof-search
procedure so far.

Our results are only a first step towards interesting practical applications in
formal methods. We envision the following further work. First and most impor-
tant, the calculus and the associated proof-search method should be implemented
and integrated into an applicable formal method. Second, in order to achieve the
first goal, more structure should be added, for instance, types for sets, pairs, com-
prehension, infinite sets, a choice function (c.f. [1]) and basic data-structures and
entities like lists, trees and numbers. Third, the transformations v should be op-
timized, further simplification techniques should be developed. Our theoretical
results then open the way for operational automated reasoning about sets in the
context, of industrial-strength formal methods.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.

2. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. J. Logic and Computation, 4(3):217-247, 1994.

3. L. Bachmair and H. Ganzinger. Rewrite techniques for transitive relations. In
Ninth Annual IEEE Symposium on Logic in Computer Science, pages 384-393.
IEEE Computer Society Press, 1994.

4. G. Birkhoff. Lattice Theory, volume 25 of Colloquium Publications. American
Mathematical Society, 1984. Reprint.

5. W. Bledsoe, K. Kunen, and R. Shostak. Completeness results for inequality provers.
Artificial Intelligence, 27:255-288, 1985.

6. W. W. Bledsoe and L. M. Hines. Variable elimination and chaining in a resolution-
based prover for inequalities. In W. Bibel and R. Kowalski, editors, 5th Conference
on Automated Deduction, volume 87 of LNCS, pages 70-87. Springer-Verlag, 1980.

7. P. Le Chenadec. Canonical Forms in Fintetely Presented Algebras. Research Notes
in Theoretical Computer Science. Pitman, 1986.

8. R. P. Dilworth. Lattices with unique complements. Trans. Amer. Math. Soc.,
57:123-154, 1945.

9. A. Grzegorczyk. Undecidability of some topological theories. Fund. Math., 38:137—
152, 1951.

10. H. Hermes. Einfihrung in die Verbandstheorie. Springer-Verlag, 1967.

11. L. Hines. Str+veC: The Str+ve-based Subset Prover. In M. E. Stickel, editor, 10th
International Conference on Automated Deduction, volume 449 of LNAI pages
193-206. Springer-Verlag, 1990.

37

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

L. M. Hines. Completeness of a prover for dense linear orderings. J. Automated
Reasoning, 8:45-75, 1992.

J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem
proving strategies: The transfinite semantic tree method. Journal of the ACM,
38(3):559-587, 1991.

D. Kozen. Complexity of Boolean algebras. Theoretical Computer Science, 10:221—
247, 1980.

J. McKinsey. The decision problem for some classes of sentences without quanti-
fiers. Journal of Symbolic Logic, 8:61-76, 1943.

M. M. Richter. Some reordering properties for inequality proof trees. In E. Borger,
G. Hasenjaeger, and D. Rédding, editors, Logic and Machines: Decision Prob-
lems and Complezity, Proc. Symposium ”Rekursive Kombinatorik”, volume 171 of
LNCS, pages 183-197. Springer-Verlag, 1983.

M. Rusinowitch. Démonstration Automatique: Techniques de Réecriture. Science
Informatique. InterEditions, Paris, 1989.

G. Struth. Canonical Transformations in Algebra, Universal Algebra and Logic.
PhD thesis, Institut fiir Informatik, Universitit des Saarlandes, 1998.

G. Struth. An algebra of resolution. In L. Bachmair, editor, Rewriting Techniques
and Applications, 11th International Conference, volume 1833 of LNCS, pages 214—
228. Springer-Verlag, 2000.

G. Struth. Deriving focused calculi for transitive relations. In A. Middeldorp, edi-
tor, Rewriting Techniques and Applications, 12th International Conference, volume
2051 of LNCS, pages 291-305. Springer-Verlag, 2001.

G. Struth. Deriving focused lattice calculi. In S. Tison, editor, Rewriting Tech-
niques and Applicaions, 138th International Conference, volume 2378 of LNCS,
pages 83-97. Springer-Verlag, 2002.

G. Struth. A calculus for set-based program development I: Mathematical foun-
dations. Technical Report 2003-15, Institut fiir Informatik; Universitdt Augsburg,
2003.

A. Tarski. Arithmetical classes and types of Boolean algebras. Bull. Am. Math.
Soc., 55(64):1192, 1949.

U. Waldmann. Cancellative Abelian Moioids in Refutational Theorem Proving.
PhD thesis, Institut fiir Informatik, Universitat des Saarlandes, 1997.

U. Werz. First-order theorem proving modulo equations. Technical Report MPI-
1-92-216, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, 1992.

38

	A Calculus for Set-Based Program Development Part II: Proof Search

