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Efficiency of Asynchronous Systems
That Communicate Asynchronously

Walter Vogler *
Dezember 1999

Abstract

A parallel composition is introduced that combines nets (regarded as system
components) by merging so-called interface places; the novel feature is a flexible
typing of these places, which formulates assumptions a component makes about
its environment. Based on a testing scenario, a faster-than relation is defined
and shown to support modular construction, since it is a precongruence for
parallel composition, hiding and renaming. The faster-than relation is charac-
terized without reference to tests, and this characterization is used to compare
the temporal efficiency of some examples.

keywords: synthesis and behaviour of nets; testing; verification; timed nets

1 Introduction

In the testing scenario of De Nicola and Hennessy [DNH84], systems are compared by
the service they provide for a possible user or environment; thus, systems are regarded
as components that communicate with other components, and this communication
is synchronous. Service is understood as functional behaviour, i.e. which actions are
performed, and since there is no consideration of time, this behaviour is asynchronous.
This classical approach has been developed further in [Vog95, Vog97, BV98| in order
to compare also the temporal efficiency of asynchronous systems — using Petri nets
as system models; naturally, synchronous communication corresponds to combining
nets by merging transitions.

From the dual nature of Petri nets, it is particularly natural to consider also the
composition by merging places, which corresponds to asynchronous communication.
This form of composition has found maybe less attention, but see e.g. [Che91, Vog92,
BDE93, Val94, Gom96, Kin97]; compare e.g. [{BKPR91, dBZ99] for the mostly recent
interest in asynchronous communication in the process algebra world. In this paper,
we will develop a form of efficiency testing as in [BV98] etc., but based on asynchronous
communication, i.e. merging of places.

On the one hand, to give maximal freedom in the modular construction of nets, it is
desirable to allow the merge of arbitrary nets, see e.g. [Che91] or [Vog92, Section 4.3];
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on the other hand, in many applications it is sensible to designate in a component N
the interface places to be merged as input or output places. The latter usually means
a restriction for N and the environment that we want to compose with N: if p is e.g.
an input place of N, then often IV is not allowed to have arcs to p and the environment
is not allowed to have arcs from p. (E.g. [Vog92, Section 4.4] only requires the first,
while e.g. [Kin97] requires both.)

In this paper, a (to my best knowledge) novel flexible typing of the interface is
suggested: we will designate an interface place p of a net NV as input or output place or
both. These types correspond to assumptions about the environment, which is allowed
to have arcs to p or from p or both; hence, the environment may produce some input
for N or consume some output from N or both. Intuitively, N only guarantees proper
behaviour if the environment or user satisfies the respective assumption. There is
no assumption on N, but p is of course also an interface place of the environment,
which will have its own assumptions. This way, we cover the liberal approach with
maximal freedom as the case where each interface place under consideration is an in-
and output place; and we cover the so often useful restricted approach essentially as
the case where each interface place is either an input or an output place.

In the classical testing approach, a system is an implementation if it performs in
all environments, i.e. for all users, functionally just as successful as the specification.
Here, we also take into account the efficiency of implementation and specification:
success (indicated by marking an output place w) has to be reached within a given
time. Thus, we are interested in worst case behaviour (so-called must-testing). By
definition, components of asynchronous systems work with indeterminate speeds, (i.e.
time cannot be used to coordinate components); most often, this is interpreted as
‘each component may work arbitrarily slow’. Under this interpretation, the worst
case is simply that nothing is done for a long time, hence every test is failed and we
do not have a sensible theory of testing.

As a way out, [BV98] assumes that each action is performed within some given
time bound (or is disabled within this time). Such an upper time bound is a reasonable
basis for judging the efficiency, also see e.g. [PF77, Lyn96]; since actions can also be
performed arbitrarily fast, the components work with indeterminate relative speeds
also under this assumption, and we have a valid theory for asynchronous systems.
While [BV98| defines a firing rule where each transition has to fire within time 1,
we will also have transitions that have to fire immediately, i.e. within time 0; this
demonstrates generality of our results (keeping things simple at the same time) and
enhances expressivity as discussed in Sections 2 and 6

Nets and parallel composition ||| with place typing as described above are intro-
duced in Section 2. In Section 3, we give our timed firing rule using discrete time and
define efficiency testing; we call a net N; faster than a net N, if it satisfies all tests
that N, satisfies, i.e. if it exhibits at least the same functionality with at least the
same efficiency as N, specifies. We show that ||| is ‘almost associative’; which is used
for our first main result that faster-than is a precongruence for ||| and thus allows
compositional reasoning. The analogous result for renaming and hiding is given in
Section 4, where — as second main result — we characterize faster-than without refer-
ring to tests. We point out how this result can be adapted to settings where there
are no O-transitions or where use of interface places is restricted as discussed above;



then we use the characterization in Section 5 to compare some example nets. In the
conclusions, we also discuss work in progress regarding the construction of safe nets
using ||| or variations thereof.

I thank Elmar Bihler and Laurentiu Tiplea for our discussions about this paper.

2 Basic Notions of Petri Nets
with Time Bounds and Interface

In this section, we introduce Petri nets (S/T-nets) which are extended with a function
that assigns to each transition a time bound 0 or 1, and with an interface of input
and output places as explained in the introduction; we define the usual basic firing
rule and the parallel composition for such nets.

Thus, a Petri net with time bounds and interface N = (S, T, W, 3,1,0, My) (or
just a net for short) consists of finite disjoint sets S of places and T of transitions,
the function W : S x TUT x S — {0,1} describing the arcs, the time bound [ :
T — {0,1}, the input places I C S, the output places O C S, and the initial marking
My : S — INg. We associate with N its set of interface places P = I U O; note that
an interface place p might be in I and O at the same time. We assume that My is
0 on P. When we introduce a net N or N; etc., then we assume that implicitly this
introduces its components, e.g. S, [ and P or S;, I; and P; etc.

For each z € SUT, the preset of x is *z = {y | W(y,z) = 1}, the postset of z
is * = {y | W(x,y) = 1}. These notions are extended to sets as usual, e.g. *X is
the union of all *z with z € X. If z € *y Ny®, then = and y form a loop. A marking
is a function S — INy. We sometimes regard sets as characteristic functions, which
map the elements of the sets to 1 and are 0 everywhere else; hence, we can e.g. add a
marking and a postset of a transition or compare them componentwise.

Assumption: In all nets considered in this paper, places are not isolated (i.e. *s # ()
or s* # () for each s € S). Roughly speaking, isolated places are not very useful — as
discussed below — and would lead to some technical complications.

As usual, we draw transitions as boxes, places as circles and arcs (i.e. pairs (x, y) with
W(z,y) = 1) as arrows. If a place s is on a loop with a transition ¢ with §(¢) = 1
and has no arc to or from any other transition, we will not draw s but place a dot
into the box of ¢ instead; if the box representing some ¢t € T does not have a dot,
but £(t) = 1, then we give the box a double line on its right side; in both cases, ¢ is
called a I-transition. If there is no dot and no double line, then () = 0, and ¢ is a
O-transition. An interface place is indicated by writing its type(s) I, O or IO next to
it; we speak of an IO-place in the latter case. For an example, see Figure 1, which is
discussed below.
We now define the usual basic firing rule, which ignores timing and interface.

e A transition ¢ is enabled under a marking M, denoted by M][t), if *¢t < M.

If Mty and M' = M + t* — *t, then we denote this by M[t)M' and say that ¢
can occur or fire under M yielding the marking M’.



e This definition of enabling and occurrence can be extended to sequences as
usual: a sequence w of transitions is enabled under a marking M, denoted by
Mw), and yields the follower marking M’ when occurring, denoted by M[w)M’,
ifw=Xand M = M or w = w't, M{w')M" and M"[t)M" for some marking
M" and transition t. If w is enabled under the initial marking, then it is called
a firing sequence; the set of those is denoted by FS(N).

e A marking M is called reachable if My[w)M for some w € T*. The net is safe
if M(s) <1 for all places s and reachable markings M.

Before we introduce the parallel composition |||, we define nets to be isomorphic
if one can be obtained from the other by bijectively renaming the transitions and the
places in S\ P, while preserving the structure (arcs, time bounds and initial marking).
We regard isomorphic nets as equal. Hence, only the identity of the interface places
is important — and whenever we have two nets N; and N,, we can assume that they
are disjoint outside their interfaces, i.e. (S; UTy) N (Se UTy) = PN Ps.

Now, if we combine nets N; and N, with the parallel composition |||, then they
run in parallel and communicate asynchronously over their common interface. To
construct the composed net, we will merge the common interface places of Ny and
N5. But first of all, we assume that N; and N, satisfy the above disjointness condition
— otherwise, a suitable isomorphic renaming is performed automatically. Additionally,
the typing of the interface places as input or output places formulates an assumption
about the respective other component: e.g. N; may only put a token onto an interface
place p of Ny, if p is an input place of Ny. Thus, N; ||| N, is defined if and only if,
for {7, 7} = {1, 2}, we have that p € (P, \ [;) N P; and ¢ € S; implies W;(¢,p) = 0 and
that p € (P, \ O;) N P; and t € S; implies W;(p,t) = 0.

If these conditions are satisfied, N = N ||| N; is obtained by componentwise union
except for the interface. (In particular, we can take the union of the two time bounds
since they are defined on disjoint sets; the same is true for the initial markings, since
whenever they are both defined on some p, then this is an interface place where
both markings are 0.) Additionally, I = (I, \ P,) U (I, \ P,) U (I; N L) and O =
(O1\ P2) U (O \ P1)U (01N Oy).

Let us explain the treatment of the interface. The interface of N is more or less
(see next paragraph) the union of the interfaces of N; and N,, and the typing of an
interface place p is correspondingly determined by N; or/and Ny. If p is e.g. in [
but not in Oy, then N; assumes that its user will never take tokens from p; the same
assumption must be made by N. Otherwise, a user U of N that takes tokens from p
would indirectly use N; and violate its assumption.

If p is e.g. only an input for N; and only an output for N, then there is no arc to
p in N; and no arc from p in Ns; this corresponds exactly to the restricted approach
to composition by merging places that we discussed in the introduction. Note that
such a p will not be in the interface of N, which is sensible, since no user U could
satisfy both assumptions of N; and Ns; p allows point-to-point messages from Ny to
N; — a very useful application of our approach.

As an example for our nets and the application of |||, consider Figure 1. Prod is a
typical user; it will quickly (i.e. with a O-transition) put two ‘orders’ onto its output



Figure 1

place py, and then it is willing to detect two ‘products’ on its input place py; after
this, it would fire its 1-transition, i.e. ‘use the products’ for at most time 1, and then
put a token onto p in order to signal satisfaction. Similarly, the special place w is used
in tests to signal success, i.e. satisfaction of the user.

The production line PL2 can execute an ‘order’ placed on p; and put a ‘product’
onto pe. Production has two stages (1-transitions) that each take up to time 1. The
dot indicates a loop place, with the effect that in the first stage one order has to
be processed after the other; one can run several orders through the second stage in
parallel, taking up time 1 altogether; compare Definition 3.1. PLI is an improved
version of PL2, needing only one stage; we certainly expect it to be faster.

The example also demonstrates the usefulness of our flexible interface typing. It
is realistic to serve Prod with two production lines, i.e. to form the net Prod ||| (PL2
||| PL2) also shown in Figure 1; recall that the two copies of PL2 are automatically
made disjoint except for their interfaces. Intuitively, one would expect PL2 ||| PL2
to be faster than PL2. Note that both copies may take tokens from p;; one copy of
PL2 would forbid the other one to do this, if p; would only be an input place of PL2;
technically, Prod ||| (PL2 ||| PL2) would not be defined. Thus, it is very reasonable
to have IO-places as p; or similarly ps.

Let us look at the case where we only consider nets where interface places are either
input or output places. Let p be in I}, I, and O3 for the respective nets. Composing
N; and N, requires that they have only arcs going to p; then, Ny cannot be composed
with e.g. N3, i.e. p will ever be an input place with no ingoing arcs, which does not
make much sense. Composing N; and N3, on the other hand, requires that N; has
no arcs going to p and N3 has no arcs going out of p; thus, we are essentially in the
restricted setting discussed in the introduction.

We mention in passing two other operations that can be useful in the construction
of nets: I- or O-hiding an interface place p in a net N results in N/"p or N/9p, which



is obtained from N by removing p from I or O; hiding p is defined by N/p = N/'p/%p.
Renaming an interface place p in a net N to p' € P results in N[p — p/|, which is
obtained from N by replacing p by p’, which inherits p’s arcs, marking and typing; if
p' € S\ P, it first has to be replaced isomorphically.

If we regard the combined production line PL2 ||| PL2 as complete for the pro-
cessing of orders, we should write it as (PL2 ||| PL2)/p1/ ps. A producer that also
uses two copies of PL2, but decides for each order which copy to use, could e.g. use
PL2 and PL2[p; — p!]; products would still arrive at the unique place ps.

3 Timed Behaviour of Asynchronous Systems
and Testing

We will describe the asynchronous behaviour of a parallel system, taking into account
the times at which things happen. The components of an asynchronous system vary
in speed — but we assume that they are guaranteed to perform each enabled action
within some finite given time; this upper time bound allows the relative speeds of the
components to vary arbitrarily, since we have no positive lower time bound. Thus,
the behaviour we define is truly asynchronous. In contrast to [BV98] etc., we do not
assume that the upper time bound is 1 for all transitions; to demonstrate generality
of the approach but keeping things simple at the same time, we allow 0 or 1 as bound.
This will also allow to model transitions with arbitrary durations as discussed below.

The upper time bounds of transitions really correspond to firing intervals [0, 1] and
[0, 0] attached to the transitions; instead, one could more generally attach arbitrary
time intervals to the arcs from places to transitions as suggested in [SDASS94]. Effi-
ciency testing with synchronous communication has been studied for safe nets with
such arc intervals in [Bih98], and it is shown that the faster-than relation based on
testing is the same, no matter whether we work with continuous or discrete time (see
also [Pop91]). The basic lemma for this result almost carries over to our setting (ex-
cept that we use general S/T-nets); thus, for the time being, we will only use discrete
time, which is easier to handle.

We will now define what we regard as timed behaviour; it will be convenient to
use a formalism different from the ones used in the papers cited above. If a transition
is enabled, it can always fire since transitions — only having an upper time bound —
may fire very quickly; firing itself is instantaneous. If a O-transition is enabled, it has
to fire immediately, i.e. no time will pass before it has fired or has been disabled. If a
1-transition gets enabled, it may wait for one unit of time, and we write such a time
step o; to record how long transitions have been enabled, we record — additionally to
the marking — how many tokens have an age of at least 1; then, a 1-transition has
to fire immediately, if each place in its preset is marked with an ‘old’ token. This
intuition is formalized as follows, where we assume that initially all tokens are old; if
this is not adequate in some case, one can add a transition ¢ that can fire once and
produce the intended initial marking of fresh tokens.

Definition 3.1 A timed marking TM of a net is a pair (M, M°'?) consisting of two
markings of N with M > M°4. Again, introducing e.g. a timed marking TM,
implicitly introduces M; and M°4 etc. The initial TM is TM x = (My, My).
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We write (M, M?4)[e)(M’, M) if one of the following cases applies:
l.e=teT, M{t)YM', M = M & *¢, where n © m = max(n — m, 0)
2. e=o,VtE€T: M[t)=(B(t) =1 A=M ), M = M4 = M

Generalizing this timed firing rule to sequences as above — together with a notion
of reachable timed marking —, we define the set TFS(N) = {w| TM y[w)} of timed
firing sequences of N. For a timed firing sequence w, ((w) is the duration, i.e. the
number of ¢’s in w. The behaviour in between two ¢’s is called a round. a

Part 2 of this firing rule ensures that every 1-transition that is enabled for one
unit of time and every enabled O-transition fires before time goes on, but according
to Part 1 a 1-transition may also act faster. In fact, by only applying 1, we get
FS(N) C TFS(N); additionally, the occurrence of o’s only changes M°? while the
firing of transitions only depends on M as usual. Hence, deleting the time steps
from all sequences in TFS(N) we get exactly FS(N). This shows that, despite the
upper time bounds, we still deal with the full complexity of asynchronous systems;
we have simply enriched the asynchronous behaviour by some timing information in
an orthogonal way.

Observe the following subtle point, where our consideration of asynchronous sys-
tems simplifies things a little: if a transition is given a choice, it always takes old
tokens. One could also define a timed firing rule, where it might take a fresh one, i.e.:
if M(s) > M°“(s) — indicating the presence of a fresh token on s — and t € s* fires
under TM, then we could allow that this firing leaves M °%(s) unchanged. Such a rule
would give sequences where the M°“-components are larger; the only consequence
would be that we could apply Part 2 of this rule less often. But since we are never
forced to apply 2 anyway, such an alternative firing rule would not give additional
timed firing sequences. Thus, we can work with our simpler rule.

I e O [ O [ 04

Figure 2

Quite generally, we can also model transitions with an arbitrary upper bound on
their duration. E.g. Figure 2 shows a subnet where the first transition takes two
tokens immediately once they are available, while the last transition produces two
tokens after at most two time steps; thus, the subnet corresponds to a transition with
maximal duration 2 with the described consumption and production. It is not clear
whether we can model transitions that stay enabled up to time n > 1 and then fire
instantaneously. See also Section 6 for expressivity.

We now define our testing scenario, where we compare nets by embedding them as
components into testing environments and considering the behaviour of the resulting
complete systems. Such a testing environment is something like a user that commu-
nicates with the embedded component; if after a while the user is satisfied with the
service of the component, (s)he declares success by marking a special place w — and
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this should happen within a prescribed period D of time even in the worst case. To
be sure that we have seen everything that occurs up to time D, we only look at runs
w with ((w) > D.

Definition 3.2 A net is testable if none of its interface places is w. A net is a test
net if it has w as output place with w® = ). A timed test is a pair (U, D), where U is
a test net and D € INg (the test duration).

A testable net N satisfies a timed test (U, D) (N must (U, D)), if N ||| U is defined
and each timed marking reached by some w € TFS(N |||U) with ((w) > D marks
w. For testable nets Ny and N, we call Ny a faster implementation of Ny (or simply
faster than Ny), Ny J Ny, if N1 |||U and Ny |||U are defined for the same test nets
U and N; satisfies all timed tests that N, satisfies. O is also called the efficiency
preorder. O

The efficiency preorder has two aspects: if N; O N,, then intuitively /N; satisfies
all U that N, specifies, i.e. it functionally implements N»; and we speak of a faster
implementation, since N; might also satisfy some specified test net within a shorter
time. Note that N must (U, D) implies N must (U, D') for all D' > D; hence, if N;
satisfies the same U as Ny but with a different time D, this must be a shorter time.

Our timed firing rule allows some sort of Zeno-effect, i.e. we could have arbitrary
long sequences with a fixed finite duration, in particular 0. This is of course not
realistic, but in a way filtered out by the testing definition: a test fails only with a w
that takes enough time, and since w® = ) in a test net, we can restrict attention to w
that stop after the last 0. The filtering may have a misleading effect if some w with
((w) < D could not be extended to a ww' with {(ww') > D; a system with such a
time stop is ill-designed and should not be considered anyway. Note that time stops
can only occur due to 0-transitions (or 1-transitions with empty preset, which should
be avoided anyway since they act like 0-transitions).

From the above intuitive explanation, it should be clear that we can safely use
Nj instead of N,, only if it is faster as just defined. We will validate our preorder by
checking out examples below. But to be really useful, the faster-than relation should
also support modular construction, i.e. it should be a precongruence: if Ny 3 N, and
Ny is a component of a system N ||| N, then replacing Ny by Ny should give a better
system N ||| N, i.e. we should have Ny ||| N O Ny ||| V.

Testing-based relations like the above faster-than relation usually give such a pre-
congruence for the composition operator used in the definition of testing. [Vog92] dis-
cusses (actually for a slightly different setting, in particular considering synchronous
communication and congruences instead of precongruences) that this is not necessarily
so, but is always the case if the composition operator is commutative and associative
(and the latter argument would also work here). Clearly, ||| is commutative, but it
may violate associativity in somewhat pathological cases: Figure 3 shows three nets
N1, Ny and Nj; forming N ||| No, the place p is removed from the interface, and then
it is automatically replaced isomorphically when we construct (Ny ||| N2) ||| N3 (top
right net) as explained above. Ny |||(Nz ||| N3) (bottom right net) is clearly different
— also in behaviour.
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Figure 3

If we obtain N} from N3 by adding p to I3, then (N ||| No) ||| N looks quite the
same as (Vg ||| N2) ||| N3; but Ny |||(N2 ||| N}) is undefined, since there is an arc to
pelin N=N,|||Nj, but p & I.

We will now give a sufficient criterion for associativity, and we will show how
associativity can be failed. Together with a first result about nets that are comparable
under our efficiency preorder, this will imply that ||| is ‘associative enough’ to prove
that I is indeed a precongruence.

Theorem 3.3 Let Ny, Ny and N3 be nets.

i) If oy P = (Nioy 1) U (M=) O4), then (N1 ||| N2) ||| N3 = Ny |[[(N2 [[| Ns), which
includes that one side is defined if and only if the other is.

ii) If (N1||| N2) ||| N3 is defined and either Ny |||(No ||| N3) is not defined or it is
different from (Ni ||| Na) ||| N3, then Ny, Ny and N3 have a common interface
place that is only an output place of N1 and only an input place of No or vice
versa; compare Figure 3.

iii) If Ny is faster than Ny (both testable), then Ny and Ny have the same input and
the same output places, and for each common interface place p, we have that
p® # 0 in Ny if and only if p* # 0 in N, and similarly for the presets.

iv) Faster-than is a precongruence for testable nets.

Proof: i) If an interface place p belongs to at most two of the nets, it is easy to
see that, with respect to p, definedness of the composition and classification as input
and/or output place does not depend on the bracketing. If e.g. p does not belong
to Np, then composition with N is certainly defined w.r.t. p and inherits arcs and
classification from the other operand; hence, definedness, classification and arcs of p
depend only on N ||| Ns.

Now let p be, say, an input place for all three nets; if it is also an output place for
all three nets, then all intermediate and final results are defined and have p has in-
and output place. If p is not an output place of e.g. N; (the other cases being similar),
then definedness of the left-hand-side requires that there is no arc from p in Ny and
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subsequently neither in N3, whereas definedness of the right-hand-side requires that
there is no arc from p in Ny ||| N3, which also means that there is none in N, and
none in Nj; thus, one side is defined w.r.t. p iff the other is, and the result will be
the same w.r.t. p since the three nets merge on p; p will only be an input place of the
final result.

ii) Assume the hypothesis holds; then, by i), there must be a common interface
place p of all three nets that is not an input of all of them and not an output of all
of them. If the claim fails, then p is without loss of generality an input place for Ny
and N, and only an output place for N3. By the definedness of (Ny ||| N2) ||| N3, the
latter means that neither in N7 nor in N5 there are arcs to p. Furthermore, p is not an
output place for one of N; or Ny, hence in the other there are no arcs from p. Thus,
p is isolated in this other net, which is a contradiction to our general assumption.

iii) If p is only an input place of Nj, consider a test net U with interface consisting
of w and the IO-place p and with an arc from p; since Ny ||| U is not defined, neither
is Ny |||U, and the only possible reason is that p is an interface place but not an
output place of Ny. With a dual argument, we conclude that the interfaces of Ny and
N, (including the typing) coincide — with the possible exception that there might be
some [O-place p of Ny with p € P, (or vice versa).

So let p be such a place, and w.l.o.g. p* # () by our assumption on nets. Consider a
test net U with interface w plus input place p. Again, composition with U is undefined
for Ny, hence for N,; we conclude that p must be an interface place of N,, and thus
the exception is in fact not possible.

The last consideration showed that also p* # 0 in N,. If we take U in this
consideration without arcs from p, we could draw the same conclusion for p € P; \ O;.
Analogous arguments conclude the proof.

iv) Let Ny be faster than N,, and let N be another testable net. From iii) we
conclude that Np ||| N is defined iff Ny ||| N is (which we assume now), and that
composition with Ny ||| N and Ny ||| N is defined for the same test nets. Now let
(U, D) be a test that N, ||| NV satisfies; we have to show that N; ||| N satisfies the test
as well.

Satisfaction depends on the behaviour of (N ||| N) ||| U, (N1 ||| N) ||| U resp. If we
can apply associativity in both cases, then N satisfies (V||| U, D) because satisfaction
depends on the same net Ny |||(V ||| U); thus; Ny also satisfies (NN ||| U, D), and we are
done.

If associativity fails, we apply ii) to get a common interface place of Ny, Ny, N
and U that w.l.o.g. is only an input place for N; and N, (apply iii)) and only an
output place of N. Take a fresh place p’ and N| = Ny[p — p/], Ni = Ny[p — p'] and
N' = N[p — p']. Clearly, Nj is faster than N} and composition with N’ is defined
for both these nets. Now Nj ||| N and Nj ||| N’ are isomorphic, since p and p’ are
not in their interfaces. Thus, it suffices to consider N, NJ, N' and U; repeating this
argument, we arrive at nets were associativity can be applied and are done. O

Note that by ii) ||| is almost associative, and the proof of iv) shows that with a
suitable renaming we can always achieve associativity.

Remark: To prove this theorem, we have used our assumption that there are no
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isolated places. Possibly, one could show precongruence without this assumption; but
here and later on, this would at least incur technical complications, which are quite
unnecessary: isolated places could only make any difference in our setting, if they
are interface places. Consider nets N; and N, with common interface place p that is
isolated in Ni; let Ni be obtained from N; by removing p. Comparing Ny ||| N2 and
N{ ||| Na, p could have the effect that only the former is undefined — an effect which
does not seem sensible —; otherwise, both compositions coincide except that p might
be hidden from the in- or output in the former — an effect that one should achieve in
a cleaner fashion with hiding.

4 Characterization of the Efficiency Preorder and
a Proof Method

The efficiency preorder J formalizes observable difference in efficiency; referring to
all possible tests, it is not easy to work with directly. Therefore, our aim is now to
characterize _ by only looking at the nets themselves that are compared. In classical
testing [DNH84], such a characterization is based on failure pairs, which have just one
so-called refusal set giving information on the final state of a run, while [BV98] uses
refusal traces where repeatedly refusal sets give information on intermediate states of
a run.

In a setting comparable to classical testing but using asynchronous communication,
[Vog92, Section 4.3] uses a standard environment and then arrives at a refusal-type
semantics that is much more involved than failure semantics. We will also use this
standard environment, but pleasingly our characterization is a fairly simple refusal-
type semantics similar to refusal traces (explained in more detail after Definition 4.1).
This underlines the usefulness of the failure/refusal paradigm also for treating asyn-
chronous communication, in contrast to [IBKPR91].

Definition 4.1 For a net N, N°" is obtained from N by adding the following inter-
face transitions:

— for each p € I, a fresh 1-transition p™ and an arc from p* to p; and

— for each p € O, a fresh 1-transition p', a fresh O-transition p° and arcs from p
to p* and p°.

For timed markings (M, M) and (M’, M) of N°™ we define the pr-firing (pr
stands for place refusal) (M, M°%)[¢),,(M', M) if one of the following cases applies:

le=teT™, MHM, M = M o *
(if t € {p° p'} for some p € O, we will actually write p~ instead of ¢ in this
case, since p and p' are the same w.r.t. firing);

2. e =X C{p°p'|pe O}, M = M = M and, for all t € T M][t) implies
either 3(t) = 1A (=M°“[t) v Ipe O:t=p' ¢ X)orIpeO:t=p"¢ X or
dpel:t=pt; X is called a refusal set.
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Generalizing this pr-firing rule to sequences as above, we define the set PRS(N) =
{w| TMF[w),,} of pr-sequences of N — where TM " is the initial timed marking
of N For timed markings TM and TM' of N°* we write TM[v)),. TM', if v is
obtained from some w by deleting all ¢ € T', such that TM[w),, TM' and w ends with
a set; w is called the pr-sequence underlying the pr-trace v, and PR(N) is the set of
these pr-traces. The behaviour in between two refusal sets is called a round. O

In N N is wrapped into a standard environment that might put/take tokens
to/from the interface of N, depending on the typing. The pr-firing rule might look
very complicated at first sight, but in fact it is not: it is very similar to the timed
firing rule above, except that time steps are indicated by refusal sets instead of o’s.
Occurrence of such a set is a ‘partial o’; it requires from the transitions of N the
same as o, but ignores the additional transitions p', p° not listed in the set and the
additional p™. That pr-traces always end with a set (in contrast to [BV98]) is related
to the fact that (w.l.o.g.) the decisive behaviour for failing a test ends with a o (see
above), and it is required due to the possibility of time stops discussed in the previous
section.

Observe that we only see interface transitions in the pr-traces, and that their
existence depends on the interface typing; compare the second example in Section 5.
We will show that our faster-than relation coincides with PR-inclusion.

Usually, the next step in an approach as ours would be to show that the PR-
semantics of a composition can be constructed from the PR-semantics of the com-
ponents; this would be used in the characterization proof and imply precongruence.
Unfortunately, such a denotational construction has not been found as yet. But lucki-
ly, we already have a precongruence result, and the following proposition will be good
enough to verify the characterization afterwards; it shows that we can find out enough
about a composition from knowing one component and the PR-semantics of the other.
We need two lemmas first.

Lemma 4.2 Let N be anet, t € T, p € I and q € O. Then in N, TM[tp*),, TM'
implies TM[p*t),, TM' and TM [p~t),, TM' implies TM [tp~ ), TM'.

Proof: Obvious since p™ only produces a token and p~ only takes a token; note that
t and p— will take old tokens if possible. O

Lemma 4.3 Let N and U be nets such that Ng = N ||| U is defined; let Up be obtained
from U by deleting P. Let TMy and TM} be timed markings of Ny, let TMp and
TM', be their restrictions to the places of Up, and TM and TM' their restrictions to
the places of Ne™. Lett € Ty, such that *t0\P = {p1,...,pp} and t*NP ={q1, ..., qm}
in case that t € Ty,

1. Ift € T, then TM[t) TMy if and only if TM[t),, TM' and TMp = TM'p.

2. If t € Ty, then TM,[t)TM{ if and only if TM[py ...p a1 .. g )pr TM' and
TMP[t>Pr TM,P
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3. TMylo) TM), if and only if My = M4, = Mp and there exists some X
such that TM[X),, TM' and, for all t € Ty, Mp[t) implies either fy(t) =
LA (=MOYp[ty v IpetnP:pt € X) or By(t) =0ATpetnP:p’ € X.

Proof: By case analysis, with the following line of argument. (Also compare the
similar [Vog92, 4.3.5], where the time step poses an additional complication here.)
We have grouped the common interface of N and U with N. Consequently, firing
a transition of N depends on N only, while the state of Up remains unchanged; firing
a transition of U on the other hand depends on Up but also on N as far as changes
to the interface are concerned. The effect of a time step is easy to compare, but the
somewhat tricky part are the conditions for enabledness: occurrence of X ensures that
all transitions of N allow this time step; on the side of Up, each transition allows a
time step in Up or the time step is justified by the interface places, and sufficient
justifications are listed in X. More in detail, p* € X means that there is no old token
on p € *t, hence the 1-transition t allows a time step; and p” € X means that there
is no token on p € °t, hence the O-transition ¢ allows a time step. Thus, two partial
time steps in N and Up add up to a time step in Np. O

Proposition 4.4 Let Ny, Ny and U be nets such that Iy = I, Oy = Oy, PR(N;) C
PR(N3) and Ni|||U and Ny |||U are defined. Then, for each w € TFS(N;|||U)
with (w) = n reaching the timed marking TM, and ending with a o, there exists a
v € TFS(Ny |||U) with ((v) = n reaching the timed marking TM o and ending with a
o such that TMy and TMy coincide on Sy \ P.

Proof: Applying Lemma 4.3, w ‘splits off” a w; € PRS(N;) ending with a refusal
set and some behaviour on the side of U; to the pr-trace u € PR(N;) C PR(N,)
corresponding to wy, we find an underlying v, € PRS(N,) ending with a refusal set
from which we can construct v stepwise with the above behaviour on the side of U,
using again Lemma 4.3. Note that the timed marking on Sy \ P; changes the same
way along w and v.

The only problem we could meet when constructing v is that application of 4.3.2
requires a suitable ‘block’ p; ...p. g ... ¢} in vy, but this sequence might actually be
interspersed with transitions from 75. In this case, we transform vy using Lemma 4.2
such that v, has the necessary ‘blocks’. O

Theorem 4.5 Let Ny and N, be testable nets. Then Ny 3 Ny if and only if the
following holds: I = Iy, Oy = O, and for each interface place p, we have that

p® # 0 in Ny if and only if p* # 0 in Ny, and similarly for the presets; furthermore,
PR(N;) C PR(N,).

Proof: 7if”: Clearly, composition with N;, N; resp., is defined for the same nets. Let
(U,D) be a timed test. If N, fails the test, then due to a w € TFS(N, |||U) with
((w) > D ending with a o such that w is not marked afterwards. Proposition 4.4
gives some v € TFS(Ny |||U) with which N, fails the test as well.
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“only if”: Theorem 3.3 iii) shows the first part. To prove the other part, we
construct for each w € PR(N;) a test that is failed by a testable net N if and only if
w € PR(N); then N fails this test, hence Ny does, so w € PR(N,) and we are done.

We sketch this construction by way of an example; the construction is akin to
constructions in the case of synchronous communication except for the O-transitions
and the treatment of the last refusal set. For w = pTq={x', 2°}{z'}p~{2°}, we choose
D = 3 and the test net U shown in Figure 4. The interface of U consists of the
omitted IO-places p, ¢,  and z, and the output place w. A transition labelled e.g. p™
(or w) has an arc to p (or w), a transition labelled e.g. p—, p° or p' has an arc from p.

1 1 1
0 S5 S1

Figure 4

We will consider a possible timed firing sequence v that makes a net N fail the
test (U, 3) from the perspective of Lemma 4.3, i.e. we will consider what pr-trace N
sees and what U has to do.

The subnet consisting of the places and transitions with lower index 0 act as a
clock: since the token on s} is old initially, ¢} has to fire in the first round, ¢3 at the
latest in the second and ¢ at the latest in the third; actually, they must fire exactly
in these rounds because otherwise, ¢} would fire at the latest in the third round and
the test would not be failed. Hence, when v occurs, we have an old token on s and
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on s in the ith round, i = 1,2, 3. Since we must not fire ¢} in the 7th round, we must
fire ¢} instead.

The first consequence is that, before ¢? fires, N sees exactly a token being put onto
p and then a token being taken from ¢ in the first round, i.e. p™ and then ¢~ fire in
N, analogously the other rounds can be treated.

The second consequence is that the % , ¢ = 1,2, must not fire; hence, just before
e.g. the first o occurs, the token on s! is old and there cannot be a token on z or an
old token on x. Thus, N sees the refusal set {z', 2%} at the end of the first and
{z'} at the end of the second round.

For the last round, the reason that ¢}, must not fire, is different: if it fires in
v, i.e. at the latest in the third round, then we cannot have a time step before the
O-transition #; fires, which would satisfy the test.

In consequence, N must perform the pr-trace w to fail the test (U, 3), and the
above analysis should also show how to fail the test, when N performs w. O

Observe that a faster system has less pr-traces, i.e. such a trace is a witness for
slow behaviour, it is something ‘bad’ due to the refusal information it contains.

Also observe that the above proof is somewhat modular, i.e. it can be used to a
large part for treating subcases. First, let us point out the following: we have given a
characterization for a testing-based preorder for all testable nets; but it is not a priori
clear that this result still holds if we restrict the class of nets under consideration —
e.g. to the restricted setting where each interface place is either an input place with
no arc entering or an output place with no arc leaving. The reason is that the test
nets we used in the proof have 10-places and do not belong to the restricted class.

Luckily, they almost belong to the restricted class: if e.g. a p*-transition occurs
in U then p is an input place of the testable nets, which do not have arcs to p, and
there will be no p-, p°- or p'-transitions; hence, we can make p an output place of U
with no arcs leaving p. Therefore, our result also holds in this type-restricted case.

Also, the proof can be adapted if we only consider nets without O-transitions
(and without 1-transitions with empty preset): in this case, we would not allow p°’s
in refusal sets when defining pr-sequences and -traces; thus, U would have no 0-
transitions — the only exception being t3 in the above example-U; this represents a
special treatment of the last refusal set, and this is only necessary since we might
have time stops. Since these cannot occur in this second restricted class, also #3 can
be avoided (details omitted) and the result carries over.

Lastly, U is safe on its non-interface places. (sj is an exception, if the last refusal
set has more than 1 element; but in this case, we could multiply s3 and 3 suitably.)
Thus, our construction should also be an essential step for the treatment of safe nets,
but here additional work needs to be done; see Section 6.

An important question is now how we show that one net is faster than another.
If nets N were bounded, there would also be only finitely many reachable timed
markings; the above characterization would allow to decide 1 by a static check plus a
decision of regular-language-inclusion. Since N is generally unbounded, it does not
seem feasible to decide 3. Still, one can treat many examples (even possibly infinite
classes of examples) using simulations:
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Definition 4.6 For nets N; and N,, a relation § between some timed markings of
Nf™ and some of NS™ is a (forward) simulation from N; to Ny if the following hold:

1. (TMy,, TMy,) € 8

2. If (TM,, TM3) € S and TM1[t),, TM} or TM[X),.TM', then for some TM,
with (TM", TM}) € S we have TM[t)),, TM', or TMo[X)),, TM?, where # is
t for t € Ty™ \ Ty and the empty word A otherwise. Observe that these moves
from TM, to TM!, may involve several transitions of Nj.

O

The following theorem is straightforward; compare e.g. [LV95] for a similar result
and a survey on the use of simulations; note that a simulation does not have to exist
in each case where Ny J Ns.

Theorem 4.7 If there exists a simulation from Ny to Ny, then Ni 3 Ns.

We will show some applications of simulations in the next section. We finish this
section with:

Theorem 4.8 J is a precongruence w.r.t. relabelling and in- and output hiding.

Proof: Clearly, the static requirements of 4.5 on the interface places are preserved.
Additionally, the PR-semantics of N/'p consists of the pr-traces of N that do not
contain pT; that of N/p consists of the pr-traces of N that do not contain p~ or —
in the refusal sets — p' or p°; PR(N[p — p']) can be obtained by replacing all p™ etc.
by p'* etc. in the pr-traces of N. O

5 Examples

Our first two examples are more technical in nature; the first discusses aspects of
asynchronous communication and timing. N; and N, in Figure 5 both have the pr-
trace p; pi, showing that with asynchronous communication messages can be taken
‘in the wrong order’.

S —©®

S2
N N2
pnLOo pP,OO p,Oo p,OO0

Figure 5
In fact, Ny O N, (and vice versa), since the outputs must appear in the first round.
The formal proof is maybe not that obvious: a suitable simulation relates reachable
timed markings TM, of N; and TM, of Ny, if they are the initial timed markings or
if : Mi(s1) =0, Mi(p1) = Ma(p1), Mi(p2) + Mi(sz2) = Ma(pz), the old tokens are the
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same on the interface places and My is 0 on the other places. When N fires its first
transition, N, fires both its transitions, giving a related timed marking; then both
can perform p;, and before or after /V; fires its second transition, bringing both nets
to essentially the same timed marking. Only then refusal sets can occur.

If we change all transitions to 1-transitions (getting N and NJ), there could be
enough time between appearance of the tokens to observe their order: p; {pS} €
PR(N)\ PR(N}).

The second example demonstrates the effect of interface typing. Also for N; and
Ny in Figure 6, we have Ny J N, and vice versa. (The dead transition in N; ensures
that the nets satisfy the static condition of Theorem 4.5.) In Ny, tokens on s and on
p2 behave the same: they can get old, and then at the latest they move to the output.
Thus, a simulation relates timed markings, if the sum of (old) tokens on s and ps in
N is the number of (old) tokens on ps in Ny, and they are equal on the other places.
The situation would be completely different, if p, were an IO-place; in this case Ns
would have additional functionality as witnessed by pj p; € PR(Ny) \ PR(N,).

Figure 6

Now we will discuss a series of examples involving the production lines from Sec-
tion 2. Generally, assume that N; has a transition ¢ with a dot, i.e. with a ‘private’
loop place [, and we split ¢ into two transitions as shown in Figure 7; i.e. t; inherits [
and the preset of ¢, and ¢, the postset of ¢ except [.

Sef— Lo {1—

t t S t

Figure 7

Then, Ny O Ny: this can be shown with a simulation that relates timed markings
TM, of Ny and TM, of N, if TM is componentwise the restriction of TM 5 to S; and
M,(s) = 0; N, simulates each firing of ¢ by firing ¢1¢5. As an application, we have PL1
J PL2 and also e.g. PL12 := PL1 ||| PL2 3 PL2 ||| PL2 =: PL22 by 3.3. In fact,
PL1 is strictly faster than PL2, as witnessed by pf 0{pS} € PR(PL2)\ PR(PL1),
which means that only with PLI an order will certainly result in a product before
time 2.

We will now show that PL22 3 PL2, denoting the loop place of t; by [ and
giving a dash to the items of the second copy of PL2 in PL22. A respective simu-
lation relates TM oy and T'M, if they are equal on the interface, My (s) + Mao(s') =
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My(s), My(s) + My (s') = M°y(s), Myy(l) = My(l') = 1 = My(l) and
min(MOldQZ(l),MOldQZ(l’)) — M()ldz(l).

It is clear that e.g. ¢y or t| in PL22 is simulated by ¢, in PL2, and that, after firing
them, one of [ and [" in PL22 does not have an old token, which also holds for [ in
PL2, and this is okay since the minimum above is 0. A bit tricky is the occurrence of a
refusal set in PL22, where the interface transitions are no problem since the interface
places are marked the same way in both nets. Let us just consider ¢;; since ¢; and ¢
in PL22 are not enabled by old tokens, p; does not carry old tokens, or otherwise at
least one of [ and [" does not carry old tokens; in either case, p; or [ does not carry
old tokens in PL2, which therefore can perform a refusal set as far as ¢; is concerned.

Again, PL22 is strictly faster — as witnessed by pipf 00p; {p3}, where the tokens
on p; are old after the first (), but all of them have to leave p; before the second
only in PL22.

We close by comparing PL12 and PL1. One might expect the former to be faster,
since the additional production line should help somehow; but this is in fact not true:
an order might be processed by this slower line giving rise to the slower behaviour
pi0{p3} € PR(PL12)\ PR(PL1).

On the other hand, PL2 does help indeed if there is a rush of orders. If PL1
gets four orders, the tokens will be old in the second round; so in this and the
third and fourth round, at least one token will be moved to p,. If these three to-
kens are removed, the fourth refusal set occurs at a time when p, is empty; hence,
pi ol pi o 000ps p3 ps {pS} € PR(PL1). But this pr-trace is not in PR(PL12): here,
in the second round at least two tokens will be moved from p; and the remaining ones
in the third; thus, in the fourth round there will be some tokens on p, and some old
tokens on s, which have to be moved; after taking three tokens, py is still not empty
at the fourth refusal set. We conclude that PL12 and PLI1 are incomparable.

Since all phenomena encountered in the above examples had an intuitive explana-
tion, these examples demonstrate that our efficiency preorder makes sense. It should
also have become clear, that statements about J as presented above can only be
treated using some characterization — as we have provided it.

6 Conclusion and Work in Progress

For nets as models of asynchronous systems, we have presented a parallel composi-
tion ||| that merges places and have introduced a typing of such interface places. This
composition was used for a testing scenario which gives rise to a faster-than relation
for components that communicate asynchronously. (This is in analogy with previ-
ous studies for the case of synchronous communication.) We have characterized this
faster-than relation and used the characterization to compare the efficiency of some
examples.

The most important next step will be to adapt the presented approach to the study
of safe nets, and in Augsburg work on this is in progress along the following lines.
Since safe nets can be build from components that are not safe in other environments,
one possibility is to require that N, is a faster implementation of Ny only if Ny ||| U is
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safe whenever N, ||| U is; this would lead to considering an additional set of sequences
that make a component unsafe — compare U(N) in [Vog92, Section 3.3.1].

Another possibility is to enforce safety on the interface by coupling each interface
place with a complement place, and to change the definition of ||| accordingly. Then,
it is much more reasonable to require the components to be safe in all environments,
which makes the PR-semantics of a net the language of a finite automaton, so inclusion
would certainly be decidable. In fact, wrapping a place-bordered net N into a standard
environment in /N wraps the place-oriented problem into a transition-oriented one;
thus, it should be possible to check PR-inclusion with our tool FASTASY, which was
designed for the case of synchronous communication; see [BV98]| for results regarding
the MUTEX-problem obtained with this tool.

We have convinced ourselves that O-transitions allow to express solutions to the
MUTEX-problem in the cases of asynchronous and synchronous communication. This
is remarkable, since [Vog97] relates weakly fair behaviour of ordinary safe nets (which
disregards any timing) to timed behaviour of nets with only 1-transitions and shows
that in any case the MUTEX-problem cannot be solved — unless one extends nets e.g.
with so-called read arcs. We will study how read arcs are related to O-transitions in
general, prove formally how the MUTEX-problem can be solved with O-transitions
and compare in particular MUTEX-solutions in a setting with asynchronous commu-
nication.
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