
Universität Augsburg

���������	
���
Person Movement Prediction Using

Neural Networks

Lucian Vintan, Arpad Gellert, Jan Petzold, and Theo Ungerer

Report 2004-10 April 2004

Institut für Informatik
D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Lucian Vintan, Arpad Gellert, Jan Petzold, and Theo Ungerer
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Person Movement Prediction Using Neural Networks

Lucian Vintan1, Arpad Gellert1, Jan Petzold2, and Theo Ungerer2

1Computer Science Department, University “Lucian Blaga”,
E. Cioran Str., No. 4, Sibiu-550025, Romania

{lucian.vintan, arpad.gellert}@ulbsibiu.ro

2Institute of Computer Science, University of Augsburg,
Eichleitnerstr. 30, 86159 Augsburg, Germany

{petzold, ungerer}@infomatik.uni-augsburg.de

Abstract. Ubiquitous systems use context information to adapt appliance
behavior to human needs. Even more convenience is reached if the appliance
foresees the user’s desires and acts proactively. This paper proposes neural
prediction techniques to anticipate a person’s next movement. We focus on
neural predictors (multi-layer perceptron with back-propagation learning) with
and without pre-training. The optimal configuration of the neural network is
determined by evaluating movement sequences of real persons within an office
building. The simulation results, obtained with one of the pre-trained neural
predictors, show accuracy in next location prediction reaching up to 92%.

1 Introduction

Ubiquitous systems strive for adaptation to user needs by utilizing information
about the current context in which a user’s appliance works. A new quality of
ubiquitous systems may be reached if context awareness is enhanced by predictions of
future contexts based on current and previous context information. Such a prediction
enables the system to proactively initiate actions that enhance the convenience of the
user or that lead to an improved overall system.

Humans typically act in a certain habitual pattern, however, they sometimes
interrupt their behavior pattern and they sometimes completely change the pattern.
Our aim is to relieve people of actions that are done habitually without determining a
person’s action. The system should learn habits automatically and reverse
assumptions if a habit changes. The predictor information should therefore be based
on previous behavior patterns and applied to speculate on the future behavior of a
person. If the speculation fails, the failing must be recognized, and the predictor must
be updated to improve future prediction accuracy.

For our application domain we chose next location prediction instead of general
context prediction. The algorithms are also applicable for other more general context
domains; however, there already exist numerous scenarios within our applications
domain. Some sample scenarios may be the following:

 1

• Smart doorplates that are able to direct visitors to the current location of an office
owner based on a location-tracking system and predict if the office owner is soon
coming back.

• Similarly, next location prediction within a smart building can be used to prepare
the room which is presumably entered next by an habitant.

• Outdoor movement patterns can be used to predict the next region a person will
enter.

• Elevator prediction could anticipate at which floor an elevator will be needed next.
• Routing prediction for cellular phone systems may predict the next radio cell a

cellular phone owner will enter based on his previous movement behavior.

This paper focuses on a neural prediction approach, introducing the local and

global neural predictors and comparing the neural predictors with and without pre-
training. Our application predicts the next room based on the history of rooms, visited
by a certain person moving within an office building. We evaluate these neural
predictors by some movement sequences of real persons of the research group at the
University of Augsburg [8]. The next sections describe the related work, the proposed
neural network, and the simulation results.

2 Related Work

To predict or anticipate a future situation learning techniques as e.g. Markov
Chains, Bayesian Networks, Time Series or Neural Networks are obvious candidates.
The challenge is to transfer these algorithms to work with context information.

Mozer [6] proposed an Adaptive Control of Home Environments (ACHE). ACHE
monitors the environment, observes the actions taken by the inhabitants, and attempts
to predict their next actions, by learning the anticipation needs. The predictors are
implemented as feed-forward neural networks with back-propagation learning
algorithm. Unfortunately, the author doesn’t present details on the predictor or any
results.

In a more recent paper [7], Mozer proposed and implemented a smart home
environment. The intelligence of the home arises from the home’s ability to predict
the behavior and needs of the inhabitants by having observed them over a period of
time. He focused on home comfort systems, specifically air temperature regulation,
and lighting. Instead of being programmed to perform certain actions, the house
essentially adapts dynamically itself by monitoring the environment and sensing
actions performed by the inhabitants, observing the occupancy and behavior patterns
of the inhabitants, and learning to predict future states of the house. The author uses
as a predictor a feed-forward neural network with one hidden layer for anticipating
the next action (as an example, the system will predict when an inhabitant returns
home and therefore will start the heater). When the predictions are incorrect, the
inhabitants can simply indicate their preferences via ordinary interfaces they are used
to, e.g., light switches, thermostats, and simply turning on the hot water.

Aguilar et al. [1] implemented a system to reduce latency in virtual environment
applications, where virtual images must be continuously stabilized in space against

 2

the user’s head motion in a head-mounted display. Latencies in head-motion
compensation cause virtual objects to swim around instead of being stable in space.
To address this problem, Aguilar et. al. used machine learning techniques to define a
forward model of head movement based on angular velocity information. They use a
recurrent neural network to capture temporal patterns of pitch and yaw motion. Their
results demonstrate an ability of the neural network to predict head motion up to 40
ms ahead thus eliminating the main source of latencies.

Otherwise neural network approaches are often used in ubiquitous systems for
context recognition (see e. g. [4]), not for context prediction.

Petzold et al. [9] transformed some prediction algorithms used in branch prediction
techniques of current high-performance microprocessors to handle context prediction.
They proposed various context prediction techniques based on previous behavior
patterns, in order to anticipate a person’s next movement. The evaluation was
performed by simulating the predictors with behavior patterns of people walking
through a building as workload. Their simulation results show that the context
predictors perform well but exhibit differences in training and retraining speed and in
their ability to learn complex patterns. In [10] Petzold et al. compared these predictors
with the Prediction by Partial Matching (PPM) method, and they evaluated the
predictors by movement sequences of real persons within an office building reaching
up to 59% accuracy in next location prediction without pre-training and, respectively,
up to 98% with pre-training.

3 The Neural Prediction Approach

The artificial neural networks (NN) are composed of a multitude of neurons
representing simple processing elements that operate in parallel [3]. A great
advantage of the artificial neural networks is their capacity to learn based on examples
(supervised learning). In order to solve a problem traditionally, we have to elaborate
its model, and after that we have to indicate a succession of operations that represents
the solving algorithm of the problem. However there are practical problems with a
high level of complexity, and for this kind of problems it is very hard or even
impossible to establish a deterministic algorithm.

In the connection models like neural networks we are not forced to give a solving
algorithm dedicated to a certain problem; we have to offer to the NN only a multitude
of consistent examples in order to learn and generalize them. The network extracts the
information from the training samples. In this way it is able to synthesize implicitly a
certain model of the problem. In other words, the neural network builds up alone an
algorithm to solve a problem. The capacity of the neural network to solve complex
practical problems using a multitude of samples gives them a highly large potential of
applicability.

3.1 The neural network’s structure

We chose a multi-layer perceptron with one hidden layer (see Fig. 1) and back-
propagation learning algorithm. The rooms and the persons are binary codified to save

 3

computing cost, which is of particular interest for mobile (energy restrictions) or fast
moving (real-time restrictions) applications. Thus we chose bit encoding with
complexity log2N (entries in NN), instead of one-room-one-neuron encoding with
complexity N (entries in NN). This codification might be useful taking into account
further enlargements of the project, too (N will probably grow).

VIN
VHID

VOUTx1

xN

o1

oP

Fig. 1. The multi-layer perceptron

We analyzed two predictor types: the local and respectively the global predictors.
In the case of local predictors, each person has his/her own neural predictor and in
this way each neural network will be trained with the movements of a single person.
Alternatively, we use one global neural network for all persons, and in this second
case the persons must be codified, too.

The input layer
If we use a global predictor the network’s input data consists of two codes: the

code of the person and the code of the last rooms visited by that person. If we treat
each person separately with his/her own predictor, the input data only consists of the
codes of the last visited rooms. One of the parameters of the network is the number of
rooms in the input vector. We’ll vary this parameter between 1 and 8, in order to see
how the prediction accuracy is affected by the length of room history.

For a history of four rooms we’ll have the following input vectors obtained after a
binary codification of the input data:
1. The input vector for a local predictor (for a maximum of 16 rooms, a binary

codification of 4 bits is enough): Vin = 0101 0010 0001 0011
2. The input vector for the global predictor (more rooms than 16 must be regarded,

using a 5 bit room codification): Vin = 01 00101 00010 00001 00011
 where the person’s code is 01.

The hidden layer
We will vary the number of neurons in the hidden layer (M cells). We will try first
, , N 1+N 2+N (where is the number of neurons in the input layer) because this

was the best configuration of a neural network used in prior work ([2], [11], [12],
[13], [14]).

N

 4

The output layer
The neural network will return through its output layer the predicted room codified

with 4 bits by the local predictor and respectively with 5 bits by the global predictor.
In other words, in this concrete case, the output layer of a local neural network will
have four neurons (P), and the output layer of a global neural network will have five
neurons. If the binary code of the predicted room is 2 the network will return the
following output vector:
1. Vout = 0010 - returned by the local predictor
2. Vout = 00010 - returned by the global predictor

The neural network’s training
For the training/learning process we used the well-known Back-Propagation

Algorithm [5], adapted as below:
1. Create a feed-forward network with inputs, N 2,1, ++= NNNM hidden units

and P output units.

2. Initialize all network weights ; 1
, jiW Ni ,1= ; Mj ,1= and ; 2

, jiW Mi ,1= ;

Pj ,1= , to small random numbers belonging to the (-2/N, 2/N) interval.

3. Until () () TOtWE
POutputsk

kk ≤−= ∑
∈

2

)(2
1

 (threshold), do:

3.1. Input the instance X to the network and compute the output O .

21 WWXO ⋅⋅= (1)

3.2. For each network output unit , k Pk ,1= , calculate its error term kδ .

()()kkkkk OtOO −−= 1δ (2)

3.3. For each hidden unit , h Mh ,1= , calculate its error term hδ .

() ∑
∈

⋅−=
)(

2
,1

POutputsk
khkhhh WOO δδ (3)

3.4. Update each network weight jiW ,

jijiji WWW ,,, ∆+= (4)

jiiji XW ,, ⋅⋅=∆ δα (5)

where α is the learning step.
The weights will be randomly initialized in the [-2/N, 2/N] interval, where N is the

number of neurons in the input layer. For better results we will codify the input data
with -1 and 1 and we’ll use the following activation function:

 5

1
1

2)(−
+ −

=
xe

xF (6)

Static Learning (Pre-training)
The static learning means that the predictor will be trained based on some room

history patterns belonging to the previous presented benchmarks (person room
movements) before effective run-time prediction process. A very important parameter
is the threshold’s value (T). As an example, for a threshold of 0.2, the output values
are accepted only if they belong to the [-1, -0.8] interval for –1 (0) or in the [0.8, 1]
interval for 1. If the output values are not in one of those intervals, the backward step
is generated until this condition is fulfilled. In other words, this training iterative
process will continue until the error function will be less then the threshold T (0.2 in
this case). Another important parameter is the learning rate (α).

The static learning process for a local predictor consists in training the network
using the person’s recorded movements. We’ll measure the accuracy gain generated
by this static training process. The static learning process for a global predictor
consists in alternatively (round robin) training the predictor using input vectors
belonging to each benchmark in a supervised manner, using back-propagation
algorithm. So, we expect to avoid the undesired forgetfulness process during the
training.

Dynamic Learning (Run-time Prediction Process)
One of the differences between the static and dynamic learning is that during the

dynamic learning we predict based on the feed-forward step’s result. That means that
if the output value is belonging to [-1, 0) interval it will be considered –1 (0) and if it
belongs to the [0, 1] interval it will be considered 1.

If the predicted value is correct only a backward step is made. If the predicted
value is not correct, the backward step will be applied until the prediction is correct
and one more time after that. This solution could generate some real-time problems.
An other more realistic and more attractive solution for PDAs, is to apply the
backward step only one time even if the prediction is not correct (this means that the
prediction process is faster, and, thus, better adapted to real-time restrictions).

Static & Dynamic or only Dynamic Learning
In the case of static & dynamic learning the network is statically trained before its

effective use. In this case the dynamic learning process is started with the weights
generated by the static training process. If we use a global predictor the neural
network will “learn” randomly the benchmarks during the effective run-time
prediction process, too (dynamic learning process). An iteration step means to run one
time all the benchmarks. During each iteration step we select randomly the running
sequence of the benchmarks. We will study how the number of iterations will affect
the prediction’s accuracy. If we use only dynamic learning the weights are initially
randomly generated, and, after this, the network will effectively predict.

 6

3.2 Local codification

After we analyzed the benchmarks (movement sequences of real persons) we have
codified the rooms obtaining the following results:

Table 1. The number of visited rooms for each person

Benchmark Number of rooms
Employee 1 11
Employee 2 16
Employee 3 13
Boss 13

Each person has his/her own neural predictor and in this way each neural network

will be trained with the movements of a single person. As we can see in Table 1,
taking into account the particular movements of each person, the rooms must be
codified with 4 bits. We didn’t choose a unified room codification. Instead we
codified the rooms belonging to each person separately to reduce the necessary
number of bits. Obviously, it does not matter that a room could have different
codification for different persons. After the codification process the rooms were
assigned with the following codes:

 7

Table 2. Room codification in first employee’s
benchmark

Room Code Binary Code
Flur 0 0000
402 1 0001
412 2 0010
Drucker 3 0011
WC 4 0100
Aufzug 5 0101
411 6 0110
409 7 0111
404 8 1000
403 9 1001
Kueche 10 1010

Table 3. Room codification in second
employee’s benchmark

Room Code Binary Code
Flur 0 0000
402 1 0001
Kueche 2 0010
WC 3 0011
Aufzug 4 0100
412 5 0101
411 6 0110
Drucker 7 0111
409 8 1000
Aufgang 9 1001
404 10 1010
403 11 1011
408 12 1100
410 13 1101
406 14 1110
405 15 1111

Table 4. Room codification in third employee’s
benchmark

Room Code Binary Code
Flur 0 0000
412 1 0001
Kueche 2 0010
Drucker 3 0011
Aufzug 4 0100
402 5 0101
WC 6 0110
404 7 0111
411 8 1000
409 9 1001
Aufgang 10 1010
403 11 1011
407 12 1100

Table 5. Room codification in boss’s
benchmark

Room Code Binary Code
Flur 0 0000
403 1 0001
WC 2 0010
Aufzug 3 0011
412 4 0100
Drucker 5 0101
411 6 0110
404 7 0111
Kueche 8 1000
Aufgang 9 1001
406 10 1010
402 11 1011
409 12 1100

3.3 Global codification

In this second case, it is used one global neural network for all persons. The total
number of rooms in the benchmarks is 17. That means that the rooms must be
codified with 5 bits. If we use a global predictor, the persons must be codified too,
and we can do it with other 2 bits.

 8

Table 6. Global Room codification

Room Code Binary Code
Flur 0 00000
402 1 00001
412 2 00010
Drucker 3 00011
WC 4 00100
Aufzug 5 00101
411 6 00110
409 7 00111
404 8 01000
403 9 01001
Kueche 10 01010
Aufgang 11 01011
408 12 01100
410 13 01101
406 14 01110
405 15 01111
407 16 10000

Table 7. Person codification

Person Code Binary Code
Employee 1 0 00
Employee 2 1 01
Employee 3 2 10
Boss 3 11

Each line of the original benchmarks represents a person’s movement (his/her

entry in a room). It contains the movement’s date and hour, the room’s name, the
person’s name and a timestamp. In the codification process we eliminate from the
benchmark the room repetitions, because they represents some mistakes and therefore
they could behave as noise.

Table 8. The first lines from boss’s benchmark before and after the codification process

Original benchmark Locally
coded
Benchmark
(decimal)

Globally
coded
Benchmark
(decimal)

2003.11.05 08:30:10; Flur; Boss; 1068017410181 0 0
2003.11.05 08:30:13; 403; Boss; 1068017413881 1 9
2003.11.05 08:52:40; Flur; Boss; 1068018760383 0 0
2003.11.05 08:52:56; WC; Boss; 1068018776287 2 4
2003.11.05 08:56:12; Flur; Boss; 1068018972446 0 0
2003.11.05 08:56:15; 403; Boss; 1068018975446 1 9

Table 8 shows how looks like the benchmark before and after the room

codification process. After the codification process the benchmarks contain only the
room codes, because in this starting stage of our work only this information is used in
the prediction process.

 9

4 The simulator and the steps of the simulation. Experimental
Results

The developed simulator exhibits the following parameters: the number of neurons
in the input layer () practically determined by the room history length, the number
of neurons in the hidden layer (

N
M), the threshold’s value used in the static learning

process (T), and the learning rate (α). The simulator’s output represents the
predicted room. We will vary all these parameters, obtaining in this way the optimal
configuration of the neural network. We used two benchmark types reporting the
movements of three employees and the boss: the movement sequences reported
during the summer 2003 contain about 100-450 movements per person and those of
the fall 2003 contain about 1000 movements per person. Our evaluations are based on
the fall benchmarks. In case of pre-training we use the summer benchmarks for
training. These benchmarks are compliant to the Augsburg Indoor Location Tracking
Benchmarks [8].

We begin varying the number of neurons in the hidden layer, and we start with a
history length of 2 rooms and a learning rate of 0.3. We try to find a formula for
determining the optimal number of neurons’ in the hidden layer as a function of the
neurons’ number in the input layer. After we establish the optimal solution for the
neurons’ number in the hidden layer, we continue our simulations varying the number
of backward steps corresponding to run-time prediction process, and, after that, the
learning rate. More important, after we fix all these parameters, we study how the
prediction accuracy is affected by the room’s history length (and implicitly by the
number of neurons in the input layer). Another goal is to study after how many
iterations the prediction accuracy will be established (constant). We determine the
optimal threshold value for a statically trained dynamic room predictor. We determine
the best learning type (static & dynamic or only dynamic), and for doing this, we
compare the prediction accuracy of an only dynamically trained predictor with the
accuracy of a statically and dynamically trained predictor using the same simulation
parameters. We finish our study comparing the global neural predictor’s accuracy
with the local predictor’s accuracy.

The first parameter we vary is the number of neurons in the hidden layer. For this

we used a dynamically trained network with a learning rate of 0.3 and a room history
length of 2. Another goal is to determine after how many iterations the prediction
accuracy will be saturated. We consider that the prediction accuracy is saturated if the
difference between the prediction accuracies obtained in the last two iterations is less
than 0.01. We use the fall benchmarks and two predictor types, the local predictor and
the global one (see section 3). Table 9 shows how the prediction accuracy is affected
by the number of neurons in the hidden layer.

Table 9. Study of the number of neurons in the hidden layer (M); AM=Arithmetic Mean

Predictor M=5 M=7 M=9 M=11 M=13 M=15
Employee 1 74.16 75.93 76.01 75.95 75.83 75.6
Employee 2 70.65 71.22 71.38 71.26 71.13 71.04
Employee 3 68.27 68.71 69.43 69.4 69.28 69.18

 10

Boss 58.69 60.07 60.47 59.53 58.69 56.96
AM 67.94 68.98 69.32 69.03 68.73 68.19
Global 56.78 56.96 59.62

Table 10. The number of iterations needed for saturated prediction accuracy

Predictor M=5 M=7 M=9 M=11 M=13 M=15
Employee 1 14 36 34 36 33 36
Employee 2 34 29 31 28 17 17
Employee 3 17 9 20 17 11 18
Boss 28 15 26 11 11 8
Global 10 10 16

As we can see the optimal number of hidden layer neurons is 9, in the case of the

local predictors. If we want a formula for the calculation of neurons’ number in the
hidden layer as a function of the neurons’ number in the input layer, we could
consider that the optimal number of hidden layer neurons M = N+1, whereas N is
number of input layer neurons, because our local predictors, for a room history length
of 2, have 8 neurons in the input layer (see section 3).

We continue our study varying the maximum number of backward steps. We used

for that the fall benchmarks and a dynamically trained predictor with N+1 hidden
layer neurons, a learning rate of 0.3 and a room history length of 2. We also limited
the number of iterations to 10. Table 11 shows how the prediction accuracy is affected
by the number of backward steps.

Table 11. Study of the number of backward steps (NB)

Predictor NB=1 NB=2 NB=3 NB=4 NB=5 NB=unlimited
Employee 1 75.58 75.44 75.97 75.62 75.34 74.9
Employee 2 74.04 72.03 71.61 70.86 71.12 70.32
Employee 3 70.19 69.93 69.25 69.49 68.22 68.57
Boss 70.29 65.94 64.32 64.16 63.14 58.72
AM 72.525 70.835 70.2875 70.0325 69.455 68.1275
Global 63.35 61.57 60.21 59.85 60.73

As we can see the optimal number of backward steps is 1. We continued our

simulations using only one backward step in the dynamic learning process.
The next varied parameter is the learning rate. We used the fall benchmarks and a

dynamically trained predictor with (N+1) hidden layer neurons and a room history
length of 2 and we limited the number of iterations to 10. Table 12 shows how the
prediction accuracy is affected by the learning rate. We can observe that the optimal
learning rate is 0.1. There are cases when another learning rate is better (e.g. 0.05 or
0.15), but based on the arithmetical mean of the prediction accuracies we chose 0.1 in
the next simulations.

 11

Table 12. Study of the number of learning rate (α)

Predictor α =0.05 α =0.1 α =0.15 α =0.2 α =0.25 α =0.3
Employee 1 74.55 75.11 75.18 75.72 75.76 75.58
Employee 2 74.68 74.67 74.16 74.08 73.99 74.04
Employee 3 71.44 70.75 70.25 70.31 70.75 70.19
Boss 70.37 70.08 70.05 70.24 70.13 70.29
AM 72.76 72.6525 72.41 72.5875 72.6575 72.525
Global 69.58 70.18 70.32 69.58 65.95 63.35

We continue by the room history length variation, using a dynamically trained

predictor with (N+1) hidden layer neurons, a learning rate of 0.1, a single backward
step, and also we limited the number of iterations to 10. For these simulations we used
the fall benchmarks. Table 13 and Fig. 2 show how the prediction accuracy is affected
by the room history length. We can observe that the optimal room history length is 2.
If we increase the rooms’ history, the prediction accuracy decreases.

Table 13. Study of the room history length (h)

Predictor h=1 h=2 h=3 h=4 h=5 h=6
Employee 1 71.29 75.11 74.87 74.76 74.63 74.08
Employee 2 65.86 74.67 73.73 73.27 73.08 72.63
Employee 3 61.06 70.75 70.12 70.59 70.38 69.4
Boss 66.7 70.08 70.96 70.08 68.62 68.32
AM 66.2275 72.6525 72.42 72.175 71.6775 71.1075
Global 62.57 70.18 68.59 68.98 66.6 64.32

0
20
40
60
80

Emplo
ye

e 1

Emplo
ye

e 2

Emplo
ye

e 3 Bos
s

AM
Glob

al

Predictor

Pr
ed

ic
tio

n
A

cc
ur

ac
y

history=1
history=2
history=3
history=4
history=5
history=6

Fig. 2. Study of the room history length

We continue our study implementing a statically trained neural network. The last
parameter we varied is the threshold used in the static training process. For this we
use a dynamic neural predictor, which was statically learned before it’s effective use.
That means that the dynamically trained predictor is initialized with the weights
generated by the static learning process. We used N+1 hidden layer neurons, a room
history length of 2, a learning rate of 0.1, a single backward step in the dynamic
training process, and also we limited the number of iterations to 10. For these
simulations we used the summer benchmarks in the static training process and
respectively the fall benchmarks in the dynamic learning process. Table 14 and Fig. 3

 12

show how the prediction accuracy is affected by the threshold’s value used in the
static training process.

Table 14. Study of the threshold in the static training process (T)

Predictor T=0.1 T=0.3 T=0.5 T=0.7 T=0.9
Employee 1 76.44 76.34 76.27 76.18 76.13
Employee 2 75.28 75.04 75.03 75.04 74.98
Employee 3 71.87 71.82 71.51 71.48 71.43
Boss 72.32 72.18 72.16 72.18 71.97
AM 73.9775 73.845 73.7425 73.72 73.6275
Global 72.11 71.74 71.53 71.47 71.32

68
70
72
74
76
78

Emplo
ye

e 1

Emplo
ye

e 2

Emplo
ye

e 3 Bos
s

AM
Glob

al

Predictor

Pr
ed

ic
tio

n
A

cc
ur

ac
y

T=0.1
T=0.3
T=0.5
T=0.7
T=0.9

Fig. 3. Study of the threshold in the static training process (T)

The optimal threshold is 0.1, and if we increase it then the prediction accuracy
decreases.

We extracted from the presented previous results the prediction accuracies
obtained when the prediction process is simplified. Obviously, the prediction is
generated only if that person is not in his/her own room. We compared the predictors
with and without pre-training using (N+1) hidden layer neurons, a room history length
of 2, a learning rate of 0.1, a single backward step in the dynamic training process,
and also we limited the iterations’ number to 10. For the static training process we
used a threshold of 0.1, too. In the static training process we used the summer
benchmarks and in the run-time prediction process were used the fall benchmarks.

Table 15. Comparing a dynamic predictor with a statically trained dynamic predictor

Predictor Dynamic training Static & Dynamic training
Employee 1 89.32 92.32
Employee 2 89.55 91.21
Employee 3 85.89 87.66
Boss 84.49 88.06
AM 87.31 89.81
Global 84.58 87.3

 13

80

85

90

95

Emplo
ye

e 1

Emplo
ye

e 2

Emplo
ye

e 3 Bos
s

AM
Glob

al

Predictor

Pr
ed

ic
tio

n
A

cc
ur

ac
y Dynamic

Training

Static &
Dynamic
Training

Fig. 4. Comparing a dynamic predictor with a statically trained dynamic predictor

As we can see the best results were obtained with the statically trained dynamic
predictor. Also the best results were obtained when we used the local predictors
(person – centric).

Time and memory costs
The costs of the approach (time and memory size) are the following:

• Time costs: For static learning the neural network needs about 10 to 45 seconds to
learn an entire summer benchmark, using a Pentium III, 650 MHz, 128 MB RAM.
The dynamic learning is practically instantaneous because we use a single
backward step.

• Memory costs: For a local predictor with a room history length of 2 (H=2),
codifying the room with 4 bits (B=4), we have N=B*H=8, M=B*H+1=9, P=B
(N/M/P - the number of input/hidden/output layer neurons). For this optimal
configuration of the neural network, the system needs 168 memory units (160 float
value memory units, and 8 bits for the input vector). More generally, the memory
costs (C) are given by the following formula:
C = M(N+B) + P(M+B) + N - the number of memory units
CF = M(N+B)+P(M+B) - float value memory units
CB = N - the number of memory units necessary to store 1
 or -1 (1 bit)

5 Conclusions

This paper analyzed neural prediction techniques used in an ubiquitous computing
application. In ubiquitous environments often relatively simple prediction algorithms
are required e.g. due to the PDA’s memory, computing, and communication
restrictions. We used in this work one of the simplest neural networks, a multi-layer
perceptron with one hidden layer, trained with back-propagation algorithm.

Two predictor types were analyzed: the local and respectively the global
predictors. In the case of local predictors, each person has his/her own neural
predictor and in this way each neural network will be trained with the movements of a
single person. Alternatively, it is possible to use one global neural network for all
persons, and in this second case the persons must be codified, too. The evaluations
show that the local predictors have higher prediction accuracy than the global

 14

predictors. We found a formula for determining the optimal number of neurons in the
hidden layer as a function of the neurons’ number in the input layer; we could
consider that the optimal number of hidden layer neurons M = N+1, whereas N is
number of input layer neurons. The neural network is more efficient when only one
backward step is applied in the run-time prediction process. The next varied
parameter was the learning rate. The evaluations show that the optimal learning rate is
0.1. More important, after we fixed all these parameters, we studied how the
prediction accuracy is affected by the room history length (and implicitly by the
number of neurons in the input layer). The simulation results show that the optimal
room history length is 2. We continued our study implementing a statically trained
neural network. The last parameter we varied is the threshold used in the static
training process. For this we used a dynamic neural predictor, which was statically
learned before it’s effective use. The results show that the optimal threshold is 0.1.

We extracted from the presented previous results the prediction accuracy obtained
using a simplified prediction process. We compared the dynamic predictor with the
statically trained dynamic predictor. The experimental results show that the pre-
trained dynamic predictors are more efficient than the dynamic predictors. The
arithmetical mean of the prediction accuracies obtained with the pre-trained local
predictors is 89.81%, but the prediction accuracy measured on some local predictors
grew up to over than 92%. For an efficient evaluation, the static training process was
made with some summer benchmarks, and in the run-time prediction process were
used fall benchmarks. One of the further development directions is to compare the
neural predictors presented in this work with other neural predictors and with the state
predictor techniques (proposed in [9] and [10]) with exactly the same experimental
setup.

References

[1] Aguilar M., Barniv Y., Garrett A., Prediction of Pitch and Yaw Head Movements via
Recurrent Neural Networks, International Joint Conference on Neural Networks, Portland
Oregon, 2003.

[2] Egan C., Steven G., Quick P., Anguera R., Vintan L., Two-Level Branch Prediction using
Neural Networks, Journal of Systems Architecture, vol. 49, issues 12-15, pg.557-570,
Elsevier December 2003.

[3] Gallant S.I., Neural Networks and Expert Systems, MIT Press., 1993.
[4] Laerhoven K. v., Aidoo K., Lowette S., Real-time Analysis of Data from Many Sensors

with Neural Networks, Proceedings of the International Symposium on Wearable
Computing (ISWC 2001), Zurich, Switzerland, October 2001.

[5] Mitchell T., Machine Learning, McGraw-Hill, 1997.
[6] Mozer M. C., The Neural network House: An Environment that Adapts to its Inhabitants,

Proc. of the American Assoc. for AI Spring Symp. on Intelligent Environment, AAAI
Press, 1998.

[7] Mozer M. C., Lessons from an adaptive house, In D. Cook & R. Das (Eds.), Smart
environments: Technologies, protocols, and applications. J. Wiley & Sons, 2004.

[8] Petzold J., Augsburg Indoor Location Tracking Benchmarks, Technical Report 2004-9,
Institute of Computer Science, University of Augsburg, Germany, 2004.

 15

[9] Petzold J., Bagci F., Trumler W., Ungerer T., Context Prediction Based on Branch
Prediction Methods, Technical Report, University of Augsburg, Germany, 2003.

[10] Petzold J., Bagci F., Trumler W., Ungerer T., Vintan L., Global State Context Prediction
Techniques Applied to a Smart Office Building, Communication Networks and Distributed
Systems Modeling and Simulation Conference, San Diego, California, SUA, January 18-
21, 2004

[11] Steven G., Egan C., Anguera R., Vintan L., Dynamic Branch Prediction using Neural
Networks, Proceedings of International Euromicro Conference DSD ‘2001, pages 178-185,
Warsaw, Poland, September 2001.

[12] Steven G., Morales R.A., Using Neural Networks to Perform Dynamic Branch Prediction
in a High Performance Superscalar Architecture, Technical Report, University of
Hertfordshire, UK, January 2000.

[13] Vintan L., Towards a High Performance Neural Branch Predictor, International Joint
Conference on Neural Networks, Washington DC, USA, July 1999.

[14] Vintan L., Towards a Powerful Dynamic Branch Predictor, In Romanian Journal of
Information Science and Technology, Romanian Academy Publishing House, Bucharest,
2000.

 16

