
Universität Augsburg

Algebraic Optimization of Relational

Preference Queries

Werner Kießling, Bernd Hafenrichter

Report 2003-1 Februar 2003

Institut für Informatik

D-86135 Augsburg

Copyright c© Werner Kießling, Bernd Hafenrichter
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Algebraic Optimization of Relational Preference Queries

Werner Kießling, Bernd Hafenrichter

Institute of Computer Science, University of Augsburg
Universitätsstraße 14, D-86159 Augsburg, Germany

{kiessling, hafenrichter}@informatik.uni-augsburg.de

Abstract
The design and implementation of advanced per-
sonalized database applications requires a prefer-
ence-driven approach. Representing preferences
as strict partial orders is a good choice in most
practical cases. Therefore the efficient integra-
tion of preference querying into standard data-
base technology is an important issue. We pres-
ent a novel approach to relational preference
query optimization based on algebraic transfor-
mations. A variety of new laws for preference
relational algebra is presented. This forms the
foundation for a preference query optimizer ap-
plying heuristics like ‘push preference’. A pro-
totypical implementation and a series of bench-
marks show that significant performance gains
can be achieved. In summary, our results give
strong evidence that by extending relational da-
tabases by strict partial order preferences one can
get both: good modeling capabilities for person-
alization and good query runtimes. Our approach
extends to recursive databases as well.

1. Introduction
Preferences are an integral part of our private and busi-
ness–related lives. Thus preferences must be a key ele-
ment in designing personalized applications and Internet-
based information systems. Personal preferences are often
expressed in the sense of wishes: Wishes are free, but
there is no guarantee that they can be satisfied at all times.
In case of failure for the perfect match people are often
prepared to accept worse alternatives or to negotiate com-
promises. Thus preferences in the real world require a
paradigm shift from exact matches towards match-
making, which means to find the best possible matches
between one’s wishes and the reality. In other words,
preferences are soft constraints. On the other hand, de-
clarative query languages like SQL don’t offer convenient
ways to express preferences. This deficiency has been the
source for inadequate database support in many important
application areas, in particular for search engines for e-
commerce or m-commerce. As pointed out in [13, 17]

extending SQL or XML by preferences will enable better
personalized search engines that don’t suffer from the
notorious empty-result and flooding effects.

Preferences have played a big role in other academic
disciplines for many decades, notably within the eco-
nomic and social sciences, in particular for multi-attribute
decision-making in operations research ([9, 12]). The first
encounter of preferences in databases in 1987 is due to
[20]. Despite the undeniable importance of preferences
for real world applications preference research in data-
bases did not receive a more wide-spread attention until
around 2000 ([1, 4, 5, 11, 22]). Starting already in 1993
there has been the long-term research vision and endeavor
of “It’s a Preference World“ at the University of
Augsburg. Salient milestones so far include the design
and implementation of Datalog-S ([14, 18]), extending
recursive deductive databases by preference queries. By
1997 the experiences gained from Datalog-S inspired the
design of Preference SQL, its first commercial product
release being in 1999 ([17]). These experiences have been
compiled into a comprehensive framework for prefer-
ences in database systems in [13]. Preferences are mod-
eled as strict partial orders, providing also a unifying
framework for approaches of other research groups like
those cited above. As an essential feature the use of intui-
tive preference constructors is promoted.

In this paper we focus on the critical issue of prefer-
ence query performance. In particular, we investigate the
challenge of algebraically optimizing preference queries
in relational databases. To set the stage, in section 2 we
revisit the preference framework from [13]. In section 3
we introduce preference relational algebra and discuss
architectural aspects for a preference query optimizer.
Novel results for algebraic optimization of preference
queries are presented in section 4, followed by perform-
ance experiments in section 5. Related works in section 6
and a summary and outlook in section 7 ends this paper.

2

2 The Preference Query Model

2.1 Strict Partial Order Preferences

People express their wishes intuitively in the form “I like
A better than B”. Mathematically such preferences are
strict partial orders. Let us revisit those concepts of this
preference model from [13] that are important here.

Let A = {A1, A2, …, Ak} denote a set of attributes Aj
with domains dom(Aj). Considering the order of compo-
nents within a Cartesian product as irrelevant, we define:

• dom(A) = ×Aj ∈ A dom(Aj)
• A preference P is a strict partial order P = (A, <P),

where <P ⊆ dom(A) × dom(A).
• “x <P y” is interpreted as “I like y better than x”.

For ease of use a choice of base preference construc-
tors is assumed to be pre-defined. This choice is extensi-
ble, if required by the application domain. Commonly
useful constructors include the following:

• For categorical attributes:
POS, NEG, POS/POS,POS/NEG, EXP

• For numerical attributes:
 AROUND, BETWEEN, LOWEST, HIGHEST, SCORE

POS specifies that a given set of values should be pre-
ferred. Conversely, NEG states a set of disliked values
should be avoided if possible. POS/POS and POS/NEG
express certain combinations, EXP explicitly enumerates
‘better-than’ relationships.

AROUND prefers values closest to a stated value, BE-
TWEEN prefers values closest to a stated interval. LOW-
EST and HIGHEST prefer lower and higher values, resp.
SCORE maps attribute values to numerical scores, prefer-
ring higher scores.

Compound preferences can be gained inductively by
complex preference constructors:

• Pareto preferences: P := P1 ⊗⊗⊗⊗ P2 ⊗⊗⊗⊗ ... ⊗⊗⊗⊗ Pn
P is a combination of equally important preferences,
implementing the Pareto-optimality principle.

• Prioritized preferences: P := P1 & P2 & ... & Pn
P evaluates more important preferences earlier,
similar to a lexicographical ordering. P1 is most im-
portant, P2 next, etc.

• Numerical preferences: P := rankF(P1, P2, ..., Pn)
P combines SCORE preferences Pi by means of a
numerical ranking function F.

Concerning the formal definitions of preference con-
structors the reader is referred to [13].

Example 1: Preference constructors

“Julia wishes to buy a used car. It must be a BMW.
Moreover, it should have a red or black color and
equally important is a price around 10,000. Highest
fuel economy matters too, but is less important.”

Wanting a BMW is a hard condition. Julia’s preferences,
i.e. soft conditions, can be extracted right away from this
natural language description as follows:
 PJulia = (POS(color,{’red’,’black’})⊗

AROUND(price,10000))

& HIGHEST(fuel_economy) ☼

Preference construction is inductively closed under
strict partial order semantics ([13]). Due to a well-known
theorem in [9] (see also [5]) numerical preferences have a
limited expressiveness. Many strict partial order prefer-
ences cannot be described by numerical preference con-
structors only. Therefore the support of the full preference
constructor spectrum as described is a practical necessity.

2.2 The BMO Query Model

Extending declarative query languages by preferences
leads to soft selection conditions. To combat the empty-
result and the flooding effects the Best-Matches-Only
(BMO) query model has been proposed in [13]. Assum-
ing a preference P = (A, <P) and a database relation R,
BMO query answering conceptually works as follows:

• Try to find perfect matches in R wrt. P.
• If none exist, deliver best-matching alternatives, but

nothing worse.

Efficient BMO query evaluation requires two new re-
lational operators. Assuming a relation R where A ⊆ at-
tributes(R), we define:

• Preference selection σσσσ[P](R):
 σ[P](R) := {w ∈ R | ¬∃v ∈ R : w[A] <P v[A]}

A preference can also be evaluated in grouped mode,
given some B ⊆ attributes(R). According to [13] this can
be expressed as a preference itself:

 w <P groupby B v iff w[A] <P v[A] ∧ w[B] = v[B]
• Grouped preference selection σσσσ[P groupby B](R):
 σ[P groupby B](R) :=

 {w∈R | ¬∃ v ∈ R : w[A] <P v[A] ∧ w[B] = v[B]}

σ[P](R) and σ[P groupby B](R) can perform the
match-making process as required by BMO semantics.

2.3 Practical Preference Query Languages

Existing implementations are Preference SQL for SQL
environments and Preference XPATH for XML ([16]).
Subsequently we will use Preference SQL syntax for our
case studies. Preference queries are specified as follows:

SELECT <projection list L>
FROM <R1, …, Rn>
WHERE <hard conditions H>
PREFERRING <soft conditions P>
GROUPING <B1, …, Bm>;

SELECT-FROM-WHERE is standard SQL, whereas
PREFERRING-GROUPING cares for preferences.

3

Example 2: A preference query and its BMO result

“Under no circumstances Michael can afford to spend
more than 35,000 Euro for a car. Other than that he
wishes that the car should be a BMW or a Porsche, it
should be around 3 years old and the color shouldn’t be
red. All these preferences are equally important to him.“

Michael’s overall preference is specified by:
 PMichael = POS(brand,{‘BMW’,‘Porsche’}) ⊗

AROUND(age,3) ⊗
NEG(color,{‘red’})

Given that the car database is organized as shown be-
low, the Preference SQL query asking for Michael’s best
matching cars is as follows:

SELECT u.price, c.brand, u.age, u.color
FROM used_cars u, category c
WHERE u.ref = c.ref AND

u.price <= 35000
PREFERRING c.brand IN (‘BMW’, ‘Porsche’)

AND u.age AROUND 3
AND u.color NOT IN (‘red’);

Note that ‘AND’ in the WHERE-clause means Boolean
conjunction, whereas ‘AND’ in the PREFERRING-clause
denotes Pareto preference construction. Now let’s evalu-
ate above query against this car database:

 used_cars
ref price age color sid car#
1 25,000 4 red 1 1
2 20,000 5 blue 2 2
3 30,000 3 yellow 3 3
4 27,000 4 blue 4 4
1 30,000 4 blue 1 5
4 15,000 6 red 5 6
5 40,000 3 black 6 7

 category
ref brand type horsepower
1 BMW cabriolet 200
2 Renault coupé 75
3 Fiat coupé 45
4 Audi avant 150
5 Porsche cabriolet 350

Unfortunately the black Porsche is absolutely unafford-
able and must be dismissed beforehand. From the two
BMWs, both being top on brand and equal on age, the
blue one dominates the red because of the better color.
The Renault is dominated by the blue BMW, too. How-
ever, the Fiat and the blue BMW are unordered, since the
BMW wins on brand, but looses on age. Lastly, both
Audis are beaten by the BMWs. Thus the overall prefer-
ence query result under BMO semantics is this:

price brand age color
30,000 BMW 4 blue
30,000 Fiat 3 yellow

 ☼

3 Relational Preference Query Optimization

3.1 Preference Relational Algebra

For the scope of this paper we restrict our attention to the
non-recursive relational case, although our preference
model is applicable to the general case of recursive de-
ductive databases as well ([14]).

Let preference relational algebra denote the follow-
ing two sets of operations:

• Standard positive relational algebra:
hard selection σσσσH(R) given a Boolean condition H,
projection ππππ(R), union R∪∪∪∪S, Cartesian product R××××S

• Preference operations:
- preference selection σσσσ[P](R)
- grouped preference selection σσσσ[P groupby B](R)

Due to a theorem in [6] the expressive power of pref-
erence relational algebra is the same as classical relational
algebra (i.e. positive relational algebra plus “∖∖∖∖”). Conse-
quently preference queries under BMO can be rewritten
into relational algebra (which is done by Preference SQL,
see [17]). It also implies that the optimization problem for
preference relational algebra is not harder than for classi-
cal relational algebra, i.e. in principle preferences can be
integrated into SQL with sufficient performance.

3.2 Operational Semantics of a Preference Query

Defining the semantics of a declarative query language in
general requires a model-theoretic semantics (to capture
the declarative aspects) and an equivalent fixpoint seman-
tics (to capture the operational aspects of query evalua-
tion). For Preference SQL this task can be embedded into
the larger framework of Datalog-S, employing subsump-
tion models and subsumption fixpoints, resp. ([18]).

Since our focus is here on algebraic optimization of
relational preference queries, we can exploit the equiva-
lence of relational algebra and preference relational alge-
bra to define the operational semantics. Let’s consider a
preference query Q in Preference SQL syntax. Then the
operational semantics of Q is defined as:

 If <grouping clause does not exist>
 then ππππL (σσσσ[P](σσσσH (R1 ×××× ... ×××× Rn)))
 else ππππL (σσσσ[P groupby{B1, …, Bm}] (σσσσH(R1 ×××× ... ×××× Rn)))

This canonically extends the familiar relational case
([23]). Referring back to our example 2, the operational
semantics of this preference query is as follows.

4

Example 2 (cont’d): Operational semantics

πu.price, c.brand, u.age, u.color

(σ[POS(c.brand,{’BMW’,’Porsche’}) ⊗
AROUND(u.age,3) ⊗ NEG(color,{’red’})]

(σu.ref = c.ref ∧ u.price <= 35000

(used_cars u × category c))) ☼

Such an initial preference relational algebra expression
will be subject to algebraic optimization methods devel-
oped subsequently.

3.3 Architectural Design Issues

Extending an existing SQL implementation by preference
queries requires some crucial design decisions for the
preference query optimizer.

� The loosely coupled pre-processor architecture:
Preference queries are processed as sketched in figure

1 by rewriting them to standard SQL and submitting them
to the SQL database. The current version of Preference
SQL follows such a loose coupling, achieving acceptable
performance in many e-commerce applications ([17]).

Figure 1: Pre-processor approach for preference queries

� The tightly coupled architecture:
Integrating the preference query optimizer and the

SQL optimizer more tightly as sketched in figure 2 prom-
ises an even much better performance. A practical obsta-
cle might be that this implementation requires the close
cooperation with a specific SQL database manufacturer.

Here the optimization problem for preference queries
can be mapped onto preference relational algebra. In fact
we can follow the classical paradigm of database query
optimization ([23]), given a preference query Q:

1. The operational semantics of Q defines an initial op-
erator tree Tstart, whose nodes are the operators from
preference relational algebra (cmp. figure 3).

2. Tstart is optimized using some set of algebraic trans-
formation laws. Which laws to apply, and in what

order, has to be controlled by some heuristics that
intelligently prune the usually exponentially large
search space. Let Tend denote the final tree.

3. The preference relational algebra operators in Tend
must be mapped to efficient evaluation algorithms. If
there are several choices, a cost-based optimization
has to decide.

Figure 2: Tightly coupled preference query evaluation

Figure 3: Initial operator tree for example 2 (cont’d)

4 Preference Relational Algebra Laws
Among the successful heuristic strategies of algebraic
relational query optimization are ‘push hard selection’
and ‘push projection’. We extend this idea by developing
transformation laws for preference relational algebra that
allow us to perform ‘push preference’ within operator
trees.

4.1 Transformation Laws

Some annotations of the subsequent theorems refer to left-
to-right ‘push’ transformations. We use attr(R) to denote
all attributes of a relation R. The proofs are given in the
appendix.

Theorem L1: Push preference over projection

Let P = (A, <P) and A, X ⊆ attr(R).
a) σ[P](πX(R)) = πX(σ[P](R)) if A ⊆ X
b) πX(σ[P](πX ∪ A(R))) = πX(σ[P](R)) otherwise

5

Theorem L2: Push preference over Cartesian product

Let P = (A, <P) and A ⊆ attr(R).
σ[P](R × S) = σ[P](R) × S

Theorem L3: Push preference over union

Let P = (A, <P) and A ⊆ attr(R) = attr(S).
σ[P](R ∪ S) = σ[P](σ[P](R) ∪ σ[P](S))

Theorem L4 : Split prioritization into grouping

Let P1 = (A1, <P1), P2 = (A2, <P2) and A1, A2 ⊆ attr(R).
 σ[P1 & P2](R) = σ[P2 groupby A1](σ[P1](R))

Corollary 1: Simplify prioritization

σ[P1 & P2](R) = σ[P2](σ[P1](R)) if P1 is a chain

LOWEST and HIGHEST preferences are chains, i.e. total
orders. If P1 and P2 are chains, P1 & P2 is a chain ([13]).

Recalling the definition of the operational semantics
of a preference query Q the reader might have asked her-
self or himself, why σH is applied before σ[P] and not
vice versa, and whether this would make a difference. It
turns out that σ[P] can be interchanged with σH only un-
der a rather strong precondition. (This is also one reason
why Preference SQL in addition supports the ’BUT
ONLY’ clause for hard selections after preference selec-
tion [17].)

Theorem L5: Push preference over hard selection

 σ[P](σH(R)) = σH(σ[P](R)) iff
 ∀w ∈ R: (H(w) ∧ ∃ v ∈ R: w[A] <P v[A] implies H(v))

Corollary 2: Special cases of L5

Let P1 := LOWEST(A), P2 := HIGHEST(A).
a) σ[P1](σA <= c (R)) = σA <= c (σ[P1](R))
b) σ[P2](σA >= c (R)) = σA >= c (σ[P2](R))

Since a relational join is a hard selection over a Carte-
sian product, pushing σ[P] over a join is more difficult.

Theorem L6 Push preference over a join

Let P = (A, <P), A ⊆ attr(R) and X ⊆ attr(R) ∩ attr(S).
a) σ[P](R R.X = S.X S) = σ[P](R) R.X = S.X S,
 if each tuple in R has at least one join partner in S

Let R R.X = S.X S denote a semi-join operation.
b) σ[P](R R.X = S.X S) =
 σ[P](R R.X = S.X S) R.X = S.X S
c) σ[P](R R.X = S.X S)) =
 σ[P](σ[P groupby X](R) R.X = S.X S)

Further let B ⊆ attr(S).
d) σ[P groupby B](R R.X = S.X S) =
 σ[P groupby B](σ[P groupby X](R) R.X = S.X S))

Note that as a special case law L6a is applicable, if
R.X is a foreign key referring to S.X. If no such meta-

information is available, then L6b explicitly computes all
join partners. Sometimes a preference must be split before
a part of it can be pushed over a join.

Theorem L7: Split Pareto preference and push over join

Let P1 = (A1, <P1) where A1 ⊆ attr(R), P2 = (A2, <P2)
where A2 ⊆ attr(S). Further let X ⊆ attr(R) ∩ attr(S).

σ[P1 ⊗ P2](R R.X = S.X S) =
σ[P1 ⊗ P2] (σ[P1 groupby X](R) R.X = S.X S)

Theorem L8: Split prioritization and push over join

Let P1 = (A1, <P1) where A1 ⊆ attr(R), P2 = (A2, <P2)
where A2 ⊆ attr(R) ∪ attr(S) and let X ⊆ attr(R) ∩ attr(S).

a) σ[P1 & P2](R R.X = S.X S) =
σ[P2 groupby A1](σ[P1](R) R.X = S.X S),

 if each tuple in R has at least one join partner in S
b) σ[P1 & P2](R R.X = S.X S) =
 σ[P2 groupby A1](σ[P1](R R.X = S.X S) R.X = S.X S)

Concerning the precondition on join partners the same
remark as for L6 applies here too.

Next we state some handy laws to simplify complex
grouped preference selections.

Theorem L9: Simplify grouped preference selections

Let P = (A, <P), P1 = (A1, <P1), P2 = (A2, <P2) and A, B, B1,
B2 ⊆ attr(R).

a) σ[(P groupby B1) groupby B2](R) =
σ[P groupby (B1 ∪ B2)](R)

b) σ[(P1 groupby B) & P2](R) =
σ[(P1 & P2) groupby B](R)

c) σ[P1 ⊗ (P2 groupby B)](R) =
σ[(P1 ⊗ P2) groupby B](R)

d) σ[(P1 groupby B1) ⊗ (P2 groupby B2)](R) =
 σ[(P1 ⊗ P2) groupby (B1 ∪ B2)](R)
e) σ[P groupby B](R) = R if B is key in R

The strong precondition in theorem L5 is frequently
violated. However, in some cases we can state other use-
ful laws for cascades of preference and hard selections.

Theorem L10: Cascade of preference and hard selection

a) Let P = (A, <P) and A, B ⊆ attr(R):
σ[P](σB = c (R)) = σB = c (σ[P groupby B](R))
σ[P](σA = c (R)) = σA = c (R)

b) Let P := BETWEEN(A, [c1, c2]):
 σ[P](σA >= c (R)) = σ[LOWEST(A)](σA >= c (R)), if c > c2

 σ[P](σA <= c (R)) = σ[HIGHEST(A)](σA <= c (R)), if c < c1

 σ[P](σA >= c1 ∧ A <= c2 (R)) = σ A >= c1 ∧ A <= c2 (R)
Let H := ‘A = c1 ∨ ... ∨ A = cn’, H-set := {c1, ..., cn}.

c) Let P := POS(A, Pos-set), Pos-set = {v1, ..., vm}:
if H-set ∩ Pos-set = Ø or H-set ⊆ Pos-set
then σ[P](σH (R)) = σH(R)

d) Let P := NEG(A, Neg-set), Neg-set = {v1, ..., vm}:
if H-set ∩ Neg-set = Ø or H-set ⊆ Neg-set

6

 then σ[P](σH (R)) = σH(R)
e) Let P = POS/NEG(A, POS-set; NEG-set),

POS-set={v1, ..., vm}, NEG-set = {vm+1, ..., vm+n}:
If H-set ⊆ POS-set or H-set ⊆ NEG-set or

H-set ∩ (POS-Set ∪ NEG-Set) = Ø
then σ[P](σH (R)) = σH(R)

f) Let P = POS/POS(A, POS1-set; POS2-set),
POS1-set={v1, ..., vm}, POS2-set = {vm+1, ..., vm+n}:
If H-set ⊆ POS1-set or H-set ⊆ POS2-set or

H-set ∩ (POS1-Set ∪ POS2-Set) = Ø
then σ[P](σH (R)) = σH(R)

Since AROUND is a preference sub-constructor of BE-
TWEEN ([13]) we get another corollary for free.

Corollary 3: AROUND inherits from BETWEEN

Theorem L10b holds also for P := AROUND(A, z).

Theorem L11: Commutativity and associativity

a) σ[P1 ⊗ P2](R) = σ[P2 ⊗ P1](R)
b) σ[(P1 ⊗ P2) ⊗ P3](R) = σ[P1 ⊗ (P2 ⊗ P3)](R)
c) σ[(P1 & P2) & P3](R) = σ[P1 & (P2 & P3)](R)

L11 follows directly from [13]. It also implies that
laws on Pareto preferences like L7 are commutative.

 Note that since ‘P groupby B’ is a preference itself, in
each of the previous laws a preference may be grouped or
not, unless explicitly required like e.g. in L9. For instance,
given a grouping preference L1a reads as follows:

πX(σ[P groupby B](R)) =
σ[P groupby B](πX (R)) if A, B ⊆ X

4.2 Integration with a Relational Query Optimizer

Because preference relational algebra extends relational
algebra, we can construct a preference query optimizer as
an extension of a classical relational query optimizer. Im-
portantly, we can inherit all familiar laws from relational
algebra ([23]). Thus we can apply well-established heu-
ristics aiming to reduce the sizes of intermediate relations,
e.g. ‘push hard selection’ and ‘push projection’. Let’s
consider this basic hill-climbing algorithm ([23]), given a
suitable repertoire of relational algebra transformations:

Algorithm Pass-1(T):
{ update T:

Step 1-1: <split hard selections>;
Step 1-2: <push hard selections as far as possible>;
Step 1-3: <push projections as far as possible>;
Step 1-4: <combine hard selections and Cartesian

products into joins>; return T}

Expanding the given repertoire of relational transfor-
mations by our new laws L1 to L11 raises the issue of
how to integrate them into above procedure. In particular,
we want to add the heuristic strategy of ‘push preference’.
Mixing the new transformations into the given optimiza-

tion strategy would give the highest flexibility. But from a
software engineering point of view this might be prob-
lematic. A possibly less flexible, but much less invasive
way is to extend the existing relational query optimizer by
a second pass as illustrated below.

Figure 4: Two-pass principle for algebraic optimization

Given a preference query Q, its initial operator tree
Tstart is submitted to Pass-1, beginning its work at the sub-
tree below the preference node. The output tree Trel is
handed over to our novel Pass-2, working as follows:

Algorithm Pass-2(T):
{ repeat <traverse T in a depth-first way>
 { Step 2-1: // simplify prioritization
 apply corollary 1;
 Step 2-2: // push preference over projection,
 Cartesian product or union

 apply L1a; L1b; L2; L3;
 Step 2-3: // push preference over join

 apply L6a; L6b;
 Step 2-4: // split preference and push over join

 apply L7; L9e; L8a; L8b };
 Step 2-5: // push projections as far as possible
 apply Step 1-3 including L1a, L1b in ‘pull’ mode;
 return T}

Pass-2(T) checks, if ‘push preference’ transformations
are applicable and updates T accordingly. Finding a
‘good’ ordering of transformations is as usual a difficult,
heuristic task. Starting with corollary 1 in Step 2-1should
always be ok. Also in any case Step 2-3 should come be-
fore Step-4 because of a better filter effect. L11a-c are
implicitly utilized by Step 2-4 to localize suitable split
points. L9e undoes apparently harmful firings of L7. Note
that L7 and L8a,b relate to different situations, hence their
relative order within Step 2-4 does not matter. T is repeat-
edly traversed until no more preferences can be pushed.
To prevent an infinite firing of laws like L7, proper con-
text information is maintained. Finally in Step 2-5 we re-
invoke Step 1-3, since Pass-1 started its job only below
the preference node in Tstart. Then Pass-2(T) terminates
and returns the final operator tree Tend.

Note that laws L9a-d, L10a-d are not implemented for
the time being. Laws L4, L5, L6c, d are required for proof
purposes. Now we demonstrate the potential of such a
preference query optimizer by two practical case studies.

4.3 Case Studies

Let’s revisit our example 2, adding another relation:

7

 seller(sid,name,street,zipcode,city)
In used_cars we assume that ref and sid are foreign
keys from category and seller, resp., and Car# is
primary key.

Example 3: Complex preference query Q1

SELECT s.name, u.price
FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref AND

(u.color = 'red’ OR u.color = 'gray’)
PREFERRING

(LOWEST u.age AND
u.price BETWEEN 5000, 6000)

PRIOR TO c.brand IN ('BMW')
PRIOR TO s.zipcode AROUND 86609;

Figure 5: Trel after pass 1 (complex query)

The tree Trel as output by Pass-1 is depicted in figure
5. Given Trel Pass-2 performs the following sequence of
preference transformations to produce the final operator
tree Tend in figure 6: L8a; L8a; L1b; L1a; L1a

Figure 6: Tend after pass 2 (complex query)

Let’s compare Tend vs. Trel:
- Join costs: The lower join’s left operand in Tend is re-

duced by the preference selection marked PA in figure 6.
This in turn, intensified by the preference selection PB,
reduces the size of the upper join’s left operand in Tend.

- Preference costs: PA is simpler than the original P in
Trel, but it’s still a compound preference. However, both
PA and PC are simpler, i.e. grouped base preferences.

Now the tradeoff is more apparent. Our heuristics of
‘push preference’ -in particular over joins- will pay off, if
the savings for join computation outweigh the preference
costs of PA, PB, PC vs. the original P. ☼

Skyline queries as studied in [4] are a sub-class of Pa-
reto preferences. Here is one in Preference SQL syntax.

Example 4: Skyline query Q2

SELECT s.name, u.price
FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref AND

c.brand = 'BMW'
PREFERRING LOWEST u.age AND
LOWEST u.price AND HIGHEST c.horsepower;

Figure 7: Trel after pass 1 (skyline query)

The tree Trel output by Pass-1 is depicted in figure 7.
Given Trel Pass-2 performs these preference transforma-
tions to generate the final tree Tend depicted in figure 8:

 L6a; L7; L7; L9e; L1b; L1a

Here a comparisons of Tend vs. Trel yields:
- Join costs: The same arguments as above apply.
Preference costs: The original skyline P has been pushed
and split into two skylines PA and PB = P. ☼

8

Figure 8: Tend after pass 2 (skyline query)

5 Performance Evaluation
Finally we present performance experiments from a pro-
totype implementation of our preference query optimizer,
employing the two-pass engineering principle for alge-
braic transformations. Since we did not have quick access
to a commercial SQL query engine to tightly integrate our
novel optimization techniques we decided to simulate it.
For the sake of rapid prototyping we built a Java middle-
ware on top of Oracle 9i. This task has been facilitated by
the use of the XXL Java-library ([3]), offering a collection
of relational algebra operators.

5.1. Prototype Implementation

Figure 9 illustrates how a preference query Q is evaluated:
• Q is mapped onto its initial operator tree Tstart.
• Tstart is algebraically optimized, employing Pass-1

with output Trel and Pass-2 with final output Tend.
• Tend is submitted to an evaluation middleware, util-

izing XXL for relational operations and providing
own Java implementations of the preference opera-
tors σ[P](R) and σ[P groupby B](R).

• All persistent database relations are managed by
Oracle 9i, accessed from XXL via JDBC.

Figure 9: Rapid prototyping for performance studies

The development of efficient evaluation algorithms for
σ[P](R) is considerably facilitated by the constructor-
based approach of our preference model. Depending on

the preference constructor P we can efficiently custom-
design the evaluation method for σ[P](R) as follows.

Most specific evaluation algorithms for σσσσ[P](R):
We generalized the basic block nested loop algorithm
BNL, investigated by [4] in the context of skyline queries,
to arbitrary strict partial order preferences. However, the
subsumption test ‘x <P y’ within BNL can be simplified
significantly, if P is known to have special properties.
This is the case for each of our base preference construc-
tors (cmp. section 2.1). Therefore we have implemented
the following evaluation policy for σ[P](R):

• If P is a complex preference (i.e. constructed e.g. by
‘⊗’ and-or ‘&’), then the general BNL applies.

• Otherwise, if P is a base preference constructor, then
a specialized algorithm for this P has to be chosen.

BNL is known to degrade to O(n2) in the worst case.
In contrast, the complexity of specialized algorithms for
base preference constructors is much better: O(n) if no
index support is provided, otherwise O(log n).

Considering σ[P groupby B](R), directly exploiting its
formal definition as a complex preference and applying
BNL would risk an O(n2) performance penalty. More effi-
cient is to implement the grouping effect e.g. by sorting
and to invoke the most specific algorithm for P on each
group. Therefore if P is a base preference, an O(n log n)
behavior can be accomplished for σ[P groupby B](R).

The procedure Evaluate(T) in figure 9 traverses T
and maps subtrees to XXL methods or most specific pref-
erence algorithms, returning JDBC ResultSets. Pipelining
of XXL and of preference algorithms is enforced as much
as possible. Expressions of type π(σH(R)), possibly ex-
tended by semi-joins generated by laws L6b or L8b, are
evaluated by Oracle if R is a database relation. To expe-
dite the evaluation of grouped preferences on π(σH(R))
the ResultSet is returned ordered by B. Moreover, we
replaced the nested-loops join of XXL by a more efficient
hash join. Doing so, our heuristics of ‘push preference’
has a tougher task to prove its benefits.

5.2 Performance Results

We have built up a test suite for performance evaluation.
Given a preference query Q, we carried out the following
performance measurements in our rapid prototype:

• Runtime tend for evaluating Tend (in sec.)
• Runtime trel for evaluating Trel (in sec.)

As an indicator for the optimization impact of our new
approach we choose the speedup factor SF1:= trel / tend.

The experiments were performed on a standard PC (2
GHz CPU, 512 MB main memory) running XP and JDK
1.3. The relation seller has 5000 tuples, category
has 1000, while used_cars varies from 1000 to 50000.

9

All data have been generated synthetically. Values are
uniformly distributed. Attributes are uncorrelated except
that higher age anti-correlates with higher price.

We present selected characteristic tests, beginning
with our running examples 3 and 4. Please note that the
operator trees for the examples are given in appendix 2.

Example 3 (cont’d): Performance results for Q1

For the transformation sequence and the pushed and split
preferences PA, PB and PC please refer back to example 3.

used_cars 1000 5000 10000 50000
BMO size 15 59 138 518

trel 0.7 0.8 1.1 4.3
tend 0.2 0.3 0.5 2.8
SF1 3.5 2.7 2.2 1.5

The original P was split and pushed twice by L8a. PB
and PC are grouped base preferences and can be evaluated
reasonably fast. The net effect is a sizeable performance
gain as indicated by SF1. ☼

Example 4 (cont’d): Performance results for Q2

For the transformation sequence and the pushed and split
preferences PA and PB please refer back to example 4.

used_cars 1000 5000 10000 50000
BMO size 26 42 78 91

trel 0.7 0.9 1.3 4.4
tend 0.2 0.5 0.8 3.3
SF1 3.5 1.8 1.6 1.3

The original skyline P was pushed by L6a and split
producing the skylines PA and PB = P. Though both are
evaluated by the general BNL algorithm, their early filter
effect dominates as reflected by SF1. ☼

Example 5: Performance results for Q3

Q3 is derived from Q2 by changing the preference into:

 P = LOWEST(u.age) &
 (LOWEST(u.price) ⊗ HIGHEST(c.horsepower))

The preference transformations carried out are:
 Cor1; L6a; L6b; L6a; L7; L7; L9e;
L1b; L1a; L1b

Pushed and split preferences in Tend are:
 PA = LOWEST(u.age)
 PB = LOWEST(u.price) groupby {u.ref}
 PC = LOWEST(u.price) ⊗ HIGHEST(c.horsepower)

used_cars 1000 5000 10000 50000
BMO size 3 2 6 4

trel 0.7 0.8 1.0 3.5
tend 0.2 0.2 0.3 0.4

SF1 3.5 4.0 3.3 8.8

The early filter effect accomplished by the highly se-
lective and efficient base preference PA is the key factor
for these substantial SF1-gains. ☼

Example 6: Performance results for Q4

Q4 is derived from Q2 by changing the preference into:
 P = LOWEST(u.age) & LOWEST(u.price)

The preference transformations are:
 Cor1; L6a; L6b; L6a; L6b; L1a; L1b
Pushed and split preferences in Tend:
 PA = LOWEST(u.age), PB = LOWEST(u.price)

used_cars 1000 5000 10000 50000
BMO size 1 1 1 1

trel 0.6 0.8 1.0 3.9
tend 0.2 0.2 0.2 0.4
SF1 3.0 4.0 5.0 9.8

Query Q4 is simpler than the previous Q3. Here P can be
split and pushed even into two highly selective and effi-
cient base preferences PA and PB, resulting in a high per-
formance speedup. ☼

Example 7: Performance results for Q5

SELECT s.name, u.price as 'pr',
u.age as 'ag', c.horsepower AS 'hp'

FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref AND

(u.color = 'red' OR u.color = 'gray')
UNION
SELECT s.name, u.price as 'pr',

u.age as 'ag', c.horsepower AS 'hp'
FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref AND

c.brand = 'BMW'
PREFERRING (LOWEST ag AND LOWEST pr)

PRIOR TO HIGHEST hp;

The sequence of preference transformations is:
L3; L1a; L6a; L8a; L1a; L6a; L8b;
L1a; L1a; L1a; L1a

Pushed and split preferences PA, PB, PC and PD in Tend:
 PA = LOWEST(ag) ⊗ LOWEST(pr) = PC
 PB = HIGHEST(hp) groupby {pr, ag} = PD

used_cars 1000 5000 10000 50000
BMO size 17 24 28 29

trel 1.2 1.6 1.9 5.4
tend 0.4 0.5 0.6 1.3
SF1 3.0 3.2 3.2 4.2

L3 is the catalyst for all pushes and splits. PB, PD can
be evaluated reasonably fast, hence good SF1-values. ☼

10

Example 7: Performance results for Q6

SELECT u.price FROM used_cars u, seller s
WHERE u.sid = s.sid
PREFERRING u.price BETWEEN 5000, 30000 AND

u.age AROUND 25 AND
s.zipcode BETWEEN 20000, 50000;

This query has very large BMO sets.

used_cars 1000 5000 10000 50000
BMO size 619 2931 5530 20047

trel 2.3 44.2 159.3 2614.9
tend 1.9 39.1 139.1 2081.8
SF1 1.2 1.1 1.1 1.3

The preference transformations are:
 L7; L7; L9e; L1b; L1a
Pushed and split preferences in Tend:
 PA = (BETWEEN(u.price, [5000, 30000]) ⊗
 AROUND(u.age)) groupby {u.sid}
 PB = BETWEEN(u.price, [5000, 30000]) ⊗
 AROUND(u.age) ⊗
 BETWEEN(s.zipcode, [20000, 50000])

No specific evaluation algorithms can be applied here.
The used general BNL algorithm degrades to O(n2),
causing horrible performance figures in any case. ☼

We also executed some test queries on Preference
SQL 1.3, running loosely coupled on Oracle 9i. SF2 as
defined below compares it with our rapid prototype:

• Runtime tPref-SQL (in sec.)
• Performance speedup factor SF2:= tPref-SQL / tend

Though Preference SQL is known as reasonably fast,
the subsequent numbers show already SF2 > 1, which is
quite remarkable for a rapid prototype carrying this much
overhead. (Note that SF2 could not be measured in each
case, because prioritization P1 & P2 is supported in Prefer-
ence SQL 1.3 only if P1 is a chain.)

used_cars 1000 5000 10000 50000
SF2 : Q2 2.5 1.4 1.5 3.5
SF2 : Q3 2.0 3.0 2.0 2.3
SF2 : Q4 2.0 2.0 2.5 2.0

5.3 Lessons Learned so far

So far we have seen cases with 1 < SF2 and SF1 being
already quite good. But there are many more tuning op-
portunities. For instance, recall that we intentionally have
favored join costs by implementing a fast hash join in
XXL, but using the sub-optimal BNL algorithms for gen-
eral preference evaluation. Clearly, if the latter is replaced
by advances like [4, 19, 21, 22], SF1 will increase consid-
erably. All specialized evaluation algorithms for base
preference constructors were implemented by plain O(n)
methods. Obviously the use of indexing achieves another
substantial performance boost. When migrating to a tight

integration the JDBC overhead will be eliminated either.
Implementing all these add-on improvements is straight-
forward and will upgrade performance by large extents,
maybe by orders of magnitude. Options for further per-
formance speedup concern the sophistication of our Pass-
2 and the topic of cost-based query optimization. Im-
proving the quality of the ‘push preference’ heuristics is a
learning process, similar to a classical SQL optimizers.
Our algebraic approach to preference query optimization
will be a good foundation to come up with cost estimation
models for critical issues like preference selectivity.

In summary our experiments give already strong evi-
dence that a tightly integrated preference query optimizer
can achieve excellent performance. Enabled by the foun-
dations of algebraic optimization we believe that we have
revealed the entrance to a performance tuning gold mine,
having many more options up our sleeves. A comprehen-
sive performance testing is under way right now.

6 Related Works
The optimization of preference queries with BMO se-
mantics poses new research challenges. Based on a tech-
nical report in July 2002 several preference relational al-
gebra laws have been published by the authors in [15]. J.
Chomicki’s independent work focuses on a relaxation of
strict partial order semantics for preferences: Our laws L1
and L2 are special cases of [6], L5 is a special case of [5].
Since most practical database applications seem to com-
ply with strict partial order semantics, relaxing it must be
carefully weighed; transformations can become invali-
dated, which in turn decreases preference query perform-
ance. Here we have presented a further series of new laws
plus, for the first time, performance evaluations with a
carefully engineered preference query optimizer.

In [4] a transformation for pushing skyline preferences
through joins, being an instance of our law L6a, has been
presented without a formal proof. Likewise a method for
pushing skylines into a join, being an instance of law L7,
can be found there. The notion of non-reductive joins is
related to our laws L6 and L7.

BMO is compatible with the top-k query model, which
has been quite popular with numerical preferences. A
theorem in [5] ensures that in principle top-k can be pro-
vided by means of BMO as follows: If the result res of
σ[P](R) has m tuples and m ≥ k, return k of them; other-
wise deliver those m and find the remaining ones by
σ[P](R ∖ res). In this way top-k query semantics can be
provided for arbitrary strict partial order preferences, not
only for numerical preferences. How skylines relate to
top-k was addressed in [4] before.

Several algorithms have been proposed to efficiently
implement numerical preferences for top-k querying, e.g.
[1, 2, 7, 10, 11]. Efficient skyline algorithms were inves-
tigated e.g. by [4, 19, 21, 22].

11

7 Summary and Outlook
Assigning a strict partial order semantics to preferences is
a good choice in many database applications. A rich rep-
ertoire of intuitive preference constructors can facilitate
the design of personalized applications. Since numerical
preferences are of limited expressiveness, constructors for
Pareto and prioritized preferences are required too. One
might argue that such a high modeling convenience leads
to runtime inefficiency. However, our contributions give
strong evidence that for relational preference queries with
BMO semantics this is not the case.

We have laid the foundations of a framework for pref-
erence query optimization that extends established query
optimization techniques from relational databases. Prefer-
ence queries can be evaluated by preference relational
algebra, extending classical relational algebra by two new
preference operators. We have provided a series of novel
transformation laws for preference relational algebra that
are the key to algebraic optimization. A preference query
optimizer can be constructed as an extension of existing
SQL optimizers, adding new heuristics like ‘push prefer-
ence’. In this way the decade-long investments and expe-
riences with relational query optimizer can be inherited
completely. We presented a rapid prototype of such a
preference query optimizer and carried out a series of per-
formance experiments. The performance speedups ob-
served so far give already strong evidence that a tightly
coupled implementation inside an existing SQL query
engine can achieve excellent performance.

Currently there are several projects within our “It’s a
Preference World” program that use Preference SQL or
Preference XPATH, e.g. [8]. Building on the fundamental
insights developed here for heuristic preference query
optimization, the important issue of cost-based optimiza-
tion can be tackled next. We will also extend our optimi-
zation framework to recursive preference queries, where
we can start over from research results on pushing prefer-
ence selection over recursion established already in [18].
Algebraic optimization of numerical preferences, which
was not covered here, is another interesting topic.

In summary we believe that we have contributed a
crucial stepping stone towards efficient preference query
optimization: Database technology can offer very good
support for preferences and personalization, both in terms
of ease of modeling and high efficiency.

Acknowledgments
We thank W.T. Balke, J. Chomicki, U. Güntzer and Q.

Wang for helpful comments on a draft of this paper.

References
[1] R. Agrawal, E. L. Wimmers: A Framework for Ex-

pressing and Combining Preferences. Proc. ACM
SIGMOD, May 2000, Dallas, pp. 297 - 306.

[2] W.-T. Balke, U. Güntzer, W. Kießling: On Real-time
Top k Querying for Mobile Services. Intern. Conf. on
Cooperative Information Systems (CoopIS), Irvine,
CA, USA, Nov. 2002, pp. 125-143.

[3] J. Bercken, B. Blohsfeld, J. Dittrich, et al.: XXL - A
Library Approach to Supporting Efficient Imple-
mentations of Advanced Database Queries. Proc.
27th VLDB, Rome, Sept. 2001, pp. 39-48.

[4] S. Börzsönyi, D. Kossmann, K. Stocker: The Skyline
Operator. Proc. 17th Intern. Conf. On Data Engi-
neering (ICDE), Heidelberg, April 2001, pp. 421-
430.

[5] J. Chomicki: Querying with Intrinsic Preferences.
Proc. Intern. Conf. on Advances in Database Tech-
nology (EDBT), Prague, March 2002, pp. 34-51.

[6] J. Chomicki: Preference Queries in Relational Da-
tabases. Univ. of Buffalo, Online Technical Report,
arXiv:cs.DB/0207093, Aug 2002.

[7] R. Fagin, A. Lotem, M. Naor: Optimal Aggregation
Algorithms for Middleware. Proc. ACM PODS,
Santa Barbara, May 2001, pp. 102-113.

[8] S. Fischer, W. Kießling, S. Holland, M. Fleder: The
COSIMA Prototype for Multi-Objective Bargaining,
1st Intern. Joint Conf. on Autonomous Agents &
Multiagent Systems (AAMAS), Bologna, July 2002,
pp. 1364-1371.

[9] P. C. Fishburn: Preference Structures and their Nu-
merical Representations. Theoretical Computer Sci-
ence, 1999, 217:359-383.

[10] U. Güntzer, W.-T. Balke, W.Kießling: Optimizing
Multi-Feature Queries for Image Databases. Proc.
26th VLDB, Cairo, Egypt, Sept. 2000, pp. 419-428.

[11] V. Hristidis, N. Koudas, Y. Papakonstantinou: PRE-
FER : A System for the Efficient Execution of Multi-
parametric Ranked Queries. Proc. ACM SIGMOD,
May 2001, Santa Barbara, pp. 259 - 269.

[12] R. Keeney, H. Raiffa: Decisions with Multiple Ob-
jectives: Preferences and Value Tradeoffs. Cam-
bridge University Press, UK, 1993.

[13] W. Kießling: Foundations of Preferences in Data-
base Systems. Proc. 28th VLDB, Hong Kong, China,
Aug. 2002, pp. 311-322.

[14] W. Kießling, U. Güntzer: Database Reasoning - A
Deductive Framework for Solving Large and Com-
plex Problems by means of Subsumption. Proc. 3rd
Workshop on Information Systems and Artificial
Intelligence, LNCS 777, Hamburg, 1994, pp. 118-
138.

[15] W. Kießling, B. Hafenrichter: Optimizing Preference
Queries for Personalized Web Services. IASTED
Intern. Conf. on Comm., Internet, Information Tech-
nology. St. Thomas, USA, Nov. 2002, pp. 461 - 466.

[16] W. Kießling, B. Hafenrichter, S. Fischer, S. Holland:
Preference XPATH: A Query Language for E-
Commerce. Proc. 5th Intern. Konf. für Wirtschaftsin-
formatik, Augsburg , Sept. 2001, pp. 425-440.

12

[17] W. Kießling, G. Köstler: Preference SQL − Design,
Implementation, Experiences. Proc. 28th VLDB,
Hong Kong, China, Aug. 2002, pp. 990-1001.

[18] G. Köstler, W. Kießling, H. Thöne, U. Güntzer: Fix-
point Iteration with Subsumption in Deductive Data-
bases. Journal of Intelligent Information Systems,
Vol. 4, Boston, USA, 1995, pp. 123-148.

[19] D. Kossmann, F. Ramsak, S. Rost: Shooting Stars in
the Sky: An Online Algorithm for Skyline
Queries. Proc. 28th VLDB, Hong Kong, Aug. 2002.

[20] M. Lacroix, P. Lavency : Preferences : Putting More
Knowledge into Queries. Proc. 13th VLDB, Brigh-
ton, 1987, pp. 217-225.

[21] D. Papadias, Y. Tao, G. Fu, B. Seeger: An Optimal
and Progressive Algorithm for Skyline Queries.
Proc. ACM SIGMOD, June 2003, San Diego.

[22] K.-L. Tan, P.-K. Eng, B. C. Ooi: Efficient Progres-
sive Skyline Computation. Proc. 27th VLDB, Rome,
Sept. 2001, pp. 301-310.

[23] J. Ullman: Principles of Database and Knowledge-
Base Systems. Vol. 1, Comp. Science Press, 1989.

Appendix 1: Proofs
All proofs use the definitions of a preference P = (A, <P),
preference selection σ[P](R) and grouped preference se-
lection σ[P groupby B](R) as stated in section 2.

Lemma 1: (proof obvious)

Given P = (A, <P) and A ⊆ X ⊆ attr(R). Then P induces a
strict partial order <X onto R:
 v, w ∈ R: v <X w ⇔ v[A] <P w[A]

Lemma 2:

Let f(r, s) be a left-total Boolean function, i.e. for every r
there exists at least one s satisfying f(r, s). The extension
of R by S through f is defined as:
 R extf S = {(r, s) | r∈R, s∈S, f(r, s)}
Let P = (A, <P) and A ⊆ attr(R), then:
 σ [P](R extf S) = σ[P](R) extf S

Proof:
σ [P](R extf S)

= {w∈ R extf S | ¬∃v ∈ R extf S: w[A] <P v[A]}
= {w∈ R extf S | ¬∃v ∈ R : w[A] <P v[A]}

 = {w∈ R | ¬∃v ∈ R : w[A] <P v[A]} extf S
 = σ[P](R) extf S ♦♦♦♦

Lemma 3:

Let P1 = (A, <P1), P2 = (A, <P2) and σ[P1](R) ⊆ σ[P2](R):
 σ[P1](R) = σ[P1](σ[P2](R))

Proof:
σ[P1](R) = σ[P1](R) ∩ σ[P2](R)
 = {w ∈ R | ¬∃v ∈ R: w[A] <P1 v[A]} ∩ σ[P2](R)
// Due to σ[P1](R) ⊆ σ[P2](R) we have:

// ¬∃v ∈ R: w[A] <P1 v[A] implies
// ¬∃v ∈ σ[P2](R): w[A] <P1 v[A]
 = {w ∈ R | ¬∃v ∈ σ[P2](R): w[A] <P1 v[A]} ∩ σ[P2](R)
 = {w ∈ σ[P2](R) | ¬∃v ∈ σ[P2](R): w[A] <P1 v[A] }
 = σ[P1](σ[P2](R)) ♦♦♦♦

Lemma 4:

σ[P1 ⊗ P2](R) ⊆ σ[P1 groupby A2](R)

Proof : Let P = (A, <P) := (A1 ∪ A2, < P1 ⊗ P2).
σ[P1 ⊗ P2](R)
 = {w ∈ R | ¬∃v ∈ R : w[A] <P v[A] } // Def ‘⊗’
 = {w ∈ R | ¬(∃v ∈ R:

 (w[A1] <P1 v[A1] ∧
 (w[A2] = v[A2] ∨ w[A2] <P2 v[A2])) ∨
 (w[A2] <P2 v[A2] ∧
 (w[A1] = v[A1] ∨ w[A1] <P1 v[A1])))}

 = {w ∈ R | ¬(∃v ∈ R:
 (w[A1] <P1 v[A1] ∧ w[A2] = v[A2]) ∨
 (w[A1] <P1 v[A1] ∧ w[A2] <P2 v[A2]) ∨
 (w[A2] <P2 v[A2] ∧ w[A1] = v[A1]))}

 = {w ∈ R |
¬((∃v∈R: (w[A1] <P1 v[A1] ∧ w[A2] = v[A2]))
 ∨ (∃v∈R: (w[A1] <P1 v[A1] ∧ w[A2] <P2 v[A2]))
 ∨ (∃v∈R: (w[A2] <P2 v[A2] ∧ w[A1] = v[A1])))}

 = {w ∈ R |
 (¬∃v∈R: (w[A1] <P1 v[A1] ∧ w[A2] = v[A2]))

 ∧ (¬∃v∈R: (w[A1] <P1 v[A1] ∧ w[A2] <P2 v[A2]))
 ∧ (¬∃v∈R: (w[A2] <P2 v[A2] ∧ w[A1] = v[A1]))}

 = σ[P1 groupby A2](R) ∩ σ[P2 groupby A1](R) ∩
 {w∈R | ∃v∈R: (w[A1] <P1 v[A1] ∧ w[A2] <P2 v[A2])}
 ⊆ σ[P1 groupby A2](R) ♦♦♦♦

Lemma 5:

Let P=(A,<P), attrib(P) ⊆ R, X ⊆ attribs (R) ∩ attirb(S)
then

σ[P groupby X](R R.X = S.X S) R.X = S.X S
 = σ[P groupby X](R) R.X = S.X S

Proof:
T’ = R R.X = S.X S

σ[P groupby X](R R.X = S.X S)
= { w ∈ T’ | ¬∃v ∈ T’ : w < v ∧ w[x] = v[x] }
= { w ∈ R | ¬∃v ∈ R: w < v ∧ w[x] = v[x]

∧ w ∈ T’ ∧ v ∈ T’ }
// w[x]=v[x] , transitivity
= { w ∈ R | ¬∃v : w < v ∧ w[x] = v[x] ∧ w ∈ T’}
= { w ∈ R | ¬∃v : w < v ∧ w[x] = v[x] } ∩ T’
= σ[P groupby X](R) ∩ R R.X = S.X S

13

σ[P groupby X](R R.X = S.X S) R.X = S.X S
= (σ[P groupby X](R) ∩ R R.X = S.X S) R.X = S.X S
= (σ[P groupby X](R) R.X = S.X S)

 ∩ ((R R.X = S.X S) R.X = S.X S)
= σ[P groupby X](R) R.X = S.X S ∩ (R R.X = S.X S)
= σ[P groupby X](R) R.X = S.X S ♦

Theorem L1: Push projection over preference

Let P = (A, <P) and A, X ⊆ attr(R).
a) σ[P](πX(R)) = πX(σ[P](R)) if A ⊆ X
b) πX(σ[P](πX ∪ A(R))) = πX(σ[P](R)) otherwise

Proof: a) Given P = (A,<P), A ⊆ X ⊆ attr(R), then:
πX(σ[P](R))

= πX({w ∈ R| ¬∃v ∈ R : w[A] <P v[A]}) // Lem1
= πX({w ∈ R| ¬∃v ∈ R : w <X v})

 = {w ∈ πX(R) | ¬∃v ∈ πX(R) : w <X v} // Lem1
 = σ[P](πX(R)) ♦♦♦♦

Proof: b) Given P = (A,<P) and ¬(A ⊆ X), then:
πX(σ[P](R))= πX(πX∪A(σ[P](R))) // ThmL1a

= πX(σ[P](πX∪A(R)) ♦♦♦♦

Theorem L2: Push preference over Cartesian product

Let P = (A, <P) and A ⊆ attr(R).
 σ[P](R × S) = σ[P](R) × S

Proof: R × S can be rewritten in terms of an extension
function: R × S = R ext× S, ×(r, s) = true
σ[P](R × S)

= σ[P](R ext× S) // Lem2
 = σ[P](R) ext× S = σ[P](R) × S ♦♦♦♦

Theorem L3: Push preference over union
Let P = (A, <P) and A ⊆ attr(R) = attr(S).

σ[P](R ∪ S) = σ[P](σ[P](R) ∪ σ[P](S))

Proof: Let T := σ[P](R) ∪ σ[P](S).
σ[P](T)

= {w ∈ T | ¬∃v ∈ T : w[A] <P v[A]} // T
= {w ∈ T | ¬((∃v ∈ σ[P](R) : w[A] <P v[A]) ∨
 (∃v ∈ σ[P](S) : w[A] <P v[A]))}
= {w ∈ T | ¬((∃v ∈ R : w[A] <P v[A] ∧ v ∈ σ[P](R)) ∨

 (∃v ∈ S : w[A] <P v[A] ∧ v ∈ σ[P](S)))}
// since <P is transitive

= {w ∈ T | ¬((∃v ∈ R : w[A] <P v[A]) ∨
 (∃v ∈ S : w[A] <P v[A]))}
= {w ∈ R ∪ S | ¬(∃v ∈ R ∪ S: w[A] <P v[A]) ∧ w ∈ T}

// again by transitivity of <P

 = {w ∈ R ∪ S | ¬(∃v ∈ R ∪ S : w[A] <P v[A])}
 = σ[P](R ∪ S) ♦♦♦♦

Theorem L4: Split prioritization into grouping
Let P1 = (A1, <P1), P2 = (A2, <P2) and A1, A2 ⊆ attr(R).

 σ[P1 & P2](R) = σ[P2 groupby A1](σ[P1](R))

Proof:
σ[P2 groupby A1](σ[P1](R))
 = {w ∈ σ[P1](R) | ¬∃v ∈ σ[P1](R) :
 w[A1] = v[A1] ∧ w[A2] <P2 v[A2] }
 = {w ∈ R | ¬∃v ∈ R: w[A1] = v[A1] ∧ w[A2] <P2 v[A2]
 ∧ v ∈ σ[P1](R) ∧ w ∈ σ[P1](R)}
// w ∈ σ[P1](R), w[A1] = v[A1] implies v ∈ σ[P1](R)
 = {w ∈ R | ¬∃v ∈ R: w[A1] = v[A1] ∧ w[A2] <P2 v[A2]
 ∧ w ∈ σ[P1](R)}
 = {w ∈ R | ¬∃v ∈ R: w[A1] = v[A1] ∧ w[A2] <P2 v[A2]}
 ∩ σ[P1](R)}
 = σ[P1](R) ∩ σ[P2 groupby A1](R) = σ[P1 & P2](R)
The last equality has been given already in [13]. ♦♦♦♦

Theorem L5: Push preference over hard selection

 σ[P](σH(R)) = σH(σ[P](R)) iff
 ∀w ∈ R: (H(w) ∧ ∃ v ∈ R: w[A] <P v[A] implies H(v))

Proof: We first prove an auxiliary lemma:
 σH(σ[P](R)) ⊆ σ[P](σH(R))

Proof of this auxiliary lemma:
w ∈ σH(σ[P](R))
 iff ¬(∃ v∈ R: w[A] <P v[A]) ∧ H(w)
 iff ¬(∃ v ∈ R: w[A] <P v[A] ∧ H(w)) // *1*

On the other hand we have:
w ∈ σ[P](σH(R))
 iff w ∈ σH(R) ∧ H(w)
 iff ¬(∃ v ∈ R: w[A] <P v[A] ∧ H(v)) ∧ H(w)
 iff ¬(∃ v ∈ R: w[A] <P v[A] ∧ H(v) ∧ H(w)) // *2*
Now we can conclude:
σH(σ[P](R)) ⊆ σ[P](σH(R))
 iff ∀ w ∈ R : *1* implies *2*
 iff ∀ w ∈ R : (∃ v ∈ R: w[A] <P v[A] ∧ H(v) ∧ H(w)
 implies ∃ v ∈ R: w[A] <P v[A] ∧ H(w)) iff true

The reverse set inclusion, which we also require to prove
theorem L5, holds only for the stated non-trivial condi-
tion. We start over from lines labeled *1* and *2* above:
w ∈ σH(σ[P](R))
 iff ¬(∃ v ∈ R: w[A] <P v[A] ∧ H(w))
w ∈ σ[P](σH(R))
 iff ¬(∃ v ∈ R: w[A] <P v[A] ∧ H(v) ∧ H(w))
Now we can conclude:
w ∈ σ[P](σH(R)) implies w ∈ σH(σ[P](R))
 iff ∃ v ∈ R: w[A] <P v[A] ∧ H(w) implies
 ∃ v ∈ R: w[A] <P v[A] ∧ H(v) ∧ H(w)
 iff ∃ v ∈ R: w[A] <P v[A] ∧ H(w) implies H(v)
 iff H(w) ∧ ∃ v ∈ R: w[A] <P v[A] implies H(v) ♦♦♦♦

14

Corollary 2: Special cases of L5

Let P1 := LOWEST(A), P2 := HIGHEST(A).
a. σ[P1](σA <= c (R)) = σA <= c (σ[P1](R))

b) σ[P2](σA >= c (R)) = σA >= c (σ[P2](R))

Proof : a) Directly from Theorem L5

∀w ∈ R: (H(w) ∧ ∃ v ∈ R: w[A] <P v[A] � H(v))

// Def H(w) = A ≤ c
iff ∀w ∈ R: (w[A] ≤ c ∧ ∃ v ∈ R: w[A] <P v[A]
 implies v[A] ≤ c)
// Def ‘LOWEST’
iff ∀w ∈ R: (w[A] ≤ c ∧ ∃ v ∈ R: w[A] > v[A]
 implies v[A] ≤ c)
// Transitivity: v[A] < w[A] ≤ c
iff true

Hence σ[P1](σA <= c (R)) = σA <= c (σ[P1](R)) holds. ♦♦♦♦

Proof : b) Directly from Theorem L5

∀w ∈ R: (H(w) ∧ ∃ v ∈ R: w[A] <P v[A] � H(v))

// Def H(w) = A ≥ c
iff ∀w ∈ R: (w[A] ≥ c ∧ ∃ v ∈ R: w[A] <P v[A]
 implies v[A] ≥ c)
// Def ‘HIGHEST’
iff ∀w ∈ R: (w[A] ≥ c ∧ ∃ v ∈ R: w[A] < v[A]
 implies v[A] ≥ c)
// Transitivity: v[A] > w[A] ≥ c
iff true

Hence, σ[P2](σA >= c (R)) = σA >= c (σ[P2](R)) holds. ♦♦♦♦

Theorem L6: Push preference over a join

Let P = (A, <P), A ⊆ attr(R) and X ⊆ attr(R) ∩ attr(S).
a) σ[P](R R.X = S.X S) = σ[P](R) R.X = S.X S,
 if each tuple in R has at least one join partner in S

Let R R.X = S.X S denote a semi-join operation.
b) σ[P](R R.X = S.X S) =
 σ[P](R R.X = S.X S) R.X = S.X S
c) σ[P](R R.X = S.X S)) =
 σ[P](σ[P groupby X](R) R.X = S.X S)

Further let B ⊆ attr(S).
d) σ[P groupby B](R R.X = S.X S) =
 σ[P groupby B](σ[P groupby X](R) R.X = S.X S))

R R.X = S.X S = σR.X = S.X(R × S) = R extjoin S
 join(r, s) = {true : r[X] = s[X], false otherwise}

Proof: a) Due to the assumption, each tuple in R has at
least one join partner in S, the join can be rewritten in
terms of an extension function:

σ[P](R R.X = S.X S)
= σ[P](R extjoin S) // Lem2

 = σ[P](R) extjoin S
 = σ[P](R) R.X = S.X S ♦♦♦♦

Proof: b)

σ[P](R R.X=T.X S)
= σ[P]((R R.X=S.X S) R.X=S.X S) //Lem2
= σ[P]((R R.X=S.X S) extjoin S)
//Lem2,∀r ∈R: ∃s ∈ S: r[X] = s[X]
= σ[P](R R.X=S.X S)) extjoin S //Lem2
= σ[P](R R.X=S.X S) R.X=S.X S ♦♦♦♦

Proof: c)

σ[P](R R.X = S.X S) //Lem3
= σ[P](σ[P groubpy R.X](R R.X = S.X S)) //ThmL7b
= σ[P](σ[P groubpy R.X](R R.X = S.X S)

 R.X = S.X S) //Lem5
= σ[P](σ[P groupby X](R) R.X = S.X S) ♦♦♦♦

Proof: d)
σ[P groupby B](R R.X = S.X S) // S = {s1,..,sn}
 = σ[P groupby B] (R R.X = S.X {s1} ∪ ... ∪

 R R.X = S.X {sn}) // ThmL3
 = σ[P groupby B] (

 σ[P groupby B](R R.X = S.X {s1}) ∪ ... ∪
 σ[P groupby B](R R.X = S.X {sn}))

// Since B ⊆ attr(S): ∀v∈R R.X = S.X {si}: v[B] = si[B]
 = σ[P groupby B] (σ[P](R R.X = S.X {s1})

∪ ... ∪ σ[P](R R.X = S.X {sn})) // ThmL6c
 = σ[P groupby B] (

 σ[P groupby X](R) R.X = S.X {s1} ∪ ... ∪
 σ[P groupby X](R) R.X = S.X {sn})

 = σ[P groupby B](σ[P groupby X](R) R.X = S.X S)) ♦♦♦♦

Theorem L7: Split Pareto preference and push over join

Let P1 = (A1, <P1) where A1 ⊆ attr(R), P2 = (A2, <P2)
where A2 ⊆ attr(S). Further let X ⊆ attr(R) ∩ attr(S).

σ[P1 ⊗ P2](R R.X = S.X S) =
σ[P1 ⊗ P2] (σ[P1 groupby X](R) R.X = S.X S)

Proof: Let T := R R.X = S.X S.
// Lem 4
σ[P1 ⊗ P2](T) ⊆ σ[P1 groupby A2](T) // Lem3
σ[P1 ⊗ P2](R R.X = S.X S)
 = σ[P1 ⊗ P2](σ[P1 groupby A2](R R.X = S.X S))
 //ThmL6d
 = σ[P1 ⊗ P2](σ[P1 groupby A2]

15

 (σ[P1 groupby R.X](R) R.X = S.X S)) // Lem3
 = σ[P1 ⊗ P2](σ[P1 groupby R.X](R) R.X = S.X S) ♦♦♦♦

Theorem L8: Split prioritization and push over join

Let P1 = (A1, <P1) where A1 ⊆ attr(R), P2 = (A2, <P2)
where A2 ⊆ attr(R) ∪ attr(S) and let X ⊆ attr(R) ∩ attr(S).

a) σ[P1 & P2](R R.X = S.X S) =
σ[P2 groupby A1](σ[P1](R) R.X = S.X S),

 if each tuple in R has at least one join partner in S
b) σ[P1 & P2](R R.X = S.X S) =

 σ[P2 groupby A1](σ[P1](R R.X = S.X S) R.X = S.X S)

Proof: a)
σ[P1 & P2](R R.X = S.X S) // ThmL4
 = σ[P2 groupby A1](σ[P1](R R.X = S.X S)) // ThmL6a
 = σ[P2 groupby A1](σ[P1](R) R.X = S.X S) ♦♦♦♦

Proof: b)
σ[P1 & P2](R R.X = S.X S) // ThmL4
 = σ[P2 groupby A1](σ[P1](R R.X = S.X S)) // ThmL6c
= σ[P2 groupby A1](σ[P1](R R.X = S.X S) R.X = S.X S) ♦♦♦♦

Theorem L9: Simplify grouped preference selections

a) σ[(P groupby B1) groupby B2](R) =
 σ[P groupby (B1 ∪ B2)](R)
b) σ[(P1 groupby B) & P2](R) =
 σ[(P1 & P2) groupby B](R)
c) σ[P1 ⊗ (P2 groupby B)](R) =
 σ[(P1 ⊗ P2) groupby B](R)
d) σ[(P1 groupby B1) ⊗ (P2 groupby B2)](R) =
 σ[(P1 ⊗ P2) groupby (B1 ∪ B2)](R)
e) σ[P groupby B](R) = R if B is key in R

Proof: a)
σ[((P groupby B1) groupby B2)
 = σ[B2

↔ & (B1
↔ & P)](R) // ThmL11c

 = σ[(B2
↔ & B1

↔) & P)](R) // Def ‘&’
 = σ[(B2 ∪ B1) ↔ & P)](R)
 = σ[P groupby (B1 ∪ B2)](R) ♦♦♦♦

Proof: b)
σ[(P1 groupby B) & P2](R)
 = σ[(B↔ & P1) & P2](R) // ThmL11c
 = σ[B↔ & (P1 & P2)](R)
 = σ[(P1 & P2) groupby B](R) ♦♦♦♦

Proof: c)
σ[P1 ⊗ (P2 groupby B)](R) // (**)
 = σ[P1 ⊗ (P2 ⊗ B↔)](R) // ThmL11b
 = σ[(P1 ⊗ P2) ⊗ B↔](R) // (**)
 = σ[(P1 ⊗ P2) groupby B](R)
Note that (**) holds due to proposition 3k in [13]. ♦♦♦♦

Proof: d)
σ[(P1 groupby B1) ⊗ (P2 groupby B2)](R)
 = σ[(P1 ⊗ B1

↔) ⊗ (P2 ⊗ B2
↔)](R) // ThmL11a,b

 = σ[((P1 ⊗ P2) ⊗ B2
↔) ⊗ B1

↔](R) // (**)
 = σ[((P1 ⊗ P2) groupby B2) ⊗ B1

↔](R) // (**)
 = σ[((P1 ⊗ P2) groupby B2) groupby B1](R) // ThmL9a
 = σ[(P1 ⊗ P2) groupby (B1 ∪ B2)](R) ♦♦♦♦

Proof: e)

σ[P groupby X](R)
={ w ∈ R | ¬∃v ∈ R : w[X] = v[X] ∧ w <P v }
// w = v w <P v = false
// w ≠ v w[X] = v[X] = false, X is unique
={ w ∈ R | ¬∃v ∈ R : false }
= R ♦♦♦♦

Theorem L10: Cascade of preference and hard selection

a) Let P = (A, <P) and A, B ⊆ attr(R):
σ[P](σB = c (R)) = σB = c (σ[P groupby B](R))
σ[P](σA = c (R)) = σA = c (R)

b) Let P := BETWEEN(A, [c1, c2]):
 σ[P](σA >= c (R)) = σ[LOWEST(A)](σA >= c (R)), if c > c2

 σ[P](σA <= c (R)) = σ[HIGHEST(A)](σA <= c (R)), if c < c1

 σ[P](σA >= c1 ∧ A <= c2 (R)) = σA >= c1 ∧ A <= c2 (R)
Let H := ‘A = c1 ∨ ... ∨ A = cn’, H-set := {c1, ..., cn}.

c) Let P := POS(A, Pos-set), Pos-set = {v1, ..., vm}:
if H-set ∩ Pos-set = Ø or H-set ⊆ Pos-set
then σ[P](σH (R)) = σH(R)

d) Let P := NEG(A, Neg-set), Neg-set = {v1, ..., vm}:
if H-set ∩ Neg-set = Ø or H-set ⊆ Neg-set

 then σ[P](σH (R)) = σH(R)
e) Let P = POS/NEG(A, POS-set, NEG-set),

POS-set={v1, ..., vm}, NEG-set = {vm+1, ..., vm+n}:
If H-set ⊆ POS-set or H-set ⊆ NEG-set or

H-set ∩ (POS-Set ∪ NEG-Set) = Ø
then σ[P](σH (R)) = σH(R)

f) Let P = POS/POS(A, POS1-set, POS2-set),
POS1-set={v1, ..., vm}, POS2-set = {vm+1, ..., vm+n}:
If H-set ⊆ POS1-set or H-set ⊆ POS2-set or

H-set ∩ (POS1-Set ∪ POS2-Set) = Ø
then σ[P](σH (R)) = σH(R)

Proof: a)

σ[P](σB = c (R))
 = {w ∈ σB = c (R) | ¬∃v ∈ σB = c (R) : w[A] <P v[A]}
 = {w ∈ R | ¬∃v ∈ σB = c (R) : w[A] <P v[A] ∧ w[B] = c}
 = {w ∈ R | ¬∃v ∈ R :
 w[A] <P v[A] ∧ w[B] = c ∧ v[B] = c}
 = {w ∈ R | ¬∃v ∈ R :
 w[A] <P v[A] ∧ v[B] = w[B] ∧ w[B] = c}
 = {w ∈ σ[P groupby B](R) | w[B] = c}
 = σB = c (σ[P groupby B](R)) ♦♦♦♦

16

σ[P](σA=c (R))
 = {w ∈ σA=c (R) | ¬∃v ∈ σA=c (R): w[A] <P v[A]}
// w[A] = v[A] = c
 = {w ∈ σA=c (R) | ¬∃v ∈ σA=c (R): false }
 = σA=c (R) ♦♦♦♦

Proof: b)

Let T := σA >= c (R), P := LOWEST(A).
σ[P](T)
 = {w ∈ T | ¬∃v ∈ T: w[A] >P v[A]}
// Def. ‘LOWEST’, assumption c > c2

 = {w ∈ T | ¬∃v ∈ T: w[A] − c2 > v[A] − c2}
// Def ‘BETWEEN’, assumption c > c2

 = σ[BETWEEN(A, [c1, c2])](T) ♦♦♦♦

Let T := σA <= c (R), P := HIGHEST(A).
σ[P](T)
 = {w ∈ T | ¬∃v ∈ T: w[A] <P v[A]}
// Def. ‘HIGHEST’
 = {w ∈ T | ¬∃v ∈ T: −w[A] > −v[A]}
// assumption c < c1

 = {w ∈ T | ¬∃v ∈ T: c1 − w[A] > c1 − v[A]}
// Def ‘BETWEEN’, assumption c < c1

 = σ[BETWEEN(A, [c1, c2])](T) ♦♦♦♦

Let T := σA >= c1 ∧ A <= c2 (R).
σ[BETWEEN(A, [c1, c2])](T) // Def ‘BETWEEN’
 = {w ∈ T | ¬∃v ∈ T: distance(w) > distance(v)}
 = {w ∈ T | ¬∃v ∈ T: 0 > 0}
 = {w ∈ T | true} = T ♦♦♦♦

Proof: c)

Immediately from Theorem L10e, since POS is a subcon-
structor of POS/POS.

P:=POS(A, POS-set)=POS/POS(A, POS-set, Ø) ♦♦♦♦

Proof: d)

Immediately from Theorem L10f, since NEG is a subcon-
structor of POS/NEG.

P:=NEG(A, NEG-set)=POS/NEG(A, Ø, NEG-set) ♦♦♦♦

Proof: e)

H-set ⊆⊆⊆⊆ POS-set

σ[P](σH(R))
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : w <P v} //Def. POS/NEG
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(w[A] ∈ NEG-set ∧ v[A] ∉ NEG-SET)
∨ (w[A] ∉ NEG-set ∧ w[A] ∉ POS-set

∧ v[A] ∈ POS-set)

= {w ∈ σH(R) | ¬∃v ∈ σH(R) :
(false ∧ true) ∨ (true ∧ false ∧ true)

= {w ∈ σH(R) | ¬∃v ∈ σH(R) : false}
= σH(R) ♦♦♦♦

H-set ⊆⊆⊆⊆ NEG-set

σ[P](σH(R))
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : w <P v} //Def. POS/NEG
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(w[A] ∈ NEG-set ∧ v[A] ∉ NEG-SET)
∨ (w[A] ∉ NEG-set ∧ w[A] ∉ POS-set

∧ v[A] ∈ POS-set)
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(true ∧ false) ∨ (false ∧ true ∧ false)
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : false}
= σH(R) ♦♦♦♦

H-set ∩∩∩∩ (POS-Set ∪∪∪∪ NEG-Set) = Ø

σ[P](σH(R))
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : w <P v} //Def. POS/NEG
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(w[A] ∈ NEG-set ∧ v[A] ∉ NEG-SET)
∨ (w[A] ∉ NEG-set ∧ w[A] ∉ POS-set

∧ v[A] ∈ POS-set)
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(false ∧ true) ∨ (true ∧ true ∧ false)
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : false}

= σσσσH(R) ♦

Proof: f)

H-set ⊆⊆⊆⊆ POS1-set

σ[P](σH(R))
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : w <P v} //Def. POS/POS
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(w[A] ∈ POS2-set ∧ v[A] ∈ POS1-set)
∨ (w[A] ∉ POS1-set ∧ w[A] ∉ POS2-set

∧ v[A] ∈ POS2-set)
∨ (w[A] ∉ POS1-set ∧ w[A] ∉ POS2-set

∧ v[A] ∈ POS1-set)
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(false ∧ true)
∨ (false ∧ true ∧ false)
∨ (false ∧ true ∧ true)

= {w ∈ σH(R) | ¬∃v ∈ σH(R) : false}
= σH(R) ♦♦♦♦

H-set ⊆⊆⊆⊆ POS2-set

σ[P](σH(R))
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : w <P v} //Def. POS/POS

17

= {w ∈ σH(R) | ¬∃v ∈ σH(R) :
(w[A] ∈ POS2-set ∧ v[A] ∈ POS1-set)

∨ (w[A] ∉ POS1-set ∧ w[A] ∉ POS2-set
∧ v[A] ∈ POS2-set)

∨ (w[A] ∉ POS1-set ∧ w[A] ∉ POS2-set
∧ v[A] ∈ POS1-set)

= {w ∈ σH(R) | ¬∃v ∈ σH(R) :
(true ∧ false)

∨ (false ∧ false ∧ true)
∨ (true ∧ false ∧ false)

= {w ∈ σH(R) | ¬∃v ∈ σH(R) : false}
= σH(R) ♦♦♦♦

H-set ∩∩∩∩ (POS1-Set ∪∪∪∪ POS2-Set) = Ø

σ[P](σH(R))
= {w ∈ σH(R) | ¬∃v ∈ σH(R) : w <P v} //Def. POS/POS
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(w[A] ∈ POS2-set ∧ v[A] ∈ POS1-set)
∨ (w[A] ∉ POS1-set ∧ w[A] ∉ POS2-set

∧ v[A] ∈ POS2-set)
∨ (w[A] ∉ POS1-set ∧ w[A] ∉ POS2-set

∧ v[A] ∈ POS1-set)
= {w ∈ σH(R) | ¬∃v ∈ σH(R) :

(false ∧ false)
∨ (true ∧ true ∧ false)
∨ (true ∧ true ∧ false)

= {w ∈ σH(R) | ¬∃v ∈ σH(R) : false}
= σH(R) ♦♦♦♦

18

Appendix 2: Operator trees of query Q3, Q4,
Q5 and Q6

Example 5: Query Q3

SELECT s.name, u.price
FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref

and c.brand = 'BMW'
PREFERRING u.age minimal prior to

(u.price minimal AND
c.horsepower maximal)

Figure 10: Trel after pass 1

Figure 11: Tend after pass 2

Example 6: Query Q4

SELECT s.name, u.price
FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref

and c.brand = 'BMW'
PREFERRING u.age minimal prior to

u.price minimal

Figure 12: Trel after pass 1

Figure 13: Tend after pass 2

Example 6: Query Q5

SELECT s.name, u.price as 'pr',
u.age as 'ag', c.horsepower AS 'hp'

FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref AND

(u.color = 'red' OR u.color = 'gray')
UNION
SELECT s.name, u.price as 'pr',

u.age as 'ag', c.horsepower AS 'hp'
FROM used_cars u, category c, seller s
WHERE u.sid = s.sid AND u.ref = c.ref AND

c.brand = 'BMW'
PREFERRING (LOWEST ag AND LOWEST pr)

PRIOR TO HIGHEST hp;

Figure 14: Trel after pass 1

19

Figure 15: Tend after pass 2

Example 7: Query Q6

SELECT u.price FROM used_cars u, seller s
WHERE u.sid = s.sid
PREFERRING u.price BETWEEN 5000, 30000 AND

u.age AROUND 25 AND
s.zipcode BETWEEN 20000, 50000;

Figure 16: Trel after pass 1

Figure 17: Tend after pass 2

