
Universität Augsburg

Optimizing Preference Queries for

Personalized Web Services

Werner Kießling, Bernd Hafenrichter

Report 2002-12 Juli 2002

Institut für Informatik

D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Werner Kießling, Bernd Hafenrichter
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Optimizing Preference Queries for Personalized Web Services

Werner Kießling, Bernd Hafenrichter

Institute of Computer Science, University of Augsburg, D-86135 Augsburg, Germany
Contact: Prof. Dr. Werner Kießling (kiessling@informatik.uni-augsburg.de)

Abstract

Personalization of Web services requires a pow-
erful preference model that smoothly and effi-
ciently integrates with standard database query
languages. We make the case for preferences as
strict partial orders, supported in Preference SQL
and Preference XPATH. Performance of Web
services will crucially depend on various archi-
tectural design decisions. We pointed out that a
central server architecture is desirable. Concern-
ing the implementation of preference queries we
investigated the tightly coupled architecture, pre-
senting a novel approach for algebraic optimiza-
tion based on preference algebra. We provided
new transformation laws and gave evidence for
the power of this heuristic optimization. This
forms the basis for a new preference query opti-
mization methodology, promising sufficient per-
formance even for complex Web services.

Keywords: Personalized Web services, preference engi-
neering, focused search, preference query optimization

1 Introduction

Preferences are an indispensable part of our daily life, be
it private or business–related. Thus the notion of prefer-
ences should be a key element in designing personalized
software and Internet-based information systems ([1]).
Personal preferences are often expressed in the sense of
wishes: Wishes are free, but there is no guarantee that
they can all be satisfied at all times. In case of failure for
the perfect match people are not always, but usually pre-
pared to accept worse alternatives or to negotiate com-
promises. Thus preferences in the real world require a
paradigm shift from exact matches towards match-
making , which means to find the best possible matches
between one’s wishes and the reality. In other words,
preferences lead to the notion of soft constraints. Since
data is predominantly stored in object-relational databases
(and recently in XML databases), amalgamating prefer-
ences with declarative query languages like SQL or
XPATH is considered one key challenge towards success-
fully implementing personalized Web services.

The contributions of this paper are part of the research
program “Preference World“, which has been originated

already back in 1995. One of its major triggers had been
the ubiquitous observation that the Internet hosts an
abundance of inadequate search engines, suffering from
the empty result effect and the flooding effect. In fact, one
reason for this deficiency is that the notion of preferences
has not been dealt with properly in the past. The demand
for appropriate and efficient solutions gets even more
challenging when mobile Web services are considered,
where focused search is really essential ([11]).

In this paper we will elaborate on preference-driven
database technology as a backbone for personalized Web
services. To set the stage, in section 2 we revisit recent
solutions on preference engineering. In section 3 we in-
vestigate the performance impact of architectural design
decisions for Web services. Novel contributions concern-
ing the algebraic optimization of preference queries are
presented in section 4. A summary and outlook on current
research in ‘Prefe rence World’ are given in section 5.

2 Preference Engineering
Intuitively people express their wishes in the form “ I like
A better than B”. Since this can be understood by every-
body, it is a natural way of modeling user preferences.
Mathematically such preferences can be characterized by
strict partial orders ([10], [5])

2.1 The preference model

Preferences can be engineered inductively as follows.
Depending on the application domain, a set of pre-defined
so-called base preferences are assumed to be defined. For
e-commerce this set includes e.g. so-called `around` pref-
erences, `between` preferences, `positive` or `negative`
preferences, preferences for `lowest` or `highest` values
(see [10, 12] for details).

Given single preferences, more complex ones can be
gained by means of three fundamental operators.

Complex preference constructors
1. Pareto preference: P := P1 ⊗ P2 ⊗ ... ⊗ Pn

P is a combination of equally important preferences,
following the well-known Pareto principle.

2. Prioritized preference: P := P1 & P2 & ... & Pn

P evaluates more important preferences earlier,
similar to a lexicographical ordering. P1 is most im-
portant, P2 next, etc.

3. Ranked preference: P := rankF(P1, P2, ..., Pn)

Page 2 of 9

P combines individual numerical scores SCORE(Pi),
1 ≤ i ≤ n, by means of some ranking function F.

Proposition 1 Preference construction is closed un-
der strict partial orders.

Further fundamental algebraic properties of strict par-
tial order preferences are given in [10].

2.2 Integration into Database Query Languages

Standard SQL queries only support hard selection condi-
tions. To express preferences we extended the syntax of
SQL by an additional PREFERRING clause for complex
preference constructors. This extension is called Prefer-
ence SQL (see [12] for details), currently supporting all
previously mentioned base preferences together with the
constructors for Pareto and prioritized preferences:

 SELECT <selection> FROM <tables>
 WHERE <hard-conditions>
 PREFERRING <soft-conditions>

Preference queries are evaluated following the BMO
query model, treating preferences as soft constraints with
a cooperative answer semantics: Best Matches Only w.r.t.
the given strict partial order are returned. Clearly this
avoids both the empty result and the flooding effect.

Example: Get the best offers for compact hi-fi systems
including a CD player in a price range of 100 to 115$.

The subsequent Preference SQL query uses the base pref-
erences ‘CONTAINS’ and ‘BETWEEN’; ‘AND’ denotes
the construction of a Pareto preference:

 SELECT description, price FROM devices
 WHERE category = ‘hi-fi systems’
 PREFERRING description CONTAINS ‘CD’
 AND price BETWEEN(100, 115)

Suppose that this query is evaluated for mobile com-
merce where focused search is essential.

Figure 1: Using a Preference SQL WAP service

 As illustrated in Fig. 1, the BMO semantics avoided
the empty result effect (none of the item on sales satisfied
the BETWEEN clause perfectly), hence the best alterna-

tives (and only those, avoiding the flooding effect) were
selected. A similar extension of the query language
XPATH for XML has been carried out, resulting in Pref-
erence XPATH (seen [10]).

In future Web-based information systems, automatic
query expansion may lead to very complex preference
queries. E.g., a cognitive query builder may adapt focused
search by long-term user preferences, user intentions and
emotional state, situational awareness and domain knowl-
edge from ontologies ([11], [9]). Consequently, there is a
high demand for good optimization techniques for prefer-
ence queries.

3 Architecural Issues of Web-Services

Before investigating preference query optimization let us
elaborate architectural impacts of Web service design.

3.1 The central server architecture

As known from [3], doing heavy online access to hetero-
geneous Internet sources leads to poor performance for
Web services, given current bandwidth and Internet re-
sponse times. Thus a central server architecture as shown
in figure 2 is more promising for the time being.

Figure 2: Central server architecture for Web services

A typical application scenario is e.g. a mobile route
planner. A prototype under development at ‘Preference
World’ finds best routes from city A to city B, given
personal preferences on travel expenses, road conditions
and traffic jam awareness.1 The asynchronous update can
be performed by Unix cron-jobs feeding a central server
SQL database, which also stores an autobahn map. Mo-
bile clients are supported using XSLT technology.

If Pareto or prioritization are chosen for preference
construction, Preference SQL can do the job of the com-
bining engine. Alternatively we combined single prefer-
ences by means of a variant of Quick-Combine ([7]), effi-
ciently implementing ranked preferences.

1 External sources used are www.wetter.de, www.wdr.de and
www.bmvbw.de, respectively.

Page 3 of 9

3.2 The Pre-Processor Architecture

Given a central server architecture for Web services we
now focus in more detail on efficiency issues for prefer-
ence queries. Preference SQL queries can be implemented
on top of a relational database system by translating them
into pre-optimized SQL queries as depicted in figure 3.
This achieves a rapid integration into all database systems
supporting the ODBC or JDBC standard. Details of this
pre-processor approach are presented in [12].

Application

Database System

Preference O/JDBC Driver

Preference Optimizer

Standard O/JDBC Driver

Preference
Query

Query
Result

Figure 3: Pre-processor approach for preference queries

The application issues a query to the Preference-
Driver, rewriting it into a complex SQL query which in
turn is optimized thereafter by the SQL query optimizer at
hand. This approach is very flexible, relatively easy to
implement and performs sufficiently well for a large
choice of applications ([12]).

3.3 The Tightly-Coupled Architecture

Obviously, by integrating the preference optimizer and
the SQL optimizer more tightly even better performance
can be expected2. The results in [4] point in this direction.
So let’s study this architecture as depicted in figure 4
more closely. The main obstacle of this approach is that a
practical implementation requires the close cooperation
with SQL database manufacturers, which is not easy to
obtain. However, the expected performance boost might
be a rather strong incentive. So let’s explore the perform-
ance advantages we can possibly expect.

With tight coupling the preference query evaluation
model should be an extension of classic relational algebra
by appropriate new preference-specific operators to deal
with soft selection. Given that, we can follow the classical
paradigm of database query optimization ([13]):

1. Given the preference query, build an initial operator
tree T0 (also called preference query execution plan).

2 Some familiarity of the reader with basic algebraic query op-
timization techniques for relational database systems is helpful.

Application

Database System

Preference
Optimizer

Query
Engine

Standard O/JDBC Driver

Preference
Query

Query
Result

Figure 4: Tightly coupled preference evaluation

2. Given a set of algebraic equations, optimize T0 by
applying them, if a subtree matches one side of a
law. Which laws to apply, and in what order, has to
be controlled by some heuristics that intelligently
prune the exponentially large search space (typically
greedy hill-climbing is used). Let T fin denote the fi-
nal tree emerging from this phase.

3. Cost-based optimization: The abstract operators
contained in Tfin must be mapped to concrete
evaluation algorithms. If there are several choices
for a particular operator, a cost model has to decide.

For the scope of this paper we will concentrate on
stage 2, which is known to frequently achieve the biggest
optimization gains for SQL databases, sometimes in the
order of several magnitudes3.

4 Algebraic Preference Query Optimization
The subsequent results are founded on the preference al-
gebra defined in [10]. Due to lack of space we omit all
proofs (but [8] will have the details). Moreover, we only
state those laws from [8] that are required here.

4.1 Preference Relational Algebra

We propose to extend conventional relational algebra by
two operators to deal with soft selections (their precise
declarative semantics is given in [10]):
• Preference selection σ[P](R) finds all best matching

objects for preference P in relation R.
• Grouped preference selection σ[P groupby A](R)

partitions R by equal A-values and performs a prefe r-
ence selection on each partition.

Let P denote the preference specified in the PREFER-
RING-clause. Then the operational semantics of a Prefer-
ence SQL query looks as follows:

πselection(σ[P](σhard-conditions (R1 × ... × Rn)))

3 Quick-Combine or the Skyline-operator of [4], being a re-
stricted form of a Pareto preference, are instances of stage 3.

Page 4 of 9

This expression canonically defines our initial opera-
tor tree T0. Heuristic query optimization relies on the as-
sumption that reducing the sizes of intermediate results
leads to more efficient query plans. The classical most
promising strategies are ‘push hard selection’ and ‘push
projection’ ([13]). We will adopt this idea here by devel-
oping transformation rules subsequently that allow us to
perform ‘push preference’ within query execution plans.

4.2 Transformation Laws

Here are first transformation laws involving prefe rences.

Proposition 2

Let A denote the set of preference attributes of P.
(L1) Push projection over preference selection

a) πX(σ[P](R)) = σ[P](πX(R)) if A ⊆ X
b) πX(σ[P](R)) = πX(σ[P](πX ∪ A(R))) otherwise

(L2) Push preference selection over Cartesian product
σ[P](R × T) = σ[P](R) × T if A ⊆ R

(L3) Push preference selection over union
 σ[P](R ∪ T) = σ[P](σ[P](R) ∪ σ[P](T)) ♦

Next we state laws that can introduce grouped prefer-
ence selection into the query execution plan.

Proposition 3

Let preference P1 be defined on a set of attributes A1.
(L4) Split prioritization into grouping

σ[P1 & P2](R) = σ[P2 groupby A1](σ[P1](R))

Proposition 4

Let A be the set of preference attributes of P.
(L5) Push projection over preference selection

a) πX(σ[P groupby B](R)) =
σ[P groupby B](πX (R)) if A ⊆ X, B ∈ X

b) πX(σ[P groupby B](R)) =
πX(σ[P groupby B](πX ∪ A ∪ B (R))) otherwise ♦

Queries may be a combination of hard selections and
preference selections. Thus it is important to analyze the
interaction of those two. Pushing σ[P] over σH for some
hard condition H will turn out to cause major obstacles in
general. Thus, since a relational join operation is defined
as a hard selection over a Cartesian product, pushing σ[P]
over a join becomes more difficult. However, foreign key
relationships from relational schema information will en-
able further transformations.

Proposition 5

Let A be the set of attributes of preference P, A ⊆ R, and
R.X be a foreign key referring to T.X.
(L6) Push preference selection over a join selection

σ[P](σR.X = T.X(R × T)) = σR.X = T.X(σ[P](R × T)) ♦

Note that the right-hand side of L6 can be trans-
formed further by L2, achieving to push preference selec-
tion into a join in summary.

Proposition 6

Let A1 be the set of attributes of preference P1, A1 ⊆ R,
and R.X be a foreign key referring to T.X.
(L7) Split Pareto preference and push over join

σ[P1 ⊗ P2](σR.X = T.X(R × T)) =
σ[P1 ⊗ P2](σR.X = T.X(σ[P1 groupby X](R) × T)) ♦

4.3 Case Studies

Let us now demonstrate the potential of algebraically op-
timizing preference queries by two case studies.

• Case study 1:
The subsequent query asks for cars, preferably being

around eight years old, which is considered most impor-
tant (‘PRIOR TO’). Less important is the preference on
brand, being positively for a BMW or a Mercedes.

 SELECT u.price, d.brand, u.age
 FROM used_cars u, car_detail d
 WHERE u.id = d.id and u.color = ’Red’
 PREFERRING u.age around 8
 PRIOR TO d.brand in (’BMW’, ’Mercedes’);

Figure 5: Initial query plan for case study 1

A preference query optimizer can process the initial
query plan in figure 5 as follows, applying the strategy to
reduce intermediate result sizes early and using a greedy
hill-climbing strategy to prune the search space (for clas-
sical relational algebra transformations we refer to [13]):

1. Split the hard selection and push σcolor = ‘red’ down to
used_car.

2. Apply law L4 to split prioritization into grouping.
3. Assuming foreign key d.id referring to u.id, law L6

can be fired next, pushing σ[age around 8] into the
left branch of ×.

4. Apply L5a to push πu.price, d.brand, u.age over σ[brand in
(‘BMW’, ‘Mercedes’) groupby age], followed by
pushing projection further down as far as possible
using L1a.

5. Combine σu.id = d.id followed by × into an equijoin.

×
used_car u

u.price, d.brand, u.ageπ

σ u[(.age around 8) & (d.brand in (’BMW’,’Mercedes’))]

u.id = d.id and color = ‘red’σ

car_detail d

Page 5 of 9

The final query execution plan is depicted in figure 6.

Figure 6: Optimized query plan for case study 1

The result of this joint work of classical relational al-
gebra optimization extended by preference-specific laws
is quite remarkable. In addition to the usual optimization
result, we succeeded to push the highly selective σ[age
around 8] into the join, which can achieve big perform-
ance speed-ups given a large used_car relation.

Let’s evaluate this plan, given the following small
sample database.

used_cars
Id Price Age Color
1 20.000 6 red
2 16.000 8 blue
3 30.000 10 red
4 30.000 11 red
1 30.000 11 blue
4 15.000 12 yellow

car_details
Id Brand Type
1 BMW Cabriolet
2 Renault Coupé
3 Fiat Coupé
4 Audi Avant

First, σcolor = ‘red’ filters off all 3 non-red tuples from
used_cars. Then σ[age around 8] does not find perfect
matches, but selects tuples with age 6 or 10 as best alter-
natives, whereas the tuple with age 11 is worse and gets
discarded. After the join σ[brand in (‘BMW’, ‘Mercedes’)
groupby age] is evaluated. Because none of the tuples are
equal in age, nothing is filtered off. So we get this BMO
query result:

Price Brand Age
20.000 BMW 6
30.000 Fiat 10

• Case study 2:
The subsequent query asks for cars preferably being

around eight years old, they should be a BMW or Mer-

cedes and the preferred color is red. All these preferences
are supposed to be equally important, hence getting com-
bined into a Pareto preference (‘AND’):

 SELECT u.price, d.brand, u.age
 FROM used_cars u, car_detail d
 WHERE u.id = d.id
 PREFERRING u.age around 8
 AND d.brand in (’BMW’, ’Mercedes’)
 AND u.color in (’red’);

Figure 7: Initial query plan for case study 2

Let’s put our sample preference query optimizer to
work as before, given the initial query plan in figure 7:

1. Since Pareto preferences are associative and com-
mutative, the preference selection can be rearranged
as σ[(age around 8 ⊗ color = ‘red’) ⊗ (brand in
(‘BMW’, ‘Mercedes’))].

2. Assuming foreign key d.id referring to u.id, L7 can
be used to split above rearranged Pareto preference,
pushing its first operand into the join.

3. Push the projection over preference selection and
further down the tree by applying the fami liar laws.

4. Combine σu.id = d.id followed by × into an equijoin.

The resulting query tree is given in figure 8. This time
we succeeded for Pareto preferences to push a grouped
preference selection into the join, which can achieve fur-
ther performance speed-ups for large used_car relations.

Figure 8: Optimized query plan for case study 2

We evaluate this plan, given the same sample database
as in case study 1. The grouped Pareto preference selec-
tion filters off the following tuples from used_cars:

×

u.price, d.brand, u.age, u.colorπ

σ u. ⊗ ⊗[age around 8 d.brand in (’BMW’,’Mercedes’) u.color = ‘red’]

u.id = d.idσ

used_car u car_detail d

u.id = d.id

d.brand, d.brand.idπ

u.id, u.age, u.colorπ

σ ⊗ ‘[u.age around 8 u.color = ‘red
 groupby u.id]

σ u. ⊗ ⊗[age around 8 d.brand in (’BMW’,’Mercedes’) u.color = ‘red’]

used_car u

car_detail d

d.brand, d.idπ

π u.price, u.age, u.id

σ[(d.brand in (’BMW’, ’Mercedes’)) groupby u.age]

u.id = d.id

σ u.[age around 8]

u.color = ‘red’σ

used_car u

car_detail d

Page 6 of 9

Id Price Age Color
1 30.000 11 blue
4 15.000 12 yellow

Note that e.g. the tuple with id = 1 is discarded, be-
cause the other tuple with id = 1 in used_cars has a pref-
erable color and a better age, thus dominating it under
Pareto preference semantics.

 After the join, the final preference selection yields
this BMO query result:

Id Price Age Color Brand
1 20.000 6 red BMW
2 16.000 8 blue Renault
3 30.000 10 red Fiat

5 Summary and Outlook

Advanced personalization in Web services requires a
powerful and intuitive preference model. We have made
the case for preferences as strict partial orders, enabling a
systematic preference engineering. Database query lan-
guages like Preference SQL and Preference XPATH,
which treat preferences as soft selection conditions under
the BMO query model, are the key towards focused multi-
attribute search. Since next generation Web services will
also perform extensive automatic query expansion, opti-
mization of complex preference queries becomes a key
challenge. As a unique novel contribution in this paper we
have given several algebraic transformation laws for pre f-
erence queries, aiming to push preference selections down
a preference relational algebra tree. Two case studies ex-
emplified the potential of this approach.

 This work is currently extended towards a full-scale
preference query optimizer, which will be implemented in
a tightly coupled architecture with existing query optimi z-
ers. For rapid prototyping we are going to use the XXL-
library from [2]. Two advanced preference application
projects will be used as major test environments. The P-
News project4 will support sophisticated query expansion
in the context of a personalized news service for MPEG7
digital libraries. The COSIMA project5 ([6]) aims to build
a new generation of agent-based Web information sys-
tems, where the user can bargain with an emotional,
speaking smart avatar. At the heart of this is again the
need for complex preference engineering and preference
query optimization to achieve real-time performance over
the Internet

4 P-News is funded by the German Research Association DFG.
(www.informatik.uni-augsburg.de/lehrstuehle/info2/p-news)
5 COSIMA is funded by the Bavarian Research Cooperation
FORSIP on Situated, Individualized and Personalized Man-
Machine Interaction. (www.myCosima.com/englishbargain)

Acknowledgments

We are grateful to Georg Struth for helpful technical
comments and suggestions.

References
[1] Special issue of the Communications of the ACM on Per-

sonalization, vol. 43, Aug. 2000.

[2] J. Bercken, B. Blohsfeld, J. Dittrich, et al.: XXL - A Li-
brary Approach to Supporting Efficient Implementations
of Advanced Database Queries . Proc. 27th Intern. Conf.
on Very Large Databases (VLDB), Rome, Sept. 2001.

[3] N. Bruno, L. Gravano, A. Marian: Evaluating top-k que-
ries over web-accessible databases . Intern. Conf. on Data
Engineering (ICDE), San Jose, USA, Febr. 2002.

[4] S. Börzsönyi, D.Kossmann, Konrad Stocker: The Skyline
Operator. Proc 17th Intern. Conf. on Data Engineering,
Heidelberg, April 2001.

[5] J. Chomicki: Querying with intrinsic preferences . Proc.
Intern. Conf. on Advances in Database Technology
(EDBT), Prague, Czech Republic, March 2002, pp. 34-51.

[6] S. Fischer, W. Kießling, S.Holland, M. Fleder: The CO-
SIMA Prototype for Multi-Objective Bargaining. First In-
tern. Conf. On Autonomous Agents and Multiagent Sy s-
tems (AAMAS), Bologna, July 2002, to appear.

[7] U. Güntzer, W.-T. Balke, W. Kießling: Optimizing Multi-
Feature Queries for Image Databases . Proc. 26th Intern.
Conf. on Very Large Databases (VLDB), Cairo, Egypt,
2000, pp. 419-428.

[8] B. Hafenrichter, W. Kießling: Optimizing Preference Que-
ries for Personalized Web Services . Extended version of
this paper (in preparation).

[9] I. Horrocks: DAML+OIL: a reason-able web ontology
language. Proc. Intern. Conf. on Advances in Database
Technology (EDBT), Prague, March 2002, pp. 2-13.

[10] W. Kießling: Foundations of Preferences in Database
Systems. Tech. Rep. 2001-8, Institute of Comp. Science,
Univ. of Augsburg. Accepted for 28th Intern. Conf. on
Very Large Databases (VLDB), Hong Kong, Aug. 2002.

[11] W. Kießling, W.T. Balke: Mobile Search in a Preference
World. Proc. Workshop on Mobile Search in conj. with
11th Intern. World Wide Web Conf., Honolulu, May 2002,
pp. 32-38.

[12] W. Kießling, G. Köstler: Preference SQL − Design, Im-
plementation, Experiences . Tech. Rep. 2001-7, Institute of
Comp. Science, Univ. of Augsburg. Accepted for 28th In-
tern. Conf. on Very Large Databases (VLDB), Hong
Kong, Aug. 2002.

[13] J. Ullman: Principles of Database and Knowledge-Base
Systems. Vol. 1, Computer Science Press, 1989.

Page 7 of 9

Proof of Laws:

Definition 1: A “preference” P=(A,<P) defines a strict
partial order <P ⊆ dom(A) × dom(A).

Definition 2: The “preference selection σ[P](R)” is de-
fined as σ[P](R) = { w ∈ R | ¬∃v ∈ R : w < v }

Intuitively, this query select all maximal tuples that are
not dominated by other tuples.

Definition 3: The “Grouped preference selection σ[P
groupby A](R)” is defined as :

σ[P groupby A](R)
= { w∈R | ¬∃v∈R : w<v ∧ w[A] = v[A]}

Definition 4: Given the relations R and T, the “extension
of R by T” through a function f is defined as:

R extf T = {(r,t) | r∈R, t∈T, f(r,t) }

Furthermore, we claim that for every tuple r exists at least
one tuple in t, which satisfies f(r,t).

Definition 5: Given an attribute B, the “anti-chain pref-
erence” B↔ =(B,<↔) is defined as <↔ = ∅ . This de-
notes that all elements are incomparable to each other.

Lemma 1: Let P=(A,<P) and a relation R , A ⊆ attrib-
utes(R). Then P induces an order onto R×R

a, b ∈ R, a < b ⇔ πA(a) <P πA(b) .

Lemma 2: Let denote A and B sets of attributes with A
⊆ B. Then πA(πB(R) = πA(R)

Lemma 3: Let P=(A,<P), A ⊆ X.
Then πX(a) < πX(b) ⇔ a < b

πX(a) < πX(b) Le1
= πA (πX(a)) < πA(πX(b)) Le2
= πA(a) <P πA(b) Le1
= a < b ♦

Lemma 4: Let A denote a set of attributes, R and T da-
tabase relations, with A ⊆ attributes(R). Then πA(R×T) =
πA(R).

Lemma 5: Let ext f be an extension of R by T. Then
σ [P](R ext f T) = σ[P](R) ext f T is valid, if attrib(P) ⊆ R.

σ [P](R ext f T)
= { w∈ R extf T | ¬∃v ∈ R extf T: w < v}
= { w∈ R extf T | ¬∃v ∈ R extf T: πA(w) < πA(v)}

D4
Le1

= { w∈ R extf T | ¬∃v ∈ R : πA(w) < πA(v)}
= { w∈ R | ¬∃v ∈ R : πA(w) < πA(v)} ext f T}
= σ[P](R) ext f T ♦

Lemma 6: The preference selection σ[P groupby B](R)
denotes a grouped preference selection. This selection can
be expressed in terms of a prioritized anti chain prefe r-
ence σ[B↔ & P](R).

σ[P groupby B](R)
= { w ∈ R | ¬∃v ∈ R: w[B]=v[B] ∧ w <P v }
= { w ∈ R | ¬∃v ∈ R : w[B] <B↔ v[B] ∨

 (w[B] = v[B] ∧ w <P v) }
= σ[B↔ & P](R)

D3
D5

Def.

♦

Lemma 7: Let σ[P1](R) and σ[P2](R) denote prefer-
ences. Then

σ[P1](R) ⊆ σ[P2](R)
⇒ σ[P1](R) = σ[P1](σ[P2](R))

(L1) Push projection over preference selection

a) πX(σ[P](R)) = σ[P](πX(R)) if A ⊆ X
b) πX(σ[P](R)) = πX(σ[P](πX ∪ A(R))) otherwise

Proof (a): Let P=(A,<P) and A ⊆ X, i.e. πX preserves the
preference Attributes A. Then:

πX(σ[P](R))
= πX({w ∈ R|¬∃v ∈ R : w < v})
= {πX(w) ∈ R |¬∃v ∈ R : πA(w) <P πA(v) }
= {w ∈ πX(R) |¬∃v ∈ πX(R) : w < v}
= σ[P](πX(R))

D2
Le1
Le2
D2
♦

Proof (b): Let P=(A,<P) and A ⊄ X, i.e. πX does not pre-
serves the preference Attributes A. Then:

πX(σ[P](R))
= πX(πX∪A(σ[P](R)))
= πX(σ[P](πX∪A(R))

Le2
L1a

♦

(L2) Push preference selection over Cartesian product
σ[P](R × T) = σ[P](R) × T if A ⊆ R

Proof: The cartesian product R × T can be rewritten in
terms of an extension function.

R × T = R ext× T
×(r,t) = true

σ[P](R×T)
= σ[P](R ext × T)
= σ[P](R) ext× T
= σ[P](R) × T

D4
Le5

♦

Page 8 of 9

(L3) Push preference selection over union
 σ[P](R ∪ T) = σ[P](σ[P](R) ∪ σ[P](T))

Proof:

R’ = σ[P](R) ∪ σ[P](T)

σ[P](σ[P](R) ∪ σ[P](T)) =
= { w ∈ R’ |¬∃v ∈ R’ : w <P v}
= { w ∈ R’ | ¬((∃v ∈ σ[P](R) : w < v) ∨

(∃v ∈ σ[P](T) : w < v)) }
= { w ∈ R’ | ¬((∃v ∈ R : w < v ∧ v ∈ σ[P](R)) ∨

(∃v ∈ T : w < v ∧ v ∈ σ[P](T)))}

Since <P is transitive, we immediately get

= { w ∈ R’ | ¬((∃v ∈ R : w < v) ∨
(∃v ∈ T : w < v))}

= { w ∈ R ∪ T | ¬(∃v ∈ R ∪ T : w < v) ∧
w ∈ σ[P](R) ∪ σ[P](T) }

Again, since <P is transitive, we immediately get

= { w ∈ R ∪ T | ¬(∃v ∈ R ∪ T : w <P v)}

D3
R’

= σ[P](R ∪ T) ♦

(L4) Split prioritization into grouping
σ[P1 & P2](R) = σ[P2 groupby A1](σ[P1](R))

Proof:

σ[P1&P2](R) = D2
= {w∈R | ¬ (∃v ∈ R : πA1(w) <P1 πA1(v) ∨

(πA1(w)=πA1(v) ∧ πA2(w) <P2 πA2(v)))}
= {w∈R| ¬ ((∃v∈R: πA1(w) <P1 πA1(v)) ∨

(∃v’∈R: (πA1(w)=πA1(v’)
∧ πA2(w) <P2 πA2(v’))))}

= {w∈R| (¬∃v ∈R: πA1(w) <P1 πA1(v)) ∧
(¬∃v’∈R: (πA1(w)=πA1(v’)

∧ πA2(w) <P2 πA2(v’)))}
= σ[P1](R) ∩ σ[P1 groupby A1](R)

σ[P2 groupby A1](σ[P1](R)) Le6
= σ[A1

↔
 & P2](σ[P1](R)) D2

={ w ∈ σ[P1](R) | ¬∃v ∈ σ[P1](R):πA1(w)=πA1(v)
∧ w <P2 v }

={ w ∈ R | (¬∃v ∈ σ[P1](R) : w[A1]=v[A1] ∧
w <P2 v) ∧
w ∈ σ[P1](R) }

={ w ∈ R | (¬∃v ∈ σ[P1](R) : πA1(w)= πA1(v) ∧
w <P2 v) ∧
w ∈ σ[P1](R) }

={ w ∈ R | (¬∃v ∈ σ[P1](R) : πA1(w)= πA1(v) ∧

w <P2 v) ∧
w ∈ σ[P1](R) }

={ w ∈ R | (¬∃v ∈ R : πA1(w)= πA1(v) ∧
w <P2 v) ∧w ∈ σ[P1](R)}

={ w ∈ R | (¬∃v ∈ R : w[A1]=v[A1] ∧ w <P2 v)}
∩ {w ∈ σ[P1](R) }

= σ[P1](R) ∩ σ[P1 groupby A1](R)

⇒ σ[P1 & P2](R) = σ[P2 groupby A1](σ[P1](R))
♦

(L5) Push projection over preference selection

Proof: Immediately from L1, since groupby-selection can
be rewritten in terms or prioritization, using an anti-chain
order on attribute B, as defined in Lemma 5.

a) πX(σ[P groupby B](R)) =
σ[P groupby B](πX (R)) if A ⊆ X, B ∈ X

πX(σ[P groupby B](R)) Le6
= πX(σ[B↔ & P](R)) L1a
= σ[B↔ & P](πX(R)) Le6
= σ[P groupby B](πX(R)) ♦

b) πX(σ[P groupby B](R)) =
πX(σ[P groupby B](πX ∪ A ∪ B (R))) otherwise

πX(σ[P groupby B](R)) Le6
= πX(σ[B↔ & P](R)) L2a
= πX(σ[B↔ & P](πX ∪ A ∪ B (R)) Le6
= πX(σ[P groupby B] (πX ∪ A ∪ B (R)) ♦

(L7) Push preference selection over a join selection
σ[P](σR.X = T.X(R × T)) = σR.X = T.X(σ[P](R × T))

Proof: Let A be the set of attributes of preference P, A ⊆
R, and R.X be a foreign key referring to T.X.

Due to the knowledge that there exists a foreign key rela-
tionship between R.X and T.X, the join can be rewritten
in terms of an extension function.

σR.X = T.X(R × T) = R ext join T
join(r,t) = { true : r[x] = t[x], false otherwise }

σ[P](σR.X = T.X(R × T))
= σ[P](R ext join T)
= σ[P](R) ext join T
= σR.X = T.X(σ[P](R) × T)

D4
Le5
D4
♦

(L7) Split Pareto preference and push over join

Page 9 of 9

Let A1 be the set of attributes of preference P1, A1 ⊆ R, A2

⊆ T, and R.X be a foreign key referring to T.X.

σ[P1 ⊗ P2](σR.X = T.X(R × T)) =
σ[P1 ⊗ P2](σR.X = T.X(σ[P1 groupby X](R) × T))

Proof:

σ[P1 ⊗ P2](R) Def.
= { w ∈ R | ¬∃v ∈ R : w <P1⊗P2v } Def.
= { w ∈ R | ¬(∃v ∈ R:

(πA1(w) <P1 πA1(v) ∧
(πA2(w)=πA2(v) ∨ πA2(w) <P2 πA2(v))) ∨
(πA2(w) <P2 πA2(v) ∧
(πA1(w)=πA1(v) ∨ πA1(w) <P1 πA1(v))))

= { w ∈ R | ¬(∃v ∈ R:
(πA1(w) <P1 πA1(v) ∧ πA2(w)=πA2(v)) ∨
(πA1(w) <P1 πA1(v) ∧ πA2(w) <P2 πA2(v)) ∨
(πA2(w) <P2 πA2(v) ∧ πA1(w)=πA1(v)))

= { w ∈ R |
¬((∃v∈R: (πA1(w)<P1 πA1(v) ∧ πA2(w)=πA2(v)))

∨ (∃v∈R: (πA1(w)<P1 πA1(v) ∧ πA2(w)<P2 πA2(v)))
∨ (∃v∈R: (πA2(w)<P2 πA2(v) ∧ πA1(w)=πA1(v))))

= { w ∈ R |
 (¬∃v∈R: (πA1(w)<P1 πA1(v) ∧ πA2(w)=πA2(v)))

∧ (¬∃v∈R: (πA1(w)<P1 πA1(v) ∧ πA2(w)<P2 πA2(v)))
∧ (¬∃v∈R: (πA2(w)<P2 πA2(v) ∧ πA1(w)=πA1(v)))

= σ[P1 groupby A2](R)
∩ σ[P2 groupby A1](R)
∩ {w∈R | ∃v∈R: (πA2(w) <P2 πA2(v) ∧

πA1(w)=πA1(v))}

⇒ σ[P1 ⊗ P2](R) ⊆ σ[P1 groupby A2](R)

Due to Lemma 7, we can conclude that

σ[P1 ⊗ P2](R) = σ[P1 ⊗ P2](σ[P1 groupby A2](R))

The foreign key R.X establishes a functional dependency
between [R.X] and the grouping Attribute A2. Therefore,
it is possible to substitute Attribute A2 by the foreign key
attribute X.

⇒ σ[P1⊗P2](R) = σ[P1⊗P2](σ[P1 groupby X](R))

σ[P1 ⊗ P2](σR.X = T.X(R × T))
= σ[P1⊗P2](σ[P1 groupby X](σR.X = T.X(R × T))) Le6
= σ[P1⊗P2](σ[X↔ & P1](σR.X = T.X(R × T))) L7
= σ[P1⊗P2](σR.X = T.X(σ[X↔ & P1] (R) × T)) Le6
= σ[P1⊗P2](σR.X = T.X(σ[P1 groupby X](R) × T)) ♦

