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Abstract. Ubiquitous systems use context information to adapt appliance 
behavior to human needs. Even more convenience is reached if the appliance 
foresees the user’s desires and acts proactively. This paper proposes neural 
prediction techniques to anticipate a person’s next movement. We focus on 
neural predictors (multi-layer perceptron with back-propagation learning) with 
and without pre-training. The optimal configuration of the neural network is 
determined by evaluating movement sequences of real persons within an office 
building. The simulation results, obtained with one of the pre-trained neural 
predictors, show accuracy in next location prediction reaching up to 92%. 

1 Introduction 

Ubiquitous systems strive for adaptation to user needs by utilizing information 
about the current context in which a user’s appliance works. A new quality of 
ubiquitous systems may be reached if context awareness is enhanced by predictions of 
future contexts based on current and previous context information. Such a prediction 
enables the system to proactively initiate actions that enhance the convenience of the 
user or that lead to an improved overall system. 

Humans typically act in a certain habitual pattern, however, they sometimes 
interrupt their behavior pattern and they sometimes completely change the pattern. 
Our aim is to relieve people of actions that are done habitually without determining a 
person’s action. The system should learn habits automatically and reverse 
assumptions if a habit changes. The predictor information should therefore be based 
on previous behavior patterns and applied to speculate on the future behavior of a 
person. If the speculation fails, the failing must be recognized, and the predictor must 
be updated to improve future prediction accuracy. 

For our application domain we chose next location prediction instead of general 
context prediction. The algorithms are also applicable for other more general context 
domains; however, there already exist numerous scenarios within our applications 
domain. Some sample scenarios may be the following: 
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• Smart doorplates that are able to direct visitors to the current location of an office 
owner based on a location-tracking system and predict if the office owner is soon 
coming back. 

• Similarly, next location prediction within a smart building can be used to prepare 
the room which is presumably entered next by an habitant. 

• Outdoor movement patterns can be used to predict the next region a person will 
enter. 

• Elevator prediction could anticipate at which floor an elevator will be needed next. 
• Routing prediction for cellular phone systems may predict the next radio cell a 

cellular phone owner will enter based on his previous movement behavior. 
 
This paper focuses on a neural prediction approach, introducing the local and 

global neural predictors and comparing the neural predictors with and without pre-
training. Our application predicts the next room based on the history of rooms, visited 
by a certain person moving within an office building. We evaluate these neural 
predictors by some movement sequences of real persons of the research group at the 
University of Augsburg [8]. The next sections describe the related work, the proposed 
neural network, and the simulation results. 

2 Related Work 

To predict or anticipate a future situation learning techniques as e.g. Markov 
Chains, Bayesian Networks, Time Series or Neural Networks are obvious candidates. 
The challenge is to transfer these algorithms to work with context information. 

Mozer [6] proposed an Adaptive Control of Home Environments (ACHE). ACHE 
monitors the environment, observes the actions taken by the inhabitants, and attempts 
to predict their next actions, by learning the anticipation needs. The predictors are 
implemented as feed-forward neural networks with back-propagation learning 
algorithm. Unfortunately, the author doesn’t present details on the predictor or any 
results. 

In a more recent paper [7], Mozer proposed and implemented a smart home 
environment. The intelligence of the home arises from the home’s ability to predict 
the behavior and needs of the inhabitants by having observed them over a period of 
time. He focused on home comfort systems, specifically air temperature regulation, 
and lighting. Instead of being programmed to perform certain actions, the house 
essentially adapts dynamically itself by monitoring the environment and sensing 
actions performed by the inhabitants, observing the occupancy and behavior patterns 
of the inhabitants, and learning to predict future states of the house. The author uses 
as a predictor a feed-forward neural network with one hidden layer for anticipating 
the next action (as an example, the system will predict when an inhabitant returns 
home and therefore will start the heater). When the predictions are incorrect, the 
inhabitants can simply indicate their preferences via ordinary interfaces they are used 
to, e.g., light switches, thermostats, and simply turning on the hot water. 

Aguilar et al. [1] implemented a system to reduce latency in virtual environment 
applications, where virtual images must be continuously stabilized in space against 
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the user’s head motion in a head-mounted display. Latencies in head-motion 
compensation cause virtual objects to swim around instead of being stable in space. 
To address this problem, Aguilar et. al. used machine learning techniques to define a 
forward model of head movement based on angular velocity information. They use a 
recurrent neural network to capture temporal patterns of pitch and yaw motion. Their 
results demonstrate an ability of the neural network to predict head motion up to 40 
ms ahead thus eliminating the main source of latencies.  

Otherwise neural network approaches are often used in ubiquitous systems for 
context recognition (see e. g. [4]), not for context prediction. 

Petzold et al. [9] transformed some prediction algorithms used in branch prediction 
techniques of current high-performance microprocessors to handle context prediction. 
They proposed various context prediction techniques based on previous behavior 
patterns, in order to anticipate a person’s next movement. The evaluation was 
performed by simulating the predictors with behavior patterns of people walking 
through a building as workload. Their simulation results show that the context 
predictors perform well but exhibit differences in training and retraining speed and in 
their ability to learn complex patterns. In [10] Petzold et al. compared these predictors 
with the Prediction by Partial Matching (PPM) method, and they evaluated the 
predictors by movement sequences of real persons within an office building reaching 
up to 59% accuracy in next location prediction without pre-training and, respectively, 
up to 98% with pre-training. 

3 The Neural Prediction Approach 

The artificial neural networks (NN) are composed of a multitude of neurons 
representing simple processing elements that operate in parallel [3]. A great 
advantage of the artificial neural networks is their capacity to learn based on examples 
(supervised learning). In order to solve a problem traditionally, we have to elaborate 
its model, and after that we have to indicate a succession of operations that represents 
the solving algorithm of the problem. However there are practical problems with a 
high level of complexity, and for this kind of problems it is very hard or even 
impossible to establish a deterministic algorithm. 

In the connection models like neural networks we are not forced to give a solving 
algorithm dedicated to a certain problem; we have to offer to the NN only a multitude 
of consistent examples in order to learn and generalize them. The network extracts the 
information from the training samples. In this way it is able to synthesize implicitly a 
certain model of the problem. In other words, the neural network builds up alone an 
algorithm to solve a problem. The capacity of the neural network to solve complex 
practical problems using a multitude of samples gives them a highly large potential of 
applicability. 

3.1 The neural network’s structure 

We chose a multi-layer perceptron with one hidden layer (see Fig. 1) and back-
propagation learning algorithm. The rooms and the persons are binary codified to save 
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computing cost, which is of particular interest for mobile (energy restrictions) or fast 
moving (real-time restrictions) applications. Thus we chose bit encoding with 
complexity log2N (entries in NN), instead of one-room-one-neuron encoding with 
complexity N (entries in NN). This codification might be useful taking into account 
further enlargements of the project, too (N will probably grow). 

 

VIN
VHID

VOUTx1

xN

o1

oP

 

Fig. 1. The multi-layer perceptron 

We analyzed two predictor types: the local and respectively the global predictors. 
In the case of local predictors, each person has his/her own neural predictor and in 
this way each neural network will be trained with the movements of a single person. 
Alternatively, we use one global neural network for all persons, and in this second 
case the persons must be codified, too. 

The input layer 
If we use a global predictor the network’s input data consists of two codes: the 

code of the person and the code of the last rooms visited by that person. If we treat 
each person separately with his/her own predictor, the input data only consists of the 
codes of the last visited rooms. One of the parameters of the network is the number of 
rooms in the input vector. We’ll vary this parameter between 1 and 8, in order to see 
how the prediction accuracy is affected by the length of room history. 

For a history of four rooms we’ll have the following input vectors obtained after a 
binary codification of the input data: 
1. The input vector for a local predictor (for a maximum of 16 rooms, a binary 

codification of 4 bits is enough): Vin = 0101 0010 0001 0011 
2. The input vector for the global predictor (more rooms than 16 must be regarded, 

using a 5 bit room codification):  Vin = 01 00101 00010 00001 00011 
 where the person’s code is 01. 

The hidden layer 
We will vary the number of neurons in the hidden layer ( M cells). We will try first 
, , N 1+N 2+N  (where  is the number of neurons in the input layer) because this 

was the best configuration of a neural network used in prior work ([2], [11], [12], 
[13], [14]). 

N
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The output layer 
The neural network will return through its output layer the predicted room codified 

with 4 bits by the local predictor and respectively with 5 bits by the global predictor. 
In other words, in this concrete case, the output layer of a local neural network will 
have four neurons ( P ), and the output layer of a global neural network will have five 
neurons. If the binary code of the predicted room is 2 the network will return the 
following output vector:  
1. Vout = 0010 - returned by the local predictor 
2. Vout = 00010 - returned by the global predictor 

The neural network’s training 
For the training/learning process we used the well-known Back-Propagation 

Algorithm [5], adapted as below: 
1. Create a feed-forward network with  inputs, N 2,1, ++= NNNM  hidden units 

and P  output units. 

2. Initialize all network weights ; 1
, jiW Ni ,1= ; Mj ,1=  and ; 2

, jiW Mi ,1= ; 

Pj ,1= , to small random numbers belonging to the (-2/N, 2/N) interval. 

3. Until ( ) ( ) TOtWE
POutputsk

kk ≤−= ∑
∈

2

)(2
1

 (threshold), do: 

3.1.  Input the instance X  to the network and compute the output O . 

21 WWXO ⋅⋅=  (1) 

3.2. For each network output unit , k Pk ,1= , calculate its error term kδ . 

( )( )kkkkk OtOO −−= 1δ  (2) 

3.3. For each hidden unit ,  h Mh ,1= ,  calculate its error term hδ . 

( ) ∑
∈

⋅−=
)(

2
,1

POutputsk
khkhhh WOO δδ  (3) 

3.4. Update each network weight  jiW ,

jijiji WWW ,,, ∆+=  (4) 

jiiji XW ,, ⋅⋅=∆ δα  (5) 

where α  is the learning step. 
The weights will be randomly initialized in the [-2/N, 2/N] interval, where N is the 

number of neurons in the input layer. For better results we will codify the input data 
with -1 and 1 and we’ll use the following activation function: 
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Static Learning (Pre-training) 
The static learning means that the predictor will be trained based on some room 

history patterns belonging to the previous presented benchmarks (person room 
movements) before effective run-time prediction process. A very important parameter 
is the threshold’s value (T ). As an example, for a threshold of 0.2, the output values 
are accepted only if they belong to the [-1, -0.8] interval for –1 (0) or in the [0.8, 1] 
interval for 1. If the output values are not in one of those intervals, the backward step 
is generated until this condition is fulfilled. In other words, this training iterative 
process will continue until the error function will be less then the threshold T  (0.2 in 
this case). Another important parameter is the learning rate (α ).  

The static learning process for a local predictor consists in training the network 
using the person’s recorded movements. We’ll measure the accuracy gain generated 
by this static training process. The static learning process for a global predictor 
consists in alternatively (round robin) training the predictor using input vectors 
belonging to each benchmark in a supervised manner, using back-propagation 
algorithm. So, we expect to avoid the undesired forgetfulness process during the 
training. 

Dynamic Learning (Run-time Prediction Process) 
One of the differences between the static and dynamic learning is that during the 

dynamic learning we predict based on the feed-forward step’s result. That means that 
if the output value is belonging to [-1, 0) interval it will be considered –1 (0) and if it 
belongs to the [0, 1] interval it will be considered 1. 

If the predicted value is correct only a backward step is made. If the predicted 
value is not correct, the backward step will be applied until the prediction is correct 
and one more time after that. This solution could generate some real-time problems. 
An other more realistic and more attractive solution for PDAs, is to apply the 
backward step only one time even if the prediction is not correct (this means that the 
prediction process is faster, and, thus, better adapted to real-time restrictions). 

Static & Dynamic or only Dynamic Learning 
In the case of static & dynamic learning the network is statically trained before its 

effective use. In this case the dynamic learning process is started with the weights 
generated by the static training process. If we use a global predictor the neural 
network will “learn” randomly the benchmarks during the effective run-time 
prediction process, too (dynamic learning process). An iteration step means to run one 
time all the benchmarks. During each iteration step we select randomly the running 
sequence of the benchmarks. We will study how the number of iterations will affect 
the prediction’s accuracy. If we use only dynamic learning the weights are initially 
randomly generated, and, after this, the network will effectively predict. 
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3.2 Local codification 

After we analyzed the benchmarks (movement sequences of real persons) we have 
codified the rooms obtaining the following results: 

Table 1. The number of visited rooms for each person 

Benchmark Number of rooms 
Employee 1 11 
Employee 2 16 
Employee 3 13 
Boss 13 

 
Each person has his/her own neural predictor and in this way each neural network 

will be trained with the movements of a single person. As we can see in Table 1, 
taking into account the particular movements of each person, the rooms must be 
codified with 4 bits. We didn’t choose a unified room codification. Instead we 
codified the rooms belonging to each person separately to reduce the necessary 
number of bits. Obviously, it does not matter that a room could have different 
codification for different persons. After the codification process the rooms were 
assigned with the following codes: 
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Table 2. Room codification in first employee’s 
benchmark 

Room Code Binary Code 
Flur 0 0000 
402 1 0001 
412 2 0010 
Drucker 3 0011 
WC 4 0100 
Aufzug 5 0101 
411 6 0110 
409 7 0111 
404 8 1000 
403 9 1001 
Kueche 10 1010  

Table 3. Room codification in second 
employee’s benchmark 

Room Code Binary Code 
Flur 0 0000 
402 1 0001 
Kueche 2 0010 
WC 3 0011 
Aufzug 4 0100 
412 5 0101 
411 6 0110 
Drucker 7 0111 
409 8 1000 
Aufgang 9 1001 
404 10 1010 
403 11 1011 
408 12 1100 
410 13 1101 
406 14 1110 
405 15 1111  

Table 4. Room codification in third employee’s
benchmark 

Room Code Binary Code 
Flur 0 0000 
412 1 0001 
Kueche 2 0010 
Drucker 3 0011 
Aufzug 4 0100 
402 5 0101 
WC 6 0110 
404 7 0111 
411 8 1000 
409 9 1001 
Aufgang 10 1010 
403 11 1011 
407 12 1100 

Table 5. Room codification in boss’s 
benchmark 

Room Code Binary Code 
Flur 0 0000 
403 1 0001 
WC 2 0010 
Aufzug 3 0011 
412 4 0100 
Drucker 5 0101 
411 6 0110 
404 7 0111 
Kueche 8 1000 
Aufgang 9 1001 
406 10 1010 
402 11 1011 
409 12 1100 

3.3 Global codification 

In this second case, it is used one global neural network for all persons. The total 
number of rooms in the benchmarks is 17. That means that the rooms must be 
codified with 5 bits. If we use a global predictor, the persons must be codified too, 
and we can do it with other 2 bits. 
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Table 6. Global Room codification 

Room Code Binary Code 
Flur 0 00000 
402 1 00001 
412 2 00010 
Drucker 3 00011 
WC 4 00100 
Aufzug 5 00101 
411 6 00110 
409 7 00111 
404 8 01000 
403 9 01001 
Kueche 10 01010 
Aufgang 11 01011 
408 12 01100 
410 13 01101 
406 14 01110 
405 15 01111 
407 16 10000  

Table 7. Person codification 

Person Code Binary Code 
Employee 1 0 00 
Employee 2 1 01 
Employee 3 2 10 
Boss 3 11  

 
Each line of the original benchmarks represents a person’s movement (his/her 

entry in a room). It contains the movement’s date and hour, the room’s name, the 
person’s name and a timestamp. In the codification process we eliminate from the 
benchmark the room repetitions, because they represents some mistakes and therefore 
they could behave as noise. 

Table 8. The first lines from boss’s benchmark before and after the codification process 

Original benchmark Locally  
coded 
Benchmark 
(decimal) 

Globally  
coded  
Benchmark 
(decimal) 

2003.11.05 08:30:10; Flur; Boss; 1068017410181 0 0 
2003.11.05 08:30:13; 403; Boss; 1068017413881 1 9 
2003.11.05 08:52:40; Flur; Boss; 1068018760383 0 0 
2003.11.05 08:52:56; WC; Boss; 1068018776287 2 4 
2003.11.05 08:56:12; Flur; Boss; 1068018972446 0 0 
2003.11.05 08:56:15; 403; Boss; 1068018975446 1 9 

 
Table 8 shows how looks like the benchmark before and after the room 

codification process. After the codification process the benchmarks contain only the 
room codes, because in this starting stage of our work only this information is used in 
the prediction process. 
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4 The simulator and the steps of the simulation. Experimental 
Results 

The developed simulator exhibits the following parameters: the number of neurons 
in the input layer ( ) practically determined by the room history length, the number 
of neurons in the hidden layer (

N
M ), the threshold’s value used in the static learning 

process (T ), and the learning rate (α ). The simulator’s output represents the 
predicted room. We will vary all these parameters, obtaining in this way the optimal 
configuration of the neural network. We used two benchmark types reporting the 
movements of three employees and the boss: the movement sequences reported 
during the summer 2003 contain about 100-450 movements per person and those of 
the fall 2003 contain about 1000 movements per person. Our evaluations are based on 
the fall benchmarks. In case of pre-training we use the summer benchmarks for 
training. These benchmarks are compliant to the Augsburg Indoor Location Tracking 
Benchmarks [8]. 

We begin varying the number of neurons in the hidden layer, and we start with a 
history length of 2 rooms and a learning rate of 0.3. We try to find a formula for 
determining the optimal number of neurons’ in the hidden layer as a function of the 
neurons’ number in the input layer. After we establish the optimal solution for the 
neurons’ number in the hidden layer, we continue our simulations varying the number 
of backward steps corresponding to run-time prediction process, and, after that, the 
learning rate. More important, after we fix all these parameters, we study how the 
prediction accuracy is affected by the room’s history length (and implicitly by the 
number of neurons in the input layer). Another goal is to study after how many 
iterations the prediction accuracy will be established (constant). We determine the 
optimal threshold value for a statically trained dynamic room predictor. We determine 
the best learning type (static & dynamic or only dynamic), and for doing this, we 
compare the prediction accuracy of an only dynamically trained predictor with the 
accuracy of a statically and dynamically trained predictor using the same simulation 
parameters. We finish our study comparing the global neural predictor’s accuracy 
with the local predictor’s accuracy. 

 
The first parameter we vary is the number of neurons in the hidden layer. For this 

we used a dynamically trained network with a learning rate of 0.3 and a room history 
length of 2. Another goal is to determine after how many iterations the prediction 
accuracy will be saturated. We consider that the prediction accuracy is saturated if the 
difference between the prediction accuracies obtained in the last two iterations is less 
than 0.01. We use the fall benchmarks and two predictor types, the local predictor and 
the global one (see section 3). Table 9 shows how the prediction accuracy is affected 
by the number of neurons in the hidden layer. 

Table 9. Study of the number of neurons in the hidden layer (M); AM=Arithmetic Mean 

Predictor M=5 M=7 M=9 M=11 M=13 M=15 
Employee 1 74.16 75.93 76.01 75.95 75.83 75.6 
Employee 2 70.65 71.22 71.38 71.26 71.13 71.04 
Employee 3 68.27 68.71 69.43 69.4 69.28 69.18 
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Boss 58.69 60.07 60.47 59.53 58.69 56.96 
AM 67.94 68.98 69.32 69.03 68.73 68.19 
Global 56.78 56.96 59.62    

Table 10. The number of iterations needed for saturated prediction accuracy 

Predictor M=5 M=7 M=9 M=11 M=13 M=15 
Employee 1 14 36 34 36 33 36 
Employee 2 34 29 31 28 17 17 
Employee 3 17 9 20 17 11 18 
Boss 28 15 26 11 11 8 
Global 10 10 16    

 
As we can see the optimal number of hidden layer neurons is 9, in the case of the 

local predictors. If we want a formula for the calculation of neurons’ number in the 
hidden layer as a function of the neurons’ number in the input layer, we could 
consider that the optimal number of hidden layer neurons M = N+1, whereas N is 
number of input layer neurons, because our local predictors, for a room history length 
of 2, have 8 neurons in the input layer (see section 3). 

 
We continue our study varying the maximum number of backward steps. We used 

for that the fall benchmarks and a dynamically trained predictor with N+1 hidden 
layer neurons, a learning rate of 0.3 and a room history length of 2. We also limited 
the number of iterations to 10. Table 11 shows how the prediction accuracy is affected 
by the number of backward steps. 

Table 11. Study of the number of backward steps (NB) 

Predictor NB=1 NB=2 NB=3 NB=4 NB=5 NB=unlimited 
Employee 1 75.58 75.44 75.97 75.62 75.34 74.9 
Employee 2 74.04 72.03 71.61 70.86 71.12 70.32 
Employee 3 70.19 69.93 69.25 69.49 68.22 68.57 
Boss 70.29 65.94 64.32 64.16 63.14 58.72 
AM 72.525 70.835 70.2875 70.0325 69.455 68.1275 
Global 63.35 61.57 60.21 59.85 60.73  
 
As we can see the optimal number of backward steps is 1. We continued our 

simulations using only one backward step in the dynamic learning process.  
The next varied parameter is the learning rate. We used the fall benchmarks and a 

dynamically trained predictor with (N+1) hidden layer neurons and a room history 
length of 2 and we limited the number of iterations to 10. Table 12 shows how the 
prediction accuracy is affected by the learning rate. We can observe that the optimal 
learning rate is 0.1. There are cases when another learning rate is better (e.g. 0.05 or 
0.15), but based on the arithmetical mean of the prediction accuracies we chose 0.1 in 
the next simulations. 
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Table 12. Study of the number of learning rate (α ) 

Predictor α =0.05 α =0.1 α =0.15 α =0.2 α =0.25 α =0.3 
Employee 1 74.55 75.11 75.18 75.72 75.76 75.58 
Employee 2 74.68 74.67 74.16 74.08 73.99 74.04 
Employee 3 71.44 70.75 70.25 70.31 70.75 70.19 
Boss 70.37 70.08 70.05 70.24 70.13 70.29 
AM 72.76 72.6525 72.41 72.5875 72.6575 72.525 
Global 69.58 70.18 70.32 69.58 65.95 63.35 
 
We continue by the room history length variation, using a dynamically trained 

predictor with (N+1) hidden layer neurons, a learning rate of 0.1, a single backward 
step, and also we limited the number of iterations to 10. For these simulations we used 
the fall benchmarks. Table 13 and Fig. 2 show how the prediction accuracy is affected 
by the room history length. We can observe that the optimal room history length is 2. 
If we increase the rooms’ history, the prediction accuracy decreases. 

Table 13. Study of the room history length (h) 

Predictor h=1 h=2 h=3 h=4 h=5 h=6 
Employee 1 71.29 75.11 74.87 74.76 74.63 74.08 
Employee 2 65.86 74.67 73.73 73.27 73.08 72.63 
Employee 3 61.06 70.75 70.12 70.59 70.38 69.4 
Boss 66.7 70.08 70.96 70.08 68.62 68.32 
AM 66.2275 72.6525 72.42 72.175 71.6775 71.1075 
Global 62.57 70.18 68.59 68.98 66.6 64.32 
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Fig. 2. Study of the room history length 

We continue our study implementing a statically trained neural network. The last 
parameter we varied is the threshold used in the static training process. For this we 
use a dynamic neural predictor, which was statically learned before it’s effective use. 
That means that the dynamically trained predictor is initialized with the weights 
generated by the static learning process. We used N+1 hidden layer neurons, a room 
history length of 2, a learning rate of 0.1, a single backward step in the dynamic 
training process, and also we limited the number of iterations to 10. For these 
simulations we used the summer benchmarks in the static training process and 
respectively the fall benchmarks in the dynamic learning process. Table 14 and Fig. 3 
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show how the prediction accuracy is affected by the threshold’s value used in the 
static training process. 

Table 14. Study of the threshold in the static training process (T) 

Predictor T=0.1 T=0.3 T=0.5 T=0.7 T=0.9 
Employee 1 76.44 76.34 76.27 76.18 76.13 
Employee 2 75.28 75.04 75.03 75.04 74.98 
Employee 3 71.87 71.82 71.51 71.48 71.43 
Boss 72.32 72.18 72.16 72.18 71.97 
AM 73.9775 73.845 73.7425 73.72 73.6275 
Global 72.11 71.74 71.53 71.47 71.32 
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Fig. 3. Study of the threshold in the static training process (T) 

The optimal threshold is 0.1, and if we increase it then the prediction accuracy 
decreases. 

We extracted from the presented previous results the prediction accuracies 
obtained when the prediction process is simplified. Obviously, the prediction is 
generated only if that person is not in his/her own room. We compared the predictors 
with and without pre-training using (N+1) hidden layer neurons, a room history length 
of 2, a learning rate of 0.1, a single backward step in the dynamic training process, 
and also we limited the iterations’ number to 10. For the static training process we 
used a threshold of 0.1, too. In the static training process we used the summer 
benchmarks and in the run-time prediction process were used the fall benchmarks. 

Table 15. Comparing a dynamic predictor with a statically trained dynamic predictor 

Predictor Dynamic training Static & Dynamic training 
Employee 1 89.32 92.32 
Employee 2 89.55 91.21 
Employee 3 85.89 87.66 
Boss 84.49 88.06 
AM 87.31 89.81 
Global 84.58 87.3 
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Fig. 4. Comparing a dynamic predictor with a statically trained dynamic predictor 

As we can see the best results were obtained with the statically trained dynamic 
predictor. Also the best results were obtained when we used the local predictors 
(person – centric).  

Time and memory costs 
The costs of the approach (time and memory size) are the following: 

• Time costs: For static learning the neural network needs about 10 to 45 seconds to 
learn an entire summer benchmark, using a Pentium III, 650 MHz, 128 MB RAM. 
The dynamic learning is practically instantaneous because we use a single 
backward step. 

• Memory costs: For a local predictor with a room history length of 2 (H=2), 
codifying the room with 4 bits (B=4), we have N=B*H=8, M=B*H+1=9, P=B 
(N/M/P - the number of input/hidden/output layer neurons). For this optimal 
configuration of the neural network, the system needs 168 memory units (160 float 
value memory units, and 8 bits for the input vector). More generally, the memory 
costs (C) are given by the following formula:  
C = M(N+B) + P(M+B) + N - the number of memory units 
CF = M(N+B)+P(M+B) - float value memory units 
CB = N - the number of memory units necessary to store 1 
  or -1 (1 bit) 

5 Conclusions 

This paper analyzed neural prediction techniques used in an ubiquitous computing 
application. In ubiquitous environments often relatively simple prediction algorithms 
are required e.g. due to the PDA’s memory, computing, and communication 
restrictions. We used in this work one of the simplest neural networks, a multi-layer 
perceptron with one hidden layer, trained with back-propagation algorithm. 

Two predictor types were analyzed: the local and respectively the global 
predictors. In the case of local predictors, each person has his/her own neural 
predictor and in this way each neural network will be trained with the movements of a 
single person. Alternatively, it is possible to use one global neural network for all 
persons, and in this second case the persons must be codified, too. The evaluations 
show that the local predictors have higher prediction accuracy than the global 
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predictors. We found a formula for determining the optimal number of neurons in the 
hidden layer as a function of the neurons’ number in the input layer; we could 
consider that the optimal number of hidden layer neurons M = N+1, whereas N is 
number of input layer neurons. The neural network is more efficient when only one 
backward step is applied in the run-time prediction process. The next varied 
parameter was the learning rate. The evaluations show that the optimal learning rate is 
0.1. More important, after we fixed all these parameters, we studied how the 
prediction accuracy is affected by the room history length (and implicitly by the 
number of neurons in the input layer). The simulation results show that the optimal 
room history length is 2. We continued our study implementing a statically trained 
neural network. The last parameter we varied is the threshold used in the static 
training process. For this we used a dynamic neural predictor, which was statically 
learned before it’s effective use. The results show that the optimal threshold is 0.1.  

We extracted from the presented previous results the prediction accuracy obtained 
using a simplified prediction process. We compared the dynamic predictor with the 
statically trained dynamic predictor. The experimental results show that the pre-
trained dynamic predictors are more efficient than the dynamic predictors. The 
arithmetical mean of the prediction accuracies obtained with the pre-trained local 
predictors is 89.81%, but the prediction accuracy measured on some local predictors 
grew up to over than 92%. For an efficient evaluation, the static training process was 
made with some summer benchmarks, and in the run-time prediction process were 
used fall benchmarks. One of the further development directions is to compare the 
neural predictors presented in this work with other neural predictors and with the state 
predictor techniques (proposed in [9] and [10]) with exactly the same experimental 
setup. 
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