View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by OPUS Augsburg

UNIVERSITAT AUGSBURG

Partial S-Invariants
for the Verification of Infinite Systems
Families

Walter Vogler

Report 2001-4 Marz 2001

Bz

mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

https://core.ac.uk/display/35095657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Walter Vogler
Institut fiir Informatik
Universitat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Partial S-Invariants
for the Verification of Infinite Systems Families

Walter Vogler

Institut fir Informatik, Universitat Augsburg

D-86135 Augsburg, Germany
email: vogler@informatik.uni-augsburg.de

Abstract

We introduce partial S-invariants of Petri nets, which can help to determine
invariants and to prove safety if large nets are built from smaller ones using
parallel composition with synchronous communication. We show how partial
S-invariants can support compositional reduction and, in particular, a specific
form of it called the fixed-point approach. With the latter, infinite parameter-
ized families of concurrent systems can be verified. Partial S-invariants and the
fixed-point approach are used to prove the correctness of two solutions to the
MUTEX-problem based on token rings; for this, we only have to prove liveness
of a simplified version due to previous results.

1 Introduction

For the verification of infinite parameterized families of concurrent systems the so-
called behavioural fixed-point approach is advocated in [VK98]. The members of such
families are composed of an increasing number of components, this number being the
parameter. If one can show that the composition of, say, two of these components is
equivalent to just one component, then one can reduce each member of the family to
an equivalent small one, and it suffices to prove this small system to be correct. This
approach is a specific case of compositional reduction, for which it is essential that
the equivalence under consideration is a congruence for composition — and, of course,
it must be strong enough to support verification. We will model systems with Petri
nets, and we will use parallel composition with synchronization of common actions,
which corresponds to merging transitions; also renaming and hiding of actions are
important.

In this paper, we will apply the fixed-point approach to two token-ring based
solutions for the problem of mutual exclusion (MUTEX). Such a ring has a component
for each user that needs access to the shared resource, and each component has a
separate interface that allows the respective user to request access, enter its critical
section — in which the resource is used —, and leave this section again. To verify
such a ring, one has to show the safety property that there are never two users in

their respective critical sections at the same time, i.e. that enter- and leave-actions
alternate properly, and one has to show the liveness property that (essentially) to each
requesting user access is granted eventually. Modelling a token-ring with Petri nets,
MUTEX-safety is usually easy to show applying an S-invariant. Hence, we want to
apply the fixed-point approach to prove MUTEX-liveness.

An immediate problem is that each ring component has an external interface to its
user with actions of its own, and therefore we cannot expect that two components are
equivalent to one. In [BV98], we have shown that under some symmetry assumption
it is sufficient to check MUTEX-liveness for one user and hide the other user-actions
from the interface. In the modified net, only the actions of one user are visible and
two components may be equivalent to one; hence, and this is the first point to be
made, our symmetry result opens the door for applying the fixed-point approach.

In fact, one encounters another problem: the composition of two components may
not be equivalent to one, because in isolation these nets exhibit behaviour that is
not possible in the complete ring. To show the equivalence, one has to restrict their
behaviour in a suitable way; this is somewhat similar e.g. to the interface descriptions
presented in [GSLI6]. The main contribution of this paper is the development of what
we call partial S-invariants in order to restrict the behaviour suitably. We show how
partial S-invariants can support compositional reduction in general, and we will apply
them specifically in the fixed-point approach.

Partial S-invariants of components can also be used to obtain S-invariants of com-
posed systems. Another notion of partial S-invariants — for a setting where nets are
composed by merging places — has been defined in [Kin95] where it has also been
shown how to combine these to obtain S-invariants of composed systems.

The equivalence we use is based on fairness in the sense of the progress assumption,
i.e. weak fairness. In [Vog97], one can find such a semantics that is compositional for
safe nets. Here, we have to deal with components of a safe net that are not safe
themselves, and we show that compositionality for general nets can be achieved very
similarly to [Vog97], if one uses a suitable generalization of weak fairness from safe
to general S/T-nets. Since we are really interested in safe nets, we are free to choose
any generalization that is convenient.

The Petri nets of this paper may have so-called read arcs, which are somewhat
similar to loops. If transition ¢ and place s form a loop, then firing ¢t removes a token
from s and returns it at the end; hence, this token is not available while ¢ is firing. If
t and s are connected by a read arc instead, then ¢ checks for a token on s without
actually using it; thus, other transitions might do the same while ¢ is firing. For
example, read arcs can model the concurrent reading of data. When we consider firing
sequences only, read arcs and loops are interchangeable; when we consider concurrent
behaviour or the progress assumption, they make a difference. It is shown in [Vog97]
that ordinary nets without read arcs cannot solve the MUTEX-problem. Read arcs
have found quite some interest recently, see e.g. [MR95, JK95, VSY98, BBCP00], and
we include them for generality (in particular in the treatment of fairness) and because
we need them in our applications.

Section 2 defines Petri nets with read arcs and the operations on nets we will use
to construct the MUTEX-solutions. Section 3 gives our definition of (weak) fairness in
the sense of progress assumption, refines the resulting semantics to a precongruence for

our operations and shows full abstraction. Section 4 introduces partial S-invariants,
shows how to combine them to S-invariants and presents the essential result for apply-
ing them for compositional reduction and, hence, in the fixed-point approach. Section
5 quotes from [BV98] the correctness definition for MUTEX-solutions and the sym-
metry result mentioned above. Section 6 shows how to use partial S-invariants in the
fixed-point approach and proves two families of nets correct. For the second family,
we use the tool FastAsy that compares the performance of asynchronous systems; the
respective performance preorder is closely related to the precongruence we use in the
present paper. We close with a discussion of related work in Section 7.

2 Basic Notions and Operations for Petri Nets
with Read Arcs

In this section, we introduce Petri nets, which are extended with read arcs as explained
in the introduction, and the basic firing rule. Then we define parallel composition,
renaming and hiding for such nets and give some laws for these operations. For general
information on ordinary Petri nets, the reader is referred to e.g. [Pet81, Rei85]. The
transitions of our nets are labelled with actions from some infinite alphabet ¥ or
with the empty word A. In general, these actions are left uninterpreted; the labelling
only indicates that two transitions with the same label from ¥ represent the same
action occurring in different internal situations, while A-labelled transitions represent
internal, unobservable actions.

Thus, a labelled Petri net with read arcs N = (S,T, F, R,l, My) (or just a net for
short) consists of finite disjoint sets S of places and T of transitions, the flow relation
F C SxTUT x S consisting of (ordinary) arcs, the set of read arcs R C S x T,
the labelling | : T — ¥ U {\}, and the initial marking My : S — INy, where IN,
denotes the natural numbers including 0; we require that (R U R™') N F = (). When
we introduce a net N or N; etc., then we assume that implicitly this introduces its
components S, T, F', ... or Sy, T}, ..., etc. The net is called ordinary, if R = ().

As usual, we draw transitions as boxes, places as circles and arcs as arrows; read
arcs are drawn as lines (sometimes dashed) without arrow heads. As usual, nets N;
and Ny are isomorphic, written N7 = Ns, if there is some function that bijectively
maps the places of N; to the places of N, and the transitions of N; to the transitions of
N, such that arcs, read arcs, labelling and initial marking are preserved. The alphabet
a(N) of a net N is the set of all actions from X that occur as labels in V.

For each z € SUT, the preset of z is *xr = {y | (y,x) € F}, the postset of
is z* = {y | (xv,y) € F}, and the read set of z is & = {y | (y,x) € RUR'}. If
x € *y Ny, then x and y form a loop. A marking is a function S — IN, giving for
each place a number of tokens — drawn as dots in the respective circle. We sometimes
regard sets as characteristic functions, which map the elements of the sets to 1 and
are 0 everywhere else; hence, we can e.g. add a marking and a postset of a transition
or compare them componentwise.

We now define the basic firing rule, which extends the firing rule for ordinary nets
by regarding a read arc (s,t) as loop, i.e. as ordinary arcs (s,t) and (¢, s).

e A transition ¢ is enabled under a marking M, denoted by M[t), if *t Ut < M.

3

If M[t) and M' = M +t* — *t, then we denote this by M[t)M' and say that ¢
can occur or fire under M yielding the marking M’.

e This definition of enabling and occurrence can be extended to sequences as usual:
a finite sequence w of transitions is enabled under a marking M, denoted by
M|w), and yields the follower marking M’ when occurring, denoted by M[w)M’,
ifw=Xand M = M or w = w't, M{w')M" and M"[t)M" for some marking
M" and transition ¢. An infinite sequence w of transitions is enabled under a
marking M, denoted as above, if all its finite prefixes are enabled under M. We
denote the set of finite sequences over a set X by X*, the set of infinite sequences
by X¥, and their union by X*°. If w € T* is enabled under the initial marking,
then it is called a firing sequence.

e We can extend the labelling to sequences of transitions as usual, i.e. homomor-
phically; note that internal actions are automatically deleted in this image of a
sequence. With this, we lift the enabledness and firing definitions to the level of
actions: a sequence v of actions from ¥ is enabled under a marking M, denoted
by M[v)), if there is some transition sequence w with M[w) and [(w) = v; for
finite v, M[v))M' is defined analogously. If M = My, then v is called a trace.

e A marking M is called reachable if My[w)M for some w € T*. The net is safe
if M(s) <1 for all places s and reachable markings M and if all transitions ¢
satisfy *t # ().

We are mainly interested in safe nets where the second condition is maybe non-
standard, but also no serious restriction, since it can be satisfied by adding a loop
between ¢ and a new marked place if *¢ were empty otherwise; this addition does not
change the firing sequences. Since we will construct safe nets from components that,
considered in isolation, violate one or both of the required conditions, we develop our
approach for general nets.

Safe nets are a particular case of nets without self-concurrency: A transition ¢ is
enabled self-concurrently under a marking M, if *tUt < M —*t, i.e. if there are enough
tokens to enable two copies of ¢ at the same time. A net is without self-concurrency,
if, for all transitions ¢ and reachable markings M, t is not enabled self-concurrently
under M.

Next, we introduce parallel composition || where synchronization is over common
actions. This is not much different from TCSP-like composition used in [Vog97],
but makes notation lighter, and it is also used in [VK98]. If nets N; and N, with
A = a(Ny) N a(Ny) are combined using ||, then they run in parallel and have to
synchronize on actions from A. To construct the composed net, we have to combine
each a-labelled transition ¢; of N; with each a-labelled transition t, from N, if a € A.

In the formal definition of parallel composition, * is used as a dummy element,
which is formally combined e.g. with those transitions that do not have their label in
the synchronization set A. (We assume that is not a transition or a place of any
net.) The parallel composition N = Ny || Ny is defined by

S = Sy x {x}U{x} xS

T — {(tl,tg) | tl € Tl,tg € Tg,ll(tl) - l2(t2) € A}
U{(t, %) |t € Ty, 11 () ¢ A}
U{(*,tg) | tg € Tz,lg(tg) ¢ A}

(s1,t1) € Fi, s1 €51, t1 €Ty
((Sl, 82), (tl,tg)) e F if or
(52,t2) € Fy, 59 € S, ty €15

(t1,81) € Fi, s1 €51, 1€y
((tl,tg), (81, 82)) c F lf or
(t2,52) € Fy, 59 € Sy, ty €15

(s1,t1) € Ry, s1 €51, t1 €Ty
((81,82), (tl,tg)) e R if or
(52,t2) € Ra, S € So, ta €T

B ll(tl) if t1 € TI
((t1,t2)) = { Iy(ts) ifty € Ty

. ‘ M if s, €S
My = My,UMy,, i.e. MN((SbS?)) :{ M?Ez;; ;f 2 € S;

To describe the behaviour of a composed net, we will also have to compose se-
quences of actions in such a way that actions from some set A are synchronized. Let
u and v be finite or infinite sequences over ¥ and A C ¥. Then u ||4 v is the set of
all sequences w over ¥ such that we can write u, v and w as sequences u = ujus. . .,
v =1v10y...and w = wywsy ... of equal finite or infinite length such that for all suitable
1 =1,2,... one of the following cases applies:

l.uyy=v,=w; € A
2. u; =w; € (X —A) and v; = A
3. v, =w; € (X —A) and u; = A

In this definition, A’s are inserted into the decomposition of v and v to describe
the interleaving of actions from ¥ — A.

Parallel composition is maybe the most important operator for the modular con-
struction of nets, but hiding and renaming are also essential. Hiding A C ¥ in N
means changing all labels @ € A to A; it results in N/A; we write N/a instead of
N/{a} for a single a € X. Similarly, w/A is obtained from a finite or infinite sequence
w over ¥ by removing all occurrences of actions from A. Clearly, N/JA/B = N/(AUB);
we will freely combine several applications of hiding into one or split one into several.

Just as in [VK98], our relabelling is a bit more general than usual, which will be
convenient for our examples; a relabelling function f maps actions from ¥ to nonempty

subsets of ¥ and A to {A}. For a relabelling function f, let dom(f) = {a € | f(a) #
{a}}, cod(£) = Uncummipy £(a) and a(f) = dom(f) U cod ().

The relabelling N[f] of N with relabelling function f is obtained from N by re-
placing each transition ¢ with [(¢) = a by as many copies as f(a) has elements and
labelling each copy by the respective element; the copies are connected to the places
just as t.

For a relabelling f and X C 3, we set f(X) = Uuey f(a), and we set f~1(X) =
{a € X | fla)N X # B}. We can extend a relabelling homomorphically to finite or
infinite sequences over X such that each sequence is mapped to a set of sequences.

Usually, a relabelling will map almost all @ € ¥ to {a} — we say it is the identity
for these a; then, we will only list the exceptions together with their respective images
in the form N[a; — A4,...,a, — A,]. Again, we omit the braces of A, if it has only
one element. Thus, N|a — b,0 — {¢, d}] is the net N with each a changed to b and
each b-labelled transition duplicated to a ¢- and a d-labelled copy; for this relabelling
function f, dom(f) = {a,b}, cod(f) = {b,¢,d} and «o(f) = {a,b,c,d}; furthermore,
f(aceb) = {bcec, beed}.

We let the unary operations of hiding and renaming bind stronger than parallel
composition.

We now give some laws for our operations; basically the same were stated e.g. in
[VK98], but for transition systems. These laws are based on isomorphism and should
therefore hold whatever more detailed semantics one may choose; in particular, they
are true for the fairness based preorder we will introduce in the next section.

Law 1 (Ny || No) || N3 = Ny || (No || N3)
Law 2 N1 || N2 == N2 || N1

These laws will also be used freely without referencing them explicitly.

Law 3 N{f][g] = N[f g] where (f o g)(a) = Upef(a) 9(b)
Law 4 N/A = N/(AU B) provided a(N) N B = §

Law 5a N[f]/A = N/A[f] provided AN a(f) = 0

Law 5b N[a — B]/A = N/(AU{a}) provided B C A

Law 6 (N1 || N2)[f] = N1 [| Na[f] provided a(Ny) Na(f) =0
Law 7 (Vi || Na)JA= Ny || NaJA provided a(N}) N A = @

Law 8 (N || No)[f] = Nu[f] || N2[f] provided f only renames some actions
to fresh actions, i.e. f(a) is a singleton with f(a) N (a(N7) U a(Ny)) = 0 for
all a € dom(f), and for different a,b € dom(f), f(a) # f(b)

We can now derive a law for a-conversion, i.e. the renaming of actions that are
bound by hiding; applying Law 4 for B = {b}, Law 5b for A = {b} and Law 8, we
get:

Law 9 (N || N2)/a = (Ni[a — b] || Nao[a — b])/b provided b & a(Ny) U a(N2)

6

3 Fair Semantics

If a semantics is intended for specifying and checking liveness properties (‘something
good eventually happens’), one usually has to consider some sort of fairness. We
will define a semantics that incorporates the progress assumption, also called weak
fairness, i.e. the assumption that a continuously enabled activity should eventually
occur. Continuous enabledness means that the respective ‘processor’ and all other
resources are always available, and in a parallel system such an independent processor
will certainly act eventually. Thus, our sort of fairness is met automatically, it does
not have to be implemented; see [Fra86] for more on fairness. After the definition, we
will determine a compositional semantics suitable for dealing with our sort of fairness.

In [Vog97], we defined a fair semantics and determined the coarsest compositional
refinement of it for safe nets. This result does not directly carry over to general nets,
but it can be generalized when we use a slightly peculiar definition of fairness; we will
discuss this peculiarity in detail after the definition.

—®—1r

Figure 1

But first, we have to discuss the impact of read arcs on the progress assumption.
Classically [Fra86], an infinite firing sequence My [to) Mi[t1)Ms ... would be called fair
if we have: if some transition ¢ is enabled under all M; for 7 greater than some j, then
t = t; for some ¢ > j. With this definition, the sequence t“ of infinitely many ¢’s
would not be fair in the net of Figure 1, since t' is enabled under all states reached,
but never occurs. But, in fact, ¢’ is not continuously enabled, since every occurrence
of t disables it momentarily, compare [Rei84, Vog95]; one could even say that the
resource needed by ¢’ is nearly always in use. Thus, ¢ should be fair. On the other
hand, if ¢ were on a read arc instead of a loop, t“ should not be fair: ¢t would only
repeatedly check the presence of a resource without actually using it. To model this
adequately, we will require in the definition of fairness that a continuously enabled ¢
is enabled also while each t; with 7 > j is firing, i.e. enabled under M; — *t;.

Definition 3.1 For a transition ¢, a finite firing sequence My [to) M;[t1)M; ... M, is
called t-fair, if M,, does not enable ¢. An infinite firing sequence My[to)M;[t1)Ms . ..
is called t-fair, if we have: For no j, t is enabled under all M; — *¢; for all : > j. If a
finite or infinite firing sequence w violates the respective requirement, we say that ¢
is eventually enabled permanently in w.

A finite or infinite firing sequence is fair, if it is ¢-fair for all transitions ¢ of N; we
denote the set of these sequences by FairF'S(N). The fair language of N is the set
Fair(N) = {v|v = l(w) for some w € FairF'S(N)} of fair traces. O

What we require in the case of an infinite sequence is stricter than the more usual
requirement that, if ¢ is enabled under all M; — *¢; for ¢ greater than some j, then
t = t; for some ¢ > j. For safe nets, these requirements coincide:

Proposition 3.2 Let N be a net without self-concurrency (or, in particular a safe
net), t a transition and Myl[to) Mi[t1)Ms ... an infinite firing sequence. Assume fur-
ther that if t is enabled under all M; — *t; for i greater than some j, then t = t; for
some 1 > j. Then this sequence is t-fair.

Proof: Let t = t; for some ¢. By assumption on N, ¢ is not enabled under M; — *¢;;
thus, for no j, t is enabled under all M; — *t; for i > j. O

In our constructions, we have to work with nets that may not be safe; but in the
end, we are only interested in safe nets. Thus, it is of no particular importance what
a fair firing sequence of an unsafe net is; hence, we can choose a definition that is
technically convenient. Technical convenience means in this case that we can obtain
a fairness-respecting precongruence easily, i.e. in the same way as for safe nets.

It should be noted however that in the case of self-concurrency, the two variants
of fairness differ, indeed. In the net of Figure 2, the firing sequence t* of infinitely
many t’s is not fair according to our definition, and in fact no firing sequence is (while
t“ would be fair with the usual requirement). As just stated, the main point is that
this is irrelevant for the systems we want to study. Additionally, one could argue that
firing sequences are not adequate to capture the progress assumption for general nets
properly; instead, one could recommend step sequences and require that a fair step
sequence of the net in Figure 2 had repeatedly steps consisting of two ¢’s.

t :’@

Figure 2

Next, we will determine the coarsest precongruence for parallel composition that
respects fair-language-inclusion; this is just the right relation if we want to build
systems compositionally and are interested in the fair language. Theorems 3.4 and
3.5 were to my knowledge first obtained by Robert Gold [Gol88], surveyed in [Vog92,
page 69] and improved in several ways in [Vog97]. Here, we generalize them from
safe nets to general nets (with read arcs). Recall, that we use a slightly different
form of parallel composition here, but that this is merely a convenience. There is one
consequence, though: in the definition of a fair implementation below, we additionally
require the nets under consideration to have the same alphabets. This requirement is
very natural in our setting where the alphabet of a net determines those actions that
are synchronized in a parallel composition.

Definition 3.3 A net NV is a fair implementation of a net Ny, if a(N7) = a(N3) and
Fair(N,||N) C Fair(Ny||N) for all nets N.

For a net N, the fair failure semantics is the set of the fair refusal pairs defined by
FF(N)={(v,X)| X C X and v = l(w) for some, possibly infinite, firing sequence w
that is ¢-fair for all transitions ¢ with [(¢) € X U {A}}.

We write N; <gz N, if Ny and N, have the same alphabet and FF(N;) C
FF(Ns). If Ni <gz Ny and Ny <zr Nj, we write N =gz Ny, and call the nets
fair-congruent. a

The motivation for this definition is as follows: assume Nj is a fair implementation
of the specification Ny, N, is a component of a parallel system and we replace this
component by Ny; then we will get only fair behaviour that is allowed by N5, i.e. that
is possible when N, is used.

The intuition for (v, X') € FF(N) is that all actions in X can be refused when v is
performed — in the sense that fairness does not force performance of these actions; yet
in other words, these actions are treated correctly w.r.t. fairness. This is essentially
(up to divergence, i.e. infinite internal runs) the same intuition as for ordinary failure
semantics [BHR84]: after a finite run, fairness forces the performance of some enabled
action while disabled ones can be refused.

Theorem 3.4 For nets Ni and Ny with a(Ny) N a(Ny) = A we have

ff(NIHNQ) == {(U,X) | El(Ul,XZ) € .,F.,F(NZ), 1=]_,2 .
v e 1)1“,47)2 and X C ((X1 UXQ) ﬂA) U (X1 ﬂXQ)}

Proof: Similar proofs can be found e.g. in the full version of [Vog97], and the proof
is simpler than the proof of the corresponding Theorem 5.10 there. The essential
observations are the following (where *x = () and = is always enabled, but does not
change the marking if ‘fired’): the reachable markings of N;||N; can be written as
M,UM, with M; a reachable marking of N; - though possibly not all combinations
really turn up; M;UM,[(¢1,t2)) in Ny|| Ny if and only if Mi[t;) in Ny and Msts) in
N, — and in this case MUM,[(t1,t2))M{UM} in Np||Ny for the markings M| and
Mé with Ml[t1>M{ in N1 and Mg[t2>Mé in NQ, if MloMg[(tl,tg» in N1||N2, then
(MUMs) — *(t1,t2) enables (¢},5) if and only if (M; — *t;)[t}) and (My — *t2)[t5).

The crucial point, where the subtlety of our unusual fairness definition comes
into play, concerns inclusion: assume we have constructed (v, X) from (v, X;) and
(ve, X3) as described on the right hand side of the above equation. Using the above
observations, we can construct from suitable firing sequences w; and wy underlying
() and Vo a ﬁI'iIlg sequence w — (tn, tzl)(tlg, t22)(t13, t23) ...of N1||N2 that projects to
wy and wy, i.e. it satisfies the following (where * in a sequence is treated as A and thus
simply deleted): l(w) = v, w; = t11tiat13. .. and wy = tortostes. ... Assume further
that a € X; N A, and assume by way of contradiction that w is not (#},#,)-fair for
some a-labelled transition (¢],t,) of Ny||Ns.

Hence, for some j, (|,t,) is enabled under all (M;UMoy;) — *(t1;,t2;) with i > j
and suitable M;; and Ms;. By the above, this implies that ¢] is enabled under all
My; — *ty; with ¢ > j, a contradiction.

With the more usual definition of fairness, this would not be a contradiction.
Instead, it would imply that ¢ is one of these ¢;; but this does not imply that the
respective ty; is t), and the proof fails. O

Remark: An alternative approach to get a similar result could be to regard firing
sequences that violate safeness as catastrophic, and hence to ignore what happens
after such a violation; this could lead to a semantics with two sets for the two types
of firing sequences that do or do not violate safeness; compare [Vog92, Section 3.3]
for a similar approach that incorporates safeness into a semantics.

This approach would have some similarity with the treatment of divergence, i.e.
infinite internal firing sequences, in ordinary failure semantics. See [Vog97| for a
discussion how FF-semantics treats divergence. O

The last theorem is an important step for the compositionality result we have been
aiming for.

Theorem 3.5 i) For nets Ny and Ny, Ny is a fair implementation of Ny if and only
if N1 <zr Ny.

ii) For nets with some fized alphabet, inclusion of FF-semantics is fully abstract
w.r.t. fair-language inclusion and parallel composition of nets, i.e. it is the coarsest
precongruence for parallel composition that refines fair-language inclusion.

Proof: i) The if-part is clear from Theorem 3.4 and because v € Fair(N) iff (v,X) €
FF(N). For the only-if part, let A = a(N;) = a(Ns), x € ¥ — A and (v, X) €
FF(N1), where we may assume X C A, since actions not in A are treated fairly in
both nets in any case. We construct an environment net N with the following parts
for each a,b,c,d € A, see Figure 3. If a occurs m € IN times in v, N contains a chain

OO —a—O—a @i
O:==I" (O— cF—()—x

Figure 3

of m a-transitions (as shown in Figure 3 for m = 3); if b occurs infinitely often in v,
N contains a b-transition on a marked loop; for ¢ € X, N contains a cz-chain (see
Figure 3). Furthermore, for each d not occurring in v or X, N contains a d-transition
on an unmarked loop. Observe that a(N) = AU {z}, hence in a parallel composition
with N; or Ny all actions from A will be synchronized, and thus will be refused in a
run if one of the components refuses them. Obviously, N can perform v without using
the cz-chains such that all e € ¥ — X are treated fairly, i.e. (v, — X) € FF(N).
Hence, (v,¥) € FF(N||N1) by 3.4 and v € Fair(N||Ny) C Fair(N||N3), thus (v,X) €
FF(N||Nz). Applying 3.4 again, there must exist a suitable (v,Y) € FF(N), where
in particular we must have x € Y since x ¢ A. Thus, N must perform v without
using any of the c-transitions from the cz-chains; the maximal set Y for this case is
¥ — X, i.e. we must have (v, X) € FF(N,).

ii) By definition of fair implementation, a precongruence for parallel composition
that refines fair-language inclusion must also refine the fair-implementation relation.
On the other hand, the latter is a precongruence by Part i) and 3.4 and it refines
fair-language inclusion since v € Fair(N) if and only if (v, X) € FF(N). Thus, the
latter is the coarsest such precongruence. O

It is not difficult to show the following result concerning precongruence for rela-
belling and hiding.

10

Theorem 3.6 The relation <rr is a precongruence w.r.t. relabelling and hiding.
More precisely, for a net N we have:

o FE(NIf]) ={(f(w),X) | (w, f7YX)) € FF(N), where w € £°, X C ¥}
o FF(N/A) ={(w/A,X) | (w,XUA) e FF(N), wherew € ¥, X C X}

In [Vog97], it is shown that for safe nets <zz is decidable. Further, an operation
is considered that will be of interest later. We define this operation, state that it
preserves safety and quote a result from [Vog97].

Definition 3.7 An elongation of N is obtained by choosing a transition £, adding a
new unmarked place s and a new A-labelled transition ¢’ with *t' = {s} and ¢'* = ¢*
and, finally, redefining ¢* by ¢* := {s}.

Theorem 3.8 If a net Ny is an elongation of a net Ny, then one of the nets is safe
if and only if the other one is; in this case, Ny =z Ns.

Remark: The second statement of this theorem may fail for unsafe nets. Consider
an a-labelled transition on a loop with a place carrying two tokens. This net has no
fair traces, but after elongation one can fire repeatedly the a-labelled transition twice
and the internal transition twice, giving the fair trace a*. O

We close this section with a notion, also taken from [Vog97] (and similar to one
used for ordinary failure semantics), that will make Definition 5.1 more suggestive.
(v, X) € FF(N) means that N can perform v in such a way that all internal actions
and all actions in X are treated fairly. Hence, (v, X) ¢ FF(N) means that either
N cannot perform v in such a way that all internal actions are treated fairly or it
can, but whichever way it performs v, it treats some action in X unfairly. The latter
means that some x € X is continuously enabled from some point onward; if N is on
its own, it certainly performs such an z — but as a component of a larger system, N
simply offers such an x. We therefore define:

Definition 3.9 If for a net N and some (v,X) € ¥ x P(X) we have (v,X) ¢
FF(N), then we say that N surely offers (some action of) X along v. O

If N surely offers X along v and, in a run of a composed system, N as a com-

ponent performs v while the environment offers in this run each action in X, then
some action in X will be performed in this run.

4 Partial S-Invariants

Corresponding to the interests of this paper, we will only consider a restricted form
of S-invariants (and consequently of partial S-invariants) defined as follows.

11

Definition 4.1 Let N be a net; a set P of places has value n (under a marking M)
if the places in P carry together n tokens under the initial marking (under M resp.).
An S-invariant of N is a set P C S of value 1 such that for every transition ¢ we have
|PN°t]=|PNt.

A partial S-invariant of N with input I C a(N) and output O C «(N) is a set P
such that for every transition ¢ we have: if the label of ¢ is in I, then |PNt*|—|PN°*t| =
1; if the label of ¢ is in O, then |PN*t| —|PNt*| = 1; if the label of ¢ is neither in I nor
in O, then |[PN°*t| =[P Nt*|. We call such a P an (I, O, n)-invariant, if additionally
P has value n.

N is covered by S-invariants if each place is contained in an S-invariant. N is
covered by partial S-invariants Py, Ps,..., P,, if either n = 0 and N is covered by
S-invariants or n > 0 and each place is contained in an S-invariant or some P;.

For I C ¥, O C ¥ and n € INy, the (I,0,n)-component C(I,0,n) is a net
consisting of a place s with n tokens, an i-labelled transition ¢ with ¢* = {s} and
*tUt = () for each i € I and an o-labelled transition ¢ with *tU# = {s} and * = ()
for each o € O. O

We only use S-invariants where we just count the places in the pre- and postset of
a transition. In general S-invariants, each place has a weight and, instead of counting
as in [P N*t|, one adds up the respective weights; thus, in our S-invariants this weight
is always one. Furthermore, the value does not have to be 1 in general S-invariants.
Similarly, we just count places in the definition of partial S-invariants, and we restrict
attention to the case where firing of a transition changes the value by 1, 0 or —1. There
is no problem in generalizing the definition to weighted places and general changes,
except that the notation would get heavier and this generality is not needed here.
Also, one would need arc weights to define the analogue of (I, 0, n)-components.

The following result is well-known and easy:

Theorem 4.2 If P is an S-invariant of a net N, then P has value 1 under all reach-
able markings. If N s covered by S-invariants, then N is safe.

Next, we state a number of properties regarding our new notions; their proofs are
easy. (In particular, 4 follows from 3.)

Proposition 4.3 1. If P, is an (I;, O;,n;)-invariant of N;, i = 1,2, such that
[1ﬂ]2 == @ == OlﬂOg, then P1UP2 1S an ((11U12) - (01U02),(01U02) -
(I, U 1), nq + ng)-invariant of N1||Ny. In particular, Py or Py can be (), which
is an (0,0,0)-invariant.

2. If N; is covered by partial S-invariants Pjy, Py, ..., Py, i = 1,2, then Ny|| Ny is
covered by the partial S-invariants Py U Poy, Pio U Poy, ..., Py U Py,

3. An (0,0, 1)-invariant is an S-invariant.

4. If N is covered by partial S-invariants Py, Py, ..., P,, n > 0 and Py is an (0,0, 1)-
invariant, then N is covered by partial S-invariants Ps, ..., P,.

5. C(I,0,n) is covered by an (I,0,n)-invariant.

12

Corollary 4.4 If N is covered by an (I, 0, n)-invariant and m € INy withm+n =1,
then N||C(O,I,m) is safe.

Proof: By Parts 5 and 2 of 4.3, N||C(O, I, m) is covered by a partial S-invariant that
according to Part 1 is an ((),), 1)-invariant. By Part 4 N||C(O, I, m) is covered by
S-invariants and, thus, safe by 4.2. O

Partial S-invariants and the notion of covering are also consistent with relabelling
and hiding in the following sense.

Proposition 4.5 1. Let N be a net, a € ¥ and A C %, such that a(N)NA C {a},
and let f be the relabelling that maps a to A and is the identity otherwise.

If P is an (I,0,n)-invariant of N, then P is an (f(I), f(O),n)-invariant of
NI[f]. If N is covered by partial S-invariants Py, Ps, . .., P,, then N[f] is covered
by the same partial S-invariants.

2. Let P be an (I,0,n)-invariant of N that does not meet A C ¥, j.e. INA =
ONA=0. Then P is an (I,0,n)-invariant of NJ/A. If N is covered by partial
S-invariants Py, Py, . .., P, that do not meet A, then N/A is covered by the same
partial S-invariants.

We close this section with the key result that will allow to insert some sort of
interface description into a parallel composition. If N has an (I, O, n)-invariant, then
C(I,0,n) is a sort of abstraction of N; hence, adding it to N as parallel component
does not change the behaviour as we show now.

Proposition 4.6 If N has an (I,0,n)-invariant P, then N||C(I,O,n) =z N.

Proof: Let s be the place of C'(I,0,n); we relate each marking M of N to the
marking M’ of N||C(I,O,n) that additionally marks s with n tokens where n is the
value of P under M.

If M and M’ are related, then M enables ¢ if and only if M" enables ¢ (identifying
the pairs (#1,t2) of the parallel composition with ;). The if-part of this is obvious,
since N||C(I,0,n) just has an additional place; the only-if-part is obvious unless ¢
has its label in O, in which case it removes a token from P, i.e. s has at least one
token as required. From the definition, it is clear that firing ¢ gives markings that are
related again.

Furthermore, if M and M’ are related enabling some ¢, then M — *t’ enables t if
and only if M’ — *t' enables t. The proof is essentially as above observing that, if ¢/
removes a token from s, then it removes at least one token from P. (Hence, M’ — ¢’
has at least as many tokens on s as the marking related to M — *t'.)

From these statements, we see that the two nets have the same firing sequences
and that a transition ¢ is eventually enabled permanently in w in one net if and only
if it is in the other. This implies the result. O

This proposition can be applied in a situation where we want to reduce some
N||N' to a smaller fair-congruent net. It might even be that — while N’ is quite

13

manageable, in particular not too large — the precise definition of N and its size
depend on a parameter, i.e. its size may be arbitrarily large. If we know at least that
N has an (I, O, n)-invariant, then N||N' =x# N||C(I,O,n)||N' by 4.5 and 3.5, i.e. we
can insert C'(I,0,n) into the parallel composition; now we might be able to reduce
C(I,0,n)||N"in a way that would not be possible for N’ in isolation; if the component
C(I,0,n) perseveres (like a catalyst), we can remove it after the reduction. The
following corollary describes this compositional reduction, also for the more general
case of using several partial S-invariants. Observe that 4.6 is also valid for language-
equivalence or bisimilarity in place of fair-congruence; hence, partial S-invariants also
support the reduction method if these congruences are used.

In this method, C'(I,0,n) is an interface description; as an abstraction of N,
C(I,0,n) restricts the behaviour of N’ to what is relevant in N||N'. Important is
that this interface description is verified on N syntactically, while the reduction deals
with the behaviour of N’ only, and not with that of N. This is in contrast to [GSL96],
where some interface description is guessed, used in the reduction of N’ to N and then
verified during the further reduction of N||N". The latter considers the behaviour of
N, which is not possible in the fixed-point approach where N is parametric, i.e. not
completely known.

Corollary 4.7 1. Assume that N has an (I,0,n)-invariant and C(I,0,n)||N’
=77 C(I,0,n)||N" or C(I,0,n)||N" =z N". Then N||N'" =z N||N".

2. Assume that N has a family of partial S-invariants, C' is the parallel composition
of the respective (I,0,n)-components and C' is the parallel composition of a
subfamily of these (I,0,n)-components. If C|N" =zx C'||N", then N||N' =5
N||N".

5 Liveness Properties of MUTEX-Solutions

This section repeats necessary material from [BV9S8] regarding the correctness of
MUTEX-solutions and also introduces our first application example. First, we will
formulate a correctness specification based on the FF-semantics consisting of a safety
and a liveness requirement. Safety requires that no two users are in their critical sec-
tions at the same time; if one user enters, then he must leave before another enter is
possible. Our definition of liveness is explained after Definition 5.1; we only remark at
this point that a MUTEX-solution can only guarantee that each requesting user can
enter his critical section, if in turn each user e.g. guarantees to leave after entering.

Definition 5.1 We call a finite or infinite sequence over I, = {r;,e;,l;|i =1,...,n}
legal if r;, e; and [; only occur cyclically in this order for each i. An n-MUTEX net is
anet N with [(T) C {r;,e;, ;|1 =1,...,n} U{A}.

Such a net is a correct n-MUTEX-solution, if N satisfies MUTEX-safety, i.e. e- and
[-transitions only occur alternatingly in a legal trace, and satisfies MUTFEX-liveness
in the following sense. Let w € I U I¥ be legal and 1 < ¢ < n; then:

1. Each ¢; in w is followed by an [;, or N surely offers {/;} along w.

14

2. Assume each e; is followed by [; in w. Then either each r; is followed by e; or

N surely offers X along w where X consists of those e; where some 7; in w is not

followed by e;.

3. Assume each r; is followed by e; and each e; is followed by [/; in w. Then either r;

occurs and each [; is followed by another r; in w or N surely offers {r;} along w.
O

An n-MUTEX net N is used in a complete system consisting of N and its envi-
ronment comprising the users, and these two components synchronize over [,,. The
first part of MUTEX-liveness says that, if user i enters (performs e; together with
the scheduler N), later tries to leave (enables an /;-transition) and does not withdraw
(does not disable the transition again), then he will indeed leave; otherwise [; would
be enabled continuously in the complete system violating fairness. (Technically, recall
how the refusal sets of fair refusal pairs are composed according to Theorem 3.4: the
complete system is fair, i.e. X is refused, only if one of the components refuses [;.)

In other words, if user ¢« does not leave again, then he is not willing to leave since
[; is offered to him. This is a user misbehaviour, but the behaviour of the scheduler
N is correct. As a consequence, if N satisfies Part 1, we can assume that each e; is
followed by [;. Under this assumption, the second part of MUTEX-liveness says that
each request of 7 is satisfied, unless some requesting user is permanently offered to
enter. In the latter case, that user is misbehaving by not accepting this offer, and
again N is working correctly.

Now we can assume that each request is satisfied. Under this assumption, 7 re-
quests infinitely often or N at least offers him to request. The latter is not a user
misbehaviour because each user should be free to decide whether he wants to request.

The following is obvious from the definitions.

Proposition 5.2 If Ny <zr Ny and Ny satisfies MUTEX-safety, MUTEX-liveness
resp., then also Ny satisfies MUTEX-safety, MUTEX-liveness resp.

For token-passing solutions, MUTEX-safety is usually easy to prove with an S-
invariant; for the two families of solutions we will treat, sufficient arguments for
MUTEX-safety are given in [BV98]. Hence, we will concentrate on proving MUTEX-
liveness, which is more difficult. As already mentioned, application of the fixed-point
approach does not seem feasible, since the more users an n-MUTEX net has to serve,
the more visible actions it has.

The surprising fact is that, under some symmetry assumptions, it is enough to
check a version where only the actions of one user are visible. It should be pointed
out that the respective Theorem 5.5 is somewhat fragile: it was necessary to modify
the very similar correctness definition of [Vog97] to make it work. For our two families
of solutions, [BV98] also gives sufficient arguments that each of their nets are user-
symmetric in the following sense.

Definition 5.3 A quasi-automorphism ¢ of a net N is an isomorphism of the net

graph of N onto itself that maps the initial marking to a reachable marking, i.e.: ¢
is a bijection of S U T onto itself such that ¢(S) = S, ¢(T) = T, (z,y) € F &

15

(p(z),d(y)) € F, (z,y) € R< (¢(z),d(y)) € R, and ¢(My) is a reachable marking.
(Here, My is regarded as a set.) Note that ¢ ignores the labelling.

A user symmetry (¢,) of an n-MUTEX net N consists of a quasi-automorphism
¢ of N and a permutation = of {1,...,n} such that, first, ¢(My) is reachable with a
legal trace where for each i the last i-indexed action (if any) is /; and, second, for all
i=1,...,nand all t € T we have [(t) = r; & (¢(t)) = Ty, [(t) = e; & U(o(1)) =
ex(i), and [(t) = l; & 1(o(t)) = lrq)-

An n-MUTEX net is user-symmetric if, for all 4,5 € {1,...,n}, it has a user
symmetry (¢, 7) with 7(i) = j. O

Our first family of solutions is attributed to Le Lann; each of its nets is a ring of
components, one for each user. Figure 4(a) shows the component LLU of the first
user (except that the actions r, e and [should be indexed with 1, but we identify
r with 71 etc.). This user owns the access-token, the token on the right, while the
other users look the same, except that they do not have this token. The first user
can request access with r (i.e. by firing the r-labelled transition ¢,) and enter the
critical section with e. When he [eaves it with [, he passes the token to the next
user, i.e. the [-transition must be merged with the p-transition of the next user; p
stands for previous, the respective transition produces the access-token coming from
the previous user.

If the first user is not interested in entering the critical section, the token is passed
by the n-transition to the next user; i.e. the n-transition must also be merged with the
p-transition of the next user and then hidden. It is important that the n-transition
checks the token on *t, with a read arc, since this way the user is not prevented from
requesting in a firing sequence with infinitely many checks. Intuitively, Le Lann’s
solution is correct, since the access-token is passed around as just explained, and if a
user has requested and the token reaches the respective ring component, the user will
enter and leave his critical section before passing the token on.

For a Le-Lann-ring built as just explained, it should be clear that after firing the
n-transition we get a symmetric marking where the second user owns the access-token.

Figure 4

We next define the first-user view of a solution. For this we assume that each
user except the first one has a standard behaviour modelled by the i-th standard user
SU; shown in Figure 4(b): when non-critical, such a user works internally or requests;
after requesting, he enters and leaves as soon as possible. Then we abstract away all
visible behaviour of these users with a suitable hiding.

16

Note that only performing this hiding would have a very similar effect; but the
user then would also always request as soon as possible, i.e. he would certainly request
under the progress assumption, which clearly is not the standard behaviour we want
to deal with. The first-user view will allow to apply the fixed-point approach.

Definition 5.4 The first-user view FUV(N) of a net N is (N||(SUs]|...||SU.))/
{Ti,ez-,li|i:2,...,n}. |

The first-user view of Le Lann’s ring is a ring where the first component looks
like Figure 4(a), while all other components look like LSU shown in (c), except for
the labelling; also, we have omitted the two unmarked places of SU; that are simply
duplicates in LSU. The labelling of LSU has been chosen such that we can directly
construct the first-user view of each Le-Lann-ring from LLU and a suitable number
of copies of LSU. Only these nets we have to study due to the following theorem.

Theorem 5.5 Assume that a safe n-MUTEX net N is user-symmetric and satisfies
MUTEX-safety. Then, N is a correct n-MUTEX solution if FUV(N) is a correct
1-MUTEX solution.

6 Correctness Proofs

In this section, we will develop the fixed-point approach for two families of solutions to
the MUTEX-problem already discussed in [BV98]. In both, an access-token is passed
around which guarantees mutual exclusion.

6.1 Le Lann’s Ring

We first describe formally how the first-user view of a Le-Lann-ring as explained in
the previous section can be constructed from LLU and several copies of LSU, which
are shown in Figure 4. We first define the ‘Le-Lann-chain’ LLC,, inductively, which
is a chain of n copies of LSU.

LLC, =LSU

LLC iy = (LSU[n — p|ILLC,[p — p']) /¢’

This chain has one n-labelled transition, which moves the access-token to the chain,
and two p-labelled transitions ‘at the other end’, which remove the access-token from
the chain. Clearly, this net is not safe, since the n-labelled transition can fire several
times in a row. Now we close these chains to rings with LLU:

LL, = (LLU||LLCy [n — {l,n}])/{p,n}
We first observe:

Proposition 6.1 1. LSU is covered by an ({n}, {p},0)-invariant. LLU is covered
by a ({p}, {l,n}, 1)-invariant.

2. LLC,, is covered by an ({n}, {p},0)-invariant and its alphabet is {n,p} for all
n.

17

3. LL, is safe for all n.

Proof: 1. There are two circuits in LSU, each containing one of the marked places;
they are S-invariants. The places on the two paths from the n-labelled to the two
p-labelled transitions form an ({n}, {p}, 0)-invariant. The case of LLU is very similar.

2. The claim about the alphabet follows by an easy induction. The first claim
can also be shown by induction, where ¢ = 1 follows from 1. By 1. and 4.5.1 and
induction, LSU[n — p'] is covered by a ({p'}, {p}, 0)-invariant and LLC,[p — p'] is
covered by an ({n},{p'},0)-invariant. Thus, by 4.3.1 and .2 and 4.5.2, LLC 1 is
covered by an ({n}, {p}, 0)-invariant.

3. By 1., LLU is covered by a ({p},{l,n},1)-invariant. By 2. and 4.5.1 (observe
that [¢ «(LLC,, 1)), LLC,,_1[n — {l,n}] is covered by an ({l,n}, {p}, 0)-invariant.
Now by 4.3.1 and .2, LLU||LLC,,_1[n — {l,n}] is covered by an ((},), 1), and by 4.5.2,
4.3.4 and 4.2, LL, is safe. O

From the observations in [BV98] — underpinned by the safeness just shown — we can
apply Theorem 5.5 to each Le-Lann-ring assuming that MUTEX-safety is satisfied; it
is planned to refine the notion of partial S-invariant such that it supports the proof of
MUTEX-safety. Hence, it remains to prove that LL, satisfies MUTEX-liveness, where
we identify r, e and [with ry, e; and [;; this has already been shown for n = 2,3,4 in
[BV98]. We start with two lemmata.

Figure 5

Lemma 6.2 LSU[n — p'|||C({p},{p'},1) == C{P'}, {p}, 0)||C({p}, {p'}, 1)

Proof: The left-hand-side net N; is shown in Figure 5, the right-hand-side net N,
is simply a circuit with a p'- followed by a p-transition. We argue that the FF-
semantics of both nets is {((p'p)*, X) | X CX}U{(w,X) | we (pp)*Ap &€ X C
YUu{(w,X) | we (@p)P Apg X CX}.

It is clear that the visible behaviour of both nets is an alternating sequence of
p’ and p. If the sequence is infinite, all transitions are treated fairly (provided we
repeatedly fire the loop-transition of NV;), hence arbitrary sets can be refused. If the
sequence is empty or ends with p, all transitions except the p/-labelled one are treated
fairly (with the same provision for N), hence arbitrary sets not containing p' can be
refused.

That the analogous statement holds for sequences ending with p’ is clear for Nj.
For Ny, the p'-transition is treated fairly; now either the loop-transition fires infinitely

18

often and the right p-transition is continuously enabled or the other two internal
transitions must be fired, since we consider only firing sequences that are fair for all
internal transitions; in the latter case the left p-transition is continuously enabled,
and we are done. O

The next lemma shows how to reduce one LSU-component. This only works
due to the presence of C', which will arise from a partial S-invariant in the proof
of Theorem 6.4; C also ensures safeness of the nets the lemma deals with; see the
discussion at the end of this subsection.

Lemma 6.3 Let C = C({l,n},{p'},0); then (LLU|LSUln — p'])/p || C =#F
LLU[p — p']||C.

Proof: By Law 7, (LLU||LSU[n — p'])/p || C =## (LLU||LSU[n — p']||C)/p. Now
LLU has a ({p}, {{,n}, 1)-invariant by 6.1.1, C has a ({{,n}, {p'}, 0)-invariant by 4.3.5
and, hence, their parallel composition has a ({p}, {p'}, 1)-invariant by 4.3.1. Thus, by
applying Corollary 4.7 and Lemma 6.2, we can reduce LSU[n — p'] to C({p'}, {p},0)
and arrive at (LLU||C({p'}, {p},0)||C)/p, which by Law 7 again is fair-congruent to
(LLU||C({p'},{p},0))/p || C. In the latter net, the unique p’-labelled transition has as
postset the place of C({p'}, {p}, 0), which in turn has an internal transition as postset;
considering this, one sees that the net is simply an elongation of the right-hand-side
net in the lemma, and we are done by Theorem 3.8. O

Now we can apply the central Corollary 4.7 again to obtain the fixed-point result
and the correctness we are aiming for in this subsection.

Theorem 6.4 Forn > 2, LL, =x7 LL,_y. For n > 1, Le Lann’s ring s a correct
MUTEX-solution.

Proof: Once we have shown the congruence, we have that each LL, is fair-congruent
to LLs, which has been shown to satisfy MUTEX-liveness in [BV98]. Hence, each
LL, satisfies MUTEX-liveness by 5.2, and the second part follows with Theorem 5.5
as explained above.

Thus, we will transform

LLy = (LLU || (LSU[n — pNLLCn-2lp —= P]) /P'[n — {l,n}]) /{p,n}

preserving fair-congruence. First, we can commute the hiding of p’ with the following
renaming by Law ba and move it out of the outer brackets by Law 7 (since p’ ¢
a(LLU)) obtaining

(LLU || (LSU[n — p]||LLCw op — p']) [n — {l,n}]) /{p',p,n}.

Since I,n ¢ a(LSU[n — p']), we can move the right-most renaming to the left by Law
6; since the resulting component L = LLC,, s[p — p'|[n — {l,n}] does not have p in
its alphabet due to renaming, we can apply Law 7 to move /p and get

(LLUJILSU[n = p'l/p) || LLCh—2[p — p'lln — {1, n}]) /{p', n}.

19

The component L has an ({{,n}, {p'}, 0)-invariant by propositions 6.1.2 and 4.5.1.
With Lemma 6.3 and Corollary 4.7, we obtain

(LLU[p = P | LLCn—2[p = plln = {l,n}]) /{p',n}.

By Law 3, we can commute the second renaming with the third one and then
suppress it by Law 9; with the definition we arrive at LL, ;. O

The essential step in this proof is to reduce one of the LSU-components. To prove
this reduction directly would mean to show (LLU||LSU[n — p'])/p =7 LLU[p — p'],
but we have used partial S-invariants and Lemma 6.3 — because this congruence is
actually wrong: only the left-hand side has the fair refusal pair (p/'(p'n)“,{n}). To
see this, observe that, in LLU[p — p'], n is permanently enabled after the first p'
and thus cannot be refused. In the other net, we can have a token on the rightmost
place of LSU permanently after the first p’; this gives a behaviour that is fair to all
transitions except the p'-labelled one if the user ‘contained in’ LSU repeatedly enters
his critical section internally.

The infinite trace p/(p'n)¥ cannot occur in the full ring, since — intuitively speaking
— it involves a second access token; the component C' in Lemma 6.3 makes sure that
there is only one such token.

For the general case, another aspect is even more important: if the congruence
were true, it would be not so easy to prove since the nets involved are not safe. We
applied our reduction method with partial S-invariants in such a way that only the
behaviour of safe nets had to be compared. This is in particular very important if one
wants to show congruence with a tool, compare the next subsection.

One could argue that safety can also be obtained by adding a place to each com-
ponent of the Le-Lann-ring from the beginning, such that Figure 5 shows the modified
LSU[n — p']. This way, each component would also accept another access token only
if it has given up the previous one before, eliminating the trace we considered above.
But this addition would burden the MUTEX-solution unnecessarily; also, reduction
would not work directly: the modified components would act as one-place buffers,
and a sequence of two such buffers can store two tokens and, thus, does not have the
same behaviour as one buffer.

6.2 Dijkstra’s Token-Ring

The second MUTEX-solution we want to consider is Dijkstra’s token ring [Dij85]; we
will describe the first-user view of such a ring analogously to the above. Figure 6
shows the component DU of the first user who owns the access-token on place tok.
In Dijkstra’s token ring, the user keeps the token when leaving the critical section, so
he can use it repeatedly until an order for the token is received (action ro) from the
next component; observe the read arc from the now unmarked place no (no order).
Then the token is sent (action st) to the next component, say clockwise. Now m is
marked, indicating that this component misses the token. If the user requests again,
an order is sent (upper so-transition) counter-clockwise to the previous component.
Alternatively, the token might have moved on clockwise from the next component
such that another order is received from this component (ro) and forwarded counter-
clockwise (lower so-transition). If consequently a token is received (rt) from the

20

[t
ot
e+
Figure 6

previous component, a request is served in case one is pending or otherwise the token
is forwarded (st).

The other components DSU of the first-user view are obtained similarly as above,
although this time we keep the actions for the ring communication as they are — in
this case so, ro, st and rt. In detail: to get DSU from DU we hide r, e and [and
move the token on tok to m; and we duplicate the place nc, but without the read
arc and with an internal loop transition instead; compare the black part of Figure 7
below, which has two additional places. Now we define a chain DC',, and a ring DTR,,
as in the previous subsection, taking the first user component as chain of length 1 this
time.

DC,=DU
DCy1 = (DCy[ro — o, st — t]||DSU[so — o,rt — t])/{o,t}

Such a chain has actions r, e, [, so and rt ‘at one end’ and ro and st ‘at the other
end’. We close it to a ring with DSU:

DTR,, = (DC,, 1[ro — so,so — ro,rt — st,st — rt] || DSU)/{so,ro, st,rt}

Again, we will reduce a sequence of components (this time all of type DSU) to a
smaller one. An interesting variation is that we have to reduce a sequence of length 3,
because reducing 2 components to 1 cannot work: in a sequence of 2 components, the
first one can send an order and receive the token, send it to the second component
internally and — since it is missing the token now — send another order as the next
visible action; thus, it performs so rt so. This is not possible for one component
(compare again Figure 7), which after receiving the token must send it on (st) before
performing another so.

Since this more complicated application example is difficult to treat by hand,
application of a tool is advisable. Since a tool for deciding fair (pre)congruence was

21

not available, a tool for a related precongruence was used; this made some ad-hoc
measures necessary as described below.

We make use of two partial S-invariants which we give now. DU is covered
by the ({rt},{st},1)-invariant {gt,c,tok} making use e.g. of the S-invariant P =
{c,tok, m,ord,ord'}, and it also has the ({rt}, {so},0)-invariant {gt, ¢, tok,m}. Use
of this second partial S-invariant is not really necessary, but it slightly simplifies the
behaviour of the nets below, and it makes a little smaller the reachability graphs the
tool has to deal with.

Similarly to DU, DSU is covered by an ({rt}, {st}, 0)-invariant, and it also has an
({rt}, {so}, 1)-invariant. With induction, one shows from this that DC,, is covered by
an ({rt}, {st}, 1)-invariant and has an ({rt}, {so}, 0)-invariant. A first consequence is
then that each DTR,, is safe.

Formally, we will reduce D3 to D, with the following definitions:

Dy, = (DSUlro— o,st — t] || DSU[so — o,rt — t])/{0,t}
D3 = (Dg[ro— o,st — t] || DSU[so — o,1t — t])/{0,t}

[t is not surprising that Dy (in a composition according to the above partial S-
invariants, i.e. with C' = C'({st}, {rt},1)||C({so}, {rt},0)) reacts faster than Ds, and
we have verified this with FastAsy according to the notion of faster-than explained
e.g. in [BV98]. (For this step, the help of Elmar Bihler is gratefully acknowledged.)
As described in [BV98], this implies fair precongruence, where in the present setting
we additionally check that the two nets have the same alphabet.

Also, we have essentially verified with FastAsy that Dj is faster than an elongation
of D,. This elongation concerns the transition that, in the second DSU-component,
represents leaving the critical section and the ro-labelled transition; this slows down
the reactions of st and so. Together, the verification results imply fair congruence.

More precisely, in order to perform the second verification step with FastAsy, the
additional DSU-component of D3 was replaced by the following net DSU' (— just as
the additional LSU-component was transformed in Lemma 6.2). Figure 7 shows in
black DSU || C; DSU' is DSU with the additional grey transition sc, which is some
shortcut, hence the full figure shows DSU'|| C. The following lemma demonstrates
the correctness of this replacement.

Lemma 6.5 Let C = C'({st}, {rt}, 1) || C({so},{rt},0); then we have
DSU ||C =x# DSU' || C.

Proof: For the following arguments, observe that DSU || C is safe due to the coverage
by the partial S-invariant given above.

In a firing sequence w of DSU' || C that is fair to all internal transitions, we can
replace each occurrence of sc by the three internal transitions corresponding to the -
labelled, the middle e-labelled and the [-labelled transitions of DU. Observe that any
transition that is disabled while sc fires is also disabled while these three transitions
fire. Hence, if w is fair to some transition ¢ with label in X U {A} for some X, then
the transformed sequence is fair to ¢ as well. Thus, FF(DSU'||C) C FF(DSU || C).

22

3

N AE/‘-o
.l O

Figure 7

Now consider a firing sequence w of DSU || C' that is fair to all internal transitions.
This w can also fire in DSU' || C; the only problem could be that it might not be sc-
fair, i.e. gt, ord’ and nc are permanently marked from some stage onward. Assume
this to be the case.

When ord' receives a token for the last time, o is marked. Since a token on ord’
implies that m is empty due to the S-invariant P, none of the st-transitions fires, thus
o stays marked from this stage onward. Hence, w in DSU || C is not fair for the lower
st-transition, and st is not refused. (All other actions can be refused, as one sees quite
easily.)

If we insert sc¢ (or the three internal transitions as above) into w after the stage
mentioned and get w’, then tok gets marked in w’ while m, ord and ord' stay perma-
nently empty due to P. Thus, w' is fair for all so-, ro-, st-, rt- or A-labelled transitions,
and it gives rise to the same pairs in FF(DSU' || C) as w does in FF(DSU || C). O

As described above, we have obtained the following lemma — using Lemma 6.5 and
FastAsy:

Lemma 6.6 With C' as above, D3 ||C =z# Dy || C.

We now proceed as in the proof of Theorem 6.4: We unfold DTR,,, 3 by definition
such that we can isolate D3 in it and then apply the reduction that is possible due to
the above partial S-invariants and Lemma 6.6. Thus, we can show

DTR,.s = (DCy,[ro— so,so— ro,rt — st,st — rt] || Ds)/{so,ro,st,rt}
=zr (DCyplro — so,so — ro,rt — st,st — rt] || Dy)/{so,ro,st,rt}
— DTRu.».

23

This way, we can reduce rings with at least 4 components to DTR3; DTR3 and
DTR, were shown to satisfy MUTEX-liveness in [BV98]. This finishes our second
application:

Theorem 6.7 Forn > 3, DTR, =z DTR,_,. For n > 1, Dykstra’s token ring is
a correct MUTEX-solution.

7 Conclusion and Related Literature

In this paper, we have defined partial S-invariants for a setting where nets are com-
posed by merging transitions — modelling a parallel composition with synchronous
communication. We have shown how to derive from partial S-invariants of the com-
ponents (partial) S-invariants and safety of composed nets. As already mentioned,
this is analogous to the partial S-invariants of [Kin95] for a setting where nets are com-
posed by merging places. More importantly, we have shown how partial S-invariants
give rise to interface descriptions that can be useful in compositional reduction.

We have applied this idea to show the correctness of two families of MUTEX-
solutions based on token rings — exploiting also a vital symmetry result from [BV98|.
In this application, we have shown that two (three resp.) components of these rings
are equivalent to one (two resp.) component(s) in the proper context, which is derived
from partial S-invariants . (The reduction of three to two components was verified us-
ing the tool FastAsy, which compares performance of asynchronous systems.) Thus,
for each of the two families each member is equivalent to a small member; hence,
correctness of this small net shown in [BV98| carries over to the full family. This ap-
proach is called behavioural fixed-point approach in [VK98]. The equivalence we have
used is the coarsest congruence for the operators of interest respecting fair behaviour
in the sense of progress assumption.

Interface descriptions for compositional reduction of some system N||N’ have been
studied in [GSL96]: there, some interface description is guessed, used in the reduction
of N' to N" and then verified during the further reduction of N||N”. The last step
considers the behaviour of NV, and this is not feasible in the fixed-point approach where
N is the rest of the ring, i.e. not fixed. In contrast, partial S-invariants give verified
interface descriptions; we have derived them with induction from a syntactic inspec-
tion of the ring components, i.e. without considering their behaviour by constructing
a reachability graph and possibly encountering a state explosion. The latter points
out the potential use of partial S-invariants in compositional reduction in general.

The fixed-point approach is very similar to the approach in [WL89]: there, a
preorder is used instead of an equivalence; an invariant (or representative) process
I has to be found manually, and then it is checked that P is less than I and that,
whenever some (@ is less than I, P||@ is less than I. This implies that the composition
of any number of components P is less than [; with a suitable preorder and I, this
implies that some relevant properties hold for all these compositions. As an example,
MUTEX-safety of a version of Le Lann’s ring is shown. More generally, [CGJ95]
considers networks that might be built from various different types of components
according to a network grammar, and a representative for each type is used. As an
example, MUTEX-safety of Dijkstra’s token ring is shown.

24

Considering the construction of the complete system from its components, the ver-
ification of the above representatives is bottom-up ignoring the context. Determining
useful partial S-invariants exactly looks at this context; how this can be done in the
approach of [WL89] and [CGJ95] deserves further consideration. As Proposition 5.2
demonstrates, we could also work with the preorder <zr instead of the equivalence
=FF-

An important point is that the referenced papers use labelled transition systems
while we use Petri nets that in themselves are usually smaller; this is in particular
an advantage when determining partial S-invariants. Also, they allow to consider
the subtleties of the progress assumption (i.e. the difference between loops and read
arcs). Hence, we use a behavioural equivalence that takes the progress assumption
into account, in contrast to the above papers that use failure-inclusion [WL89], a
refinement thereof [VK98] or a simulation preorder [CGJ95]. Liveness properties
often only hold under the progress assumption.

It is planned to verify also the third family of MUTEX-solutions considered in
[BV98]. The problem is that in this family data from an infinite set are used (unique
identifiers for the components), and it has to be checked whether these systems can
be considered as data-independent in some sense. An interesting case study involving
data-independence and a reduction as in [WL89] and [CGJ95] can be found in [Kai97].

References

[BBCP00] P. Baldan, N. Busi, A. Corradini, and M. Pinna. Functional concurrent
semantics for Petri nets with read and inhibitor arcs. In C. Palamidessi,
editor, CONCUR 2000, Lect. Notes Comp. Sci. 1877, 442-457. Springer,
2000.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31:560-599, 1984.

[BV9S] E. Bihler and W. Vogler. Efficiency of token-passing MUTEX-solutions —
some experiments. In J. Desel et al., editors, Applications and Theory of
Petri Nets 1998, Lect. Notes Comp. Sci. 1420, 185-204. Springer, 1998.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks
using abstraction and regular languages. In I. Lee and S. Smolka, editors,
CONCUR 95, Lect. Notes Comp. Sci. 962, 395-407. Springer, 1995.

[Dij85] E.W. Dijkstra. Invariance and non-determinacy. In C.A.R. Hoare and J.C.
Sheperdson, editors, Mathematical Logic and Programming Languages,
157-165. Prentice-Hall, 1985.

[Fra86] N. Francez. Fairness. Springer-Verlag, 1986.

[Gol88] R. Gold. Verklemmungsfreiheit bei modularer Konstruktion fairer Petri-
netze. Diplomarbeit, Techn. Univ. Miinchen, 1988.

25

[GSLYG]

[JK95]

[Kai97]

[Kin95]

[MR95]

[Pet81]

[Rei84]

[Rei85]

VK9S]

[Vog92]

[Vog95]

[Vog97]

[VSYOS]

S. Graf, B. Steffen, and G. Liittgen. Compositional minimisation of finite
state systems using interface specifications. Formal Aspects of Computing,
8:607-616, 1996.

R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and
Computation, 123:1-16, 1995.

R. Kaivola. Using compositional preorders in the verification of sliding
window protocol. In CAV 97, Lect. Notes Comp. Sci. 1254, 48-59. Springer,
1997.

E. Kindler. Modularer Entwurf verteilter Systeme mit Petrinetzen. PhD
thesis, Techn. Univ. Miinchen, Bertz-Verlag, 1995.

U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32:545—
596, 1995.

J.L. Peterson. Petri Net Theory. Prentice-Hall, 1981.

W. Reisig. Partial order semantics versus interleaving semantics for CSP-
like languages and its impact on fairness. In J. Paredaens, editor, Automa-
ta, Languages and Programming, Lect. Notes Comp. Sci. 172, 403-413.
Springer, 1984.

W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer
Science 4. Springer, 1985.

A. Valmari and Kokkarinen. Unbounded verification results by finite-state
compositional technique: 10*™ states and beyond. In Int. Conf. Applica-
tion of Concurrency to System Design, 1998, Fukushima, Japan, 75-87.
IEEE Computer Society, 1998.

W. Vogler. Modular Construction and Partial Order Semantics of Petri
Nets. Lect. Notes Comp. Sci. 625. Springer, 1992.

W. Vogler. Fairness and partial order semantics. Information Processing
Letters, 55:33-39, 1995.

W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets.
In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, ICALP
97, Lect. Notes Comp. Sci. 1256, 538-548. Springer, 1997. Full version
at http://www.informatik.uni-augsburg.de/~vogler/ under the title ‘Effi-
ciency of Asynchronous Systems, Read Arcs, and the MUTEX-Problem’.

W. Vogler, A. Semenov, and A. Yakovlev. Unfolding and finite prefix for
nets with read arcs. In D. Sangiorgi and R. de Simone, editors, CON-
CUR 98, Lect. Notes Comp. Sci. 1466, 501-516. Springer, 1998. Ful-
1 version as Technical Report Series No. 634, Computing Science, Uni-
versity of Newcastle upon Tyne, February 1998; can be obtained from:

ftp://sadko.ncl.ac.uk/pub/incoming/TRs/.

26

[(WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes
with network invariants. In Automatic Verification Methods for Finite
Systems, Lect. Notes Comp. Sci. 407, 68-80. Springer, 1989.

27

