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Abstract

The success of the World Wide Web is boosting the development of mul-
timedia database systems and their integration into the internet. For the
documents stored and exchanged in the Web there is a variety of multime-
dia data formats differing in aspects such as resolution, sampling rate, and
compression. Furthermore there is a large heterogeneity of Web browsers,
the data formats they support, and their network access. Thus storage
servers have to store and proxy servers have to transfer many different
formats.

However, the data formats are not independent from each other but in-
terrelated by conversion tools. There is a large number of alternatives for
storage and proxy servers to store some formats or to transfer them via
the network and to compute the remaining ones by applying conversion
tools. To determine an optimal choice is a nontrivial optimization problem
and is subject to changes of the parameters such as query profile, available
disk storage, and network bandwidth. We examine the outlined optimiza-
tion problem in the context of object-oriented databases and illustrate our
approach by a practical application.

1 Introduction

The integration of multimedia data such as images, audio, video, and full text is a
significant trend of today’s information system. This development was promoted
by the phenomenal success of the internet and its most important application,
the World Wide Web, bringing multimedia documents to one’s fingertips. The



Web can be characterized as a worldwide collection of document servers delivering
(multimedia) documents to the clients.

As the data volume accessible from the participating servers increases by an
enormous rate, it becomes obvious to take advantage of the well-known virtues
of database systems considering the efficient and secure storage and adminis-
tration of huge amounts of data . Consequently, multimedia database systems
and the integration into the Web are hot topics in database theory and system
development [KB96, SSe96].

The major drawback of the current World Wide Web is its often complained lack
of bandwidth (the “World Wide Wait”). The caching of documents by proxy
servers and establishing hierarchies of such servers can only mitigate this nuisance
by reducing wide area network accesses. On the other hand, the information
exchanged and stored within the Web is often redundant. There exists a variety
of multimedia data formats which are interrelated by conversion tools and may
differ in aspects such as compression (none, lossless, or lossy), color depth and
resolution for images, or the sampling rate for audio. The set of multimedia
formats supported by the particular browsers varies as well (the Web transport
protocol draft HTTP/1.1 [FGM™96] even optionally offers content negotiation:
clients can specify their preferences). The consequence is a redundant storage of
the multimedia documents at the storage server and a non-optimal exchange of
them.

This paper proposes to integrate the conversion tools into storage and proxy
servers aiming at a dynamic optimization of multimedia document exchange.
Formally this can be done by representing these tools as functional constraints
on the attributes of an object-oriented schema design. This gives the option either
to physically represent an attribute (by storing it or accessing it via the network)
or to compute it from other ones. This approach both reduces the data volume
and relieves the networks. Given a set of conversion tools for a particular server
there is, in general, more than one way of partitioning the formats into physically
represented and computed ones. By applying a cost function each server locally
determines its optimal choice considering aspects such as storage consumption,
network bandwidth, and complexity of the conversions. We will demonstrate that
this optimization is a non-trivial task that cannot be done manually and must
be performed periodically since the parameters of the cost function may change
depending on the access profile (e.g. the server can use statistical data for this
purpose).

The rest of this paper is organized as follows: Section 2 illustrates our approach
by a practical application, a retrieval and delivery system for journal articles,
and presents an object-oriented database design for it. In Section 3 we abstract
from the application and formally describe the optimization problem for object-
oriented databases with functional constraints. Section 4 discusses search space
reductions for the optimization problem and Section 5 examines a cost function



by means of several scenarios. Section 6 summarizes the contributions of this
paper and sketches possible extensions.

2 A Sample Application

We will illustrate our approach by the document exchange subsystem of the
digital library project ELEKTRA. The ELEKTRA project aims at the retrieval
and delivery of digitized journal articles. The retrieval of the papers is based on
the bibliographic data as well as on the full text of the tables of contents and
the first pages of the articles. Query results are raster image representations of
the first pages of the selected papers and their bibliographic data. Authorized
users can order the raster images of complete articles which are delivered both in
a browsable and in a printable format.

Technically the ELEKTRA system is based on the distributed multimedia data-
base system TransBase/Myriad [Tra96]. For copyright reasons each participating
library operates two strictly separated databases: one for the retrieval containing
the bibliographic data and the first pages of all articles and the other one for
order and delivery. Papers are included into the delivery DB on demand only,
i.e., not yet available articles are scanned by an operator. Standard Web browsers
are employed as user interface to the system and specialized proxy servers which
perform caching and format conversions are used (the proxy servers are separate
also due to copyright restrictions).

In the ELEKTRA project browsable and printable representations of a document
are distinguished for the following reasons:

e Resolutions higher than 150 dpi are not appropriate for today’s standard
displays. For zooming into a page ELEKTRA additionally offers 300 dpi as
resolution.

e Printing, however, should be done with at least 300 dpi ([TUL] strongly
advocates this claim).

e The built-in printing facilities of today’s Web browsers are inappropriate.
They do not optimize the conversion of raster images to a print format
what can result in print jobs of 100 MB and more for a twenty page paper.
Scaling of the images to the correct printer page size is another critical issue
not handled very well.

In general, journal articles contain greyscale or even color illustrations. For such
pages we decided to offer two raster images: a black-and-white (B/W) image
and a color image. The B/W image is for reading the text; a lossless graphic
format is used for this. The color image is for viewing the illustrations; a lossy
graphic format is used for that. To satisfy the needs of all the different clients



‘ H text pages ‘ illustration pages

browsing || GIF GIF
(150 dpi) || PNG PNG
JPG
zooming || GIF GIF
(300 dpi) || PNG PNG
JPG
printing || PS PS
(300 dpi) || PS_LZW PS_DCT
PDF PDF
PDF_LZW | PDF_DCT
(faxing) || G4

Table 1: Formats supported in ELEKTRA

the raster image and printing formats summarized in Table 1 are supported by
the ELEKTRA system. PNG (Portable Network Graphics) [PNG] was developed
as a successor of the popular GIF format. G4 (International Telecommunications
Union (ITU; formerly known as CCITT) Fax Group IV encoding scheme) is used
for faxing B/W pages as a special case of printing. The raster image components
of PostScript (Level 2 and higher [Pos90]) or PDF files can be compressed. The
internal interpreter of the printer will then perform the decompression. For B/W
images the lossless Lempel-Zif-Welch (LZW) algorithm and for greyscale and
color images the lossy discrete cosine transform (DCT) technique, based on the
JPEG standard, are employed.

A simplified object-oriented database design [BM93, Cat94] of the ELEKTRA sys-
tem is depicted in Figure 1 (using the ODMG-93 notation [Cat94]). We neglect
the methods except those to access the image formats of pages. Journals, jour-
nal numbers, articles, and pages are modeled by the classes journal, journal
number, article, and page. Journals consist of journal numbers and numbers
contain articles. This is formalized by a 1:n relationships between journal and
journal number and between journal and article. Articles are composed of
pages and the numbers themselves contain own pages such as the table of con-
tents. Again this is expressed by 1:n relationships. The image representations of
pages are modeled as objects of the abstract class image with the disjoint sub-
classes text image and illustration image. As discussed above, a page may
have one or two image representations. This is represented by a 1:n relationship
between the classes page and image. One image representation is for reading and
the other one is for viewing the illustrations. They are formalized as objects of
classes text image and illustration image (modeling multimedia data as ob-
jects is also done by [Mas91]). In the sequel we will concentrate on the taxonomy
of the class image and its subclasses text image and illustration image.
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Figure 1: The schema design of ELEKTRA

The graphic formats supported in the ELEKTRA system are modeled as attributes
of those classes such are PPM300 and PS. Their types are (typed) BLOBS. Fol-
lowing the ODMG standard [Cat94, Sec. 2.4.1], we assume that attributes are
accessed via methods such as get_value and set_value only (nevertheless an
attribute may be referenced by its name; this can be realized by a simple prepro-
cessor). This is also in the spirit of [Mey88] who does not distinguish attribute
from methods at all denoting both of them as features). The exclusive access
of attributes through methods enhances the physical data independence of the
model. The decision whether to physically represent an attribute or to com-
pute it is transparent to the application programs; this choice can be subject to
changes. Additional to the formats of Table 1 we introduce attributes PPM300,
PPM150, PBM300, and PBM150 for the Portable Pixmap and Bitmap formats of Jef
Poskanzer at the resolutions 150 dpi and 300 dpi. These attributes are used for
format conversions.

The supported graphic formats are strongly interrelated by tools such as the
NetPPM suite by Jef Poskanzer and other ones. For example a 300 dpi GIF
image can be converted to 150 dpi. Furthermore, there are tools for transforming
GIF, PNG, and JPG into each other, and to translate each of them into PostScript,
PDF, or G4. We model those dependencies amongst the attributes as functional
constraints. Like attributes, functional constraints are inherited by subclasses
(see [KKK96]). Table 2 lists a set of constraints that are typically available.
However, as the storage servers and the proxy servers operate in a heterogeneous
environment the set of available conversion tools (and consequently the set of
functional constraints) is individual for each particular server.

The optimization problem that arises from this database design of the ELEKTRA
system can be stated as follows. Given a set of functional constraints on the
attributes of a particular ELEKTRA server (storage or proxy), what is an optimal



image

browsing and zooming:

GIF150 = ppm2gif (PPM150)
PNG150 = ppm2png(PPM150)
PPM150 = gif2ppm(GIF150)
PPM150 = png2ppm(PNG150)
GIF300 = ppm2gif (PPM300)
PNG300 = ppm2png(PPM300)
PPM300 = gif2ppm(GIF300)
PPM300 = png2ppm(PNG300)
GIF150 = gifreduce(GIF300)
PNG150 = pngreduce (PNG300)

printing:

PS = pdf2ps (PDF)

PDF = ps2pdf (PS)

PS = ppm2ps (PPM300)
PDF = ppm2pdf (PPM300)
PS = png2ps (PNG300)
PDF = png2pdf (PNG300)

text image

illustration image

browsing and zooming:

browsing and zooming:

PPM300=pbm2ppm (PBM300)
PPM150=pbm2ppm (PBM150)

printing:

PS_LZW = LZWEncode (PS)
PDF_LZW = LZWEncode (PDF)
PS = LZWDecode (PS_LZW)
PDF = LZWDecode (PDF_LZW)

JPG300 = png2jpg(PNG300)
PNG300 = jpg2png(JPG300)
JPG150 = png2jpg(PNG150)
PNG150 = jpg2png(JPG150)
printing:

faxing:
G4 = ppm2g4 (PBM300)
G4 = png2g4 (PNG300)

PS_DCT = DCTEncode (PS)
PDF_DCT = DCTEncode (PDF)
PS = DCTDecode (PS_DCT)
PDF = DCTDecode (PDF_DCT)

Table 2: Functional constraints induced by conversion tools




partition of attributes into those that are physically represented and the attributes
computed from the physically represented ones? Let us illustrate the optimization
problem by the following case study. More elaborate scenarios are discussed in
Section 5.

Example 1

Assume that a storage server receives many requests for text images in the G4 fax
format (i.e., many users apply their fax machines as output device). We observed
that the conversion from graphic formats such as PBM to G4 is very expensive (We
measured 235 seconds on a Intel 486/DX4 with 48 MB main storage under Linux
1.99.4 for an average image). Depending on the cost function, this computation
costs can outweigh the storage costs (130 kByte for an average image) of the G4
format and the optimization process on the server decides to additionally store
this format. However, as the number of users requesting the fax format decreases
the additional storage costs for G4 outweigh the computation costs and a new
optimization decides to compute G4 instead of storing it.

As the optimization will depend on statistical data collected by the servers and
is repeated periodically, this kind of optimization should be done automatically.

3 The Optimization Problem

The ELEKTRA system is only one instance of the following more general setting:
Let the attributes A of an object-oriented schema be interrelated by functional
constraints. The optimization problem treated in this paper is how to determine
an optimal partition of those attributes into physically represented A, and
computed ones A omp-

In [KKK96] we argue that functional constraints between attributes are not an
exceptional case. On the contrary, they evolve very naturally when ordering
the classes of an application taxonomically, i.e., according to their natural IS-A
relationship (note that in Figure 1 the class image and its subclasses form such
a taxonomy).

In the following we will formalize the notions and the optimization problem. At-

tributes model the properties of the instances of a class and functional constraints
are dependencies between these properties.

Definition 2 (Functional Constraints)
Let A be an attribute, X a set of attributes, and f a function. Then fec = (A =

f(X)) is called functional constraint. A and X are denoted as head (head(fc))
and body attributes (body(fc)).



Let F be a set of functional constraints. Then an attribute A depends directly
on an attribute B iff there is a fc = (A = f(X)) € F such that B € X. The
transitive closure, <, of this relation is denoted as dependency relation.

F is named acyclic if no attribute depends on itself.

Let F be acyclic. Then the compositions F of F are defined as follows:

1. FCF.

2. If (A= f(Ay,...,4,)) € Fand (4; = g(By,...,By)) € F, then (A =
f(Al,...’Ai717g(Bl7...7Bm)’A/L'+17...,An)) € f

F contains all the compositions of functional constraints from F. The definitions
of head or body attributes for such compositions is obvious. The composition of
(A= f(Ay,...,Ay)) and (A; = g(By,...,By)) is itself a functional constraint
(A = h(Al, e ;Ai—la Bl, ey Bm, AZ'_|_1, ey An))

In the sequel let A be a set of attributes of one class of the database model and F
be the set of constraints on A. A functional base of F is a subset partitioning the
attributes such that some are physically represented and the rest can uniquely
be computed by compositions of constraints.

Definition 3 (Functional Base)
Let Fiomp be a subset of F. Fiopmy is called a functional base iff:

1. Feomp is acyclic.

2. For every A € A there is at most one fc € Feopy such that A is the head of
fe.

Acomp s the set of head attributes of Feopmp, and Appys = A\ Agomp are the
remaining attributes.

The attributes A, must be physically represented (either be stored or accessed
via the network) and the attributes A m, are computed from attributes in Apy;.

Lemma 4

Let Feomp be acyclic. Then Feomp E a functional base iff for every A € Acomp
there is a unique composition fc, € F comp Such that A = head(fc,) and body(fc) C
Aphys-

Proof.

=  Feomp is acyclic. Therefore < is a noetherian partial ordering on A. Let
A € Appp. Since Feomy is a functional base there is a unique functional constraint
fe= A= f(X) € Feomp. Proof by noetherian ordering over <.

8



Let {A,...,An} == X N Agpmpy and Y := X N Apyys. By inductive hypothe-
sis there are unique A; = fi(X;) € Feomp such that X; C Apps. Then A =
F(i(X0), o [a(X0),Y) € Foomyp is unique as well.

= Let Femp be acyclic and A € Agmp. Then there is a unique fc €
Fecomp such that body(fc) C Apnys. If fc € Feomp there is nothing to show.
Otherwise let A = head(fc). Then by definition of F.m, we get fc = A =
f(A1, ..o, fi(XG), ..., Ap) such that A; € Ay, for j # i, A; € Agmp, and
X; C Appys and A = f(Ay,..., An) € Feomp- O

According to Lemma 4 only functional bases uniquely determine which attributes
are physically represented and how the other ones are computed.

Example 5
One possible base Fop, of the illustration image is

PPM300 = png2ppm(PNG300)
GIF300 = ppm2gif(PPM300)
GIF150 = gifreduce(GIF300)
PNG150 = pngreduce(PNG300)
PPM150 = gif2ppm(GIF150)
JPG300 = png2jpg(PNG300)
JPG150 = png2jpg(PNG150)
PS = ppm2ps(PPM300)

PDF = ps2pdf(PS)

PS_DCT = DCTEncode(PS)
PDF_DCT = DCTEncode(PDF)

The set Ayy,s of physically represented attributes contains PNG300 only, the set
Acomp of computed attributes contains all attributes occurring in the heads of
fcomp-

GIF150 = gifreduce(ppm2gif(png2ppm(PNG300))) is the unique composition
computing GIF150. On the system configuration described above we measured
about 30 seconds for this computation.

The optimization problem described above can formally be stated as follows:
Determine a functional base optimal w.r.t. a cost function.

Definition 6 (Optimal functional base)
Let cost be a cost function. A functional base F,,, is called optimal iff

cost(Fopt) =
min{ cost(Feomp) | Feomp i a functional base} .



Note that at least one optimal functional base exists since the empty set is always
a functional base and the number of functional bases is finite. In Section 5 we
discuss reasonable cost functions.

According to Lemma 4 only sets F,m, that contain at most one functional con-
straint A = f(X) for every attribute A € A must be tested for cycles. If F omp
is acyclic, then it is a functional base and the cost function cost is applied.

Algorithm 7 (Basic Optimization)
Let F4 € F be the set of constraints with head attribute A. Then the algorithm
depicted in Figure 2 determines an optimal functional base F,,, of F.

OFB(A, F, cost): (F,p, min)

begin
min := cost();
-,Fopt = Q);

for Feomp € F where
VA € A: |fcomp ﬂfA| <1
do
if Feomp is acyclic and
cost(Feomp) < min

then
min := cost(Feomp)
fopt = fcomp;
fi
done

end

Figure 2: Optimization Algorithm

The complexity of this basic optimization algorithm depends on the cardinalities
of the functional base and the set of attributes.

Lemma 8 (Complexity of Basic Optimization)
Let m := |F|, n:= |A|, and ma = |Fa| for A € A.

1. There are Maca(ma + 1) sets Feomp that are tested for cycles and (7 +1)"
18 an upper bound to this number.

2. Testing for cycles has a worst case complexity of O(m - n + n?).

3. So the worst case complexity of the basic optimization algorithm is
O((m-n+n?) - (2 +1)")
(note that the parameters m and n are in general independent).

10



4.

If m = c¢-n (there is a mazimal number ¢ of constraints per attribute) then
the worst case complezity is O(n? - (c+1)").

5 If m = n? (every attribute depends on all other ones) and there is a

mazimum number d of body attributes then the worst case complexity is

O(n?- (n+1)").

Proof.

O

1.

The product ITac4(ma + 1) under condition m = Y ,c4ma4 is an n — 1-
dimensional, two times continuously differentiable function. The gradient
equals zero, iff myq = mp, for all A, B € A. By induction it can be proved
that the negative Hessian is positive definite. Thus, (™ 4 1)" is a global
maximum of IT4¢4(ma + 1) under condition m = Y 4c 4 ma.

. Testing for cycles can be done by depth-first search (with adjacency matrix).

Constructing this matrix costs O(m - n), for m functional constraints each
of which defines at most n edges between the nodes A. The depth-first
search, itself, with adjacency matrix costs O(n?) [Sed88].

. An immediate consequence of 1 and 2.
. An immediate consequence of 3.

. An immediate consequence of 3.

We summarize that in reasonable cases (such as 4 and 5), the complexity of the
basic optimization algorithm is exponential or even hyper-exponential. In Section
4 we will discuss strategies to reduce this search space.

Example 9

For our sample application we have to test k := Il 4c4(ma+1) sets for cycles. We
observe that these numbers are remarkably better than the worst case (2 4 1)".

class m | n k (r+1"
image 16| 8 0184 6561
text image 24 | 13 | 172800 804190
illust. image |24 | 12 | 259200 531441

4 Search Space Reductions

The exponential or even hyper-exponential complexity of the basic optimization
algorithm seems prohibitive for large database designs. In this section we there-
fore examine possible search space reductions.

11



One of the most promising possibilities of reducing the search space is to partition
the set of functional constraints into simply connected components. W.l.o.g. we
assume that A does not contain attributes which do not occur in any constraint.
Those attributes must be physically represented and do not take part in the
optimization.

Definition and Lemma 10 (Components)

Let fe,, fc, € F. Then transitive closure of the binary relation

fer ~ fey : = (head(fe,) U body(fe,)) N (head(fe,) U body(fe,)) # 0

is an equivalence relation on F. This relation partitions F into the (simply

connected) components F = Fy U ... U Fy. Let A; := head(F;) U body(F;). Then
A=A U...UA,; is a partition of A.

Proof. Immediately from the definition. O

Example 11

The sets of functional constraints depicted in Table 2 consist of one component
only, viz. raster image formats. However, as more and more electronic journals
are published and as these journals may also contain video and audio sequences,
it will be necessary to integrate this kind of data into the ELEKTRA system. The
audio formats and the video formats are strongly interrelated as well but operate
on disjoint attribute sets. Thus the functional constraints of the image, audio,
and video formats form three components.

Partitioning of functional constraints can be used to compose functional bases of
the entire set from functional bases of the components.

Lemma 12

Let F := F,U...UF, be the components of F and A := A, U...U A, be the
corresponding partition of the attributes. Moreover let F omp C F.

Then Feomp is a functional base of F iff Feomp; := Feomp N Fi 18 a functional base
of Fi, 1 <i<k.

Proof.

—>  Let F,omp be a functional base of F. Then F,,, is acyclic on A, i.e., no
attribute A € A (and therefore A € A;) depends on itself. Removing constraints
does not add cycles. Thus F p,, is acyclic on A;. Fompy contains at most one
constraint A = f(X) for each A € A. Thus F,mp; contains at most one constraint
A = f(X) for each A € A; and 50 Fomy; is a functional base as well.

< Let Feomp, be a functional base of F;, 1 <4 < k. Then F,y,; is acyclic
on A;, i.e., no attribute A € A; depends on itself. Let fc € Feompjs J # 1, be a
constraint. Since the attributes of fe do not occur in A;, F; U {fe} is acyclic on

12



A; U head(fc) U body(fc). Thus Feomyp is acyclic on A. Feomp; contains at most one
constraint A = f(X) for every A € A;. Since the head attributes of constraints

fe € fcompj, J # 1, do not occur in A;, Foomp contains at most one constraint
A = f(X) for each A € A as well. O

In the sequel we concentrate on a reasonable class of cost functions.

Definition 13 (Additive cost functions)
A cost function cost is called additive iff cost(Feomp) = Y 1<i<k c0SUF comp;)-

Optimal bases for additive cost functions can be determined from optimal bases
of the components.

Lemma 14

Let Fopi; be optimal functional bases of F; and let cost be additive. Then Fop; =
Ui<i<k Fopt; 18 an optimal functional base of F.

Proof. An immediate consequence of Lemma 12 and Definition 13. O

Partitioning F into components in many cases reduces the worst case complexity
of the optimization tremendously. Partitioning itself can be done in almost linear
time (using the union-find algorithm, see e.g. [Sed88]); Algorithm 7 is then
applied to the smaller components.

Example 15

Imagine that the class text image contains 6 attributes for audio data inter-
related by 10 constraints. Then in the worst case we have to test 291,691,050
sets for cycles. After partitioning the constraints into two components, the audio
formats and the rest, we have to test 804,190 + 340 = 804,530 sets.

Further reductions such as the treatment of constant constraints A = const and
equalities A = B are examined in [Ste96]. This kind of constraints arise, e.g., in
CAD applications (see [KKK96]).

All these search space reduction guarantee the optimality of the selected func-
tional base. In many cases, however, it may be sufficient to find a good sub-
optimal solution (cmp. query optimization in database systems). This could be
accomplished by performing a heuristic search.

5 Cost Functions

The quality of the optimization result highly depends on an appropriate cost
function. In this section we discuss a rather simple sample cost function that
is modeling crucial aspects of the ELEKTRA system as illustrated by several

13



storage server proxy server proxy server client

disk access &
computation

net access &
computation

net access &
computation

Figure 3: Hierarchy of multimedia document exchange

scenarios. We think that the function is appropriate for many other applications
as well.

As depicted in Figure 3 in the ELEKTRA project two types of servers are used:
storage and proxy servers. The storage servers physically store documents and
deliver attributes of them on demand to proxy servers. Proxy servers receive doc-
ument attribute requests from clients, accesses attributes from storage servers via
the network, and deliver them to the clients. The network access is accelerated
by the cache storage of the proxy servers. As a result of the optimization pro-
cess described in the last section both storage and proxy servers can compute
document attributes instead of storing or accessing them via the network.

Thus an appropriate cost function has to consider the following:

Proxy servers
1. Access costs acc_cost (i.e., attribute access or attribute computation)
Storage servers

1. Access costs acc_cost (as above)

2. Storage costs store_cost

Note that for proxy servers no costs arise, if no documents are accessed. Storage
servers, however, have to store at least some attributes of the documents causing
storage costs. The described costs are modeled by the following cost function.

Definition 16 (Cost function)

Let Feomp be a functional base and A omp and Aypys be the sets of computed and
physically represented attributes, respectively. Then the cost function for proxy
servers is defined as

oSt Feomp) := acc_coSt( Feomp) -

14



The cost function for storage servers is defined as

cost(Feomp) = (1 —2) - store_cost(Feomp)+
z «acc_coSt( Feomp) -

By adjusting the parameter z € [0,1] the system administrator influences the
overall behavior of a storage server. For low values of z the optimization process
will try to minimize the storage costs even if this increases the attribute access
costs. At the other extreme, having abundant disk storage the administrator may
decide to optimize attribute access instead, choosing a z value of almost one. In
the ELEKTRA project a rather low value of z seems appropriate as we estimate
that the data volume will increase by at least 50 CD-ROMs! a year just for the
institution the second author is affiliated with. With the new DVD standard for
CD-ROMs available, z probably will be increased.

The storage costs store_cost are modeled as being proportional (with factor cg)
to the sum of average sizes avg_size(A) of the attributes A € Apys.

Definition 17 (Storage costs)
The storage costs are defined as
store-cost(Feomp) 1= Cs - acA,,, Av9-size(A).

The access costs acc_cost of Feomp are modeled by the sum of the access costs
for the particular attributes weighed by the average access rates avg_acc to these
attributes.

Definition 18 (Access costs)
The access costs are defined as
acc_cost( Feomp) = > aca aVg-acc(A) - acc_cost(A).

The access costs to attributes differ for physically represented and computed
attributes. In the physical case we assume the costs to be proportional to the
average size. For a computed attribute we have to consider the access costs of
attributes it is computed from and the computation costs themselves.

Definition 19 (Attribute access costs)
The attribute access costs are defined as
ca - avg-size(A) if A€ Appys

acc_cost(A) := comp_cost(f, Acomp)+

> pex acc_cost(B) it A€ Acomp

where A = f(X) € F.omp is the unique composition computing A € A om, from
X C Appys.

! Assuming 30,000 new articles a year and 1 MByte per article
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Choosing the parameter c4 depends on many factors. For example for storage
servers it depends on the used mass storage devices, whereas for proxy servers
the network bandwidth (modem or T-1), the cache hit rate, hence the cache size
are relevant. The computation costs for a combination of conversion tools f are
influenced by the workload on the host. Computing more attributes obviously
increases this workload.

Definition 20 (Computation costs)

The computation costs are defined as a function comp_cost(f, Acomp) With the
following properties:

1. comp_cost(f, Acomp) has a lower bound (the costs of applying f to an average
set of attributes on an idle host).

2. If X acan,n, wwg-acc(A) <3 aca.,,,,” avg-acc(A), then
comp_cost(f, Acomp' ) < comp_cost(f, Acomp )-

That means that comp_cost is monotonic in the number of computations.

3. Let F; be the component of f and A; be the corresponding attribute set.
Then comp_cost(f, Acomp) = comp_cost(f, Acomp N A;).

The last property may appear artificial. It says that only the computation costs
of attributes within the same component are taken into account. However, this
restriction guarantees with Definition 19 the additivity of the cost function and
we consider it as a justified approximation.

The exact shape of comp_cost depends on the particular host and must be de-
termined by experiments. The parameters avg_size(A), avg-acc(A) can be deter-
mined by statistical data collected by the servers and evolve over the time.

In the sequel we discuss the proposed cost function by several scenarios.

Example 21
We discuss the optimization of a proxy server on three stages.

Stage 1: The server has many clients still operating Level-1 PostScript print-
ers without built-in decompression and some clients operating Level-2 PostScript
printers. Thus it receives about seven time as many requests for the PS for-
mat than for PS_LZW. It is connected to a storage server via a 64 kBit network
connection yielding a 4 kByte average data transfer rate.

Stage 2: The proxy server gets connected to a new 10 MBit local network
yielding a 100 kByte average data transfer rate. According to the improved
network access the number of requests increases.

Stage 3: As time goes by, the old Level-1 PostScript printers are replaced by
new Level-2 ones. The LAN average data transfer rate decreases to 50 kByte as
the network is more occupied.
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In the sequel we concentrate on the PS and PS_LZW attributes. There are three
alternatives for the proxy server to answer requests for this data formats:

e Accessing both via the network. Formally
Acompl = fcompl = 0.

e Accessing PS_LZW via the network and computing PS from it by decompres-
sion. Formally

Acomp, = {PS},
Feompy = {PS = LZWDecode(PS_LZW)} =: {PS = £,(PS_LZW)}.

e Accessing PS via the network and computing PS_LZW from it by compression.
Formally
Avcomps = {PS_LZW},
Feomps = {PS_LZW = LZWEncode(PS)} =: {PS_LZW = £4(PS)}.

Let the average sizes be avg_size(PS) = 1300kByte and avg_size(PS_LZW) =
380k Byte. Then the costs for the three alternatives are

oSt Feomp,) =
avg_acc(PS) . ca - 1300k Byte +
avg-acc(PS_LZW) - ca - 380k Byte

c0SH Feompy) =
avg_acc(PS) - (comp_cost(fa, Acomp,) + €a - 380kByte) +
avg-acc(PS_LZW) - ca - 380k Byte

oSt Feomps) =
avg_acc(PS) . ca - 1300k Byte +

avg-acc(PS_LZW) - (comp_cost(fs, Acomps) + ca - 1300k Byte )

Assume that on Stage 2 the proxy server receives 30 times as many requests than
on Stage 1 and that on Stage 3 the ratio of PS and PS_LZW requests is reverted.
Let access parameter ¢4 be the reverse of the average data access rate. Then the
parameters avg-acc(PS), avg-acc(PS_LZW) and c4 are

| PS  PS_LZW Ca
Stage 1| 7 1 0.25/kByte
Stage 2 | 210 30 0.01/kByte
Stage 3 | 30 210 0.02/kByte

The computation costs grow with the workload. For the functional base Feopp,
the workload in the average increases from 7 to 210 executions of LZWDecode (per
time unit) from Stage 1 to Stage 2 and decreases to 30 from Stage 2 to Stage 3.
For the functional base F ymp, the workload in the average increases from 1 to 30
executions of LZWEncode (per time unit) from Stage 1 to Stage 2 and increases
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to 210 from Stage 2 to Stage 3. This is reflected by the following computation
costs comp_cost.

‘ f2a Acompg f3a Acomp3

Stage 1 13 13
Stage 2 17 14
Stage 3 14 17

The cost parameters above may be determined from log data the server collects.
Now the costs of the functional bases Fomp, are

‘ -,Fcompl -,Fcompg fcompg
Stage 1 | 2370 851 2613

Stage 2 | 2844 4482 3540
Stage 3 | 2376 2244 9810

Therefore, on Stage 1 — because of the poor network access — the optimization
decides to access the compressed PS_LZW format via the network and to compute
the uncompressed PS from it. On Stage 2 — due to the improvement of network
access — the proxy server revises this choice and accesses both formats via the
network, even the big PS format. On Stage 3, as the network access rate decreases
and the proxy receives only a few PS requests, it is slightly cheaper to compute
PS from PS_LZW again.

In this example we considered two attributes and two conversion tools only. It
illustrates that this kind of optimization — even if the cost parameters would
be static — could hardly be done manually. Note that local optimization on
the proxy server can influence the storage server. In Example 21, as the number
of requests for PS_LZW increases, the storage server optimization may decide to
additionally store the PS_LZW format or even to store PS_LZW instead of PS.

Example 22

A new data format is released, e.g., the JBIG format [JBI93] for text image
showing a superior compression rate (110 kByte compared to 160 kByte for an
average page). Assume that in the moment according to Fm, the format PNG300
is stored for this class, cg := lete, and that the value of 2 is very low, e.g.,
z = 0.05. Thus, simplifying the considerations we ignore the access costs. Then
store_cost(Feomp) = 160 and store_cost(Feomp U {IJBIG2PNG}) = 110, hence the
JBIG will be stored in the future.

Note that introducing a new format at the storage server does not influence
the proxy servers directly. However, in the process of updating the software on
the proxy servers, in our example the optimization on these servers may decide
to access the smaller JBIG and compute the formats requested by the clients
itself. Moreover, it is not necessary to convert all objects of class text image

18



to the new physical schema immediately. Instead we can introduce a subclass of
text image for new B/W raster images with the additional JBIG attribute and
additional constraints of the form PNG300 = JBIG2PNG(JBIG300) and migrate
existing objects of text image to this new class little by little.

Example 23

A storage server runs out of disk storage and tertiary storage in form of a CD-
ROM jukebox has to be added. We do not change the value of z. One might
assume that the optimization tends to store more attributes because there is
plenty of storage volume available now. But instead, as the value of ¢4 increases
(storage access gets a little bit more expensive), the optimization will try to
reduce the storage need of the objects and thus to compute even more attributes.

6 Summary and Outlook

In this paper we discussed an optimization problem that is ubiquitous in client-
server multimedia exchange systems. A variety of different multimedia data for-
mats required by the clients faces conversion tools that interrelate those formats.
Thus the server can compute some formats as well as physically represent them.
We formalized the conversion tools as functional constraints among the attributes
of an object-oriented schema design and presented an algorithm to determine an
optimal division of physically represented and computed attributes. To cope
with the high complexity of this algorithm we presented techniques to reduce
the search space. Finally we illustrated the benefits of our approach by several
scenarios arising from a practical application, the journal article retrieval and
delivery system ELEKTRA.

In this paper we assumed more or less dumb clients sending requests to intelligent
proxy servers performing the optimization described above. With the advent of
the Java technology [AG96] for Web browsers the borderline between clients and
proxy servers gets futile.

Our approach implies that an attribute of an object-oriented schema design is
not necessarily physically represented but may be computed. This enhances
physical data independence of query methods, but it complicates update methods.
Updates in multimedia systems are exceptional. Nevertheless, in general, they
occur. In [KKK96] we examined possibilities to deal with this problem.

Based on the results in [KKK96] and [Ste96] we are currently implementing a
prototype for a storage and a proxy server. Afterwards we will experiment on
appropriate parameters for cost functions. Furthermore the question of good
default values for those parameters and how often to re-optimize the servers have
to be examined thoroughly.

As a summary we think that our approach can contribute to relieve the global
data networks from their current bandwidth crisis.
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