
Universität Augsburg

�
�

Fairness of Actions

in System Computations

F. Corradini, M.R. Di Berardini, W. Vogler

Report 2005–2 January 2005

Institut für Informatik

D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© F. Corradini, M.R. Di Berardini, W. Vogler
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Fairness of Actions in System Computations∗

F. Corradini,M.R. Di Berardini †

Dipartimento di Matematica e Informatica

Università di Camerino

W. Vogler ‡

Institut für Informatik

Universität Augsburg

Abstract

This paper contrasts two important features of parallel system computations: fair-

ness and timing. The study is carried out at specification system level by resorting to a
well-known process description language. The language is extended with labels which
allow to filter out those process executions that are not (weakly) fair (as in [7, 8]), and
with upper time bounds for the process activities (as in [6]).

We show that fairness and timing are closely related. Two main results are stated.
First, we show that each everlasting (or non-Zeno) timed process execution is fair.
Second, we provide a characterization for fair executions of untimed processes in terms
of timed process executions. This results in a finite representation of fair executions
using regular expressions.

1 Introduction

In the theory and practice of parallel systems, fairness and timing play an important role
when describing the system dynamics. Fairness requires that a system activity which is
continuously enabled along a computation will eventually proceed; this is usually a necessary
requirement for proving liveness properties of the system. Timing gives information on when
actions are performed and can serve as a basis for considering efficiency.

We will show that fairness and timing are somehow related - although they are used in
different contexts. Our comparison is conducted at system specification level by resorting
to a standard (CCS-like) process description language. We consider two extensions of this
basic language. The first extension permits to isolate the fair system executions and follows
the approach of Costa and Stirling [7, 8]. The second one adds upper time bounds for the
execution time of system activities and follows the approach taken in [6].

Costa and Stirling distinguish between fairness of actions (also called events) and fairness
of components; these coincide in [7] for a CCS-like language without restriction, while fairness
of components is studied in [8] for full CCS. In both cases, Costa and Stirling distinguish
between weak and strong fairness. Weak fairness requires that if an action (a component,
resp.) can almost always proceed then it must eventually do so, and in fact it must proceed

∗This work was supported by MURST project ‘Sahara: Software Architectures for Heterogeneous Access
Networks infrastructures’ and by the Center of Excellence for Research ‘DEWS: Architectures and Design
Methodologies for Embedded Controllers, Wireless Interconnect and System-on-chip’.

†{flavio.corradini,mariarita.diberardini}@unicam.it
‡vogler@informatik.uni-augsburg.de

1

infinitely often, while strong fairness requires that if an action (a component) can proceed
infinitely often then it must proceed infinitely often. Differences between fairness of actions
and fairness of components and between weak and strong fairness are detailed in [8]; for the
purpose of this paper, we are interested in weak fairness of actions. An important and useful
result stated in [7, 8] characterizes fair computations as the concatenation of certain finite
sequences, called LP-steps in [8]. This characterization permits to think of fairness in terms
of a localizable property and not as a property of complete (maximal) executions; but even
for a finite-state process, LP-steps usually give rise to a transition system with infinitely
many transitions.

Regarding timing, we follow the approach taken in the timed process algebra PAFAS
(Process Algebra for Faster Asynchronous Systems). Based on ideas first studied for Petri
nets e.g. in [12, 1], this new process description language has been proposed as a useful tool
for comparing the worst-case efficiency of asynchronous systems (see [11, 6] for the general
theory and [3] for an application). PAFAS is a CCS-like process description language [14]
where basic actions are atomic and instantaneous but have an associated time bound (which
is 1 or 0 for simplicity) as a maximal time delay for their execution.1 When, for an action
with time bound 1, this idle-time of 1 has elapsed, the action becomes urgent (i.e. its time
bound becomes 0) and it must be performed (or be deactivated) before time may pass further
– unless it has to wait for synchronization with another component, which either does not
offer synchronization on this action at all or at least can still delay the synchronization.
Consequently, a synchronization is urgent when all the partners are urgent. We assume that
time is discrete, since this is simple and since continuous time does not make a difference for
the (testing-based) observational preorder defined on top of the operational models (see [6]
for this and many other results on PAFAS).

We prove two main results relating timed computations of PAFAS processes and weak
fairness of actions. First, we prove that all everlasting (or non-Zeno) computations 2 are fair.
This result shows that timing with upper time bounds imposes fairness among the different
system activities. Intuitively, this is easy to see: when one time unit passes, the active
actions become urgent and must be performed (or be deactivated) before time may pass
further; this clearly ensures that an activated action does not wait forever in a computation
with infinitely many time steps.

As a second main result we show that LP-steps – defined for untimed processes – coincide
in the timed setting with sequences of basic actions between two consecutive time steps. As
a consequence of this lemma we have that non-Zeno process computations fully characterize
fair computations.

Besides providing a formal comparison between fairness and timing, our timed charac-
terization of fair executions results in a representation with technical advantages compared
to the approach of [7, 8]. In order to keep track of the different instances of system activi-
ties along a system execution, Costa and Stirling associate labels to actions, and the labels
are essential in the definition of fair computations. New labels are created dynamically
during the system evolution with the immediate effect of changing the syntax of process
terms; thus, cycles in the transition system of a process are impossible and even finite-state
processes (according to the ordinary operational semantics) usually become infinite-state.

1As discussed in [6], due to these upper time bounds time can be used to evaluate efficiency, but it does
not influence functionality (which actions are performed); so compared to CCS, also PAFAS treats the full
functionality of asynchronous systems.

2A process computation is a Zeno computation when infinitely many actions happen in finite time.

2

From the maximal runs of such a transition system, Costa and Stirling filter out the unfair
computations by a criterion that considers the processes and their labels on a maximal run.
Our timed semantics also provides such a two-level description: we also change the syntax
of processes – in our case by adding timing information –, but this is much simpler than
the labels of [7, 8], and it leaves finite-state processes finite-state. Then we apply a simpler
filter, which does not consider the processes: we simply require that infinitely many time
steps occur in a run. As a small price, we have to project away these time steps in the end.

As mentioned above, Costa and Stirling give a one-level characterization of fair compu-
tations with an SOS-semantics defining so-called LP-steps; these are (finite, though usually
unbounded) sequences of actions leading from ordinary processes to ordinary processes, with
the effect that even finite-state transition systems for LP-steps usually have infinitely many
transitions – although they are at least finite-state. In contrast, our time-based operational
semantics defines steps with single actions (or unit time steps), and consequently a finite-
state transition system is really finite.

Finally, using standard automata-theoretic techniques, we can get rid of the time steps
in such a finite-state transition system by constructing another finite-state transition system
with regular expressions as arc labels; maximal runs in this transition system are exactly
the fair runs. This way we also arrive at a one-level description, and ours is truly finite.
Compared to the conference version of this paper [4], the one-level description is improved.

For this purpose, we concentrate on the so-called initial processes, which are standard
CCS-like processes; we present a slight variation of the PAFAS operational semantics, which
for initial processes very closely corresponds to the original one, but has the following advan-
tage: in the one-level description of the fair runs of an initial process P , only initial processes
appear that are reachable from P according to a standard semantics.

The rest of the paper is organized as follows. The next section recalls PAFAS and presents
the new operational semantics. Section 3 describes the theory of fairness we consider. Section
4 is the core of the paper; it relates fairness and timing, and presents the one-level description
of fair runs. Section 5 compares the operational semantics for PAFAS used in this paper with
the one of [6]. We conclude with Section 6. Many proofs have been moved to appendices to
improve readability.

2 PAFAS - A Process Algebra for Faster Asynchronous

Systems

In this section we give a brief description of PAFAS, a process algebra introduced in [6] to
consider the functional behaviour and the temporal efficiency of asynchronous systems. The
PAFAS transitional semantics is given by two sets of SOS-rules. One describes the functional
behaviour and is very similar to the SOS-rules for standard CCS [14]. The other describes
the temporal behaviour and is based on a notion of refusal sets. On top of this transitional
semantics, a preorder relation is defined which is naturally a (worst-case) efficiency preorder.
Since we contrast the notions of timing and fairness at operational level, we do not present
the preorder in this paper and refer the reader to [6] for more details and results on PAFAS.

3

2.1 PAFAS Process

PAFAS is a CCS-like process description language [14] (with TCSP -like parallel composi-
tion), where basic actions are atomic and instantaneous but have associated a time bound
interpreted as a maximal time delay for their execution. As explained in [6], these upper
time bounds (which are either 0 or 1, for simplicity) are suitable for evaluating the per-
formance of asynchronous systems. Moreover, time bounds do not influence functionality
(which actions are performed); so compared to CCS, also PAFAS treats the full functionality
of asynchronous systems.

We use the following notation: A is an infinite set of basic actions. An additional action
τ is used to represent internal activity, which is unobservable for other components. We
define Aτ = A ∪ {τ}. Elements of A are denoted by a, b, c, . . . and those of Aτ are denoted
by α, β, Actions in Aτ can let time 1 pass before their execution, i.e. 1 is their maximal
delay. After that time, they become urgent actions written a or τ ; these have maximal delay
0. The set of urgent actions is denoted by Aτ = {a | a ∈ A} ∪ {τ} and is ranged over by
α, β, Elements of Aτ ∪ Aτ are ranged over by µ.

X is the set of process variables, used for recursive definitions. Elements of X are denoted
by x, y, z,

Φ : Aτ → Aτ is a general relabelling function if the set {α ∈ Aτ | ∅ 6= Φ−1(α) 6= {α}}
is finite and Φ(τ) = τ . Such a function can also be used to define hiding: P/A, where the
actions in A are made internal, is the same as P [ΦA], where the relabelling function ΦA is
defined by ΦA(α) = τ if α ∈ A and ΦA(α) = α if α /∈ A.

We assume that time elapses in a discrete way. (PAFAS is not time domain dependent,
meaning that the choice of discrete or continuous time makes no difference for the testing-
based semantics of asynchronous systems, see [6] for more details.) Thus, an action prefixed
process a.P can either do action a and become process P (as usual in CCS) or can let one
time step pass and become a.P ; a is called urgent a, and a.P as a stand-alone process cannot
let time pass, but can only do a to become P .

Definition 2.1 (timed process terms)
The set P̃1 of initial (timed) process terms is generated by the following grammar

P ::= nil
∣

∣ x
∣

∣ α.P
∣

∣

∣

∣ P + P
∣

∣ P‖AP
∣

∣ P [Φ]
∣

∣ rec x.P

where x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A possibly infinite.
Elements in P̃1 correspond to ordinary CCS-like terms

The set P̃ of the (general) (timed) process terms is generated by the following grammar:

Q ::= P
∣

∣ α.P
∣

∣ Q + Q
∣

∣ Q ‖A Q
∣

∣ Q[Φ]
∣

∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A possibly
infinite. We assume that the recursion is guarded, i.e. for rec x.Q variable x only appears in
Q within the scope of a prefix µ.() with µ ∈ Aτ ∪Aτ . A term Q is guarded if each occurrence
of a variable is guarded in this sense.

The set of closed (i.e., every variable x in a timed process term Q is bound by the
corresponding rec x-operator) timed process terms in P̃ and P̃1, simply called processes and
initial processes resp., is denoted by P and P1 resp.3

3As shown in [3], P1 processes do not have time-stops; i.e. every finite process run can be extended such
that time grows unboundedly.

4

A brief description of the (PAFAS) operators now follows. nil is the Nil-process; it cannot
perform any action, but may let time pass without limit. A trailing nil will often be omitted,
so e.g. a.b + c abbreviates a.b.nil + c.nil. Q1 + Q2 models the choice between two conflicting
processes Q1 and Q2. Q1‖AQ2 is the parallel composition of two processes Q1 and Q2 that
run in parallel and have to synchronize on all actions from A; this synchronization discipline
is inspired from TCSP. Q[Φ] behaves as Q but with the actions changed according to Φ.
rec x.Q models a recursive definition.

Initial processes are just standard processes of a standard process algebra. General
processes are defined here such that they include all processes reachable from the initial ones
according to the operational semantics to be defined below. In contrast to the more general
PAFAS processes in [6] and the conference version of the present paper, our processes have
urgent actions as ‘top-prefixes’ only.

We can now define the set of active actions in a process term. Given a process term
Q, A(Q, A) denotes the set of the active (or enabled) actions of Q when the environment
prevents the actions in A. For technical convenience, we allow A to be a subset of Aτ here
and in some similar definitions that follow.

Definition 2.2 (activated basic actions)
Let Q ∈ P̃ and A ⊆ Aτ . The set A(Q, A) is defined by induction on Q.

Nil, Var: A(nil, A) = A(x, A) = ∅

Pref: A(µ.P, A) =

{

{α} if µ = α or µ = α and α /∈ A

∅ otherwise

Sum: A(Q1 + Q2, A) = A(Q1, A) ∪ A(Q2, A)

Par: A(Q1 ‖B Q2, A) = A(Q1, A ∪ B) ∪ A(Q2, A ∪ B)∪
A(Q1, Aτ\(B\A)) ∩ A(Q2, Aτ\(B\A))

Rel: A(Q[Φ], A) = Φ(A(Q, Φ−1(A)))
Rec: A(rec x.Q, A) = A(Q, A)

The activated actions of Q are defined as A(Q, ∅) which we abbreviate to A(Q).

The set A represents the actions restricted upon. This is the reason why A(α.P, A) =
A(α.P, A) = ∅ if α ∈ A and A(α.P, A) = A(α.P, A) = {α}, if α /∈ A. A nondeterministic
process can perform all the actions that its alternative components can perform minus the
restricted ones. Parallel composition increases the prevented set. A(Q1 ‖B Q1, A) includes
the actions that Q1 and Q2 can perform when the actions in A and the actions in B (the
synchronizing ones) are prevented. A(Q1 ‖B Q2, A) also includes the actions in B, but not
in A, that both Q1 and Q2 can perform. The other rules are as expected.

A significant subset of the activated actions is the set of urgent ones. These are activated
actions that cannot let time pass.

Definition 2.3 (urgent activated action)
Let Q ∈ P̃ and A ⊆ Aτ . The set U(Q, A) is defined as in Definition 2.2 when A() is

replaced by U() and the Pref-rule is replaced by the following one:

5

Pref: U(µ.P, A) =

{

{α} if µ = α and α /∈ A

∅ otherwise

The urgent activated actions of Q are defined as U(Q, ∅) which we abbreviate to U(Q).

The operational semantic exploits two functions on process terms: clean() and unmark().
Function clean() removes all inactive urgencies in a process term Q ∈ P̃. When a process
evolves and a synchronized action is no longer urgent or enabled in some synchronization
partner, then it should also lose its urgency in the others; the corresponding change of
markings is performed by clean, where again set A in clean(Q, A) denotes the set of actions
that are not enabled or urgent due to restrictions of the environment. Function unmark()
simply removes all urgencies (inactive or not) in a process term Q ∈ P̃ and can be defined,
as follows, by induction on the process structure.

Definition 2.4 (cleaning inactive urgencies)
Given a process term Q ∈ P̃ we define clean(Q) as clean(Q, ∅) where, for a set A ⊆ A,

clean(Q, A) is defined as follows:

Nil, Var: clean(nil, A) = nil, clean(x, A) = x

Pref: clean(α.P, A) =

{

α.P if α ∈ A

α.P otherwise

clean(α.P, A) = α.P

Sum: clean(Q1 + Q2, A) = clean(Q1, A) + clean(Q2, A)

Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪ A′) ‖B clean(Q2, A ∪ A′′)
where A′ = (U(Q1)\U(Q2)) ∩ B and A′′ = (U(Q2)\U(Q1)) ∩ B

Rel: clean(Q[Φ], A) = clean(Q, Φ−1(A))[Φ]

Rec: clean(rec x.Q, A) = rec x. clean(Q, A)

Definition 2.5 (cleaning all urgencies)
Let Q be a P̃ term. Then unmark(Q) is defined by induction on Q as follows:

Nil, Var: unmark(nil) = nil, unmark(x) = x

Pref: unmark(α.P) = unmark(α.P) = α.P

Sum: unmark(Q1 + Q2) = unmark(Q1) + unmark(Q2)

Par: unmark(Q1 ‖B Q2) = unmark(Q1) ‖B unmark(Q2)

6

Rel: unmark(Q[Φ]) = unmark(Q)[Φ]

Rec: unmark(rec x.Q) = rec x. unmark(Q)

Some useful properties of functions clean and unmark are proved in Appendix 7.1.

2.2 The functional behaviour of PAFAS process

The transitional semantics describing the functional behaviour of PAFAS processes indicates
which basic actions they can perform; timing information can be disregarded, since we only
have upper time bounds.

Definition 2.6 (Functional operational semantics) The following SOS-rules define the tran-
sition relations

α
−→⊆ (P̃ × P̃) for α ∈ Aτ , the action transitions.

As usual, we write Q
α
−→ Q′ if (Q, Q′) ∈

α
−→ and Q

α
−→ if there exists a Q′ ∈ P̃ such that

(Q, Q′) ∈
α
−→, and similar conventions will apply later on.

Prefa1

α.P
α
−→ P

Prefa2

α.P
α
−→ P

Suma

Q1
α
−→ Q′

Q1 + Q2
α
−→ Q′

Para1

α /∈ A, Q1
α
−→ Q′

1

Q1‖AQ2
α
−→ clean(Q′

1‖AQ2)
Para2

α ∈ A, Q1
α
−→ Q′

1, Q2
α
−→ Q′

2

Q1‖AQ2
α
−→ clean(Q′

1‖AQ′
2)

Rela

Q
α
−→ Q′

Q[Φ]
Φ(α)
−−→ Q′[Φ]

Reca

Q{rec x.unmark(Q)/x}
α
−→ Q′

rec x.Q
α
−→ Q′

Additionally, there are symmetric rules for Para1 and Suma for actions of Q2.

The use of unmark in rule Reca has to be contrasted with the temporal behaviour defined
next. Consider an initial process Q; after a time-step, the recursive term rec x.Q evolves to
rec x.Q′ (see the rule Recr below) where Q′ is Q after the passage of time; in general, Q′

will contain some urgent actions. Since occurrences of x in Q are guarded, each x stands
for a process which is not enabled yet and cannot have urgent actions; thus, these recursive
calls in rec x.Q′ refer to Q and not to Q′, which explains the substitution in rule Reca of
Definition 2.6 based on unmark; cf. the example at the end of the section.

2.3 The temporal behaviour of PAFAS process

We are now ready to define the refusal traces of a term Q ∈ P̃. Intuitively a refusal trace
records, along a computation, which actions process Q can perform (Q

α
−→ Q′, α ∈ Aτ) and

which actions Q can refuse to perform when time elapses (Q
X
−→r Q′, X ⊆ A).

A transition like Q
X
−→r Q′ is called a (partial) time-step. The actions listed in X are

not urgent; hence Q is justified in not performing them, but performing a time step instead.

7

This time step is partial because it can occur only in contexts that can refuse the actions
not in X. If X = A then Q is fully justified in performing this time-step; i.e., Q can perform

it independently of the environment. If Q
A
−→r Q′ we write Q

1
−→ Q′ and say that P performs

a full time-step. In [6], it is shown that inclusion of refusal traces characterizes an efficiency
preorder which is intuitively justified by a testing scenario. In the present paper, we need
partial time steps only to set up the following SOS-semantics; our real interest is in runs
where all time steps are full. We let λ range over Aτ ∪ {1}.

Definition 2.7 (Refusal transitional semantics)

The following inference rules define
X
−→r⊆ (P̃ × P̃), where X ⊆ A.

Nilr

nil
X
−→r nil

Prefr1

α.P
X
−→r α.P

Prefr2

α /∈ X ∪ {τ}

α.P
X
−→r α.P

Parr

Qi
Xi−→r Q′

i for i = 1, 2, X ⊆ (A ∩ (X1 ∪ X2)) ∪ (X1 ∩ X2)\A

Q1‖AQ2
X
−→r clean(Q′

1‖AQ′
2)

Sumr

∀ i = 1, 2 Qi
X
−→r Q′

i

Q1 + Q2
X
−→r Q′

1 + Q′
2

Relr

Q
Φ−1(X∪{τ})\{τ}
−−−−−−−−−−→r Q′

Q[Φ]
X
−→r Q′[Φ]

Recr

Q
X
−→r Q′

rec x.Q
X
−→r rec x.Q′

The rules in Definition 2.7 explain the refusal operational semantics of a PAFAS term.
Rule Prefr1 says that a process α.Q can let time pass and refuse to perform any action
while rule Prefr2 says that a process Q prefixed by an urgent action α, can let time pass but
action α cannot be refused. Process τ .Q cannot let time pass and cannot refuse any action;
also in any context, τ .Q has to perform τ as explained by Rule Prefa2 in Definition 2.6
before time can pass further.

Another rule worth noting is Parr which defines which actions a parallel composition
can refuse during a time-step. The intuition is that Q1‖AQ2 can refuse an action α if either
α /∈ A (Q1 and Q2 can perform α independently) and both Q1 and Q2 can refuse α, or
α ∈ A (Q1 and Q2 are forced to synchronize on α) and at least one of Q1 and Q2 can refuse
α, i.e. can delay it. Thus, an action in a parallel composition is urgent (cannot be further
delayed) only when all synchronizing ‘local’ actions are urgent. Also in this case we unmark
the inactive urgencies. The other rules are as expected.

For the use of the various definitions consider the following example.

Example 2.8 Let P = rec x.a. ‖{a} rec x. (a.nil + b.c.x) and consider the following behavior:

P
1
−→ rec x.a.x ‖{a} rec x. (a.nil + b.c.x)

b
−→

P ′ = rec x.a.x ‖{a} c.rec x. (a.nil + b.c.x)
1
−→

rec x.a.x ‖{a} c.rec x. (a.nil + b.c.x)
c
−→

rec x.a.x ‖{a} rec x. (a.nil + b.c.x)

8

P can either perform b or synchronize on a. Thus both these actions become urgent after the
first time-step. Now, if the right-hand component performs b, the action a on the left-hand
side is no longer enabled and it has to lose its urgency. At the same time, on the right-hand
side x is replaced by the right-hand component of P using unmark. Finally, after the second
time-step c as the only activated action of P ′ is marked as urgent.

3 Fairness and PAFAS

In this section we briefly describe our theory of fairness. It closely follows Costa and Stirling’s
theory of (weak) fairness. The main ingredients of the theory are:

- A labelling for process terms. This allows to detect during a transition which action
is actually performed; e.g., for process P = rec x.α.x, we need additional information
to detect whether the left-hand side instance of action α or the right-hand one is
performed in the transition P‖∅ P

α
−→ P‖∅ P . When an action is performed, we speak

of an event, which corresponds to a label – or actually, different from [7, 8], a tuple of
labels as we will see.

- Live events. An action of a process term is live if it can currently be performed. In a
term like a.b.nil‖{b} b.nil only action a can be performed while b cannot, momentarily.
Such a live action corresponds to a possible event, i.e. to a label.

- Fair sequences. A maximal sequence is fair when no event in a process term becomes
live and then remains live throughout.

These items sketch the general methodology used by Costa and Stirling to define and
isolate fair computations in [7, 8]. It has to be noted, however, that in [8] Costa and
Stirling concentrate on fairness of process components; i.e., along a fair computation, there
cannot exist any subprocess that could always contribute some action but never does so. In
contrast, we will require fairness for actions. In the setting of [7], i.e. with CCS-composition
but without restriction, these two views coincide.

To demonstrate the difference, consider a‖{a}rec x.(a.x + b.x) and a run consisting of
infinitely many b’s. This run is not fair to the component a, since this component is enabled
at every stage, but never performs its a. In our view, this run is fair for the synchronized
action a, since the second component offers always a fresh a for synchronization. (Another
intuitive explanation is that action a is not possible while b is performed.) Correspondingly,
the label for such a synchronization (called an event label) is a pair of labels, each stemming
from one of the components; such a pair is a live event, and it changes with each transition.
In [5], we have shown how to change this framework in order to capture the fairness of
components.

We now describe the three items in more detail. Most of the definitions in the rest of this
section are taken from [8] with the obvious slight variations due to the different language
we are using (the timed process algebra PAFAS with TCSP parallel composition instead of
CCS). We also take from [8] those results that are language independent. The others will be
proven.

9

3.1 A labelling for process terms

In order to determine the fairness of a transition sequence, Costa and Stirling use a labelling
method. Labels are associated with basic actions and operators inside a process. Along
a computation, labels are unique and, once a label disappears, it will not reappear in the
process anymore.

The set of labels is LAB = {1, 2}∗ with ε as the empty label and u, v, w, . . . as typical
elements; ≤ is the prefix preorder on LAB. We have that u ≤ v if there is u′ ∈ LAB such that
v = uu′ (and u < v if u′ ∈ {1, 2}+). We also use the following notation:

- (Set of tuples) N = {〈v1, . . . , vn〉 | n ≥ 1, v1, . . . , vn ∈ LAB};

- (Composition of tuples) s1 × s2 = 〈v1, . . . , vn, w1, . . . , wm〉, where s1, s2 ∈ N and
s1 = 〈v1, . . . , vn〉, s2 = 〈w1, . . . , wm〉;

- (Composition of sets of tuples) N × M = {s1 × s2 | s1 ∈ N and s2 ∈ M}, where
N, M ⊆ N . Note that N = ∅ or M = ∅ implies N × M = ∅.

All PAFAS operators and variables will now be labelled in such a way that no label occurs
more than once in an expression. We call this property unicity of labels. As indicated above,
an action being performed might correspond to a pair or more generally to a tuple of labels,
cf. the definition of live events below (3.7); therefore, we call tuples of labels event labels.

Labels (i.e. elements of LAB) are assigned systematically following the structure of PAFAS
terms usually as indexes and in case of parallel composition as upper indexes. Due to
recursion the labelling is dynamic: the rule for rec generates new labels.

Definition 3.1 (labelled process algebra)
The labelled process algebra L(P̃) (and similarly L(P̃1) etc.) is defined as

⋃

u∈LAB
Lu(P̃),

where Lu(P̃) =
⋃

Q∈ P̃
Lu(Q) and Lu(Q) is defined inductively as follows:

Nil, Var: Lu(nil) = {nilu}, Lu(x) = {xu}
In examples, we will often write nil for nilu, if the label u is not relevant.

Pref: Lu(µ.P) = {µu.P
′ | P ′ ∈ Lu1(P)}

Sum: Lu(Q1 + Q2) = {Q′
1 +u Q′

2 | Q
′
1 ∈ Lu1(Q1), Q′

2 ∈ Lu2(Q2)}

Par: Lu(Q1 ‖A Q2) = {Q′
1 ‖

u
A Q′

2 | Q
′
1 ∈ Lu1v(Q1), Q′

2 ∈ Lu2v′(Q2)
where v, v′ ∈ LAB}

Rel: Lu(Q[Φ]) = {Q′[Φu] | Q′ ∈ Lu1v(Q) where v ∈ LAB}

Rec: Lu(rec x.Q) = {rec xu.Q
′ | Q′ ∈ Lu1(Q)}

We assume that, in rec xu.Q, rec xu binds all free occurrences of a labelled x. We let
L(Q) =

⋃

u∈LAB
Lu(Q) and LAB(Q) is the set of labels occurring in Q.

The unicity of labels must be preserved under derivation. For this reason in the rec rule
the standard substitution must be replaced by a substitution operation which also changes
the labels of the substituted expression.

10

Definition 3.2 (a new substitution operator)
The new substitution operation, denoted by {| |}, is defined on L(P̃) using the following

operators:

i. ()+v If Q ∈ Lu(P̃), then (Q)+v is the term in Lvu(P̃) obtained by prefixing v to all labels
in Q.

ii. ()ε If Q ∈ Lu(P̃), then (Q)ε is the term in Lε(P̃) obtained by removing the prefix u
from all labels in Q. (Note that u is the unique prefix-minimal label in Q.)

Suppose Q, Q′ ∈ L(P̃) and xu, . . . , xv are all free occurrences of a labelled x in Q then
Q{|Q′/x |} = Q{((Q′)ε)

+u/xu, . . . , ((Q
′)ε)

+v/xv}. The motivation of this definition is that in
Q{|Q′/x|} each substituted Q′ inherits the label of the x it replaces.

Easy but important are the relationships between activated and urgent actions of PAFAS
and of labelled PAFAS processes. Since labels are just annotations used to distinguish
different instances of basic actions, they do not interfere with these notions and we can
define A(Q, A) and U(Q, A) for a labelled PAFAS process Q just as in Definitions 2.2 and
2.3, resp.

Similarly, the operation of removing urgencies, inactive or not, does not depend on labels.
They are performed in the same way both in the unlabelled and labelled setting and we can
define clean(Q, A) and unmark(Q) for a labelled PAFAS process P just as in Definitions 2.4
and 2.5, resp.

Finally, the behavioural operational semantics of the labelled PAFAS is obtained by
replacing the rule Reca in Definition 2.6 with the rule:

Reca

Q{| rec xu.unmark(Q)/x |}
α
−→ Q′

rec xu.Q
α
−→ Q′

and the rules Prefa1 and Prefa2 in Definition 2.6 with the rules:

Prefa1

αu.P
α
−→ P

Prefa2

αu.P
α
−→ P

because we assume that labels are not observable when actions are performed. The other
rules are unchanged.

As a consequence, a labelled term Q and its unlabelled version, that we we denote with
R(Q), can perform exactly the same transitions, as stated by the following proposition.

Proposition 3.3 Let Q ∈ Lu(P̃) and A ⊆ Aτ . Then:

i. Q
α
−→ Q′ (Q

X
−→r Q′) implies R(Q)

α
−→ R(Q′) (R(Q)

X
−→r R(Q′)) in unlabelled PAFAS;

ii. if R(Q)
α
−→ R (R(Q)

X
−→r R) in unlabelled PAFAS then for some Q′ with R = R(Q′),

we have Q
α
−→ Q′ (Q

X
−→r Q′);

iii. A(Q, A) = A(R(Q), A) and U(Q, A) = U(R(Q), A).

11

As an example for 3.3 ii), observe that for a.nil‖∅ nil
a
−→ nil‖∅ nil and R(au1.nilu11‖u

∅ nilu2) =

a.nil‖∅ nil we indeed have au1.nilu11‖
u
∅ nilu2

a
−→ nilu11‖

u
∅ nilu2; the latter term is a labelled process

since we allow P ′ ∈ Lu1v(P) in case Par of Definition 3.1, while e.g. in case Pref we require
P ′ ∈ Lu1(P).

An immediate consequence of the labelling are the following facts that have been proven
in [8].

Fact 3.4 Let Q ∈ Lu(P̃). Then

1. no label occurs more than once in Q,

2. w ∈ LAB(Q) implies u ≤ w.

Central to labelling is the persistence and disappearance of labels under derivation. In
particular, once a label disappears it can never reappear. It is these features which allow us
to recognize when a component contributes to the performance of an action.

Fact 3.5 Let Q ∈ Lu(P̃) and α, α1, . . . αn ∈ Aτ .

1. Q
α
−→ Q′ implies Q′ ∈ Lv(P̃) with u ≤ v.

2. Q
α1−→ Q1

α2−→ . . .
αn−→ Qn implies Qi ∈ Lvi

(P̃) with u ≤ vi. Moreover, if w ∈ LAB such
that w < u then w /∈ LAB(Qi).

Fact 3.6 Let Q0 ∈ L(P̃). If Q0
α1−→ Q1

α2−→ . . .
αi−→ Qi

αi+1

−−→ . . .
αn−→ Qn and v ∈ LAB(Q0) ∩

LAB(Qn) then v ∈ LAB(Qi), for every i ∈ [0, n].

Throughout the rest of this section we assume the labelled calculus. However, whenever
possible, labels will be left implicit to keep the notation simple (as, for instance, in proofs of
statements that do not explicitly deal with labels in processes) – and the same applies for
the treatment of labelled processes in the next section.

3.2 Live events

To capture the fairness constraint for execution sequences, we need to define the live events.
For a process like αu.nil‖{α} αv.nil (with labels u and v), there is only one live action. This is
action α; it can be performed in only one way, i.e. there is only one α-event, which we will
identify with the tuple 〈u, v〉, i.e. with the tuple of labels of ‘local’ α’s that synchronize when
the process performs α; recall that we call such tuples event labels.4 In a similar way, there is
only one live action in αu.βv.nil ‖{β}βy.nil (action α corresponding to tuple 〈u〉) because the
parallel composition prevents the instance of β labelled by 〈y〉 from contributing an action.
However, note that 〈v, y〉 becomes live, once action α is performed.

We now define LE(Q, A) as the set of live events of Q (when the execution of actions in
A are prevented by the environment). Again for technical reasons, we allow τ to be part of
the set A.

Definition 3.7 (live events)
Let Q ∈ L(P̃) and A ⊆ Aτ . The set LE(Q, A) is defined by induction on Q.

4Since Costa and Stirling deal with fairness of components, they have no need for tuples.

12

Nil, Var: LE(nilu, A) = LE(xu, A) = ∅

Pref: LE(µu.P, A) =

{

{〈u〉} if µ = α or µ = α and α /∈ A

∅ otherwise

Sum: LE(Q1 +u Q2, A) = LE(Q1, A) ∪ LE(Q2, A)

Par: LE(Q ‖u
B Q1, A) = LE(Q1, A ∪ B) ∪ LE(Q1, A ∪ B)∪

⋃

α∈B\A(LE(Q1, Aτ\{α}) × LE(Q2, Aτ\{α}))

Rel: LE(Q[Φu], A) = LE(Q, Φ−1(A))
Rec: LE(rec xu.Q, A) = LE(Q, A)

The set of live events in Q is defined as LE(Q, ∅) which we abbreviate to LE(Q).

As for the definition of activated actions, the set A represents the restricted actions.
Then, LE(au.P, {a}) must be empty because the action a is prevented. Note that, in the
Par-case, LE(Q1, A∪B)∪ LE(Q2, A∪B) is the set of the labels of the live actions of Q1 and
Q2, when the environment prevents actions from A and from the synchronization set B –
corresponding to those actions that Q1 and Q2 can perform independently. To properly deal
with synchronization, for all α ∈ B\A we combine each live event of Q1 corresponding to α
with each live event of Q2 corresponding to α, getting tuples of labels.

An important subset of the live events of a process Q is the subset of urgent live events,
those that cannot be delayed anymore.

Definition 3.8 (urgent live events)
Let Q ∈ L(P̃) and A ⊆ Aτ . The set UE(Q, A) is defined as in Definition 3.7 when LE()

is replaced by UE() and rule Pref is replaced by the following one:

Pref: UE(µu.P, A) =

{

{〈u〉} if µ = α and α 6∈ A

∅ otherwise

Again, define UE(Q) = UE(Q, ∅).

An easy observation is the following lemma.

Lemma 3.9 Let Q be a labelled process term. Then:

1. UE(Q, A) ⊆ LE(Q, A), for every A ⊆ Aτ .

2. 〈v1, . . . , vn〉 ∈ LE(Q) implies vi ∈ LAB(Q), for every i ∈ [1, n].

3. Q ∈ L(P̃1) implies UE(Q, A) = ∅, for every A ⊆ Aτ .

Example 3.10 Let P = (Q ‖1
{b} b12.nil)‖ε

{b} b2.nil, where Q = rec x11.(av1.x +v bv2.nil) and

v = 111. Let Aα = LE(Q‖1
{b}b12.nil, Aτ\{α}) × LE(b2.nil, Aτ\{α}). Then, by definition,

LE(P) = LE(Q ‖1
{b} b12.nil, {b}) ∪ LE(b2.nil, {b}) ∪

⋃

α∈{b}

Aα.

13

We now determine these three subsets of LE(P).
LE(Q ‖1

{b} b12.nil, {b}) =

LE(Q, {b}) ∪ LE(b12.nil, {b}) ∪
⋃

α∈∅(LE(Q, Aτ\{α}) × LE(b12.nil, Aτ\{α}) =
LE(Q, {b}) = LE(av1.x +v bv2.nil, {b}) = {〈v1〉}.

LE(b2.nil, {b}) = ∅.

Since
LE(Q‖1

{b}b12.nil, Aτ\{b}) =

LE(Q, Aτ) ∪ LE(b12.nil, Aτ) ∪ (LE(Q, Aτ\{b}) × LE(b12.nil, Aτ\{b})) =
LE(av1.x +v bv2.nil, Aτ\{b}) × {〈12〉} =
{〈v2〉} × {〈12〉} = {〈v2, 12〉} and

LE(b2.nil, A\{b}) = {〈2〉} we have that

⋃

α∈{b} Aα = Ab = LE(Q‖1
{b}b12.nil, Aτ\{b}) × LE(b2.nil, Aτ\{b}) =

{〈v2, 12〉} × {〈2〉} = {〈v2, 12, 2〉}

Finally LE(P) = {〈v1〉} ∪ {〈v2, 12, 2〉} = {〈v1〉, 〈v2, 12, 2〉}.

In the rest of this section we just state some properties that will be useful to prove our
main correspondence results. Detailed proofs have been moved to sections in the appendix.
We start with a proposition relating labels and (functional and temporal) transitions. In the
case of functional transitions, if an event label is urgent and live in the source process, then
either the label preserves its status in the target one or one of its constituents disappears (a
similar statement would hold for live events in place of urgent ones). In the case of temporal
transitions the set of live events of the source state coincides with the set of live events of
the target one. In addition, after the temporal move all live events become urgent. This
statement will be used to prove Proposition 4.1.

Proposition 3.11 Let Q, Q′ ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
α
−→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q, A) implies either s ∈ UE(Q′, A) or there exists

some j ∈ [1, n] such that vj /∈ LAB(Q′).

2. Q
X
−→r Q′ implies LE(Q, A) = LE(Q′, A) = UE(Q′, A).

The next proposition relates full time-steps and urgent activated actions. A process term
can perform a full time-step only if it does not have any pending urgent actions, and vice
versa for a guarded process term. Moreover, it shows how urgent activated actions and
urgent live events are strictly related. This statement will be used to prove Proposition 4.2
and 4.5.

Proposition 3.12 Let Q ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
1
−→ implies U(Q) = ∅;

2. Q guarded and U(Q) = ∅ implies Q
1
−→;

14

3. U(Q, A) = ∅ if and only if UE(Q, A) = ∅.

The following proposition states that process terms that are able to perform two subse-
quent time steps cannot exhibit any functional behaviour. Moreover, if a term cannot make
any functional move (and is guarded), then it can let two time steps pass. Intuitively, this
captures the functional deadlock of terms. Terms that cannot exhibit any functional be-
haviour can let any amount of time pass. The following proposition formalizes this intuition.
It will be used to prove Proposition 4.6.

Proposition 3.13 Let Q, Q′, Q′′ ∈ L(P̃).

1. Q
1
−→ Q′ 1

−→ Q′′ implies Q 6
α
−→ and Q′ 6

α
−→ for any α ∈ Aτ . Moreover Q′ = Q′′;

2. Q guarded and Q 6
α
−→ for any α ∈ Aτ implies Q

1
−→ Q′ 1

−→ Q′

3.3 Fair execution sequences

We can now define the (weak) fairness constraint. The following definitions and results are
essentially borrowed from [8], and just adapted to our notions of fairness and labelling. First

of all, for a process P0, we say that a sequence of transitions γ = P0
λ0−→ P1

λ1−→ . . . with
λi ∈ Aτ ∪ {1} is a timed execution sequence if it is an infinite sequence of action transitions
and full time-steps; note that a maximal sequence of such transitions/steps is never finite,

since for γ = P0
λ0−→ P1

λ1−→ . . .
λn−1

−−−→ Pn, we have Pn
α
−→ or Pn

1
−→ by Proposition 3.13. The

second part of this proposition is applicable, since processes are always guarded.
Note that a timed execution sequence is everlasting in the sense of having infinitely many

time steps if and only if it is non-Zeno; a Zeno run would have infinitely many actions in a
finite amount of time, which in a setting with discrete time means exactly that it ends with
infinitely many action transitions without a time step.

For an initial process P0, we say that a sequence of transitions γ = P0
α0−→ P1

α1−→ . . .
with αi ∈ Aτ is an execution sequence if it is a maximal sequence of action transitions; i.e.
it is infinite or ends with a process Pn such that Pn 6

α
−→ for any action α.

Now we formalize fairness by calling a (timed) execution sequence fair, if no event be-
comes live and then remains live throughout.

Definition 3.14 (fair execution sequences)

Let γ = P0
λ0−→ P1

λ1−→ . . . be an execution sequence or a timed execution sequence; we
will write ‘(timed) execution sequence’ for such a sequence. We say that γ is fair if

¬(∃ s ∃ i . ∀ k ≥ i : s ∈ LE(Pk))

Following [8], we now present an alternative, more local, definition of fair computations
which will be useful to prove our main statements. In the following, we use |γ| to denote the
length – i.e. the number of processes – of a (timed) execution sequence γ, which is ∞ if γ is
an infinite computation.

Definition 3.15 Let γ = P0
λ0−→ P1

λ1−→ . . . be a (timed) execution sequence. We say that

15

i. γ is l-fair at i if there exists j ≥ i such that

LE(Pi) ∩ LE(Pi+1) ∩ . . . ∩ LE(Pj) = ∅

ii. γ is l-fair if for all i < |γ| we have that γ is l-fair at i.

γ is l-fair at i when every live event in Pi loses its liveness. The following theorem states
that a (timed) execution sequence is l-fair at every i if and only if it is fair.

Theorem 3.16 A (timed) execution sequence γ = P0
λ0−→ P1

λ1−→ . . . is l-fair if and only if it
is fair.

Proof: We prove that γ is not l-fair if and only if it is not fair.

1. Assume γ not l-fair. Then there exists i < |γ| such that for all j ≥ i, LE(Pi)∩LE(Pi+1)∩
. . . ∩ LE(Pj) 6= ∅.5 Then, there is some s such that for all j ≥ i, s ∈ LE(Pj).

2. Vice versa, if γ is not fair, then there are i and s such that, for all k ≥ i, s ∈ LE(Pk),
i.e. γ is not l-fair at i and, hence, γ is not l-fair.

2

As remarked in [8], this alternative definition of fairness allows us to think of fairness in
terms of a localizable property and not just as a property of (timed) execution sequences

as a whole. Starting from P0 we can generate a derivation P0
λ0−→ P1 . . .

λn−1

−−−→ Pn which
satisfies l-fairness at 0, i.e. such that LE(P0)∩LE(P1)∩ . . .∩LE(Pn) = ∅. One then continues

by generating a derivation Pn
λn−→ Pn+1 . . .

λm−1

−−−→ Pm which satisfies l-fairness at n. The
concatenation of these two derivations guarantees l-fairness at any j ≤ n. In this way we
can generate only fair sequences. The following definition formalizes this strategy.

Definition 3.17 (B-step)

For an process P0, we say that P0
λ0−→ P1

λ1−→ . . .
λn−1

−−−→ Pn with n > 0 is a timed B-step
when

i. B is a finite set of event labels,

ii. B ∩ LE(P0) ∩ . . . ∩ LE(Pn) = ∅.

If λi ∈ Aτ , i = 0, . . . , n − 1, then the sequence is a B-step.

If P0
λ0−→ P1

λ1−→ . . .
λn−1

−−−→ Pn is a (timed) B-step and v = λ0 . . . λn−1 we write P0
v
−→B Pn+1.

In particular, a (timed) LE(P)-step from P is “locally” fair: all live events of P lose their
liveness at some point in the step.

Definition 3.18 (fair-step sequences)
A (timed) fair-step sequence from P0 is any maximal sequence of (timed) steps of the

form

P0
v0−→LE(P0) P1

v1−→LE(P1) . . .

5Note that LE(Pi) is finite.

16

A fair-step sequence is simply a concatenation of locally fair steps. If δ is a (timed) fair-
step sequence, then its associated (timed) execution sequence is the sequence which drops
all references to the sets LE(Pi).

Theorem 3.19 A (timed) execution sequence is l-fair if and only if it is the sequence asso-
ciated with a (timed) fair-step sequence.

Proof: Assume γ = P0
λ0−→ P1

λ1−→ . . . l-fair. By definition, γ is l-fair at 0 and, hence, there
exists j ≥ 0 such that LE(P0) ∩ . . . ∩ LE(Pj) = ∅. Then, for v0 = λ0 . . . λj−1, we have that

P0
v0−→LE(P0) Pj. Since γ is l-fair at j for any j < |γ|, we can iterate this strategy and generate

a fair-step sequence γ ′ = P0
v0−→LE(P0) Pj

v1−→LE(Pj) . . . Clearly, γ is the execution sequence
associated with γ ′.

Vice versa, assume that γ ′ = P0
v0−→LE(P0) P1

v1−→LE(P1) . . . is a fair-step sequence. Let
v0 = λ0 . . . λj−1, v1 = λj . . . λk−1 and so on. The execution sequence associated with γ ′ is

γ = P0
λ0−→ P ′

1
λ1−→ . . .

λj−1

−−→ P ′
j = P1

λj

−→ P ′
j+1

λj+1

−−→ . . .
λk−1

−−−→ P ′
k = P2 . . .

The definition of a B-step implies that γ is l-fair at j and k etc. and, thus, fair at any
i ≤ j and i ≤ k etc.; therefore, γ is l-fair for any i < |γ| and, hence, it is l-fair. 2

Now we have the obvious corollary that combines Theorems 3.16 and 3.19 to show that
fair execution sequences and fair-step sequences are essentially the same.

Corollary 3.20 A (timed) execution sequence is fair if and only if it is the sequence asso-
ciated with a (timed) fair-step sequence.

4 Fairness and Timing

This section is the core of the paper. It relates fairness and timing in a process algebraic
setting, and it contains three main contributions:

(i) We prove that all everlasting (i.e. non-Zeno) sequences of PAFAS processes are fair.

(ii) We provide a characterization of fair execution sequences of initial PAFAS processes
(PAFAS processes evolving only via functional operational semantics) in terms of timed
execution sequences.

(iii) For the case of a finite state process, we derive from this a finite representation of the
fair runs with a transition system that has arcs labelled by regular expressions.

4.1 Fairness of everlasting sequences

The following proposition is a key statement for proving that everlasting timed execution
sequences of PAFAS processes are fair. It relates time steps, urgent live events and live
events.

Proposition 4.1 Let Q be a labelled process term. Then: Q
X
−→r Q1

α1−→ . . .
αn−1

−−−→ Qn,
where X ⊆ A and α1, . . . , αn−1 ∈ Aτ , implies LE(Q1) ∩ (LE(Qn)\UE(Qn)) = ∅ (and by
Proposition 3.11 also LE(Q) ∩ (LE(Qn)\UE(Qn)) = ∅).

17

Proof: Assume, by contradiction, that there exists a tuple of labels s = 〈v1, . . . , vm〉 such
that s ∈ LE(Q1) = UE(Q1) (by Proposition 3.11-2) and s ∈ LE(Qn)\UE(Qn). Lemma 3.9-2
and s ∈ LE(Q1) imply v1, . . . , vm ∈ LAB(Q1). On the other hand, since s ∈ UE(Q1) but
s /∈ UE(Qn), we can find j, 1 ≤ j < n, such that s ∈ UE(Qj) and s /∈ UE(Qj+1). Then,
by Proposition 3.11-1, there exists some k ∈ [1, m] such that vk /∈ LAB(Qj+1). By Fact
3.6, vk ∈ LAB(Q1) and vk /∈ LAB(Qj+1) implies vk /∈ LAB(Qi), for every i ∈ [j + 1, n] and,
again by Lemma 3.9, s /∈ LE(Qi), for every i ∈ [j + 1, n]. In particular, s /∈ LE(Qn) which
contradicts the assumption s ∈ LE(Qn)\UE(Qn). 2

To prove the main statement of this section, another preliminary proposition is needed.

Proposition 4.2 Let Q ∈ L(P̃) and v, w ∈ (Aτ)
∗.

1. If Q
1
−→ Q1

v
−→ Q2

1
−→ then Q

1v
−→LE(Q) Q2;

2. If Q
v
−→ Q′ 1

−→ Q′
1

w
−→ Q′

2
1
−→ then Q

v1w
−−→LE(Q) Q′

2.

Proof:

1. Assume that Q
1
−→ Q1

v
−→ Q2. Proposition 4.1 implies LE(Q) ∩ (LE(Q2)\UE(Q2)) = ∅.

Moreover Q2
1
−→ and Proposition 3.12 imply that U(Q2) = ∅ and UE(Q2) = ∅. Thus

LE(Q) ∩ LE(Q1) ∩ . . . ∩ LE(Q2) ⊆ LE(Q) ∩ LE(Q2) = LE(Q) ∩ (LE(Q2)\UE(Q2)) = ∅.

By the definition of a timed B-step, Q
1v
−→LE(P) Q2.

2. This follows immediately from 1. and the definition of a timed B-step.

2

Theorem 4.3 Each everlasting timed execution sequence, i.e. each timed execution se-
quence of the form

γ = P0
v0−→ P1

1
−→ P2

v1−→ P3
1
−→ P4

v2−→ P5
1
−→ . . .

with v0, v1, v2 . . . ∈ (Aτ)
∗ is fair.

Proof: By Proposition 4.2 we have that P0
v01v1−−−→LE(P0) P3, P3

1v2−−→LE(P3) P5 and so on. Then
γ is a sequence associated with a timed fair-step sequence and is fair by Corollary 3.20. 2

Observe that an everlasting timed execution sequence, by its definition, does not depend
on the labelling, i.e. it is a notion of the unlabelled PAFAS calculus.

4.2 Relating Timed Executions and Fair Executions

While in the previous section we have shown that every everlasting timed execution is fair,
we show in this section that everlasting timed execution sequences of initial PAFAS processes
in fact characterize the fair untimed executions of these processes. Observe that the latter
is a notion of an ordinary labelled untimed process algebra (like CCS or TCSP), while the
former is a notion of our unlabelled timed process algebra.

18

The key statement for proving this relates B-steps and action sequences performed be-
tween two full time-steps. More in detail, we prove that whenever an initial process P can
perform a sequence v of basic actions and this execution turns out to be an LE(P)-step, then
P can alternatively let time pass (perform a 1-time step) and then perform the sequence of
basic actions v, and vice versa.

The following proposition relates live events and transitional properties of terms in P̃1

and their “marked” version. The proof and related results are moved in Appendix E.

Proposition 4.4 Let Q ∈ L(P̃) and P ∈ L(P̃1) such that P = unmark(Q). Then:

1. LE(Q, A) = LE(P, A) for every A;

2. Q
α
−→ Q′ implies P

α
−→ P ′ and P ′ = unmark(Q′). Moreover UE(Q′, A) ⊆ UE(Q, A) and

UE(Q′) = ∅ implies Q′ = P ′;

3. P
µ
−→ P ′ implies Q

µ
−→ Q′ and P ′ = unmark(Q′).

Now we are ready to present our key proposition relating LE-step and temporal transitions.

Proposition 4.5 Let P0 ∈ L(P1) and v ∈ (Aτ)
+. Then:

1. P0
v
−→LE(P0) Pn implies P0

1
−→ Q0

v
−→ Pn;

2. P0
1
−→ Q0

v
−→ Qn

1
−→ implies Qn = Pn ∈ L(P1) and P0

v
−→LE(P0) Pn.

Proof: Let v = α1 . . . αn, and let us prove Item 1. By definition P0
v
−→LE(P0) Pn implies P0

α1−→

. . .
αn−→ Pn and LE(P0)∩ . . .∩LE(Pn) = ∅. Since P0 ∈ L(P1), we have that P0

1
−→ Q0 with P0 =

unmark(Q0) (see Proposition 7.8-3) and, by Proposition 4.4-3 and 4.4-1, Q0
α0−→ . . .

αn−→ Qn

with Pi = unmark(Qi) and LE(Pi) = LE(Qi) for every i ∈ [0, n]. Then LE(Q0)∩. . .∩LE(Qn) =
∅ and, since UE(S) ⊆ LE(S) for a generic S (Lemma 3.9), also UE(Q0) ∩ . . . ∩ UE(Qn) = ∅.
Moreover, by Proposition 4.4-2, UE(Qi+1) ⊆ UE(Qi) for i ∈ [0, n − 1]. Thus UE(Qn) = ∅

and, again by Proposition 4.4-2, Qn = Pn. We get P0
1
−→ Q0

v
−→ Pn.

Now we prove Item 2. Assume P0
1
−→ Q0

v
−→ Qn

1
−→. By Proposition 4.1 we have that

LE(Q0) ∩ (LE(Qn)\UE(Qn)) = ∅. Moreover Qn
1
−→ and Propositions 3.12-1 and 3.12-3 imply

UE(Qn) = ∅ and, hence, LE(Q0)∩LE(Qn) = ∅ = LE(Q0)∩. . .∩LE(Qn). Now, by Propositions
7.8-3, 4.4-2 and 4.4-3 we have that P0

α0−→ . . .
αn−→ Pn with Pi = unmark(Qi), LE(Pi) = LE(Qi)

for every i ∈ [0, n] and Qn = Pn. Thus, by definition, P0
v
−→LE(P0) Pn. 2

Iterative applications of Proposition 4.5 prove the main theorems of this section. To
present our characterization results we distinguish between finite and infinite sequences of
untimed processes.

Proposition 4.6 Let P ∈ L(P1) and v0, v1, . . . ∈ (Aτ)
+. Then:

1. For any finite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1

−−→LE(Pn−1) Pn

there exists a timed execution sequence

P = P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−→ Pn
1
−→ Qn

1
−→ Qn . . .

19

2. For any timed execution sequences

P = P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−→ Pn
1
−→ Qn

1
−→ Qn . . .

there exists a finite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1

−−→LE(Pn−1) Pn

Proof:

1. Assume P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1

−−→LE(Pn−1) Pn and Pn 6
α
−→ for any α. By

iterative applications of Proposition 4.5-1 we can prove that Pi
1
−→ Qi

vi−→ Pi+1 for
i ∈ [0, n− 1]. Moreover Pn ∈ L(P1) (and hence Pn guarded) and Pn 6

α
−→ for any α ∈ Aτ

imply, by Proposition 3.13-2, Pn
1
−→ Qn

1
−→ Qn.

2. Assume P = P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−→ Pn
1
−→ Qn

1
−→ Qn . . .

Then, by iterative applications of Proposition 4.5-2, we can prove that P = P0
v0−→LE(P0)

P1
v1−→LE(P1) P2 . . . Pn−1

vn−1

−−→LE(Pn−1) Pn. Moreover Pn
1
−→ Qn

1
−→ Qn and Proposition

3.13-1 imply Pn 6
α
−→ for any α ∈ Aτ .

2

Similarly we can prove an analogous result for infinite sequences.

Proposition 4.7 Let P ∈ L(P1) and v0, v1, . . . ∈ (Aτ)
+. Then:

1. For any infinite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pi
vi−→LE(Pi) Pi+1 . . .

there exists a timed execution sequence

P = P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pi
1
−→ Qi

vi−→ Pi+1 . . .

2. For any timed execution sequences

P = P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pi
1
−→ Qi

vi−→ Pi+1 . . .

there exists a finite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pi
vi−→LE(Pi) Pi+1 . . .

By Proposition 3.3 we can also remove the labels from processes Pi, Qi in the timed
computation, and by Corollary 3.20 we can replace fair-step sequences by fair execution
sequences. This way, we obtain a similar correspondence result between fair executions of
labelled PAFAS and timed executions of unlabelled PAFAS. This will actually be our first
main result, which we now derive in two stages.

As above and for each stage, we first state the correspondence result for finite fair-step
sequences and then we vary it for the infinite ones.

20

Theorem 4.8 (Characterization of finite fair-step sequences)
Let P ∈ L(P1) and v0, v1, v2 . . . ∈ (Aτ)

+. Then:

1. For any finite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1

−−→LE(Pn−1) Pn

there exists a timed execution sequence in unlabelled PAFAS

R(P) = S0
1
−→ S ′

0
v0−→ S1

1
−→ S ′

1
v1−→ S2 . . . Sn

1
−→ S ′

n

1
−→ S ′

n

1
−→ . . .

where Si = R(Pi), for every i ∈ [0, n].

2. For a timed execution sequence from R(P) in unlabelled PAFAS

R(P) = S0
1
−→ S ′

0
v0−→ S1

1
−→ S ′

1
v1−→ S2 . . . Sn

1
−→ S ′

n

1
−→ S ′

n

1
−→ . . .

there exists a finite fair-step sequence

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1

−−→LE(Pn−1) Pn

where Si = R(Pi), for every i ∈ [0, n].

Proof: We only prove Item 1. The other one is similar. Assume P = P0
v0−→LE(P0) P1

v1−→LE(P1)

P2 . . . Pn−1
vn−1

−−→LE(Pn−1) Pn and Pn 6
α
−→ for any α ∈ Aτ . By Proposition 4.6 there exists a

timed execution sequence P = P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn
1
−→ Qn

1
−→ Qn . . . Then,

by Proposition 3.3, there exists a timed execution sequence R(P) = S0
1
−→ S ′

0
v0−→ S1

1
−→

S ′
1

v1−→ S2 . . . Sn
1
−→ S ′

n

1
−→ S ′

n

1
−→ . . . such that Si = R(Pi), for every i ∈ [0, n], which proves

the statement. 2

Theorem 4.9 (Characterization of infinite fair-step sequences)
Let P ∈ L(P1) and v0, v1, v2 . . . ∈ (Aτ)

+. Then:

1. For any infinite fair-step sequence from P ,

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pi
vi−→LE(Pi) Pi+1 . . .

there exists a timed execution sequence in unlabelled PAFAS

R(P) = S0
1
−→ S ′

0
v0−→ S1

1
−→ S ′

1
v1−→ S2 . . . Si

1
−→ S ′

i

vi−→ Si+1 . . .

where Si = R(Pi), for every i ≥ 0.

21

2. For any timed execution sequence in unlabelled PAFAS

R(P) = S0
1
−→ S ′

0
v0−→ S1

1
−→ S ′

1
v1−→ S2 . . . Si

1
−→ S ′

i

vi−→ Si+1 . . .

there exists a fair-step sequence

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pi
vi−→LE(Pi) Pi+1 . . .

where Si = R(Pi), for every i ≥ 0.

Finally, Corollary 3.20 and Theorems 4.8, 4.9 provide a characterization of (finite and
infinite) fair execution sequences.

Theorem 4.10 (Characterization of finite fair timed execution sequences)
Let P ∈ L(P1) and α0, α1, α2 . . . ∈ Aτ . Then:

1. For any finite fair execution sequence from P

P = P0
α0−→ P1

α1−→ P2 . . . Pn−1
αn−1

−−−→ Pn

there exists a timed execution sequence in unlabelled PAFAS

R(P) = Si0

1
−→ S ′

i0

vi0−→ Si1

1
−→ S ′

i1

vi1−→ Si2 . . . Sim

1
−→ S ′

im

1
−→ S ′

im

1
−→ . . .

where i0 = 0, im = n, vij = αijαij+1 . . . αij+1−1 and Sij = R(Pij), for every j ∈ [0, m].

2. For any timed execution sequence from R(P) in unlabelled PAFAS

R(P) = Si0

1
−→ S ′

i0

vi0−→ Si1

1
−→ S ′

i1

vi1−→ Si2 . . . Sim

1
−→ S ′

im

1
−→ S ′

im

1
−→ . . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1, for every j ∈ [0, m], there exists a finite fair
execution sequence

P = P0
α0−→ P1

α1−→ P2 . . . Pn−1
αn−1

−−−→ Pn

where im = n and Sij = R(Pij), for every j ∈ [0, m].

Theorem 4.11 (Characterization of infinite fair timed execution sequences)
Let P ∈ L(P1) and α0, α1, α2 . . . ∈ Aτ . Then:

1. For any infinite fair execution sequence from P

P = P0
α0−→ P1

α1−→ P2 . . . Pi
αi−→ Pi+1 . . .

there exists a timed execution sequence in unlabelled PAFAS

R(P) = Si0

1
−→ S ′

i0

vi0−→ Si1

1
−→ S ′

i1

vi1−→ Si2 . . . Sij

1
−→ S ′

ij

vij

−→ S ′
ij+1

. . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1 and Sij = R(Pij), for every j ≥ 0.

22

2. For any timed execution sequence from R(P) in unlabelled PAFAS

R(P) = Si0

1
−→ S ′

i0

vi0−→ Si1

1
−→ S ′

i1

vi1−→ Si2 . . . Sij

1
−→ S ′

ij

vij

−→ S ′
ij+1

. . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1, for every j ≥ 0, there exists an infinite fair
execution sequence

P = P0
α0−→ P1

α1−→ P2 . . . Pi
αi−→ Pi+1 . . .

where Sij = R(Pij), for every j ≥ 0.

4.3 Transition systems for fair execution sequences and finite state

processes

We call an initial process P ∈ L(P1) (i.e. a standard untimed process) finite state, if only
finitely many processes are action-reachable, i.e. can be reached according to the standard
functional operational semantics, i.e. with transitions

α
−→.

For the definition of fair executions, we followed Costa and Stirling and introduced two
semantic levels: one level (the positive) prescribes the finite and infinite execution sequences
of labelled processes disregarding their fairness, while the other (the negative) filters out the
unfair ones. The labels are notationally heavy, and keeping track of them is pretty involved.
Since the labels evolve dynamically along computations, the transition system defined for
the first level is in general infinite state even for finite state processes (as long as they have
at least one infinite computation). Also the filtering mechanism is rather involved, since we
have to check repeatedly what happens to live events along the computation, and for this
we have to consider the processes passed in the computation.

With the characterization results of the previous subsection, we have not only shown a
conceptional relationship between timing (as used in the PAFAS approach to the efficiency
of asynchronous processes) and fairness. We have also given a much lighter description of
the fair execution sequences of a process P ∈ L(P1) via the transition system of processes

timed-reachable (i.e. with transitions
α
−→ and

1
−→) from P , which we will denote by T T (P):

the marking of some actions with underlines is easier than the labelling mechanism, and
the filtering simply requires infinitely many time steps, i.e. non-Zeno behaviour; hence, for
filtering one does not have to consider the processes passed. Furthermore, the transition
system T T (P) is finite for finite state processes.

Theorem 4.12 If P ∈ L(P1) is finite state, then T T (P) is finite.

Proof: It is easy to prove that for any process P ′ ∈ L(P1), there are only finitely many
processes Q ∈ L(P) with unmark(Q) = P ′; the intuitive reason is that Q only differs from
P ′, since some prefixes are marked as urgent.

We will argue that, if Q is time-reachable from P , we have unmark(Q) = P ′ for some P ′

action-reachable from P . Then we are done, since by assumption of the theorem, there are
only finitely many such P ′. There are also only finitely many arcs in T T (P); note that, in
particular due to the restriction on relabelling functions, our processes are sort-finite.

Assume that Q is time-reachable from P . Then we have to consider two possible cases:

23

- P
v
−→ Q with v ∈ (Aτ)

∗. In this case Q ∈ L(P1) action-reachable from P such that
unmark(Q) = Q (by Proposition 7.5-2). We can choose P ′ = Q.

- P
v
−→ P1

1
−→ Q1

v1−→ P2 . . .
vk−1

−−→ Pk
1
−→ Qk

v
−→ Q, where vi ∈ A

∗
τ for all 1 ≤ i ≤ k and

k ≥ 1 (here k is the number of time steps). Obviously, P1 is action-reachable from P .

By Propositions 7.8-3, 4.4-2 and 4.5-2, Pi
1
−→ Qi

vi−→ Pi+1 implies that Pi
vi−→ Pi+1 for

every i ∈ [1, k − 1] and, hence, Pk is action-reachable from P . Again by Propositions

7.8-3 and 4.4-2, Pk
1
−→ Qk

v
−→ Q implies Pk

v
−→ P ′ with P ′ = unmark(Q). Thus, P ′ is

action-reachable from Pk and, hence, action-reachable from P .

2

The main result in [7, 8] is a characterization of fair execution sequences with only one
(positive) level: SOS-rules are given that describe all transitions P

v
−→ Q with v ∈ (Aτ)

∗

such that P
v
−→LE(P) Q. This is conceptionally very simple, since there is only one level and

there is no labelling or marking of processes: the corresponding transition system for P only
contains processes reachable from P . In particular, the transition system is finite-state if P
is finite-state. The drawback is that, in general, P has infinitely many LE(P)-steps (namely,
if it has an infinite computation), and therefore the transition system is infinitely branching
and has infinitely many arcs. (Observe that this drawback is not shared by our transition
system of timed-reachable processes.)

As a second main result, we will now derive from T T (P) for a finite-state process P a
finite transition system with finitely many arcs that describes the fair execution sequences
in one level: the essential idea is that the arcs are inscribed with regular expressions (and
not just with sequences as in [7, 8]). The states of this transition system are the states

Q of T T (P) such that Q
1
−→ Q′; if R is another such state, we have an arc from Q to R

labelled with a regular expression e. This expression is obtained by taking T T (P) with Q′

as initial state and R as the only final state, deleting all transitions
1
−→ and applying the well-

known Kleene construction to get an (equivalent) regular expression from a nondeterministic
automaton. (The arc can be omitted, if e describes the empty set.) Clearly, such an arc
corresponds to a set of B-steps which are also present in the one-level characterization of

Costa and Stirling, but there is one exception: if Q′ 1
−→, then by Proposition 3.13 Q and Q′

cannot perform any action; hence, there will only be an ε-labelled arc from Q′ to itself and,
if Q 6= Q′, from Q to Q′.

Thus, we can obtain exactly the action sequences performed in fair execution sequences
of P by taking the infinite paths from P in the new transition system and replacing each
regular expression e by a sequence in the language of e.

5 Comparison of old and new operational semantics

In this section we prove that, if we concentrate on initial processes and their descendants, the
operational semantics described in Section 2 is equivalent to the standard PAFAS operational
semantics (defined in [6]).

Definition 5.1 (The old timed operational semantics) The SOS-rules defining the transition

relations
α

7−→⊆ (P̃ × P̃), for α ∈ Aτ , and
X
7−→⊆ (P̃ × P̃), for X ⊆ A, are the same as

24

in Definitions 2.6 and 2.7 except for the rules Para1, Para2, Reca, Recr and Parr that are
replaced as follows:

Para1

α /∈ A, Q1
α

7−→ Q′
1

Q1‖AQ2
α

7−→ Q′
1‖AQ2

Para2

α ∈ A, Q1
α

7−→ Q′
1, Q2

α
7−→ Q′

2

Q1‖AQ2
α

7−→ Q′
1‖AQ′

2

Reca

Q{rec x.Q/x}
α

7−→ Q′

rec x.Q
α

7−→ Q′
Recr

Q{rec x.Q/x}
X
7−→r Q′

rec x.Q
X
7−→r Q′

Parr

Qi
Xi7−→r Q′

i for i = 1, 2, X ⊆ (A ∩ (X1 ∪ X2)) ∪ (X1 ∩ X2)\A

Q1‖AQ2
X
7−→r Q′

1‖AQ′
2

The differences between the semantics mainly deal with treatment of recursive terms and
inactive urgencies. The new operational semantics does not unfold recursive terms after a
time-step (as the old one does), and it unmarks all inactive urgencies after the execution
of each action and time-step (which the old one does not do). In the following example we
apply the old operational semantics to the process already considered in the Example 2.8.

Example 5.2 Let P = recx.a.x‖{a}recx.(a.nil+b.c.x). Then, according to the old semantics,

P
1

7−→ a.rec x.a.x ‖{a} (a.nil + b.c.rec x.(b.c.x + a.nil))
b

7−→

a.rec x.a.x ‖{a} c.rec x.(b.c.x + a.nil)
1

7−→

a.rec x.a.x ‖{a} c.rec x.(b.c.x + a.nil)
c

7−→
a.rec x.a.x ‖{a} rec x.(b.c.x + a.nil)

When an initial process evolves to Q according to our new semantics and to R according
to the old semantics, performing the same sequence in both cases, then Q and R should be
related somehow; to capture this relation, we introduce UU , which has the property that
R ∈ UU(Q). Again, UU has an action set as second parameter; for all Q ∈ P̃, A ⊆ A and
R ∈ UU(Q, A), R is the same as Q except for the unfolding of recursive terms and some
actions in A that are urgent in R and have been unmarked in Q. The formal definition of
UU is given in Appendix F.

The next proposition is a preliminary result to state a correspondence between the new
and the old operational semantics.

Proposition 5.3 Let Q, R ∈ P̃ and A ⊆ A such that R ∈ UU(Q, A). Then:

1. Q
α
−→ Q′ implies R

α
7−→ R′ for some R′ ∈ UU(Q′, A). Moreover U(R′) ⊆ U(R);

2. Q
X
−→r Q′ implies R

X\A
7−→r R′ for some R′ ∈ UU(Q′);

3. R
α

7−→ R′ implies Q
α
−→ Q′ for some Q′ such that R′ ∈ UU(Q′, A);

4. R
X
7−→r R′ implies Q

X
−→r Q′ for some Q′ such that R′ ∈ UU(Q′).

The previous proposition immediately implies the main result of this section.

Theorem 5.4 Let Q, R ∈ P̃ such that R ∈ UU(Q). Then:

25

1. Q
α
−→ Q′ implies R

α
7−→ R′ for some R′ ∈ UU(Q′);

2. Q
X
−→r Q′ implies R

X
7−→r R′ for some R′ ∈ UU(Q′);

3. R
α

7−→ R′ implies Q
α
−→ Q′ for some Q′ such that R′ ∈ UU(Q′);

4. R
X
7−→r R′ implies Q

X
−→r Q′ for some Q′ such that R′ ∈ UU(Q′).

This theorem shows that the transition systems generated by the old and our new se-
mantics are bisimilar. In particular, the bisimulation relates each initial process to itself by
Lemma 12.2; hence, for initial processes the old and our new semantics coincide in a strong
sense. Most importantly, the timed execution sequences, which we used to characterize fair
behaviour, are the same in both versions.

6 Conclusions and Related Work

In this paper, we have presented a characterization of Costa and Stirling’s (weak) fairness
of actions in terms of a timed operational semantics. This characterization also provides a
finite representation of fair runs for finite state processes.

As discussed in Section 5, the timed operational semantics is a slight modification of the
original PAFAS timed operational semantics [6]. We have proven in Theorem 5.4 that the
two semantics are closely related for initial processes. The new one, however, allows us to
provide a more direct correspondence result between timed behaviours and fair runs (see
Theorems 4.10 and 4.11) when compared to the one presented in the conference paper [4]
(see Theorem 14): when states reached by an LE-step are compared to states reached by
an execution between two consecutive time steps, then here we simply remove the labelling
from the former, while [4] additional uses a kind of UU function.

In another paper we have obtained characterization results similar to the ones presented
here for fairness of components in place of fairness of actions; see [5]. Though the stated main
results are quite similar, the technicalities (see, for instance, the notion of live components
- tuples of labels here, single labels in the component setting) and proof techniques are
quite different. In particular, a different operational semantics had to be considered that
corresponds to a different notion of timing. The differences between fairness of actions and
fairness of components have been studied in detail in [7, 8]. For a comparison between the
approach of this paper and that of [5], we refer the reader to the latter paper.

A very recent paper shows some similarities with our work. In [2], Stephen Brookes gives
a denotational trace semantics for CSP processes to describe a weak notion of fairness close to
ours. In his setting, there are values and expressions for them (from which we will abstract in
our discussion); furthermore, synchronization is on complementary actions a? and a!, which
are combined to the internal action. The achievement is a fairly simple notion of traces to
describe fair behavior, which can be defined denotationally and operationally, such that the
same notion of trace can be used both for synchronous and asynchronous communicating
processes. The latter result is particularly significant since denotational trace semantics
for CSP processes originally followed different developments for the cases of synchronous
and asynchronous communication, thus obscuring the underlying similarities between the
different paradigms.

The essential idea for these simple traces is that processes explicitly declare to the external
environment the actions that are waiting for a synchronization on the current state. Thus,

26

besides input actions a? and output actions a!, processes can perform transitions like P
δX−→

P , where X is a set of actions which – in our terms – are live. Now a computation from P
is fair ([2], pag. 472) if it contains a complete transition sequence for each syntactic sub-
process of P , and no pair of sub-processes is permanently blocked (i.e. declaring a pending
synchronization action) yet attempting to synchronize. For example, computation

a? | a!
δa?−→ a? | a!

δa!−→ a? | a!
δa?−→ a? | a!

δa!−→ ...

is not fair (and it would neither be in our case) while

a! | b!
a!

−→ nil | b!
δb!−→ nil | b!

δb!−→ nil | b!
δb!−→ ...

is fair because no pair of sub-processes is blocked for synchronization. In Costa and Stir-
ling’s as in our setting the computation would not be fair. So one difference is that Brookes
only cares about fairness of internal actions, which allows his traces to give a compositional
semantics. A result in [2] states full abstractness, i.e. that the traces are observable; but
it seems that observations are exactly the traces themselves, so that this simply says that
traces give a compositional semantics.

Instead, one could take Costa and Stirling’s fair traces as observations and look for
the coarsest compositional semantics refining the respective equivalence. It would be very
interesting how such a semantics differs from the one of [2]. Costa and Stirling’s work is
mentioned in [2], but no comparison is given.

The approach in the present paper is quite different from [2], since we start with a notion
of timed traces that has a meaning of its own, and show how these traces can be used for
easier descriptions of Costa and Stirling’s fair traces. Timed traces with only full time steps
are not compositional, but refusal traces that have refusal sets as partial time steps are fully
abstract w.r.t. timed traces. Thus, an analogy to the approach in [2] is that we have letters
in the refusal traces showing that some actions can be refused in some sense, while in [2]
there are letters showing that some actions could be performed.

In fact, Brookes concentrates on actions that are permanently blocked (in his words), i.e.
permanently ready; so his traces describe some sort of ready sets in the infinity – but they
presumably give additional information about the stages where actions become ready. In
analogy, one could extract from our timed refusal traces those actions that are permanently
refused, i.e. a refusal set in the infinity; this would give a kind of failure semantics where
elements are (w, X) with a possibly infinite w.

In fact, such an extraction is presented in [15, 16] in a Petri net setting, where it is shown
that the resulting failure semantics is the coarsest congruence for parallel composition refining
a fair trace semantics very similar to the one by Costa and Stirling and, thus, to the one we
have studied here. This failure semantics has already been presented in [17].

Note that, at least in the standard setting, ready sets (i.e. ready semantics) give more
information than refusal sets (i.e. failure semantics). It should also be noted that there are
subtleties in [2] how the readiness of actions is declared to the environment, with the result
that e.g. a! | b! and a!b!2b!a! (or a!b! + b!a! with our operator) do not have the same traces;
it is not clear to us whether this helps to deal with fairness.

27

Acknowledgments

We would like to thank Colin Stirling for useful discussions during a preliminary stage of
this work.

References

[1] E. Bihler and W. Vogler. Efficiency of token-passing MUTEX-solutions – some exper-
iments. In J. Desel et al., editors, Applications and Theory of Petri Nets 1998, Lect.
Notes Comp. Sci. 1420, pp. 185-204, Springer, 1998.

[2] S. Brookes. Traces, Pomsets, Fairness and Full Abstractions for Communicating Pro-
cesses. In Concur’02, Lect. Notes Comp. Sci. 2421, pp. 466-482, Springer, 2002.

[3] F. Corradini, M.R. Di Berardini and W. Vogler. PAFAS at work: Comparing the Worst-
Case Efficiency of Three Buffer Implementations. In Proc. of 2nd Asia-Pacific Confer-
ence on Quality Software, APAQS 2001, pp. 231-240, IEEE, 2001.

[4] F. Corradini, M.R. Di Berardini and W. Vogler. Relating Fairness and Timing in Process
Algebras. In Concur’03, Lect. Notes Comp. Sci. 2761, pp. 446-460, Springer, 2003.

[5] F. Corradini, M.R. Di Berardini and W. Vogler. Fairness of Components in System
Computations. In Proc. of 11th International Workshop on Expressiveness in Con-
currency, Express’04, London, August 2004. A full version of this paper with the
same title appeared as Technical Report 2005-3, 2005, at http://www.informatik.uni-
augsburg.de/skripts/techreports/

[6] F. Corradini, W. Vogler and L. Jenner. Comparing the Worst-Case Efficiency of Asyn-
chronous Systems with PAFAS. Acta Informatica 38, pp. 735-792, 2002.

[7] G. Costa, C. Stirling. A Fair Calculus of Communicating Systems. Acta Informatica 21,
pp. 417-441, 1984.

[8] G. Costa, C. Stirling. Weak and Strong Fairness in CCS. Information and Computation
73, pp. 207-244, 1987.

[9] R. De Nicola and M.C.B. Hennessy. Testing equivalence for processes. Theoret. Comput.
Sci. 34, pp. 83-133, 1984.

[10] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[11] L. Jenner, W. Vogler. Comparing the Efficiency of Asynchronous Systems. In Proc. of
AMAST Workshop on Real-Time and Probabilistic Systems, LNCS 1601, pp. 172-191,
1999. Modified full version as [6].

[12] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. Theoret. Comput.
Sci., 254:379–422, 2001.

[13] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[14] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

28

[15] W. Vogler. Efficiency of Asynchronous Systems and Read Arcs in Petri Nets. In Icalp’97,
Lect. Notes Comp. Sci. 1256, pp. 538-548, Springer, 1997.

[16] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-problem.
Theoret. Comput. Sci. 275, pp. 589-631, 2002.

[17] W. Vogler. Modular Construction and Partial Order Semantics of Petri Nets. Lect.
Notes Comp. Sci. 625, Springer, 1992.

29

7 Appendix A: Useful Properties

In this appendix section we state and prove some useful properties relating some of the
notions in the main body of the paper. They do not relate each other but are useful to prove
the main statements.

Proposition 7.1 Let Q ∈ P̃, A, A′ ⊆ Aτ and µ ∈ Aτ .

1. µ ∈ U(Q, A) implies µ /∈ A;

2. µ ∈ U(Q, A) and µ /∈ A′ implies µ ∈ U(Q, A′);

3. A ⊆ A′ implies U(Q, A′) ⊆ U(Q, A);

4. U(Q, A) = U(Q)\A.

Proof: First we prove Items 1 and 2 by induction hypothesis on Q ∈ P̃.

Nil, Var: Q = nil, Q = x. These cases are not possible since U(Q, A) = ∅.

Pref: Q = α.P1 or Q = α.P1 with P1 ∈ P̃1. Consider only the latter case.

1. µ ∈ U(Q, A) 6= ∅ implies α /∈ A and µ = α.

2. Again µ ∈ U(Q, A) implies µ = α. Thus, µ = α /∈ A′ implies U(Q, A′) = {α}
and, hence, µ ∈ U(Q, A′).

Sum: Q = Q1 + Q2

1. µ ∈ U(Q, A) implies µ ∈ U(Q1, A) or µ ∈ U(Q2, A). In both cases, by induction
hypothesis, µ /∈ A.

2. µ ∈ U(Q, A) implies (i) µ ∈ U(Q1, A) or (ii) µ ∈ U(Q2, A). Consider the case
(i) (the other case is similar). µ ∈ U(Q1, A) and µ /∈ A′ implies, by induction
hypothesis, µ ∈ U(Q1, A

′) ⊆ U(Q, A′).

Par: Q = Q1 ‖B Q2.

1. Assume µ ∈ U(Q, A) and consider the following possible subcases.

- µ ∈ U(Q1, A ∪ B). By induction hypothesis µ /∈ A ∪ B and, hence, µ /∈ A.

- µ ∈ U(Q2, A ∪ B). Similar to the previous case.

- µ ∈ U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A)). By induction hypothesis µ /∈
Aτ\(B\A). Thus µ ∈ B\A and, trivially, µ /∈ A.

2. Assume µ ∈ U(Q, A), µ /∈ A′ and consider the following possible subcases.

- µ ∈ U(Q1, A ∪ B). By Item 1, we have that µ /∈ A ∪ B and, hence, µ /∈ B.
By induction hypothesis µ ∈ U(Q1, A ∪ B) and µ /∈ A′ ∪ B implies µ ∈
U(Q1, A

′ ∪ B).

- µ ∈ U(Q2, A ∪ B). Similar to the previous case.

- µ ∈ U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A)). Then µ /∈ Aτ\(B\A) (see Item
1) implies µ ∈ B\A and, hence, µ ∈ B. Thus µ ∈ B\A′ and µ /∈ Aτ\(B\A′).
By induction hypothesis µ ∈ U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A)) and µ /∈
Aτ\(B\A′) implies µ ∈ U(Q1, Aτ\(B\A′)) ∩ U(Q2, Aτ\(B\A′)) ⊆ U(Q, A′).

30

Rel: Q = Q1[Φ].

1. If µ ∈ U(Q, A) = Φ(U(Q1, Φ
−1(A))) then µ = Φ(µ′) for some µ′ ∈ U(Q1, Φ

−1(A)).
By induction hypothesis µ′ /∈ Φ−1(A) = {α | Φ(α) ∈ A} and, hence, µ /∈ A.

2. Again µ ∈ U(Q, A) implies µ = Φ(µ′) for some µ′ ∈ U(Q1, Φ
−1(A)). Then µ /∈ A′

implies µ′ /∈ Φ−1(A′) and, by induction hypothesis, µ′ ∈ U(Q1, Φ
−1(A′)). Thus

µ = Φ(µ′) ∈ Φ(U(Q1, Φ
−1(A′))) = U(Q, A′).

Rec: Q = rec x.Q1.

1. µ ∈ U(Q, A) = U(Q1, A) implies, by induction hypothesis, µ /∈ A.

2. µ ∈ U(Q, A) = U(Q1, A) and µ /∈ A′ implies, by induction hypothesis, µ ∈
U(Q1, A

′) = U(Q, A′).

Now we can prove Items 3. and 4.

3. Assume µ ∈ U(Q, A′). Then, by Item 1, µ /∈ A′ and, since A ⊆ A′, µ /∈ A. Thus,
µ ∈ U(Q, A′), µ /∈ A and Item 2. imply µ ∈ U(Q, A).

4. By Item 2, µ ∈ U(Q)\A, that is µ ∈ U(Q) and µ /∈ A, implies µ ∈ U(Q, A). Moreover,
by Items 3. and 1., U(Q, A) ⊆ U(Q) and µ ∈ U(Q, A) implies µ /∈ A. Thus we can
conclude that U(Q, A) ⊆ U(Q)\A.

2

Proposition 7.2 Let Q, R ∈ P̃, x ∈ X guarded in Q and A ⊆ Aτ . Then U(Q{R/x}, A) =
U(Q, A).

Proof: We proceed by induction on Q ∈ P̃.

Nil: Q = nil. In this case x is guarded in Q and Q{R/x} = nil. Moreover U(Q{R/x}, A) =
U(Q, A) = ∅.

Var: Q = y. x guarded in Q implies x 6= y and Q{R/x} = y. Similar to the Nil-case.

Pref: Q = α.P1 or Q = α.P1. We prove only the latter case (the formes is simpler). In this
case x is guarded in Q and Q{R/x} = α.(P1{R/x}). If α /∈ A then U(Q{R/x}, A) =
U(Q, A) = {α}. Otherwise, U(Q{R/x}, A) = U(Q, A) = ∅.

Sum: Q = Q1 + Q2. In this case x guarded in Q implies x guarded in Q1 and in Q2.
Moreover Q{R/x} = Q1{R/x}+Q2{R/x}. By induction hypothesis, U(Q{R/x}, A) =
U(Q1{R/x}, A) ∪ U(Q2{R/x}, A) = U(Q1, A) ∪ U(Q2, A) = U(Q, A).

Par: Q = Q1 ‖B Q2. Again, x guarded in Q implies x guarded in Q1 and in Q2. Moreover
Q{R/x} = Q1{R/x} ‖B Q2{R/x}. By induction hypothesis U(Q{R/x}, A) =

U(Q1{R/x}, A ∪ B) ∪ U(Q2{R/x}, A ∪ B) ∪

(U(Q1{R/x}, Aτ\(B\A)) ∩ U(Q2{R/x}, Aτ\(B\A))) =

U(Q1, A ∪ B) ∪ U(Q2, A ∪ B) ∪ (U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A))) = U(Q, A).

31

Rel: Q = Q1[Φ]. In this case x guarded in Q implies x guarded in Q1 and Q{R/x} =
(Q1{R/x})[Φ]. By induction hypothesis we have that

U(Q{R/x}, A) = Φ(U(Q1{R/x}, Φ−1(A))) = Φ(U(Q1, Φ
−1(A))) = U(Q, A).

Rec: Q = rec y.Q1. If x = y then Q{R/x} = Q and the statement follows easily. Assume
x 6= y. Then x guarded in Q implies x guarded in Q1 and Q{R/x} = rec y.(Q1{R/x}).
By induction hypothesis U(Q{R/x}, A) = U(Q1{R/x}, A) = U(Q1, A) = U(Q, A).

2

By Proposition 3.3 both Proposition 7.1 and 7.2 hold also for labelled terms.

Proposition 7.3 Let Q, R ∈ L(P̃) and A ⊆ Aτ .

1. LE(Q, A) ⊆ LE(Q{|R/x|}, A). If x ∈ X guarded in Q then LE(Q{|R/x|}, A) ⊆ LE(Q, A).

2. UE(Q, A) ⊆ UE(Q{|R/x|}, A). If x ∈ X guarded in Q then UE(Q{|R/x|}, A) ⊆
UE(Q, A).

3. x guarded in Q implies that Q
µ
−→ if only if Q{|R/x|}

µ
−→.

Proof: We only prove Item 1 and Item 3 (Item 2 is similar to Item 1). To prove Item 1 we
proceed by induction on Q while to prove Item 3 we proceed by induction on the derivations
Q

µ
−→ and Q{|R/x|}

µ
−→r.

Nil: Q = nilu. In this case x is guarded in Q and Q{|R/x|} = nil.

1. LE(Q, A) = ∅ = LE(Q{|R/x|}, A).

3. nilu 6
µ
−→ and nilu{|Q/x|} = nilu 6

µ
−→.

Var: Q = yu.

1. LE(Q, A) = ∅ ⊆ LE(Q{|R/x|}). Assume x guarded in Q and, hence, x 6= y. Then
Q{|R/x|} = yu and LE(Q{|R/x|}, A) = LE(Q, A) = ∅

3. As in the previous case x guarded in Q implies x 6= y and Q{|R/x|} = yu. By

operational rules we have both Q 6
µ
−→ and Q{|R/x|} 6

µ
−→.

Pref: Q = αu.P1 or Q = αu.P1. Either Q{|R/x|} = αu.(P1{|R/x|}) or Q{|R/x|} = αu.(P1{|R/x|})
and x is guarded in Q.

1. If α /∈ A then LE(Q, A) = {〈u〉} = LE(Q{|R/x|}). Otherwise, LE(Q, A) = ∅ =
LE(Q{|R/x|}).

3. Q
µ
−→ if and only if µ = α if and only if, by operational rules, Q{|R/x|}

µ
−→.

Sum: Q = Q1 +u Q2. In this case Q{|R/x|} = Q1{|R/x|} +u Q2{|R/x|}.

32

1. By induction hypothesis

LE(Q, A) = LE(Q1, A) ∪ LE(Q2, A) ⊆ LE(Q1{|R/x|}, A) ∪ LE(Q2{|R/x|}, A) =
LE(Q{|R/x|}, A). Moreover x guarded in Q implies x guarded in Q1 and in Q2

and, by induction hypothesis,

LE(Q{|R/x|}, A) = LE(Q1{|R/x|}, A)∪LE(Q2{|R/x|}, A) ⊆ LE(Q1, A)∪LE(Q2, A) =
LE(Q, A).

3. Assume x guarded in Q and, hence, in Q1 and in Q2. By operational rules we
have that Q

µ
−→ if and only if either Q1

µ
−→ or Q2

µ
−→ if only if, by induction

hypothesis, either Q1{|R/x|}
µ
−→ or Q2{|R/x|}

µ
−→ if only if, again by operational

rules, Q{|R/x|}
µ
−→.

Par: Q = Q1 ‖
u
B Q2. In this case Q{|R/x|} = Q1{|R/x|} ‖u

B Q2{|R/x|}.

1. By inductive reasoning as the previous case.

3. Assume x guarded in Q (and, hence, x guarded in Q1 and in Q2). Consider the
following possible subcases:

- µ /∈ B. By operational rules Q
µ
−→ if and only if either Q1

µ
−→ or Q2

µ
−→ if

only if, by induction hypothesis, either Q1{|R/x|}
µ
−→ or Q2{|R/x|}

µ
−→ if only

if, again by operational rules, Q{|R/x|}
µ
−→.

- µ ∈ B. By operational rules Q
µ
−→ if and only if Q1

µ
−→ and Q2

µ
−→ if only if,

by induction hypothesis, Q1{|R/x|}
µ
−→ and Q2{|R/x|}

µ
−→ if only if, again by

operational rules, Q{|R/x|}
µ
−→.

Rel: Q = Q1[Φu]. In this case Q{|R/x|} = (Q1[Φu]){|R/x|} = (Q1{|R/x|})[Φu]

1. By induction hypothesis LE(Q, A) = LE(Q1, Φ
−1(A)) ⊆ LE(Q1{|R/x|}, Φ−1(A)) =

LE(Q{|R/x|}, A). Moreover, if x is guarded in Q and, hence in Q1, again by
induction hypothesis, we have that LE(Q{|R/x|}, A) = LE(Q1{|R/x|}, Φ−1(A)) ⊆
LE(Q1, Φ

−1(A)) = LE(Q, A).

3. Assume x guarded in Q and, hence, in Q1. Q
µ
−→ if only if there exists µ′ ∈ Φ−1(µ)

such that Q1
µ′

−→. By induction hypothesis Q1
µ′

−→ if and only if Q1{|R/x|}
µ′

−→ if

only if, again by operational rules, Q{|R/x|}
µ
−→.

Rec: Q = rec yu.Q1. If x = y then x is guarded in Q and Q{|R/x|} = Q. Both statements
follow easily. We can assume x 6= y and Q{|R/x|} = rec yu.(Q1{|R/x|}). By induction
hypothesis:

1. LE(Q, A) = LE(Q1, A) ⊆ LE(Q1{|R/x|}, A) = LE(Q{|R/x|}, A). Now assume x
guarded in Q and, hence, in Q1. By induction hypothesis LE(Q{|R/x|}, A) =
LE(Q1{|R/x|}, A) ⊆ LE(Q1, A) = LE(Q, A)

3. Let R1 = unmark(Q1) and S = Q1{|rec yu.R1/y|}. In this case x guarded in
Q implies x guarded in Q1 and, hence, in R1 = unmark(Q1). Thus, x is also
guarded in S = Q1{|rec yu.R1/y|}. Moreover, x guarded in Q1 and Proposi-
tion 7.7-2 imply unmark(Q1{|R/x|}) = unmark(Q1){|R/x|} = R1{|R/x|}. Thus,
S{|R/x|} = (Q1{|rec yu.R1/y|}){|R/x|} = (Q1{|R/x|}){|rec yu.(R1{|R/x|})/y|} =

33

(Q1{|R/x|}){|rec yu.unmark(Q1{|R/x|})/y|}. By operational rules, Q
µ
−→ if only if

S
µ
−→ if only if, by induction hypothesis, S{|R/x|}

µ
−→ if only if, again by operational

rules, Q{|R/x|}
µ
−→.

2

Proposition 7.4 Let Q ∈ Lu(P̃), A and A′ ⊆ Aτ with A ⊆ A′. Then

1. LE(Q, A′) ⊆ LE(Q, A);

2. UE(Q, A′) ⊆ UE(Q, A);

Proof: We only prove LE(Q, A′) ⊆ LE(Q, A) by induction on Q. The proof for the urgent
live processes is similar.

Nil, Var: Q = nilu, Q = xu. In these cases LE(Q, A′) = LE(Q, A) = ∅.

Pref: Q = αu.P1 or Q = αu.P1. In both cases α /∈ A′ and A ⊆ A′ imply α /∈ A and hence
LE(Q, A′) = LE(Q, A) = {u}. Otherwise, if α ∈ A′, LE(Q, A′) = ∅ ⊆ LE(Q, A).

Sum: Q = Q1 +u Q2. By induction hypothesis we have that LE(Qi, A
′) ⊆ LE(Qi, A) for

i = 1, 2. Thus, LE(Q1 +u Q2, A
′) = LE(Q1, A

′)∪ LE(Q2, A
′) ⊆ LE(Q1, A)∪ LE(Q2, A) =

LE(Q1 +u Q2, A).

Par: Q = Q1 ‖u
B Q2. A ⊆ A′ implies A ∪ B ⊆ A′ ∪ B and B\A′ ⊆ B\A. Thus, by

induction hypothesis, LE(Q1, A
′∪B) ⊆ LE(Q1, A∪B), LE(Q2, A

′∪B) ⊆ LE(Q2, A∪B)
and, let Aα = LE(Q1, Aτ\{α}) ∩ LE(Q2, Aτ\{α}),

⋃

α∈B\A′ Aα ⊆
⋃

α∈B\A Aα. Hence

LE(Q, A′) ⊆ LE(Q, A).

Rel, Rec: Similar to the previous cases.

2

7.1 clean and unmark Properties

In this appendix section we prove some useful properties of functions clean and unmark.
Most of them are stated for terms in P̃ but, since the “action” of removing urgencies does
not depend from labels we can easily prove that they also hold for terms in L(P̃).

Proposition 7.5 Let Q ∈ P̃ and A ⊆ A. Then:

1. unmark(clean(Q, A)) = unmark(Q) ∈ P̃1;

2. Q ∈ P̃1 implies clean(Q, A) = unmark(Q) = Q;

3. U(Q, A) = ∅ imply clean(Q, A) = unmark(Q).

Proof: We prove, by induction on Q ∈ P̃, only the latter item. Items 1 and 2 follow directly
from Definitions 2.4 and 2.5.

34

Nil, Var: Q = nil, Q = x. In these cases U(Q, A) = ∅ and clean(Q, A) = unmark(Q) = Q for
any A.

Pref: Q = α.P1 or Q = α.P1 with P1 ∈ P̃1. We prove only the latter case (the former case
is simpler). Assume U(Q, A) = ∅. By Definition 2.3, α ∈ A and clean(Q, A) = α.P1 =
unmark(Q).

Sum: Q = Q1 + Q2. Assume U(Q, A) = U(Q1, A) ∪ U(Q2, A) = ∅. By induction hypothesis
clean(Q, A) = clean(Q1, A) + clean(Q2, A) = unmark(Q1) + unmark(Q2) = unmark(Q).

Par: Q = Q1 ‖B Q2. Let A1 = (U(Q1)\U(Q2)) ∩ B and A2 = (U(Q2)\U(Q1)) ∩ B. Assume
U(Q, A) = ∅ and, by contradiction, α ∈ U(Q1, A ∪ A1) 6= ∅. By Propositions 7.1-3
and 7.1-1 we have that α ∈ U(Q1) such that α /∈ A and α /∈ A1. Now, consider the
following possible subcases:

- α ∈ B. In this case α ∈ U(Q1) ∩ B and α /∈ A1 imply also α ∈ U(Q2).
Moreover, α ∈ B\A implies α /∈ Aτ\(B\A) and, by Proposition 7.1-2, α ∈
U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A)) ⊆ U(Q, A) = ∅. Clearly, this case is not
possible.

- α /∈ B. In this case α ∈ U(Q1), α /∈ A ∪ B implies, again by Proposition 7.1-2,
α ∈ U(Q1, A ∪ B) ⊆ U(Q, A) = ∅. Also this case is not possible.

Thus, U(Q, A) = ∅ implies U(Q1, A ∪ A1) = ∅ and, similarly, U(Q2, A ∪ A2) =
∅. By induction hypothesis clean(Q, A) = clean(Q1, A ∪ A1) ‖B clean(Q2, A ∪ A2) =
unmark(Q1) ‖B unmark(Q2) = unmark(Q).

Rel: Q = Q1[Φ]. U(Q, A) = Φ−1(U(Q1, Φ
−1(A))) = ∅ implies U(Q1, Φ

−1(A)) = ∅ and,
by induction hypothesis, clean(Q, A) = clean(Q1, Φ

−1(A))[Φ] = unmark(Q1)[Φ] =
unmark(Q).

Rec: Q = rec x.Q1. By induction hypothesis U(Q, A) = U(Q1, A) = ∅ implies clean(Q, A) =
rec x.clean(Q1, A) = rec x.unmark(Q1) = unmark(Q).

2

Proposition 7.6 Let Q ∈ P̃, A, A′ ⊆ A and A′′ ⊆ Aτ . Then:

1. A′ ∩ U(Q, A′′) = ∅ implies clean(Q, A) = clean(Q, A ∪ (A′\A′′));

2. U(clean(Q, A), A′′) = U(Q, A ∪ A′′);

3. A(clean(Q, A), A′′) = A(Q, A′′)

Proof: We prove Item 1. and 2. by induction on Q. Item 3. follows directly from Definitions
2.2 and 2.4.

Nil, Var: Q = nil, Q = x. In these cases we have that

1. clean(Q, A) = clean(Q, A ∪ (A′\A′′)) = Q.

2. U(clean(Q, A), A′′) = U(Q, A ∪ A′′) = ∅.

35

Pref: Q = α.P1 or Q = α.P1. We prove only the latter case (the former one is simpler).

1. If α ∈ A′′ then, trivially, α /∈ A′\A′′. If α /∈ A′′, A′ ∩ U(Q, A′′) = A′ ∩ {α} = ∅
implies α /∈ A′ and, again, α /∈ A′\A′′. In both cases, α ∈ A if and only if
α ∈ A ∪ (A′\A′′) and, by Definition 2.4, clean(Q, A) = clean(Q, A ∪ (A′\A′′)).

2. We have to consider two possible subcases:

- α ∈ A ⊆ A ∪ A′′. U(clean(Q, A), A′) = U(α.Q1, A
′) = ∅ = U(Q, A ∪ A′′).

- α /∈ A. In this case clean(Q, A) = Q. Moreover, α /∈ A implies α ∈ A′′ if and
only if α ∈ A ∪ A′′ and, by Definition 2.3, U(Q, A′′) = U(Q, A ∪ A′′). Thus
U(clean(Q, A), A′′) = U(Q, A′′) = U(Q, A ∪ A′′).

Sum: Q = Q1 + Q2.

1. Assume A′ ∩ U(Q, A′′) = ∅. Then, since U(Q, A′′) = U(Q1, A
′′) ∪ U(Q2, A

′′),
we also have A′ ∩ U(Q1, A

′′) = A′ ∩ U(Q2, A
′′) = ∅. By induction hypothesis

clean(Qi, A) = clean(Qi, A ∪ (A′\A′′)), for i = 1, 2, and, hence,

clean(Q, A) = clean(Q1, A) + clean(Q2, A) =

clean(Q1, A ∪ (A′\A′′)) + clean(Q2, A ∪ (A′\A′′)) = clean(Q, A ∪ (A′\A′′)).

2. By induction hypothesis we have that

U(clean(Q, A), A′′) = U(clean(Q1, A) + clean(Q2, A), A′′) =

U(clean(Q1, A), A′′) ∪ U(clean(Q2, A), A′′) = U(Q1, A ∪ A′′) ∪ U(Q2, A ∪ A′′) =
U(Q, A ∪ A′′).

Par: Q = Q1 ‖B Q2. Let A1 = (U(Q1)\U(Q2)) ∩ B and A2 = (U(Q2)\U(Q1)) ∩ B.

1. First of all, we prove that U(Q1, A
′′)\A1 ⊆ U(Q, A′′). Let α ∈ U(Q1, A

′′)\A1.
Then, α ∈ U(Q1, A

′′) and Proposition 7.1-1 imply α ∈ U(Q1) and α /∈ A′′.
Moreover α /∈ A1. We have to consider two possible subcases:

- α /∈ B. Then α ∈ U(Q1), α /∈ A′′ ∪ B and Proposition 7.1-2 imply α ∈
U(Q1, A

′′ ∪ B) ⊆ U(Q, A′′)

- α ∈ B. α ∈ U(Q1) and α /∈ A1 imply also α ∈ U(Q2). Moreover, α ∈ B
and α /∈ A′′ imply α ∈ B\A′′ and, hence, α /∈ Aτ\(B\A′′). Then α ∈ U(Q1),
α ∈ U(Q2) and α /∈ Aτ\(B\A′′) imply, again by Proposition 7.1-2, α ∈
U(Q1, Aτ\(B\A′′)) ∩ U(Q2, Aτ\(B\A′′)) ⊆ U(Q, A′′).

Now, A′ ∩ U(Q, A′′) = ∅ and (A′\A1) ∩ U(Q1, A
′′) = A′ ∩ (U(Q1, A

′′)\A1) ⊆ A′ ∩
U(Q, A′′) implies (A′\A1)∩U(Q1, A

′′) = ∅. Moreover (A′\A1)\A
′′ = (A′\A′′)\A1.

By induction hypothesis clean(Q1, A∪A1) = clean(Q1, (A∪A1)∪((A′\A1)\A′′)) =
clean(Q1, (A ∪ A1) ∪ ((A′\A′′)\A1)) = clean(Q1, (A ∪ (A′\A′′)) ∪ A1). Similarly
we can prove that A′ ∩ U(Q, A′′) = ∅ implies (A′\A2) ∩ U(Q2, A

′′) = ∅ and
clean(Q2, A ∪A2) = clean(Q2, (A ∪ (A′\A′′)) ∪A2). Finally, we can conclude that
clean(Q, A) = clean(Q, A ∪ (A′\A′′)).

2. Let us denote with Ri = clean(Qi, A ∪ Ai), for i = 1, 2. Then, by Definition
2.4 clean(Q, A) = R1 ‖B R2 = R. By induction hypothesis U(R1, A

′′ ∪ B) =
U(Q1, (A ∪ A1) ∪ (A′′ ∪ B)) = U(Q1, (A ∪ A′′) ∪ B) (since A1 ⊆ B). Similarly
we can prove that U(R2, A

′′ ∪ B) = U(Q2, (A ∪ A′′) ∪ B). Moreover, again by

36

induction hypothesis, U(Ri, Aτ\(B\A′′)) = U(Qi, (A ∪ Ai) ∪ (Aτ\(B\A′′))), for
i = 1, 2.

Let X = U(Q1, (A ∪ A1) ∪ (Aτ\(B\A′′))) ∩ U(Q2, (A ∪ A2) ∪ (Aτ\(B\A′′))) and

Y = U(Q1, Aτ\(B\(A ∪ A′′))) ∩ U(Q2, Aτ\(B\(A ∪ A′′))). By Definition 2.3, it
remains to prove that X = Y .

“⊆”. If α ∈ X then, by Proposition 7.1, α ∈ U(Q1) ∩ U(Q2) such that α /∈
Aτ\(B\A′′), α /∈ A and α /∈ Ai for i = 1, 2. Now, α /∈ Aτ\(B\A′′), i.e. α ∈ B\A′′,
and α /∈ A imply α ∈ B\(A ∪ A′′) and, hence, α /∈ Aτ\(B\(A ∪ A′′)). By
Proposition 7.1-2, α ∈ U(Q1) ∩ U(Q2) and α /∈ Aτ\(B\(A ∪ A′′)) imply α ∈ Y .

“⊇”. Again by Proposition 7.1, α ∈ Y implies α ∈ U(Q1) ∩ U(Q2) such that
α /∈ Aτ\(B\(A ∪ A′′)). Now, α /∈ Aτ\(B\(A ∪ A′′)) implies α ∈ B\(A ∪ A′′)
and, hence, α ∈ B, α /∈ A′′ and α /∈ A. Thus α /∈ A ∪ (Aτ\(B\A′′)). Moreover,
α ∈ U(Q1) and α ∈ U(Q2) imply, trivially, α /∈ A1 and α /∈ A2. Again by
Proposition 7.1-2, α ∈ U(Qi), α /∈ Aτ\(B\A′′) and α /∈ A ∪ Ai imply α ∈
U(Qi, (A ∪ Ai) ∪ (Aτ\(B\A′′))), for i = 1, 2, and, hence, α ∈ X.

Rel: Q = Q1[Φ].

1. Assume A′ ∩ U(Q, A′′) = A′ ∩ Φ(U(Q1, Φ
−1(A′′))) = ∅. Then we have also

that Φ−1(A′) ∩ U(Q1, Φ
−1(A′′)) = ∅ and, by induction hypothesis, clean(Q, A) =

clean(Q1, Φ
−1(A))[Φ] = clean(Q1, Φ

−1(A) ∪ (Φ−1(A′\A′′)))[Φ] =

clean(Q1, Φ
−1(A ∪ (A′\A′′)))[Φ] = clean(Q, A ∪ (A′\A′′)))

2. By induction hypothesis U(clean(Q, A), A′′) = U(clean(Q1, Φ
−1(A))[Φ], A′′) =

Φ(U(clean(Q1, Φ
−1(A)), Φ−1(A′′))) = Φ(U(Q1, Φ

−1(A) ∪ Φ−1(A′′))) =

Φ(U(Q1, Φ
−1(A ∪ A′′))) = U(Q, A ∪ A′′).

Rec: Q = rec x.Q1. By induction hypothesis:

1. A′ ∩ U(Q, A′′) = A′ ∩ U(Q1, A
′′) = ∅ implies clean(Q, A) = rec x.clean(Q1, A) =

rec x.clean(Q1, A ∪ (A′\A′′)) = clean(Q, A ∪ (A′\A′′)).

2. U(clean(Q, A), A′′) = U(rec x.clean(Q1, A), A′′) = U(clean(Q1, A), A′′) =

U(Q1, A ∪ A′′) = U(Q, A ∪ A′′).

2

Proposition 7.7 Let Q, R ∈ P̃, x ∈ X guarded in Q and A ⊆ A. Then:

1. clean(Q{R/x}, A) = clean(Q, A){R/x};

2. unmark(Q{R/x}) = unmark(Q){R/x}.

Proof: We prove only Item 1 by induction on Q (Item 2 can be proved similarly).

Nil: Q = nil. Trivially clean(nil{R/x}, A) = clean(nil, A) = nil

Var: Q = y. In this case x guarded in Q implies x 6= y and Q{R/x} = y. Similar to the
previous case.

37

Pref: Q = αP1 or Q = α.P1. We prove only the latter case (the former is simpler). In this
case we have that x is guarded in Q and Q{R/x} = α.(P1{R/x}). Assume α ∈ A. Then
clean(Q{R/x}, A) = α.(P1{R/x}) = (α.P1){R/x} = clean(Q, A){R/x}. Similarly if
α /∈ A then clean(Q{R/x}, A) = α.(P1{R/x}) = (α.P1){R/x} = clean(Q, A){R/x}.

Sum: Q = Q1 + Q2. Assume x guarded in Q and, hence, in Q1 and in Q2. By induction
hypothesis clean(Q{R/x}, A) =

clean(Q1{R/x} + Q2{R/x}, A) =

clean(Q1{R/x}, A) + clean(Q2{R/x}, A) =

(clean(Q1, A){R/x}) + (clean(Q2, A){R/x}) =

(clean(Q1, A) + clean(Q2, A)){R/x} = clean(Q, A){R/x}

Par: Q = Q1‖B Q2. Assume x guarded in Q and, hence, in Q1 and in Q2. Let us denote with
A1 = (U(Q1{R/x})\U(Q2{R/x}))∩B and with A2 = (U(Q2{R/x})\U(Q1{R/x}))∩B.
x guarded in Q1, Q2 and Proposition 7.2 imply A1 = (U(Q1)\U(Q2)) ∩ B and A2 =
(U(Q2)\U(Q1)) ∩ B. By induction hypothesis we have that clean(Q{R/x}, A) =

clean(Q1{R/x}, A ∪ A1) ‖B clean(Q2{R/x}, A ∪ A2) =

(clean(Q1, A ∪ A1){R/x}) ‖B (clean(Q2, A ∪ A2){R/x}) =

(clean(Q1, A ∪ A1) ‖B (clean(Q2, A ∪ A2)){R/x} = clean(Q, A){R/x}

Rel: Q = Q1[Φu]. Assume x guarded in Q and, hence, in Q1. By induction hypothesis
clean(Q{R/x}, A) = clean(Q1{R/x}, Φ−1(A))[Φ] = (clean(Q1, Φ

−1(A)){R/x})[Φ] =
(clean(Q1, Φ

−1(A))[Φ]){R/x} = clean(Q, A){R/x}.

Rec: Q = recy.Q1. If x = y then Q{R/x} = R and the statement follows easily. Now assume
x 6= y. Then x guarded in Q implies x guarded in Q1 and Q{R/x} = rec y.(Q1{R/x}).
Finally, clean(Q{R/x}, A) = rec y.clean(Q1{R/x}, A) = rec y.(clean(Q1, A){R/x}) =
(rec y.clean(Q1, A)){R/x} = clean(Q, A){R/x}, by induction hypothesis.

2

Proposition 7.8 Let Q, Q′ ∈ P̃ and X ⊆ A such that Q
X
−→r Q′. Then:

1. A(Q′, A) = U(Q′, A) = A(Q, A) for every A ⊆ Aτ ;

2. unmark(Q) = unmark(Q′);

3. Q = P ∈ P̃1 implies unmark(Q′) = P .

Proof: First, we prove, by induction on Q ∈ P̃, Items 1 and 2.

Var: Q = x. This case is not possible since Q 6
X
−→r.

Nil: Q = nil. Q
X
−→r nil = Q′. In this case:

1. A(Q′, A) = U(Q′, A) = A(Q, A) = ∅;

2. unmark(Q) = unmark(Q′) = nil.

38

Pref: Q = α.P1 or Q = α.P1. In both cases Q
X
−→r α.P1 = Q′.

1. α /∈ A implies A(Q′, A) = U(Q′, A) = A(Q, A) = {α}. Otherwise, A(Q′, A) =
U(Q′, A) = A(Q, A) = ∅.

2. unmark(Q) = unmark(Q′) = α.P1.

Sum: Q = Q1 + Q2. By operational semantics Q
X
−→r Q′ implies Q1

X
−→r Q′

1, Q2
X
−→r Q′

2 and
Q′ = Q′

1 + Q′
2. By induction hypothesis:

1. A(Q′, A) = A(Q′
1, A) ∪ A(Q′

2, A) = A(Q1, A) ∪ A(Q2, A) = A(Q, A). Similarly
we can prove that U(Q′, A) = A(Q, A).

2. By induction hypothesis, we have that unmark(Q) = unmark(Q1)+ unmark(Q2) =
unmark(Q′

1) + unmark(Q′
2) = unmark(Q′).

Par: Q = Q1 ‖B Q2. Assume Q
X
−→r Q′. Then, by operational rules, Qi

Xi−→r Q′
i for i = 1, 2,

X ⊆ (B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B) and Q′ = clean(Q′
1 ‖B Q′

2).

1. By induction hypothesis and Proposition 7.6-3 A(Q′, A) = A(Q′
1 ‖B Q′

2, A) =

A(Q′
1, A ∪ B) ∪ A(Q′

2, A ∪ B) ∪ (A(Q′
1, Aτ\(B\A)) ∩ A(Q′

2, Aτ\(B\A))) =

A(Q1, A∪B)∪A(Q2, A∪B)∪(A(Q1, Aτ\(B\A))∩A(Q2, Aτ\(B\A))) = A(Q, A).
By Proposition 7.6-2, we have U(Q′, A) = U(Q′

1 ‖B Q′
2, A) and, again by induction

hypothesis, we can prove that U(Q′
1 ‖B Q′

2, A) = A(Q, A).

2. By induction hypothesis, we have that unmark(Q) = unmark(Q1)‖B unmark(Q2) =
unmark(Q′

1) ‖B unmark(Q′
2) = unmark(Q′

1 ‖B Q′
2) = unmark(clean(Q′

1 ‖B Q′
2)) =

unmark(Q′) by Proposition 7.5-1.

Rel: Q = Q1[Φ]. By operational semantics Q
X
−→r Q′ implies Q1

X′

−→r Q′
1, with X ′ =

Φ−1(X ∪ {τ})\{τ}, and Q′ = Q′
1[Φ].

1. A(Q′, A) = Φ(A(Q′
1, Φ

−1(A)) = Φ(A(Q1, Φ
−1(A)) = A(Q, A). Similarly we can

prove that U(Q′, A) = A(Q, A).

2. By induction hypothesis, unmark(Q) = unmark(Q1)[Φ] = unmark(Q′
1)[Φ] =

unmark(Q′).

Rec: Q = recx.Q1. By operational semantics Q
X
−→r Q′ implies Q1

X
−→r Q′

1 and Q′ = recx.Q′
1.

1. A(Q′, A) = A(Q′
1, A) = A(Q1, A) = A(Q, A). Similarly we can prove that

U(Q′, A) = A(Q, A).

2. By induction hypothesis, unmark(Q) = rec x.unmark(Q1) = rec x.unmark(Q′
1) =

unmark(Q′).

Now we can prove Item 3.

Assume Q = P ∈ P̃1 and that Q
X
−→r Q′. Then Item 2 and Proposition 7.5-2 imply

unmark(Q′) = unmark(Q) = Q = P . 2

Proposition 7.9 Let Q ∈ L(P̃), A ⊆ A and A′ ⊆ Aτ . Then:

39

1. LE(clean(Q, A), A′) = LE(Q, A′);

2. A ⊆ A′ implies UE(clean(Q, A), A′) = UE(Q, A′).

Proof: We prove, by induction on Q ∈ L(P̃), only the latter item. Item 1 follows directly
from Definitions 2.4 and 3.7.

Nil, Var: Q = nilu, Q = xu. In these cases UE(clean(Q, A), A′) = UE(Q, A′) = ∅.

Pref: Q = αu.P1 or Q = αu.P1. We prove only the latter case (the former is similar to the
previous cases). Consider the following cases:

- α ∈ A ⊆ A′. UE(clean(Q, A), A′) = UE(αu.P1, A
′) = ∅ = UE(Q, A′).

- α /∈ A. In this case clean(Q, A) = Q and the statement follows easily.

Sum: Q = Q1 +uQ2. Assume A ⊆ A′. Then, by induction hypothesis, UE(clean(Q, A), A′) =

UE(clean(Q1, A) +u clean(Q2, A), A′) = UE(clean(Q1, A), A′) ∪ UE(clean(Q2, A), A′) =
UE(Q1, A

′) ∪ UE(Q2, A
′) = UE(Q, A′).

Par: Q = Q1 ‖u
B Q2. Let A1 = (U(Q1)\U(Q2)) ∩ B, A2 = (U(Q2)\U(Q1)) ∩ B and

Ri = clean(Qi, A ∪ Ai) for i = 1, 2. By Definitions 2.4 and 3.8, clean(Q, A) =
R1 ‖u

B R2 = R and UE(R, A′) = UE(R1, A
′ ∪ B) ∪ UE(R2, A

′ ∪ B) ∪
⋃

α∈B\A′ Aα, where

Aα = UE(R1, Aτ\{α}) × UE(R2, Aτ\{α}). A ∪ Ai ⊆ A′ ∪ B implies, by induction hy-
pothesis, UE(Ri, A

′∪B) = UE(clean(Qi, A∪Ai), A
′∪B) = UE(Qi, A

′∪B), for i = 1, 2.
Now let α ∈ B\A′ and consider the following cases:

- α ∈ A1. In this case α /∈ U(Q2) and U(Q2, Aτ\{α}) = U(Q2)\(Aτ\{α}) =
U(Q2) ∩ {α} (see Proposition 7.1-4) imply U(Q2, Aτ\{α}) = ∅. Then, by Propo-
sition 3.12-3, UE(Q2, Aτ\{α}) = ∅ and UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α}) = ∅.
Moreover, U(R2) = U(clean(Q2, A ∪ A2)) = U(Q2, A ∪ A2) ⊆ U(Q2) (see Propo-
sitions 7.6-2 and 7.1-3) and α /∈ U(Q2) also imply α /∈ U(R2). Again we
have U(R2, Aτ\{α}) = ∅, UE(R2, Aτ\{α}) = ∅ and Aα = UE(R1, Aτ\{α}) ×
UE(R2, Aτ\{α}) = ∅.

- α ∈ A2. Similarly, we can prove that Aα = UE(R1, Aτ\{α})× UE(R2, Aτ\{α}) =
UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α}) = ∅.

- α /∈ A1 and α /∈ A2. In this case α ∈ B\A′ implies α /∈ A ⊆ A′ and, hence,
α /∈ A ∪ Ai for i = 1, 2. Thus A ∪ Ai ⊆ Aτ\{α} and, by induction hypoth-
esis, UE(Ri, Aτ\{α}) = UE(clean(Qi, A ∪ Ai), Aτ\{α}) = UE(Qi, Aτ\{α}), for
i = 1, 2, and Aα = UE(R1, Aτ\{α}) × UE(R2, Aτ\{α}) = UE(Q1, Aτ\{α}) ×
UE(Q2, Aτ\{α}).

Thus
⋃

α∈B\A′ Aα =
⋃

α∈B\A′(UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α})) and, again by Defi-

nition 3.8, we can conclude that UE(clean(Q, A), A′) = UE(Q, A′).

Rel: Q = Q1[Φu]. Assume A ⊆ A′ and, hence, Φ−1(A) ⊆ Φ−1(A′). By induction hypothesis
UE(clean(Q, A), A′) = UE(clean(Q1, Φ

−1(A))[Φu], A
′) = UE(clean(Q1, Φ

−1(A)), Φ−1(A′))

= UE(Q1, Φ
−1(A′)) = UE(Q, A′)

40

Let R1 = clean(Q1, Φ
−1(A)) and R = R1[Φu] By Definitions 2.4 and 3.8 we have that

clean(Q, A) = R1[Φu] = R and UE(clean(Q, A), A′) = UE(R, A) = UE(R1, Φ
−1(A′)).

A ⊆ A′ implies Φ−1(A) ⊆ Φ−1(A′) and, by induction hypothesis, UE(R1, Φ
−1(A′)) =

UE(clean(Q1, Φ
−1(A)), Φ−1(A′)) = UE(Q1, Φ

−1(A′)) = UE(Q, A′). We can conclude
that UE(clean(Q, A), A′) = UE(Q, A′).

Rec: Q = rec xu.Q1. By induction hypothesis we have UE(clean(Q, A), A′) =

UE(rec xu.clean(Q1, A), A′) = UE(clean(Q1, A), A′) = UE(Q1, A
′) = UE(Q, A′).

2

Lemma 7.10 Let Q ∈ L(P̃). Then UE(clean(Q), A) = UE(Q, A) for every A ⊆ Aτ .

Proof: This follows directly from Proposition 7.9-2 2

41

8 Appendix B: A Proof of Proposition 3.11

This section is devoted to proving Proposition 3.11.

Proposition 3.11 Let Q, Q′ ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
α
−→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q, A) implies either s ∈ UE(Q′, A) or there exists

some j ∈ [1, n] such that vj /∈ LAB(Q′).

2. Q
X
−→r Q′ implies LE(Q, A) = LE(Q′, A) = UE(Q′, A).

Proof:

We start proving Item 1. by induction on derivation Q
α
−→ Q′.

Nil, Var: Q = nilu, Q = xu. This case is not possible since Q 6
α
−→.

Pref: Q = αu.P1 or Q = αu.P1 with P∈Lu1(P̃1). Of course only the latter case is possible.
Then Q

α
−→ P1, s ∈ UE(Q, A) implies α 6∈ A and s = 〈u〉. By Fact 3.5-2, u 6∈ LAB(P1).

Sum: Q = Q1 +u Q2. By the operational semantics Q1 +u Q2
α
−→ Q′ if either Q1

α
−→ Q′ or

Q2
α
−→ Q′. Assume the former case. The other one is similar. If s ∈ UE(Q1, A) then by

induction hypothesis either s ∈ UE(Q′, A) or vj /∈ LAB(Q′) for some j ∈ [1, n]. Then
assume s ∈ UE(Q2, A). Moreover, by the labelling function, each vj ∈ LAB(Q1) is of
the form vj = u1uj while each vj ∈ LAB(Q2) is of the form vj = u2uj, for some label
uj. Then by Fact 3.5-2, we have vj /∈ LAB(Q1) and vj 6∈ LAB(Q′), for any j ∈ [1, n].

Par: Q = Q1 ‖u
B Q2. Assume Q

α
−→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q, A).

By s ∈ UE(Q1‖u
BQ2, A) we have either (i) s ∈ UE(Q1, A ∪ B), (ii) s ∈ UE(Q2, A ∪ B)

or (iii) s ∈ UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α}), for some α ∈ B\A. Now consider the
following three possible cases:

- α 6∈ B, Q1
α
−→ Q′

1 and Q′ = clean(Q′
1‖

u
BQ2). Consider case (i). By induction

hypothesis either s ∈ UE(Q′
1, A ∪ B) or vj 6∈ LAB(Q′

1) for some j ∈ [1, n]. If
s ∈ UE(Q′

1, A∪B) then s ∈ UE(Q′
1‖

u
BQ2, A) = UE(clean(Q′

1‖
u
BQ2), A) = UE(Q′, A)

by Lemma 7.10. Assume that, for some j ∈ [1, n], vj 6∈ LAB(Q′
1). Since s ∈

UE(Q1, A ∪ B) implies also vj 6= u and vj /∈ LAB(Q2) (Fact 3.4), we have that
vj /∈ LAB(Q′

1‖
u
BQ2) = LAB(clean(Q′

1‖
u
BQ2)) = LAB(Q′).

Consider case (ii). Then, again by Lemma 7.10, we have that s ∈ UE(Q2, A∪B) ⊆
UE(Q′

1‖
u
BQ2, A) = UE(clean(Q′

1‖
u
BQ2), A) = UE(Q′, A).

Then consider case (iii). By definition of ×, s ∈ UE(Q1, Aτ\{α})×UE(Q2, Aτ\{α})
implies there exist s1 and s2 process labels such that s1 ∈ UE(Q1, Aτ\{α}) and
s2 ∈ UE(Q2, Aτ\{α}). By induction hypothesis, either s1 ∈ UE(Q′

1, Aτ\{α})
or vj 6∈ LAB(Q′

1) for some j ∈ [1, n]. If s1 ∈ UE(Q′
1, Aτ\{α}) then s1 × s2 ∈

UE(Q′
1, Aτ\{α})×UE(Q2, Aτ\{α}) ⊆ UE(Q′

1‖
u
BQ2, A) = UE(clean(Q′

1‖
u
BQ2), A) =

UE(Q′, A), again by Lemma 7.10. If vj 6∈ LAB(Q′
1) as in the previous cases we

have that vj /∈ LAB(Q′
1‖

u
BQ2) = LAB(Q′).

- α 6∈ B, Q2
α
−→ Q′

2 and Q′ = clean(Q1 ‖u
B Q′

2). This case is similar to the previous
one.

42

- α ∈ B, Qi
α
−→ Q′

i for i = 1, 2 and Q′ = clean(Q′
1‖

u
BQ′

2). Consider case (i).
By induction hypothesis either s ∈ UE(Q′

1, A ∪ B) or vj 6∈ LAB(Q′
1) for some

j ∈ [1, n]. As in the previous items, we can prove that s ∈ UE(Q′
1, A∪B) implies

s ∈ UE(Q′
1‖BQ′

2, A) = UE(Q′, A) and vj 6∈ LAB(Q′
1) implies vj 6∈ LAB(Q′

1‖
u
BQ′

2) =
LAB(Q′). Case (ii) can be proven similarly. Then consider case (iii). By defini-
tion of ×, s ∈ UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α}) implies there exist s1 and
s2 process labels such that si = 〈vi1, . . . , vini

〉 ∈ UE(Qi, Aτ\{α}). By induc-
tion hypothesis, if both s1 ∈ UE(Q′

1, Aτ\{α}) and s2 ∈ UE(Q′
2, Aτ\{α}) then

s1 × s2 ∈ UE(Q′
1, Aτ\{α}) × UE(Q′

2, Aτ\{α}) ⊆ UE(Q′
1‖

u
BQ′

2, A) = UE(Q′, A). If
v1j /∈ LAB(Q′

1) (similarly for v2j /∈ LAB(Q′
2)) then, as in the Sum case, we have

that v1j /∈ LAB(Q′
2) and hence also v1j /∈ LAB(Q′).

Rel: Q = Q1[Φu]. By the operational semantics, Q
α
−→ Q′

1[Φu] if there exists β ∈ Φ−1(α) such

that Q1
β
−→ Q′

1. s = 〈v1, . . . vn〉 ∈ UE(Q1[Φu], A) if s ∈ UE(Q1, Φ
−1(A)). By induction

hypothesis either s ∈ UE(Q′
1, Φ

−1(A)) or vj /∈ LAB(Q′
1) for some j ∈ [1, n]. In the

former case s ∈ UE(Q′
1[Φu], A). In the latter one, vj ∈ LAB(Q1) implies v 6= u and

hence also vj /∈ LAB(Q′
1[Φu]).

Rec: Q = rec xu.Q1. Let S1 = unmark(Q1) and S = Q1{|rec xu.S1/x|}. By operational
rules Q

α
−→ Q′ implies S

α
−→ Q′. Now assume s ∈ UE(Q, A) = UE(Q1, A) = UE(S, A)

by Proposition 7.3-2. By induction hypothesis we have either s ∈ UE(Q′, A) or vj /∈
LAB(Q′) for some j ∈ [1, n].

Then prove Item 2. The two statements are proven by induction on Q.

Var, Stop: Q = xu. This case is not possible since Q 6
X
−→.

Nil: Q = nilu. In this case Q
X
−→ nil = Q′ and LE(Q, A) = LE(Q′, A) = UE(Q′, A) = ∅ for

any A ⊆ Aτ .

Pref: Q = αu.P1 or Q = αu.P1. We prove only the latter case (the former case can be proven

similarly). Assume that Q
X
−→ αu.P1 = Q′. If α /∈ A then LE(Q, A) = LE(Q′, A) =

UE(Q′, A) = {〈u〉}, otherwise LE(Q, A) = LE(Q′, A) = UE(Q′, A) = ∅

Sum: Q = Q1 +u Q2. By the operational semantics Q
X
−→ Q′

1 + Q′
2 implies Q1

X
−→ Q′

1 and

Q2
X
−→ Q′

2. By induction hypothesis

LE(Q, A) = LE(Q1, A) ∪ LE(Q2, A) = LE(Q′
1, A) ∪ LE(Q′

2, A) = LE(Q′, A). Similarly
LE(Q′, A) = LE(Q′

1, A) ∪ LE(Q′
2, A) = UE(Q′

1, A) ∪ UE(Q′
2, A) = UE(Q′, A).

Par: Q = Q1‖u
AQ2. In this case Q

X
−→ Q′ if X ⊆ (A ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\A),

Q1
X1−→ Q′

1 and Q2
X2−→ Q′

2 and Q′ = Q′
1 ‖u

A Q′
2. By induction hypothesis we have

LE(Qi, A) = LE(Q′
i, A) = UE(Q′

i, A), for i = 1, 2. Then LE(Q, A) =

LE(Q1, A ∪ B) ∪ LE(Q2, A ∪ B) ∪
⋃

α∈B\A LE(Q1, Aτ\{α}) × LE(Q2, Aτ\{α}) =

LE(Q′
1, A ∪ B) ∪ LE(Q′

2, A ∪ B) ∪
⋃

α∈B\A LE(Q′
1, Aτ\{α}) × LE(Q′

2, Aτ\{α}) =

LE(Q′
1‖AQ′

2, A) = LE(clean(Q′
1‖AQ′

2), A) = LE(Q′, A), by Proposition 7.9-1. Similarly
we can prove that LE(Q′, A) = UE(Q′

1‖AQ′
2, A) = UE(clean(Q′

1‖AQ′
2), A) = UE(Q′, A),

by Lemma 7.10.

43

Rel: Q = Q1[Φu]. Q
X
−→ Q′

1[Φu] implies Q1
Φ−1(X∪{τ})\{τ}
−−−−−−−−−−→ Q′

1. By induction hypothesis
LE(Q1, A) = LE(Q′

1, A) = UE(Q′
1, A). Thus LE(Q, A) = LE(Q1, Φ

−1(A)) =

LE(Q′
1, Φ

−1(A)) = LE(Q′, A). Similarly, LE(Q′
1, Φ

−1(A)) = UE(Q′
1, Φ

−1(A)) = UE(Q′, A).

Rec: Q = rec xu.Q1. Q
X
−→r Q′ implies Q1

X
−→r Q′

1 and Q′ = rec xu.Q
′
1. By induction hypoth-

esis LE(Q′, A) = LE(Q′
1, A) = LE(Q1, A) = LE(Q, A) and UE(Q′, A) = UE(Q′

1, A) =
LE(Q1, A) = LE(Q, A).

2

44

9 Appendix C: A Proof of Proposition 3.12

This section is devoted to proving Proposition 3.12. A preliminary lemma is needed.

Lemma 9.1 Let Q ∈ L(P̃), X and Y ⊆ A.

1. Q
X
−→r Q′ and Y ∩ U(Q, A) = ∅ imply Q

X∪(Y \A)
−−−−−→r Q′;

2. Q
X
−→r implies U(Q, A\X) = ∅;

3. Q guarded and U(Q, A\X) = ∅ implies Q
X
−→r.

Proof: We prove these items together by induction on Q.

Var: Q = xu. These cases are not possible since Q 6
X
−→r and Q is not guarded.

Nil: Q = nilu. In this case:

1. Q
X
−→r nil, Y ∩ U(Q, A) = ∅ and Q

X∪(Y \A)
−−−−−→r nil.

2. Q
X
−→r and U(Q, A\X) = ∅.

3. Q is guarded, U(Q, A\X) = ∅ and Q
X
−→r.

Pref: Q = αu.P1 or Q = αu.P1. Consider only the second case (the first case is similar to
the Nil-case).

1. Q
X
−→r Q′ implies, by operational semantics, α /∈ X∪{τ} and Q′ = αu.P1. If α ∈ A

then, trivially, α /∈ Y \A. Otherwise, α /∈ A and Y ∩U(Q, A) = Y ∩{α} = ∅ imply
α /∈ Y and, again, α /∈ Y \A. Thus, α /∈ (X ∪ (Y \A)) ∪ {τ} and, by operational

rules, Q
X∪(Y \A)
−−−−−→r αu.P1 = Q′

2. Q
X
−→r implies α /∈ X ∪ {τ} and, hence, α ∈ A\X. Then U(Q, A\X) = ∅.

3. Q is guarded. Moreover, U(Q, A\X) = ∅ implies α ∈ A\X. Since τ 6= α ∈ A and

α /∈ X, we have that α /∈ X ∪ {τ} and, hence, Q
X
−→r.

Sum: Q = Q1 +u Q2

1. Q
X
−→r Q′ and Y ∩ U(Q, A) = Y ∩ (U(Q1, A) ∪ U(Q2, A)) = ∅ imply Qi

X
−→r Q′

i,
Y ∩ U(Qi, A) = ∅ for i = 1, 2 and Q′ = Q′

1 +u Q′
2. By induction hypothesis

Q1
X∪(Y \A)
−−−−−→r Q′

1, Q2
X∪(Y \A)
−−−−−→r Q′

2. Thus, by operational rules, Q
X∪(Y \A)
−−−−−→r

Q′
1 + Q′

2 = Q′.

2. If Q
X
−→r then Q1

X
−→r and Q2

X
−→r. By induction hypothesis U(Q1, A\X) = ∅,

U(Q2, A\X) = ∅ and, hence, U(Q, A\X) = ∅.

3. In this case Q guarded implies both Q1 and Q2 guarded. Moreover if U(Q, A\X) =

∅ then U(Q1, A\X) = U(Q2, A\X) = ∅. By induction hypothesis Q1
X
−→r, Q2

X
−→r

and, hence, Q
X
−→r.

Par: Q = Q1 ‖u
B Q2.

45

1. If Q
X
−→r Q′ then there exist X1, X2 such that Q1

X1−→r Q′
1, Q2

X2−→r Q′
2, X ⊆

(B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B) and Q′ = clean(Q′
1 ‖u

B Q′
2). Now, let A1 =

(U(Q1)\U(Q2)) ∩ B and A2 = (U(Q2)\U(Q1)) ∩ B. Now we want to prove that
Y ∩ U(Q, A) = ∅ implies Y ∩ U(Q1, A ∪ A1) = Y ∩ U(Q2, A ∪ A2) = ∅.

Assume Y ∩ U(Q, A) = ∅ and, by contradiction, µ ∈ Y ∩ U(Q1, A ∪ A1) 6= ∅.
Then, by Proposition 7.1-1, µ ∈ Y such that µ ∈ U(Q1), µ /∈ A and µ /∈ A1. We
have two possible subcases. If µ /∈ B then µ ∈ U(Q1) and µ /∈ A ∪ B implies
µ ∈ U(Q1, A ∪ B) ⊆ U(Q, A) (see Proposition 7.1-2). Otherwise, if µ ∈ B then
µ ∈ U(Q1) and µ /∈ A1 implies also µ ∈ U(Q2). Moreover µ ∈ B\A implies
µ /∈ Aτ\(B\A). As above, µ ∈ U(Q1), µ ∈ U(Q2) and µ /∈ Aτ\(B\A) imply µ ∈
U(Q1, Aτ\(B\A) ∩ U(Q2, Aτ\(B\A) ⊆ U(Q, A). In both cases µ ∈ Y ∩ U(Q, A)
which contradicts the assumption Y ∩ U(Q, A) = ∅.

This prove that Y ∩U(Q, A) = ∅ implies Y ∩U(Q1, A∪A1) = ∅. Similarly we can
prove that Y ∩ U(Q, A) = ∅ implies also Y ∩ U(Q2, A ∪ A2) = ∅. By induction

hypothesis Q1
X1∪(Y \(A∪A1))
−−−−−−−−−→r Q′

1 and Q2
X2∪(Y \(A∪A2))
−−−−−−−−−→r Q′

2.

Let X ′
1 = X1 ∪ (Y \(A ∪ A1)) and X ′

2 = X2 ∪ (Y \(A ∪ A2)). By operational rules
it remains to prove that X ∪ (Y \A) ⊆ (B ∩ (X ′

1 ∪X ′
2))∪ ((X ′

1 ∩X ′
2)\B). First of

all, X1 ⊆ X ′
1 and X2 ⊆ X ′

2 imply X ⊆ (B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B) ⊆

(B∩(X ′
1∪X ′

2))∪((X ′
1∩X ′

2)\B). Now assume µ ∈ Y \A and consider the following
possible subcases:

- µ /∈ B. Then µ /∈ A1, A2 implies µ ∈ Y \(A∪A1) ⊆ X ′
1 and µ ∈ Y \(A∪A2) ⊆

X ′
2. Thus, µ ∈ (X ′

1 ∩ X ′
2)\B.

- µ ∈ B. In this case µ /∈ A1 implies µ ∈ Y \(A ∪ A1) ⊆ X ′
1. If µ ∈ A1, then

µ /∈ U(Q2) implies µ /∈ A2 and, hence, µ ∈ Y \(A ∪ A2) ⊆ X ′
2. In both cases

µ ∈ B ∩ (X ′
1 ∪ X ′

2).

We can conclude that Q
X∪(Y \A)
−−−−−→r Q′.

2. If Q
X
−→r then Q1

X1−→r, Q2
X2−→r with X ⊆ (B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B). By

induction hypothesis we have that U(Q1, A\X1) = U(Q2, A\X2) = ∅. Moreover,
for generic sets A, B and C we have that A\(B\C) = (A\B) ∪ (A ∩ C). Thus:

- X\B ⊆ (X1∪X2)\B = X1∪X2 ⊆ Xi for i = 1, 2. Thus A\Xi ⊆ A\(X\B) =
(A\X) ∪ (A ∩ B) = (A\X) ∪ B. Hence, by Proposition 7.1-3, we have that
U(Qi, (A\X) ∪ B) ⊆ U(Qi, A\Xi) = ∅ for i = 1, 2.

- B\(A\X) = (B\A) ∪ (B ∩ X) = B ∩ X ⊆ B ∩ (X1 ∪ X2) ⊆ X1 ∪ X2

and, hence, Aτ\(X1 ∪ X2) ⊆ Aτ\(B\(A\X)). Assume, by contradiction,
µ ∈ U(Q1, Aτ\(B\(A\X))) ∩ U(Q2, Aτ\(B\(A\X))) 6= ∅.
Then, µ /∈ Aτ\(B\(A\X)) (see Proposition 7.1-1) and Aτ\(X1 ∪ X2) ⊆
Aτ\(B\(A\X)) imply µ ∈ X1 ∪ X2. If µ ∈ X1 then µ ∈ U(Q1, A), µ /∈ A\X1

and Proposition 7.1-2 imply µ ∈ U(Q1, A\X1) = ∅. Similarly, µ ∈ X2 implies
µ ∈ U(Q2, A\X2) = ∅. Both cases are not possible and thus we can conclude
that U(Q1, Aτ\(B\(A\X))) ∩ U(Q2, Aτ\(B\(A\X))) = ∅.

By Definition 2.3, we have that U(Q, A\X) = ∅.

3. Assume Q guarded (and, hence, both Q1 and Q2 guarded) and U(Q, A\X) = ∅.
By Definition 2.3 we have U(Q1, (A\X) ∪ B) = U(Q2, (A\X) ∪ B) = ∅ and

46

U(Q1, Aτ\(B\(A\X))) ∩ U(Q2, Aτ\(B\(A\X))) = ∅. Moreover (see the proof of
the previous case) (A\X) ∪ B = A\(X\B) and Aτ\(B\(A\X)) = Aτ\(B ∩ X).

Qi guarded and U(Qi, A\(X\B)) = ∅ imply, by induction hypothesis, Qi

X\B
−−→r

for i = 1, 2. Now, let Xi = B\U(Qi) ⊆ B and X ′
i = (X\B) ∪ Xi, for i = 1, 2.

Then Qi

X\B
−−→r and Xi ∩ U(Qi) = ∅ imply, by Item 1, Qi

X′

i−→r. Moreover:

- B ∩ (X ′
1 ∪ X ′

2) = B ∩ ((X\B) ∪ X1 ∪ X2) = X1 ∪ X2;

- (X ′
1 ∩ X ′

2)\B = ((X ′
1\B) ∩ (X ′

2\B)) = ((X\B) ∩ (X\B)) = X\B;

- Assume, by contradiction, µ ∈ B ∩ X and µ /∈ X1 ∪ X2. Then, µ ∈ B and
µ /∈ X1 ∪ X2 imply µ ∈ U(Q1) and µ ∈ U(Q2) and, since µ ∈ B ∩ X implies
µ /∈ Aτ\(B ∩ X), we have µ ∈ U(Q1, Aτ\(B ∩ X)) ∩ U(Q2, Aτ\(B ∩ X)) = ∅
(by Proposition 7.1-2). This is not possible and we can conclude that B∩X ⊆
X1 ∪ X2.

Finally: X = (B ∩ X) ∪ (X\B) ⊆ (X1 ∪ X2) ∪ (X\B) =

(B ∩ (X ′
1 ∪ X ′

2)) ∪ ((X ′
1 ∩ X ′

2)\B) and, by operational semantics, Q
X
−→r.

Rel: Q = Q1[Φu]. Let X ′ = Φ−1(X ∪ {τ})\{τ}. First, we prove that Φ−1(A\X) = A\X ′.

Let µ ∈ Φ−1(A\X). Then µ ∈ Aτ such that Φ(µ) ∈ A and Φ(µ) /∈ X. In particular,
Φ(µ) ∈ A implies µ 6= τ (since Φ(τ) = τ /∈ A) and Φ(µ) /∈ {τ}. Thus, µ ∈ A such that
Φ(µ) /∈ X ∪{τ} and, hence, µ /∈ Φ−1(X ∪{τ}) ⊇ X ′. We can conclude that µ ∈ A\X ′.

Now, let µ ∈ A\X ′. Then µ 6= τ and µ /∈ X ′ imply µ /∈ Φ−1(X ∪ {τ}) and, hence,
Φ(µ) /∈ X ∪ {τ}. Finally, Φ(µ) /∈ X and Φ(µ) 6= τ imply Φ(µ) ∈ A\X and, hence,
µ ∈ Φ−1(A\X).

1. Assume that Q
X
−→r Q′

1[Φu] = Q′ and Y ∩ U(Q, A) = Y ∩ Φ(U(Q1, Φ
−1(A))) = ∅.

Then Q1
X′

−→r Q′
1 and Φ−1(Y) ∩ U(Q1, Φ

−1(A)) = ∅. By induction hypothe-

sis Q1
X′∪(Φ−1(Y)\Φ−1(A))
−−−−−−−−−−−−−→r Q′

1. Moreover, since Φ(τ) = τ and Y ⊆ A im-
ply τ /∈ Φ−1(Y), τ /∈ Φ−1(Y)\Φ−1(A) = Φ−1(Y \A) and, hence, Φ−1(Y \A) =
Φ−1(Y \A)\{τ}, we have

X ′ ∪ (Φ−1(Y)\Φ−1(A)) = (Φ−1(X ∪ {τ})\{τ}) ∪ (Φ−1(Y \A)\{τ}) =

(Φ−1(X ∪ {τ}) ∪ Φ−1(Y \A))\{τ} = Φ−1(X ∪ {τ} ∪ (Y \A))\{τ} =

Φ−1((X ∪ (Y \A)) ∪ {τ})\{τ}.

Then, by operational rules, Q
X∪(Y \A)
−−−−−→r Q′

1[Φu] = Q′

2. Assume Q
X
−→r and, hence, Q1

X′

−→r. By induction hypothesis U(Q1, A\X ′) =
U(Q1, Φ

−1(A\X)) = ∅. Thus U(Q, A\X) = Φ(U(Q1, Φ
−1(A\X))) = ∅.

3. Assume Q guarded and U(Q, A\X) = Φ(U(Q1, Φ
−1(A\X))) = ∅. Then we have

also Q1 guarded and U(Q1, Φ
−1(A\X)) = U(Q1, A\X ′) = ∅. By induction hy-

pothesis Q1
X′

−→r ad, hence, Q
X
−→r.

Rec: Q = rec xu.Q1.

1. If Q
X
−→r Q′ then Q1

X
−→r Q′

1 and Q′ = rec xu.Q
′
1. Now assume Y ∩ U(Q, A) =

Y ∩ U(Q1) = ∅. By induction hypothesis we have that Q1
X∪(Y \A)
−−−−−→r Q′

1 and, by

operational semantics, Q
X∪(Y \A)
−−−−−→r rec xu.Q

′
1 = Q′.

47

2. Assume Q
X
−→r. Then, by operational semantics, we have that Q1

X
−→r and hence,

by induction hypothesis, U(Q, A\X) = U(Q1, A\X) = ∅.

3. Q guarded implies Q1 guarded. Moreover, U(Q, A\X) = U(Q1, A\X) = ∅ implies,

by induction hypothesis, Q1
X
−→r and, hence, Q

X
−→r.

2

Proposition 3.12 Let Q ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
1
−→ implies U(Q) = ∅;

2. Q guarded and U(Q) = ∅ implies Q
1
−→;

3. U(Q, A) = ∅ if and only if UE(Q, A) = ∅.

Proof: Items 1. and 2. are corollary of Lemma 9.1. Item 3. is proven by induction on Q.

Nil, Var: Q = nilu, Q = xu. In these cases U(Q, A) = ∅ and UE(Q, A) = ∅.

Pref: Q = αu.P1 or Q = αu.P1. Consider only the latter case (the former is similar to
the previous ones). U(Q, A) = ∅ if and only if α ∈ A and, hence, if and only if
UE(Q, A) = ∅.

Sum: Q = Q1 +u Q2. U(Q, A) = ∅ iff U(Q1, A) = ∅ and U(Q2, A) = ∅, iff, by induction
hypothesis, UE(Q1, A) = ∅, UE(Q2, A) = ∅ and UE(Q, A) = ∅.

Par: Q = Q1‖u
BQ2. U(Q, A) = ∅ iff U(Q1, A ∪ B) = ∅, U(Q2, A ∪ B) = ∅, and A =

U(Q1, Aτ\(B\A))∩U(Q2, Aτ\(B\A)) = ∅. By induction hypothesis U(Qi, A∪B) = ∅
iff UE(Qi, A ∪ B) = ∅.

Now, we prove that A = ∅ iff
⋃

α∈B\A(UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α})) = ∅. We
need the following statements:

(i) A = ∅ if and only if Aα = U(Q1, Aτ\{α})∩U(Q2, Aτ\{α}) = ∅ for any α ∈ B\A.

Assume A = ∅ and let α ∈ B\A. {α} ⊆ B\A implies Aτ\(B\A) ⊆ Aτ\{α}
and, by Proposition 7.1-3, U(Qi, Aτ\{α}) ⊆ U(Qi, Aτ\(B\A)) for i = 1, 2. Thus
Aα = U(Q1, Aτ\{α}) ∩ U(Q2, Aτ\{α}) ⊆ A = ∅. On the other hand, assume
Aα = ∅ for any α ∈ B\A and, by contradiction, β ∈ A 6= ∅. We have that
β ∈ U(Qi, Aτ\(B\A)) for i = 1, 2. By Proposition 7.1-1, β /∈ Aτ\(B\A) and,
hence, β ∈ B\A. Moreover, clearly, β /∈ Aτ\{β}. Then β ∈ U(Qi, Aτ\(B\A))
implies, by Proposition 7.1-2, β ∈ U(Qi, Aτ\{β}) for i = 1, 2. Thus β ∈ B\A and
β ∈ Aβ = ∅.

(ii) Aα = ∅ if and only if either U(Q1, Aτ\{α}) = ∅ or U(Q2, Aτ\{α}) = ∅.

Since µ ∈ U(Qi, Aτ\{α}) implies, again by Proposition 7.1-1, µ /∈ Aτ\{α} and,
hence, µ = α, we have that U(Qi, Aτ\{α}) ⊆ {α}, for i = 1, 2. Then Aα = ∅ iff
U(Q1, Aτ\{α}) = ∅ or U(Q2, Aτ\{α}) = ∅.

48

(i) and (ii) together prove that A = ∅ iff, for any α ∈ B\A, either U(Q1, Aτ\{α}) = ∅
or U(Q2, Aτ\{α}) = ∅, iff, by induction hypothesis, either UE(Q1, Aτ\{α}) = ∅ or
UE(Q2, Aτ\{α}) = ∅ and, hence, iff UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α}) = ∅. We can
conclude that A = ∅ iff

⋃

α∈B\A(UE(Q1, Aτ\{α}) × UE(Q2, Aτ\{α})) = ∅. Finally we

have U(Q, A) = ∅ iff UE(Q, A) = ∅.

Rel: Q = Q1[Φu]. U(Q, A) = Φ(U(Q1, Φ
−1(A))) = ∅ iff U(Q1, Φ

−1(A)) = ∅ iff, by induction
hypothesis, UE(Q1, Φ

−1(A)) = UE(Q, A) = ∅.

Rec: Q = rec xu.Q1. In this case U(Q, A) = U(Q1, A) = ∅ if and only if, by induction
hypothesis, UE(Q1, A) = UE(Q, A) = ∅.

2

49

10 Appendix D: A Proof of Proposition 3.13

This section is devoted to proving Proposition 3.13. A preliminary lemma is needed.

Proposition 10.1 Let Q,∈ L(P̃), A, X ⊆ A. Then clean(Q, A)
X
−→r Q′ implies Q

X\A
−−→r Q′.

Proof: By induction on Q ∈ L(P̃)

Nil, Var: Q = nilu, Q = xu. The latter case is not possible since clean(Q, A) = xu 6
X
−→r.

Assume Q = nilu. Then clean(Q, A) = nilu
X
−→r nilu and Q

X\A
−−→r nilu.

Pref: Q = αu.P1 or Q = αu.P1. We prove only the latter case (the former one is similar to
the Nil-case). We have two possible subcases:

- α ∈ A. In this case clean(Q, A) = αu.P1
X
−→r αu.P1. Moreover α ∈ A ⊆ A implies

α /∈ (X\A) ∪ {τ} and, by operational rules, Q
X\A
−−→r αu.P1.

- α /∈ A In this case clean(Q, A) = αu.P1
X
−→r αu.P1 implies α /∈ X ∪ {τ} ⊇

(X\A) ∪ {τ}. By operational rules, Q
X\A
−−→r αu.P1.

Sum: Q = Q1 +u Q2. By operational rules clean(Q, A) = clean(Q1, A)+u clean(Q2, A)
X
−→r Q′

implies clean(Q1, A)
X
−→r Q′

1, clean(Q2, A)
X
−→r Q′

2 and Q′ = Q′
1 +u Q′

2. By induction

hypothesis Q1
X\A
−−→r Q′

1, Q2
X\A
−−→r Q′

2 and, by operational rules, Q
X\A
−−→r Q′.

Par: Q = Q1 ‖u
B Q2. Let A1 = (U(Q1)\U(Q2)) ∩ B and A2 = (U(Q2)\U(Q1)) ∩ B. Assume

that clean(Q, A) = clean(Q1, A ∪ A1) ‖u
B clean(Q2, A ∪ A2)

X
−→r Q′. Then there exist

X1, X2 ⊆ A such that clean(Q1, A ∪ A1)
X1−→r Q′

1, clean(Q2, A ∪ A2)
X2−→r Q′

2, X ⊆
(B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B) and Q′ = clean(Q′

1 ‖
u
B Q′

2). By induction hypothesis

we have that Q1
X1\(A∪A1)
−−−−−−→r Q′

1 and Q2
X2\(A∪A2)
−−−−−−→r Q′

2. Moreover, since A1 ∩ U(Q2) =

A2 ∩U(Q1) = ∅, by Proposition 9.1-1, we also have Q1
X′

1−→r Q′
1 and Q2

X′

2−→r Q′
2, where

X ′
1 = (X1\(A∪A1)) ∪A2 and X ′

2 = (X2\(A ∪A2)) ∪A1. By operational semantics, it
remains to prove that X\A ⊆ (B ∩ (X ′

1 ∪ X ′
2)) ∪ ((X ′

1 ∩ X ′
2)\B). Let µ ∈ X\A.

- µ ∈ B. Then µ ∈ X implies either µ ∈ X1 or µ ∈ X2. Assume µ ∈ X1

(if µ ∈ X2 the statement can be proved similarly). If µ /∈ A1 then, trivially,
µ ∈ X1\(A∪A1) ⊆ X ′

1. Otherwise, if µ ∈ A1, then µ ∈ (X2\(A∪A2))∪A1 = X ′
2.

In both cases µ ∈ X ′
1 ∪ X ′

2.

- µ /∈ B. Then µ ∈ X implies both µ ∈ X1 or µ ∈ X2. Moreover µ /∈ A1, A2 ⊆ B
implies µ ∈ X1\(A ∪ A1) ⊆ X ′

1 and µ ∈ X2\(A ∪ A2) ⊆ X ′
2. Thus µ ∈ X ′

1 ∩ X ′
2.

Rel: Q = Q1[Φu]. Assume that clean(Q, A) = clean(Q1, Φ
−1(A))[Φu]

X
−→r Q′. Then, by

operational semantics, clean(Q1, Φ
−1(A))

X′

−→r Q′
1, with X ′ = Φ−1(X ∪ {τ})\{τ}, and

Q′ = Q′
1[Φu]. By induction hypothesis Q1

X′\Φ−1(A)
−−−−−−→r Q′

1. Moreover

X ′\Φ−1(A) =
(

Φ−1(X ∪ {τ})\{τ}
)

\Φ−1(A) =
(

Φ−1(X ∪ {τ})\Φ−1(A)
)

\{τ} =
(

Φ−1((X ∪ {τ})\A)
)

\{τ} =
(

Φ−1((X\A) ∪ {τ}
)

\{τ}.

By operational rules Q
X\A
−−→r Q′

1[Φu] = Q′.

50

Rec: Q = rec xu.Q1. clean(Q, A) = rec xu.clean(Q1, A)
X
−→r Q′ implies clean(Q1, A)

X
−→r Q′

1

and Q′ = rec xu.Q
′
1. By induction hypothesis Q1

X\A
−−→r Q′

1 and, by operational rules

Q
X\A
−−→r rec xu.Q

′
1 = Q′.

2

Lemma 10.2 Let Q, Q′, Q′′ ∈ L(P̃) and X, X ′ ⊆ A. Then:

1. Q
X
−→r Q′ X′

−→r Q′′ implies Q 6
µ
−→ and Q′ 6

µ
−→ for any µ ∈ X ′ ∪ {τ}. Moreover Q′ = Q′′;

2. Q guarded and Q 6
µ
−→ for any µ ∈ X ∪ {τ} implies Q

X
−→r Q′ and Q′ 6

µ
−→ for any

µ ∈ X ∪ {τ}.

Proof: We prove these items together by induction on Q.

Var: Q = xu. This case is not possible since Q 6
X
−→r.

Nil: Q = nilu.

1. Q
X
−→r nilu = Q′ X′

−→r nilu = Q′′, Q = Q′ = nilu 6
µ
−→ for any µ ∈ X ′ ∪ {τ} and,

trivially, nilu = nilu.

2. Q is guarded, Q 6
µ
−→ for any µ ∈ X ∪ {τ}, Q

X
−→r nilu = Q′ and Q′ 6

µ
−→ for any

µ ∈ X ∪ {τ}.

Pref: Q = αu.P1 or Q = αu.P1. Consider only the latter case (the former case is simpler).

1. αu.P1
X
−→r αu.P1 = Q′ X′

−→r αu.P1 = Q′′ implies α /∈ X ∪ {τ} and α /∈ X ′ ∪ {τ}.

Thus, by operational semantics, both Q and Q′ 6
µ
−→ for any µ ∈ X ′ ∪ {τ}. Clearly

Q′ = Q′′.

2. In this case Q is guarded. Moreover Q 6
µ
−→ for any µ ∈ X∪{τ} implies α /∈ X∪{τ}

and, by operational rules, Q
X
−→r αu.P1 = Q′. Again by operational rules, α /∈

X ∪ {τ} implies Q′ 6
µ
−→ for any µ ∈ X ∪ {τ}.

Sum: Q = Q1 +u Q2.

1. If Q
X
−→r Q′ X′

−→r Q′′ then Q1
X
−→r Q′

1
X′

−→r Q′′
1, Q2

X
−→r Q′

2
X′

−→r Q′′
2, Q′ = Q′

1 +u Q′
2

and Q′′ = Q′′
1 +u Q′′

2. By induction hypothesis Q1 6
µ
−→, Q′

1 6
µ
−→ and Q2 6

µ
−→, Q′

2 6
µ
−→

for any µ ∈ X ∪ {τ} and, hence, by operational rules, both Q 6
µ
−→ and Q′ 6

µ
−→ for

any µ ∈ X ′ ∪ {τ}. Again by induction hypothesis, Q′
1 = Q′′

1 and Q′
2 = Q′′

2. Thus
Q′ = Q′′.

2. Q guarded implies both Q1 and Q2 guarded. Assume Q 6
µ
−→ for any µ ∈ X ∪ {τ}.

Then, by operational rules, Q1 6
µ
−→ and Q2 6

µ
−→ for any µ ∈ X ∪ {τ}. By induction

hypothesis, Q1
X
−→r Q′

1, Q2
X
−→r Q′

2 and, hence, Q
X
−→r Q′

1 +u Q′
2 = Q′. Moreover,

again by induction hypothesis, we have that both Q′
1 and Q′

2 6
µ
−→ for any µ ∈

X ∪ {τ}. Then, by operational rules, also Q′ 6
µ
−→ for any µ ∈ X ∪ {τ}.

51

Par: Q = Q1 ‖u
B Q2.

1. Q
X
−→r Q′ implies that there exist X1, X2 such that Q1

X1−→r Q′
1, Q2

X2−→r Q′
2 with

X ⊆ (B∩(X1∪X2))∪((X1∩X2)\B) and Q′ = clean(Q′
1‖

u
BQ′

2). Let A1 = B\U(Q′
2)

and A2 = B\U(Q′
1) and assume Q′ = clean(Q′

1, A1) ‖u
B clean(Q′

2, A2)
X′

−→r Q′′.

Again, there exist X ′
1, X

′
2 such that clean(Q′

1, A1)
X′

1−→r Q′′
1, clean(Q′

2, A2)
X′

2−→r Q′′
2

with X ′ ⊆ (B ∩ (X ′
1 ∪ X ′

2)) ∪ ((X ′
1 ∩ X ′

2)\B) and Q′′ = clean(Q′′
1 ‖u

B Q′′
2). If

clean(Q′
1, A1)

X′

1−→r Q′′
1 then Q′

1

X′

1\A1

−−−−→r Q′′
1 (by Proposition 10.1). Moreover

A2 ∩ U(Q′
1) = ∅ and Proposition 9.1-1 imply Q′

1

(X′

1\A1)∪A2

−−−−−−−→r Q′′
1. Similarly

Q′
2

(X′

2\A2)∪A1

−−−−−−−→r Q′′
2. By induction hypothesis Q1

X1−→r Q′
1

(X′

1\A1)∪A2

−−−−−−−→r Q′′
1 and

Q2
X2−→r Q′

2

(X′

2\A2)∪A1

−−−−−−−→r Q′′
2 imply (i) Q1, Q

′
1 6

µ
−→ for any µ ∈ (X ′

1\A1) ∪ A2 ∪ {τ}

and (ii) Q2, Q
′
2 6

µ
−→ for any µ ∈ (X ′

2\A2) ∪ A1 ∪ {τ}.

Now we prove that Q′ 6
µ
−→ (and similarly Q) for any µ ∈ X ′ ∪ {τ}. First Q′

1 6
τ
−→

and Q′
2 6

τ
−→ imply Q′ 6

τ
−→. Let µ ∈ X ′ and consider the following subcases:

- µ ∈ B. Then µ ∈ X implies µ ∈ X ′
1 ∪ X ′

2 and, hence, either µ ∈ X ′
1 or

µ ∈ X ′
2. Assume µ ∈ X ′

1 (the case in which µ ∈ X2 can be proved similarly).

If µ ∈ A1 then, by (ii), Q′
2 6

µ
−→. If µ /∈ A1 and, hence, µ ∈ X ′

1\A1, then, by (i),

Q′
1 6

µ
−→. In both cases Q′ 6

µ
−→.

- µ /∈ B. In this case µ ∈ X ′
1 and µ ∈ X ′

2. Moreover µ /∈ A1, A2 ⊆ B Thus

µ ∈ X ′
1\A1 and µ ∈ X ′

2\A2 imply, by (i) and (ii), Q′
1 6

µ
−→, Q′

2 6
µ
−→ and, hence,

Q′ 6
µ
−→.

Again by induction hypothesis we have Q′
1 = Q′′

1 and Q′
2 = Q′′

2. Then also
Q′ = Q′′.

2. Assume Q guarded and, hence, both Q1 and Q2 guarded. Now, assume Q 6
µ
−→ for

any µ ∈ X ∪ {τ}. By operational semantics we have that: (i) Q1 6
µ
−→ and Q2 6

µ
−→,

for any µ ∈ (X\B) ∪ {τ} and (ii) for any µ ∈ X ∩ B either Q1 6
µ
−→ or Q2 6

µ
−→. Let

X ′
i = {µ ∈ X∩B |Qi 6

µ
−→} ⊆ X∩B ⊆ B and Xi = (X\B)∪X ′

i. Then, Qi guarded

and Qi 6
µ
−→ for any µ ∈ Xi ∪ {τ} implies, by induction hypothesis, Qi

Xi−→ Q′
i

for i = 1, 2. Moreover, B ∩ (X1 ∪ X2) = B ∩ ((X\B) ∪ X ′
1 ∪ X ′

2) = X ′
1 ∪ X ′

2,
(X1 ∩ X2)\B = (X1\B) ∪ (X2\B) = (X\B) ∪ (X\B) = X\B and, by (ii),
X ∩ B = X ′

1 ∪ X ′
2.

Finally (B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B) = (X ∩ B) ∪ (X\B) = X and, by

operational rules, Q
X
−→ clean(Q′

1 ‖
u
B Q′

2) = Q′. Again by induction hypothesis

we have that Q′
1 6

µ
−→ for any µ ∈ X1 ∪ {τ} and Q′

2 6
µ
−→ for any µ ∈ X2 ∪ {τ}.

Also in this case, Q′
1 6

τ
−→ and Q′

2 6
τ
−→ imply Q′ 6

τ
−→. Now, let µ ∈ X. If µ ∈ X\B

then µ ∈ X1 and µ ∈ X2 implies both Q′
1 6

µ
−→ and Q′

2 6
µ
−→ and, hence, Q′ 6

τ
−→. If

µ ∈ X ∩B = X ′
1 ∪X ′

2 we have either µ ∈ X ′
1 ⊆ X1 or µ ∈ X ′

2 ⊆ X2. Thus, either

Q′
1 6

µ
−→ or Q′

2 6
µ
−→. Also in this case Q′ 6

τ
−→.

Rel: Q = Q1[Φu]. Let X, X ′ ⊆ A, Y = Φ−1(X ∪ {τ})\{τ} and Y ′ = Φ−1(X ′ ∪ {τ})\{τ}.
Then Φ(τ) = τ implies τ ∈ Φ−1(X ∪ {τ}) and Φ−1(X ∪ {τ}) = (Φ−1(X ∪ {τ})\{τ})∪
{τ} = Y ∪ {τ}. Similarly, we have Φ−1(X ′ ∪ {τ}) = Y ′ ∪ {τ}.

52

1. By operational rules Q
X
−→r Q′ X′

−→r Q′′ implies Q1
Y
−→r Q′

1
Y ′

−→r Q′′
1, Q′ = Q′

1[Φu]

and Q′′ = Q′′
1[Φu]. By induction hypothesis Q1, Q

′
1 6

µ′

−→ for any µ′ ∈ Y ′ ∪ {τ} =

Φ−1(X ′ ∪ {τ}) and, hence, Q, Q′ 6
µ
−→ for any µ ∈ X ′ ∪ {τ}. Again by induction

hypothesis Q′
1 = Q′′

1 and, hence, also Q′ = Q′′.

2. Q guarded implies Q1 guarded. Now, assume Q 6
µ
−→ for any µ ∈ X ∪ {τ}. Then

Q1 6
µ′

−→ for any µ′ ∈ Φ−1(X ∪{τ}) = Y ∪{τ}. By induction hypothesis Q1
Y
−→r Q′

1

and, hence, Q
X
−→r Q′

1[Φ] = Q′. Again by induction hypothesis we have that

Q′
1 6

µ′

−→ for any µ′ ∈ Φ−1(X ∪ {τ}) and, by operational semantics, Q′ 6
µ
−→ for any

µ ∈ X ∪ {τ}.

Rec: Q = rec xu.Q1

1. Q
X
−→r rec xu.Q

′
1 = Q′ X′

−→r rec xu.Q
′′
1 = Q′′ implies Q1

X
−→r Q′

1
X′

−→r Q′′
1. By

induction hypothesis, Q1, Q
′
1 6

µ
−→ for any µ ∈ X ′ ∪ {τ} . Thus, x guarded in

Q1 and, hence, in Q′
1 imply, by Proposition 7.3-3, Q1{|rec xu.unmark(Q1)/x|} 6

µ
−→

Q′
1{|rec xu.unmark(Q′

1)/x|} 6
µ
−→ for any µ ∈ X ′ ∪ {τ}. Finally, by operational

semantics, Q, Q′ 6
µ
−→ for any µ ∈ X ∪ {τ}. Again by induction hypothesis, we also

have Q′
1 = Q′′

1 and, clearly, Q′ = Q′′.

2. Assume Q and, hence, Q1 guarded. In this case Q 6
µ
−→ for any µ ∈ X ∪ {τ}

implies Q1{|rec xu.unmark(Q1)/x|} 6
µ
−→ and, since x is guarded in Q1, also Q1 6

µ
−→

for any µ ∈ X ∪ {τ} (see Proposition 7.3-3). Then, by induction hypothesis,

Q1
X
−→r Q′

1 and, by operational semantics, Q
X
−→r recxu.Q

′
1 = Q′. Moreover, again

by induction hypothesis, Q′
1 6

µ
−→ for any µ ∈ X ∪{τ}. Then, since x guarded in Q1

implies x in Q′
1, by Proposition 7.3-3 we have that Q′

1{|rec xu.unmark(Q′
1)/x|} 6

µ
−→

for any µ ∈ X ∪ {τ}. Finally, by operational rules, Q′ 6
µ
−→ for any µ ∈ X ∪ {τ}.

2

Proposition 3.13 Let Q, Q′, Q′′ ∈ L(P̃).

1. Q
1
−→ Q′ 1

−→ Q′′ implies Q 6
µ
−→ and Q′ 6

µ
−→ for any µ ∈ Aτ . Moreover Q′ = Q′′;

2. Q guarded and Q 6
µ
−→ for any µ ∈ Aτ implies Q

1
−→ Q′ 1

−→ Q′

Proof:

1. If Q
1
−→ Q′ 1

−→ Q′′ then, by Lemma 10.2-1 and Q, Q′ 6
µ
−→ for any µ ∈ Aτ and Q′ = Q′′.

2. By Lemma 10.2-2, Q guarded and Q 6
µ
−→ for any µ ∈ Aτ implies that Q

1
−→ Q′ and Q′ 6

µ
−→

for any µ ∈ Aτ . Moreover since Q guarded implies also Q′ guarded, again by Lemma

10.2-2, there exists Q′′ such that Q′ 1
−→ Q′′. By Item 1, Q′ = Q′′ and the statement

follows.

2

53

11 Appendix E: A Proof of Proposition 4.4

Proposition 4.4 Let Q ∈ L(P̃) and P ∈ L(P̃1) such that P = unmark(Q). Then:

1. LE(P, A) = LE(Q, A), for every A;

2. Q
µ
−→ Q′ implies P

µ
−→ P ′ and P ′ = unmark(Q′). Moreover UE(Q′, A) ⊆ UE(Q, A) and

UE(Q′) = ∅ implies Q′ = P ′;

3. P
µ
−→ P ′ implies Q

µ
−→ Q′ and P ′ = unmark(Q′);

Proof: We prove Item 1 by induction on Q and Item 2 by induction of length of derivation
Q

µ
−→ Q′. The proof for Item 3 is similar to the one for 2 and hence omitted. We proceed by

case analysis on the structure of Q.

Nil, Var: Q = nilu, Q = xu. In both case P = unmark(Q) implies P = Q and items 1. and
2. hold trivially.

Pref: Q = µu.P1 or Q = µ
u
.P1. In the first case (the other is similar) P = unmark(Q) implies

P = µu.P1. Then:

1. LE(P, A) = LE(Q, A) = {〈u〉} if µ /∈ A, LE(P, A) = LE(Q, A) = ∅ otherwise.

2. Q
µ
−→ P1, P

µ
−→ P1 and, since P1 ∈ L(P̃1), P1 = unmark(P1). Moreover we have

that UE(P1, A) = ∅ ⊆ UE(Q, A), UE(P1) = ∅ and, sure, P1 = P1.

Sum: Q = Q1 +u Q2. In this case P = unmark(Q) implies Pi = unmark(Qi), for i = 1, 2, and
P = P1 +u P2.

1. By induction hypothesis, for every A,

LE(P, A) = LE(P1, A) ∪ LE(P2, A) = LE(Q1, A) ∪ LE(Q2, A) = LE(Q, A).

2. By the operational rules, Q
µ
−→ Q′ if either (i) Q1

µ
−→ Q′ or (ii) Q2

µ
−→ P ′. Consider

case (i). By induction hypothesis, Q1
µ
−→ Q′ implies P1

µ
−→ P ′, and hence P

µ
−→ P ′,

and P ′ = unmark(Q′). Moreover, again by induction hypothesis, we have that
UE(Q′, A) ⊆ UE(Q1, A) ⊆ UE(Q, A) and UE(Q′) = ∅ implies Q′ = P ′.

Par: Q = Q1‖u
BQ2. By definition unmark(Q) = unmark(Q1) ‖u

B unmark(Q2). Thus P =
P1‖u

BP2, where Pi = unmark(Qi) for every i = 1, 2. Then:

1. By induction hypothesis, LE(P, A) =

LE(P1, A ∪ B) ∪ LE(P2, A ∪ B) ∪
⋃

α∈B\A(LE(P1, Aτ\{α}) × LE(P2, Aτ\{α}) =

LE(Q1, A ∪ B) ∪ LE(Q2, A ∪ B) ∪
⋃

α∈B\A(LE(Q1, Aτ\{α}) × LE(Q2, Aτ\{α}) =

LE(Q, A).

2. Assume Q
µ
−→ Q′ and consider the following three possible cases:

i. µ ∈ B and Qi
µ
−→ Q′

i for i = 1, 2 and Q′ = clean(Q′
1 ‖

u
B Q′

2). By induction

hypothesis, Qi
µ
−→ Q′

i implies Pi
µ
−→ P ′

i , P ′
i = unmark(Q′

i) and UE(Q′
i, A) ⊆

UE(Qi, A), for every i and A. Then: Q
µ
−→ Q′ implies P

µ
−→ clean(P ′

1 ‖
u
B P ′

2) =
P ′

1 ‖
u
B P ′

2 = P ′ and P ′ = unmark(Q′). Moreover, by Lemma 7.10, UE(Q′, A) =
UE(Q′

1 ‖
u
B Q′

2, A) =

54

UE(Q′
1, A∪B)∪UE(Q′

2, A∪B)∪
⋃

α∈B\A(UE(Q′
1, Aτ\{α})×UE(Q′

2, Aτ\{α}) ⊆

UE(Q1, A∪B)∪UE(Q2, A∪B)∪
⋃

α∈B\A(UE(Q1, Aτ\{α})×UE(Q2, Aτ\{α}) =

UE(Q, A).
Now assume UE(Q′) = ∅. By Lemma 7.10 and Proposition 3.12-3, we also
have UE(Q′

1 ‖
u
B Q′

2) = ∅ and U(Q′
1 ‖

u
B Q′

2) = ∅. Finally, U(Q′
1 ‖

u
B Q′

2) = ∅
and Proposition 7.5-3 imply Q′ = clean(Q′

1 ‖
u
B Q′

2) = unmark(Q′
1 ‖

u
B Q′

2) =
P ′

1 ‖
u
B P ′

2 = P ′.

ii. µ 6∈ B and Q1
µ
−→ Q′

1 and Q′ = clean(Q′
1 ‖

u
B Q2). By induction hypothesis,

Q1
µ
−→ Q′

1 implies P1
µ
−→ P ′

1, P ′
1 = unmark(Q′

1) and UE(Q′
1, A) ⊆ UE(Q1, A),

for every A. Then: Q
α
−→ Q′ implies P

α
−→ clean(P ′

1‖
u
BP2) = P ′

1‖
u
BP2 = P ′ and

P ′ = unmark(Q′). Moreover, UE(Q′, A) =
UE(Q′

1, A∪B)∪UE(Q2, A∪B)∪
⋃

α∈B\A(UE(Q′
1, Aτ\{α})×UE(Q2, Aτ\{α}) ⊆

UE(Q1, A∪B)∪UE(Q2, A∪B)∪
⋃

α∈B\A(UE(Q1, Aτ\{α})×UE(Q2, Aτ\{α}) =

UE(Q, A). Similar to the previous case we can prove that UE(Q′) = ∅ implies
Q′ = P ′.

iii. µ 6∈ B and Q2
µ
−→ Q′

2 and Q′ = clean(Q1 ‖u
B Q′

2). This case is similar to the
previous one.

Rel: Q = Q1[Φu]. By definition unmark(Q) = unmark(Q1)[Φu]. Thus P = P1[Φu] with
P1 = unmark(Q1). Then:

1. LE(P, A) = LE(P1, Φ
−1(A)) = LE(Q1, Φ

−1(A)) = LE(Q, A), by induction hypoth-
esis.

2. By the operational rules, Q
µ
−→ Q′

1[Φu] = Q′ if and only if there exists µ′ ∈ Φ−1(µ)

such that Q1
µ′

−→ Q′
1. By induction hypothesis, Q1

µ′

−→ Q′
1 implies P1

µ′

−→ P ′
1 and

P ′
1 = unmark(Q′

1) which implies P
µ
−→ P ′

1[Φu] = P ′ and P ′ = unmark(Q′
1)[Φu] =

unmark(Q′). Moreover, we conclude from the induction hypothesis that UE(Q′, A) =
UE(Q′

1, Φ
−1(A)) ⊆ UE(Q1, Φ

−1(A)) = UE(Q, A). Finally, again by induction hy-
pothesis UE(Q′) = UE(Q′

1) = ∅ implies Q′
1 = P ′

1 and, hence, Q′ = P ′.

Rec: Q = rec xu.Q1. In this case P = unmark(Q) implies P = rec xu.P1 with P1 =
unmark(Q1).

1. By induction hypothesis, LE(P, A) = LE(P1, A) = LE(Q1, A) = LE(Q, A).

2. Let R = Q1{|rec xu.unmark(Q1)/x|} = Q1{|rec xu.P1/x|} and S = unmark(R).
Then x guarded in Q1 and Propositions 7.3-2 and 7.7-2 imply (i) UE(R, A) =
UE(Q1, A) = UE(Q, A) and (ii) S = unmark(Q1){|recxu.P1/x|} = P1{|recxu.P1/x|}.

Now assume Q
µ
−→ Q′ and hence, by operational rules, R

µ
−→ Q′. By induction

hypothesis we have that S
µ
−→ P ′, P ′ = unmark(Q′) and UE(Q′, A) ⊆ U(R, A) =

UE(Q, A). Moreover, again by induction hypothesis UE(Q′) = ∅ implies Q′ = P ′.

2

55

12 Appendix F: Proof of Proposition 5.3

First we report the formal definition of UU(Q, A).

Definition 12.1 (urgency and unfolding)
Let Q ∈ P̃ and A ⊆ A. Define UU(Q, A) by induction on Q as follows (where we extend

the PAFAS-operators to sets of process terms in the natural way):

Nil: UU(nil, A) = {nil}

Var: UU(x, A) = {x}

Pref: UU(α.P, A) =

{

{α.P, α.P} if α ∈ A

{α.P} otherwise

UU(α.P, A) = {α.P}

Sum: UU(Q1 + Q2, A) = UU(Q1, A) + UU(Q2, A)

Par: UU(Q1 ‖B Q2, A) =
{

R ∈ UU(Q1, A ∪ A1) ‖B UU(Q2, A ∪ A2)
∣

∣ U(R) ⊆ U(Q) ∪ A
}

where A1 = B\U(Q2) and A2 = B\U(Q1)

Rel: UU(Q[Φ], A) = (UU(Q, Φ−1(A)))[Φ]

Rec: UU(rec x.Q, A) =

{

{rec x.Q} ∪ UU(Q, A){rec x.Q/x} if Q ∈ P̃1

UU(Q, A){rec x.unmark(Q)/x} otherwise

As usual, we denote with UU(Q) the set UU(Q, ∅)

The following lemma can be easily proved by induction on P .

Lemma 12.2 If P ∈ P̃1 and A ⊆ A, then P ∈ UU(P, A).

The following proposition states some useful properties of the set UU(Q, A).

Proposition 12.3 Let Q, R ∈ P̃ and A, A′ ⊆ A such that R ∈ UU(Q, A). Then:

1. U(Q) ⊆ U(R) and U(R) ⊆ U(Q) ∪ A.

2. A ⊆ A′ implies R ∈ UU(Q, A′);

3. A′ ⊆ A implies R ∈ UU(clean(Q, A′), A).

Proof: We prove all items by induction on Q ∈ P̃.

Nil, Var: Q = nil, Q = x. In these cases R ∈ UU(Q, A) = {Q} implies R = Q. Moreover:

1. U(Q) = U(R) = ∅ and U(R) = ∅ ⊆ U(Q) ∪ A.

56

2. R ∈ UU(Q, A′) = {Q} for all A′.

3. Trivial since clean(Q, A′) = Q for all A′.

Pref: Q = α.P1 or Q = α.P1. Assume Q = α.P1, R ∈ UU(Q, A) and consider the following
cases:

- α ∈ A. Then UU(Q, A) = {α.P1, α.P1} implies either R = α.P1 or R = α.P1. In
both cases:

1. U(Q) = ∅ ⊆ U(R) and U(R) ⊆ {α} ⊆ U(Q) ∪ A.

2. α ∈ A ⊆ A′ implies UU(Q, A′) = {α.P1, α.P1} and R ∈ UU(Q, A′).

3. Trivial since clean(Q, A′) = Q for any A′.

- α /∈ A in this case R ∈ UU(Q, A) = {α.P1} implies R = α.P1.

1. U(Q) = U(R) = ∅ and U(R) ⊆ U(Q) ∪ A.

2. α /∈ A′ implies UU(Q, A′) = {α.P1}, while if α ∈ A′ then UU(Q, A′) =
{α.P1, α.P1}. In both cases R ∈ UU(Q, A′).

3. Again, for each A′, clean(Q, A′) = Q.

Now we can assume Q = α.P1. In this case UU(Q, A) = {α.P1} and R ∈ UU(Q, A)
imply R = α.P1.

1. U(Q) = U(R) = {α} and U(R) = U(Q) ⊆ U(Q) ∪ A.

2. In this case, by Definition 12.1, UU(Q, A′) = {α.P1} and, hence, R ∈ UU(Q, A′).

3. If α ∈ A′ ⊆ A then UU(clean(Q, A′), A) = UU(α.P1, A) = {α.P1, α.P1}. Oth-
erwise, if α /∈ A′, UU(clean(Q, A′), A) = UU(α.P1, A) = {α.P1}. In both cases
R ∈ UU(clean(Q, A′), A).

Sum: Q = Q1 + Q2. Assume R ∈ UU(Q, A). Then, by Definition 12.1, R = R1 + R2 with
Ri ∈ UU(Qi, A) for i = 1, 2. By induction hypothesis:

1. U(Q) = U(Q1) ∪ U(Q2) ⊆ U(R1) ∪ U(R2) = U(R) and U(R) = U(R1) ∪ U(R2) ⊆
(U(Q1) ∪ A) ∪ (U(Q2) ∪ A) = (U(Q1) ∪ U(Q2)) ∪ A = U(Q) ∪ A.

2. A ⊆ A′ implies R = R1 + R2 ∈ UU(Q1, A
′) + UU(Q2, A

′) = UU(Q, A′).

3. A′ ⊆ A implies R = R1 + R2 ∈ UU(clean(Q1, A
′), A) + UU(clean(Q2, A

′), A) =

UU(clean(Q1, A
′) + clean(Q2, A

′), A) = UU(clean(Q, A′), A).

Par: Q = Q1 ‖B Q2. Let A1 = B\U(Q2) and A2 = B\U(Q1). In this case R ∈ UU(Q, A)
implies R = R1 ‖B R2 with Ri ∈ UU(Qi, A ∪ Ai), for i = 1, 2, and U(R) ⊆ U(Q) ∪ A.
Then:

1. By induction hypothesis U(Qi) ⊆ U(Ri). Thus, for a generic C ⊆ Aτ , we also
have that U(Qi, C) = U(Qi)\C ⊆ U(Ri)\C = U(Ri, C). Then, by Definition 2.3,
U(Q) ⊆ U(R). Trivially U(R) ⊆ U(Q) ∪ A.

2. A ⊆ A′ implies A ∪ Ai ⊆ A′ ∪ Ai and hence, by induction hypothesis, Ri ∈
UU(Qi, A

′ ∪ Ai) (for i = 1, 2). Moreover U(R) ⊆ U(Q) ∪ A ⊆ U(Q) ∪ A′. Thus
we can conclude that R ∈ UU(Q, A′).

57

3. Let A′
1 = (U(Q1)\U(Q2)) ∩ B and A′

2 = (U(Q2)\U(Q1)) ∩ B. By Definition
2.4, clean(Q, A′) = clean(Q1, A

′ ∪ A′
1) ‖B clean(Q2, A

′ ∪ A′
2) = Q′

1 ‖B Q′
2 = Q′.

Now let A′′
1 = B\U(Q′

2) and A′′
2 = B\U(Q′

1). Then Definition 12.1 implies that
R ∈ UU(Q′, A) iff (i) Ri ∈ UU(Q′

i, A∪A′′
i), for i = 1, 2 and (ii) U(R) ⊆ U(Q′)∪A}.

Assume A′ ⊆ A.

(i) A′
1 = (U(Q1)\U(Q2))∩B = U(Q1)∩(B\U(Q2)) = U(Q1)∩A1 ⊆ A1 and A′ ⊆

A imply A′∪A′
1 ⊆ A∪A1. By induction hypothesis, R1 ∈ UU(Q1, A∪A1) and

A′∪A′
1 ⊆ A∪A1 imply R1 ∈ UU(clean(Q1, A

′∪A′
1), A∪A1) = UU(Q′

1, A∪A1).
Moreover U(Q′

2) = U(clean(Q2, A
′ ∪ A′

2)) = U(Q2, A
′ ∪ A′

2) ⊆ U(Q2) (see
Propositions 7.6-2 and 7.1-3) implies A1 = B\U(Q2) ⊆ B\U(Q′

2) = A′′
1 and,

hence, A∪A1 ⊆ A∪A′′
1. Then R1 ∈ UU(Q′

1, A∪A1) and A∪A1 ⊆ A∪A′′
1 imply,

by Item 2, R1 ∈ UU(Q′
1, A∪A′′

1). Similarly, we have that R2 ∈ UU(Q′
2, A∪A′′

2).

(ii) Propositions 7.6-2 and 7.1-4 imply that U(Q′) = U(clean(Q, A′)) = U(Q, A′)
= U(Q)\A′. Thus, since A′ ⊆ A, we have that U(R) ⊆ U(Q) ∪ A =
(U(Q)\A′) ∪ (U(Q) ∩ A′) ∪ A ⊆ U(Q′) ∪ (A′ ∪ A) = U(Q′) ∪ A.

Rel: Q = Q1[Φ]. R ∈ UU(Q, A) = UU(Q1, Φ
−1(A))[Φ] implies R = R1[Φ] with R1 ∈

UU(Q1, Φ
−1(A))

1. By induction hypothesis U(Q) = Φ(U(Q1)) ⊆ Φ(U(R1)) = U(R). Again by
induction hypothesis U(R) = Φ(U(R1)) ⊆ Φ(U(Q1) ∪ Φ−1(A)) = Φ(U(Q1)) ∪
Φ(Φ−1(A)) ⊆ U(Q) ∪ A.

2. A ⊆ A′ implies Φ−1(A) ⊆ Φ−1(A′). By induction hypothesis we have that R1 ∈
UU(Q1, Φ

−1(A′)) and, hence, R ∈ UU(Q, A′)

3. A′ ⊆ A implies Φ−1(A′) ⊆ Φ−1(A). Then, by induction hypothesis, we have
that R1 ∈ UU(clean(Q1, Φ

−1(A′)), Φ−1(A)). Moreover UU(clean(Q, A′), A) =
UU(clean(Q1, Φ

−1(A′))[Φ], A) = UU(clean(Q1, Φ
−1(A′)), Φ−1(A))[Φ]. We can con-

clude that R ∈ UU(clean(Q, A′), A).

Rec: Q = rec x.Q1. We have to consider the following subcases:

- Q1 /∈ P̃1. In this case R ∈ UU(Q, A) implies R = R1{rec x.S1/x} where R1 ∈
UU(Q1, A) and S1 = unmark(Q1).

1. By induction hypothesis U(Q) = U(Q1) ⊆ U(R1). Moreover x guarded in
Q1 implies x guarded in R1 ∈ UU(Q1, A) and U(R) = U(R1{rec x.S1/x}) =
U(R1) (see Proposition 7.2). We can conclude that U(Q) ⊆ U(R). Again by
induction hypothesis U(R) = U(R1) ⊆ U(Q1) ∪ A = U(Q) ∪ A.

2. By induction hypothesis A ⊆ A′ implies R1 ∈ UU(Q1, A
′) and, hence, R ∈

UU(Q, A′) = UU(Q1, A
′){rec x.S1/x}.

3. Let Q′ = clean(Q, A′) = rec x.clean(Q1, A
′) = rec x.Q′

1. By induction hypoth-
esis A′ ⊆ A implies R1 ∈ UU(clean(Q1, A

′), A) = UU(Q′
1, A). Now consider

the following subcases:

- Q′
1 ∈ P̃1. By Definition 12.1 UU(Q′, A) ⊇ UU(Q′

1, A){rec x.Q′
1/x} with

Q′
1 = unmark(Q′

1) = unmark(clean(Q1, A)) = unmark(Q1) = S1 (see
Proposition 7.5-1).

58

- Q′
1 /∈ P̃1. Similarly UU(Q′, A) ⊇ UU(Q′

1, A){rec x.unmark(Q′
1)/x} with

unmark(Q′
1) = unmark(clean(Q1, A)) = unmark(Q1) = S1. (again by

Proposition 7.5-1)

In both cases we have that R ∈ UU(Q′, A).

- Q1 ∈ P̃1. In this case R ∈ UU(Q, A) = {Q} ∪ UU(Q1, A){rec x.Q1/x} implies
either R = Q or R = R1{rec x.Q1/x}, where R1 ∈ UU(Q1, A). We prove only the
latter case (the former can be proved similarly to the case in which Q1 /∈ P̃1).

1. Similar to the previous case.

2. By induction hypothesis A ⊆ A′ implies R1 ∈ UU(Q1, A
′) and, hence, R ∈

UU(Q1, A
′){rec x.Q1/x} ⊆ UU(Q, A′).

3. Q1 ∈ P̃1 implies clean(Q, A′) = Q, for all A′, and, hence, the item follows
follows easily.

2

Proposition 12.4 Let Q ∈ P̃ and A ⊆ Aτ . Then Q
α
−→ Q′ implies U(Q′, A) ⊆ U(Q, A).

Proof: We prove the statement by induction on length of derivation Q
α
−→ Q′. We proceed

by case analysis on the structure of Q.

Nil, Var: Q = nil, Q = x. These case are not possible since Q 6
α
−→.

Pref: Q = α.P1 or Q = α.P1. In both cases Q
α
−→ P1 ∈ P̃1 and U(P1, A) = ∅ ⊆ U(Q, A).

Sum: Q = Q1 + Q2. By operational rules we have either (i) Q1
α
−→ Q′ or (ii) Q2

α
−→ Q′.

Consider the (i) case (the (ii)-case is symmetric). Then by induction hypothesis,
U(Q′, A) ⊆ U(Q1, A) ⊆ U(Q, A).

Par: Q = Q1 ‖B Q2. Assume Q
α
−→ Q′ and consider the following cases:

- α /∈ B, Q1
α
−→ Q′

1 and Q′ = clean(Q′
1‖B Q2). By induction hypothesis we have that

U(Q′
1, A) ⊆ U(Q1, A). Thus, by Proposition 7.6-2, U(Q′, A) = U(Q′

1 ‖B Q2, A) =

U(Q′
1, A ∪ B) ∪ U(Q2, A ∪ B) ∪ (U(Q′

1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A))) ⊆

U(Q1, A ∪ B) ∪ U(Q2, A ∪ B) ∪ (U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A))) =

U(Q, A).

- α /∈ B, Q2
α
−→ Q′

2 and Q′ = clean(Q1 ‖B Q′
2). Similar to the previous case.

- α ∈ B, Qi
α
−→ Q′

i, for i = 1, 2 and Q′ = clean(Q′
1 ‖B Q′

2). By induction hypothesis,
U(Q′

i, A) ⊆ U(Qi, A). Again by Proposition 7.6-2, U(Q′, A) = U(Q′
1 ‖B Q′

2, A) =

U(Q′
1, A ∪ B) ∪ U(Q′

2, A ∪ B) ∪ (U(Q′
1, Aτ\(B\A)) ∩ U(Q′

2, Aτ\(B\A))) ⊆

U(Q1, A ∪ B) ∪ U(Q2, A ∪ B) ∪ (U(Q1, Aτ\(B\A)) ∩ U(Q2, Aτ\(B\A))) =

U(Q, A).

Rel: Q = Q1[Φ]. Assume Q
α
−→ Q′. By operational rules there exists β ∈ Φ−1(α) such

that Q1
β
−→ Q′

1 and Q′ = Q′
1[Φ]. By induction hypothesis we have that U(Q′, A) =

Φ(U(Q′
1, Φ

−1(A))) ⊆ Φ(U(Q1, Φ
−1(A))) = U(Q, A).

59

Rec: Q = rec x.Q1. Let S1 = unmark(Q1) and S = Q1{rec x.S1/x}; x guarded in Q1 and
Proposition 7.2 imply U(S, A) = U(Q1{rec x.S1/x}, A) = U(Q1, A) = U(Q, A). Now
assume Q

α
−→ Q′. Then, by operational rules, S

α
−→ Q′ and, by induction hypothesis,

U(Q′, A) ⊆ U(S, A) = U(Q, A).

2

Proposition 12.5 Let Q ∈ P̃, P ∈ P̃1 and x ∈ X guarded in Q. Then UU(Q{P/x}, A) =
UU(Q, A){P/x}.

Proof: We proceed by induction on Q ∈ P̃.

Nil: Q = nil. In this case trivially x is guarded in Q and Q{P/x} = nil UU(Q{P/x}, A) =
UU(nil, A) = {nil} = {nil}{P/x} = UU(Q, A){P/x}.

Var: Q = y. x guarded in Q implies x 6= y and Q{P/x} = y. Similar to the Nil-case.

Pref: Q = α.P1 or Q = α.P1. We prove only the former case. The latter one is simpler.
In this case x is guarded in Q and Q{P/x} = α.(P1{P/x}). Consider the following
possible subcases:

- α ∈ A. In this case UU(Q{P/x}, A) = {α.(P1{P/x}), α.(P1{P/x})} =

{((α.P1){P/x}), ((α.P1){P/x})} = {α.P1, α.P1}{P/x} = UU(Q, A){P/x}.

- α /∈ A. In this case UU(Q{P/x}, A) = {α.(P1{P/x})} = {(α.P1){P/x}} =
({α.P1}){P/x} = UU(Q, A){P/x}.

Sum: Q = Q1 + Q2. In this case x is guarded in Q implies x is guarded in Q1 and in Q2.
By induction hypothesis we have that

UU(Q{P/x}, A) = UU(Q1{P/x}, A) ∪ UU(Q2{P/x}, A) =
(

UU(Q1, A){P/x}
)

∪
(

UU(Q2, A){P/x}
)

=
(

UU(Q1, A) ∪ UU(Q2, A)
)

{P/x} =

UU(Q, A){P/x}.

Par: Q = Q1 ‖B Q2. Assume x guarded in Q and, hence, in Q1 and in Q2. Let us denote
with A1 = B\U(Q2{P/x}) and A2 = B\U(Q1{P/x}). Then x guarded both in Q1 and
in Q2 implies U(Q1{P/x} = U(Q1) and U(Q2{P/x} = U(Q2) (Proposition 7.2) and,
hence, A1 = B\U(Q2) and A2 = B\U(Q1). By induction hypothesis we have that:

S = UU(Q1{P/x}, A ∪ A1) ‖B UU(Q2{P/x}, A ∪ A2) =
(

UU(Q1, A ∪ A1){P/x}
)

‖B

(

UU(Q2, A ∪ A2){P/x}
)

=
(

UU(Q1, A ∪ A1) ‖B UU(Q2, A ∪ A2)
)

{P/x} = S ′{P/x}

Now, let R ∈ UU(Q{P/x}, A). Then, by Definition 12.1, R ∈ S such that U(R) ⊆
U(Q{P/x})∪A = U(Q)∪A (x guarded in Q and Proposition 7.2 imply U(Q{P/x}) =
U(Q)). R ∈ S implies R = R′{P/x} with R′ ∈ S ′. On the other hand R′ ∈ S ′ implies
R′ = R′

1 ‖B R′
2 with R′

i ∈ UU(Qi, A ∪ Ai), for i = 1, 2. Moreover x guarded in Qi

implies x guarded in R′
i ∈ UU(Qi, A ∪ Ai) and, hence, x guarded in R′. Again by

Proposition 7.2, we have that U(R) = U(R′{P/x}) = U(R′). We can conclude that
R′ ∈ S ′ such that U(R′) = U(R) ⊆ U(Q)∪A. Then, by Definition 12.1, R′ ∈ UU(Q, A)
and, hence, R ∈ UU(Q, A){P/x}. Similarly we can prove that R ∈ UU(Q, A){P/x}
implies R ∈ UU(Q{P/x}, A).

60

Rel: Q = Q1[Φ]. Assume x guarded in Q and, hence, x in Q1. By induction hypoth-
esis UU(Q{P/x}, A) = UU(Q1{P/x}, Φ−1(A))[Φ] =

(

UU(Q1, Φ
−1(A)){P/x}

)

[Φ] =
(

UU(Q1, Φ
−1(A))[Φ]

)

{P/x} = UU(Q, A){P/x}.

Rec: Q = rec y.Q1. If x = y then Q{P/x} = Q and the statement follows easily. We can
assume x 6= y. In this case x guarded in Q implies x guarded in Q1 and Q{P/x} =
rec y.(Q1{P/x}). We have to consider two possible subcases:

- Q1 ∈ P̃1 (and, hence, Q1{P/x} ∈ P̃1). In this case

UU(Q{P/x}, A) = {rec y.(Q1{P/x})} ∪ UU(Q1{P/x}, A){rec y.(Q1{P/x})/y}.

By induction hypothesis UU(Q1{P/x}, A){rec y.(Q1{P/x})/y} =
(

UU(Q1, A){P/x}
)

{rec y.(Q1{P/x})/y} =
(

UU(Q1, A){rec y.Q1/y}
)

{P/x}.

Thus UU(Q{P/x}, A) =

{rec y.(Q1{P/x})} ∪
((

UU(Q1, A){rec y.Q1/y}
)

{P/x}
)

=
((

{rec y.Q1}
)

{P/x}
)

∪
((

UU(Q1, A){rec y.Q1/y}
)

{P/x}
)

=
(

{rec y.Q1} ∪ UU(Q1, A){rec y.Q1/y}
)

{P/x} = UU(Q, A){P/x}

- Q1 /∈ P̃1 (and, hence, Q1{P/x} /∈ P̃1). Let S = unmark(Q1{P/x}); x guarded in
Q1 and Proposition 7.7-2 imply S = unmark(Q1){P/x} = S1{P/x}. In this case

UU(Q{P/x}, A) = UU(Q1{P/x}, A){rec y.(S1{P/x})/y}.

By induction hypothesis UU(Q1{P/x}, A){rec y.(S1{P/x})/y} =
(

UU(Q1, A){P/x}
)

{rec y.(S1{P/x})/y} =
(

UU(Q1, A){rec y.S1/y}
)

{P/x} = UU(Q, A){P/x}.

2

Proposition 12.6 Let Q ∈ P̃, X and Y ⊆ A. Then Q
X
7−→r Q′ and Y ∩U(Q, A) = ∅ implies

Q
X∪(Y \A)
7−→ r Q′.

Proof: The proof is by induction on length of derivation Q
X
7−→r Q′ and by case analysis on

structure of Q. We only consider the the Rec-case. The other cases follow similar lines as
Lemma 9.1-1.

Rec: Q = rec x.Q1. Assume that Q
X
7−→r Q′. Then, by operational rules, we also have that

S = Q1{rec x.Q1/x}
X
7−→r Q′. Now assume Y ∩ U(Q, A) = Y ∩ U(Q1, A) = ∅. Since x

guarded in Q1 and Proposition 7.2 imply U(S, A) = U(Q1, A) and Y ∩U(S, A) = ∅, by

induction hypothesis S
X∪(Y \A)
7−→ r Q′. Again by operational semantics, we can conclude

that Q
X∪(Y \A)
7−→ r Q′.

2

Proposition 5.3 Let Q, R ∈ P̃ and A ⊆ A such that R ∈ UU(Q, A). Then:

1. Q
α
−→ Q′ implies R

α
7−→ R′ for some R′ ∈ UU(Q′, A). Moreover U(R′) ⊆ U(R);

61

2. Q
X
−→r Q′ implies R

X\A
7−→r R′ for some R′ ∈ UU(Q′);

3. R
α

7−→ R′ implies Q
α
−→ Q′ for some Q′ such that R′ ∈ UU(Q′, A);

4. R
X
7−→r R′ implies Q

X
−→r Q′ for some Q′ such that R′ ∈ UU(Q′).

Proof: We prove Item 1 by induction on length of derivation Q
α
−→ Q′ and Item 2 by

induction on Q. The proof of Items 3 and 4 is omitted since they can be proved as Items 1
and 3 respectively. We proceed by case analysis on Q.

Nil, Var: Q = nil, Q = x. The latter case is not possible since Q 6
α
−→ and Q 6

X
−→r. We can

assume Q = nil. In this case R ∈ UU(Q, A) implies R = nil.

1. This case is not possible since Q 6
α
−→.

2. Q
X
−→r nil = Q′, R

X\A
7−→r nil = R′ and R′ ∈ UU(Q′) = {nil}.

Pref: Q = α.P1 or Q = α.P1. Assume Q = α.P1 and consider the following cases:

- α ∈ A. R ∈ UU(Q, A) = {α.P1, α.P1} implies either R = α.P1 or R = α.P1.
Assume R = α.P1 (the former case is simpler).

1. Q
α
−→ P1, R

α
7−→ P1 and, by Lemma 12.2, P1 ∈ P̃1 implies P1 ∈ UU(P1, A).

Moreover P1 ∈ P̃1 implies U(P1) = ∅ ⊆ U(R).

2. Q
X
−→r α.P1 = Q′, α ∈ A ⊆ A implies α /∈ (X\A) ∪ {τ} and, by operational

rules, R
X\A
7−→r α.P1 = R′. Finally, by Definition 12.1 R′ ∈ UU(Q′) = {α.P1}.

- α /∈ A. R ∈ UU(Q, A) = {α.P1} implies R = α.P1. Similar to the previous case.

Now assume Q = α.P1. Then R ∈ UU(Q, A) = {α.P1} implies R = α.P1.

1. Also in this case Q
α
−→ P1, R

α
7−→ P1, P1 ∈ UU(P1, A) and U(P1) ⊆ U(R).

2. Q
X
−→r α.P1 = Q′, implies α /∈ X ∪ {τ} ⊇ (X\A) ∪ {τ}. Then, by operational

semantics, R
X\A
7−→r α.P1 = R′ and R′ ∈ UU(Q′) = {α.P1}.

Sum: Q = Q1 + Q2. By Definition 12.1 R ∈ UU(Q, A) implies R = R1 + R2 with Ri ∈
UU(Qi, A) for i = 1, 2.

1. Q
α
−→ Q′ implies either (i) Q1

α
−→ Q′ or (ii) Q2

α
−→ Q′. Consider the (i) case

(the (ii) case is symmetric). By induction hypothesis R1
α

7−→ R′ and, hence,
R

α
7−→ R′ for some R′ ∈ UU(Q′, A). Moreover, again by induction hypothesis,

U(R′) ⊆ U(R1) ⊆ U(R1) ∪ U(R2) = U(R).

2. Q
X
−→r Q′ implies Q1

X
−→ Q′

1, Q2
X
−→ Q′

2 and Q′ = Q′
1 + Q′

2. By induction

hypothesis R1
X\A
7−→ R′

1, R2
X\A
7−→ R′

2 for some R′
1 ∈ UU(Q′

1) and R′
2 ∈ UU(Q′

2).

Thus, R
X\A
7−→ R′

1 + R′
2 = R′ and R′ ∈ UU(Q′

1) + UU(Q′
2) = UU(Q′).

Par: Q = Q1 ‖B Q2. Let A1 = B\U(Q2) and A2 = B\U(Q1). In this case R ∈ UU(Q, A)
implies R = R1 ‖B R2 with Ri ∈ UU(Qi, A ∪ Ai), for i = 1, 2, and U(R) ⊆ U(Q) ∪ A.

62

1. Assume Q
α
−→ Q′ and consider the following subcases:

- α /∈ B, Q1
α
−→ Q′

1 and Q′ = clean(Q′
1‖B Q2). By induction R1

α
7−→ R′

1 for some
R′

1 ∈ UU(Q′
1, A ∪ A1) and, by operational semantics, R

α
7−→ R′

1 ‖B R2 = R′.
Now we want prove that R′ ∈ UU(Q′

1 ‖B Q2). By Definition 12.1 we have
to prove that (1) R′

1 ∈ UU(Q′
1, A ∪ A1), (2) R2 ∈ UU(Q2, A ∪ A′

2), where
A′

2 = B\U(Q′
1) and (3) U(R′) ⊆ U(Q′

1 ‖B Q2). (1) follows by induction
hypothesis; let us prove (2) and (3).

(2) Q1
α
−→ Q′

1 implies U(Q′
1) ⊆ U(Q1) and A2 = B\U(Q1) ⊆ B\U(Q′

1) = A′
2

(see Proposition 12.4). Then, R2 ∈ UU(Q2, A ∪ A2), A ∪ A2 ⊆ A ∪ A′
2

and Proposition 12.3-2, imply R2 ∈ UU(Q2, A ∪ A′
2);

(3) R′
1 ∈ UU(Q′

1, A ∪ A1) and R2 ∈ UU(Q2, A ∪ A2) implies, by Proposition
12.3-1, U(R′

1) ⊆ U(Q′
1) ∪ A ∪ A1 and U(R2) ⊆ U(Q2) ∪ A ∪ A2. Let

µ ∈ U(R′)\A (if µ ∈ A trivially µ ∈ (Q′
1 ‖B Q2) ∪ A) and consider the

following possible cases:

- µ /∈ B. In this case, Definition 2.3 and µ ∈ U(R′) imply either µ ∈
U(R′

1) or µ ∈ U(R2). Moreover U(R′
1)\B ⊆ (U(Q′

1) ∪ A ∪ A1)\B =
(U(Q′

1)\B)∪ (A\B)∪ (A1\B) = U(Q′
1, B)∪ (A\B) ⊆ U(Q′

1 ‖B Q2)∪A.
Similarly we have U(R2)\B ⊆ U(Q2, B) ∪ (A\B) ⊆ U(Q′

1 ‖B Q2) ∪ A
and, in both cases, µ ∈ U(Q′

1 ‖B Q2) ∪ A.

- µ ∈ B. In this case µ ∈ U(R′) implies µ ∈ U(R′
1) and µ ∈ U(R2).

Moreover U(R′
1) ⊆ U(Q′

1)∪A∪A1, U(R2) ⊆ U(Q2)∪A∪A2 and µ /∈ A
imply µ ∈ (U(Q′

1) ∪ A1) ∩ (U(Q2) ∪ A2). Thus, since U(Q′
1) ∩ A2 ⊆

U(Q′
1) ∩ A′

2 = U(Q′
1) ∩ (B\U(Q′

1)) = ∅ and U(Q2) ∩ A1 = U(Q2) ∩
(B\U(Q2)) = ∅, we have µ ∈ (U(Q′

1) ∩ U(Q2)) ∪ (A1 ∩ A2).
Now, assume, by contradiction, µ ∈ A1 ∩ A2. Then µ ∈ B such that
µ /∈ U(Q1) and µ /∈ U(Q2). By Definition 2.3 we have that µ /∈ U(Q)
and µ /∈ U(R) ⊆ U(Q) ∪ A. Again by Definition 2.3, µ ∈ B, µ /∈ U(R)
and µ ∈ U(R2) imply µ /∈ U(R1). This case is not possible since
µ ∈ U(R′

1) ⊆ U(R1). Finally, µ ∈ U(Q′
1) ∩ U(Q2) and µ ∈ B imply

µ ∈ U(Q′
1 ‖B Q2) ⊆ U(Q′

1 ‖B Q2 ∪ A.

Finally, R′ ∈ UU(Q′
1 ‖B Q2, A) implies R′ ∈ UU(clean(Q′

1 ‖B Q2), A) =
UU(Q′, A) (see Proposition 12.3-3).
It remains to prove that U(R′) ⊆ U(R). Again by induction hypothesis, we
have U(R′

1) ⊆ U(R1). Then, by Proposition 7.1-4, U(R′
1, C) ⊆ U(R1, C) for

a generic C ⊆ Aτ and, by Definition 2.3, U(R′) ⊆ U(R).

- α /∈ B, Q2
α
−→ Q′

2 and Q′ = clean(Q1 ‖B Q′
2). Similar to the previous case.

- α ∈ B, Qi
α
−→ Q′

i for i = 1, 2 and Q′ = clean(Q′
1 ‖B Q′

2). By induction
hypothesis, we have R1

α
7−→ R′

1, R2
α

7−→ R′
2 for some R′

1 ∈ UU(Q′
1, A ∪ A1)

and R′
2 ∈ UU(Q′

2, A ∪ A2). By operational rules R
α

7−→ R′
1 ‖B R′

2 = R′. Now,
we prove that R′ ∈ UU(Q′

1‖B Q′
2). Then, by Definition 12.1, we have to prove

that (1) R′
1 ∈ UU(Q′

1, A ∪ A′
1), R′

2 ∈ UU(Q′
2, A ∪ A′

2), where A′
1 = B\U(Q′

2),
A′

2 = B\U(Q′
1), and (2) U(R′) ⊆ U(Q′

1 ‖B Q′
2).

(1) Q2
α
−→ Q′

2 implies U(Q′
2) ⊆ U(Q2) and A1 = B\U(Q2) ⊆ B\U(Q′

2) = A′
1

(see Proposition 12.4). Then, R′
1 ∈ UU(Q′

1, A ∪ A1), A ∪ A1 ⊆ A ∪ A′
1

and Proposition 12.3-2 imply R′
1 ∈ UU(Q′

1, A ∪ A′
1). Similarly we have

R′
2 ∈ UU(Q′

2, A ∪ A′
2);

63

(2) R′
1 ∈ UU(Q′

1, A ∪ A1) and R′
2 ∈ UU(Q′

2, A ∪ A2) implies, by Proposition
12.3-1, U(R′

1) ⊆ U(Q′
1) ∪ A ∪ A1 and U(R′

2) ⊆ U(Q′
2) ∪ A ∪ A2. Assume,

again, µ ∈ U(R′)\A and consider the following possible cases:

- µ /∈ B. Definition 2.3 and µ ∈ U(R′) imply either µ ∈ U(R′
1) or

µ ∈ U(R′
2). Moreover U(R′

1)\B ⊆ (U(Q′
1) ∪ A ∪ A1)\B =

(U(Q′
1)\B)∪ (A\B)∪ (A1\B) = U(Q′

1, B)∪ (A\B) ⊆ U(Q′
1 ‖B Q′

2)∪A.
Similarly U(R′

2)\B ⊆ U(Q′
2, B) ∪ (A\B) ⊆ U(Q′

1 ‖B Q′
2) ∪ A. In both

cases µ ∈ U(Q′
1 ‖B Q′

2) ∪ A.

- µ ∈ B and µ /∈ A. In this case µ ∈ U(R′) implies µ ∈ U(R′
1) and

µ ∈ U(R′
2). Moreover U(R′

1) ⊆ U(Q′
1) ∪ A ∪ A1, U(R′

2) ⊆ U(Q′
2) ∪ A ∪

A2 and µ /∈ A imply µ ∈ (U(Q′
1) ∪ A1) ∩ (U(Q′

2) ∪ A2). Now, since
U(Q′

1) ∩ A2 ⊆ U(Q′
1) ∩ A′

2 = U(Q′
1) ∩ (B\U(Q′

1)) = ∅ and, similarly,
U(Q′

2) ∩ A1 = ∅, µ ∈ (U(Q′
1) ∩ U(Q′

2)) ∪ (A1 ∩ A2).
Assume, by contradiction, µ ∈ A1 ∩ A2. Then µ ∈ B such that µ /∈
U(Q1) and µ /∈ U(Q2). By Definition 2.3 we have that µ /∈ U(Q).
Thus, U(R) ⊆ U(Q) ∪ A, µ /∈ U(Q) and µ /∈ A imply µ /∈ U(R) and
either µ /∈ U(R1) or µ /∈ U(R2) (again by Definition 2.3). We have
either µ ∈ U(R′

1) and µ /∈ U(R1) or µ ∈ U(R′
2) and µ /∈ U(R2). Both

cases are not possible since U(R′
1) ⊆ U(R1) and U(R′

2) ⊆ U(R2).
We can conclude that µ ∈ U(Q′

1) ∩ U(Q′
2) and since µ ∈ B implies

µ /∈ Aτ\B, µ ∈ U(Q′
1, Aτ\B) ∩ U(Q′

2, Aτ\B) ⊆ U(Q′
1 ‖B Q′

2).

Again R′ ∈ UU(Q′
1‖BQ′

2, A) implies R′ ∈ UU(clean(Q′
1‖BQ′

2), A) = UU(Q′, A).
Moreover, again by induction hypothesis, U(R′

1) ⊆ U(R1) and U(R′
2) ⊆

U(R2). Then, similarly to the previous cases, we can prove that U(R′) ⊆
U(R).

2. By operational rules, Q
X
−→r Q′ if there exist X1, X2 ⊆ A such that Q1

X1−→r Q′
1,

Q2
X2−→r Q′

2 with X ⊆ ((X1∪X2)∩B)∪ ((X1∩X2)\B) and Q′ = clean(Q′
1 ‖B Q′

2).

Then, by induction hypothesis, R1
X1\(A∪A1)

7−→ r R′
1, R2

X2\(A∪A2)
7−→ r R′

2 for some R′
1 ∈

UU(Q′
1) and R′

2 ∈ UU(Q′
2).

Now, let X ′
i = (Xi\(A ∪ Ai)) ∪ (B\U(Ri)), for i = 1, 2. Ri

Xi\(A∪Ai)
7−→ r R′

i and

(B\U(Ri)) ∩ U(Ri) = ∅ imply, by Proposition 12.6, Ri

X′

i7−→r R′
i. Now, we prove

that X\A ⊆ ((X ′
1 ∪ X ′

2) ∩ B) ∪ ((X ′
1 ∩ X ′

2)\B). Let µ ∈ X\A, i.e. µ ∈ X such
that µ /∈ A, and consider the following possible cases:

- µ ∈ B. Then µ ∈ X implies either µ ∈ X1 or µ ∈ X2. Assume µ ∈
X1 (the case in which µ ∈ X2 can be proved similarly). If µ /∈ A1 then
µ ∈ X1\(A ∪ A1) ⊆ X ′

1 ⊆ X ′
1 ∪ X ′

2. We can assume µ ∈ A1 and, hence,
µ /∈ U(Q2). By Definition 2.3 µ ∈ B and µ /∈ U(Q2) implies µ /∈ U(Q)
and, hence, µ /∈ U(R) ⊆ U(Q) ∪ A. Again by Definition 2.3, µ ∈ B and
µ /∈ U(R) implies either µ /∈ U(R1) or µ /∈ U(R2). Thus we have either
µ ∈ B\U(R1) ⊆ X ′

1 or µ ∈ B\U(R2) ⊆ X ′
2 and, hence, µ ∈ X ′

1 ∪ X ′
2.

- µ /∈ B. In this case µ ∈ X implies µ ∈ X1 and µ ∈ X2. Moreover, since
µ /∈ A1, A2 ⊆ B, we have µ ∈ X1\(A∪A1) ⊆ X ′

1 and µ ∈ X2\(A∪A2) ⊆ X ′
2.

Thus µ ∈ X ′
1 ∩ X ′

2.

By operational semantics, we can conclude that R
X\A
7−→ R′

1 ‖B R′
2 = R′. It remains

64

to prove that R′ ∈ UU(Q′). Let A′
1 = B\U(Q′

2) and A′
2 = B\U(Q′

1). R′
i ∈ UU(Q′

i)
and Proposition 12.3-2 imply R′

i ∈ UU(Q′
i, A

′
i) for i = 1, 2. Moreover R′

i ∈ UU(Q′
i)

and Proposition 12.3-1 imply U(R′
i) = U(Q′

i) for i = 1, 2. We can conclude that
U(R′) = U(Q′

1 ‖B Q′
2). By Definition 12.1, R′

i ∈ UU(Q′
i, A

′
i), for i = 1, 2, and

U(R′) = U(Q′
1 ‖B Q′

2) imply R′ ∈ UU(Q′
1 ‖B Q′

2). Then, by Proposition 12.3-3, we
can conclude that R′ ∈ UU(clean(Q′

1 ‖B Q′
2)) = UU(Q′).

Rel: Q = Q1[Φ]. In this case R ∈ UU(Q, A) implies R = R1[Φ] with R1 ∈ UU(Q1, Φ
−1(A)).

1. Assume Q
α
−→ Q′. By operational semantics there exists β ∈ Φ−1(α) such that

Q1
β
−→ Q′

1 and Q′ = Q′
1[Φ]. By induction hypothesis R1

β
7−→ R′

1 for some
R′

1 ∈ UU(Q′
1, Φ

−1(A)). Thus, R
α

7−→ R′
1[Φ] = R′ and R′ ∈ UU(Q′

1, Φ
−1(A))[Φ] =

UU(Q′, A). Moreover, again by induction hypothesis, U(R′
1) ⊆ U(R1) and U(R′) =

Φ(U(R′
1)) ⊆ Φ(U(R1)) = U(R).

2. Assume that Q
X
−→r Q′

1[Φ] = Q′ and let Y = Φ−1(X ∪ {τ})\{τ}. By operational

rules we have that Q1
Y
−→r Q′

1 and, by induction hypothesis, R1
Y \Φ−1(A)
7−→ r R′

1 for
some R′

1 ∈ UU(Q′
1). Moreover, τ /∈ Φ−1(A) implies Y \Φ−1(A) =

(Φ−1(X ∪ {τ})\{τ})\Φ−1(A) = (Φ−1(X ∪ {τ})\Φ−1(A))\{τ} =

Φ−1((X ∪ {τ})\A)\{τ} = Φ−1((X\A) ∪ {τ})\{τ}. By operational semantics,

R
X\A
7−→r R′

1[Φ] = R′ and R′ = R′
1[Φ] ∈ UU(Q′

1)[Φ] = UU(Q′).

Rec: Q = rec x.Q1. Consider the following subcases:

- Q1 /∈ P̃1. By Definition 12.1, R ∈ UU(Q, A) implies R = R1{rec x.S1/x} with
R1 ∈ UU(Q1, A) and S1 = unmark(Q1).

1. Let S = Q1{rec x.S1/x}
α
−→ Q′. x guarded in Q1 and Proposition 12.5 imply

UU(S, A) = UU(Q1{rec x.S1/x}, A) = UU(Q1, A){rec x.S1/x} and, hence,
R ∈ UU(S, A). Now, assume that Q

α
−→ Q′. By operational semantics,

we also have S
α
−→ Q′. Thus, by induction hypothesis, R

α
7−→ R′ for some

R′ ∈ UU(Q′, A) and U(R′) ⊆ U(R).

2. Q
X
−→r Q′ implies Q1

X
−→r Q′

1 and Q′ = rec x.Q′
1. By induction hypothe-

sis we have R1
X\A
7−→ R′

1 for some R′
1 ∈ UU(Q′

1). R1
X\A
7−→ R′

1 implies, by

Proposition in [6], R = R1{rec x.S1/x}
X\A
7−→ R′

1{rec x.S1/x} = R′. It re-
mains to prove that R′ ∈ UU(Q′). Q′

1 ∈ P̃1 implies UU(Q′) = {rec x.Q′
1} ∪

UU(Q′
1){rec x.Q′

1/x} with Q′
1 = unmark(Q′

1) = unmark(Q1) = S1 (by Propo-
sition 7.8-2). Otherwise, we have UU(Q′) = UU(Q′

1){rec x.unmark(Q′
1)/x}

with unmark(Q′
1) = unmark(Q1) = S1. In both cases, R′

1 ∈ UU(Q′
1) implies

R′ = R′
1{rec x.S1/x} ∈ UU(Q′

1){rec x.S1/x} ⊆ UU(Q′).

- Q1 ∈ P̃1. In this case R ∈ UU(Q, A) implies either R = rec x.Q1 or R =
R1{rec x.Q1/x} with R1 ∈ UU(Q1, A). Assume R = rec x.Q1 (the case in which
R = R1{rec x.Q1/x} can be proved as the previous one).

Let S = Q1{recx.Q1/x} = Q1{recx.unmark(Q1)/x}. Q1 ∈ P̃1 implies S ∈ P̃1 and,
by Lemma 12.2, Q1 ∈ UU(Q1, A) and S ∈ UU(S, A).

65

1. Assume that Q
α
−→ Q′. By operational semantics, S

α
−→ Q′ and, by induction

hypothesis, S
α

7−→ R′ for some R′ ∈ UU(Q′, A). By operational rules S
α

7−→
R′ implies R

α
7−→ R′. Moreover, again by induction hypothesis, U(R′) ⊆

U(S). Finally, x guarded in Q1 and Proposition 7.2 implies U(R′) ⊆ U(S) =
U(Q1) = U(R).

2. Q
X
−→r recx.Q′

1 = Q′ implies Q1
X
−→r Q′

1. Since Q1 ∈ UU(Q1, A), by induction

hypothesis we have Q1
X\A
7−→r R′

1 for some R′
1 ∈ UU(Q′

1). Now, Q1
X\A
7−→r R′

1

implies Q1{rec x.Q1/x}
X\A
7−→r R′

1{rec x.Q1/x} = R′ and, by operational rules,

R
X\A
7−→r R′. Moreover, since, as in the previous case, UU(Q′

1){rec x.Q1/x} ⊆
UU(Q′), R′

1 ∈ UU(Q′
1) implies R′ = R′

1{rec x.Q1/x} ∈ UU(Q′).

2

66

