
Universität Augsburg

�
�

Failure-Sensitive Specification

A formal method for finding failure

modes

Frank Ortmeier and Wolfgang Reif

Report 2004-3 January 12, 2004

Institut für Informatik

D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Frank Ortmeier and Wolfgang Reif
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Failure-Sensitive Specification

A formal method for finding failure modes∗

Frank Ortmeier and Wolfgang Reif

Chair of Programming Languages and Software Engineering

University of Augsburg, 86135 Augsburg

email: {ortmeier, reif}@informatik.uni-augsburg.de

January 12, 2004

Abstract

We present a relational technique to write formal specifications
which not only say what the system is intended to do but also in
which ways it might misbehave because of damage or other failure.
For this kind of specifications we use the term failure-sensitive. Speci-
fications are given by sets of rules out of which a complete list of failure
modes for the system can be constructed. Most classical specification
techniques concentrate on the intended behavior only.

Knowing a complete set of failure modes of a component is of major
importance for many safety analysis techniques such as Fault Tree
Analysis, Failure Modes and Effects Analysis etc. that are widely used
in engineering sciences for the development of high assurance safety
critical systems.

The contribution of this paper is a method for systematically con-
structing the failure modes of a system hand-in-hand with its spec-
ification. Furthermore, if the intended behavior is given by a (non
failure-sensitive) formal specification, we can even formally verify the
completeness of the list of failure modes. We illustrate the method
with three simple examples.

1 Introduction

Today safety is becoming a more and more important topic in the develop-
ment process of hardware and software systems. For hardware components
a lot of engineering techniques like fault tree analysis (FTA) [14], failure
modes and effects analysis (FMEA), or preliminary hazard analysis (PHA)
already exist [5][13]. On the software side formal methods like interactive

∗This work is partly sponsored by the German Research Foundation’s priority program
“Integrating software specification techniques for engineering applications”.

1

verification [3] or model checking algorithms [6] exist for proofing functional
correctness of the controlling hardware.

Our approach is to make use of the advantages of formal methods not
only for the software part of an embedded system but for the hardware as
well. In this context we already formalized techniques like FTA [12][4] or
FMEA.

This paper presents a further step towards formal safety analysis. It
explains a new specification technique for safety analysis of highly critical
embedded systems, which not only aims on describing intended behavior
but misbehavior as well. A formal description of the ways a system might
fail is very useful for both formal and informal safety analysis.

The work presented has originated within the research project ForMoSa
of the priority program “Integrating software specification techniques for
engineering applications” of the German Research Foundation (DFG). It
augments formal fault tree analysis and other formal safety analysis tech-
niques, which are being developed within the same research project[12] [4].

We will start by giving a motivation in section 2. Formal definitions are
part of section 3. Section 4 will show failure-sensitive specifications for three
kinds of switches and the results of the analysis. Section 5 will give advice
on methodology and integration into the process of safety analysis. An
outlook on current and future research may be found in section 6. Section
7 concludes the paper.

2 Motivation

In reality most system are embedded systems consisting of both software
and hardware components. The goal of a (formal) analysis of safety for
an embedded system is to assure safe operations for undisturbed as well as
disturbed operation. Following this line of thought, safe - in this context
- has two different meanings (see figure 1), firstly an aspect of functional
correctness (i.e. the system does what it is supposed to do; e.g. “the au-
topilot can fly the plane on a given heading”) and secondly the system’s
fault tolerance (i.e. component failures or wrong handling must not lead to
dangerous system failure; e.g. “failure of one speed indicator must not result
in crashing the plane by the autopilot”). So if one wants to examine the
safety of an embedded system, then verifying functional correctness alone
is not enough. A combined approach is needed. Up to now formal meth-
ods, like model checking or interactive verification, have mainly been used
to verify functional correctness. The benefits are obvious: formal methods
can give rigorous proof, that a system fulfills its functional properties.

For examining fault tolerance, traditionally part of the engineering disci-
plines, a lot of safety analysis techniques have been developed. These tech-
niques examine the dependencies between component failures and hazards.

2

System

fault tolerance
Examines

Verification, Simulation, ... FTA, FMEA, ...

functional correctness
Examines

Figure 1: Two aspects of safety: functional correctness and fault tolerance

event

and gate

or gate

primary failure

Signals not on

Signals not activatedSignals

Driver ignores

broken

signals

Collision

Figure 2: Fault Tree Symbols and a sample fault tree

How can formal methods help here?
Before answering this question, we will briefly describe one of the most

common safety analysis techniques: fault tree analysis (FTA) [14].
FTA is a top-down analysis method for analyzing the possible, basic

causes (primary failures) for a given hazard (top event). The top event is
always the root of the fault tree and primary failures are its leaves. Hazards
are unwanted and possibly dangerous system failures, while primary failures
denote specific types of faults within each component (e.g. switch stuck in
position OPEN) called failure modes. Starting with the top event (hazard)
the tree is generated by determining the immediate causes that lead to the
hazard. These are called intermediate events. Causes and consequences are
connected through a gate. The gate indicates if all (and-gate) or any (or-
gate) of the causes are necessary to make the consequence happen. This
procedure has to be applied recursively to all causes until the desired level
of granularity is reached (this means all causes are primary failures that
won’t be investigated further). Figure 2 shows basic fault tree symbols and
a sample fault tree (taken from a case study for the height control system
of the Elbtunnel in Hamburg [7]).

In the end the fault tree represents a causal connection between hazards
and primary failures. But this approach is informal and error prone. The
two main sources for errors are i) forgotten branches and ii) primary failures,
which have not been considered. Formal methods can help here. Formal
FTA (FFTA) addresses i) and failure-sensitive specification rules out ii).

Formal FTA is a formalization of FTA semantics. Formal semantics of
fault tree gates has been given in [12]. This semantics assigns a temporal
logic formula to each gate in the fault tree. These formulae are then proven

3

*

B

Alarm

A

Alarm Clear Clear

high vehicle enters

high vehicle leaves high vehicle leaves

high vehicle enters

Figure 3: Functional correct model and introduction of misdetection

valid over the formal model of the system. Formal FTA can give rigorous
proof of completeness and correctness of a fault tree [4]. This means no
branches have been forgotten in the fault tree (called completeness of the
fault tree) and no unnecessary primary failures appear at its leaves (called
correctness of the fault tree).

For formal FTA one has to identify all primary failures and add them
explicitly to the formal (fault free) model of the system. It is obvious, that
completeness may only be proven with respect to failures modes modeled (if
a failure mode is not even part of the formal model, then it is impossible to
reason about it!). But, finding a complete set of failure modes for a given
component is not an easy task. If this problem can be solved, then the
solution would also solve ii).

We will illustrate, how failure modes are usually identified and added
with the example of the height control of the Elbtunnel. The goal of this
system is to identify very high and potentially dangerous vehicles, as they
might collide with the top of the tunnel1. The system consist of four pairs
of light barriers and about a dozen overhead detectors. The input of these
sensors are processed in a programmable logic controller (PLC), which con-
trols emergency halt signals. A description in detail on the control system
may be found in [7]. Figure 3-A shows a “classical” specification of one
of the overhead detectors as an automaton. The automaton A has states
CLEAR and ALARM. The “high vehicle enters” event2 triggers a transition
from state CLEAR to state ALARM. “High vehicle leaves” does the oppo-
site. The current active state of this automaton is sent to the PLC, which
decides whether to turn on the emergency signals or not.

To reason about the effect of possible component failures, it is necessary
to identify them and add them explicitly to the formal model. The type of
specification above can’t be used directly to assess the components potential
misbehavior. So it is solely dependent on the skill of the analyst to discover,
that the detector may miss a high vehicle. The corresponding failure mode

1The tunnel consist of four tubes of different sizes, so high vehicles may pass certain
tubes and must not pass the others.

2This event is produced by other automata, which formally model the driving of high
vehicles.

4

S S| ||S

SchaoticSSS |||

???

Failure−Sensitive Specification

Specification of Failure Modes

fault free

intended

Figure 4: Standard and Failure-Sensitive Specification of failure modes

is usually called “misdetection”. Let us assume the engineer thinks of this
failure mode.

Once discovered, the failure mode is added by an explicit failure tran-
sitions to the automaton A: e.g the spontaneous transition * is added to
the automaton (see figure 3-B) reflecting the failure mode “misdetection”.
Once integrated, it is possible with FFTA to prove, that the failure mode *
is really necessary to break the safety property “no collision”.

The point is, that an overlooked failure mode is not detectable with this
approach. It is not even possible to determine, if all failure modes have been
integrated or not. For e.g. it is up to the engineer’s intuition to think of
“false detection” as failure mode (i.e. the detector indicates a high vehicle,
although there is none). This failure mode might be obvious, but are there
any others?

Because of this problem, we suggest a different view of the system. In-
stead of starting with a model of the intended behavior (Sintended) and adding
failures to it, we start with a formal model (Schaotic), that contains all pos-
sible behavior (and thus in particular the intended behavior as well) and
then systematically remove faulty behavior from the model. So failure-
sensitive specification is complementary to functional specification, as it
restricts faulty behavior from a chaotic model, while usually faulty behav-
ior (e.g. transition * in figure 3-B) has to be added to a functional correct
model (figure 3-A). This approach removes the problem of uncertainty about
whether all failure modes have been found or not. Figure 4 shows the two
complementary methods of formally specifying failure modes. In the fol-
lowing we will describe failure-sensitive specification in detail. We will see
that, i) the construction of such a chaotic model is solely dependent on the
relevant input and output data which determine the component’s behavior.
ii) The restriction to the intended behavior is then introduced by rules (log-
ical formulae), which describe functional properties of the component under
consideration. New rules are added until iii) the intended behavior has been
met (Sfaultfree ∼= Sintended), which can be proven formally. We call this be-
havioral equivalence. And that iv) in this view failure modes correspond on

5

OFFON

Press

Press

Boundary

System

ON

OFF

Press

OFF

ON

in

outin

out

ONin OFFin Press ONout OFFout

X

X

X X

...

X X X X

X X X X X

Figure 5: Chaotic model of a switch

a one-to-one basis to the rules. This yields a complete list of failure modes,
which is only subject to getting the system boundaries right.

3 Failure-Sensitive Specification

We will now give a brief overview on the formal foundations of failure-
sensitive specification. We will restrict the discussion to finite state systems
and boolean signals. These restriction may be resolved when using more
generic definitions and are part of current research.

3.1 Formal foundations

For better understanding we will give an example of a simple switch in
parallel with the formal definitions of failure-sensitive specifications. The
starting point is a chaotic model of the component under analysis. The
chaotic model contains all conceivable behavior. To build this model it is
only important to know upon which information the component’s behavior
depends.

Every component will react on a certain set of (input) stimuli and pro-
duce some (output) actions as answers to these inputs. In the following
stimuli and actions are all referred to as signals and all signals are assumed
to be pairwise disjoint. The chaotic model is the set of all possible com-
binations of signals. It does not contain any functional properties. Figure
5 shows the example switch. On the left a formal model of the switch is
shown. The box in the middle shows the relevant input and output signals.
For the example:

The behavior of a switch depends on whether it was ON (=signal ONin)
or OFF (=signal OFFin) and if it is pressed (=signal Press) or not. As
reactions one may observe whether the switch is ON (=signal ONout) or
OFF (=signal OFFout).

The right column shows the chaotic model. It contains all possible com-
binations of inputs and outputs. Each row of the tabular is to be read as

6

a scenario, where ONin, OFFin and Press are the input signals and ONout

and OFFout are output signals, which are produced by the component in
response to the inputs. An “X” means the signal is present and a blank
means the signal is not present. This (finite) set of scenarios is the starting
point for a failure-sensitive specification. Formally, chaotic failure-sensitive
models are defined as cartesian product of input and output signals.

Definition 3.1 Chaotic model
Let the system boundaries be described by a set of input signals Γin (called
input set) and a set of output signals Γout (called output set). The chaotic
model of the system is the cartesian product of the power sets of the set of
input and output signals. Ωchao := P(Γin)×P(Γout). The elements of Ωchao

are called scenarios.

Up to now, the model does not contain any functional specification in-
formation. Specification information is now subsequently added by rules
and the set Ωchao is restricted according to these requirements. This brings
functional information into the model. Formally, the specification process is
defined as follows:

Definition 3.2 Specification Rules
A specification rule is a relation, i.e. a subset of Ωchao, which describes
intended behavior.

SpecRulei ⊆ Ωchao

From a users point of view, it is not feasible to specify functional properties
using relations. In fact, one wants to specify technically systems by (logical)
properties on the input-output behavior of the system like “if the switch
was off and you press it, then it must be on”. This may be expressed by
formulae like:

Property1 : OFFin ∧ Press→ ONout

Therefore, we define a relational semantics for the signals of the system.
This allows specification in a language close to natural speaking and (see
later) easy integration and description of failure modes. For each signal
SIG ∈ Γin ∪ Γout we define a corresponding relation SIG

SIG :=

{

{w = (w1, w2) ∈ Ωchao | SIG ∈ w1} : SIG ∈ Γin
{w = (w1, w2) ∈ Ωchao | SIG ∈ w2} : SIG ∈ Γout

Now we can define negation, conjunction, disjunction, implication and
exclusive disjunction using the relational operators:

¬R1 := R1C = Ωchao \R1

R1 ∧ R2 := R1 ∩R2

R1 ∨ R2 := R1 ∪R2

R1 → R2 := ¬R1 ∪R2

R1 XOR R2 := (¬R1 ∩R2) ∪ (R1 ∩ ¬R2)

7

With these definitions we can give the corresponding specification rule
to Property1:

Rule1 : (OFFin ∧ press) → ONout

Note that we are now talking about relations. For simplicity we only write
R1 instead ofR1 and thus use R1 for both - the signal and the corresponding
relation. In the following the 28 scenarios in relation Rule1 are explicitly
given:

Rule1 = {[{press,ON}, {ONout}], [{ONin}, {OFFout}], [{ONin}, {ONout}], [{}, {OFFout}], [{press}, {}],

[{}, {ONout, OFFout}], [{ONin}, {ONout, OFFout}], [{}, {ONout}], [{ONin}, {}], [{OFFin}, {OFFout}],

[{OFFin}, {ONout, OFFout}], [{press,ONin, OFFin}, {ONout, OFFout}], [{press}, {OFFout}],

[{press,OFFin}, {ONout}], [{OFFin}, {ONout}], [{press,ONin, OFFin}, {ONout}], [{press}, {ONout}],

[{press,ONin}, {}], [{press,ONin}, {ONout, OFFout}], [{OFFin}, {}], [{press,ONin}, {OFFout}],

[{press,OFFin}, {ONout, OFFout}], [{press}, {ONout, OFFout}], [{ONin, OFFin}, {ONout}],

[{ONin, OFFin}, {OFFout}], [{ONin, OFFin}, {ONout, OFFout}], [{ONin, OFFin}, {}], [{}, {}]}

It should be mentioned, that complement of a rule - against Ωchao - is then
a failure mode. This is because a definition of failure is “faulty behavior”
or “behavior against the specification”. For example the failure mode “fails
close”3 is the complement of Rule1. But before we go into detail on failure
modes, we will describe, how the chaotic model is refined with specification
rules.

Refinement is done by set subtraction. All faulty scenarios (= elements
of complement relation of a specification relation) are removed from the
model. So we get a monotonic decreasing series of relational models Ωi:

Ωi := Ωi−1 \ SpecRule
C
i where Ω0 := Ωchao

. In the example we would remove all rows in which an “X” is present in
the “OFFin”, in the “press”, and but not in the “ONout” column. This
refinement is done by set difference.

Note that, the complement operator is used, because we want to discard
all scenarios that do not match the specification and keep only the “good”
ones. An equivalent, non-recursive definition, which is easier to compute,
but less intuitive to motivate, is:

Ωi :=
i
⋂

j=0

SpecRulej where SpecRule0 := Ωchao

. With each additional specification rule we eliminate unwanted behavior
from the chaotic model. We now define a criterion, which lets us decide, if
we are done specifying or not.

3“fails close” is a standard failure mode for a switch, which says the switch can not be
closed for one reason or another.

8

3.2 Behavioral equivalence

For this paper we assume, that we have a formal model of the intended
behavior of the component in state-chart or automata notation. Our termi-
nation criterion will be - in informal language - that, ”the state-chart may
show exactly the behavioral patterns of the failure-sensitive model and vice
versa”. Or in other words: the IO-relation of the state-chart model equals
the failure-sensitive model.

Definition 3.3 Projection of a state-chart
The projection SCproj of a state-chart SC onto sets of signals is as follows:

SCproj := {s | ∃ configuration σ, step stσ : s = (σ|Γin
, stσ(σ)|Γout

)

∧ σ ∈ reachable(σ0)}

With the configuration σ of the state-chart we refer to its state valuation
of variables and active events at a certain time. A step stσ is another
configuration which is reachable in one (super-)step in time.

This definition collects all possible combination of input and output sig-
nals the state chart SC may show. The projection operators |Γin

and |Γout are
functions with events of the state-chart as source domain and signals of the
failure sensitive specifications as target domain. They act as connection be-
tween the failure-sensitive and the functional model. Projection operators
may be simple abstractions removing interior, not visible events or more
complex objects. In our case they are 1-1 identities. Complex operators
which allow identifying formulae like “pressure > 10” (in the state-chart
model) with “overpressure” (signal in the failure-sensitive model) would be
a great help. Which types of formulae are feasible for projection operators
and which are not is currently investigated. With this definition we can now
define behavioral equivalence:

Definition 3.4 Behavioral equivalence
A state-chart model SC and a failure-sensitive model FS are behavioral equiv-
alent if and only if, the projection of the state-chart SCproj onto the signals
of the chaotic model and the failure-sensitive model FS are (set) equal.

SC ∼=beh FS :⇔ SCproj = FS

It is interesting to note, that behavioral inclusion (FS ≤beh SC4) is
enough to ensure a complete list of failure modes. The reason is, that if the
failure-sensitive model can show less behavior, then it is has more or stricter
specification rules than necessary. This means, the model has more or more
general failure modes than necessary. A safety analysis done with this list

4Behavioral inclusion is defined analogously FS ≤beh SC :⇔ FS ⊆ SCproj and
SC ≤beh FS :⇔ SCproj ⊆ FS

9

of failure modes is for sure safe (in the context that no failure modes have
been overlooked).

Second, one might also use behavioral equivalence to compare different
sequential processes. If only 1-1 identities are used as projection operators,
then trace equivalence implies behavioral equivalence [1], but not vice versa.
So behavioral equivalence is a very coarse definition of equivalence [2]. This
is good as it allows a high degree of abstraction from actual implementation
to assess failure modes (which is wanted), but on the other hand brings
problems with automation (which is not wanted). However, it seems that
using more complex projection operators makes behavioral and trace equiva-
lence incomparable. It is an open question which set of projection operators
and which types of equivalence (e.g. failure equivalence, possible-futures
equivalence, bi-simulation equivalence, etc.) are comparable.

Back to the example: One complete failure-sensitive specification for the
switch above, would require the following six rules:

• Rule1: Press ∧ OFFin → ONout - (failure mode: fails close)

• Rule2: Press ∧ ONin → OFFout - (failure mode: fails open)

• Rule3: ¬Press ∧ ONin → ONout - (failure mode: unasked open)

• Rule4: ¬Press ∧ OFFin → OFFout - (failure mode: unasked close)

• Rule5: ONout XOR OFFout - (failure mode: multi-state)

• Rule6: ONin XOR OFFin - (failure mode: multi-state)

The term in parenthesis describes the failure mode which corresponds
to the rule. Using the refinement technique described above, the resulting
failure-sensitive model then consists of the following four scenarios:

Ωfaultfree =

6
⋂

j=0

Rulej where Rule0 := Ωchao

= {[{ONin}, {ONout}], [{ONin, P ress}, {OFFout}],

[{OFFin}, {OFFout}], [{OFFin, P ress}, {ONout}]}

As mentioned above, a failure-sensitive model is behavioral equivalent to
the intended model (the automaton in figure 5), if the intended model has
exactly the same IO-relation. This is obviously true for our example:

The automaton has states “ON” or “OFF”. In each state the event
“Press” may be present or not and causes a state transition (if it is present).
The projection operators |Γin

resp. |Γout identify the actual state with ONin

resp. OFFin, the press event with Press, and the state in the next time step
with ONout resp. OFFout.

3.3 Integrating failure modes

We showed how a failure-sensitive model may be built, such that it is be-
havioral equivalent to a state-chart reference model. With this model a
complete list and classification of possible failure modes is implicitly de-
fined. This is, because the definition of the term “fault” is “showing an

10

unexpected/unwanted behavior” (i.e. behavior against the specification).
Following this line of thought, each failure mode may be identified with
the complement of an according specification rule. So a complete set of
specification rules yields a complete set of failure modes for the component.
The completeness of specification rules is shown by checking for behavioral
equivalence.

Failure modes may be added to a failure-sensitive model easily by re-
moving the corresponding specification rule.

We will now introduce the failure mode “fails close”. This failure mode
corresponds to specification rule Rule1. All we have to do to add this failure
mode to the failure-sensitive model is to remove Rule1 from the specification
process. So the failure-sensitive model of the switch with ”fails close” is given
by:

Ωfailsclose :=
6
⋂

j=0;j 6=1

SpecRulej where SpecRule0 := Ωchao

.
Explicitly Ωfailsclose contains the following scenarios:

Ωfailsclose = {[{ONin}, {ONout}], [{ONin, P ress}, {OFFout}],

[{OFFin}, {OFFout}], [{OFFin, P ress}, {ONout}],

[{OFFin, P ress}, {OFFout}]}

This model is obviously not behavioral equivalent to the intended model
in figure 5 (the automaton in figure 5 can not show the last scenario in
Ωfailsclose). However, it is behavioral equivalent to an identical automaton,
in which an explicit failure-mode-transition with no pre-condition from OFF
to OFF is added. This means, that failure-sensitive models may also be
used for checking whether a failure mode is correctly modeled or not. This
completes the example.

Of course, the resulting set of specification rules resp. failure modes
is not unique. But this is no problem for FTA or FMEA. It only affects
them such, that different partitions and granularities of failure modes are
considered. More details on this may be found in section 5.

4 More examples

In this section we will give examples of using failure-sensitive specifications
for some very simple components: switches. We will analyze three different
types of switches: a toggle switch - like a light switch -, a push button - like
the power switch of a hifi system -, and a press key - like the horn of a car.

This will demonstrate how difficult it can be to find a complete set of
failure modes. We will also show that even for simple and well-understood

11

components—like switches—, it can be difficult to find a complete list of
failure modes and that already small differences in the intended function
of the component may result in new failure modes. This makes it hard to
automatically insert failure modes found with failure-sensitive specification
into a functional model. Some current work is to make this possible for some
special cases by using propositional normal forms for transition conditions.

In the first part of this section we will build the chaotic model for all
three switches. After that we will specify them and finally compare the
resulting failure modes.

The relational computations were implemented prototypically using the
Maple7 tool for doing all set operations. The check for behavioral equiva-
lence was done by using a model checker (like SMV [6] or Raven [10][11][9])
and translating each scenario into an equivalent logical formula. The trans-
lation for a scenario S = [SIGsin, SIGsout] into a formula Φ(S) is:

Φ(S) =

(

∧

s∈SIGsin

|−1Γin
(s) = true) ∧ (

∧

s∈(Γin\SIGsin)

|−1Γout
(s) = false

)

∧

(

∧

s∈SIGsout

©(|−1Γout
(s) = true) ∧

∧

s∈(Γout\SIGsout)

©(|−1Γout
(s) = false)

)

The interpretation of this formula is, that in the current configuration
exactly the signals in SIGsin must be present (first line of the formula) and
that in the next time step exactly the signals in SIGsout must be true (second
line of the formula). In this formula |−1Γout

resp. |−1Γin
denote the inverse

operators to |Γout resp. |Γin
. These operators allocate to each signal of the

failure-sensitive model a corresponding element of the model of the intended
behavior. With this definition, behavioral equivalence may be shown by
proving, that:

1. AG(
∨

S∈ΩΦ(S))

2. ∀S ∈ Ω : EF (Φ(S))

The first formula assures, that the functional model may only show be-
havior, which is part of the failure-sensitive one as well (i.e. functional model
≤beh failure-sensitive model). The second obligation says, that all scenarios,
of the failure-sensitive model can really be replayed by the functional model
(i.e. failure-sensitive model ≤beh functional model). The benefit of this
approach is, that we can use a well-established tool for proving behavioral
equivalence.

Or a second possible solution is to verify all rules and compare the car-
dinality of the state transition relation of the automaton and the set of
scenarios.

12

4.1 The switches

To build the chaotic model, we need to find the system boundaries first. We
will do this by systematically collecting all input and output signals. The
following graphic shows the three different switches. In the left column the
engineering symbol for the switch and the labels of the signals are shown.
The right column shows the resulting input and output signals. All switches

power_in power_out

press

power_in

press

power_out
OFF

ON

power_in power_out

turn_on

turn_off

OFF

ON

POWER

ON

OFF

press key

push button

toggle switch

TURN_OFF

TURN_ON

OFF

ON

POWER

POWER

POWER

PRESS

POWER

POWER

ON

OFF

PRESS

ON

OFF

in

in

in

in

in

in

out

out

out

out

out

out

out

in

Figure 6: 3 different switches - a press key, a push button and a toggle
switch

have, of course, POWERin and POWERout signals. A press key or a push
button can only be PRESSed. A toggle switch may react to TURN ON and
TURN OFF. This is the first important difference between the switches.

The behavior of a toggle switch as well as that of a push button depends
on whether it is in position ONin or OFFin. Furthermore one can observe
the position of these switches - ONout or OFFout. The press key is different
it has no positions at all.

The definition of the system boundaries result in chaotic models for all
three switches. The toggle switch’ model consists of 28 possible input-output
combinations (scenarios), the press key has only 23 scenarios and the push
button can be described with 27 different scenarios.

4.2 The specification rules

The next step is to refine the chaotic model until it meets the behavior of the
desired switches. We will explain this for the push button, the other buttons
are very similar. Figure 7 shows an automaton as formal specification of the
intended behavior. Outgoing power and state “on” will be identified and
usually only the event “in state on” would be used in a larger system.

This is only one possible implementation, others are of course possible
(like using two automata in parallel: one for power and one for the actual
switch). This is one reason, why automatic integration of failure modes in
functional models is not an easy task.

13

OFFON

press or not power

press and power

Figure 7: A possible formal model of a push button

We already described the system boundaries for this component and the
chaotic model in the previous section. For specification we will start with
obvious rules, which describe the main aspect of the intended behavior of a
switch - turning it on and turning it off.

• R1: ONin ∧ PRESS → OFFout

• R2: OFFin ∧ PRESS → ONout

The corresponding failure modes to these two rules would be fails open (to
R1) and fails close (to R2). After refining the model with these two rules, we
can check for behavioral equivalence. The check fails, because of scenarios
consisting of ON and OFF simultaneously or neither of both. So we build
two more rules forbidding this:

• R3: ONin XOR OFFin

• R4: ONout XOR OFFout

The two rules are almost identical, but the first one refers to the input
signals, while the second one is a constraint for the signals the component
may produce. However this is still not enough for a correct specification.
We still can not prove behavioral equivalence. A counter example is, that
our model still allows the switch to change from OFF to ON without being
asked to do so. This results in two more rules:

• R5: ONin ∧ ¬PRESS → ONout

• R6: OFFin ∧ ¬PRESS → OFFout

Our proof attempt fails again. This is because we are still using meta knowl-
edge and assume, that there can be no spontaneous power generation within
the switch. Our formal model does not include this meta information, so we
add two more rules:

• R7: ¬POWERin → ¬POWERout

• R8: POWERin → POWERout = ONout

14

Type total scenarios correct scenarios specification rules/
failure modes

press button 8 4 2

push button 128 8 8

toggle switch 256 16 10

Figure 8: Chaotic models, correct models, and failure modes

While the first rule corresponds to a failure mode, which does not occur
in reality, the second rule may be interpreted as the very common fault of
corroded contacts.

Now behavioral equivalence can be shown. This means the rules R1-R8
and the chaotic model Ωchao specify the intended behavior. As described
earlier each rule corresponds to a failure mode. So we found a complete set
of failure modes for the automaton shown in figure 7. Figure 8 summarizes
the size of the chaotic models and the correct models as well as the number
of specification rules resp. failure modes for each switch. The found failure
modes may be integrated into the formal model and be used for further
analysis. Note, that it is not obvious how all these failure modes may be
integrated into the automaton. Some require only additional transitions (i.e.
F1/F25), while other require new states (F3/F4) or weaken conditions for
existing transitions (F5/F6). When examining more complex systems (for
e.g. parallelism or state hierarchy), this becomes even nastier. We do not
believe, that in general an automatic solution for integrating failure modes
may be developed. However, we made the experience that in many cases it
is obvious for the system developer how to integrate failure modes once they
have been discovered. So there seem to be some possibilities for automation
by providing meaningful examples for faulty scenarios..

How this complete set of failure modes is used for further analysis and
what’s the meaning of the different failure modes will be shown in section 5.
But first we will examine the failure modes a little more and describe their
physical meaning.

4.3 The failure modes

Figure 9 lists the failure modes for our set of switches (pk=press key, pb=push
button, ts=toggle switch) and gives a physical interpretation of them. The
textual descriptions of the failure modes refer to the signals for a toggle
switch. The translation to the signals of the other switches is obvious. When
analyzing the failure modes two aspects are easily noticed. The first is, that
they may be grouped intuitively according to their likeliness. In figure 9 the

5F1 means the failure mode corresponding to R1

15

No. Failure Mode pk pb ts

1.1 spontaneous power generation (out-going power without in-
going power)

x x x

1.2 multi-state (input signals (on ∧ off) or (¬on ∧ ¬off)) x x
1.3 multi-state (output signals (on ∧ off) or (¬on ∧ ¬off)) x x

2.1 non determinism (contrary signals (turn on and turn off)
turn the switch from off to on)

x

2.2 non determinism (contrary signals (turn on and turn off)
turn the switch from on to off)

x

3.1 corroded connectors (difference between position of switch
and power output)

x x x

3.2 fails open (turn off (but not turn on) does not turn the
switch off)

x x

3.3 fails close (turn on (but not turn off) does not turn the
switch on)

x x

3.4 unasked open (the switch turns to off without turn off) x x
3.5 unasked close (the switch turns to on without turn on) x x

Figure 9: Failure modes

first three failure modes (No. 1.1-1.3) represent failures, that will almost
never occur in reality. The second group (No. 2.1 and 2.2) show failures,
which depend on wrong usage of the component. Failure modes 3.1 to 3.5
describe the failures due to hardware defects. This clustering helps deciding
which failure modes are more probable and which are less and which may
be ignored for further analysis6.

The second aspect is that, the failure modes may place a hierarchical
order on the switches, i.e. the push button may be interpreted as a gener-
alization of the press key and the toggle switch as a generalization of the
push button7. This hierarchy can help identifying the best component for
a given system. The best component is the most simple one that fulfills
all functional requirements. This is a formal formulation of the well known
statement, that the more complex a system is the more likely is it to fail.

As there is plenty of freedom of choice in formulating the specification
rules, there will be the same variety in the resulting failure modes. Never-
theless, it does not matter which set of failure modes is used from a formal

6In our example a failure mode saying “the switch is not ON AND not OFF” doesn’t
make much sense, as it will never occur in reality. However one may think of a railroad
crossing instead of a switch. A formal model for the bars would look pretty similar to
that of a toggle switch. But for this component it is important to examine what happens
to the control system, if it detects that the bars are neither down nor up.

7Some events with different names have to be identified for this comparison (e.g.
PRESS and TURN ON, etc.) of the switches.

16

point of view. Different sets of failure modes result only in different fault
trees and different proof obligations. But the use and the meaning of the
analysis greatly varies depending on how close the formal failure modes are
to the real faults.

How to get meaningful failure modes solely depends on the methodology
used. A basic methodology is described in the next section.

5 Methodology

Methodology is important for our approach. Failure-sensitive specification
is not an alternative specification formalism, but rather an addition for spec-
ifying highly safety critical systems for formal safety analysis. A traditional
formal specification is still needed and useful. This is, because it not only
is much easier to specify the intended system in a function-oriented for-
malism than in a failure-oriented one, but proof support is very strong for
such formalisms. On the other hand, we showed that failure-sensitive spec-
ification not only yields a complete list of failure modes, but also makes it
trivial to integrate failure modes. This can be used to check if failure modes
have been integrated into the functional model correctly. Figure 10 shows
the interaction of both specification techniques. The process of combining

System model

System model

failure−sensitive

normal

Specification
Requirements

Modeling Failures

trivial

incl. model of failures

incl. model of failures

Behavioral Equivalence

System model
failure−sensitive

System model
normal a lot of

proof support

no
proof support

difficult

Figure 10: Interaction of failure-sensitive and normal specification

failure-sensitive specification and formal safety analysis is done in four steps:

1. Start with building a functional, formal model of the intended system
and failure-sensitive one in parallel.

2. Check for behavioral equivalence. If the two models are not equivalent,
then make use of the complementary views on the system the two
models provide, to validate both models and decide which specification
does not match the informal description of the systems intention.

3. Generate the list of failure modes from the failure-sensitive specifi-
cation, decide which failure modes are relevant and integrate them
into the functional model. Another check for behavioral equivalence

17

I. Integrated known rules

IIa. Check some scenarios
IIb. Integrate new rules

III. Check behavioral equivalence

Figure 11: Methodology

can give proof of correct integration of failure-modes in the functional
model (see 3.3).

4. Do the proofs of formal safety analysis in the enhanced functional
model.

As already said in section 3, failure-sensitive specification yields a complete
list of failure modes but this list is not unique. On the one hand, one can
do formal safety analysis with an arbitrary set of specification rules. So
this is not a problem from a theoretical point of view. But on the other
hand, what validity has a formal safety analysis, which talks about failure
modes, that do not appear in reality? For example, a failure mode like ”the
switch is stuck in position on, if the power was off previously and power
will be turned on” is not of much use in practice. One reason is that, most
safety analysis techniques also have a quantitative part (like quantitative
FTA) to measure probabilities of hazards and risk. This is important for
certification of safety-critical systems. But such failure probabilities are very
hard to assess for failure modes like the one above.

In failure-sensitive specification failure modes correspond on a one to one
basis to specification rules. Failure modes are basically the negation of rules.
So the stricter a rule is the more generic the corresponding failure mode will
be and vice versa. So what are “good” rules which are not? For safety
analysis rules are good, if the resulting failure modes correspond to already
known failure modes. A second criterion is, that the failure modes should
be as disjoint as possible. This is important for quantitative analysis, as
not disjoint failure modes usually result in statistical dependence, which is
hard to calculate. While the second requirement is hard to fulfill in general,
the first one may be achieved with only little effort. Figure 11 shows a
methodology for finding a good set of failure modes with respect to relevance
for practice. The basic idea is, to specify the system along it’s known failure
modes as long as possible. This methodology divides specification into three
phases. The first phase consists of collecting functional properties. From
these properties rules are formulated. These rules state the behavior the
component should show. It is important to formulate the rules in such a way,
that the behavior which they forbid comes as close to already known failure
modes as possible. In practice this may often be achieved by formulating

18

rules, which describe a known failure mode and negating them. This ensures,
that already known failure modes will be found in the complete set of failure
modes without change again.

In general obvious functional failure modes will be found during this
phase. For the light switch the failure modes fails open and fails close will
be detected in this stage. Maybe even the unasked open and unasked close
failure mode, depending on the accuracy of the safety engineer.

The second phase (IIa) starts with screening the remaining scenarios for
irregularities and unwanted behavior. This yields some more obvious faults
as well as some not so obvious ones. For the light switch failure modes
resulting from multi-states, unasked open and close will be found in this
stage. These unwanted scenarios result in new specification rules (IIb) for
the system. This phase will be iterated unless the screening doesn’t detect
any additional unwanted scenarios.

In the third phase a formal check for behavioral equivalence is made. If
the check succeeds, then we have found a complete set of failure modes for
the given component. The only informal assumptions used are subject to
getting the system boundaries right.

During the third phase the most hidden failure modes are discovered. In
our example, this includes very unprobable failure modes like the sponta-
neous power generation as well as more likely ones like failures arising due
to contrary input signals (non-determinism).

If only behavioral inclusion - FS-model ≤beh SC-model - can be shown,
then we have marked to many scenarios faulty. as mentioned earlier, this is
not a problem, if we can still prove the safety properties for our formal model.
It only means, that we have to prove stronger theorems than necessary. In
practice this means, we show more safety than needed.

If not even behavioral inclusion can be shown, then the set of failure
modes is not complete. If we used a model checker, then we may use the
counter example to find an unwanted scenario. This scenario can again be
used to generate a new rule as described in phase IIb.

6 Limitations and future work

There are two important difficulties with this approach. The first one is the
problem of the exponential size of the sets used. Another limitation is, that
the formalism look is not to intuitive at the first look.

However, these limitations must be considered in the right view. When
doing safety analysis one is usually interested in the effect certain (hardware)
component failures have on the complete system. The important word is
“component”. Failure-sensitive specifications is searching failure modes on
component level, not on system level. This keeps the models small.

For example the thrust-reverser control, which enables and disables re-

19

verse thrust for an airplane is quite complex (see the warschaw airbus crash).
But from the safety point of view it is only important, that the system only
allows reverse thrust if the airplane has touched the ground and it’s velocity
is within a specified range. So this complex system could be modeled with
5 input signals and one output signal. So the failure sensitive model of this
component would be pretty small despite the complexity of the subsystem.
Models with 80 and more I/O signals can be handled easily when using
intelligent tools for relational algebra like the RelVIEW[8] tool for example.

Some people might find the approach very unfamiliar and difficult to use
at first. This problem is mainly due to the fact, that we are very familiar
with modeling functional behavior but not with modeling errors. The second
point is the absence of states in this formalism. But one of our first goals was
to define a formalism that is not state based. There is one very important
reason for this: a state based model always implies the mutual exclusiveness
of states. But this is an important source of failures. Think of the bars at a
railroad crossing. These would normally be modeled with states OPENED
and CLOSED and transitions from one to another. If one might think of
failure modes, he will introduce (or remove) some transitions or modify the
transition conditions. So far so good, but think of the case that the bars get
stuck in the middle—neither OPENED nor CLOSED. Figure 12 shows this
problem. This failure mode cannot be modeled without introducing new

OPENED CLOSED

close barriers

open barriers

BARRIERS STUCK
(=not OPENED and not CLOSED)

OPENED CLOSED

open barriers

close barriers

close barriers open barriers

Figure 12: Failures modes that require new states

states. Therefore, a state-free formalism is needed to capture these faults.
There are several cutting edges for current research. One is of course to

deal with state infinite systems - including dealing not only with boolean
signals. Two possible strategies seem most promising: firstly using more
general projection operators to keep the chaotic models finite and secondly
allowing infinite chaotic models.

A second frontier is to find a way to automatically or at least system-
atically inject failure modes into state chart models. This would greatly
simplify the analysis process, since it will reduce the work for adjusting the
implementation model a lot. A promising technique seems to use normal
forms for transition conditions.

Another key topics is to integrate failure-sensitive specification into other
formal safety analysis techniques. The two most promising techniques are

20

formal methods for verification of functional correctness and formal fault
tree analysis for analyzing safety properties. An integrated approach would
increase the model quality and therefore the significance and trustworthiness
of the whole safety analysis.

With more practice and experience domain specific methodologies might
also bring a lot of improvements and make the formalism easier to use
for non-experts on formal methods. Some standard components—like the
switches—can then be analyzed once for all and the found failure modes can
stored in a database. These failure modes can then be used for all safety
analyses of systems which use these components.

7 Conclusion

We presented a new specification technique for modeling safety critical sys-
tem. Failure-sensitive specifications model intended behavior and misbe-
havior hand-in-hand. They provide a complementary, relational view of
the system and allow systematically finding failure modes and checking for
completeness.

This is achieved by defining a chaotic model and restricting it stepwise,
instead of defining a model of the intended behavior and extending it. Com-
pleteness may be shown, if a formal (non-failure-sensitive) specification of
the intended behavior is available.

Failure modes are part of the input data for many safety analysis tech-
niques like Fault Tree Analysis and Failure Modes and Effects Analysis etc.
We discovered, that these methods benefit a lot from failure sensitive spec-
ifications.

Furthermore we could observe, that failure-sensitive specifications also
aid a lot in doing informal safety analysis, as the safety engineer is forced
to write down all his meta-knowledge of the system. The application and
results of failure-sensitive specifications have been demonstrated on three
simple examples. This yielded failure modes, which are not mentioned in
most existing analyses of such components. Furthermore it showed how
difficult it can be to find a complete set of failure modes even for well-
understood components.

References

[1] On the construction of programs - an advanced course, chapter Com-
municating sequential processes. Cambridge University Press, 1980.

[2] Handbook of Process Algebra, chapter The linear time - branching time
spectrum I; the semantics of concrete, sequential processes. Elsevier,
2001.

21

[3] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal
system development with KIV. In T. Maibaum, editor, Fundamental
Approaches to Software Engineering, number 1783 in LNCS. Springer,
2000.

[4] M. Balser and A. Thums. Interactive verification of statecharts. In
Integration of Software Specification Techniques (INT’02), 2002.

[5] N. Leveson. Safeware: System Safety and Computers. Addison Wesley,
1995.

[6] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publish-
ers, 1990.

[7] F. Ortmeier, W. Reif, G. Schellhorn, A. Thums, B. Hering, and
H. Trappschuh. Safety analysis of the height control system for the
Elbtunnel. In Proceedings SAFECOMP 2002, pages 296 – 308, Cata-
nia, Italy, 2002. Springer LNCS 2434.

[8] U. Milanese R. Berghammer, B. Leoniuk. Implementation of relational
algebra using binary decision diagrams. In H. de Swart, editor, RelMiCS
2001, pages 241–257. Springer Verlag, Heidelberg, 2002.

[9] J. Ruf. RAVEN: Real-time analyzing and verification environment.
Technical Report WSI 2000-3, University of Tübingen, Wilhelm-
Schickard-Institute, January 2000.

[10] Jürgen Ruf and Thomas Kropf. Symbolic Model Checking for a Dis-
crete Clocked Temporal Logic with Intervals. In E. Cerny and D.K.
Probst, editors, Conference on Correct Hardware Design and Verifica-
tion Methods (CHARME), pages 146–166, Montreal, 1997. IFIP WG
10.5, Chapman and Hall.

[11] Jürgen Ruf and Thomas Kropf. Modeling and Checking Networks of
Communicating Real-Time Systems. In Correct Hardware Design and
Verification Methods (CHARME 99), pages 265–279. IFIP WG 10.5,
Springer, September 1999.

[12] G. Schellhorn, A. Thums, and W. Reif. Formal fault tree semantics.
In Proceedings of The Sixth World Conference on Integrated Design &
Process Technology, Pasadena, CA, 2002.

[13] N. Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

[14] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault
Tree Handbook. Washington, D.C., 1981. NUREG-0492.

22

	Introduction
	Motivation
	Failure-Sensitive Specification
	Formal foundations
	Behavioral equivalence
	Integrating failure modes

	More examples
	The switches
	The specification rules
	The failure modes

	Methodology
	Limitations and future work
	Conclusion

