
Universität Augsburg

�
�

Fairness of Components

in System Computations

F. Corradini, M.R. Di Berardini, W. Vogler

Report 2005–3 January 2005

Institut für Informatik

D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© F. Corradini, M.R. Di Berardini, W. Vogler
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Fairness of Components in System Computations∗

F. Corradini, M.R. Di Berardini
Dipartimento di Matematica e Informatica

Università di Camerino

{flavio.corradini,mariarita.diberardini}@unicam.it

W. Vogler
Institut für Informatik
Universität Augsburg

vogler@informatik.uni-augsburg.de

Abstract

In this paper we provide a simple characterization of (weak) fairness of components as defined
by Costa and Stirling in [6]. The study is carried out at system specification level by resorting
to a common process description language. This paper follows and exploits similar techniques
as those developed in [3] – where fairness of actions was taken into account and was contrasted
to the PAFAS timed operational semantics – but the characterization of fair executions is based
on a new semantics for PAFAS; it makes use of only two copies of each basic action instead of
infinitely many as in [6] and allows for a simple and finite representation of fair executions by
using regular expressions.

The new semantics can also be understood as describing timed behaviour of systems with
upper time bounds. The paper discusses in detail how this new semantics differs from the old
one, and why theses changes are necessary to properly capture fairness of components.

1 Introduction

In the theory and practice of parallel systems, fairness plays an important role when describing
the system dynamics. It is usually a necessary requirement for proving liveness properties of the
system. Several fairness notions applied to different entities in a system have been proposed in the
literature.

Costa and Stirling define fairness for CCS without restriction in [5] and for fully fledged CCS in
[6] and present very nice characterizations of fair runs. They distinguish between weak fairness and
strong fairness as well as between fairness of actions (also called events) and of components; while
these notions coincide in [5], they differ in [6], where weak and strong fairness of components are
studied. In this paper, we will concentrate on weak fairness, which requires that if a component (an
action, resp.) can almost always proceed then it must eventually do so, and in fact it must proceed
infinitely often. An important and useful result stated in [5, 6] characterizes fair computations as
the concatenation of certain finite sequences, called LP-steps in [6]. This characterization permits
to think of fairness in terms of a localizable property and not as a property of complete (maximal)
executions; but even for a finite-state process, LP-steps usually give rise to a transition system with
infinitely many transitions, which is therefore infinitely branching.

In our previous paper [3], we have exhibited a connection between weak fairness of actions and
a timed operational semantics by resorting to a common, well-known process description language
PAFAS (a variant of CCS with TCSP parallel composition). The language is extended with labels
allowing to filter out those process executions that are (weakly) fair (as in [5, 6]), and with upper
time bounds for the process activities (as in [4]), where these bounds are 1 for simplicity and time
is discrete. (Upper time bounds have also been studied in [9] for the area of distributed algorithms,

∗This work was supported by MURST project ‘Sahara: Software Architectures for Heterogeneous Access Networks
infrastructures’ and by the Center of Excellence for Research ‘DEWS: Architectures and Design Methodologies for
Embedded Controllers, Wireless Interconnect and System-on-chip’.

1

in e.g. [11] for Petri nets, and in [8] for a process algebraic setting with bisimulation.) The paper [3]
shows that fairness and timing, two important features of parallel system computations, are closely
related by giving two main results. First, it is shown that each everlasting (or non-Zeno) timed
process execution is fair. Second, [3] provides a characterization for fair executions of untimed
processes in terms of timed process executions. For finite state processes, it also results in a finite
representation of fair executions using regular expressions.

In this paper we concentrate on weak fairness of components. It turned out that the PAFAS
timed operational semantics is not a suitable abstraction for fairness of components as it is for
fairness of actions. But we have found a suitable variation of this semantics which allows us to
characterize Costa and Stirling’s fairness of components in terms of a much simpler filtering of
system executions compared to the label-based fairness definition in [5, 6]. The results of this
paper are conceptually analogous to those in [3], but a number of technical changes were needed
to define the new semantics and, consequently, the proof details are quite different.

The new operational semantics of processes we have arrived at can again be understood as the
behaviour of timed processes with upper time bounds. We assume that for each parallel component
this upper time bound is 1; hence, a component will perform some action within time 1 provided
it is continually enabled (or live in the terminology of [5, 6]). In other words, when time 1 passes,
a live component becomes urgent and, before the next time step, it must perform an action (or get
disabled). We will show that the phases between the time steps correspond to the above mentioned
LP-steps in [6].

Our characterization of fair executions results in a representation with technical advantages
compared to the approach of [5, 6]. In order to keep track of the different instances of system activ-
ities along a system execution, Costa and Stirling associate labels to actions (and the operators),
and the labels are essential in the definition of fair computations. New labels are created dynam-
ically during the system evolution with the immediate effect of changing the syntax of process
terms and of assuming that different instances of the same basic actions exist; if a process has an
infinite execution, there will be infinitely many instances of some actions – distinguished by their
label. Consequently, because of this dynamic generation of labels, cycles in the transition system
of a process are impossible and even finite-state processes (according to the ordinary operational
semantics) usually become infinite-state. From the maximal runs of such a transition system, Costa
and Stirling filter out the fair computations by a criterion that considers the processes and their
labels on a maximal run.

Our alternative operational semantics also provides such a two-level description. We also change
the syntax of processes to take note of urgency, but this is much simpler than the labels of [5, 6];
e.g. we only assume two instances of the same basic action corresponding to two different states of
the action itself: one in which the action is not forced to be performed, and one in which it has
to be performed urgently. An important consequence of this fact is that our operational semantics
leaves finite-state processes finite-state. To get the fair runs, we apply a simpler filter, which does
not consider the processes: we simply require that infinitely many time steps occur in a run, i.e. we
only consider non-Zeno runs. As a small price, we have to project away the time steps in the end.

As mentioned above, Costa and Stirling give a one-level characterization of fair computations
with an SOS-semantics defining so-called LP-steps; these are (finite, though usually unbounded)
sequences of actions leading from ordinary processes to ordinary processes, with the effect that
even finite-state transition systems for LP-steps usually have infinitely many transitions – although
they are at least finite-state. In contrast, our operational semantics only refers to unit time steps
and single actions, and consequently a finite-state transition system is really finite.

Finally, using standard automata-theoretic techniques, we can get rid of the time steps in such
a finite-state transition system by constructing another finite-state transition system with regular
expressions as arc labels; maximal runs in this transition system are exactly the fair runs. This
way we also arrive at a one-level description, and ours is truly finite. With respect to the similar

2

result in [3], we have overcome some technical problems with the treatment of recursive processes;
as a consequence the transition system in the present paper provides a more faithful description of
fair runs because it only contains standard processes (without any marking of urgent components)
which can be reached from the initial process according to standard transitions.

We close with a detailed discussion on the changes we needed to the above mentioned PAFAS
timed operational semantics and on the difficulties we had to overcome to properly capture fairness
of components. This discussion highlights the differences between the two fairness notions of system
computations we have studied, i.e. fairness of actions and fairness of components. Most of the proofs
have been moved to appendixes.

2 PAFAS - A Process Algebra for Faster Asynchronous Systems

PAFAS is a CCS-like process description language [10] (with TCSP -like parallel composition [7]),
where basic actions are atomic and instantaneous but have associated a time bound interpreted as
a maximal time delay for their execution. As explained in [4], these upper time bounds (which are
either 0 or 1, for simplicity) are suitable for evaluating the performance of asynchronous systems.
Moreover, time bounds do not influence functionality (i.e. which actions are performed); so com-
pared to CCS, also PAFAS treats the full functionality of asynchronous systems. In the present
paper, the time bounds are associated to the parallel components of a term, resulting in slightly
different terms and different SOS-rules; this variant of PAFAS will be called PAFASc henceforth.

2.1 PAFASc Processes

We use standard notation. A denotes an infinite set of basic actions. τ represents internal activity.
Let Aτ = A ∪ {τ}. Elements of A are denoted by a, b, c, . . . and those of Aτ are denoted by
α, β, Actions in Aτ can let time 1 pass before their execution, i.e. 1 is their maximal delay.
After that time, they become urgent actions written a or τ ; these have maximal delay 0. The set
of urgent actions is denoted by Aτ = {a | a ∈ A} ∪ {τ} and is ranged over by α, β, Elements
of Aτ ∪ Aτ are ranged over by µ. X is the set of process variables, used for recursive definitions.
Elements of X are denoted by x, y, z, Φ : Aτ → Aτ is a general relabelling function if the set
{α ∈ Aτ | ∅ 6= Φ−1(α) 6= {α}} is finite and Φ(τ) = τ . Such a function can also be used to define
hiding: P/A, where the actions in A are made internal, is the same as P [ΦA], where the relabelling
function ΦA is defined by ΦA(α) = τ if α ∈ A and ΦA(α) = α if α /∈ A.

We assume that time elapses in a discrete way.1 Thus, an action prefixed process a.P can either
do action a and become process P (as usual in CCS) or can let one unit time step pass and become
a.P ; a is called urgent a, and a.P cannot let time pass, but can only do a to become P . Since we
associate time bounds to components in the present paper, we may also mark the other dynamic
operator + as urgent: a process P + Q becomes P + Q after a time step.

Definition 2.1 (timed process terms)
The set P̃1 of initial timed process terms is generated by the following grammar:

P ::= nil
∣

∣ x
∣

∣ α.P
∣

∣ P + P
∣

∣ P‖AP
∣

∣ P [Φ]
∣

∣ rec x.P

where x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A possibly infinite. Elements
in P̃1 correspond to ordinary CCS-like process terms.

The set P̃ of (general) timed process terms is generated by the following grammar:

Q ::= P
∣

∣ α.P
∣

∣ P + P
∣

∣ Q‖AQ
∣

∣ Q[Φ]
∣

∣ rec x.Q

1PAFAS is not time domain dependent, meaning that the choice of discrete or continuous time makes no difference
for the testing-based semantics of asynchronous systems studied in [4, 2].

3

where P ∈ P̃1, x ∈ X , α ∈ Aτ , Φ is a general relabelling function, and A ⊆ A possibly infinite. We
assume that recursion is always guarded, i.e. for rec x.Q variable x only appears in Q within the
scope of a prefix µ.() with µ ∈ Aτ ∪ Aτ . A term Q is guarded if each occurrence of a variable is
guarded in this sense; it is closed if every variable x is bound by the corresponding rec x-operator.

The set of closed timed process terms in P̃ and P̃1, simply called processes and initial processes
resp., is denoted by P and P1 resp.2

For studying fairness, we are interested in the initial processes, and these coincide in PAFAS
and in PAFASc; they are actually common CCS/TCSP-like processes. The additional terms of P̃

turn up in evolutions of terms from P̃1 involving time steps, and here PAFAS and PAFASc differ.
We define function A() on process terms, that returns the active (or enabled) actions of a

process term. Given a process Q, A(Q) abbreviates A(Q, ∅) and A(Q,A) denotes the set of actions
that process Q can perform when the environment prevents the actions in A ⊆ A.

Definition 2.2 (activated basic actions)
Let Q ∈ P̃ and A ⊆ A. The set A(Q,A) is defined by induction on Q as follows:

Var, Nil: A(x,A) = A(nil, A) = ∅

Pref: A(α.P,A) = A(α.P,A) =

{

{α} if α /∈ A

∅ otherwise

Sum: A(P1 + P2, A) = A(P1 + P2, A) = A(P1, A) ∪A(P2, A)
Par: A(Q1 ‖B Q2, A) = A(Q1, A ∪ A′) ∪A(Q2, A ∪ A′′) where

A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B
Rel: A(Q[Φ], A) = Φ(A(Q,Φ−1(A)))
Rec: A(rec x.Q,A) = A(Q,A)

The set A represents the actions restricted upon; therefore A(α.P,A) = A(α.P,A) = ∅ if
α ∈ A and A(α.P,A) = A(α.P,A) = {α}, if α /∈ A. A nondeterministic process can perform all the
actions that its alternative components can perform minus the restricted ones. Parallel composition
increases the prevented set. A(P ‖B Q,A) includes the actions that P can perform when we prevent
all actions in A plus all actions in B that Q cannot perform, and it includes the analogous actions
of Q.

2.2 The operational behaviour of PAFASc processes

The transitional semantics describing the functional behavior of PAFASc processes indicates which
basic actions they can perform. Timing can be disregarded: when an action is performed, one
cannot see whether it was urgent or not, i.e. α.P

α
−→ P ; on the other hand, component α.P has

to act within time 1, i.e. it can also act immediately, giving α.P
α
−→ P . The operational semantics

exploits two functions on process terms: clean() and unmark(). Function clean() removes all
inactive urgencies in a process term Q ∈ P̃. Indeed, when a process evolves, components may
lose their urgency since their actions are no longer enabled due to changes of the context; the
corresponding change of markings is performed by clean, where again set A in clean(Q,A) denotes
the set of actions that are not enabled due to restrictions of the environment.

Definition 2.3 (cleaning inactive urgencies)
Given a process term Q ∈ P̃ we define clean(Q) as clean(Q, ∅) where, for a set A ⊆ A, clean(Q,A)

is defined as follows:

2As shown in [4], P1 processes do not have time-stops; i.e. every finite process run can be extended such that time
grows unboundedly. This result was proven for a different operational semantics than that defined in this paper but
a similar proof applies also in the current setting.

4

Nil, Var: clean(nil, A) = nil, clean(x,A) = x

Pref: clean(α.P,A) =

{

α.P if α ∈ A

α.P otherwise
clean(α.P,A) = α.P

Sum: clean(P1 + P2, A) =

{

P1 + P2 if A(P1) ∪A(P2) ⊆ A

P1 + P2 otherwise

clean(P1 + P2, A) = P1 + P2

Par: clean(Q1 ‖B Q2, A) = clean(Q1, A ∪ A′) ‖B clean(Q2, A ∪ A′′)
where A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B

Rel: clean(Q[Φ], A) = clean(Q,Φ−1(A))[Φ]
Rec: clean(rec x.Q,A) = rec x. clean(Q,A)

Function unmark() simply removes all urgencies (inactive or not) in a process term Q ∈ P̃ and can
be defined, as expected, by induction on the process structure (see Definition 8.3 in Appendix A).

Definition 2.4 (Functional operational semantics) The following SOS-rules define the transition
relations

α
−→⊆ (P̃ × P̃) for α ∈ Aτ , the action transitions. We write Q

α
−→ Q′ if (Q,Q′) ∈

α
−→ and

Q
α
−→ if there exists a Q′ ∈ P̃ such that (Q,Q′) ∈

α
−→, and similar conventions will apply later on.

Prefa1

α.P
α
−→ P

Prefa2

α.P
α
−→ P

Suma1

P1
α
−→ P ′

1

P1 + P2
α
−→ P ′

1

Suma2

P1
α
−→ P ′

1

P1 + P2
α
−→ P ′

1

Para1

α /∈ A, Q1
α
−→ Q′

1

Q1‖AQ2
α
−→ clean(Q′

1‖AQ2)
Para2

α ∈ A, Q1
α
−→ Q′

1, Q2
α
−→ Q′

2

Q1‖AQ2
α
−→ clean(Q′

1‖AQ′
2)

Rela

Q
α
−→ Q′

Q[Φ]
Φ(α)
−−−→ Q′[Φ]

Reca

Q{rec x. unmark(Q)/x}
α
−→ Q′

rec x.Q
α
−→ Q′

Additionally, there are symmetric rules for Para1, Suma1 and Suma2 for actions of P2.

Observe the following for Suma2: due to our syntax, P1 in P1 + P2 is an initial process, i.e. has
no components marked as urgent, and the same applies to P ′

1. Thus, P1 + P2 loses its urgency in a
transition according to Suma2; this corresponds to our intuition, since this atomic component (i.e.
without parallel subcomponents) performs an action, which it had to perform urgently, and can
afterwards wait with any further activity for time 1.

When in the rules for parallel composition one component changes, this changes the context
for the other component such that some urgent components might get disabled. For the necessary
changes to the marking, clean is called upon as announced above. E.g. in (a.nil‖∅b.nil) ‖{a,b} (a.nil+

b.nil + c.a.b.nil)
c
−→ (a.nil‖∅b.nil) ‖{a,b} (a.b.nil), the second (but not the first) component loses its

urgency.
The use of unmark in rule Reca has to be contrasted with the temporal behaviour defined next

that marks as urgent recursive processes recx.P according to a rule urgent(recx.P) = recx.urgent(P).
Since occurrences of x in P are guarded, each x stands for a process which is not enabled yet and
cannot be urgent; thus, these recursive calls in rec x. urgent(P) refer to P and not to urgent(P),
which explains the substitution in rule Reca of Definition 2.4, which in turn shows the use of
unmark; cf. the example at the end of the section.

5

In addition to the purely functional transitions, we also consider transitions corresponding to the
passage of one unit of time. The function urgent we exploit marks the enabled parallel components
of a process as urgent; such a component can be identified with a dynamic operator (an action
or a choice), which gets underlined. This marking occurs when a time step is performed, because
afterwards the marked components have to act in zero time – unless they are disabled. If such
an urgent component acts, it should lose its urgency; and indeed, the marking vanishes with the
dynamic operator. The next time step will only be possible, if no component is marked as urgent.

Definition 2.5 (time step, execution sequence, timed execution sequence)

For P ∈ P̃1, we write P
1
−→ Q when Q = urgent(P), where urgent(P) abbreviates urgent(P, ∅)

and urgent(P,A) is defined as follows:

Nil, Var: urgent(nil, A) = nil, urgent(x,A) = x

Pref: urgent(α.P,A) =

{

α.P if α /∈ A

α.P otherwise

Sum: urgent(P1 + P2, A) =

{

P1 + P2 if (A(P1) ∪A(P2))\A 6= ∅

P1 + P2 otherwise

Par: urgent(P1 ‖B P2, A) = urgent(P1, A ∪ A′) ‖B urgent(P2, A ∪ A′′)
where A′ = (A(P1)\A(P2)) ∩ B and A′′ = (A(P2)\A(P1)) ∩ B

Rel: urgent(P [Φ, A) = urgent(P,Φ−1(A))[Φ]
Rec: urgent(rec x.P,A) = rec x. urgent(P,A)

We say that a sequence of transitions γ = Q0
λ0−→ Q1

λ1−→ . . . with λi ∈ Aτ ∪ {1} is a timed
execution sequence if it is an infinite sequence of action transitions and time steps; note that a
maximal sequence of such transitions/steps starting at some Q0 ∈ P̃1 is never finite, since for

γ = Q0
λ0−→ Q1

λ1−→ . . .
λn−1

−−−→ Qn, we have Qn
α
−→ or Qn

1
−→ (see Proposition 8.16 in Appendix A).

For an initial process P0, we say that a sequence of transitions γ = P0
α0−→ P1

α1−→ . . . with
αi ∈ Aτ is an execution sequence if it is a maximal sequence of action transitions; i.e. it is infinite
or ends with a process Pn such that Pn 6

α
−→ for any action α.

As an example for the use of the various definitions, consider the following behaviour of P =
(a.nil + b.nil) ‖{a,b} rec x. (a.nil + c.(b.nil + d.x)):

P
1
−→ (a.nil + b.nil) ‖{a,b} rec x. (a.nil + c.(b.nil + d.x))

c
−→

(a.nil + b.nil) ‖{a,b} (b.nil + d.rec x. (a.nil + c.(b.nil + d.x)))
d
−→

(a.nil + b.nil) ‖{a,b} rec x. (a.nil + c.(b.nil + d.x))
c
−→

(a.nil + b.nil) ‖{a,b} (b.nil + d.rec x. (a.nil + c.(b.nil + d.x)))
After the time step, both components are urgent; in particular, the left hand component can

synchronize on a, while b is not possible. Then the right hand component performs c and loses its
urgency. Now a is not possible anymore, but the left hand component remains urgent since now it
can synchronize on b. Also, observe the application of Reca. The process reached returns to itself
with dc, so this behaviour could be repeated indefinitely. But since the left hand component is
urgent all the time, a time step is never possible, matching the intuitive idea that this component
has to act within time 1.

3 Fairness and PAFASc

In this section we briefly describe our theory of fairness. It closely follows Costa and Stirling’s
theory of (weak) fairness. The main ingredients of the theory are:

6

- A labelling for process terms. This allows to detect during a transition which component
actually moves; e.g., for process P = rec x.α.x, we need additional information to detect
whether the left hand side or the right hand side actually moves in the transition P‖∅ P

α
−→

P‖∅ P .

- Live components. A component of a process term is live if it can perform an action. In a
term like a.b.nil‖{b} b.nil only action a can be performed while b cannot, momentarily. Thus
the left component of the parallel composition is live and such a component corresponds to
a label. Intuitively, the components becoming urgent with a time step should exactly be the
live components (see Corollary 9.7-3 in Appendix B).

- Fair sequences. A maximal sequence is fair when no component in a process term becomes
live and then remains live throughout.

These items sketch the general methodology used by Costa and Stirling to define and isolate
fair computations in [5, 6]. Most of the definitions in the rest of this section are taken from [6] with
the obvious slight variations due to the different language we are using (the timed process algebra
PAFASc with TCSP parallel composition instead of CCS). We also take from [6] those results that
are language independent. The others are proven in the appendix.

3.1 A labelling for process terms

Costa and Stirling associate labels with all basic actions and operators inside a process, in such a
way that no label occurs more than once in an expression. We call this property unicity of labels.
Also along a computation, labels are unique and, once a label disappears, it will not reappear in
the process anymore.

The set of labels is LAB = {1, 2}∗ with ε as the empty label and u, v, w, . . . as typical elements.
Labels are written as indexes and in case of parallel composition as upper indexes; they are assigned
systematically following the structure of PAFASc terms. Due to recursion the labelling is dynamic:
the rule for rec generates new labels.

Definition 3.1 (labelled process algebra)
The labelled process algebra L(P̃) (and similarly L(P̃1) etc.) is defined as

⋃

u∈LAB
Lu(P̃), where

Lu(P̃) =
⋃

P∈ P̃
Lu(P) and Lu(P) is defined inductively as follows:

Nil, Var : Lu(nil) = {nilu}, Lu(x) = {xu}
In examples, we will often write nil for nilu, if the label u is not relevant.

Pref: Lu(µ.P) = {µu.P ′ | P ′ ∈ Lu1(P)}
Sum: Lu(P1 + P2) = {P ′

1 +u P ′
2 | P ′

1 ∈ Lu1(P1), P ′
2 ∈ Lu2(P2)}

Lu(P1 + P2) = {P ′
1 + uP ′

2 | P ′
1 ∈ Lu1(P1), P ′

2 ∈ Lu2(P2)}
Par: Lu(Q1 ‖A Q2) = {Q′

1 ‖
u
A Q′

2 | Q′
1 ∈ Lu1v(Q1), Q′

2 ∈ Lu2v′(Q2)
where v, v′ ∈ LAB}

Rel: Lu(Q[Φ]) = {Q′[Φu] | Q′ ∈ Lu1v(Q) where v ∈ LAB}
Rec: Lu(rec x.Q) = {rec xu.Q′ | Q′ ∈ Lu1(Q)}

We assume that, in rec xu.Q, rec xu binds all free occurrences of a labelled x; analogously, Φu

acts on actions as Φ. We let L(Q) =
⋃

u∈LAB
Lu(Q) and LAB(Q) is the set of labels occurring in Q.

The unicity of labels must be preserved under derivation. For this reason, in the rec rule the
standard substitution must be replaced by a substitution operation which also changes the labels
of the substituted expression.

7

Definition 3.2 (a new substitution operator)
The new substitution operation, denoted by {| |}, is defined on L(P̃) using the following operators:

i. ()+v If Q ∈ Lu(P̃), then (Q)+v is the term in Lvu(P̃) obtained by prefixing v to labels in Q.

ii. ()ε If Q ∈ Lu(P̃), then (Q)ε is the term in Lε(P̃) obtained by removing the prefix u from all
labels in Q. (Note that u is the unique prefix-minimal label in Q.)

Suppose Q,R ∈ L(P̃) and xu, . . . , xv are all free occurrences of a labelled x in Q then Q{|R/x|} =
Q{((R)ε)

+u/xu, . . . , ((R)ε)
+v/xv}. The motivation of this definition is that in Q{|R/x|} each sub-

stituted R inherits the label of the x it replaces.

Moreover, for P ∈ L(P̃1) and A ⊆ A we can define urgent(P,A) just as in Definition 2.5.
Similarly, we can define A(Q,A), clean(Q,A) and unmark(Q) for labelled terms as above. Now, the
behavioural operational semantics of labelled PAFASc is obtained by replacing the rules Reca in
Definition 2.4 with the rule:

Reca

Q{| rec xu.unmark(Q)/x |}
α
−→ Q′

rec xu.Q
α
−→ Q′

and the rules Prefa1 and Prefa2 in Definition 2.4 with the rules:

Prefa1

αu.P
α
−→ P

Prefa2

αu.P
α
−→ P

because we assume that labels are not observable when actions are performed. The other rules are
unchanged.

Easy but important are the relationships between activated actions and transitions of PAFASc

and labelled PAFASc processes. The following proposition shows that labels are just annotations
that do not interfere with these notions. Let R be the operation of removing labels from a labelled
PAFASc term.

Proposition 3.3 Let Q ∈ Lu(P̃) and A ⊆ Aτ . Then:

i. Q
α
−→ R implies R(Q)

α
−→ R(R) in unlabelled PAFASc;

ii. if Q′ α
−→ R′ in unlabelled PAFASc and Q′ = R(Q), then Q

α
−→ R for some R with R′ = R(R);

iii. A(Q,A) = A(R(Q), A).

An immediate consequence of the labelling are the following facts that have been proven in [6]:
No label occurs more than once in a given process P ∈ Lu(P̃). Moreover, central to labelling is the
persistence and disappearance of labels under derivation. In particular, once a label disappears in a
sequence of transitions it can never reappear. It is these features which allow us to recognize when
a component contributes to the performance of an action. Throughout the rest of this section we
assume the labelled calculus.

3.2 Live components

To capture the fairness constraint for execution sequences, we need to define the live components.
We now define LC(Q,A) as the set of live components of Q (when the execution of actions in A are
prevented by the environment).

8

Definition 3.4 (live components)
Let Q ∈ L(P̃) and A ⊆ A. The set LC(Q,A) is defined by induction on Q.

Var, Nil: LC(xu, A) = LC(nilu, A) = ∅

Pref: LC(µu.P,A) =

{

{u} if µ = α or µ = α and α /∈ A

∅ otherwise

Sum: LC(P1 ⊕u P2, A) =

{

{u} if LC(P1, A) ∪ LC(P2, A) 6= ∅

∅ otherwise

where ⊕ ∈ {+, + }
Par: LC(Q1 ‖

u
B Q1, A) = LC(Q1, A ∪ A′) ∪ LC(Q2, A ∪ A′′)

where A′ = (A(Q1)\A(Q2)) ∩ B and A′′ = (A(Q2)\A(Q1)) ∩ B
Rel: LC(Q[Φu], A) = LC(Q,Φ−1(A))
Rec: LC(rec xu.Q,A) = LC(Q,A)

The set of live components in Q is defined as LC(Q, ∅) which we abbreviate to LC(Q).

An important subset of the live components of a process Q is the subset of urgent live com-
ponents. Let Q ∈ L(P̃) and A ⊆ A. The set UC(Q,A) is defined as in Definition 3.4 when LC()
is replaced by UC() and rules Pref and Sum are replaced by the following one (again, define
UC(Q) = UC(Q, ∅)):

Definition 3.5 (urgent live components)
Let Q ∈ L(P̃) and A ⊆ A. The set UC(Q,A) is defined by induction on Q.

Pref: UC(µu.P,A) =

{

{u} if µ = α and α /∈ A

∅ otherwise

Sum: UC(P1 +u P2, A) = ∅

UC(P1 + u P2, A) =

{

{u} if LC(P1, A) ∪ LC(P2, A) 6= ∅

∅ otherwise

Of course, UC(Q,A) ⊆ LC(Q,A), for every Q and A ⊆ A.

3.3 Fair execution sequences

Definition 3.6 (fair execution sequences)

Let γ = P0
λ0−→ P1

λ1−→ . . . be an execution sequence or a timed execution sequence; we will
write ‘(timed) execution sequence’ for such a sequence. We say that γ is fair if

¬(∃ u ∃ i . ∀ k ≥ i :∈ LC(Pk))

Following [6], we now present an alternative, more local, definition of fair computations which
will be useful to prove our main statements.

Definition 3.7 (B-step)

For any process P0, we say that P0
λ0−→ P1

λ1−→ . . .
λn−1
−−−→ Pn with n > 0 is a timed B-step when

i. B is a finite set of labels,

ii. B ∩ LC(P0) ∩ . . . ∩ LC(Pn) = ∅.

9

If λi ∈ Aτ , i = 0, . . . , n − 1, then the sequence is a B-step. If P0
λ0−→ P1

λ1−→ . . .
λn−1
−−−→ Pn is

a (timed) B-step and v = λ0 . . . λn−1 we write P0
v
−→B Pn+1; if B = LC(P0), we also speak of a

(timed) LC-step.

In particular, a (timed) LC-step from P is “locally” fair: all live events of P lose their liveness
at some point in the step.

Definition 3.8 (fair-step sequences)
A (timed) fair-step sequence from P0 is any maximal sequence of (timed) LC-steps of the form

P0
v0−→LC(P0) P1

v1−→LC(P1) . . .

A fair-step sequence is simply a concatenation of locally fair steps. If δ is a (timed) fair-step
sequence, then its associated (timed) execution sequence is the sequence which drops all references
to the sets LC(Pi).

The following theorem shows that fair execution sequences and fair-step sequences are essentially
the same and has been proven, as in [5, 6], with yet another, intermediate notion of local fairness
(see appendix for more details).

Theorem 3.9 A (timed) execution sequence is fair if and only if it is the sequence associated with
a (timed) fair-step sequence.

4 Fairness and Timing

This and the next section form the core of the paper. They relate fairness and timing in a process
algebraic setting, and contain the two main contributions:

(i) We provide a characterization of fair execution sequences of initial PAFASc processes (PAFASc

processes evolving only via functional operational semantics) in terms of timed execution se-
quences.

(ii) For the case of a finite state process, we derive from this a finite representation of the fair
runs with a transition system that has arcs labelled by regular expressions.

The following propositions are key statements for proving our main results. They also provide
some intuition on the reasons why fairness and (our notion of) timing are so strictly related.

Proposition 4.1 Let P0 ∈ L(P1), Q0 = urgent(P0) and v = α1 . . . αn ∈ A
∗
τ . Then:

1. P0
v
−→LC(P0) Pn implies Q0

v
−→ Pn;

2. Q0
v
−→ Qn and UC(Qn) = ∅ implies P0

v
−→LC(P0) Qn.

Proposition 4.2 Let P0, P1, P2 ∈ L(P̃1), v and w ∈ (Aτ)
∗. Then:

1. P0
1
−→ Q

v
−→ P1 implies P0

v
−→LC(P0) P1;

2. P0
v
−→ P1

1
−→ Q

w
−→ P2 implies P0

vw
−−→LC(P0) P2.

Proof:

1. Q = urgent(P0), Q
v
−→ P1 and UC(P1) = ∅ (by Lemma 9.5-3) imply P0

v
−→LC(P0) P1 by

Proposition 4.1-2.

10

2. This follows immediately from 1 and the definition of B-step.

2

The next statement shows that each everlasting timed execution sequence is fair.

Theorem 4.3 Each everlasting timed execution sequence of P0 ∈ L(P1), i.e. each timed execution
sequence of the form

γ = P0
v0−→ P1

1
−→ Q1

v1−→ P2
1
−→ Q2

v2−→ P3
1
−→ . . .

with infinitely many time steps and v0, v1, v2 . . . ∈ (Aτ)
∗ is fair.

Proof: By Proposition 4.2 we have that P0
v0v1−−−→LC(P0) P2, P2

v2−→LC(P2) P3 and so on. Then γ is a
sequence associated with a timed fair-step sequence and is fair by Theorem 3.9. 2

4.1 Relating Timed Execution Sequences and Fair Execution

Our characterization results will be presented in two separate theorems where we distinguish be-
tween finite and infinite sequences of untimed systems. These results immediately carry over to fair
execution sequences by Theorem 3.9. Furthermore, the timed execution sequences ignore labels, so
they give indeed the announced characterizations with the simple filtering mechanism of requiring
infinitely many time steps.

Theorem 4.4 Let P0 ∈ L(P1) and v0, v1, v2 . . . ∈ (Aτ)
∗. Then:

1. For any finite fair-step sequence from P0

P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pn−1
vn−1

−−−→LC(Pn−1) Pn

there exists a timed execution sequence

P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−−→ Pn
1
−→ Qn

1
−→ Qn . . .

2. For any timed execution sequence from P0

P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−−→ Pn
1
−→ Qn

1
−→ Qn . . .

the following is a finite fair-step sequence:

P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pn−1
vn−1

−−−→LC(Pn−1) Pn

Similarly, one can prove our characterization result for infinite sequences of untimed systems.

Theorem 4.5 Let P0 ∈ L(P1) and v0, v1, v2 . . . ∈ (Aτ)
∗. Then:

1. For any infinite fair-step sequence from P0

P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pi
vi−→LC(Pi) Pi+1 . . .

there exists a timed execution sequence

P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pi
1
−→ Qi

vi−→ Pi+1
1
−→ Qi+1 . . .

11

2. For any timed execution sequence from P0

P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pi
1
−→ Qi

vi−→ Pi+1
1
−→ Qi+1 . . .

with infinitely many time steps, the following is a fair-step sequence:

P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pi
vi−→LC(Pi) Pi+1 . . .

5 Transition systems for fair execution sequences and finite state

processes

We say that one process is action-reachable from another, if it can be reached according to the
standard functional operational semantics, i.e. with transitions

α
−→. For an unlabelled initial process

P ∈ P1 (i.e. a standard untimed process), we denote by AT (P) the set of processes action-reachable
from P ; we call P finite state, if AT (P) is finite.

For the definition of fair executions, we followed Costa and Stirling and introduced two semantic
levels: one level (the positive) prescribes the finite and infinite execution sequences of labelled
processes disregarding their fairness, while the other (the negative) filters out the unfair ones.
The labels are notationally heavy, and keeping track of them is pretty involved. Since the labels
evolve dynamically along computations, the transition system defined for the first level is in general
infinite state even if the process without labels were finite state (namely if it has at least one infinite
computation). Also the filtering mechanism is rather involved, since we have to check repeatedly
what happens to live components along the computation, and for this we have to consider and
compare the processes passed in the computation.

With the characterization results of the previous section, we have not only shown a conceptional
relationship between timing (which is analogous to the timing as used in the PAFAS approach to
the efficiency of asynchronous processes) and fairness. We have also given a much lighter description
of the fair execution sequences of a process P ∈ P1 via the transition system of processes time-

reachable (i.e. with transitions
α
−→ and

1
−→) from P , which we will denote by T T (P): the marking of

some actions and some choice-operators with underlines is easier than the labelling mechanism, and
the filtering simply requires infinitely many time steps, i.e. non-Zeno behaviour; hence, for filtering
one does not have to consider the processes passed. Moreover, we will show that the transition
system T T (P) is finite for finite state processes.

Theorem 5.1 If P ∈ P1 is finite state, then T T (P) is finite.

Proof: It is easy to prove that for any process P ′ ∈ P1, there are only finitely many processes
Q ∈ P with unmark(Q) = P ′; the intuitive reason is that Q only differs from P ′, since some prefixes
and some choice operators are marked as urgent.

We will argue that, if Q is time-reachable from P , we have unmark(Q) = P ′ for some P ′ action-
reachable from P . Then we are done, since by assumption of the theorem, there are only finitely
many such P ′. There are also only finitely many arcs in T T (P); note that, in particular due to
the restriction on relabelling functions, our processes are sort-finite.

Assume that Q is time-reachable from P . Then we have to consider two possible cases:

- P
v
−→ Q with v ∈ (Aτ)

∗. In this case Q ∈ P1 action-reachable from P such that unmark(Q) = Q
(by Proposition 8.6-2). We can choose P ′ = Q.

- P
v
−→ P1

1
−→ Q1

v1−→ P2 . . .
vk−1
−−−→ Pk

1
−→ Qk

v
−→ Q, where vi ∈ A

∗
τ , Qi = urgent(Pi), for all

1 ≤ i ≤ k, and k ≥ 1 (here k is the number of time steps). Then Pi = unmark(Qi) (by Lemma

12

8.7-1) and Qi
vi−→ Pi+1 imply by Lemma 10.1-2 Pi

vi−→ Pi+1 for every i ∈ [1, k − 1] and, hence,
Pk is action-reachable from P . Similarly, again by Lemma 10.1-2, Qk

v
−→ Q implies Pk

v
−→ P ′

with P ′ = unmark(Q). Thus, P ′ is action-reachable from Pk and, hence, action-reachable
from P .

2

The main result in [5, 6] is a characterization of fair execution sequences with only one (positive)
level: SOS-rules are given that describe all transitions P

v
−→ Q with v ∈ (Aτ)

∗ such that P
v
−→LC(P) Q.

This is conceptionally very simple, since there is only one level and there is no labelling or marking
of processes: the corresponding transition system for P only contains processes reachable from
P . In particular, the transition system is finite-state if P is finite-state. The drawback is that,
in general, P has infinitely many LC(P)-steps (namely, if it has an infinite computation), and
therefore the transition system has infinitely many arcs and is infinitely branching. (Observe that
this drawback is not shared by our transition system of timed-reachable processes.)

As a second main result, we will now derive from T T (P) for a finite-state process P a finite
transition system with finitely many arcs that describes the fair execution sequences in one level:
the essential idea is that the arcs are inscribed with regular expressions (and not just with sequences
as in [5, 6]); this idea has already been used for the analogous fairness of actions in [3], but only
the construction here has a nice feature as explained below.

The states of the new transition system are the initial processes in T T (P), i.e. the states Q

with Q
1
−→ Q′; if R is another such state, we have an arc from Q to R labelled with a regular

expression e. This expression is obtained by taking T T (P) with Q′ as initial state and R as the

only final state, deleting all transitions
1
−→ and applying the well-known Kleene construction to get

an (equivalent) regular expression from a nondeterministic automaton. (The arc can be omitted, if
e describes the empty set.) By Proposition 4.2.1, such an arc corresponds to a set of LC-steps which
are also present in the one-level characterization of Costa and Stirling; vice versa, each LC-step is

represented by such an arc by Proposition 4.1.1. There is one exception: if Q ′ 1
−→, then Q = Q′ (by

Proposition 8.11 in the appendix) and Q cannot perform any action; hence, there will only be an
ε-labelled arc from Q to itself. With these loops, fair executions correspond to infinite paths in the
new transition system, where we replace each e-labelled arc on the path by some v in the language
of e. If we omit the loops, we can take maximal paths instead.

Note that, by definition of time step, the new transition system has only arcs P
e
−→ Q such

that P and Q are initial processes and for each v belonging to e one has P
v
−→ Q. This is a nice

property that is not shared by the analogous construction in [3], which considers also states that
are not initial. The property is achieved in particular by our specific treatment of recursion, where
components in the body of a recursion can be urgent. (In [3] this is not the case; instead, function
urgent unfolds a recursion.)

6 A Comparison with Fairness of Actions

We now give a formal comparison with our previous paper on fairness of actions. As shown in [3],
fairness of actions is strictly related to a notion of timing that is used to evaluate the worst-case
efficiency of processes e.g. in [4]. We have shown in [3] that each everlasting (or non-Zeno) timed
process execution is action-fair and we have provided a characterization for action-fair executions of
untimed processes in terms of timed process executions. This also results in a finite representation
of action-fair executions using regular expressions, but the one we have presented in the preceding
section gives a more faithful representation; we will discuss this in greater detail later on (see
Observation 6.4).

13

The following discussion will explain the design decisions taken in the current work, the changes
needed to the above mentioned timed operational semantics in order to capture fairness of compo-
nents and the difficulties we had to overcome. Only with hindsight, we have been able to see that
we found another rather natural timed semantics which intuitively attaches upper time bounds to
components. The discussion will highlight the differences in the treatment for fairness of actions
and fairness of components.

Before going into the details of the comparison we recall some basic definitions from [3]: the
set of general process terms in PAFAS, their functional and timed operational semantics and the
notion of live actions. Then we discuss the observations that lead to the characterization of fairness
of components starting from the timed operational semantics that characterizes fairness of actions.

The set of initial timed process terms in PAFAS is the same as in PAFASc as given in Definition
2.1, while the set of general timed terms is given by the following grammar:

Q ::= nil
∣

∣ x
∣

∣ α.P
∣

∣ α.P
∣

∣ Q + Q
∣

∣ Q‖AQ
∣

∣ Q[Φ]
∣

∣ rec x.P

where P denotes a generic initial process term. Note that within the scope of a prefix operator, we
can only have an initial process term as in PAFASc; different from PAFASc, within the body of
a recursive definition only initial process terms can be present, while choice allows general terms
as arguments – and there is no urgent choice. The following subsections recall the functional and
timed transitional semantics of process terms.

6.1 The functional behaviour of PAFAS process

The transitional semantics describing the functional behaviour of PAFAS processes indicates which
basic actions they can perform; when performing an action, timing information can be disregarded,
since we only have upper time bounds.

Definition 6.1 (Functional operational semantics) The following SOS-rules define the transition
relations

α
−→a⊆ (P̃ × P̃) for α ∈ Aτ , the action transitions; the index a indicates transitions for the

original action-oriented PAFAS.
As usual, we write Q

α
−→a Q′ if (Q,Q′) ∈

α
−→a and Q

α
−→a if there exists a Q′ ∈ P̃ such that

(Q,Q′) ∈
α
−→a, and similar conventions will apply later on.

Prefa1

α.P
α
−→a P

Prefa2

α.P
α
−→a P

Suma

Q1
α
−→a Q′

1

Q1 + Q2
α
−→a Q′

1

Para1

α /∈ A, Q1
α
−→a Q′

1

Q1‖AQ2
α
−→a Q′

1‖AQ2

Para2

α ∈ A, Q1
α
−→a Q′

1, Q2
α
−→a Q′

2

Q1‖AQ2
α
−→a Q′

1‖AQ′
2

Rela

Q
α
−→a Q′

Q[Φ]
Φ(α)
−−−→a Q′[Φ]

Reca

P{rec x.P/x}
α
−→a Q′

rec x.P
α
−→a Q′

Additionally, there are symmetric rules for Para1 and Suma for actions of P2.

14

6.2 The temporal behaviour of PAFAS process

In contrast to PAFASc, where time steps are defined on initial process terms only using a function
to determine the target, time steps in PAFAS are built up with SOS-rules for general terms, defining

transitions like Q
X
−→r Q′ called partial time steps. The actions listed in X are not urgent; hence Q

is justified in not performing them, but performing a time step instead. This time step is partial
because it can occur only in contexts that can refuse the actions not in X. If X = A, then Q is
fully justified in performing this time step; i.e., Q can perform it independently of the environment.

If Q
A
−→r Q′ we write Q

1
−→a Q′ and say that Q performs a (full) time step. In [4], it is shown

that refusal traces (arising from action transitions and partial time steps) characterize an efficiency
preorder, which is intuitively justified by a testing scenario. For our comparison, we need partial
time steps only to set up the following SOS-semantics; our real interest is in runs where all time
steps are full.

Definition 6.2 (Refusal transitional semantics)

The following inference rules define
X
−→r⊆ (P̃ × P̃), where X ⊆ A.

Nilr

nil
X
−→r nil

Prefr1

α.P
X
−→r α.P

Prefr2

α /∈ X ∪ {τ}

α.P
X
−→r α.P

Parr

Qi
Xi−→r Q′

i for i = 1, 2, X ⊆ (A ∩ (X1 ∪ X2)) ∪ (X1 ∩ X2)\A

Q1‖AQ2
X
−→r Q′

1‖AQ′
2

Sumr

∀ i = 1, 2 Qi
X
−→r Q′

i

Q1 + Q2
X
−→r Q′

1 + Q′
2

Relr

Q
Φ−1(X∪{τ})\{τ}
−−−−−−−−−−−→r Q′

Q[Φ]
X
−→r Q′[Φ]

Recr

P{rec x.P/x}
X
−→r Q′

rec x.P
X
−→r Q′

The rules in Definition 6.2 explain the refusal operational semantics of a PAFAS term. Rule
Prefr1 says that a process α.P can let time pass and refuse to perform any action while rule
Prefr2 says that a process P prefixed by an urgent action α, can let time pass but action α cannot
be refused. Process τ .P cannot let time pass and cannot refuse any action; also in any context,
τ .P has to perform τ as explained by Rule Prefa2 in Definition 6.1 before time can pass further.

Another rule worth noting is Parr which defines which actions a parallel composition can refuse
during a time step. The intuition is that Q1‖AQ2 can refuse an action α if either α /∈ A (Q1 and
Q2 can perform α independently) and both Q1 and Q2 can refuse α, or α ∈ A (Q1 and Q2 are
forced to synchronize on α) and at least one of Q1 and Q2 can refuse α, i.e. can delay it.

Thus, an action in a parallel composition is urgent (cannot be further delayed) only when all
synchronizing ‘local’ actions are urgent. The other rules are as expected.

It is worth noting that a full time step in fairness of actions (action 1) plays the same role as a
time step in fairness of components as presented in the previous sections.

The definitions of labelling of process terms, B-steps (actually based on LE instead of LC in that
setting), and fair computations are the same as those presented in the previous sections. We report
here the definition of live events (actions) that is quite different from the corresponding definition
of live components in Definition 3.4.

15

The set of labels is still LAB = {1, 2}∗ with ε as the empty label but a performed action might
correspond to a pair or more generally to a tuple of labels, namely if it is a synchronization of
several action occurrences whose labels we collect. We use the following notation:

- (Set of tuples) N = {〈v1, . . . , vn〉 | n ≥ 1, v1, . . . , vn ∈ LAB};

- (Composition of tuples) s1 × s2 = 〈v1, . . . , vn, w1, . . . , wm〉, where s1, s2 ∈ N and s1 =
〈v1, . . . , vn〉, s2 = 〈w1, . . . , wm〉;

- (Composition of sets of tuples) N × M = {s1 × s2 | s1 ∈ N and s2 ∈ M}, where N,M ⊆ N .
Note that N = ∅ or M = ∅ implies N × M = ∅.

We now define LE(P,A) as the set of live events of P when the execution of actions in A are
prevented by the environment. For technical convenience we allow A to be a subset of Aτ .

Definition 6.3 (live events)
Let P ∈ L(P̃) and A ⊆ Aτ . The set LE(P,A) is defined by induction on P .

Var, Nil: LE(xu, A) = LE(nilu, A) = ∅

Pref: LE(µu.P,A) =

{

{〈u〉} if µ = α or µ = α and α /∈ A

∅ otherwise

Sum: LE(P +u Q,A) = LE(P,A) ∪ LE(Q,A)

Par: LE(P ‖u
B Q,A) = LE(P,A ∪ B) ∪ LE(Q,A ∪ B)∪

⋃

α∈B\A(LE(P, Aτ\{α}) × (LE(Q, Aτ\{α})

Rel: LE(P [Φu], A) = LE(P,Φ−1(A))
Rec: LE(rec xu.P,A) = LE(P,A)

The set of live events in P is defined as LE(P, ∅) which we abbreviate to LE(P).

The intuition behind the rules is similar to that in Definition 3.4. Only note that to properly
deal with synchronization, for all α ∈ B\A we combine each live event of P corresponding to α
with each live event of Q corresponding to α, getting tuples of labels. To filter out the appropriate
events, we use a second parameter for LE which contains τ .

6.3 From Fairness of Actions to Fairness of Components

In this section, we will address the differences between the timed operational semantics for PAFAS
(also suitable for capturing fair runs w.r.t. fairness of actions) and the timed operational semantics
for PAFASc (also suitable for capturing fair runs w.r.t. fairness of components). We observe a
number of differences, and each observation is followed by a discussion why this difference was
necessary or at least appropriate.

We start with a fairly simple point regarding the treatment of recursive processes; in contrast
to the differences we observe later, this difference has not been introduced for capturing fair runs
in a component-oriented timed operational semantics, but for the representation of fair runs from
the preceding section.

Observation 6.4 (on unfoldings of recursive processes)
If a recursive process performs a time step according to rule Recr in Definition 6.2, then recur-

sion is unfolded once in the target state. This is not the case, when the target state is determined
with urgent.

16

We opted for the new treatment of recursive processes because it allows a more faithful cor-
respondence between timed executions and LC-steps. Proposition 4.2 shows: if an initial process
performs a time step followed by a sequence of actions leading to a process that can perform an
action 1, then the action sequence corresponds to an LC-step and vice versa. Note that the target
states are exactly the same; this only works because of our treatment of the rec-operator that un-
folds terms only when strictly needed (namely, when functional transitions are performed) and not
also when time passes as in rule Recr. Indeed, in Proposition 4.7 in [3] (the counterpart of Propo-
sition 4.2 for fairness of actions) the target states are not equal but only equal up to unfoldings of
recursive processes.

As a consequence of the stronger result in Proposition 4.2 we also have a more faithful corre-
spondence between timed executions and fair executions (see Theorems 4.4 and 4.5) and a more
faithful finite representation in Section 5; as we already observed, in this representation there are
only arcs P

e
−→ Q such that P and Q are initial processes and for each v belonging to e one has

P
v
−→ Q – and this does not hold for the corresponding representation in [3].
In the rest of this section, we will discuss PAFAS-transitions as if time steps in PAFAS would

treat recursion as in PAFASc; e.g. we pretend that also in PAFAS recx.a.x+b.nil
1
−→ recx.a.x+b.nil,3

and we hope that this is most suitable for readers of the present paper.

Observation 6.5 (on urgent synchronization)
Rule Parr in Definition 6.2 defines which actions a parallel composition can refuse during

a time step. We already stated that, according to this rule, a synchronizing action in a parallel
composition is urgent (cannot be further delayed) only when all synchronizing ‘local’ actions (i.e.
action occurrences in the term) are urgent. Consequently, rec x.(a.x + b.nil) ‖{b} b.nil can perform a
time step in PAFAS, while it cannot in PAFASc.

To understand this difference, consider process (rec x1.a111.x1111 +11 b112.nil) ‖ε
{b} b2.nil and

computation:

(rec x1.a111.x1111 +11 b112.nil) ‖ε
{b} b2.nil

a
−→

(rec xv.av11.xv111 +v1 bv12.nil) ‖ε
{b} b2.nil

a
−→

(rec xu.au11.xu111 +u1 bu12.nil) ‖ε
{b} b2.nil

a
−→ . . .

where v = 1111 and u = v111. In PAFAS, the label for a synchronized action b, is a pair of
labels, each stemming from one of the components. Since the first component offers a different
local b at each step, these pairs change: we have < 112, 2 > for the first process, < v12, 2 > for
the second process and < u12, 2 > for the third one etc. Each such pair is a live event (according
to Definition 6.3), but since no event remains live throughout the computation, the above is a fair
execution sequence in PAFAS.

From the point of view of components, the second component remains live throughout the
computation, so the latter is not fair in PAFASc.

In the timed operational semantics of PAFAS (where only actions can be urgent), we have the
corresponding run:

rec x. (a.x + b.nil) ‖{b} b.nil
1
−→

rec x. (a.x + b.nil) ‖{b} b.nil
a
−→

rec x. (a.x + b.nil) ‖{b} b.nil
1
−→

rec x. (a.x + b.nil) ‖{b} b.nil
a
−→ . . .

Since this timed run has infinitely many time steps, we can see from it that the above com-
putation is fair in labelled PAFAS. Since fairness does not hold in labelled PAFASc, we must
have different rules for time steps; crucial is the second time step we already mentioned above: in

3and not rec x.a.x + b.nil
1
−→ a.(rec x.a.x + b.nil) + b.nil

17

PAFASc, we have to consider the second component as urgent, in order to disallow the second time
step; i.e. the synchronized b is urgent just because one local b is urgent.

In our presentation of PAFASc, this idea is realized in Definition 2.5 that allows 1 only when
the source process is an initial one and hence does not have urgencies in its body. We explain next
why this seems most appropriate.

Observation 6.6 (on the disappearance of urgent components)
If an action is marked as urgent in PAFAS, it remains urgent until it is performed; this is not

true in PAFASc; cf. the application of clean in rules Para1 and Para2 of Definition 2.4, which
unmarks a component that was activated and declared as urgent and has now become inactive in
the evolution of the system via functional transitions.

Consider, for instance, the following sequence of transitions, which we would get according to
the ideas developed so far:

rec x. (a.c.x + b.nil) ‖{b} b.nil
1
−→

rec x. (a.c.x + b.nil) ‖{b} b.nil
a
−→

c.(rec x. (a.c.x + b.nil)) ‖{b} b.nil = Q
c
−→

rec x. (a.c.x + b.nil) ‖{b} b.nil = R
a
−→

c.(rec x. (a.c.x + b.nil)) ‖{b} b.nil
c
−→ . . .

After the first a-transition, the first component has performed an action, while the second is
disabled; repeating this observation, it should be clear that the action transitions in this timed run
give a fair computation (– in labelled PAFASc, but we will again leave labels implicit in the rest
of the section). Also, this observation shows that reaching Q we have made as much local progress
w.r.t. to component-fairness as one can expect, so a time step should be possible for Q and – since
no time step actually is performed – for every succeeding process as e.g. R.

According to Definition 2.5, Q cannot perform a time step; a possibility would be to change
this definition and allow a time step if no urgent local action can be performed. With this change,

we would have Q
1
−→, but we still would not have R

1
−→. This should make it plausible that, when

a functional transition is performed, all inactive urgencies must be removed in the target state, as
it is done in PAFASc with clean.

To argue more forcefully for this approach, consider the modified rule for time steps of the
previous paragraph and the more complicated example, where P = rec x.(a.(c.x + d.nil) + b.nil):

(P ‖{b} b.nil) ‖{d} d.nil
1
−→

((rec x.(a.(c.x + d.nil) + b.nil)) ‖{b} b.nil) ‖{d} d.nil
a
−→

((c.P + d.nil) ‖{b} b.nil) ‖{d} d.nil
c
−→

(P ‖{b} b.nil) ‖{d} d.nil
a
−→

((c.P + d.nil) ‖{b} b.nil) ‖{d} d.nil
c
−→ . . .

Again, the action transitions in this run give a component-fair computation, since the first
component acts repeatedly while the other two are disabled repeatedly. But no state after the first
time step would allow another time step, even with the modification under discussion; so cleaning
is a necessity. It is also very intuitive that a disabled component cannot be urgent.

With this intuition, it is actually not so much surprising that we use clean in PAFASc – but it
is surprising that nothing like that is needed in PAFAS.

Observation 6.7 (urgent components after a time step)
According to the timed operational semantics in Definition 6.2, all initial actions in a parallel

composition are made urgent when a full time step is performed, for instance:

a.b.nil ‖{b} b.nil
1
−→ P = a.b.nil ‖{b} b.nil

18

This is not the case in PAFASc, where according to the definition of urgent we have that

a.b.nil ‖{b} b.nil
1
−→ P ′ = a.b.nil ‖{b} b.nil.

This is just a uniform application of the intuition we have just discussed: since component b.nil

is not enabled, it should not be urgent in PAFASc. Even if this consequence may not be strictly
necessary to capture fair runs, it certainly is a clean way to proceed. It is also of advantage for
the technical proof, which relies on a match between action sequences between two time steps and
LC-steps: we can continue the above PAFAS transition sequence with

P
a
−→ Q = b.nil ‖{b} b.nil.

Since in P only the first component is live, the only live component acts in this transition,
which therefore is an LC-step; but Q does not allow a time step according to PAFASc. In contrast,

with P ′ a
−→ b.nil ‖{b} b.nil

1
−→ things fit together nicely.

Observation 6.8 (on urgent nondeterministic choice)
In PAFAS processes, only actions are marked as urgent, while also the choice-operator can be

marked as urgent in PAFASc; e.g. b.nil + d.nil
1
−→ b.nil + d.nil in PAFAS, while in PAFASc we have

b.nil + d.nil
1
−→ b.nil + d.nil.

So far, the discussion concentrated on the urgency of parallel components that are prefix terms;
such a component loses its urgency together with the action in its prefix when this action is not
enabled. Thus, according to our considerations so far, we would have the following transition
sequence in PAFASc:

(rec x.(a.(c.x + d.nil) + b.nil)) ‖{b,d} (b.nil + d.nil)
1
−→

(rec x.(a.(c.x + d.nil) + b.nil)) ‖{b,d} (b.nil + d.nil)
a
−→

((c.(rec x.a.(c.x + d.nil) + b.nil) + d.nil) ‖{b,d} (b.nil + d.nil)
c
−→

((rec x.a.(c.x + d.nil) + b.nil) ‖{b,d} (b.nil + d.nil)
1
−→ . . .

After the first time step, action d is not urgent in the second component since it is not enabled.
For the same reason, action b in the second component loses its urgency after the a-transition.
Hence, according to the characterization result we wanted to achieve, we would have to consider an
infinite repetition of ac as a fair run. But actually, the second component remains live all through
such a run, since in each state one of the actions it offers is live; this run is certainly not fair for
components.

The most appropriate notational consequence is to mark the whole component as urgent – and
to stick with the intuition that a component loses its urgency if the whole component is disabled.
Now the infinite transition sequence from above never allows a second time step since it looks like
this:

(rec x.(a.(c.x + d.nil) + b.nil)) ‖{b,d} (b.nil + d.nil)
1
−→

(rec x.(a.(c.x + d.nil) + b.nil)) ‖{b,d} (b.nil + d.nil)
a
−→

(c.(rec x.(a.(c.x + d.nil) + b.nil)) + d.nil) ‖{b,d} (b.nil + d.nil)
c
−→

(rec x.(a.(c.x + d.nil) + b.nil)) ‖{b,d} (b.nil + d.nil)
a
−→

(c.(rec x.(a.(c.x + d.nil) + b.nil)) + d.nil) ‖{b,d} (b.nil + d.nil)
c
−→ . . .

According to this treatment of urgency, the PAFAS-definition of live events sets is LE(P +u Q) =
LE(P) ∪ LE(Q), while for PAFASc we find in the definition of live components that

LC(P1 +u P2) =

{

{u} if LC(P1) ∪ LC(P2) 6= ∅

∅ otherwise
So only the complete choice is considered as live.

19

Having developed descriptions of action- and of component-fair runs in process algebra that are
much easier to use, we are currently studying how to apply our approaches to prove e.g. liveness
of MUTEX-solutions. First considerations have shown that action-fairness can easily be too weak
for this purpose, while component-fairness looks promising.

A definition of fair behavior different from those in [5, 6] can be found in [1]; it would be
interesting to find a similar characterization for this definition.

References

[1] S. Brookes. Traces, Pomsets, Fairness and Full Abstractions for Communicating Processes.
Proc. of Concur’02, Lect. Notes Comp. Sci. 2421, pp. 466-482, Springer 2002.

[2] F. Corradini, M.R. Di Berardini and W. Vogler. PAFAS at work: Comparing the Worst-Case
Efficiency of Three Buffer Implementations. Proc. of 2nd Asia-Pacific Conference on Quality
Software, APAQS 2001, pp. 231-240, IEEE, 2001.

[3] F. Corradini, M.R. Di Berardini and W. Vogler. Relating Fairness and Timing in Process
Algebras. Proc. of Concur’03, Lect. Notes Comp. Sci. 2761, pp. 446-460, Springer 2003.

[4] F. Corradini, W. Vogler and L. Jenner. Comparing the Worst-Case Efficiency of Asynchronous
Systems with PAFAS. Acta Informatica 38, pp. 735-792, 2002.

[5] G. Costa, C. Stirling. A Fair Calculus of Communicating Systems. Acta Informatica 21, pp.
417-441, 1984.

[6] G. Costa, C. Stirling. Weak and Strong Fairness in CCS. Information and Computation 73,
pp. 207-244, 1987.

[7] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[8] G. Lüttgen and W. Vogler. Bisimulation on speed: Worst–case efficiency. Information and
Computation 191, pp. 105-144, 2004.

[9] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[11] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-problem. Theoret.
Comput. Sci. 275, pp. 589-631, 2002.

20

7 Appendix: An intermediate notion of local fairness

As in [6], we now present an itermediate, more local definition of fair computations that allows us
to think of fairness in term of localizable property and not just as a property of (timed) execution
sequences as a whole. In the following, we use |γ| to denote the length – i.e. the number of processes
– of a (timed) execution sequence γ, which is ∞ if γ is an infinite computation.

Definition 7.1 Let γ = P0
λ0−→ P1

λ1−→ . . . be a (timed) execution sequence. We say that

i. γ is l-fair at i if there exists j ≥ i such that

LC(Pi) ∩ LC(Pi+1) ∩ . . . ∩ LC(Pj) = ∅

ii. γ is l-fair if for all i < |γ| we have that γ is l-fair at i.

γ is l-fair at i when every live event in Pi loses its liveness. Starting from P0 we can generate

a derivation P0
λ0−→ P1 . . .

λn−1

−−−→ Pn which satisfies l-fairness at 0, i.e. such that LC(P0) ∩ LC(P1) ∩

. . . ∩ LC(Pn) = ∅. One then continues by generating a derivation Pn
λn−→ Pn+1 . . .

λm−1

−−−→ Pm which
satisfies l-fairness at n. The concatenation of these two derivations guarantees l-fairness at any
j ≤ n. In this way we can generate only fair sequences. The following theorem formalizes this
strategy.

Theorem 7.2 A (timed) execution sequence γ = P0
λ0−→ P1

λ1−→ . . . is l-fair if and only if it is fair.

Proof: We prove that γ is not l-fair if and only if it is not fair.

1. Assume γ not l-fair. There exists i < |γ| such that, for all j ≥ i, LC(Pi) ∩ LC(Pi+1) ∩ . . . ∩
LC(Pj) 6= ∅. Since LC(Pi) is finite, there is some u such that for all j ≥ i, u ∈ LC(Pj).

2. Vice versa, if γ is not fair, then there are i and u such that, for all k ≥ i, u ∈ LC(Pk), i.e. γ
is not l-fair at i and, hence, γ is not l-fair.

2

The following theorem relates l-fair execution sequences and fair-step sequences.

Theorem 7.3 A (timed) execution sequence is l-fair if and only if it is the sequence associated
with a (timed) fair-step sequence.

Proof: Assume γ = P0
λ0−→ P1

λ1−→ . . . l-fair. By definition, γ is l-fair at 0 and, hence, there exists
j ≥ 0 such that LC(P0)∩ . . .∩LC(Pj) = ∅. Then, for v0 = λ0 . . . λj−1, we have that P0

v0−→LC(P0) Pj .
Since γ is l-fair at j for any j < |γ|, we can iterate this strategy and generate a fair-step sequence

γ′ = P0
v0−→LC(P0) Pj

v1−→LC(Pj) . . . Clearly, γ is the (timed) execution sequence associated with γ ′.

Vice versa, assume that γ ′ = P0
v0−→LC(P0) P1

v1−→LC(P1) . . . is a fair-step sequence. Let v0 =
λ0 . . . λj−1, v1 = λj . . . λk−1 and so on. The (timed) execution sequence associated with γ ′ is

γ = P0
λ0−→ P ′

1
λ1−→ . . .

λj−1

−−−→ P ′
j = P1

λj
−→ P ′

j+1

λj+1

−−−→ . . .
λk−1
−−−→ P ′

k = P2 . . .
The definition of a B-step implies that γ is l-fair at 0, j and k etc. and, thus, fair at any i ≤ j

and i ≤ k etc.; therefore, γ is l-fair for any i < |γ| and, hence, it is l-fair. 2

Theorem 3.9 A (timed) execution sequence is fair if and only if it is the sequence associated with
a (timed) fair-step sequence.

Proof: It follows directly from Theorems 7.2 and 7.3. 2

21

8 Appendix A: Some Useful Properties

In this appendix section we state and prove some useful properties relating some of the notions in
the main body of the paper. They are not related to each other but are useful to prove the main
statements.

8.1 Closure properties of P̃1

Proposition 8.1 Let P, P ′ ∈ P̃1. Then

1. P{P ′/x} ∈ P̃1;

2. P
α
−→ Q implies Q ∈ P̃1.

Proof: Both statements can be easily proved by induction on P ∈ P̃1. 2

8.2 Properties of A(Q, A)

Lemma 8.2 Let Q ∈ P̃, A and A′ ⊆ A. Then:

1. β ∈ A(Q,A) implies β /∈ A;

2. β ∈ A(Q,A) and β /∈ A′ implies β ∈ A(Q,A′);

3. A ⊆ A′ implies A(Q,A′) ⊆ A(Q,A);

4. A(Q,A) = A(Q)\A.

Proof: First, we prove Item 1 and Item 2 together by induction on Q ∈ P̃.

Nil, Var: Q = nil, Q = x. These cases are not possible since A(Q,A) = ∅ for all A.

Pref: Q = α.P1 or Q = α.P1. In both cases β ∈ A(Q,A) implies β = α /∈ A. Then:

1. clearly β /∈ A.

2. β /∈ A′ implies α /∈ A′ and, hence, β ∈ A(Q,A′) = {α}.

Sum: Q = P1 +P2 or Q = P1 +P2. In both cases β ∈ A(Q,A) implies either (i) β ∈ A(P1, A) or (ii)
β ∈ A(P1, A). Consider case (i) – case (ii) can be proved similarly. By induction hypothesis:

1. β ∈ A(P1, A) implies β /∈ A.

2. β ∈ A(P1, A) and β /∈ A′ implies β ∈ A(P1, A
′) ⊆ A(Q,A′).

Par: Q = Q1 ‖B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B. In this case
β ∈ A(Q,A) implies either (i) β ∈ A(Q1, A ∪ A1) or (ii) β ∈ A(Q2, A ∪ A2). Consider the
(i)-case (the (ii)-case is symmetric).

1. β ∈ A(Q1, A ∪ A1) implies, by induction hypothesis, β /∈ A ∪ A1 and, hence, β /∈ A.

2. β ∈ A(Q1, A ∪ A1) implies, by Item 1, β /∈ A ∪ A1 and, hence, β /∈ A1. Assume, now,
β /∈ A′. Then β ∈ A(Q1, A ∪ A1) and β /∈ A′ ∪ A1 implies, by induction hypothesis
β ∈ A(Q1, A

′ ∪ A1) ⊆ A(Q,A′).

Rel: Q = Q1[Φ]. In this case we have that β ∈ A(Q,A) if there exists β ′ ∈ Φ−1(β) such that
β′ ∈ A(Q1,Φ

−1(A)).

22

1. β′ ∈ A(Q1,Φ
−1(A)) implies, by induction hypothesis, β ′ /∈ Φ−1(A) and, hence β =

Φ(β′) /∈ A.

2. Assume β /∈ A′ and, hence, β ′ /∈ Φ−1(A′). Again by induction hypothesis β ′ ∈
A(Q1,Φ

−1(A)) and β ′ /∈ Φ−1(A′) implies β ′ ∈ A(Q1,Φ
−1(A′)) and, hence, β = Φ(β ′) ∈

Φ(A(Q1,Φ
−1(A′))) = A(Q,A′).

Rec: Q = rec x.Q1. We have that β ∈ A(Q,A) implies β ∈ A(Q1, A).

1. by induction hypothesis β /∈ A.

2. Assume β /∈ A′. By induction hypothesis β ∈ A(Q1, A) and β /∈ A′ implies β ∈
A(Q1, A

′) = A(Q,A′).

Items 3. and 4. can be proved as follows.

3. Assume A ⊆ A′ and α ∈ A(Q,A′). Item 1 and α ∈ A(Q,A′) implies α /∈ A′ and, hence,
α /∈ A. Now, by Item 2, α ∈ A(Q,A′) and α /∈ A implies α ∈ A(Q,A).

4. Assume α ∈ A(Q,A). Item 1 implies α /∈ A. Moreover, since trivially α /∈ ∅, by Item 2 we
have α ∈ A(Q) and thus α ∈ A(Q)\A.

Now let α ∈ A(Q)\A. Again by Item 2, α ∈ A(Q) and α /∈ A implies α ∈ A(Q,A).

2

8.3 Properties of urgent, clean and unmark

First we report the formal definition of function unmark(Q).

Definition 8.3 (cleaning all urgencies)
Let Q be a P̃ term. Then unmark(Q) is defined by induction on Q as follows:

Nil, Var: unmark(nil) = nil, unmark(x) = x

Pref: unmark(α.P) = unmark(α.P) = α.P

Sum: unmark(P1 + P2) = unmark(P1 + P2) = P1 + P2

Par: unmark(Q1 ‖B Q2) = unmark(Q1) ‖B unmark(Q2)

Rel: unmark(Q[Φ]) = unmark(Q)[Φ]

Rec: unmark(rec x.Q) = rec x. unmark(Q)

A significant subset of activated actions is the set of urgent ones. These are activated actions
that cannot let time pass. They are used to understand if processes time-reachable from terms in
P̃1 are initial or not.

Definition 8.4 (urgent activated basic actions)
Let Q ∈ P̃ and A ⊆ A. The set U(Q,A) is defined as in Definition 2.2 when A() is replaced by

U() and the Pref and Sum rules are replaced as follows:

23

Pref: U(α.P,A) = ∅

U(α.P,A) =

{

{α} if α /∈ A

∅ otherwise

Sum: U(P1 + P2, A) = ∅

U(P1 + P2, A) = A(P1, A) + A(P2, A)

U(Q) abbreviates U(Q, ∅) and is called the set of urgent activated actions of Q.

We can state the following properties:

Lemma 8.5 Let Q ∈ P̃ and A ⊆ A. Then:

1. U(Q,A) ⊆ A(Q,A);

2. Q ∈ P̃1 implies U(Q,A) = ∅.

Proof: Both Items can be easily proved by induction on Q. 2

Now we prove some useful properties of functions clean and unmark. Most of them are stated
for terms in P̃ but, since the “action” of removing urgencies does not depend from labels we can
easily prove that they also hold for terms in L(P̃).

Lemma 8.6 Let Q ∈ P̃ and A,A′ ⊆ A. Then:

1. unmark(Q) ∈ P̃1;

2. Q ∈ P̃1 implies unmark(Q) = Q and clean(Q,A) = Q;

3. unmark(clean(Q,A)) = unmark(Q);

4. A(unmark(Q), A′) = A(clean(Q,A), A′) = A(Q,A′).

Proof: All Items follow directly from Definitions 2.3 and 8.3. 2

Lemma 8.7 Let P ∈ P̃1, Q ∈ P̃ and A ⊆ A such that Q = urgent(P,A). Then:

1. unmark(Q) = P ;

2. A(P,A′) = A(Q,A′) for all A′ ⊆ A;

3. Q ∈ P̃1 implies Q = P ;

4. Q = P iff A(P,A) = ∅;

5. clean(Q,A) = Q;

6. U(Q,A) = ∅ implies Q = P .

Proof: We prove Items 3, 4, 5 and 6 together by induction on P ∈ P̃1. Item 1 follows directly
from Definitions 2.5 and 8.3, and this implies Item 2 with Lemma 8.6-4.

Nil, Var: P = nil, P = x. By Definition 2.5 Q = urgent(P,A) implies Q = P . In these cases

24

3. Q ∈ P̃1 and Q = P .

4. Q = P and A(P,A) = ∅.

5. clean(Q,A) = Q.

6. Trivially U(Q,A) = ∅ and Q = P .

Pref: P = α.P1.

3. By Definition 2.5 Q ∈ P̃1 implies α ∈ A and Q = α.P1 = P .

4. Similarly to the previuos case Q = P iff α ∈ A iff A(P,A) = ∅.

5. Consider the following cases:

- α /∈ A. Then Q = α.P1 and clean(Q,A) = α.P1 = Q.

- α ∈ A. In this case Q = α.P1 and clean(Q,A) = α.P1 = Q.

6. Consider the following cases:

- α /∈ A. By Definitions 2.3 and 8.4, Q = α.P1 and U(Q,A) = {α}, and we are done.

- α ∈ A. In this case Q = α.P1 = P .

Sum: P = P1 + P2. Assume Q = urgent(P,A).

3. Q ∈ P̃1 implies (A(P1) ∪A(P2))\A = ∅ and Q = P1 + P2 = P .

4. By Lemma 8.2-4, A(P,A) = A(P)\A = (A(P1) ∪ A(P2))\A. Thus, again by Definition
2.5, Q = P iff (A(P1 ∪A(P2))\A = A(P,A) = ∅.

5. Consider the following cases:

- (A(P1) ∪A(P2))\A 6= ∅ (and hence A(P1) ∪A(P2) 6⊆ A). In this case Q = P1 + P2

and, by Definition 2.3, clean(Q,A) = P1 + P2 = Q.

- (A(P1) ∪ A(P2))\A = ∅. In this case Q = P1 + P2 and, again by Definition 2.3,
clean(Q,A) = P1 + P2 = Q.

6. Consider the following cases:

- (A(P1)∪A(P2))\A 6= ∅. This case is not possible since, by Lemma 8.2-4, U(Q,A) =
A(P1, A) ∪A(P2, A) = (A(P1)\A) ∪ (A(P2)\A) = (A(P1) ∪A(P2))\A 6= ∅.

- (A(P1) ∪ A(P2))\A = ∅. Trivially, U(Q,A) = (A(P1) ∪ A(P2))\A = ∅ and Q =
P1 + P2 = P .

Par: P = P1 ‖B P2. Let A1 = (A(P1)\A(P2)) ∩ B and A2 = (A(P2)\A(P1)) ∩ B. In this case
Q = urgent(P,A) implies Q = Q1 ‖B Q2 with Qi = urgent(Pi, A ∪ Ai) for i = 1, 2.

3. Q ∈ P̃1 implies Q1, Q2 ∈ P̃1. By induction hypothesis we have Q1 = P1 and Q2 = P2

and, hence, Q = P .

4. Q = P iff Qi = Pi for i = 1, 2 iff by induction hypothesis A(Pi, A ∪ Ai) = ∅ for i = 1, 2
iff, by Definition 2.2, A(P,A) = ∅.

5. Since, by Item 2, (A(Q1)\A(Q2)) ∩ B = A1 and (A(Q2)\A(Q1)) ∩ B = A2, we have
that clean(Q,A) = clean(Q1, A∪A1) ‖B clean(Q2, A∪A2) = Q1 ‖B Q2 = Q, by induction
hypothesis.

6. Since, as in the previous case, (A(Q1)\A(Q2))∩B = A1 and (A(Q2)\A(Q1))∩B = A2,
U(Q,A) = ∅ implies U(Q1, A ∪ A1) = U(Q2, A ∪ A2) = ∅. By induction hypothesis
Q1 = P1, Q2 = P2 and, hence, Q = P .

Rel: P = P1[Φ]. Q = urgent(P,A) implies Q = Q1[Φ] with Q1 = urgent(P1,Φ
−1(A)).

25

3. Q ∈ P̃1 implies Q1 ∈ P̃1. By induction hypothesis we have Q1 = P1 and, hence,
Q = Q1[Φ] = P1[Φ] = P .

4. Q = P iff Q1 = P1 iff, by induction hypothesis, A(P1,Φ
−1(A)) = ∅ iff A(P,A) =

Φ(A(P1,Φ
−1(A))) = ∅.

5. By induction hypothesis clean(Q,A) = clean(Q1,Φ
−1(A))[Φ] = Q1[Φ] = Q

6. In this case U(Q,A) = Φ(U(Q1,Φ
−1(A))) = ∅ implies U(Q1,Φ

−1(A)) = ∅. By induction
hypothesis we have that Q1 = P1 and, hence, Q = P .

Rec: P = rec x.P1. Q = urgent(P,A) implies Q = rec x.Q1 with Q1 = urgent(P1, A).

3. Q ∈ P̃1 implies Q1 ∈ P̃1. By induction hypothesis we have Q1 = P1 and, hence, Q = P .

4. Q = P iff Q1 = P1 iff, by induction hypothesis, A(P1, A) = A(P,A) = ∅.

5. By induction hypothesis clean(Q,A) = rec x.clean(Q1, A) = rec x.Q1 = Q.

6. U(Q,A) = U(Q1, A) = ∅ implies, by induction hypothesis, Q1 = P1 and hence Q = P .

2

We collect the most important properties shown so far in the following proposition, and then
carry on with further technical results:

Proposition 8.8 Let P ∈ P̃1 and Q = urgent(P). Then:

1. Q ∈ P̃1 implies Q = P ;

2. unmark(P) = P = unmark(Q);

3. Q = P iff A(P) = ∅.

Proof: Part 1 and 3 follow from Lemmas 8.7-3 and 8.7-4, while Part 2 follows from Lemmas 8.6-2
and 8.7-1. 2

Lemma 8.9 Let P ∈ P̃1, Q ∈ P̃ and x ∈ X such that x is guarded in Q. Then:

1. A(Q{P/x}, A) = A(Q,A);

2. clean(Q{P/x}, A) = clean(Q,A){P/x};

3. unmark(Q{P/x}) = unmark(Q){P/x};

4. Q = P ′ ∈ P̃1 implies urgent(P ′{P/x}, A) = urgent(P ′, A){P/x}.

Proof: We prove Items 1, 2 and 4 together by induction on Q ∈ P̃. Item 3 can be proved similarly
to Item 2 and the proof is omitted.

Nil: Q = nil. In this case x is guarded in Q and Q{P/x} = nil. Moreover

1. A(Q{P/x}, A) = A(Q,A) = A(nil, A) = ∅.

2. clean(Q{P/x}, A) = clean(Q,A){P/x} = nil.

4. Q ∈ P̃1 and urgent(nil{P/x}, A) = urgent(nil, A) = nil = urgent(nil, A){P/x}.

Var: Q = y. x guarded in Q implies y 6= x and Q{P/x} = y ∈ P̃1. Similar to the Nil-case.

26

Pref: Q = α.P1 or Q = α.P1. In this case x is guarded in Q.

1. Assume Q = α.P1 (if Q = α.P1 the item can be proved similarly) and, hence, Q{P/x} =
α.(P1{P/x}). Then α /∈ A implies A(Q,A) = A(Q{P/x}, A) = {α}; otherwise A(Q,A) =
A(Q{P/x}, A) = ∅. Thus A(Q,A) = A(Q{P/x}, A).

2. Again we can assume Q = α.P1 and Q{P/x} = α.(P1{P/x}). Then α ∈ A im-
plies clean(Q{P/x}, A) = α.(P1{P/x}) = (α.P1){P/x} = clean(Q,A){P/x}, otherwise
clean(Q{P/x}, A) = α.(P1{P/x}) = (α.P1){P/x} = clean(Q,A){P/x}.

4. Q = P ′ ∈ P̃1 implies P ′ = α.P1 and, hence, P ′{P/x} = α.(P1{P/x}). By definition 2.5
α /∈ A implies urgent(P ′{P/x}) = α.(P1{P/x}) = (α.P1){P/x} = urgent(P ′, A){P/x}).
Similarly α ∈ A implies urgent(P ′{P/x}) = α.(P1{P/x}) = (α.P1){P/x} =

urgent(P ′, A){P/x}).

Sum: Q = P1 ⊕ P2 with ⊕ ∈ {+, + }. In this case x guarded in Q implies x guarded in P1 and
in P2. Moreover Q{P/x} = P1{P/x} ⊕ P2{P/x}. Let A′ = A(P1{Q/x}) ∪ A(P2{P/x}) =
A(P1) ∪A(P2) by Item 1.

1. By induction hypothesis A(Q{P/x}, A) = A(P1{Q/x}, A) ∪A(P2{P/x}, A) =

A(P1, A) ∪A(P2, A) = A(Q,A).

2. We prove only the case ⊕ = + (the other case is simplier). By Definition 2.3 we have to
consider two possible cases. If A′ ⊆ A then clean(Q{P/x}, A) = P1{P/x} + P2{P/x} =
(P1 + P2){P/x} = clean(Q,A){P/x}. Otherwise, if A′ 6⊆ A, clean(Q{P/x}, A) =
P1{P/x} + P2{P/x} = (P1 + P2){P/x} = clean(Q,A){P/x}.

4. In this case Q = P ′ ∈ P̃1 implies P ′ = P1 + P2 and P ′{P/x} = P1{P/x} + P2{P/x}.
If A′ 6= ∅ then urgent(P ′{P/x}, A) = P1{P/x} + P2{P/x} = (P1 + P2){P/x} =
urgent(P ′, A){P/x}. Otherwise, if A′ = ∅, urgent(P ′{P/x}, A) = P1{P/x}+P2{P/x} =
(P1 + P2){P/x} = urgent(P ′, A){P/x}.

Par: Q = Q1 ‖B Q2. As in the previous case x guarded in Q implies x guarded in Q1 and in
Q2. Moreover Q{P/x} = Q1{P/x} ‖B Q2{P/x}. Let A1 = (A(Q1{P/x})\A(Q2{P/x})) ∩ B
and A2 = (A(Q2{P/x})\A(Q1{P/x})) ∩ B. Item 1 implies A1 = (A(Q1)\A(Q2)) ∩ B and
A2 = (A(Q2)\A(Q1)) ∩ B. By induction hypothesis we have that:

1. A(Q{P/x}, A) = A(Q1{P/x}, A ∪ A1) ∪A(Q2{P/x}, A ∪ A2) =

A(Q1, A ∪ A1) ∪A(Q2, A ∪ A2) = A(Q,A).

2. clean(Q{P/x}, A) = clean(Q1{P/x}, A ∪ A1) ‖B clean(Q2{P/x}, A ∪ A2) =

(clean(Q1, A ∪ A1){P/x}) ‖B (clean(Q2, A ∪ A2){P/x}) =

(clean(Q1, A ∪ A1) ‖B clean(Q2, A ∪ A2)){P/x} = clean(Q,A){P/x}.

4. Q = P ′ ∈ P̃1 implies P ′ = P ′
1 ‖B P ′

2 with P ′
i = Qi and P ′

i ∈ P̃1 for i = 1, 2. Then
urgent(P ′{P/x}, A) = urgent(P ′

1{P/x}, A ∪ A1) ‖B urgent(P ′
2{P/x}, A ∪ A2) =

(urgent(P ′
1, A ∪ A1){P/x}) ‖B (urgent(P ′

2, A ∪ A2){P/x}) =

(urgent(P ′
1, A ∪ A1) ‖B urgent(P ′

2, A ∪ A2)){P/x} = urgent(P ′, A){P/x}.

Rel: Q = Q1[Φ]. In this case x guarded in Q implies x guarded in Q1. Moreover Q{P/x} =
(Q1[Φ]){P/x} = (Q1{P/x})[Φ]. By induction hypothesis we have that:

1. A(Q{P/x}, A) = A((Q1{P/x})[Φ], A) = Φ(A(Q1{P/x},Φ−1(A))) =

Φ(A(Q1,Φ
−1(A))) = A(Q,A).

27

2. clean(Q{P/x}, A) = clean(Q1{P/x},Φ−1(A))[Φ] =

(clean(Q1,Φ
−1(A)){P/x})[Φ] = (clean(Q1,Φ

−1(A))[Φ]){P/x} =

clean(Q,A){P/x}.

4. Q = P ′ ∈ P̃1 implies Q1 = P ′
1 ∈ P̃1 and P ′ = P ′

1[Φ]. Then urgent(P ′{P/x}, A) =
urgent(P ′

1{P/x},Φ−1(A))[Φ] = (urgent(P ′
1,Φ

−1(A)){P/x})[Φ] =

(urgent(P ′
1,Φ

−1(A))[Φ]){P/x} = urgent(P ′, A){P/x}.

Rec: Q = rec y.Q1. We have to consider two cases:

- x = y. Q{P/x} = Q and the items can be proved trivially.

- x 6= y. x guarded in Q implies x guarded in Q1 and Q{P/x} = rec y.(Q1{P/x}). By
induction hypothesis:

1. A(Q{P/x}, A) = A(Q1{P/x}, A) = A(Q1, A) = A(Q,A).

2. clean(Q{P/x}, A) = rec y.clean(Q1{P/x}, A) =
rec y.(clean(Q1, A){P/x}) = (rec y.clean(Q1, A)){P/x} =
clean(Q,A){P/x}.

4. Q = P ′ ∈ P̃1 implies Q1 = P ′
1 and P ′ = rec y.P ′

1. Then urgent(P ′{P/x}, A) =
rec y.urgent(P ′

1{P/x}, A) = rec y.(urgent(P ′
1, A){P/x}) =

(rec y.urgent(P ′
1, A)){P/x} = urgent(P ′, A){P/x}.

2

Lemma 8.10 Let Q,Q′ ∈ P̃ and A ⊆ A such that Q′ = clean(Q,A). Then:

1. clean(Q′, A) = Q′;

2. U(Q′, A) = ∅ implies Q′ ∈ P̃1.

Proof: We prove both items by induction on Q ∈ P̃.

Nil, Var: Q = nil, Q = x. In these cases Q′ = clean(Q,A) implies Q′ = Q. Moreover

1. clean(Q′, A) = Q′.

2. U(Q′, A) = ∅ and Q′ ∈ P̃1.

Pref: Q = α.P1 or Q = α.P1. We prove only the latter case, the former one is simpler. Consider
the following cases:

- α ∈ A. Then Q′ = α.P1 and clearly

1. clean(Q′, A) = α.P1 = Q′.

2. U(Q′, A) = ∅ and Q′ ∈ P̃1.

- α /∈ A. In this case Q′ = α.P1. Moreover α /∈ A implies

1. clean(Q′, A) = α.P1 = Q′.

2. U(Q′, A) = {α}.

Sum: Q = P1 + P2 or Q = P1 + P2. Again we prove only the latter case. Consider the following
cases:

- A(P1) ∪A(P2) ⊆ A. In this case Q′ = P1 + P2 and

1. clean(Q′, A) = P1 + P2 = Q′.

28

2. U(Q′, A) = ∅ and Q′ ∈ P̃1.

- A(P1) ∪A(P2) 6⊆ A. In this case Q′ = P1 + P2. Moreover A(P1) ∪A(P2) 6⊆ A implies

1. clean(Q′, A) = P1 + P2 = Q′.

2. U(Q′, A) = A(P1, A) ∪A(P2, A) = (A(P1) ∪A(P2))\A 6= ∅ (cf. 8.2-2)

Par: Q = Q1 ‖B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B. In this case
Q′ = clean(Q,A) implies Q′ = Q′

1 ‖B Q′
2 with Q′

i = clean(Qi, A ∪ Ai) for i = 1, 2. Moreover,
by Lemma 8.6-4, A1 = (A(Q′

1)\A(Q′
2)) ∩ B and A2 = (A(Q′

2)\A(Q′
1)) ∩ B. Thus:

1. clean(Q′, A) = clean(Q′
1, A ∪ A1) ‖B clean(Q′

2, A ∪ A2) = Q′
1 ‖B Q′

2 = Q′, by induction
hypothesis.

2. U(Q′, A) = U(Q′
1, A∪A1)∪U(Q′

2, A∪A2) = ∅ implies U(Q′
1, A∪A1) = U(Q′

2, A∪A2) = ∅.
By induction hypothesis Q′

1 ∈ P̃1, Q′
2 ∈ P̃1 and, hence, Q′ ∈ P̃1.

Rel: Q = Q1[Φ]. Q′ = Q′
1[Φ] where Q′

1 = clean(Q1,Φ
−1(A)).

1. By induction hypothesis clean(Q′, A) = clean(Q′
1,Φ

−1(A))[Φ] = Q′
1[Φ] = Q′.

2. U(Q′, A) = Φ(U(Q′
1,Φ

−1(A))) = ∅ implies U(Q′
1,Φ

−1(A)) = ∅. Thus, by induction
hypothesis, Q′

1 ∈ P̃1 and, hence, Q′ ∈ P̃1.

Rec: Q = rec x.Q1. Q′ = rec x.Q′
1 where Q′

1 = clean(Q1, A).

1. By induction hypothesis clean(Q′, A) = rec x.clean(Q′
1, A) = rec x.Q′

1 = Q′.

2. U(Q′, A) = U(Q′
1, A) = ∅ implies, by induction hypothesis, Q′

1 ∈ P̃1 and, hence, Q′ ∈ P̃1.

2

8.4 Properties of
α
−→ and

1
−→

The following two propositions relate A() to the operational semantics; they are needed in our
main proofs.

Proposition 8.11 Q
1
−→ Q′ 1

−→ implies Q = Q′ ∈ P̃1 and A(Q) = ∅.

Proof: Assume that Q
1
−→ Q′ 1

−→. Then, by Definition 2.5, Q,Q′ ∈ P̃1 and Q′ = urgent(Q).
Now, Q′ = urgent(Q) ∈ P̃1 and Proposition 8.8-1, Q′ = Q. Moreover urgent(Q) = Q implies, by
Proposition 8.8-3, A(Q) = ∅. 2

The following proposition will follow directly from Lemmas 8.13 and 8.14 stated below.

Proposition 8.12 Let Q ∈ P̃. Then Q
α
−→ if and only if α ∈ A(Q).

Lemma 8.13 Let P ∈ P̃1 and Q ∈ P̃ such that Q
α
−→. Then:

1. α ∈ A(Q);

2. x guarded in Q implies Q{P/x}
α
−→.

Proof: The proof is by induction on the depth of derivation Q
α
−→. We proceed by case analysis

on the structure of Q.

Nil, Var: Q = nil, Q = x. These cases are not possible since Q 6
α
−→ for any α.

29

Pref: Q = α.P1 or Q = α.P1. In both case Q
α
−→. Moreover:

1. α ∈ A(Q) = {α}.

2. x is guarded in Q and either Q{P/x} = α.P1{P/x} or Q{P/x} = α.P1{P/x}. In both
cases Q{P/x}

α
−→.

Sum: Q = P1 ⊕P2 (where ⊕ ∈ {+, + }). Q
α
−→ implies either (i) P1

α
−→ or (ii) P2

α
−→. Consider the

(i)-case (the latter case can be proved similarly). By induction hypothesis:

1. α ∈ A(P1) ⊆ A(Q).

2. x guarded in Q and, hence, in P1 implies P1{P/x}
α
−→. By operational semantics

Q{P/x} = P1{P/x} ⊕ P2{P/x}
α
−→.

Par: Q = Q1 ‖B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B. Assume Q
α
−→

and consider the following cases:

- α /∈ B and Q1
α
−→. By induction hypothesis:

1. α ∈ A(Q1). Moreover, since α /∈ B clearly implies α /∈ A1, by Lemma 8.2-2 we have
that α ∈ A(Q1, A1) ⊆ A(Q).

2. x guarded in Q and, hence, in Q1 implies Q1{P/x}
α
−→. Then, by operational

semantics, Q{P/x} = Q1{P/x} ‖B Q2{P/x}
α
−→.

- α /∈ B and Q2
α
−→. Similar to the previous case.

- α ∈ B and Qi
α
−→ for i = 1, 2. By induction hypothesis:

1. α ∈ A(Q1) and α ∈ A(Q2). Thus, clearly, α /∈ A1 and, as in the previous case,
α ∈ A(Q1, A1) ⊆ A(Q).

2. x guarded in Q and, hence, in Qi implies Qi{P/x}
α
−→ for i = 1, 2. Thus, again by

operational semantics, Q{P/x} = Q1{P/x} ‖B Q2{P/x}
α
−→.

Rel: Q = Q1[Φ]. Q
α
−→ if there exists β ∈ Φ−1(α) such that Q1

β
−→. By induction hypothesis:

1. β ∈ A(Q1) and, hence, α = Φ(β) ∈ Φ(A(Q1)) = A(Q).

2. x guarded in Q and, hence, in Q1 implies Q1{P/x}
β
−→. By operational semantics,

Q{P/x} = (Q1{P/x})[Φ]
α
−→.

Rec: Q = rec y.Q1. Let P1 = unmark(Q1) and R = Q1{rec y.P1/y}. By operational semantics we
have that Q

α
−→ only if R

α
−→.

1. By induction hypothesis we have that α ∈ A(R). Moreover y guarded in Q1 and Lemma
8.9-1 implies A(R) = A(Q1{rec y.P1/y}) = A(Q1) = A(Q). Thus we can conclude that
α ∈ A(Q).

2. We have to consider to possible subcases. If x = y then x is guarded in Q, Q{P/x} = Q
and the statement follows easily. Assume x 6= y, x guarded in Q and hence in Q1,
and Q{P/x} = rec y.(Q1{P/x}) = rec y.S1, where S1 = Q1{P/x}. In this case, by
operational semantics, we have to prove that S = S1{rec y.unmark(S1)/y}

α
−→.

By Lemma 8.9-3 unmark(S1) = unmark(Q1{P/x}) = unmark(Q1){P/x} = P1{P/x}.
Thus S = S1{rec y. unmark(S1)/y} = S1{rec y. (P1{P/x})/y} =
(Q1{P/x}){rec y. (P1{P/x})/y} = (Q1{rec y. P1/y}){P/x} = R{P/x}. Moreover x
guarded in Q1 implies x guarded in P1 = unmark(Q1) and in R = Q1{rec y.P1/y}.
Finally, by induction hypothesis, R

α
−→ and x guarded in R implies that S = R{P/x}

α
−→.

30

2

Lemma 8.14 Let Q ∈ P̃ and α ∈ Aτ . If there exists A ⊆ A such that α ∈ A(Q,A) then Q
α
−→.

Proof: By induction on Q ∈ P̃.

Nil, Var: Q = nil, Q = x. In these cases A(Q,A) = ∅ for all A and Q 6
α
−→.

Pref: Q = α.P1 or Q = α.P1. Let A ⊆ A such that α /∈ A. Then α ∈ A(Q,A) and Q
α
−→.

Sum: Q = P1 ⊕P2 (where ⊕ ∈ {+, +}). Assume that there exists A ⊆ A such that α ∈ A(Q,A) =
A(P1, A) ∪ A(P2, A). We have either α ∈ A(P1, A) or α ∈ A(P2, A). Then, by induction
hypothesis, either P1

α
−→ or P2

α
−→. In both cases Q

α
−→.

Par: Q = Q1 ‖B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B and assume
that there exists A ⊆ A such that α ∈ A(Q,A) = A(Q1, A ∪ A1) ∪ A(Q2, A ∪ A2). Assume
α ∈ A(Q1, A ∪ A1). By induction hypothesis Q1

α
−→, and we have to consider the following

possible cases:

- α /∈ B. Then, by operational semantics, Q
α
−→.

- α ∈ B. In this case α ∈ A(Q1, A∪A1) and Lemmas 8.2-3 and 8.2-1 imply that α ∈ A(Q1)
and α /∈ A1. Thus α ∈ A(Q1) ∩ B such that α /∈ A1. We can conclude that α ∈ A(Q2)
and, again by induction hypothesis, Q2

α
−→. Finally, by operational semantics, Q

α
−→.

Similarly we can prove that α ∈ A(Q2, A ∪ A2) implies Q
α
−→.

Rel: Q = Q1[Φ]. Assume that there exists A ⊆ A such that α ∈ A(Q,A) = Φ(A(Q1,Φ
−1(A))).

Then there exists β ∈ Φ−1(α) such that β ∈ A(Q1,Φ
−1(A))). By induction hypothesis Q1

β
−→

and, by operational semantics, Q
α
−→.

Rec: Q = rec x.Q1. Let P1 = unmark(Q1). Assume that there exists A ⊆ A such that α ∈
A(Q,A) = A(Q1, A). By induction hypothesis we have that Q1

α
−→. Moreover x guarded in

Q1 and Lemma 8.13-2 implies Q1{rec x.P1/x}
α
−→. Finally, by operational semantics, Q

α
−→.

2

In the rest of this section, we prove a claim made in Section 2.

Lemma 8.15 Let Q ∈ P̃ such that Q
α
−→ Q′. Then:

1. clean(Q′) = Q′;

2. U(Q′) = ∅ implies Q′ ∈ P̃1.

Proof: Item 2 follows from Item 1 and Lemma 8.10-2. The proof of Item 1 is by induction on the
depth of derivation Q

α
−→ Q′. We proceed by case analysis on the structure of Q.

Nil, Var: Q = nil, Q = x. These cases are not possible since Q 6
α
−→ for all α.

Pref: Q = α.P1 or Q = α.P1. In both cases Q
α
−→ P1 ∈ P̃1 and, by Lemma 8.6-2, clean(P1) = P1

Sum: Q = P1 ⊕ P2 (where ⊕ ∈ {+, + }). Q
α
−→ Q′ implies either P1

α
−→ Q′ or P2

α
−→ Q′. In both

cases, by induction hypothesis, clean(Q′) = Q′.

31

Par: Q = Q1 ‖B Q2. By operational semantics Q
α
−→ Q′ implies Q′ = clean(R) for some R. Then,

by Lemma 8.10-1, clean(Q′) = Q′.

Rel: Q = Q1[Φ]. Q
α
−→ Q′ if there exists β ∈ Φ−1(α) such that Q1

β
−→ Q′

1 and Q′ = Q′
1[Φ]. By

induction hypothesis clean(Q′
1) = Q′

1. Thus clean(Q′) = clean(Q′
1)[Φ] = Q′

1[Φ] = Q′.

Rec: Q = rec y.Q1. Let P1 = unmark(Q1) and R = Q1{rec y.P1/y}. By operational semantics
Q

α
−→ Q′ only if R

α
−→ Q′. By induction hypothesis we have that clean(Q′) = Q′.

2

The final proposition of this section in combination with 8.1-2 implies that maximal sequences
of action- and time-transitions starting at some initial process are never finite.

Proposition 8.16 Let P0 ∈ P̃1 and Q0 = urgent(P0) ∈ P̃. Then Q0
α1−→ . . .

αn−−→ Qn and Qn 6
α
−→

implies Qn ∈ P̃1.

Proof: By Proposition 8.12 Qn 6
α
−→ implies A(Qn) = ∅ and hence, by Lemma 8.5-1, U(Qn) = ∅.

Now consider the following possible subcases:

- n = 0. Then Qn = Q0 = urgent(P0) and U(Qn) = ∅ implies, by Lemma 8.7-6, Qn = P0 and,
clearly, Qn ∈ P̃1.

- n ≥ 1. Then Qn−1
αn−−→ Qn and U(Qn) = ∅ implies, by Lemma 8.15-2, Qn ∈ P̃1.

2

32

9 Appendix B: A key property

This section is devoted to prove the following proposition that states a key property for our main
correspondence results.

Proposition 9.1 Let P0 ∈ L(P̃1) and Q0 ∈ L(P̃) such that Q0 = urgent(P0). Then Q0
α1−→ . . .

αn−−→
Qn implies:

1. UC(Qi+1) ⊆ UC(Qi) for every i ∈ [0, n − 1]. Moreover, UC(Qn) = ∅ implies Qn ∈ L(P̃1);

2. (LC(Q0) ∩ . . . ∩ LC(Qn))\UC(Qn) = ∅.

A series of results will lead to a detailed proof that can be found at the end of this section.
First of all, the following facts (that have been proved in [6]) are an immediate consequence of the
labelling.

Fact 9.2 Let P ∈ Lu(P̃). Then

1. no label occurs more than once in P ,

2. w ∈ LAB(P) implies u ≤ w.

Fact 9.3 Let P ∈ Lu(P̃) and α, α1, . . . αn ∈ Aτ .

1. P
α
−→ Q implies Q ∈ Lv(P̃) with u ≤ v.

2. P
α1−→ P1

α2−→ . . .
αn−−→ Pn implies Pi ∈ Lvi

(P̃) with u ≤ vi. Moreover, if w ∈ LAB such that
w < u then w /∈ LAB(Pi).

The first proposition we state relates live components and activated actions in a process term.

Lemma 9.4 Let Q ∈ L(P̃) and A ⊆ A. Then:

1. LC(Q,A) = ∅ iff A(Q,A) = ∅;

2. UC(Q,A) = ∅ iff U(Q,A) = ∅.

Proof: We prove, by induction on the structure of Q, only Item 1 (Item 2 can be proved similarly).

Nil, Var: Q = nilu, Q = xu. In these cases, we have that LC(Q,A) = A(Q,A) = ∅ for all A.

Pref: Q = αu.P1 or Q = αu.P1. In both cases LC(Q,A) = ∅ iff α ∈ A iff A(Q,A) = ∅.

Sum: Q = P1 ⊕u P2 (where ⊕ ∈ {+, + }). LC(Q,A) = ∅ iff LC(P1, A) = LC(P2, A) = ∅ iff, by
induction hypothesis, A(P1, A) = A(P2, A) = ∅ iff, by Definition 2.2, A(Q,A) = ∅.

Par: Q = Q1 ‖
u
B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B. LC(Q,A) = ∅

iff LC(Q1, A ∪ A1) = LC(Q2, A ∪ A2) = ∅ iff, by induction hypothesis, A(Q1, A ∪ A1) =
A(Q2, A ∪ A2) = ∅ iff, by Definition 2.2, A(Q,A) = ∅.

Rel: Q = Q1[Φu]. In this case we have that LC(Q,A) = LC(Q1,Φ
−1(A)) = ∅ iff, by induction

hypothesis, A(Q1,Φ
−1(A)) = ∅ iff A(Q,A) = Φ(A(Q1,Φ

−1(A))) = ∅.

Rec: Q = rec x.Q1. LC(Q,A) = LC(Q1, A) = ∅ iff, by induction hypothesis, A(Q,A) = A(Q1, A) =
∅.

33

2

An easy, but useful lemma, is the following.

Lemma 9.5 Let Q be a labelled process term. Then:

1. UC(Q,A) ⊆ LC(Q,A), for every A ⊆ A;

2. v ∈ LC(Q) implies v ∈ LAB(Q);

3. Q ∈ L(P̃1) implies UC(Q,A) = ∅, for every A ⊆ A.

Lemma 9.6 Let P ∈ L(P̃1), A,A′ ⊆ A and Q = urgent(P,A) ∈ L(P̃). Then A ⊆ A′ implies
UC(Q,A′) = LC(Q,A′).

Proof: By induction on the structure of P .

Nil, Var: P = nilu, P = xu. In these cases Q = P and UC(Q,A′) = LC(Q,A′) = ∅ for all A′ ⊆ A.

Pref: P = αu.P1 with P1 ∈ Lu1(P̃1). Consider the following cases:

- α /∈ A. In this case Q = αu.P1. If α /∈ A′ then UC(Q,A′) = LC(Q,A′) = {u}, otherwise
UC(Q,A′) = LC(Q,A′) = ∅.

- α ∈ A. In this case Q = αu.P1 and UC(Q,A′) = ∅ for all A′.For A ⊆ A′, we have α ∈ A′

and, by Definition 3.4 LC(Q,A′) = ∅.

Sum: P = P1 +u P2 with Pi ∈ Lui(P̃1) for i = 1, 2. Consider the following cases:

- (A(P1)∪A(P2))\A 6= ∅. In this case Q = P1+uP2. Moreover LC(P1, A
′)∪LC(P2, A

′) 6= ∅
implies UC(Q,A′) = LC(Q,A′) = {u}, otherwise UC(Q,A′) = LC(Q,A′) = ∅.

- (A(P1)∪A(P2))\A = ∅. In this case Q = P1 +u P2 and, by Definition 3.5, UC(Q,A′) = ∅
for all A′. For A ⊆ A′, we have (A(P1)∪A(P2))\A

′ ⊆ (A(P1)∪A(P2))\A = ∅. Moreover,
by Lemma 8.2-4, (A(P1) ∪ A(P2))\A

′ = A(Q)\A′ = A(Q,A′). Finally, A(Q,A′) = ∅
and Lemma 9.4-1 imply LC(Q,A′) = ∅.

Par: P = P1 ‖u
B P2. Let A1 = (A(P1)\A(P2) ∩ B and A2 = (A(P2)\A(P1) ∩ B. In this case

Q = Q1 ‖u
B Q2 with Qi = urgent(Pi, A ∪ Ai) for i = 1, 2. Since A ∪ Ai ⊆ A′ ∪ Ai for

i = 1, 2, we get by induction hypothesis: UC(Q,A′) = UC(Q1, A
′ ∪ A1) ∪ UC(Q2, A

′ ∪ A2) =
LC(Q1, A

′ ∪ A1) ∪ LC(Q2, A
′ ∪ A2) = LC(Q,A′).

Rel: P = P1[Φu]. Here Q = Q1[Φu] where Q1 = urgent(P1,Φ
−1(A)). Since Φ−1(A) ⊆ Φ−1(A′), we

get by induction hypothesis: UC(Q,A′) = UC(Q1,Φ
−1(A′)) = LC(Q1,Φ

−1(A′)) = LC(Q,A′).

Rec: P = recxu.P1. In this case Q = recxu.Q1 where Q1 = urgent(P1, A). By induction hypothesis
UC(Q,A′) = UC(Q1, A

′) = LC(Q1, A
′) = LC(Q,A′).

2

The following corollary states some properties of the urgent versions of initial processes that
can be derived directly from Lemmas 8.7 and 9.6.

Corollary 9.7 Let P ∈ L(P̃1), Q = urgent(P) ∈ L(P̃) and A ⊆ A. Then:

1. A(P,A) = A(Q,A);

34

2. P = unmark(Q) and clean(Q) = Q;

3. UC(Q,A) = LC(Q,A).

4. Q = P iff A(P) = A(Q) = ∅

Lemma 9.8 Let Q ∈ L(P̃) and A ⊆ A′ ⊆ A. Then UC(clean(Q,A), A′) = UC(Q,A′).

Proof: By induction on Q ∈ L(P̃).

Nil, Var: Q = nilu, Q = xu. In this case, for all A,A′ ⊆ A, UC(clean(Q,A), A′) = UC(Q,A′) = ∅.

Pref: Q = αu.P1 or P = αu.P1. The former case is simple; let us prove the latter one. Consider
the following subcases:

- α ∈ A. Then A ⊆ A′ implies α ∈ A′ and UC(clean(Q,A), A′) = UC(αu.P1, A) = ∅ =
UC(Q,A′).

- α /∈ A. In this case clean(Q,A) = Q and the statement easily follows.

Sum: Q = P1 +u P2 or Q = P1 + uP2. Again we only prove the latter case. Consider the following
subcases:

- A(P1)∪A(P2) ⊆ A. In this case A(Q) = A(P1)∪A(P2) and A ⊆ A′ implies A(Q) ⊆ A′

and, by Lemma 8.2-4, A(Q,A′) = A(Q)\A′ = ∅. Thus, by Lemma 9.4-1, LC(Q,A′) = ∅
and UC(Q,A′) ⊆ LC(Q,A′) (see Lemma 9.5) implies also UC(Q,A′) = ∅. Morever, by
Definition 2.3, UC(clean(Q,A), A′) = UC(P1 +u P2, A

′) = ∅.

- A(P1) ∪A(P2) 6⊆ A. In this case clean(Q,A) = Q and the statement easily follows.

Par: Q = Q1 ‖u
B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B, A2 = (A(Q2)\A(Q1)) ∩ B. By Definition

2.3, clean(Q,A) = clean(Q1, A ∪ A1) ‖
u
B clean(Q2, A ∪ A2) = Q′

1 ‖
u
B Q′

2. Moreover, by Lemma
8.6-4, A1 = (A(Q′

1)\A(Q′
2)) ∩ B and A2 = (A(Q′

2)\A(Q′
1)) ∩ B. Thus UC(clean(Q,A), A′) =

UC(Q′
1 ‖

u
B Q′

2, A
′) = UC(Q′

1, A
′ ∪ A1) ∪ UC(Q′

2, A
′ ∪ A2). Finally, A ∪ Ai ⊆ A′ ∪ Ai implies,

by induction hypothesis, UC(Q′
i, A

′ ∪ Ai) = UC(clean(Qi, A ∪ Ai), A
′ ∪ Ai) = UC(Qi, A

′ ∪ Ai)
and, hence, UC(clean(Q,A), A′) = UC(Q1, A

′ ∪ A1) ∪ UC(Q2, A
′ ∪ A2) = UC(Q,A′).

Rel: Q = Q1[Φu]. Since Φ−1(A) ⊆ Φ−1(A′), we get by induction hypothesis: UC(clean(Q,A), A′) =
UC(clean(Q1,Φ

−1(A))[Φu], A′) = UC(clean(Q1,Φ
−1(A)),Φ−1(A′)) = UC(Q1,Φ

−1(A′)) =
UC(Q,A′).

Rec: Q = rec xu.Q1. By induction hypothesis we have

UC(clean(Q,A), A′) = UC(rec xu.clean(Q1, A), A′) = UC(clean(Q1, A), A′) = UC(Q1, A
′) =

UC(Q,A′).

2

Corollary 9.9 Let Q ∈ L(P̃) and A ⊆ A. Then UC(clean(Q), A) = UC(Q,A).

Lemma 9.10 Let P ∈ L(P̃1), Q ∈ L(P̃), x ∈ X guarded in Q. Then UC(Q{|P/x|}, A) = UC(Q,A).

Proof: This statement can be proved similarly to Lemma 8.9 and its proof is omitted. 2

Lemma 9.11 Let Q,R ∈ L(P̃) and A ⊆ A such that Q = clean(R,A). Then:

35

1. UC(Q,A) = ∅ implies Q ∈ L(P̃1);

2. UC(Q,A′) ⊆ UC(Q,A) for all A′ ⊆ A;

3. Q
α
−→ Q′ implies UC(Q′, A′) ⊆ UC(Q,A) for all A′ ⊆ A.

Proof: We prove Items 1 and 2 by induction on R and Item 3 by induction on the depth of
derivation Q

α
−→ Q′. We proceed by case analysis on structure of R.

Nil, Var: R = nilu, R = xu. In these cases Q = clean(R,A) implies Q = R.

1. UC(Q,A) = ∅ and Q ∈ L(P̃1).

2. For all A′ ⊆ A we have UC(Q,A′) = ∅ = UC(Q,A).

3. This case is not possible since Q 6
α
−→.

Pref: R = αu.P1 or R = αu.P1. We prove only the latter case (the former one is simpler). Assume
Q = clean(R,A) and consider the following subcases:

- α /∈ A. Q = αu.P1 and UC(Q,A) = {u}.

1. This case is not possible since UC(Q,A) 6= ∅.

2. For all A′ ⊆ A we have UC(Q,A′) ⊆ {u} = UC(Q,A) (see Definition 3.5).

3. Q
α
−→ P1 ∈ L(P̃1). Then, by Lemma 9.5, UC(P1, A

′) = ∅ and, hence UC(P1, A
′) ⊆

UC(Q,A) for all A′ ⊆ A.

- α ∈ A. Q = αu.P1 and UC(Q,A) = ∅.

1. UC(Q,A) = ∅ and Q ∈ L(P̃1).

2. For all A′ ⊆ A we have that UC(Q,A′) = ∅ = UC(Q,A).

3. similar to case 3. above

Sum: R = P1 +u P2 or R = P1 +uP2. Again we prove only the latter case. Assume Q = clean(R,A)
and consider the following subcases:

- A(P1)∪A(P2) 6⊆ A. In this case Q = P1 + u P2 and there exists α ∈ Aτ such that either
α ∈ A(P1) and α /∈ A or α ∈ A(P2) and α /∈ A. Consider the former case (the latter
case is similar). α ∈ A(P1) and α /∈ A implies, by Lemma 8.2-2, α ∈ A(P1, A) 6= ∅ and
hence, by Lemma 9.4-1, LC(P1, A) 6= ∅. Finally, by Definition 3.5, UC(Q,A) = {u}.

1. This case is not possible since UC(Q,A) 6= ∅.

2. Again by Definition 3.5, for all A′ ⊆ A, UC(Q,A′) ⊆ {u} = UC(Q,A).

3. Q
α
−→ Q′ implies either P1

α
−→ Q′ or P2

α
−→ Q′. In both case Pi ∈ L(P̃1) and

Proposition 8.1 imply Q′ ∈ L(P̃1). Again by Lemma 9.5 we have that UC(Q′, A′) = ∅
and, clearly, UC(Q′, A′) ⊆ UC(Q,A) for all A′ ⊆ A.

- A(P1) ∪A(P2) ⊆ A. In this case Q = P1 +u P2 and UC(Q,A) = ∅.

1. UC(Q,A) = ∅ and Q ∈ L(P̃1).

2. As above UC(Q,A′) = ∅ = UC(Q,A) for all A′ ⊆ A.

3. similar to case 3. above

Par: R = R1 ‖u
B R2. Let A1 = (A(R1)\A(R2)) ∩ B and A2 = (A(R2)\A(R1)) ∩ B. In this case

Q = clean(R,A) implies Q = Q1 ‖
u
B Q2 where Qi = clean(Ri, A ∪ Ai) for i = 1, 2. Moreover,

by Lemma 8.6-4, we have that A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B.

1. UC(Q,A) = ∅ implies UC(Q1, A ∪ A1) = UC(Q2, A ∪ A2) = ∅. By induction hypothesis
Q1, Q2 ∈ L(P̃1) and, hence, Q ∈ L(P̃1).

36

2. Let A′ ⊆ A. By induction hypothesis we have that UC(Q1, A
′∪A1) ⊆ UC(Q1, A∪A1) and

UC(Q2, A
′∪A2) ⊆ UC(Q2, A∪A2). Thus UC(Q,A′) = UC(Q1, A

′∪A1)∪UC(Q2, A
′∪A2) ⊆

UC(Q1, A ∪ A1) ∪ UC(Q2, A ∪ A2) = UC(Q,A).

3. Assume that Q
α
−→ Q′ and consider the following cases:

- α /∈ B, Q1
α
−→ Q′

1 and Q′ = clean(Q′
1 ‖u

B Q2). Let A′
1 = (A(Q′

1)\A(Q2)) ∩ B and
A′

2 = (A(Q2)\A(Q′
1)) ∩ B. Let, moreover, A′ ⊆ A. By Corollary 9.9 we have that

UC(Q′, A′) = UC(Q′
1 ‖

u
B Q2, A

′) = UC(Q′
1, A

′ ∪ A′
1) ∪ UC(Q2, A

′ ∪ A′
2). Moreover:

- by induction hypothesis UC(Q′
1, A

′ ∪ A′
1) ⊆ UC(Q1, A ∪ A1), and

- by Item 2 UC(Q2, A
′ ∪ A′

2) ⊆ UC(Q2, A ∪ A2).

Thus UC(Q′, A′) ⊆ UC(Q1, A ∪ A1) ∪ UC(Q2, A ∪ A2) = UC(Q,A).

- α /∈ B, Q2
α
−→ Q′

2 and Q′ = clean(Q1 ‖
u
B Q′

2). Similar to the previous case.

- α ∈ B, Qi
α
−→ Q′

i, for i = 1, 2 and Q′ = clean(Q′
1 ‖u

B Q′
2). Let A′ ⊆ A. As

above UC(Q′, A′) = UC(Q′
1 ‖

u
B Q′

2, A
′) = UC(Q′

1, A
′ ∪ A′

1) ∪ UC(Q′
2, A

′ ∪ A′
2) where

A′
1 = (A(Q′

1)\A(Q′
2)) ∩ B and A′

2 = (A(Q′
2)\A(Q′

1)) ∩ B. Moreover, by induction
hypothesis, UC(Q′

1, A
′∪A′

1) ⊆ UC(Q1, A∪A1) and UC(Q′
2, A

′∪A′
2) ⊆ UC(Q2, A∪A2).

Thus UC(Q′, A′) ⊆ UC(Q1, A ∪ A1) ∪ UC(Q2, A ∪ A2) = UC(Q,A).

Rel: R = R1[Φu]. In this case Q = clean(R,A) implies Q = Q1[Φu] where Q1 = clean(R1,Φ
−1(A)).

1. UC(Q,A) = UC(Q1,Φ
−1(A)) = ∅ implies, by induction hypothesis, Q1 ∈ L(P̃1) and,

hence, Q ∈ L(P̃1).

2. By induction hypothesis UC(Q,A′) = UC(Q1,Φ
−1(A′)) ⊆ UC(Q1,Φ

−1(A)) = UC(Q,A)
for any A′ ⊆ A.

3. In this case Q
α
−→ Q′ if there exists β ∈ Φ−1(α) such that Q1

α
−→ Q′

1 and Q′ =
Q′

1[Φu]. Let A′ ⊆ A. Then, by induction hypothesis, UC(Q′, A′) = UC(Q′
1,Φ

−1(A′)) ⊆
UC(Q1,Φ

−1(A)) = UC(Q,A).

Rec: R = rec xu.R1. In this case Q = clean(R,A) implies Q = rec xu.Q1 where Q1 = clean(R1, A).

1. UC(Q,A) = UC(Q1, A) = ∅ implies, by induction hypothesis, Q1 ∈ L(P̃1) and, hence,
Q ∈ L(P̃1).

2. Let A′ ⊆ A. By induction hypothesis UC(Q,A′) = UC(Q1, A
′) ⊆ UC(Q1, A) = UC(Q,A).

3. Let P = unmark(Q1) and S = Q1{|rec xu.P/x|}
α
−→ Q′; x guarded in R1 implies x

guarded in Q1 = clean(R1, A) and, by Lemma 9.10, UC(S,A) = UC(Q1, A) = UC(Q,A).
Moreover x guarded in R1 and Lemma 8.9-2 imply S = Q1{|rec xu.P/x|} =

clean(R1, A){|rec xu.P/x|} = clean(R1{|rec xu.P/x|}, A). Now assume Q
α
−→ Q′. Then,

by operational semantics, we also have S
α
−→ Q′. By induction hypothesis UC(Q′, A′) ⊆

UC(S,A) = UC(Q,A) for any A′ ⊆ A.

2

Lemma 9.12 Let Q ∈ L(P̃) and A,A′ ⊆ A. Then v ∈ UC(Q,A) and v /∈ UC(Q,A′) implies
v /∈ LC(Q,A′).

Proof: By induction on the structure of Q.

Nil, Var: Q = nilu, Q = xu. These cases are not possible since UC(Q,A) = ∅ for all A.

37

Pref: Q = α.P1 or Q = αu.P1. Clearly only the latter case is possible. In this case v ∈ UC(Q,A)
implies α /∈ A and v = u. Thus v = u /∈ UC(Q,A′) implies α ∈ A′ and, hence, v /∈ LC(Q,A′) =
∅.

Sum: Q = P1 +u P2 or Q = P1 + uP2. Similar to the Pref-case.

Par: Q = Q1 ‖u
B Q2. Let A1 = (A(Q1)\A(Q2)) ∩ B and A2 = (A(Q2)\A(Q1)) ∩ B. Assume

v ∈ UC(Q,A), v /∈ UC(Q,A′) and consider the following cases:

1. v ∈ UC(Q1, A ∪ A1). In this case v /∈ UC(Q,A′) implies v /∈ UC(Q1, A
′ ∪ A1) and, by

induction hypothesis v /∈ LC(Q1, A
′ ∪A1). Moreover v ∈ UC(Q1, A ∪A1) and Fact 9.2-1

imply that v /∈ LAB(Q2) and, by Lemma 9.5-2, v /∈ LC(Q2, A
′ ∪ A2). Thus we can

conclude v /∈ LC(Q,A′).

2. v ∈ UC(Q2, A ∪ A2). Similar to the previous case.

Rel: Q = Q1[Φu]. By induction hypothesis v ∈ UC(Q,A) = UC(Q1,Φ
−1(A)) and v /∈ UC(Q,A′) =

UC(Q1,Φ
−1(A′)) implies v /∈ LC(Q1,Φ

−1(A′)) = LC(Q,A′).

Rec: Q = rec xu.Q1. By induction hypothesis v ∈ UC(Q,A) = UC(Q1, A) and v /∈ UC(Q,A′) =
UC(Q1, A

′) implies v /∈ LC(Q1, A
′) = LC(Q,A′).

2

Lemma 9.13 Let Q ∈ L(P̃) and A,A′ ⊆ A. Assume that Q
α
−→ Q′. Then v ∈ UC(Q,A) and

v /∈ UC(Q′, A′) implies v /∈ LC(Q′, A′).

Proof: The proof is by induction on the depth of derivation Q
α
−→ Q′. We proceed by case analysis

on the structure of Q.

Nil, Var: Q = nilu, Q = xu. These cases are not possible since Q 6
α
−→.

Pref: Q = α.P1 or Q = αu.P1. In this case Q
α
−→ Q′ = P1 ∈ Lu1(P̃1). Clearly, only the latter case

is possible. Moreover v ∈ UC(Q,A) implies α /∈ A and v = u. Thus u < u1 and Fact 9.2-2
give v /∈ LAB(P1) and, hence, v /∈ LC(Q′, A′).

Sum: Q = P1 +u P2 or Q = P1 + uP2. Similar to the Pref-case.

Par: Q = Q1‖
u
B Q2. Let A1 = (A(Q1)\A(Q2))∩B and A2 = (A(Q2)\A(Q1))∩B. Assume Q

α
−→ Q′

and consider the following case:

1. α /∈ B, Q1
α
−→ Q′

1 and Q′ = clean(Q′
1 ‖B Q2). Let A′

1 = (A(Q′
1)\A(Q2)) ∩ B and A′

2 =
(A(Q2)\A(Q′

1)) ∩ B. Now, assume v ∈ UC(Q,A), v /∈ UC(Q′, A′) = UC(Q′
1 ‖B Q2, A

′)
(by Corollary 9.9) and consider the following subcases:

1.1 v ∈ UC(Q1, A ∪ A1). In this case v /∈ UC(Q′, A′) implies v /∈ UC(Q′
1, A

′ ∪ A′
1). By

induction hypothesis v /∈ LC(Q′
1, A

′ ∪ A′
1). Moreover v ∈ UC(Q1, A ∪ A1) and Fact

9.2-1 imply that v /∈ LAB(Q2) and, by Lemma 9.5-2, v /∈ LC(Q2, A
′ ∪ A′

2). Thus we
can conclude v /∈ LC(Q′, A′).

1.2 v ∈ UC(Q2, A ∪ A2). In this case v /∈ UC(Q′, A′) implies v /∈ UC(Q2, A
′ ∪ A′

2) and,
by Lemma 9.12, v /∈ LC(Q2, A

′∪A′
2). Similar to the previous case we can prove that

v ∈ UC(Q2, A ∪ A2) implies v /∈ LC(Q′
1, A

′ ∪ A′
1) and, hence, v /∈ LC(Q′, A′).

2. α /∈ B, Q2
α
−→ Q′

2 and Q′ = clean(Q1 ‖B Q′
2). Similar to the previous case.

38

3. α ∈ B, Qi
α
−→ Q′

i, for i = 1, 2 and Q′ = clean(Q′
1 ‖B Q′

2).

Let A′
1 = (A(Q′

1)\A(Q′
2))∩B and A′

2 = (A(Q′
2)\A(Q′

1))∩B. Now, assume v ∈ UC(Q,A),
v /∈ UC(Q′, A′) = UC(Q′

1‖BQ′
2, A

′), by Corollary 9.9, and consider the following subcases:

3.1 v ∈ UC(Q1, A ∪ A1). In this case v /∈ UC(Q′, A′) implies v /∈ UC(Q′
1, A

′ ∪ A′
1). By

induction hypothesis v /∈ LC(Q′
1, A

′ ∪A′
1). Moreover, since Q1 ∈ Lw(P̃) with u1 ≤ w

by the labelling definition, we have that v ∈ UC(Q1, A∪A1) implies, by Lemma 9.5-2
and Fact 9.2-2, u1 ≤ w ≤ v. On the other hand, since Q2 ∈ Lw′(P̃) with u2 ≤ w′

(again by the labelling definition), Q2
α
−→ Q′

2 and by Fact 9.3 imply Q′
2 ∈ Lw′′(P̃)

with u2 ≤ w′ ≤ w′′. Thus, again by Fact 9.2-2, v /∈ LAB(Q2) and, as in the previous
cases v /∈ LC(Q2, A

′ ∪ A′
2). Thus we can conclude v /∈ LC(Q′, A′).

3.2 v ∈ UC(Q2, A ∪ A2). Similar to the previous case

Rel: Q = Q1[Φu]. In this case Q
α
−→ Q′ if there exists β ∈ Φ−1(α) such that Q1

α
−→ Q′

1 and
Q′ = Q′

1[Φu]. By induction hypothesis v ∈ UC(Q,A) = UC(Q1,Φ
−1(A)) and v /∈ UC(Q′, A′) =

UC(Q′
1,Φ

−1(A′)) implies v /∈ LC(Q′
1,Φ

−1(A′)) = LC(Q′, A′)

Rec: Q = rec xu.Q1. In this case Q
α
−→ Q′ if S = Q1{|rec xu.unmark(Q1)/x|}

α
−→ Q′. Now assume

v ∈ UC(Q,A) and v /∈ UC(Q′, A′). Since UC(Q,A) = UC(Q1, A) and, by Lemma 9.10, x
guarded in Q1 implies UC(Q1, A) = UC(S,A), we also have v ∈ UC(S,A) and v /∈ UC(Q′, A′).
Hence, by induction hypothesis, v /∈ LC(Q′, A′).

2

Now we are ready to prove the main result of this section.

Proposition 9.1 Let P0 ∈ L(P̃1), Q0 ∈ L(P̃) such that Q0 = urgent(P0). Then Q0
α1−→ . . .

αn−−→ Qn

implies

1. UC(Qi+1) ⊆ UC(Qi) for every i ∈ [0, n − 1]. Moreover, UC(Qn) = ∅ implies Qn ∈ L(P̃1);

2. (LC(Q0) ∩ . . . ∩ LC(Qn))\UC(Qn) = ∅.

Proof: We prove both items by induction on the length of derivation Q0
α1−→ . . .

αn−−→ Qn:

1. We distinguish two cases:

- n = 0. Assume UC(Qn) = UC(Q0) = ∅. Then, since UC(Q0) = LC(Q0) (see Corollary
9.7-3), we also have LC(Q0) = ∅ and, by Corollary 9.7-1 and Lemma 9.4-1, A(P0) =
A(Q0) = ∅. Finally, by Corollary 9.7-4, we can conclude that Q0 = P0 ∈ L(P̃1)

- n ≥ 1. Q0 = urgent(P0) and Corollary 9.7-2 imply that clean(Q0) = Q0. Moreover

Qj−1
αj
−→ Qj and Lemma 8.15-1 imply Qj = clean(Qj) for every j ∈ [1, n]. Now, let

i ∈ [0, n − 1]. By Lemma 9.11-3, Qi = clean(Qi) and Qi
αi+1

−−−→ Qi+1 implies UC(Qi+1) ⊆
UC(Qi). Moreover Qn = clean(Qn) and UC(Qn) = ∅ implies Qn ∈ L(P̃1) (by 9.11-1).

2. As in the previous item we have two cases to consider:

- n = 0. Again Qn = Q0. Thus, (LC(Q0)∩ . . .∩ LC(Qn))\UC(Qn) = LC(Q0)\UC(Q0) = ∅,
by Corollary 9.7-3.

- n ≥ 1. Assume Q0
α1−→ . . .

αn−−→ Qn, and, by contradiction, v ∈ LC(Q0) ∩ . . . ∩ LC(Qn)
but v /∈ UC(Qn). By Corollary 9.7-3, LC(Q0) = UC(Q0). Thus we have that v ∈ UC(Q0)
and v /∈ UC(Qn). Now, let i be the smallest index in [1, n] such that v /∈ UC(Qi). By

Lemma 9.13, Qi−1
αi−→ Qi, v ∈ UC(Qi−1) and v /∈ UC(Qi) imply v /∈ LC(Qi) and, hence,

v /∈ LC(Q0) ∩ . . . ∩ LC(Qn), contradicting the hypothesis.

2

39

10 Appendix C: Proofs of Statements in Section 4

There is one more proposition needed for the main proofs that we have postponed:

Lemma 10.1 Let Q ∈ L(P̃) and P = unmark(Q) ∈ L(P̃1). Then

1. LC(Q,A) = LC(P,A);

2. Q
α
−→ Q′ implies P

α
−→ P ′ and P ′ = unmark(Q′);

3. P
α
−→ P ′ implies Q

α
−→ Q′ and P ′ = unmark(Q′).

Proof: We prove Item 1 by induction on Q ∈ L(P̃) and Item 2 by induction on derivation Q
α
−→ Q′.

The proof of Item 3 is omitted since it is similar to the proof of Item 2. We proceed by case analysis
on the structure of Q

Nil, Var: Q = nilu, Q = xu. In these case P = unmark(Q) implies P = Q.

1. LC(Q,A) = LC(P,A) = ∅.

2. This case is not possible since Q 6
α
−→.

Pref: Q = αu.P1 or Q = αu.P1. In both cases P = unmark(Q) = αu.P1

1. α /∈ A implies LC(Q,A) = LC(P,A) = {u}; otherwise LC(Q,A) = LC(P,A) = ∅.

2. Q
α
−→ P1, P

α
−→ P1 and, by Lemma 8.6-2, P1 ∈ L(P̃1) implies P1 = unmark(P1).

Sum: Q = P1 +u P2 or Q = P1 + uP2. In both cases P = unmark(Q) = P1 +u P2.

1. LC(P1, A) ∪ LC(P2, A) 6= ∅ implies LC(Q,A) = LC(P,A) = {u}; otherwise LC(Q,A) =
LC(P,A) = ∅.

2. Q
α
−→ Q′ if either P1

α
−→ Q′ or P2

α
−→ Q′. In both cases Pi ∈ L(P̃1) and Proposition 8.1

implies Q′ ∈ L(P̃1). As in the Pref-case Q′ = unmark(Q′).

Par: Q = Q1 ‖
u
B Q2. In this case P = unmark(Q) implies P = P1 ‖

u
B P2 where Pi = unmark(Qi) for

i = 1, 2.

1. Let A1 = (A(P1)\A(P2)) ∩ B = (A(Q1)\A(Q2)) ∩ B and A2 = (A(P2)\A(P1)) ∩ B =
(A(Q2)\A(Q1))∩B (see Lemma 8.6-4). By induction hypothesis LC(Q,A) = LC(Q1, A∪
A1) ∪ LC(Q2, A ∪ A2) = LC(P1, A ∪ A1) ∪ LC(P2, A ∪ A2) = LC(P,A).

2. Assume that Q
α
−→ Q′ and consider the following cases:

- α /∈ B, Q1
α
−→ Q′

1 and Q′ = clean(Q′
1 ‖

u
B Q2). By induction hypothesis P1

α
−→ P ′

1 and

P ′
1 = unmark(Q′

1). Moreover, P1 ∈ L(P̃1) and P1
α
−→ P ′

1 imply (by Proposition 8.1-2)

P ′
1 ∈ L(P̃1) and, hence, P ′

1‖
u
B P2 ∈ L(P̃1). Thus P

α
−→ clean(P ′

1‖
u
B P2) = P ′

1‖
u
B P2 = P ′

and P ′ = unmark(Q′
1)‖

u
B unmark(Q2) = unmark(Q′

1‖
u
B Q2) = unmark(Q′) by Lemmas

8.6-2 and 8.6-3.

- α /∈ B, Q2
α
−→ Q′

2 and Q′ = clean(Q1 ‖
u
B Q′

2). Similar to the previous case.

- α ∈ B, Qi
α
−→ Q′

i for i = 1, 2, and Q′ = clean(Q′
1 ‖u

B Q′
2). By induction hypoth-

esis Pi
α
−→ P ′

i and P ′
i = unmark(Q′

i) for i = 1, 2. Moreover, as in the previous

cases, P ′
1, P

′
2 ∈ L(P̃1) and, hence, P ′

1 ‖
u
B P ′

2 ∈ L(P̃1). Thus P
α
−→ clean(P ′

1 ‖u
B P ′

2) =
P ′

1‖
u
BP ′

2 = P ′ and P ′ = P ′
1‖

u
BP ′

2 = unmark(Q′
1)‖

u
Bunmark(Q′

2) = unmark(Q′
1‖

u
BQ′

2) =
unmark(Q′) again by Lemmas 8.6-2 and 8.6-3.

40

Rel: Q = Q1[Φ]. In this case P = unmark(Q) implies P = P1[Φ] where P1 = unmark(Q1).

1. By induction hypothesis we have that LC(Q,A) = LC(Q1,Φ
−1(A)) =

LC(P1,Φ
−1(A)) = LC(P,A).

2. In this case Q
α
−→ Q′ only if there exists β ∈ Φ−1(α) such that Q1

β
−→ Q′

1 and Q′ = Q′
1[Φu].

By induction hypothesis P1
β
−→ P ′

1 and P ′
1 = unmark(Q′

1). Thus P
α
−→ P ′

1[Φu] = P ′ and
P ′ = P ′

1[Φu] = unmark(Q′
1)[Φu] = unmark(Q′

1[Φu]) = unmark(Q′).

Rec: Q = rec x.Q1. In this case P = unmark(Q) implies P = rec x.P1 where P1 = unmark(Q1).

1. By induction hypothesis we have that LC(Q,A) = LC(Q1, A) = LC(P1, A) = LC(P,A).

2. Let S = Q1{|rec xu.unmark(Q1)/x|} = Q1{|rec xu.P1/x|} and R = unmark(S). Then x
guarded in Q1 implies R = unmark(Q1{|rec xu.P1/x|}) = unmark(Q1){|rec xu.P1/x|} =
P1{|rec xu.P1/x|} (see Lemma 8.9-3).

Now assume that Q
α
−→ Q′ and, by operational rules, S

α
−→ Q′. By induction hypoth-

esis we have that R
α
−→ P ′ and P ′ = unmark(Q′). Finally R

α
−→ P ′ implies, again by

operational rules, P
α
−→ P ′.

2

Proposition 4.1 Let P0 ∈ L(P1), Q0 = urgent(P0) and v = α1 . . . αn ∈ A
∗
τ . Then:

1. P0
v
−→LC(P0) Pn implies Q0

v
−→ Pn;

2. Q0
v
−→ Qn and UC(Qn) = ∅ implies P0

v
−→LC(P0) Qn.

Proof:

1. Assume that P0
v
−→LC(P0) Pn. Then, by definition of an LC-step, P0

α1−→ . . .
αn−−→ Pn and

LC(P0) ∩ . . . ∩ LC(Pn) = ∅. Now:

- By Corollary 9.7-2 P0 = unmark(Q0). Thus Lemmas 10.1-3 and 10.1-1 imply that

Q0
α1−→ . . .

αn−−→ Qn, LC(Q0) ∩ . . . ∩ LC(Qn) = ∅ and Pn = unmark(Qn). Moreover, since
UC(S) ⊆ LC(S) for a generic S (see Lemma 9.5), we also have UC(Q0)∩. . .∩UC(Qn) = ∅.

- Q0 = urgent(P0) and Q0
α1−→ . . .

αn−−→ Qn imply, by Proposition 9.1-1, UC(Qn) ⊆
UC(Qn−1) ⊆ . . . ⊆ UC(Q0) and, hence, UC(Qn) = UC(Q0) ∩ . . . ∩ UC(Qn) = ∅. Fi-
nally, Proposition 9.1-1 and UC(Qn) = ∅ imply Qn ∈ L(P̃1) and Pn = unmark(Qn) = Qn

(by Proposition 8.8-2).

We can conclude that Q0
v
−→ Pn.

2. Assume that Q0
α1−→ . . .

αn−−→ Qn and UC(Qn) = ∅. Then:

- by Propositions 9.1-1 and 9.1-2, UC(Qn) = ∅ implies Qn ∈ L(P̃1) and LC(Q0) ∩ . . . ∩
LC(Qn) = (LC(Q0) ∩ . . . ∩ LC(Qn))\UC(Q0) = ∅.

- as in the previous item, P0 = unmark(Q0) and by Lemmas 10.1-2 and 10.1-1, we also

have that P0
α1−→ . . .

αn−−→ Pn, Pn = unmark(Qn) and LC(P0) ∩ . . . ∩ LC(Pn) = ∅.

Then P0
v
−→LC(P0) Pn and Pn = unmark(Qn) = Qn (again by Proposition 8.8-2).

41

2

Theorem 4.4 Let P0 ∈ L(P1) and v0, v1, v2 . . . ∈ (Aτ)
∗. Then:

1. For any finite fair-step sequence from P0

P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pn−1
vn−1
−−−→LC(Pn−1) Pn

there exists a timed execution sequence

P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−−→ Pn
1
−→ Qn

1
−→ Qn . . .

2. For any timed execution sequence from P0

P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−−→ Pn
1
−→ Qn

1
−→ Qn . . .

the following is a finite fair-step sequence:

P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pn−1
vn−1

−−−→LC(Pn−1) Pn

Proof:

1. Assume P0
v0−→LC(P0) P1

v1−→LC(P1) P2 . . . Pn−1
vn−1

−−−→LC(Pn−1) Pn and Pn 6
α
−→ for any α ∈ Aτ .

Let i ∈ [0, n − 1]. Then Pi
vi−→LC(Pi) Pi+1 implies for Qi = urgent(Pi) that Qi

vi−→ Pi+1 by

Proposition 4.1-2; thus, Pi
1
−→ Qi

vi−→ Pi+1 by Definition 2.5. Moreover Pn 6
α
−→ for any α ∈ Aτ

implies, by Proposition 8.12, A(Pn) = ∅. Finally A(Pn) = ∅ and Proposition 8.8-3 imply for

Qn = urgent(Pn) that Qn = Pn
1
−→ Qn.

2. Assume that P0
1
−→ Q0

v0−→ P1
1
−→ Q1

v1−→ P2 . . . Pn−1
1
−→ Qn−1

vn−1

−−−→ Pn
1
−→ Qn

1
−→ Qn . . .

Let i ∈ [0, n − 1]. Then Qi
vi−→ Pi+1 implies Pi

vi−→LC(Pi) Pi+1 by Proposition 4.2-1. Moreover,

Pn
1
−→ Qn

1
−→ Qn . . . implies Pn = Qn and A(Pn) = ∅ by Proposition 8.11. Thus, by

Proposition 8.12, we have that that Pn 6
α
−→ for any α ∈ Aτ .

2

42

