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Several distributed systems and software packages allow the use of work-
station clusters as a virtual machine. In general, the interfaces to these envi-
ronments use different programming paradigms for parallel and distributed
computing, e.g. multithreading within a multiprocessor workstation and mes-
sage passing or remote procedure calls for distributed computing. Porting
applications to other distributed systems is a difficult task and many different
programming paradigms have to be learned.

We introduce a uniform interface for parallel and distributed programming
based on POSIX Threads. By providing a global data space we are able to
raise the concept of threads to a higher level of concurrency — threads may be
spread over several heterogeneous machines and are therefore called remote
threads (RThreads). Up to now, we have implemented the RThread interface
on top of PVM and DCE.

1 Introduction

Today, computer networks grow in size and importance. Workstations coupled by a high-
speed network represent an efficient parallel virtual machine. A workstation cluster is
often composed of multiprocessor workstations. The processors within a multiprocessor
workstation share global memory, whereas a workstation cluster is coupled by a standard



network, e.g. Ethernet, FDDI, or ATM. Synchronization of parallel activities among the
processors within a workstation is done by access to global variables. In a workstation
cluster messages are sent via UNIX ports. Communication within a workstation is much
faster than between the workstations of a cluster. As a consequence, medium-grained
parallelism can be successfully exploited within a multiprocessor workstation, but only
very coarse-grained parallel activities should be distributed over the workstations of
a cluster. However, a network of dozens or hundreds of workstations is much more
powerful than a multiprocessor workstation with up to four processors, provided that
the algorithm is appropriate and a distributed environment is available.

Several distributed systems (e.g. DCE [Loc94]) or software packages (e.g. MPI [For95,
Wal94], PVM [SGDM94|, Linda [CGMS94]) allow networked computers to appear as a
single concurrent computational resource. As a matter of fact, all these programming
environments require to learn a new programming model. DCE supports threads and
remote procedure calls, PVM is a message passing system and Linda introduces global
data in a tuple space. The necessity to learn and apply completely new paradigms often
retards the entry to distributed computing. Furthermore, porting a distributed program
from one platform to another often requires a complete redesign of the algorithm.

Most of the distributed programming environments support only a single level of par-
allelism. Only coarse-grained parallelism between whole UNIX-processes is used in the
cases of PVM — the de-facto standard — and of MPI — the future standard in scientific
computing. The distribution of the processes over the network is obligatory. One of the
urgently wanted improvements is the introduction of medium-grained parallelism using
light-weight processes, i.e. threads. DCE already supports medium-grained parallelism
by POSIX Threads! (PThreads), the distribution of coarse-grained components by re-
mote procedure calls is also possible. However, two completely different programming
paradigms for different levels of granularity have to be used.

To address these issues, we define a programming interface, which covers medium- and
coarse-grained parallelism in a uniform manner. Medium-grained parallel components
are executed within a workstation, and the distribution of coarse-grained components
over a workstation cluster is possible. We decided to start from a well-known, already
existing programming paradigm. Since we do not want to provide a novel distributed
environment, we implemented the uniform programming interface on top of existing
distributed systems.

Shared memory models provide an easy entry to parallel programming. POSIX Threads
are a wide-spread representative of this class. PThreads are also used in several modern
operating systems like Sun Solaris, OS/2, or Windows 95.

Therefore, we decided to base our programming interface on the PThread model. Due to
the underlying global address space, POSIX Threads cannot be spread over distributed
memory systems. Thus, we have to expand the PThread model to enable distributed
execution.

!The POSIX series of standards include POSIX.lc, the standard for parallel, multithreaded
programming.



2 The RThread programming model

The well-known PThread model allows the creation of light-weight processes running
in the same address space. There is no hierarchy of threads in this model, i.e. a newly
created thread is treated equally to the other threads of the process, including the
initiating one. The access to global data can be synchronized by mutexes and condition
variables, which are part of the common address space themselves. Since all threads
execute in the same address space, global data (including synchronization data) can be
accessed directly. Figure 1 illustrates the PThread model; all threads execute in one
process, which is represented by the dashed line.
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Figure 1: The PThread model

To expand the PThread model to distributed execution, the distribution of parallel
components (i.e. threads) must be enabled. Due to the creation of such “remote threads”,
we call the introduced programming interface RThread model. In the RThread model
each RThread is running in its separate address space as shown in Figure 2. The different
processes (possibly residing on different hosts) are represented by dashed boxes like in
figure 1. Since shared memory is not available in distributed heterogeneous computer
systems, the RThread model provides a global data space for all RThreads. A buffer in
each RThread’s address space maps to parts of the global data space. All computation
in an RThread is done on its buffer. The exchange of data between buffer and global
data space is achieved by explicit read/write-operations of the RThread. Each read- or
write-operation can affect multiple data items.

Synchronization data is also part of the provided global data space. In contrast to the
other part of global data, synchronization data is not buffered. The synchronization
operations of the PThread model are expanded to work between several machines.

Notice that each RThread in figure 2 may contain several PThreads, i.e. the RThread
model introduces a hierarchical view: All PThreads of one RThread run in the same
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Figure 2: The RThread model

address space and share the same buffer. A common global data space is provided for
all RThreads, which have equal rights.

3 A PThread example

To illustrate programming with RThreads and their similarity to programming with
PThreads, we start this section with the following PThread example program. In section
5 a solution for the same problem according to the introduced RThread programming
interface is described.

The sample program multiplies the two matrices m1 and m2: A pool of five threads
computes the result matrix m3 element by element. The global variables row and col
indicate the next element to be computed. After finishing the computation of an entry,
each thread fetches a new job by incrementing row and col. The fetching of a job
is protected by pthread mutex_lock() to ensure mutual exclusion during this process.
The main thread waits for the end of all five threads, afterwards the result could be used
for further computations.

int m1[200] [200], m2[200] [200], m3[200] [200];
int row=0, col=0;



pthread_mutex_t lock; /* protects row and col */
pthread_t worker_threads[5];

void *worker( void *dummy )
{

int myrow, mycol, i, result;

while (pthread_mutex_lock( &lock ), row<200 )
{
Myrow=row;
mycol=col++;
if (col == 200)
{
col = 0;
row+t+;
}
pthread_mutex_unlock( &lock ) ;

result = 0;
for ( i=0; i<200; i++ )
result += (ml) [myrow] [i] * (m2) [i] [mycol];
(m3) [myrow] [mycol] = result;
}
pthread_mutex_unlock( &lock );
pthread_exit (0);

}
void main( void )
{

int i, j;

pthread_mutex_init( &lock, pthread_mutexattr_default );
/* initialization of ml and m2 left out */

for ( i=0; i < 5; i++ )
pthread_create( &worker_threads[i], pthread_attr_default,
(pthread_startroutine_t) worker, NULL );
for ( i=0; i < 5; i++ )
pthread_join( worker_threads[i], NULL );

4 The RThread programming interface

As mentioned above, programming with RThreads is very similar to PThread-like pro-
gramming. We provide an RThread equivalent for each POSIX Thread type (e.g.
rthread_t, rthread mutex_t) and for each PThread function (e.g. rthread_create(),
rthread mutex_lock()).

rthread _create() spawns a thread on a possibly remote host. The RThread synchro-
nization operations behave like their PThread equivalents. However, the synchronization



is performed between threads on different machines.

We introduce two additional functions to exchange global data between the RThread’s
buffer and the global data space: rthread_-read() and rthread_write(). For example,
the single data item row is copied from the global data space into the RThread’s buffer
(and vice versa) by the following function calls:

rthread_read( RTHREAD_long, RTHREAD row, O, O, 1, RTHREAD_DATA_DONE );
rthread_write( RTHREAD_long, RTHREAD row, O, O, 1, RTHREAD_DATA_DONE );

The first parameter defines the data type, followed by the variable name, a first index,
a last index and a stride, finished by RTHREAD_DATA_DONE. The data type is specified to
allow data conversion in heterogeneous networks. Data types and variables are named
with an RTHREAD_ prefix to use labels defined by the RThread package (see section 6).
First index, last index and a stride can be used to access parts of an array. For example,
the following statement reads the k-th column of the n x n matrix m2.

rthread_read( RTHREAD_long, RTHREAD_m2, k, (n-1)*n + k, n, RTHREAD_DATA_DONE );

Due to a variable argument list, multiple read accesses can be combined in a single
rthread_read() statement:

rthread_read( RTHREAD_long, RTHREAD row, 0, O, 1,
RTHREAD_long, RTHREAD_col, O, O, 1, RTHREAD_DATA_DONE );

Instead of terminating the data access by RTHREAD_DATA_DONE, multiple rthread_read ()s
can be grouped using RTHREAD_DATA_CONTINUE.

Writing to the global data space is done with rthread write() accordingly. The ini-
tializiation of the RThread package is performed by the functions rthread main init()
and rthread _remote_init (). They are described in section 5.

5 An RThread example

For an RThread-implementation of the matrix multiplication algorithm described in sec-
tion 3, two programs must be created: The “main thread program” and the “remote
thread program”. Both have to define buffer space for global data and initialize the
RThread package by calling rthread main_init () respectively rthread_remote_init ().
The main thread program has to pass the file name of the remote thread program to
the initialization function. According to the PThread example program given above, it
starts and joins the remote threads. The function worker () from the former example
program is left out, because it is not used as a start function in a local PThread.



/* main thread program */
#include "rthread.h" /* additional includes */
#include "matmul_rthread.h"

/* buffer */
int m1[200] [200], m2[200] [200], m3[200] [200];
int row=0, col=0; /* buffer x/

rthread_mutex_t lock; /* protects row and col */
rthread_t worker_threads[5];

void main( void )
{

int i, j;

/* initialize rthread package */
rthread_main_init( "matmul_remote" );

rthread_mutex_init( RTHREAD_lock, rthread_mutexattr_default );
/* initialization of ml and m2 left out */

for ( i=0; i < 5; i++ )
rthread_create( &worker_threads[i], rthread_attr_default, RTHREAD_worker,
(rthread_addr_t) NULL );
for ( i=0; i < 5; i++ )
rthread_join( worker_threads[i], NULL );

In the “remote thread program” buffer space for all or part of the global data is allocated
similar to the “main thread program”. The worker () function of the “remote thread
program” corresponds to the start function of the PThread example program given in
section 3. In addition, explicit read or write statements have to preserve the consistency
of buffer and global data space.

Therefore, in the following example program the first read access to the variable col in
the local buffer is preceded by rthread read( ..., RTHREAD col, ...). The mod-
ified value is written to global data space by rthread write( ..., RTHREAD col,
...) afterwards. Mutual exclusion of threads accessing col concurrently is ensured by
rthread mutex_lock() corresponding to pthread mutex_lock() in the PThread pro-
gram.

/* remote thread program */
#include "rthread.h"
#include "matmul_rthread.h"

/* buffer */
int m1[200] [200], m2[200] [200], m3[200] [200], row=0, col=0;

rthread_mutex_t lock; /* protects row and col */
rthread_t worker_threads[5];



void *worker( void *dummy )

{

int myrow, mycol, i, result;

while (rthread_mutex_lock( RTHREAD_lock ),
rthread_read( RTHREAD_long, RTHREAD row, O, O, 1, RTHREAD_DATA_DONE ),

row<200 )
{
Myrow=row;
rthread_read( RTHREAD_long, RTHREAD col, O, O, 1, RTHREAD_DATA_DONE );
mycol=col++;
rthread_write( RTHREAD_long, RTHREAD_col, O, O, 1, RTHREAD_DATA_DONE );
if (col == 200)
{
col = 0,
rthread_write( RTHREAD_long, RTHREAD_col, O, O, 1, RTHREAD_DATA_DONE );
row++;
rthread_write( RTHREAD_long, RTHREAD_row, O, O, 1, RTHREAD_DATA_DONE );
}
rthread_mutex_unlock( RTHREAD_lock );
rthread_read( RTHREAD_long, RTHREAD_ml, myrow*200, myrow*200 + 200-1, 1,
RTHREAD_long, RTHREAD_m2, mycol, (200-1)*200 + mycol, 200, RTHREAD_DATA_DONE );
result = 0;
for ( i=0; i<200; i++ )
result += (ml) [myrow] [i] * (m2) [i] [mycol];
(m3) [myrow] [mycol] = result;
rthread_write( RTHREAD_long, RTHREAD_m3, myrow*200 + mycol, myrow*200 + mycol, 1,
RTHREAD_DATA_CONTINUED );
}

rthread_write( RTHREAD_DATA_DONE );
rthread_mutex_unlock( RTHREAD_lock );
rthread_exit (0);

int main ( void )
{

rthread_remote_init();
exit( 0 );
}

6 Implementation

The RThread-functions are implemented in libraries. For compilation of RThread-
programs an additional application-specific header file will be created automatically.
Each label beginning with RTHREAD_ which occurs in a RThread function call is added
to the header file. The header contains a mapping between the global data space and
the buffers. A label represents an address of an element in the global data space. The



header file maps these addresses to local addresses in the buffer of the given RThread.
The RTHREAD_ prefixed variable and function names are required to get unique identifiers
valid in the main and the remote threads, where the identifiers naturally have different
addresses.

In our current implementation the main thread program behaves like a master pro-
gram. It contains the global data space, serves the read and write accesses to the global
data space, executes the synchronization operations and starts processes embedding the
remote threads.

The introduced RThread programming interface is independent of the underlying dis-
tributed systems. These are used for network transport and start of remote programs
only. Up to now, we have successfully implemented the RThread-functions on DCE and
PVM platforms. The use of different libraries enables the execution of the same pro-
gram either in a PVM or DCE environment. In the DCE implementation the remote
threads execute read, write and synchronization operations by remote procedure calls to
the master. In the case of PVM this communication is realized by its message passing
facilities. PVM already supports dynamic creation of remote processes. To accomplish
this task in the DCE environment, we developed a runtime system [DZ93], which allows
for load balancing additionally.

7 How to get efficient programs

An important aspect to get efficient programs is the reduction of network traffic caused
by read and write operations. Usually, performance can be increased by transferring a
higher amount of data in a single network transaction instead of several transactions with
less data. rthread read() and rthread write() are designed for combining multiple
data accesses in a single network transaction. The parameters “first index”, “last index”
and “stride” allow the access to parts of arrays. A variable argument list supports
grouping of multiple data requests in a single function call. Furthermore, the use of
RTHREAD DATA_CONTINUED enables the collection of data accesses across several function
calls, which is terminated by RTHREAD_DATA_DONE. This feature is especially useful in
loops (see example program).

The programmer should carefully consider data dependencies between different RThreads.
Consistency of buffer and global data space is only ensured by explicit use of rthread_-
read() and rthread_write(). The programmer is able to set his own level of con-
sistency [Hwa93, NL91]. Therefore, the knowledge of the program semantics should
be employed by the programmer to group or collect data accesses, thereby increasing
performance.

It is possible to mix RThreads and PThreads in a parallel program, i.e. RThreads may
contain several PThreads which are executed in the RThread’s process (see figure 3).
Therefore, tasks with high communication needs may run simultaneously without being
distributed. This is a great improvement compared to systems like PVM where paral-
lelism forces distribution. Calling functions of the RThread-libraries is allowed to the
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Figure 3: Combining RThreads and PThreads

PThreads, too: In Figure 3 a PThread within an RThread creates another RThread.
The RThreads themselves are possibly spread over a heterogeneous workstation cluster.
Thus, they should obviously be constrained to computation intensive tasks with few
communication needs.

8 Conclusions and further work

We introduced a model for parallel and distributed programming as extension of the
well-known POSIX-Threads. The RThreads provide a uniform programming interface
for medium- and coarse-grained parallel programs. Coarse-grained tasks can be dis-
tributed to remote hosts. Our current implementations are based on PVM and DCE,
as representatives of a message-passing environment respectively of a RPC-based dis-
tributed operating system. Implementations on other distributed platforms (e.g. MPI)
are in progress. Testing of the DCE- and PVM-based implementations with several
sample programs is finished. The examples show good speedup. More complex appli-
cations will show the ease of programming and give realistic results on the efficiency of
the implementations.

Our programming environment relies on read and write accesses explicitly set by the
programmer. In future, a precompiler may help optimizing global data exchange. More-
over, we survey automatic transformation of multithreaded programs into our RThread
model.
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