
Universität Augsburg

The Statemate Reference Model of the

Reference Case Study

‘Verkehrsleittechnik’

Jochen Klose, A. Thums

Report 2002-1 Januar 2002

Institut für Informatik
D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095814?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Jochen Klose, A. Thums
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

The Statemate Reference Model

of the Reference Case Study

‘Verkehrsleittechnik’

Jochen Klose

University of Oldenburg

Jochen.Klose@Informatik.Uni-Oldenburg.de

Andreas Thums

University of Augsburg

Andreas.Thums@Informatik.Uni-Augsburg.de

Abstract

The German railway organization, Deutsche Bahn, prepares a novel tech-

nique to control level crossings: the dezentralized, radio-based level crossing

control. We present a model of this application with activity- and statecharts

developed in STATEMATE1

The model described in this paper has been developed within the DFG (Deutsche
Forschungsgemeinschaft/German Research Foundation) focus area program Inte-

gration von Techniken der Softwarespezifikation für ingenieurwissenschaftliche An-

wendungen2 (Integration of Software Specification Techniques for Engineering Ap-
plications). The application modeled here is one of the two reference case studies
which are provided by this focus area program in order to be able to compare the re-
sults of the individual projects. The modelling has been carried out by the projects
USE and FORMOSA, other projects (SafeRail and KNOSSOS) have been involved
in discussions and in resolving detailed questions about the problem domain.

The case study describes the interaction between trains and level crossings in
a radio-based signaling system (funkbasierter Fahrbetrieb, FFB). In order to keep
the model sizes manageable several versions of the case study are scheduled. The
model presented here has been developed according to the first, simplest version. It
implements the control procedure corresponding to the so called ÜS-Prinzip, i.e. the
train requests the securing of the crossing and after a certain delay sends another
message requesting the status of crossing. This minimal version only considers a
restricted set of crossing types:

• single crossings, i.e. an interleaving of two or more securing procedures is not
covered.

• single track crossings

In order to further simplify comparing different approaches and techniques the
creation of this reference model has been initiated. Even though there exists a
reference case study this still allows differring interpretations concerning the details.
The reference model presented here has been designed to provide all interested
individual projects with a uniform basis for their particular approach. Therefore

1STATEMATE is a registered trademark of i-Logix Inc.
2http://tfs.cs.tu-berlin.de/projekte/indspec/SPP/

we have tried to narrow down the room for different interpretations without making
the design too specific, thereby excluding some techniques from the start. We have
chosen the Statemate system as a modelling tool, because state charts are used
by several projects within the focus area program and it therefore seems to be the
most general and useful modelling technique.

1 Overall System Architecture
(Activity Chart SYSTEM)

First we start with the description of the general design of our reference model for
the radio-based crossing control. It provides an overview over the functions and the
correlations between the different activities shown in Fig. 1.

Figure 1: Activity Chart SYSTEM

Having analyzed the requirements on the FFB the separation into six different
components has proved to be useful. These are the two main activities TRAIN and
CROSSING, the COMMUNICATION between them, the ENVIRONMENT which reflects the
real world, and furthermore the ‘human components’ DRIVER and HEAD OFFICE,
with the latter two not being modeled in detail. The general component SYSTEM

consists of these main activities and represents the top level of our model.
The activity TRAIN (see Sect. 4) not fully implements a real train but parts of it

which are relevant to the functionality of the FFB. These are the speed control in
conjunction with the brake, the odometer for keeping track of the actual position
and speed, and the control to enable the crossing.

The implementation of a level crossing in the activity CROSSING (see Sect. 5)
contains all its components (the lights, the barrier, a train sensor) and the control
units for these components as well as the overall control for closing and opening the
crossing.

The physical environment is modeled in the activity ENVIRONMENT (see Sect. 3).
Here the position and speed of the train, i.e. the dynamic train data, are described
and therefore some calculations have to be made. The environment information is

2

made available to the activity CROSSING via the information flow CUR DATA. In the
direction from ENVIRONMENT to TRAIN there is no data exchange because the train
uses the odometer unit to get information about its position and speed, which is
modeled independently. In the reverse direction the activity TRAIN passes accel-
eration data (T COMMANDS) on to the ENVIRONMENT. Based on this information the
speed of the train in the real world is calculated, which thereafter is measured by
the odometer in the train.

The information flow between TRAIN and CROSSING is established by means of
the COMMUNICATION activity (see Sect. 2). The information exchange takes place via
the information flows T SEND and T RECEIVE between TRAIN and COMMUNICATION, re-
spectively C SEND and C RECIEVE between CROSSING and COMMUNICATION. Thereby
the sent signals (in T SEND/C SEND) are forwarded by the COMMUNICATION activity
within the appropriate receive channel (C RECIEVE/T RECEIVE).

The radio communication has to be explicitly enabled and disabled, which is
done by the train. Therefore T SEND also contains the events ST COMMUNICATION

and SP COMMUNICATION to start and stop the communication which are not
sent to CROSSING. The confirmation of the communication establishment
(COMMUNICATION ESTABLISHED) is contained in T RECEIVE.

All further exchange of information is related to interaction with the staff at
the head office (FFB-Zentrale): The DRIVER determines by D SPEED the desired
train speed and may re-start the train after a stop (RELEASED MAN). Furthermore
the HEAD OFFICE will be informed via DEFECTS about any malfunction regarding
the components of the crossing and on its part is in the position to ‘repair’ these
units (REPAIRED) resp. to instruct the software control about the evacuation of the
crossing (CROSSING VACATED) by means of RESPONSES.

For a comprehensive list of the used information flows see Appendix B.

2 Communication

The activity COMMUNICATION represents the radio link between TRAIN and CROSSING.
It is explicitly modeled to provide the possibility to simulate errors when establishing
the connection and to be able to consider communication delays.

In the current system version it is intended that the train initiates the connec-
tion establishment by ST COMMUNICATION whereupon the control of the radio unit
(COMMUNICATION CTRL) changes into to state WAIT FOR CONNECTION (see Fig. 2).
This would be the point for possible extensions of the model, in order to model
for example the failure of certain communication devices. However at this moment
only an ‘establishing lag time’ (ELT) is considered before the radio connection is
ready. When the communication is established an acknowledgement is sent to the
train (COMMUNICATION ESTABLISHED).

The further interactions take place instantaneously, i.e. requests and acknowl-
edgements are passed on directly. Since the radio mechanism is located between
TRAIN and CROSSING, sent signals are intercepted by it and passed on afterwards.
The original signals in T SEND resp. C SEND have thereby the ending SND which
becomes REC in C RECEIVE resp. T RECEIVE on the receiver side.

The interactions are in detail (see Appendix B.1) the communication TRAIN →

CROSSING by means of ENABLE CROSSING to request the securing of the crossing,
STATUS RQ to request a status message, and CROSSING FREE when the crossing has
been vacated by the train. On the other side the communication CROSSING→ TRAIN

contains the event ACK which acknowledges the receipt of the closing request, and
the status message CROSSING SAFE to indicate that the crossing has been secured
successfully.

3

Figure 2: Statechart COMMUNICATION CTRL

In the case that the crossing could not secure itself, CROSSING simply ignores
the status request (STATUS RQ), i.e. an explicit error message is not transmitted!

If the communication between TRAIN and CROSSING is to be terminated, then
this is also done by the train via SP COMMUNICATION which leads to an immediate
abortion of the communication. This is modeled by changing into the state OFF in
the COMMUNICATION CTRL.

3 Environment

The behavior of the ENVIRONMENT is given by state chart ENV CTRL (Fig. 3) which
keeps track of the train’s position (CUR DATA.POS) and speed (CUR DATA.SPEED)
in the real world. Both values are updated in every super-step. This is realized
by the expression tm(en(POSITION UPDATE),1) which is true one super-step after
the state POSITION UPDATE is entered, i.e. the transition is taken every super-step.
This timeout construct is widely used throughout the rest of the model. The new
position is calculated by adding the train’s current speed to the last position. The
new speed is computed by adding the train’s current acceleration, resp. subtracting
its current retardation value, depending on which field of T COMMANDS is set. If both
fields are set to non-zero values at the same time, the retardation value has a higher
priority. Generally, only one field should contain a non-zero value. The algorithm is
based on measuring the distance in meters and the speed in meters per second for
simplicity’s sake. Other measurement units and/or algorithms can be substituted
in more sophisticated versions of the model.

The reason to model this part of the environment is that there has to be a
reference point for the train’s dynamic data, i.e. here the ’true’ position and speed
of the train are calculated. Since the train computes these values as well, this allows
us to also consider error situations where the data calculated by the train differs
from the ’real’ value calculated by the environment. The position provided by the
ENVIRONMENT serves also as an input for the train sensor (see Sect. 5).

4

Figure 3: State chart ENV CTRL

4 Train

Figure 4: Activity chart TRAIN

5

The train consists of several sub-components, see figure 4. The activity
TRAIN CTRL forms the core of the train comprising the two functions of commu-
nicating with the crossings (ENABLE CROSSING) and controlling the train’s speed
(SPEED CONTROL). The ODOMETER computes the train’s speed and position and the
BRAKE is activated by the SPEED CONTROL if the train is going too fast. The
TRACK CHART is an empty data store for the moment, but it will hold and provide
the static track information in the future.

4.1 Speed Control

Figure 5: State chart SPEED CONTROL CTRL

The state chart SPEED CONTROL CTRL shown in figure 5 consists of two parallel
substates; the upper one computes the maximally allowed speed (NOMINAL SPEED),
whereas the lower one checks if the train speed is below the maximum.

The computation of the NOMINAL SPEED is done every super-step utilizing the
timeout construct described in section 3. The actual computation is deferred to the
function COMPUTE NOMINAL SPEED which takes the dynamic train data (ODATA) and
the next control point (CP) as parameters. A control point is located in front of
every crossing and represents a not secured crossing.3 Control points may not be
passed by a train unless the crossing is secured, i.e. the target speed at a control
point is zero until the crossing is secured. A control point may be set, i.e. the target
speed at its position is set to zero, or deleted, i.e. the target speed at its position
is set to the maximal value for this track segment. All control points in a track
segment are set when the segment is assigned to a train.

3A control point in general represents some sort of hazard. This can be a not secured crossing

but also a switch in an unknown position, the end of track segment assigned to the train or a

number of other possibly dangerous situations. Here we only consider control points induced by

not secured crossings.

6

The function COMPUTE NOMINAL SPEED — as all other functions and procedures
— is left unspecified here to allow different implementations suiting each user’s
needs and preferences. The resulting speed is the maximal speed for the current
position and should take into account the train’s own position, its distance to the
next crossing, the status of the crossing and track-specific data provided by the
track chart. Taking the minimum of the computed value and the train’s maximal
speed yields the overall maximal speed.

The lower substate checks if the actual train speed (ODATA.SPEED) is within
the allowed range. If this is the case, we stay in state FREE RUN and compute
the new acceleration and retardation values depending on the speed requested by
the driver (D SPEED). A simple algorithm is shown here (The record T COMMANDS

contains the current acceleration and deceleration for the train and is also sent to
the ENVIRONMENT):

en(FREE_RUN)/if (D_SPEED-ODATA.SPEED)<0 then

T_COMMANDS.ACC:=0;

T_COMMANDS.RET:=MIN(D_SPEED-ODATA.SPEED,TRAIN_D.MAX_RET)

else

T_COMMANDS.ACC:=MIN(D_SPEED-ODATA.SPEED,TRAIN_D.MAX_ACC);

T_COMMANDS.RET:=0;

end if

If the driver’s speed is greater than the train’s actual speed, the train is accel-
erated, otherwise it is decelerated. If the two speeds are equal, the train is neither
accelerated nor retarded. Again, this is only a simple example of an algorithm which
distinguishes only two acceleration/deceleration degrees: none and maximum. More
realistic algorithms can be used in more advanced versions of the model.

When the train speed is greater than the allowed speed, state FREE RUN is exited,
FORCE BRAKE is entered and the brake is activated. Once the train speed is less than
the maximal speed again we return to FREE RUN and resume the above algorithm. If
the NOMINAL SPEED and the actual train speed are both zero4, the train has stopped,
state FORCE STOP is entered and SPEED CONTROL CTRL emits the event STPPED to
ENABLE CROSSING CTRL. Note the not every halting of the train is indicated by
a corresponding STPPED. Only those stops are considered which result from the
NOMINAL SPEED dropping to zero. If the train stops for other reasons, it may resume
its course on its own without intervention by the driver. But in the former case the
driver has to confirm manually that the crossing may be passed safely (RELEASE MAN)
in order to continue. SPEED CONTROL CTRL then switches back into the normal
behavior of state FREE RUN.

4.2 Crossing Activation

The activity ENABLE CROSSING (cf. Fig. 4) contains the state chart ENABLE -

CROSSING CTRL shown in figure 6, which handles the communication between train
and crossing, and a timer (see Sect. 4.2.1) which is used to supervise that the train
reaches a secured crossing in time. Here we first consider the communication be-
havior of the train described by ENABLE CROSSING CTRL. Once the train reaches the
activation point — indicated by the condition V ENABLE POINT P5 — it changes its

4Because the braking procedure does not check, if the resulting speed is less than zero when

subtracting the retardation value from the current speed, negative speeds can occur. Therefore it

is necessary to use ≤ in the condition expression.
5Note that the conditions marked by the suffix P represent procedures; in the current version

they are modelled as conditions for simplicity’s sake. Thus each user may implement the func-

tionality which is abstracted from by these conditions in his preferred method. The condition

V ENABLE POINT P abstracts from the computation of the activation point for a crossing.

7

Figure 6: State chart ENABLE CROSSING CTRL

state from IDLE to WF CROSSING SAFE which realizes the protocol between the train
and the communication channel. The detailed behavior is shown in state chart
WF CROSSING SAFE in figure 7.

Figure 7: State chart WF CROSSING SAFE

8

On entering WF CROSSING SAFE the communication is started. Once the con-
nection has been established, the train requests the securing of the crossing by
emitting the event ENABLE CROSSING SND. On receiving the acknowledgment from
the crossing, the train sends the status request after waiting an amount of time
which corresponds to the time needed for the crossing to carry out the securing
procedure. This is the crossing closing time CCT. Simultaneously with the status
request a timer is started which supervises that the train reaches the crossing in
time (see Sect. 4.2.1). In the last state of WF CROSSING SAFE the status message of
the crossing is awaited.

Returning to ENABLE CROSSING CTRL, we first consider the normal case, i.e. the
crossing reports itself safe. Thus the train is still moving, the status message
CROSSING SAFE REC arrives, the state PASS CROSSING is entered and the control
point is deleted by the function DELETE CP.6 Note that the functions executing the
deleting and setting of control points are left unspecified (see above). When the
train now passes the crossing – represented by its control point – the communication
channel is closed and the train is ready for the next crossing. For the computation
when the train has passed the crossing the train length has to be taken into account
in order to avoid that the train dismisses the crossing while having passed it only
partially.

During the communication two error situations can arise: First, the crossing
may not be able to secure itself. In this case it does not answer the status request
and therefore the train cannot delete the control point with the result that it stops
in front of the crossing. This is indicated by SPEED CONTROL CTRL with the event
STPPED triggering the transition from WF CROSSING SAFE to FAULTY CROSSING. Since
the train has stopped already, it will not reach the crossing in time and therefore
the timer is stopped. In this situation the driver has to manually confirm that
the crossing can be safely passed (RELEASE MAN) entering state PASS CROSSING and
deleting the control point in order to allow the train to pass it.

The second error situation arises when the crossing has answered the status
request but the train is unable to pass it within the maximal barrier shut time.
This is indicated by the event TMOUT sent by the timer resulting in changing from
state PASS CROSSING to FAULTY CRCOSSING, setting the control point again via the
function SET CP and notifying the crossing that the train will not reach it in time
(event CROSSING FREE SND). Again this situation has to be resolved by the driver.

4.2.1 Time Supervision

The timer shown in figure 8 supervises that the train reaches an already secured
crossing before the maximal barrier closed time elapses, i.e. the maximum amount
of time that a crossing may stay closed without a train passing it. It generates a
timeout when this property is violated.

The timer implements a simple counter which increments a counter variable T.
The timeout (TMOUT) is generated depending on two conditions, V STILL SAFE P

and V BRAKE POINT P, which again represent procedures (or rather the result of
procedures):

V STILL SAFE P indicates, if the train will pass an already secured crossing within
the maximum barrier closed time. The computation of the value of this con-
dition should take the current train speed and position into account.

V BRAKE POINT P indicates, if the train has reached the braking point, i.e. the point
where it would have to start braking in order to safely stop in front of the
crossing. This computation again depends on the current train speed and
position.

6Recall that all control points are assumed to have been set initially.

9

Figure 8: State chart TIMER CTRL

The behavior suggested by the transition to the termination connector in figure 8
is thus: If the train reaches its braking point according to the current speed and
is unable to reach the crossing before the maximum barrier closed time elapses,
the timeout is generated and the timer is stopped. The timeout event is sent to
ENABLE CROSSING CTRL.

4.3 Odometer

Figure 9: State chart ODOMETER CTRL

10

The ODOMETER (Fig. 9) is responsible for the computation of the actual speed
and position of the train. In the present version the algorithm is the same as the one
used in the ENVIRONMENT; see section 3 for a detailed description. Future extensions
of the model can use different algorithms for the ENVIRONMENT and the ODOMETER

to model erroneous speed and position calculations of the train.

4.4 Brake

The BRAKE uses a very simple scheme: when activated it brakes with full force, i.e.
the respective fields of T COMMANDS are set to the maximum deceleration value of
the train and to zero. This is realized by the mini spec:

BRAKE/

T_COMMANDS.ACC:=0;

T_COMMANDS.RET:=TRAIN_D.MAX_RET

5 Crossing

Figure 10: Activity-Chart CROSSING

The activity CROSSING (see Fig. 10) contains the overall software control of
the crossing (CROSSING CTRL) which is responsible for the coordination of the
whole securing process, the component software control (CROSSING CTRL) for the
involved hardware consisting of the LIGHTS CONTROL, the BARRIER CONTROL, and
the SENSOR CONTROL, as well as for each component separately an activity for the
description of the hardware functionality, which are the activities LIGHTS, BARRIER,
and SENSOR.

11

Figure 11: Statechart CROSSING CTRL

5.1 Overall Software Control (CROSSING CONTROL)

The function of this component is the coordination of all measures while closing
or opening the crossing. This includes the control of the ‘normal’ securing process
(traffic lights on, barrier down, barrier up, lights off), and the consideration of
further secondary constraints, for example the maximum time limit for the secure
status, as well as error handling.

The initial state IDLE remains activated until the control receives the signal
ENABLE CROSSING REC; thereupon if the system is not in an error condition (i.e.
HW TROUBLE = false) then the state PROTECTION PROCESS will be entered which
encapsulates all further states. A hardware error is present if at least one of
the components red light, barrier or sensor operates incorrectly (the condition
HW TROUBLE = RED ERR ∨ BARRIER ERR ∨ SENSOR ERR is defined in CROSSING CTRL).

As mentioned above, the securing process itself consists of the handling of the
traffic lights and the barriers.

Upon entering the PROTECTION PROCESS the state SWITCHING LIGHTS ON is ac-
tivated and the event TURN LIGHTS ON is sent to LIGHTS CONTROL, where it initiates
the signal sequence YELLOW → RED. The control remains in this state until either
receiving the event LIGHTS ON or a red light malfunction is detected (RED ERR), with
both events originating in the activity LIGHTS CONTROL.
Error Handling: If during the activation of the traffic light the red light fails,

then the rest of the protection process is aborted, the request TURN LIGHTS OFF

is sent to the traffic light control (thus the traffic light device is deactivated) and
the initial state IDLE is entered. This procedure implies that no CROSSING SAFE

message is replied to the approaching train and the crossing is regarded as ‘unsafe’.
Also for repeated securing requests the sequence of events is correct, since with a
red light defect a hardware error is present (HW TROUBLE = true) and thus the signal
ENABLE CROSSING REC is ignored.

Furthermore no explicit resetting of the overall software control is needed when
the damage of the traffic lights device is repaired because being in the IDLE state
normal operation can take place once the lights are repaired.

12

After the crossing has been successfully secured by the traffic lights the signal
CLOSE BARRIER will be sent to the BARRIER CONTROL. The system remains in the
state CLOSING BARRIER until either the barrier closing process is completed (indi-
cated by BARRIER CLOSED) or a barrier hardware error is reported (BARRIER ERR).

Under normal conditions the control stays in the state BARRIER CLOSED until
the train has passed (indicated by the signal PASSED of the SENSOR or the message
CROSSING FREE of the TRAIN) or the ‘maximum barrier closed time’ (MBCT) has
expired. If a status message is requested by means of STATUS RQ the crossing
responds with CROSSING SAFE.
Error Handling (ERROR CLOSING, TIME OUT):

1. On the other hand if there is some failure (BARRIER ERR) during the closing of
the barrier (i.e. control in state CLOSING BARRIER) which will be reported by
the BARRIER CONTROL the state ERROR CLOSING will be entered without abort-
ing the overall process. The release of the status message will be suppressed
so the crossing remains ‘unsafe’. The error state will only be left when the
train has passed whereupon the normal process will be continued by opening
the crossing.

If the barrier opens correctly the failure indicator BARRIER ERR will be reset by
BARRIER CONTROL and if no further hardware defects are present the crossing
will be considered operational.

The traffic lights are turned off in any case and the CROSSING CONTROL en-
ters the state IDLE. The further functional behavior depends on the flag
HW TROUBLE.

2. Another exception is necessary for the case that the allowed limit MBCT
for the crossing to stay in the ’safe’ state is exceeded (TIME OUT). This
is no device failure of the crossing but nevertheless an error message
(TIMEOUT HEAD OFFICE) will be sent to the HEAD OFFICE to inform about
this special situation. The crossing remains ‘safe’ until the explicit signal
CROSSING VACATED is received from the head office. At that moment the nor-
mal event-sequence will be continued just as if the train had passed properly.

After the CROSSING CONTROL has detected the passing of the train (PASSED,
CROSSING FREE REC or CROSSING VACATED) an opening request (OPEN BARRIER)
will be sent to BARRIER CONTROL while the CROSSING CONTROL stays in the state
OPENING GATES. This is indicated by the BARRIER OPENING signal which will be
given as soon as the barrier has left the lower position.

Thereupon the lights will be turned off by means of TURN LIGHTS OFF and the
CROSSING CONTROL returns to IDLE.
Error Handling: There is no explicit error handling during the opening pro-

cess. The implicit behavior in case of a failure is that with fully closed barriers the
traffic lights remain turned on (=RED) whereas the lights are turned off when the
barriers are not correctly closed any more, i.e. even if the barriers don’t reach their
upper position (OPENED) the crossing will be opened to traffic. This behavior holds
back the traffic no longer than necessary in case of a technical failure.

5.2 Traffic Lights

The whole traffic lights device contains – as mentioned above – the software
(LIGHTS CONTROL, see Fig. 12) as well as the hardware part (LIGHTS, see Fig.
13).

Between the two components there are information flows in each direction
(see Appendix B.2). These contain commands from the software to the hardware

13

(LIGHTS HW COMMANDS) which are the light control and test request, and in opposite
the reply (LIGHT HW REPLY) with the test results.

Additionally there is an information exchange between LIGHTS CONTROL and the
CROSSING CONTROL for the overall light commands (LIGHT COMMANDS) to turn on/off
the lights as well as status messages (LIGHT REPLY) about command completion and
errors.

Furthermore the LIGHTS CONTROL sends information about hardware defects (as
part of DEFECTS) to the HEAD OFFICE which emits the REPAIRED signal to the LIGHTS
hardware.

5.2.1 Traffic Lights Software (LIGHTS CONTROL)

The software control is responsible for the control of the hardware device. Its
behavior is defined as follows:

1. It is to be guaranteed that the crossing is open to traffic at least for the
‘minimum green time’ (MGT) before closing it again after it has been opened,
i.e. each phase of lights turned off has to be MGT time units or longer.

2. After activation of the device the yellow light is turned on for the ‘minimum
yellow time’ (MYT). In case the yellow light is faulty or fails during the yellow
phase the remaining amount of MYT is added to the leadtime of the red light.

3. Prior to sending the status LIGHTS ON to the CROSSING CONTROL the red light
has to be turned on for at least ‘minimum red time closing’ (MRTC) time
units (i.e. the leadtime of the red light).

4. When the signal TURN LIGHTS OFF has been received or in case of a failure of
the red light the traffic lights are turned off without any delay and the timer
which counts the duration of the turned-off phase – ‘green time’ (GT) – starts.

As shown in Fig. 12 the software model is built of two main states: the state
OFF to model the traffic lights being turned off, and the state ON which encapsulates
all active processes. The following items describe the way our model realizes the
above specification:

Entering OFF the SWITCH OFF signal is sent to the hardware to ensure that all
lights are turned off and to start the GT counter. This timer will be increased each
step.

Depending on the GT counter the reaction to the command TURN LIGHTS ON

differs: If the GT counter has not yet reached the MGT the system branches to
PENDING where GT is increased further on.

However, when at last GT has reached the MGT the command SWITCH ON is
sent to the hardware to activate the yellow light and the state YELLOW is entered.
This starts the counter ‘elapsed yellow time’ (EYT). EYT measures the period of
time the yellow light is on.

Sending the command SWITCH OVER which causes the lights to switch from yellow
to red the state RED is entered. This will be done when EYT has reached MYT or
if the yellow light fails. As mentioned above the signal LIGHTS ON will only be sent
when the remaining yellow time (= MYT − EYT) and the red light leadtime (MRTC)
have passed.

As soon as the command TURN LIGHTS OFF has been received or a failure of the
red light has been detected (RED ERR) the light control switches back to OFF and
the traffic lights device is turned off.

The traffic light software control contains in addition to the software control
of the sensor (see 5.4.1) a parallel process for the purpose of cyclic self diagnosis.

14

Figure 12: Statechart LIGHTS CONTROL CTRL

It consists of only a single state (HW TIMER) with a loop executed infinitely with a
delay defined by the ‘hardware test time’ (HWTT). When the loop is executed the
hardware is asked by means of L TEST to check its functionality.

Depending on the response in LIGHT HW REPLY the variables YELLOW ERR and
RED ERR are set and if necessary the HEAD OFFICE is informed via the error messages
YELLOW DEFECT and/or RED DEFECT. This is done by the static reactions defined in
LIGHTS CONTROL CTRL (see Fig. 12).

5.2.2 Traffic Lights Hardware (LIGHTS)

The model of the traffic lights hardware describes the behavior of the traffic lights
in the real world. As for our purposes only the functional aspects of the devices are
of interest physical details are left aside.

The statechart LIGHTS CTRL consists of states to indicate which light is on (see
Fig. 13). Changing from one state to another is controlled by the commands
received from the software control (see Sect. 5.2.1). Initially all lights are off (OFF).

Analogously to the software test cycle described above, which is identical in all
software controls (except for the barrier software), all hardware statecharts have in
common the existence of parallel processes to simulate hardware failures. Because
we are only interested in whether a component works or not, the parts of the
statecharts simulating failures all look the same:

Starting with an initial state (xxx OK7) indicating no hardware problems, in each
step an error of the device may occure. This is modeled through an indeterministic
choice of the transition out of the xxx OK state. Either the state in the next step is
xxx OK or xxx FAULTY, which represents the error state. The replies to the software
control in case of the hardware test xxx TEST are depending on these two states.

7‘xxx’ standing for the hardware device in discussion

15

Figure 13: Statechart LIGHTS CTRL

Except for the barrier, the error state is only left when the REPAIRED signal from
the HEAD OFFICE is received. The REPAIRED signal is sent to all hardware devices.

Since there are two independent parts of the traffic lights which can fail – the
red and the yellow light – each of them is modeled separately. The initial states
are labeled YELLOW OK and RED OK respectively, the error states are YELLOW FAULTY

and RED FAULTY, and a test report is requested by the L TEST command.

5.3 Barriers

As the other components of the crossing the barriers consist of a software control
(BARRIER CONTROL, see Fig. 14) containing the logic and the hardware (BARRIER,
see Fig. 15) simulating the physical aspects.

The closing and opening of the barriers is controlled by the barrier software mod-
ule BARRIER CONTROL which receives the appropriate commands (CLOSE BARRIER,
OPEN BARRIER) from the overall software control (see Sect. 5.1) and translates
them into action by commands (LOWER, RAISE) to the hardware device BARRIER.
The software replies to the CROSSING CONTROL by means of BARRIER CLOSED,
BARRIER OPENING, and the failure report BARRIER ERR, while itself getting responses
from the hardware (CLOSED, OPENED). If errors occur these are signaled to the
HEAD OFFICE by the software control via BARRIERS DEFECT.

5.3.1 Barrier Software (BARRIER CONTROL)

The behavior of the barrier software control (see Fig. 14) has been modeled corre-
sponding to the following description (for an overview of the control and information
flows see Appendix B.3):

1. The crossing is closed and opened on request of the overall software con-
trol (CROSSING CONTROL) without delay by lowering and raising the barriers.
Further commands given during one of these phases (CLOSING, OPENING) are
ignored. Only error exceptions are handled.

16

Figure 14: Statechart BARRIER CONTROL CTRL

2. The barrier device informs the CROSSING CONTROL of the successful closing of
the barriers by means of BARRIER CLOSED (initiated by the condition CLOSED

being set to true by the hardware) and of the beginning of the opening by
means of BARRIER OPENING (initiated by the condition CLOSED being set to
false). There is no explicit message to CROSSING CONTROL about having
opened the barriers successfully.

3. There are maximum time limits for the closing (‘maximum closing time’
(MCT)) as well as the opening process (‘maximum opening time’ (MOT)). If
the execution time for at least one of the operating phases exceeds its limit a
hardware failure is assumed.

Because the barriers are mechanical devices without any electrical equipment
to control the functionality this kind of error detection is necessary. Whether
the mechanics works correctly can only be determined in action. So the soft-
ware control of the barriers contains no cyclic self diagnosis routines.

4. If a failure has been detected (i.e. the state ERROR has been activated), then
the normal processing can only be continued when the barriers are fully opened
(switch to the state OPENED) or the OPEN BARRIER command is received. Each
try to open the barriers again has to preserve the MOT limit.

Leaving the ERROR state the error flag BARRIER ERR is reset so that the barrier
device is again available for the further operation. However because each
entering of ERROR causes a message (BARRIERS DEFECT) being sent to the
HEAD OFFICE, the staff is informed about each failure even if the mechanics
works well in the meantime.

5.3.2 Barrier Hardware (BARRIER)

Because when describing the physical behavior of barriers time is relevant the model
of the barrier hardware (BARRIER CTRL) is not as simple as providing states for ‘up’
and ‘down’, even though these two states (OPEN and CLOSE) also exist in our model,
of course. The additional states CLOSING and OPENING model the temporal aspects
(see Fig. 15).

17

Figure 15: Statechart BARRIER CTRL

Initially the conditions CLOSED and OPENED are initialized (CLOSED := false,
OPENED := true). The further operation is as follows:

1. Receiving the LOWER command in the OPEN state with no hardware failure
present the model switches to the CLOSING state setting OPENED to false.
This means the barriers are no longer open but have not yet been closed.

2. After the ‘barrier closing time’ (BCT) has passed and the device is still ‘oper-
ational’ the CLOSE state is reached. The condition CLOSED is set to true; the
barriers are closed.

If instead a hardware failure recurs (i.e. the state BARRIER FAULTY of the
failure simulation is active) the CLOSING state remains active even if the BCT
has passed. So the condition CLOSED is not changed.

The third possibility while closing the barriers, is that the RAISE command
is received. During normal operation this can never happen according to the
model of the barrier software control (see 5.3.1). But if the hardware fails
during the closing operation this is the way to get back to an operational
state.

Furthermore while beeing in the CLOSING state a LOWER command can occure.
This may be when after a first LOWER comand a barrier device failure occurs
and the barriers are not closed. Then the devices stays in the state CLOSING

and when a second LOWER command occurs the barrier may in the meantime be
operational and a ‘closing’ cycle should be possible. Therefore the transition
from CLOSING to CLOSING resets the ‘barrier closing time’.

3. With the barriers closed successfully and operational the command RAISE

initiates the opening phase. The variable CLOSED being reset to false indicates
that the barriers are no longer closed.

Similar to the lowering process also when raising the barriers the OPENING

state stays active until – normally after a delay determined by the ‘barrier
opening time’ (BOT) – the barriers have reached the upper position. With
this step the condition OPENED is set to true and the OPEN state is entered.

In the real world the upper and lower position of a barrier have sensors to signal
contact with the gate. This model does without them.

18

As far as the simulation of failures is concerned it is the same with the
BARRIER CTRL as with the other hardware devices (see the paragraph about the
hardware failure simulation, page 15) with the difference that there is no REPAIRED

signal from the HEAD OFFICE to leave the faulty state. Instead the BARRIER FAULTY

state behaves as the BARRIER OK state with also a functionality decision each step
depending on BARRIER OUT OF ORDER.

5.4 Sensor

A sensor in the context of a level crossing is a piece of equipment installed at the
railroad tracks to detect passing trains. This reference model only provides a simple
view of a sensor which detects a train when it is located above the sensor.

The communication between the software (SENSOR CONTROL) which implements
the logic of the sensor and the hardware (SENSOR) contains on one side the raw infor-
mation whether the hardware detects a train (SENSOR ON) and on the other side the
request for a status message (S TEST) and its answer (SENSOR OK, SENSOR FAULTY)
respectively.

The software control of the sensor emits the PASSED signal indicating that a train
has passed to the CROSSING CONTROL as well as an error message (SENSOR ERR)
if necessary. The latter message is also sent to the HEAD OFFICE by means of
SENSOR DEFECT. As to the traffic lights hardware the REPAIRED signal is also sent
to the sensor hardware SENSOR.

Unique to this device is the data transfer from the ENVIRONMENT activity to the
SENSOR providing it with the information about the actual train position. This
information is needed to determine whether the train is located above the sensor.

(A list of the flows connected to the sensor component can be found in the
appendix B.4.)

5.4.1 Sensor Software (SENSOR CONTROL)

The sensor software (see Fig. 16) works as follows: As soon as the hardware of the
sensor is activated (condition SENSOR ON) the initial state IDLE is left and instead
the ACTIVATED state is entered. This is interpreted as the train starting to pass the
sensor.

When the SENSOR ON condition is reset to false which means that the train has
fully passed the corresponding signal PASSED is sent to the CROSSING CONTROL and
the software control changes back to the IDLE state.

Analogous to the traffic lights (see the paragraph about the software self diagno-
sis cycle, page 14) the sensor software control performs a cyclic self test requesting
a status message of the hardware device by means of S TEST. In case of a hard-
ware failure the SENSOR ERR condition used by the CROSSING CONTROL is set and
the SENSOR DEFECT message is reported to the HEAD OFFICE.

5.4.2 Sensor Hardware (SENSOR)

The structure of the sensor hardware model is quite simple but the details are more
complicated as for the other hardware components. At a glance (see Fig. 17) the
hardware control contains the two states OFF and ON as well as the parallel failure
simulating process that is typical for all hardware units (see the paragraph about
the hardware failure simulation, page 15).

But the decision when to switch from OFF to ON is not as easy as might be
expected. In this model the behavior of the sensor is defined as follows:

• An operational sensor is activated as soon as the last position of the head
of the train is located before the sensor position and the actual position

19

Figure 16: Statechart SENSOR CONTROL CTRL

Figure 17: Statechart SENSOR CTRL

behind or above it. For this purpose the variable LAST POS is introduced
which is updated each step with the last position of the train taken from
CUR DATA.POS. The event TRAIN ON SENSOR is raised if the above condition is
true. This condition is checked in a separate parallel process with the single
state TRAIN PASSED.

The definition implicitly contains the fact that the sensor is only activated
(ON) if the train passes in forward direction (i.e. in direction with greater
position values).

• If there are no failures the sensor is deactivated (OFF) when the tail of the

20

train, which is located at CUR DATA.POS − TRAIN D.LENGTH, has passed the
sensor.

This implies that if a train starts passing the sensor in a forward direction,
stops and at the end leaves the sensor backwards, then the sensor will stay
activated infinitely.

• A faulty sensor always switches to the OFF state, i. e. no train will be detected.

This can cause a PASSED signal being submitted to CROSSING CONTROL by
SENSOR CONTROL even though a train may still be located above the sensor.
The actual model does not take care of that possibility.

6 Acknowledgement

We would like to thank the projects KNOSSOS and SafeRail for the serious discus-
sions on the radio-base crossing control case study. These discusions were necessary
for the understanding of case study. Further we would thank Alexander Puschnig
who helped us in modelling and documenting the case study.

21

A Data Types

Here follows a short description of the data types used for modelling the radio-based
crossing control system.

• NATS T

The natural numbers are the types for almost all variables which represent
numbers in the model.

• DYN DATA T

This data type is a record for the dynamic train datas and contains the current
position (POS) and speed (SPEED).

• STATIC DATA T

The static train information stored in STATIC DATA T, also a record. This
data type contains entries for the length of the train (LENGTH), the maximal
retardation (MAX RET), the maximal acceleration (MAX ACC), the minimal speed
(MIN SPD, when the train drives backwards), and the maximl speed (MAX SPD).

22

B Information Flows

Here is an enumeration of the most important control and information flows of our
reference model. The arrow (‘→’) indicates the direction of data exchange.

B.1 Communication

For the control of the communication there are commands and responses between
TRAIN and COMMUNICATION:

• TRAIN → COMMUNICATION

– ST COMMUNICATION

initiates the communication between TRAIN and CROSSING by establish-
ing a radio link

– SP COMMUNICATION

aborts the communication between TRAIN and CROSSING

• COMMUNICATION → TRAIN

– COMMUNICATION ESTABLISHED

status message ‘Communication established’

Between the TRAIN and the CROSSING there are the following messages which are
exchanged via the COMMUNICATION:

• TRAIN → CROSSING (in T SEND/C RECEIVE):

– ENABLE CROSSING SND 7→ ENABLE CROSSING REC

request to secure the crossing

– STATUS RQ SND 7→ STATUS RQ REC

request for status message

– CROSSING FREE SND 7→ CROSSING FREE REC

message about the vacation of the crossing

• CROSSING → TRAIN (in C SEND/T RECEIVE):

– ACK SND 7→ ACK REC

acknowledgement for closing request

– CROSSING SAFE SND 7→ CROSSING SAFE REC

status message ‘Crossing safe’

As mentioned in Section 2 the transformation (‘7→’) of a sent message (SND) to a
received message (REC) is done by the COMMUNICATION activity.

B.2 Traffic Lights

This section describes the command and information flows concerning the traffic
lights. The functionality of the lights is controlled by the overall crossing control
by means of these messages:

• CROSSING CONTROL → LIGHTS CONTROL (in LIGHT COMMANDS):

– TURN LIGHTS ON

request to turn on the traffic lights by switching on the yellow light

– TURN LIGHTS OFF

request to turn off the traffic lights

23

• LIGHTS CONTROL → CROSSING CONTROL (in LIGHT REPLY):

– LIGHTS ON

indicates that the turn-on process is finished

– YELLOW ERR

indicates a failure of the yellow light

– RED ERR

indicates a failure of the red light

The hardware device is controlled by the commands of the LIGHTS CONTROL:

• LIGHTS CONTROL → LIGHTS (in LIGHT HW COMMANDS):

– SWITCH ON

request to turn on the yellow light

– SWITCH OVER

request to switch off the yellow and turn on the red light

– SWITCH OFF

request to turn off all lights

– L TEST

request for test report

• LIGHTS → LIGHTS CONTROL (in LIGHT HW REPLY):

– RED OK

test report ‘Red light ok’

– RED FAULTY

test report ‘Red light faulty’

– YELLOW OK

test report ‘Yellow light ok’

– YELLOW FAULTY

test report ‘Yellow light faulty’

There is also some interaction with the HEAD OFFICE:

• LIGHTS CONTROL → HEAD OFFICE (in DEFECTS):

– YELLOW DEFECT

error message ‘Yellow light faulty’

– RED DEFECT

error message ‘Red light faulty’

• HEAD OFFICE → LIGHTS:

– REPAIRED

the fact that all hardware devices are repaired

24

B.3 Barriers

The control and information flows concerning the barriers are described in this
section. Analogous to the lights (see Appendix B.2) the actions of the barriers are
controlled by the overall crossing control:

• CROSSING CONTROL → BARRIER CONTROL (in BARRIER COMMANDS):

– CLOSE BARRIER

request to lower the barriers

– OPEN BARRIER

request to raise the barriers

• BARRIER CONTROL → CROSSING CONTROL (in BARRIER REPLY):

– BARRIER OPENING

indicates that the opening process has started

– BARRIER CLOSED

indicates that the barriers are closed

– BARRIER ERR

indicates a failure of the barriers

The hardware device is controlled by the commands of the BARRIER CONTROL:

• BARRIER CONTROL → BARRIER (in BARRIER HW COMMANDS):

– LOWER

request to lower the barriers

– RAISE

request to raise the barriers

• BARRIER → BARRIER CONTROL (in BARRIER HW REPLY):

– CLOSED

indicates that the barriers are closed

– OPENED

indicates that the barriers are opened

For the purpose of error notification there is some communication with the
HEAD OFFICE:

• BARRIER CONTROL → HEAD OFFICE (in DEFECTS):

– BARRIERS DEFECT

error message ‘Barriers faulty’

There is no explicit control flow HEAD OFFICE → BARRIER to indicate the repair of
the barriers as it exists at the traffic lights and the sensor. This is explained in the
barrier hardware section (see Sect. 5.3.2).

25

B.4 Sensor

The following list shows the control and information flows connected to the sensor.
Since the sensor is not an interactive device there are no commands from the overall
crossing control. Instead there is an information flow from the sensor control to
CROSSING CONTROL containing status messages:

• SENSOR CONTROL → CROSSING CONTROL (in SENSOR REPLY):

– PASSED

indicates that the train has passed

– SENSOR ERR

indicates a failure of the sensor

The software control of the sensor (SENSOR CONTROL) receives information from the
hardware to interpret them and requests test reports from the hardware:

• SENSOR CONTROL → SENSOR (in SENSOR HW COMMANDS):

– S TEST

request for test report

• SENSOR → SENSOR CONTROL (in SENSOR HW REPLY):

– SENSOR ON

indicates that the train is on the sensor

– SENSOR OK

test report ‘Sensor ok’

– SENSOR FAULTY

test report ‘Sensor faulty’

Analogous to the traffic lights (see Appendix B.2) there is some communication
with the HEAD OFFICE:

• SENSOR CONTROL → HEAD OFFICE (in DEFECTS):

– SENSOR DEFECT

error message ‘Sensor faulty’

• HEAD OFFICE → SENSOR:

– REPAIRED

the fact that all hardware devices are repaired

Because the behavior of the sensor depends on the position of the train this infor-
mation has to be passed to the sensor:

• ENVIRONMENT → SENSOR:

– CUR DATA

the dynamic train data, therein the actual position of the train

26

