
Universit�at Augsburg

ROMUNHSG�
RThreads � a Uniform Interface for

Parallel and Distributed Programming

Bernd Dreier Markus Zahn Theo Ungerer

Report ������� May ����

Institut f�ur Informatik

D������ Augsburg



Copyright c� Bernd Dreier
Markus Zahn
Theo Ungerer
Institut f�ur Informatik
Universit�at Augsburg
D������ Augsburg	 Germany
http
��www�Informatik�Uni
Augsburg�DE
� all rights reserved �



RThreads � a Uniform Interface for Parallel

and Distributed Programming

Bernd Dreier Markus Zahn

fdreier�zahng�Informatik�Uni�Augsburg�DE

Theo Ungerer

ungerer�Informatik�Uni�Karlsruhe�DE

May ����

Several distributed systems and software packages allow the use of work

station clusters as a virtual machine� In general	 the interfaces to these envi

ronments use di�erent programming paradigms for parallel and distributed
computing	 e�g� multithreading within a multiprocessor workstation and mes

sage passing or remote procedure calls for distributed computing� Porting
applications to other distributed systems is a di�cult task and many di�erent
programming paradigms have to be learned�
We introduce a uniform interface for parallel and distributed programming

based on POSIX Threads� By providing a global data space we are able to
raise the concept of threads to a higher level of concurrency � threads may be
spread over several heterogeneous machines and are therefore called remote
threads �RThreads�� Up to now	 we have implemented the RThread interface
on top of PVM and DCE�

� Introduction

Today	 computer networks grow in size and importance� Workstations coupled by a high

speed network represent an e�cient parallel virtual machine� A workstation cluster is
often composed of multiprocessor workstations� The processors within a multiprocessor
workstation share global memory	 whereas a workstation cluster is coupled by a standard

�



network	 e�g� Ethernet	 FDDI	 or ATM� Synchronization of parallel activities among the
processors within a workstation is done by access to global variables� In a workstation
cluster messages are sent via UNIX ports� Communication within a workstation is much
faster than between the workstations of a cluster� As a consequence	 medium
grained
parallelism can be successfully exploited within a multiprocessor workstation	 but only
very coarse
grained parallel activities should be distributed over the workstations of
a cluster� However	 a network of dozens or hundreds of workstations is much more
powerful than a multiprocessor workstation with up to four processors	 provided that
the algorithm is appropriate and a distributed environment is available�

Several distributed systems �e�g� DCE �Loc���� or software packages �e�g� MPI �For��	
Wal���	 PVM �SGDM���	 Linda �CGMS���� allow networked computers to appear as a
single concurrent computational resource� As a matter of fact	 all these programming
environments require to learn a new programming model� DCE supports threads and
remote procedure calls	 PVM is a message passing system and Linda introduces global
data in a tuple space� The necessity to learn and apply completely new paradigms often
retards the entry to distributed computing� Furthermore	 porting a distributed program
from one platform to another often requires a complete redesign of the algorithm�

Most of the distributed programming environments support only a single level of par

allelism� Only coarse
grained parallelism between whole UNIX
processes is used in the
cases of PVM � the de
facto standard � and of MPI � the future standard in scienti�c
computing� The distribution of the processes over the network is obligatory� One of the
urgently wanted improvements is the introduction of medium
grained parallelism using
light
weight processes	 i�e� threads� DCE already supports medium
grained parallelism
by POSIX Threads� �PThreads�	 the distribution of coarse
grained components by re

mote procedure calls is also possible� However	 two completely di�erent programming
paradigms for di�erent levels of granularity have to be used�

To address these issues	 we de�ne a programming interface	 which covers medium
 and
coarse
grained parallelism in a uniform manner� Medium
grained parallel components
are executed within a workstation	 and the distribution of coarse
grained components
over a workstation cluster is possible� We decided to start from a well
known	 already
existing programming paradigm� Since we do not want to provide a novel distributed
environment	 we implemented the uniform programming interface on top of existing
distributed systems�

Shared memory models provide an easy entry to parallel programming� POSIX Threads
are a wide
spread representative of this class� PThreads are also used in several modern
operating systems like Sun Solaris	 OS��	 or Windows ���

Therefore	 we decided to base our programming interface on the PThread model� Due to
the underlying global address space	 POSIX Threads cannot be spread over distributed
memory systems� Thus	 we have to expand the PThread model to enable distributed
execution�

�The POSIX series of standards include POSIX��c� the standard for parallel� multithreaded

programming�

�



� The RThread programming model

The well
known PThread model allows the creation of light
weight processes running
in the same address space� There is no hierarchy of threads in this model	 i�e� a newly
created thread is treated equally to the other threads of the process	 including the
initiating one� The access to global data can be synchronized by mutexes and condition
variables	 which are part of the common address space themselves� Since all threads
execute in the same address space	 global data �including synchronization data� can be
accessed directly� Figure � illustrates the PThread model� all threads execute in one
process	 which is represented by the dashed line�

synchronization

pthread pthread

global data space

data

Figure �
 The PThread model

To expand the PThread model to distributed execution	 the distribution of parallel
components �i�e� threads� must be enabled� Due to the creation of such �remote threads�	
we call the introduced programming interface RThread model� In the RThread model
each RThread is running in its separate address space as shown in Figure �� The di�erent
processes �possibly residing on di�erent hosts� are represented by dashed boxes like in
�gure �� Since shared memory is not available in distributed heterogeneous computer
systems	 the RThread model provides a global data space for all RThreads� A bu�er in
each RThread�s address space maps to parts of the global data space� All computation
in an RThread is done on its bu�er� The exchange of data between bu�er and global
data space is achieved by explicit read�write
operations of the RThread� Each read
 or
write
operation can a�ect multiple data items�

Synchronization data is also part of the provided global data space� In contrast to the
other part of global data	 synchronization data is not bu�ered� The synchronization
operations of the PThread model are expanded to work between several machines�

Notice that each RThread in �gure � may contain several PThreads	 i�e� the RThread
model introduces a hierarchical view
 All PThreads of one RThread run in the same

�



bufferbuffer

rthread

global data space

data
synchronization

rthread

Figure �
 The RThread model

address space and share the same bu�er� A common global data space is provided for
all RThreads	 which have equal rights�

� A PThread example

To illustrate programming with RThreads and their similarity to programming with
PThreads	 we start this section with the following PThread example program� In section
� a solution for the same problem according to the introduced RThread programming
interface is described�

The sample program multiplies the two matrices m� and m�
 A pool of �ve threads
computes the result matrix m� element by element� The global variables row and col

indicate the next element to be computed� After �nishing the computation of an entry	
each thread fetches a new job by incrementing row and col� The fetching of a job
is protected by pthread mutex lock�� to ensure mutual exclusion during this process�
The main thread waits for the end of all �ve threads	 afterwards the result could be used
for further computations�

int m������������ m������������ m�����������	

int row
�� col
�	

�



pthread�mutex�t lock	 �
 protects row and col 
�

pthread�t worker�threads���	

void 
worker� void 
dummy �

�

int myrow� mycol� i� result	

while �pthread�mutex�lock� �lock �� row���� �

�

myrow
row	

mycol
col��	

if �col 

 ����

�

col 
 �	

row��	

�

pthread�mutex�unlock� �lock �	

result 
 �	

for � i
�	 i����	 i�� �

result �
 �m���myrow��i� 
 �m���i��mycol�	

�m���myrow��mycol� 
 result	

�

pthread�mutex�unlock� �lock �	

pthread�exit���	

�

void main� void �

�

int i� j	

pthread�mutex�init� �lock� pthread�mutexattr�default �	

�
 initialization of m� and m� left out 
�

for � i
�	 i � �	 i�� �

pthread�create� �worker�threads�i�� pthread�attr�default�

�pthread�startroutine�t� worker� NULL �	

for � i
�	 i � �	 i�� �

pthread�join� worker�threads�i�� NULL �	

�

� The RThread programming interface

As mentioned above	 programming with RThreads is very similar to PThread
like pro

gramming� We provide an RThread equivalent for each POSIX Thread type �e�g�
rthread t� rthread mutex t� and for each PThread function �e�g� rthread create���

rthread mutex lock����

rthread create�� spawns a thread on a possibly remote host� The RThread synchro

nization operations behave like their PThread equivalents� However	 the synchronization

�



is performed between threads on di�erent machines�

We introduce two additional functions to exchange global data between the RThread�s
bu�er and the global data space
 rthread read�� and rthread write��� For example	
the single data item row is copied from the global data space into the RThread�s bu�er
�and vice versa� by the following function calls


rthread�read� RTHREAD�long� RTHREAD�row� �� �� �� RTHREAD�DATA�DONE �	

rthread�write� RTHREAD�long� RTHREAD�row� �� �� �� RTHREAD�DATA�DONE �	

The �rst parameter de�nes the data type	 followed by the variable name	 a �rst index	
a last index and a stride	 �nished by RTHREAD DATA DONE� The data type is speci�ed to
allow data conversion in heterogeneous networks� Data types and variables are named
with an RTHREAD pre�x to use labels de�ned by the RThread package �see section ���
First index	 last index and a stride can be used to access parts of an array� For example	
the following statement reads the k
th column of the n� n matrix m��

rthread�read� RTHREAD�long� RTHREAD�m�� k� �n���
n � k� n� RTHREAD�DATA�DONE �	

Due to a variable argument list	 multiple read accesses can be combined in a single
rthread read�� statement


rthread�read� RTHREAD�long� RTHREAD�row� �� �� ��

RTHREAD�long� RTHREAD�col� �� �� �� RTHREAD�DATA�DONE �	

Instead of terminating the data access by RTHREAD DATA DONE	 multiple rthread read��s
can be grouped using RTHREAD DATA CONTINUE�

Writing to the global data space is done with rthread write�� accordingly� The ini

tializiation of the RThread package is performed by the functions rthread main init��

and rthread remote init��� They are described in section ��

� An RThread example

For an RThread
implementation of the matrix multiplication algorithm described in sec

tion �	 two programs must be created
 The �main thread program� and the �remote
thread program�� Both have to de�ne bu�er space for global data and initialize the
RThread package by calling rthread main init�� respectively rthread remote init���
The main thread program has to pass the �le name of the remote thread program to
the initialization function� According to the PThread example program given above	 it
starts and joins the remote threads� The function worker�� from the former example
program is left out	 because it is not used as a start function in a local PThread�

�



�
 main thread program 
�

�include �rthread�h� �
 additional includes 
�

�include �matmul�rthread�h�

�
 buffer 
�

int m������������ m������������ m�����������	

int row
�� col
�	 �
 buffer 
�

rthread�mutex�t lock	 �
 protects row and col 
�

rthread�t worker�threads���	

void main� void �

�

int i� j	

�
 initialize rthread package 
�

rthread�main�init� �matmul�remote� �	

rthread�mutex�init� RTHREAD�lock� rthread�mutexattr�default �	

�
 initialization of m� and m� left out 
�

for � i
�	 i � �	 i�� �

rthread�create� �worker�threads�i�� rthread�attr�default� RTHREAD�worker�

�rthread�addr�t� NULL �	

for � i
�	 i � �	 i�� �

rthread�join� worker�threads�i�� NULL �	

�

In the �remote thread program� bu�er space for all or part of the global data is allocated
similar to the �main thread program�� The worker�� function of the �remote thread
program� corresponds to the start function of the PThread example program given in
section �� In addition	 explicit read or write statements have to preserve the consistency
of bu�er and global data space�

Therefore	 in the following example program the �rst read access to the variable col in
the local bu�er is preceded by rthread read� ���� RTHREAD col� ����� The mod

i�ed value is written to global data space by rthread write� ���� RTHREAD col�

���� afterwards� Mutual exclusion of threads accessing col concurrently is ensured by
rthread mutex lock�� corresponding to pthread mutex lock�� in the PThread pro

gram�

�
 remote thread program 
�

�include �rthread�h�

�include �matmul�rthread�h�

�
 buffer 
�

int m������������ m������������ m������������ row
�� col
�	

rthread�mutex�t lock	 �
 protects row and col 
�

rthread�t worker�threads���	

�



void 
worker� void 
dummy �

�

int myrow� mycol� i� result	

while �rthread�mutex�lock� RTHREAD�lock ��

rthread�read� RTHREAD�long� RTHREAD�row� �� �� �� RTHREAD�DATA�DONE ��

row���� �

�

myrow
row	

rthread�read� RTHREAD�long� RTHREAD�col� �� �� �� RTHREAD�DATA�DONE �	

mycol
col��	

rthread�write� RTHREAD�long� RTHREAD�col� �� �� �� RTHREAD�DATA�DONE �	

if �col 

 ����

�

col 
 ��

rthread�write� RTHREAD�long� RTHREAD�col� �� �� �� RTHREAD�DATA�DONE �	

row��	

rthread�write� RTHREAD�long� RTHREAD�row� �� �� �� RTHREAD�DATA�DONE �	

�

rthread�mutex�unlock� RTHREAD�lock �	

rthread�read� RTHREAD�long� RTHREAD�m�� myrow
���� myrow
��� � ������ ��

RTHREAD�long� RTHREAD�m�� mycol� �������
��� � mycol� ���� RTHREAD�DATA�DONE �	

result 
 �	

for � i
�	 i����	 i�� �

result �
 �m���myrow��i� 
 �m���i��mycol�	

�m���myrow��mycol� 
 result	

rthread�write� RTHREAD�long� RTHREAD�m�� myrow
��� � mycol� myrow
��� � mycol� ��

RTHREAD�DATA�CONTINUED �	

�

rthread�write� RTHREAD�DATA�DONE �	

rthread�mutex�unlock� RTHREAD�lock �	

rthread�exit���	

�

int main � void �

�

rthread�remote�init��	

exit� � �	

�

� Implementation

The RThread
functions are implemented in libraries� For compilation of RThread

programs an additional application
speci�c header �le will be created automatically�
Each label beginning with RTHREAD	 which occurs in a RThread function call is added
to the header �le� The header contains a mapping between the global data space and
the bu�ers� A label represents an address of an element in the global data space� The

�



header �le maps these addresses to local addresses in the bu�er of the given RThread�
The RTHREAD pre�xed variable and function names are required to get unique identi�ers
valid in the main and the remote threads	 where the identi�ers naturally have di�erent
addresses�

In our current implementation the main thread program behaves like a master pro

gram� It contains the global data space	 serves the read and write accesses to the global
data space	 executes the synchronization operations and starts processes embedding the
remote threads�

The introduced RThread programming interface is independent of the underlying dis

tributed systems� These are used for network transport and start of remote programs
only� Up to now	 we have successfully implemented the RThread
functions on DCE and
PVM platforms� The use of di�erent libraries enables the execution of the same pro

gram either in a PVM or DCE environment� In the DCE implementation the remote
threads execute read	 write and synchronization operations by remote procedure calls to
the master� In the case of PVM this communication is realized by its message passing
facilities� PVM already supports dynamic creation of remote processes� To accomplish
this task in the DCE environment	 we developed a runtime system �DZ���	 which allows
for load balancing additionally�

� How to get e�cient programs

An important aspect to get e�cient programs is the reduction of network tra�c caused
by read and write operations� Usually	 performance can be increased by transferring a
higher amount of data in a single network transaction instead of several transactions with
less data� rthread read�� and rthread write�� are designed for combining multiple
data accesses in a single network transaction� The parameters ��rst index�	 �last index�
and �stride� allow the access to parts of arrays� A variable argument list supports
grouping of multiple data requests in a single function call� Furthermore	 the use of
RTHREAD DATA CONTINUED enables the collection of data accesses across several function
calls	 which is terminated by RTHREAD	DATA	DONE� This feature is especially useful in
loops �see example program��

The programmer should carefully consider data dependencies between di�erent RThreads�
Consistency of bu�er and global data space is only ensured by explicit use of rthread 


read�� and rthread	write��� The programmer is able to set his own level of con

sistency �Hwa��	 NL���� Therefore	 the knowledge of the program semantics should
be employed by the programmer to group or collect data accesses	 thereby increasing
performance�

It is possible to mix RThreads and PThreads in a parallel program	 i�e� RThreads may
contain several PThreads which are executed in the RThread�s process �see �gure ���
Therefore	 tasks with high communication needs may run simultaneously without being
distributed� This is a great improvement compared to systems like PVM where paral

lelism forces distribution� Calling functions of the RThread
libraries is allowed to the

�



rthreadrthread

Figure �
 Combining RThreads and PThreads

PThreads	 too
 In Figure � a PThread within an RThread creates another RThread�
The RThreads themselves are possibly spread over a heterogeneous workstation cluster�
Thus	 they should obviously be constrained to computation intensive tasks with few
communication needs�

	 Conclusions and further work

We introduced a model for parallel and distributed programming as extension of the
well
known POSIX
Threads� The RThreads provide a uniform programming interface
for medium
 and coarse
grained parallel programs� Coarse
grained tasks can be dis

tributed to remote hosts� Our current implementations are based on PVM and DCE	
as representatives of a message
passing environment respectively of a RPC
based dis

tributed operating system� Implementations on other distributed platforms �e�g� MPI�
are in progress� Testing of the DCE
 and PVM
based implementations with several
sample programs is �nished� The examples show good speedup� More complex appli

cations will show the ease of programming and give realistic results on the e�ciency of
the implementations�

Our programming environment relies on read and write accesses explicitly set by the
programmer� In future	 a precompiler may help optimizing global data exchange� More

over	 we survey automatic transformation of multithreaded programs into our RThread
model�

References

�CGMS��� N� Carriero	 D� Gelernter	 T�G� Mattson	 and A�H� Sherman� The Linda
alternative to message
passing systems� Parallel Computing	 ��
�������	
April �����

�DZ��� Bernd Dreier and Markus Zahn� Entwicklung einer verteilten Program

mierumgebung f�ur das DCE� Master�s thesis	 Universit�at Augsburg	 October
�����

�For��� Message Passing Interface Forum� Mpi
 A message
passing interface stan

dard� Technical report	 University of Tennessee	 June �����

��



�Hwa��� Kai Hwang� Advanced Computer Architecture� McGraw
Hill	 New York	
�����

�Loc��� Harold W� Lockhart Jr� OSF DCE Guide to Developing Distributed Appli�

cations� McGraw
Hill	 Inc�	 �����

�NL��� Bill Nitzberg and Virginia Lo� Distributed shared memory
 A survey of
issues and algorithms� IEEE Computer	 pages �����	 August �����

�SGDM��� V�S� Sunderam	 A� Geist	 J� Dongarra	 and R� Mancheck� The PVM concur

rent computing system
 Evolution	 experiences	 and trends� Parallel Com�

puting	 ��
�������	 April �����

�Wal��� D�W� Walker� The design of a standard message
passing interface for dis

tributed memory concurrent computers� Parallel Computing	 ��
�������	
April �����

��


