
Universität Augsburg

Foundations of Preferences in Database

Systems

Werner Kießling

Report 2001-8 Oktober 2001

Institut für Informatik

D-86135 Augsburg

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/35095652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Werner Kießling
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

 1

Foundations of Preferences in Database Systems
Werner Kießling

Institute of Computer Science, University of Augsburg, kiessling@informatik.uni-augsburg.de

 Copyright 2001, all rights reserved.

Abstract

Personalization of e-services poses new challenges to database technology. In particular, a powerful and flexible

modeling technique is needed for complex preferences, which may even come from several parties with different

intentions. Preference queries against a database have to be answered cooperatively by treating preferences as

soft constraints, attempting a best possible match-making. We propose a strict partial order semantics for prefer-

ences, which closely matches people’s intuition. A broad variety of natural preferences and of sophisticated

preferences using ranked scores are covered by this model. Moreover, we show how to inductively construct

complex preferences from base preferences by means of various preference constructors including Pareto accu-

mulation. This preference model is the key to a new discipline called preference engineering and to a preference

algebra. We present a collection of laws, including an intuitive non-discrimination theorem for Pareto prefer-

ences. Given the Best-Matches-Only query model we investigate how complex preference queries can be de-

composed into simpler ones, preparing the ground for divide & conquer algorithms. We succeed to verify inter-

esting adaptive filter effects of preference queries. Standard database query languages can be extended seam-

lessly by such preferences as exemplified by Preference SQL and Preference XPATH. In summary we believe

that this preference model, featuring an algebraic foundation that matches intuition, is appropriate to extend

database technology by preferences as soft constraints. Building efficient preference query optimizers, which can

cope with the intrinsic non-monotonic nature of preference queries, investigations on how to e-negotiate in this

preference model and a systematic approach to preference engineering are now feasible steps towards advanced

database support for the ubiquitous real world phenomenon of preferences.

1 Introduction

Preferences are everywhere in all our daily and business lives. Recently they are catching wide-spread attention

in the software community ([ACM00]), in particular in terms of personalization for B2C or B2B e-services. Thus

it becomes also a challenge for database technology to adequately cope with the many sophisticated aspects of

preferences. Personalization has different facets: There is the ‘exact world’, where user wishes can be satisfied

completely or not at all. In this scenario user options are restricted to a pre-defined set of fixed choices, e.g. for

software configurations according to user profiles. Database queries in this context are characterized by hard

constraints, delivering exactly the dream objects if they are there and otherwise reject the user’s request. But

there is also the ‘real world’, where personal preferences behave quite differently. Such preferences are under-

stood in the sense of wishes: Wishes are free, but there is no guarantee that they can be satisfied at all times. In

case of failure for a perfect match people are not always, but usually prepared to accept worse alternatives or to

negotiate compromises. Thus preferences in the real world require a paradigm shift from exact matches towards

 2

best possible match-making, which means that preferences are to be treated as soft constraints. Moreover, pref-

erences in the real world cannot be treated in isolation. Instead there may be multi-criteria decision situations

where even multiple interested parties are involved, e.g. in e-shopping where e-customers and e-vendors have

their own, maybe conflicting preferences. For a truly pervasive role of personalization these considerations sug-

gest that database query languages should support both worlds. But whereas the exact-match paradigm been

investigated in the database and Web context already by large amounts, leading to a bundle of successful tech-

nologies (e.g. SQL, E/R-modeling, XML), the paradigm of preference-driven choices in the real world is lagging

behind.

Let us exemplify the unsatisfying state of the art by looking at those many SQL-based search engines of e-shops,

which cannot cope adequately with real user preferences: All too often no or no reasonable answer is returned

though one has tried hard filling out query forms to match one’s personal preferences closely. Most probably,

one has encountered answers before sounding like “no hotels, vehicles, flights, etc. could be found that matched

your criteria; please try again with different choices”. The case of repeatedly receiving empty query results turns

out to be extremely disappointing to the user, and it is even more harmful for the e-merchant. Dictating the user

to leave some entries in the query form unspecified often leads to the other unpleasant extreme: an overloading

with lots of mostly irrelevant information. There have been some approaches to cope with these deficiencies,

notably in the context of cooperative database systems ([Mot88, GaL94, CYC96, Min98]). There the technique

of query relaxation has been studied in order to deal with the empty result problem. Since many decades prefer-

ences have also played a big role in the economic and social sciences, in particular for multi-attribute decision-

making in operations research ([Arr59, KeR93, BLL01]). Machine learning and knowledge discovery ([KiQ01])

are further areas where preferences are under investigation. Each of these approaches and lines of research has

explored some of the challenges put by preferences.

However, a comprehensive solution that paves the way for a smooth and efficient integration of preferences with

database technology has not yet been published. We think that a viable preference model for database systems

should meet the following list of desiderata:

(1) An intuitive semantics, covering a wide spectrum of applications: Preferences must be included as first class

citizens into the modeling process. This demands an intuitive understanding and declarative specification of

preferences. A universal preference model should cover non-numerical as well as numerical ranking methods,

and it should smoothly integrate with hard constraints from the exact world.

(2) A concise mathematical foundation: This requirement goes without saying, but of course the mathematical

foundation must harmonize with the intuitive semantics.

(3) A constructive and extensible preference model: Elevating preferences to the rank of first class citizens for

application modeling requires that a rich preference model is supported. Complex preferences should be built up

inductively from simpler preferences using an extensible repertoire of preference constructors.

(4) Conflicts of preferences must not cause a system failure: Dynamic composition of complex preferences must

be supported even in the presence of conflicts. A practical preference model should be able to live with conflicts,

not to prohibit them or to fail if they occur.

 3

(5) Declarative preference query languages: Match-making in the real world means bridging the gap between

wishes and reality. This implies the need for a new query model other than the exact match model of declarative

query languages like SQL or XPATH. A smooth integration and an efficient implementation are prerequisites for

its widespread acceptance.

The rest of this paper is organized as follows: Section 2 introduces the basics of preferences as strict partial or-

ders. In section 3 we present a powerful preference model as the key to preference engineering. Section 4 is

concerned with the development of a preference algebra. Section 5 investigates issues of preference queries

under the BMO query model and provides decomposition algorithms for complex preference queries. Practical

aspects of preference query languages are covered in section 6. Finally section 7 summarizes our results and

outlines ongoing and future work.

2 Preferences as strict partial orders

Preferences in the real world show up in quite different forms as everybody is aware of. However, a careful

examination of their vary nature reveals that they share a fundamental common principle. Let’s examine the

domain of daily life with its abundance of preferences that may come from subjective feelings or other intuitive

influences. In this familiar setting it turns out that people express their wishes frequently in terms like “I like A

better than B“. This kind of preference modeling is universally applied and intuitively understood by every-

body. In fact, every child learns to apply it from its earliest youth. Thinking of preferences in terms of ‘better-

than’ has a very natural counterpart in mathematics: One can map such real life preferences straightforwardly

onto strict partial orders. People are intuitively used to deal with such preferences, in particular with those that

are not expressed in terms of numerical scores. But there is also another part of real life which primarily is con-

cerned with sophisticated economical or technical issues, where numbers do matter. One can easily recognize

that the familiar numerical ranking can be subsumed under this semantics. Therefore modeling preferences as

strict partial orders holds great promises, which of course has been recognized at various opportunities and situa-

tions in computer science and other disciplines before. Here this key finding receives our undivided attention.

A preference is formulated as strict partial order on a set of attribute names with an associated domain of values,

which figuratively speaking is the ‘realm of wishes’. When combining preferences P1 and P2 into another pref-

erence P, we decide that P1 and P2 may overlap on their attributes, allowing multiple preferences to coexist on

the same attributes. This generality is due to our design principle that conflicts of preferences must be allowed in

practice and must not be considered as a bug.

Let A denote a non-empty set of attribute names, where each single attribute Ai has an associated domain of

values dom(Ai): A = {A1: data_type1, A2: data_type2, … , Ak: data_typek}

dom(A) := dom({A1, A2, … , Ak}) := dom(A1) × dom(A2) × … × dom(Ak)

For brevity we often omit the data types; if A has only one element, we omit set notation. The order of compo-

nents within the Cartesian product is considered irrelevant. Following above design decision this definition in-

cludes, e.g., the following: If B = {A1, A2} and C = {A2, A3}, then dom(B ∪ C) = dom({A1, A2} ∪ {A2, A3}) =

dom(A1) × dom(A2) × dom(A3).

 4

Definition 1 Preference P = (A, <P)

A preference P is a strict partial order P = (A, <P), where A is a set of attribute names and <P ⊆ dom(A) ×

dom(A). Thus <P is irreflexive and transitive (which imply asymmetry).1

Thus for all x, y, z ∈ dom(A) we have: [irreflexivity] ¬ (x <P x)

[transitivity] x <P y ∧ y <P z imply x <P z

Important is this intended interpretation: “x <P y” is interpreted as “I like y better than x”

A distinctive feature of partial orders are unranked values, i.e. values x and y such that ¬ (x <P y) ∧ ¬ (y <P x)

holds. Since preferences reflect important aspects of the real world a good visual representation is essential.

Definition 2 Better-than graph, quality notions

In finite domains a preference P can be drawn as a directed acyclic graph G, called the ‘better-than’ graph of P.

In mathematical terms ‘better-than’ graphs are known as Hasse diagrams ([DaP90]).

Given a ‘better-than’ graph G for P we define the following quality notions between values x, y in G:

- x <P y (i.e. y is better than x), if y is predecessor of x in G.

- Values in G without a predecessor are maximal elements of P, being at level 1.

- Values in G without a successor are minimal elements of P.

- x is on level j, if the longest path from x to a maximal value has j-1 edges.

- If there is no directed path between x and y in G, then x and y are unranked.

In numerical domains we will use a continuous distance function (see examples later on) instead of the discrete

level function to describe quality notions. Here is a formal definition of maximal values, given P = (A, <P):

 max(P) := {v ∈ dom(A) | v is maximal in P} = {v ∈ dom(A) | ¬ (∃ w ∈ dom(A): v <P w}

Definition 3 Special cases of preferences

a) Chain preference: P = (A, <P) is called chain preference, if for all x, y ∈ dom(A), x ≠ y: x <P y ∨ y <P x

b) Anti-chain preference: S↔↔↔↔ = (S, ∅∅∅∅) is called anti-chain preference, given any set of values S.

c) Dual preference: The dual preference Pδδδδ = (A, <Pδδδδ) reverses the order on P: x <P∂ y iff y <P x

d) Subset preference: Given P = (A, <P), every subset S ⊆ dom(A) induces a preference P⊆⊆⊆⊆ = (S, <P⊆⊆⊆⊆) called

subset preference of P, if for any x, y ∈ S: x <P⊆ y iff x <P y

Thus all values x of a chain preference P (also called total order) are ranked to all other values y. Any set S,

including dom(A) for an attribute A, can be converted into an anti-chain. Special subset preferences, called data-

base preferences, will become important later on, when we discuss the issue of preference queries.

Definition 4 range(<P), disjoint preferences

Given P = (A, <P) let range(<P) := {x ∈ dom(A) | ∃ y dom(A): (x, y) ∈ <P or (y, x) ∈ <P}.

 P1 = (A1, <P1) and P2 = (A2, <P2) are called disjoint preferences, if: range(<P1) ∩ range(<P2) = ∅

1 Some people prefer to deal with non-strict partial orders ≤P. Mathematically, any strict partial order can be translated into
its non-strict form in a canonical way ([DaP90]).

 5

3 Preference Engineering

Complex wishes are abundant in daily private and business life, even those concerning several attributes. Thus

there is a high demand for a powerful and orthogonal framework that supports the accumulation of single prefer-

ences into more complex ones. This accumulation should follow some general principles that are present in real

life and have an intuitive semantics. We present an inductive approach towards constructing complex prefer-

ences. This preference model will enable us to perform a systematic preference engineering. It will likewise

define the formal basis for the preference algebra introduced later on.

3.1 Inductive construction of preferences

The goal is to provide intuitive and convenient ways to inductively construct a preference P = (A, <P). To this

end we specify P by a so-called preference term which fixes the attribute names A and the strict partial order <P.

We distinguish between base preferences (our atomic preference terms) and compound preferences. Since each

preference term represents a strict partial order (which we will prove later on), we identify it with a preference P.

Definition 5 Preference term

P is a preference term if and only if P is one of the following:

(1) Any base preference baseprefi.

(2) Any subset preference of a preference P1: P := P1⊆⊆⊆⊆

(3) Any dual preference of a preference P1: P := P1∂∂∂∂

(4) Any complex preference P gained by applying one of the following preference constructors to given

preferences P1 and P2:

• Accumulating preference constructors:

- Pareto accumulation: P := P1 ⊗⊗⊗⊗ P2

- Prioritized accumulation: P := P1 & P2

- Numerical accumulation: P := rank(F)(P1, P2)

• Aggregating preference constructors:

- Intersection aggregation: P := P1 ♦♦♦♦ P2

- Disjoint union aggregation: P := P1 + P2

- Linear sum aggregation: P := P1 ⊕⊕⊕⊕ P2

We assume a finite set a base preferences {basepref1, basepref2, …}, where each baseprefi is assured to represent

a strict partial order. Each of the stated preference constructors will be defined subsequently and will be proven

to be closed under strict partial order semantics. Note that both the set of base preferences and the set of complex

preference constructors can be enlarged whenever the application domain at hand has a frequent demand for it.

3.2 Base preference constructors

Important from a preference engineering point of view is that we can provide base preference constructors,

which can be considered as preference templates whose proper instantiation yields a base preference. Practical

experiences ([KiK01]) showed that for e-shopping applications the following repertoire is highly valuable for

 6

constructing powerful personalized search engines. Formally, a base preference constructor has two arguments,

the first characterizing the attribute names A and the second the strict partial order <P. In the subsequent defini-

tions we provide both an intuitive and a formal definition, distinguishing between non-numerical (POS, NEG,

POS/NEG, POS/POS, EXPLICIT) and numerical base preference constructors (AROUND, BETWEEN, LOW-

EST, HIGHEST, SCORE).

3.2.1 Non-numerical base preferences

Definition 6 Non-numerical base preference constructors

a) POS preference: P := POS(A, POS-set{v1, …, vm})

Intuitively: A desired value should be one from a set of favorites v1, …, vm ∈ dom(A), called positive values. If

this is not feasible, better than getting nothing any other value from dom(A) is acceptable.

Formally: Let POS-set ⊆ dom(A) be finite. P is a POS preference, if: x <P y iff x∉ POS-set ∧ y ∈ POS-set

All v ∈ POS-set are maximal, all v∉ POS-set are at level 2 and worse than all POS-set values.

b) NEG preference: P := NEG(A, NEG-set{v1, …, vm})

Intuitively: A desired value should not be any from a set of dislikes v1, …, vm ∈ dom(A), called negative values.

If this is not feasible, better than getting nothing any disliked value is acceptable.

Formally: Let NEG-set ⊆ dom(A) be finite. P is a NEG preference, if: x <P y iff y∉ NEG-set ∧ x ∈ NEG-set

All v∉ NEG-set are maximal, all v ∈ NEG-set are on level 2 and worse than all maximal values.

c) POS/NEG preference: P := POS/NEG(A, POS-set{v1, …, vm}; NEG-set{vm+1, …, vm+n})

Intuitively: A desired value should be one from a set of favorites. Otherwise it should not be any from a set of

dislikes. If this is not feasible too, better than getting nothing any disliked value is acceptable.

Formally: Let POS-set, NEG-set ⊆ dom(A) be finite and disjoint. P is called POS/NEG preference, if:

 x <P y iff (x ∈ NEG-set ∧ y∉ NEG-set) ∨ (x ∉ NEG-set ∧ x ∉ POS-set ∧ y ∈ POS-set)

All v ∈ POS-set are maximal, all v ∈ NEG-set are on level 3, all others are on level 2. All maximal values are

better than all level 2 values which are better than all level 3 values.

d) POS/POS preference: P := POS/POS(A, POS1-set{v1, …, vm}; POS2-set{vm+1, …, vm+n})

Intuitively: A desired value should be one from a set of favorites. Otherwise it should be from a set of positive

alternatives. If this is not feasible too, better than getting nothing any other value is acceptable.

Formally: Let POS1-set, POS2-set ⊆ dom(A) be finite and disjoint. POS1-set are the favorite values, POS2-set

are the second-best alternatives. P is called POS/POS preference, if:

x <P y iff (x ∈ POS2-set ∧ y ∈ POS1-set) ∨

 (x ∉ POS1-set ∧ x ∉ POS2-set ∧ y ∈ POS2-set) ∨

 (x ∉ POS1-set ∧ x ∉ POS2-set ∧ y ∈ POS1-set)

All v ∈ POS1-set are maximal, all y ∈ POS2-set are on level 2, all others are on level 3. All POS1-set values are

better than all POS2-set values which are better than all other values.

 7

e) EXPLICIT preference: P := EXPLICIT(A, EXPLICIT-graph{(val1, val2), … })

Intuitively: Any finite preference can be “handcrafted” by explicitly enumerating ‘better-than’ relationships.

Formally: Let EXPLICIT-graph = {(val1, val2), … } represent a finite acyclic ‘better-than’ graph, where vali ∈

dom(A). Let V be the set of all vali occurring in EXPLICIT-graph. Then a strict partial order E = (V,

<E) is induced as follows:

 - (vali, valj) ∈ EXPLICIT-graph implies vali <E valj

 - vali <E valj ∧ valj <E valk imply vali <E valk

P is an EXPLICIT preference, if: x <P y iff x <E y ∨ (x ∉ range(<E) ∧ y ∈ range(<E))

Note that all values in EXPLICIT-graph are better than all other values in dom(A).

Example 1 Construction of base preferences

• P = (Transmission, <P) := POS(Transmission, POS-SET{automatic})

• P = (Color, <P) := POS/NEG(Color, POS-set{yellow}; NEG-set{gray})

• P = (Category, <P) := POS/POS(Category, POS-set1{cabriolet}; POS-set2{roadster})

• P = (Color, <P) := EXPLICIT(Color, EXPLICIT-graph{(green, yellow), (green, red), (yellow, white)})

Given dom(Color) = {white, red, yellow, green, brown, black} the ‘better-than’ graph of P is this:

white

 Thus white and red are maximal at level 1, yellow is at level 2, green

yellow red is at level 3 and the other values brown and black are minimal at level 4.

green

brown black ☺

3.2.2 Numerical base preferences

Now we focus on preferences P = (A, <P), where dom(A) is some numerical data type, e.g. Real or Decimal.

Then a total comparison operator ‘<’ and the subtraction operator ‘−’ are predefined on dom(A). Instead of the

discrete level function above, we now employ a continuous distance function working on ‘<’ and ‘−’.

Definition 7 Numerical base preference constructors

a) AROUND preference: P := AROUND(A, z)

Intuitively: A desired value should be an explicitly stated value z. If this is not feasible, values with shortest

distance apart from z will be acceptable.

Formally: Given a value z ∈ dom(A), for all v ∈ dom(A) we define: distance(v, z) := abs(v − z)
 P is called AROUND preference, if: x <P y iff distance(x, z) > distance(y, z)

Note that if distance(x, z) = distance(y, z) and x ≠ y, then x and y are unranked. AROUND preferences (and the

following base preferences) are also applicable to other ordered SQL types like Date.

 8

b) BETWEEN preference: P := BETWEEN(A, [low, up])

Intuitively: A desired value should be between the bounds of an explicitly stated interval. If this is not feasible,

values with shortest distance apart from the interval boundaries will be acceptable.

Formally: Given an interval [low, up] ∈ dom(A) × dom(A), low ≤ up, for all v ∈ dom(A) we define:

distance(v, [low, up]) := if v ∈ [low, up] then 0 else if v < low then low − v else v − up

 P is called BETWEEN preference, if: x <P y iff distance(x, [low, up]) > distance(y, [low, up])

Note that if distance(x, [low, up]) = distance(y, [low, up]) and x ≠ y, then x and y are unranked.

c) LOWEST, HIGHEST preference: P := LOWEST(A) , P = HIGHEST(A)

Intuitively: A desired value should be as low (high) as possible.

Formally : P is called LOWEST preference, if: x <P y iff x > y

 P is called HIGHEST preference, if: x <P y iff x < y

LOWEST and HIGHEST preferences are chains.

d) SCORE preference: P := SCORE(A, f)

Intuitively: Not available in general.

Formally: We assume a scoring function f: dom(A) → ℝ. Let ‘<’ be the familiar ‘less-than’ order on ℝ. Then

P is called SCORE preference, if for x, y ∈ dom(A): x <P y iff f(x) < f(y)

Note that P need not be a chain, if the scoring function f is not a one-to-one mapping.

3.3 Complex preference constructors

The true power of preference modeling comes with the advent of complex preference constructors.

3.3.1 Accumulating preference constructors

Accumulating preference constructors combine preferences which may come from one or several parties. We

consider Pareto accumulation ‘⊗ ’, prioritized accumulation ‘&’ and numerical accumulation ‘rank(F)’).

The Pareto-optimality principle has been applied and studied intensively for decades for multi-attribute decision

problems in the social and economic sciences. In our context we define it for n = 2 preferences as follows (a

generalization to n > 2 is straightforward).

Definition 8 Pareto preference: P:= P1⊗⊗⊗⊗ P2

Intuitively: P1 and P2 are considered as equally important preferences. In order for v = (v1, v2) to being bet-

ter than w = (w1, w2), it is not tolerable that v is worse than w in any component value.

Formally: We assume two preferences P1 = (A1, <P1) and P2 = (A2, <P2). For x = (x1, x2) and y = (y1, y2) ∈

dom(A1) × dom(A2) we define:

 x <P1⊗⊗⊗⊗ P2 y iff (x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨

 (x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1))

P = (A1 ∪∪∪∪ A2, <P1⊗⊗⊗⊗ P2) is called Pareto preference. The maximal values of P are the Pareto-optimal set.

Being a strict variant of the coordinate-wise order of cartesian products ([DaP90]), P is a strict partial order.

 9

Example 2 Pareto preference (disjoint attribute names)

Given dom(A1) = dom(A2) = dom(A3) = integer, we consider P1 := AROUND(A1, 0), P2 := LOWEST(A2),

P3 := HIGHEST(A3) and a Pareto preference P4 = ({A1, A2, A3}, <P4) := (P1 ⊗ P2) ⊗ P3. Let’s study a sub-

set preference of P4 for the following set R of values:

R(A1, A2, A3) = {val1 = (−5, 3, 4), val2 = (−5, 4, 4), val3 = (5, 1, 8), val4 = (5, 6, 6),

 val5 = (−6, 0, 6), val6 = (−6, 0, 4), val7 = (6, 2, 7)}

The ‘better-than’ graph of P4 for subset R can e.g. be obtained by performing exhaustive ‘better-than’ checks:

Level 1: val1 val3 val5

 Level 2: val2 val4 val7 val6

Thus in this case the Pareto-optimal set is {val1, val3, val5}. Note that for each of P1, P2 and P3 at least one

maximal value appears in the Pareto-optimal set: 5 and −5 for P1, 0 for P2 and 8 for P3. ☺

Example 3 Pareto preference (shared attribute names)

Let’s assume P5 := POS(Color, POS-set{green, yellow}), P6 := NEG(Color, NEG-set{red, green, blue, purple}),

a Pareto preference P7 = (Color, <P7) := P5⊗ P6 and a set of colors S := {red, green, yellow, blue, black, pur-

ple}. The ‘better-than’ graph of P7 for subset S looks as follows:

Level 1: yellow green black

 Level 2: red blue purple

Note that P5 and P6 agreed both on ‘yellow’ being maximal, whereas only P5 ranked ‘green’ as maximal and

only P6 ranked ‘black’ as maximal. The result in P7 is a non-discriminating compromise of both views. ☺

Definition 9 Prioritized preference: P:= P1&P2

Intuitively: P1 is considered more important than P2. There is no compromise by P1; P2 is respected only

where P1 does not mind.

Formally: We assume two preferences P1 = (A1, <P1) and P2 = (A2, <P2). For x = (x1, x2) and y = (y1, y2)

∈ dom(A1) × dom(A2) we define: x <P1&P2 y iff x1 <P1 y1 ∨ (x1 = y1 ∧ x2 <P2 y2)

P = (A1 ∪∪∪∪ A2, <P1&P2) is called prioritized preference. It is a strict variant of the lexicographic order of

cartesian products ([DaP90]), hence a strict partial order.

Example 4 Prioritized accumulation (disjoint attribute names)

Let’s revisit Example 2 from Pareto accumulation, now introducing two prioritized preferences P8 = ({A1, A2},

<P8) := P1&P2 and P9 = ({A1, A2, A3}, <P9) := (P1⊗ P2) & P3. The ‘better-than’ graphs of P8 (left) and of P9

(right) for subset R look as follows:

 Level 1: val1 val3 Level 1: val1 val3 val5

 Level 2: val2 val4 Level 2: val2 val4 val7 val6

 Level 3: val5 val6 val7 ☺

 10

Numerical accumulation builds on SCORE preferences P1, P2, …, Pn. The individual scores are accumulated into

an overall score by applying a multi-attribute combining function F. We give its formal definition for n = 2; a

generalization to n > 2 is obvious.

Definition 10 Numerical preference: P:= rank(F)(P1, P2)

Intuitively: Not available in general.

Formally: We assume P1 := SCORE(A1, f1), P2 := SCORE(A2, f2) and a combining function F: ℝ × ℝ → ℝ.

Let ‘<’ denote the ‘less-than’ order on ℝ. For x = (x1, x2) and y = (y1, y2) ∈ dom(A1) × dom(A2)

we define: x <rank(F)(P1, P2) y iff F(f1(x1), f2(x2)) < F(f1(y1), f2(y2))

P = (A1 ∪∪∪∪ A2, <rank(F)(P1, P2)) is called numerical preference.

The proof of strict partial order is immediate, since ‘<’ is irreflexive and transitive. P need not be a chain, if F is

not a one-to-one mapping. Also note that rank(F) is not an orthogonal preference constructor like ‘⊗ ’ or ‘&’. It

can exclusively be applied to SCORE preferences. But vice versa, numerical preferences can be used as input to

all other preference constructors.

Example 5 Numerical preference (F as weighted sum)

Let’s assume P1 := SCORE(A1: Integer, f1), f1(x) := distance(x, 0)

P2 := SCORE(A2: Integer, f2), f2(x) := distance(x, −2)

and P3 := rank(F)(P1, P2), F(x1, x2) := x1 + 2 ∗ x2

We study: R(A1, A2) = {val1 = (−5, 3), val2 = (−5, 4), val3 = (5, 1), val4 = (5, 6), val5 = (−6, 0), val6 = (−6, 0)}

We evaluate f1 and f2 into a set Ranking-R, containing for each value of R its score vector for f1, f2 together

with its combined F-ranking:

Ranking-R = {(f12-val1 = (5, 5), F-val1 = 15), (f12-val2 = (5, 6), F-val2 = 17),

 (f12-val3 = (5, 3), F-val3 = 11), (f12-val4 = (5, 8), F-val4 = 21),

 (f12-val5 = (6, 2), F-val5 = 10), (f12-val6 = (6, 2), F-val6 = 10)}

The ‘better-than’ graph of P3 for subset R is not a chain and has 5 levels:

 val4 → val2 → val1→ val3→ {val5, val6}

As an interesting observation the maximal f1-value being 6 does not show up in the top performer val4, having

f12-val4 = (5,8). In some sense this is like discriminating against P1. ☺

3.3.2 Aggregating preference constructors

Aggregating preference constructors (♦♦♦♦ , +, ⊕) pursue a different, technical purpose. All proofs of partial order

semantics are straightforward, following [DaP90]). Intersection ‘♦ ’ and disjoint union ‘+’ perform a “piece-

wise” assembly of a preference P from separate pieces P1, P2, …, Pn, all acting on the same set of attributes. Vice

versa, we will see later on how complex preferences can be decomposed using ‘♦ ’ and ‘+’.

 11

Definition 11 Intersection and disjoint union preferences

Let P1 = (A, <P1) and P2 = (A, <P2) be preferences on the same set of attribute names A.

a) P = (A, < P1♦♦♦♦ P2) is called intersection preference, if: x <P1♦ P2 y iff x <P1 y ∧ x <P2 y

b) If P1 and P2 are disjoint preferences, then P = (A, <P1+P2) is called disjoint union preference, if:

x <P1+P2 y iff x <P1 y ∨ x <P2 y

Definition 12 Linear sum preferences

For single attributes A1 and A2 such that A1 ≠ A2 and dom(A1) ∩ dom(A2) = ∅ we assume P1 = (A1, <P1) and

P2 = (A2, <P2), implying that P1 and P2 are disjoint preferences. For a new attribute name A we define dom(A)

:= dom(A1) ∪ dom(A2). Then P = (A, <P1⊕ P2) is called linear sum preference, if:

x <P1⊕ P2 y iff x <P1 y ∨ x <P2 y ∨ (x ∈ dom(A2) ∧ y ∈ dom(A1))

Linear sum ‘⊕ ’ can be viewed as a convenient design and proof method for base preference constructors. With

the right understanding of ‘other-values’ (cmp. Definition 6) we can informally state:

- A POS-preference constructor can be characterized as the linear sum of the anti-chain preference on the

POS-set followed by the anti-chain preference on the other values: POS = POS-set↔ ⊕ other-values↔

- POS/NEG = (POS-set↔ ⊕ other-values↔) ⊕ NEG-set↔

- POS/POS = (POS1-set↔ ⊕ POS2-set↔) ⊕ other-values↔

- EXPLICIT = E ⊕ other-values↔

At this point we can summarize all results stated so far as follows, referring back to Definition 5:

Proposition 1 Each preference term defines a preference.

This proposition gives us the grand freedom to flexibly and intuitively combine multiple preferences according

to the specific requirements in an application situation. Let’s coin the notion of preference engineering and

demonstrate its potentials by a typical scenario from B2C e-commerce.

Example 6 Preference engineering scenario

Suppose that Julia wants to buy a used car for shared usage by herself and her friend Leslie. Contemplating

about her personal customer preferences, she comes up with this wish list:

 P1 = (Category, <P1) := POS/POS(Category, POS-set1{cabriolet}; POS-set2{roadster})

 P2 = (Transmission, <P2) := POS(Transmission, POS-SET{automatic})

 P3 = (Horsepower, <P3) := AROUND(Horsepower, 100)

 P4 = (Price, <P4) := LOWEST(Price)

 P5 = (Color, <P6) := NEG(Color, NEG-set{gray})

Then Julia decides about the relative importance of these single preferences:

 Q1 = ({Color, Category, Transmission, Horsepower, Price}, <Q1) := P5 & ((P1 ⊗ P2 ⊗ P3) & P4)

Julia communicates this wish list to her car dealer Michael, who adds general domain knowledge P6 about cars:

 P6 = (Year-of-construction, <P6) := HIGHEST(Year-of-construction)

 12

In general, any piece of ontological knowledge can be entered at this stage. Because also vendors have their

preferences, of course, Michael has another preference P7 of its own:

 P7 = (Commission, <P7) := HIGHEST(Commission)

Since Michael is a fair play guy, the query he is going to issue against his used car database is this:

 Q2 = ({Color, Category, Transmission, Horsepower, Price, Year-of-construction, Commission}, <Q2)

 := (Q1 & P6) & P7 = ((P5 & ((P1 ⊗ P2 ⊗ P3) & P4)) & P6) & P7

Note that when mixing customer with vendor preferences Michael had not to worry that potential preference

conflicts would crash his used car e-shop. Just before Michael queries his car database against Q2 Leslie enters

the scene. A short discussion with Julia reveals that Leslie has a different color taste:

 P8 = (Color, <P8) := POS/NEG(Color, POS-set{blue}; NEG-set{gray, red})

In addition, Leslie convinces Julia that money should matter as much as color. Consequently, Q1 adapted to

these new preferences reads as follows:

 Q1* = ({Color, Category, Transmission, Horsepower, Price}, <Q1) := (P5⊗ P8⊗ P4) & (P1⊗ P2⊗ P3)

Finally Michael poses the adapted complex preference query Q2* … and the story might end that everybody is

happy with the result. ☺

3.4 Preference hierarchies

Preference constructors can be arranged in hierarchies. Given constructors C1 and C2, we call C1 a preference

sub-constructor of C2 (C1 ≼≼≼≼ C2), if the definition of C1 can be gained from the definition of C2 by some spe-

cializing constraints. Basically we can state three hierarchies, where the latter will be proved later on.

• Hierarchy of non-numerical base preference constructors:

- POS/POS ≼≼≼≼EXPLICIT, if EXPLICIT-graph = (POS1-set)↔ ⊕ (POS2-set) ↔
- POS ≼≼≼≼ POS/POS, if POS2-set = ∅
- POS ≼ ≼ ≼ ≼ POS/NEG, if NEG-set = ∅
- NEG ≼ ≼ ≼ ≼ POS/NEG, if POS-set = ∅

• Hierarchy of numerical base preference constructors: (‘N’ means ‘numeric’)

- BETWEEN ≼≼≼≼ SCORE, if A is ‘N’ and f(x) = − distance(x, [low, up])
- AROUND ≼ ≼ ≼ ≼ BETWEEN, if low = up
- HIGHEST ≼≼≼≼ SCORE, if A is ‘N’ and f(x) = x
- LOWEST ≼≼≼≼ SCORE, if A is ‘N’ and f(x) = −x

• Hierarchy of complex preference constructors: ‘♦ ’ ≼ ‘⊗ ’

These sub-constructor hierarchies can be visualized as follows:

 POS/NEG EXPLICIT SCORE ‘⊗ ’ rank(F)

 NEG POS/POS BETWEEN LOWEST HIGHEST ‘♦ ’ ‘&’

 POS AROUND

 13

There is certainly space for more sub-constructor relationships. For example, a super-constructor of both

POS/NEG and EXPLICIT would be a constructor with two explicit graphs, say POS-graph and NEG-graph,

assembled by linear sums in analogy to POS/NEG. An obvious possibility is to verify that ‘&’ ≼ rank(F) holds

by determining a properly weighted F.

Since we have specialization by constraints, this sub-constructor hierarchy is taxonomic. Besides the usual ad-

vantages for software engineering this also economizes proof efforts: Strict partial order semantics must be veri-

fied only for top-level preference constructors. Further we assume the principle of constructor substitutability,

i.e. instead of a requested constructor also a sub-constructor can be supplied. For instance, rank(F)(P1, P2) re-

quires that P1 and P2 are SCORE preferences. Instead, we can e.g. also supply preferences P1 and P2 con-

structed by AROUND and HIGHEST, respectively.

4 A preference algebra

Hard constraints in database systems are basically formulated by first order logic formulas, which can be ma-

nipulated by Boolean algebra. On the other hand preferences, represented by preference terms, will be used to

express soft constraints. Therefore it is desirable to develop a preference algebra that can prove laws amongst

preference terms. The subsequent studies will also strengthen our previous propositions about the intuitive se-

mantics of preference constructors. First we need a notion of equivalence of preference terms.

Definition 13 Equivalence of preference terms

P1 = (A1, <P1) and P2 = (A2, <P2) are equivalent (P1 ≡≡≡≡ P2), if A1 = A2 and if for all x and y ∈ dom(A1):

 x <P1 y iff x <P2 y

If P1 ≡ P2, then the preference terms P1 and P2 can be syntactically different, but the preferences represented by

P1 and P2, resp., are actually the same.

4.1 A collection of algebraic laws

The next proposition is covered by [DaP90].

Proposition 2 Commutative and associative laws for preference terms

b) Pareto accumulation: P1 ⊗ P2 ≡ P2 ⊗ P1, (P1 ⊗ P2) ⊗ P3 ≡ P1 ⊗ (P2 ⊗ P3)

c) Prioritized accumulation: (P1 & P2) & P3 ≡ P1 & (P2 & P3)

d) Intersection aggregation: P1 ♦ P2 ≡ P2 ♦ P1, (P1 ♦ P2) ♦ P3 ≡ P1 ♦ (P2 ♦ P3)

e) Disjoint union aggregation: P1 + P2 ≡ P2 + P1, (P1 + P2) + P3 ≡ P1 + (P2 + P3)

f) Linear sum aggregation: (P1 ⊕ P2) ⊕ P3 ≡ P1 ⊕ (P2 ⊕ P3)

For numerical accumulation the existence of such algebraic laws depends on the mathematical properties of F.

 14

Proposition 3 Further laws for preference terms

Dual preferences: a) (S↔)∂ ≡ S↔ for any set S b) (P∂)∂ ≡ P

 c) (P1⊕ P2)∂ ≡ P2∂ ⊕ P1∂ d) HIGHEST ≡ LOWEST∂

 e) POS∂ ≡ NEG, NEG∂ ≡ POS if POS-set = NEG-set

Intersection aggregation: f) P ♦ P ≡ P g) P ♦ Pδ ≡ P ♦ A↔ ≡ A↔ if P = (A, <P)

Prioritized accumulation: h) If P1 and P2 are chains, then P1&P2 and P2&P1 are chains

 i) P & P ≡ P & P∂ ≡ P j) P & A↔
 ≡ P if P = (A, <P)

 k) A↔&P ≡ A↔ if P = (A, <P)

Pareto accumulation: l) P ⊗ P ≡ P m) A↔⊗ P ≡ A↔&P

 n) P ⊗ A↔ ≡ P ⊗ P∂ ≡ A↔ if P = (A, <P)

These laws are easy to obtain and they all match our intuitive expectations about the semantics of preferences.

E.g., let’s pick P ⊗ P∂ ≡ A↔: Since P and P∂ are equally important, in case of conflicts for values x and y none

of them prevails, instead x and y remain unranked. Because P and P∂ are in conflict everywhere, the full domain

becomes unranked, hence the anti-chain A↔. Unranked values are a natural reservoir to negotiate compromises.

4.2 Decomposition of prioritized and Pareto preferences

The following “discrimination” theorem corresponds to the intuitive semantics of prioritized accumulation. We

succeed to decompose ‘&’ into disjoint union aggregation.

Proposition 4 “Discrimination” theorem for P1&P2:

 (a) P1&P2 ≡≡≡≡ P1 if P1 = (A, <P1) and P2 = (A, <P2)

 (b) P1&P2 ≡≡≡≡ P1 + (A1↔↔↔↔&P2) if A1 ∩∩∩∩ A2 = ∅∅∅∅

Proof: See appendix.

In both cases P1 is fully respected. For shared attributes P2 is completely dominated by P1. In case of disjoint

attributes P1 is more important than P2, because P2 is respected only inside groups of equal A1-values, hence

not disturbing P1’s ‘better-than’ decisions on A1. In this intuitive sense P1 discriminates against P2.

Now we state the important “non-discrimination” theorem for Pareto accumulation, which likewise nicely sup-

ports our intuitive semantics for P = P1 ⊗ P2.

Proposition 5 “Non-discrimination” theorem: P1 ⊗⊗⊗⊗ P2 ≡≡≡≡ (P1 & P2) ♦♦♦♦ (P2 & P1)

Proof: See appendix.

Preferences P1 and P2 are indeed treated equally important by ‘⊗ ’, since both P1 and P2 are each given prime

importance by ‘&’. Any arising conflict is resolved in a non-discriminating way by intersection ‘♦ ’.

 15

Example 7 “Non-discrimination” theorem

Let’s assume P1 = LOWEST(Price), P2 = LOWEST(Mileage) and a Pareto preference P = ({Price, Mileage},

<P1⊗ P2). We consider this set Car-DB of values from dom(Price) × dom(Mileage):

Car-DB = {val1 = (40000, 15000), val2 = (35000, 30000), val3 = (20000, 10000),

 val4 = (15000, 35000), val5 = (15000, 30000)}

The ‘better-than’ graph of P = P1⊗ P2 for subset Car-DB is this (gained e.g. by exhaustive better-than tests):

Level 1: val3 val5

 Level 2: val1 val2 val4

On the other hand let’s determine (P1&P2) ♦ (P2&P1):

The ‘better-than’ graph of P’ = P1&P2 for subset Car-DB yields a chain as follows:

val5 → val4 → val3 → val2 → val1

The ‘better-than graph’ of P’’ = P2&P1 for subset Car-DB yields a chain as follows:

val3 → val1 → val5 → val2 → val4

The ‘better-than’ graph of P’♦ P’’ for subset Car-DB is the same as for P1⊗ P2. Note that it matches exactly the

set of ‘better-than’ relationships that are shared by P’ and P’’. ☺

Proposition 6 P1⊗⊗⊗⊗ P2 ≡≡≡≡ P1♦♦♦♦ P2 if P1 = (A, <P1) and P2 = (A, <P2)

Proof: : Direct corollary from Proposition 5 and Proposition 4 a). Thus ♦ is a preference sub-constructor of ⊗ .

5 Evaluation of preference queries

If we look at SQL databases, then life is comparably simple there. Queries against a database set R are formu-

lated as hard constraints, leading to an all-or-nothing behavior: If the desired values are in R, you get exactly

what you were asking for, otherwise you get nothing at all. We call the latter deficiency the empty-result prob-

lem. Thus the exact-match query model can become a real nuisance in many e/m-commerce applications. The

other extreme happens, if - being afraid of empty results - the query is built by means of disjunctive subqueries.

Then one is frequently inundated with lots of irrelevant query results. This is the notorious flooding-effect.

The real world, where wishes are expressed as preferences, neither follows a simple all-or-nothing paradigm nor

do people expect to be flooded with irrelevant values to choose from. Instead, a more intelligent and cooperative

answer semantics of preference queries is urgently needed. Whether preferences (i.e. wishes) can be satisfied

and to what extent depends on the current status of the real world. Thus we have to perform a suitable match-

making between wishes and reality. To this purpose we now define the so-called BMO query model.

5.1 Preference queries and the BMO query model

Preferences are defined in terms of values from dom(A), which represent the universe of a fictitious world

(realm of wishes). In database applications we assume that the real world is mapped into appropriate database

instances which we call database sets. The database set R may, e.g., be a view or a base relation in an SQL data-

 16

base or a DTD-instance in an XML database. Under the usual closed world assumption database sets capture the

currently valid or accessible state of the real world. Thus database sets are proper subsets of our domains of

values, hence they are subset preferences.

Consider a database set R(B1, B2, …, Bm). Given A = {A1, A2, …, Ak}, where each Aj denotes an attribute Bi

from R, let R[A] := R[A1, A2, … Ak] denote the projection π of R onto these k attributes.

Definition 14 Database preference PR, perfect match for P in R

Let’s assume P = (A, <P), where A = {A1, A2, …, Ak}.

a) Each R[A] ⊆ dom(A) defines a subset preference P⊆ . We call it a database preference and denote it by:

 PR = (R[A], <P)

b) Tuple t ∈ R is a perfect match in a database set R, if: t[A] ∈ max(P) ∧ t[A] ∈ R

Comparing max(P), i.e. the dream objects of P, with the set max(PR), i.e. the best objects available in the real

world, then there might be no overlap. But if so, we have a perfect match between wishes and reality. If t is a

perfect match for P in R, then t[A] ∈ max(PR). But the converse does not hold in general. Preference queries

perform a match-making between the stated preferences (wishes) and the database preferences (reality).

Definition 15 Declarative semantics of a preference query σσσσ[P](R), BMO query model

Let’s assume P = (A, <P) and a database preference PR. We define a preference query σσσσ[P](R) declaratively as

follows: σ[P](R) = {t ∈ R | t[A] ∈ max(PR)}

A preference query σ[P](R) evaluates P against a database set R by retrieving all maximal values from PR. Note

that not all of them are necessarily perfect matches of P. Thus the principle of query relaxation is implicit in

above definition. Furthermore, any non-maximal values of PR are excluded from the query result, hence can be

considered as discarded on the fly. In this sense all best matching tuples – and only those – are retrieved by a

preference query. Therefore we coin the term BMO query model (“Best Matches Only”).

Example 8 BMO query model

We revisit the EXPLICIT preference P of Example 1 and pose the query σ[P](R) for R(Color) = {yellow, red,

green, black}. The BMO result is: σ[P](R) = {yellow, red}. Note that red is a perfect match. ☺

The next proposition is straightforward, but important to state.

Proposition 7 If P1 ≡≡≡≡ P2, then for all R: σσσσ[P1](R) = σσσσ[P2](R)

Besides preferences queries of the form σ[P](R) a variation will be needed frequently, which originates from an

interesting interplay between grouping and anti-chains. To this purpose consider the preference query

σ[A↔&P](R), where P = (B, <P):

We have : x <A↔&P y iff x1 <A↔ y1 ∨ (x1 = y1 ∧ x2 <P y2)

 iff false ∨ (x1 = y1 ∧ x2 <P y2) iff x1 = y1 ∧ x2 <P y2

 17

Then: t ∈ σ[A↔&P](R) iff t[A, B] ∈ max((A↔&P)R)

 iff ∀ v[A, B] ∈ R[A, B]: ¬ (t[A, B] <A↔&P v[A, B])

 iff ∀ v[A, B] ∈ R[A, B]: ¬ (t[A] = v[A] ∧ t[B] <P v[B])

In operational terms this characterizes a grouping of R by equal A-values, evaluating for each group Gi of tuples

the preference query σ[A↔&P](Gi). This motivates the following definition.

Definition 16 Declarative semantics of σσσσ[P groupby A](R)

Let’s assume P = (B, <P) and a database preference PR. We declaratively define a preference query with

grouping σσσσ[P groupby A](R) as follows: σ[P groupby A](R) := σ[A↔&P](R)

Compared to hard selection queries, preference selection queries deviate from the logics behind hard selections:

Preference queries are always non-monotonic.

Example 9 Non-monotonicity of preference query results

Let’s consider P = HIGHEST(Fuel_Economy) ⊗ HIGHEST(Insurance_Rating). We successively evaluate

σ[P](Cars) for Cars(Fuel_Economy, Insurance_Rating, Nickname) as follows:

 Cars = {(100, 3, frog), (50, 3, cat)}: σ[P](R) = {(100, 3, frog)}

 Cars = {(100, 3, frog), (50, 3, cat) (50, 10, shark)}: σ[P](R) = {(100, 3, frog), (50, 10, shark)}

 Cars = {(100, 3, frog), (50, 3, cat) (50, 10, shark), (100, 10, turtle)}: σ[P](R) = {(100, 10, turtle)} ☺

The non-monotonic behavior is obvious: Though we added more and more tuples to Cars, the results of our

preference queries did not exhibit a similar behavior. Instead of adapting to the size of the database set Cars,

query results of σ[P](R) adapted to the quality of data in Cars.

The explanation is intuitive: Being ‘better than’ is not a property of a single value, rather it concerns compari-

sons between pairs of values. Therefore it is sensitive (holistic) to the quality of a collection of values, and not to

its sheer quantity. Thus “quality instead of quantity” is the name of the game for BMO queries. Or considered

from a different perspective, better data imply better query results. As it is always the case in the real world, the

law of energy preservation applies here, too: Evaluation of preference queries is potentially more expensive than

of hard selection queries, because non-monotonic logics leads to more complex evaluation algorithms in general.

Thus one key challenge of preference query evaluation is to find efficient algorithms for complex preference

constructors. For a Pareto preference, e.g, the naïve approach performs O(n2) ‘better-than’ tests, if the database

set R has n tuples. For the scope of this paper, however, we do not explicitly address efficiency issues, instead

we provide fundamental decomposition results that can form the basis for a divide-and-conquer approach pur-

sued by a preference query optimizer.

5.2 Evaluation of disjoint union and intersection aggregation

Our goal is to decompose the accumulation preference constructors ‘&’ and ‘⊗ ’ into aggregation accumulation

using ‘+’ and ‘♦ ’, which in turn can be decomposed further.

 18

Proposition 8 σσσσ[P1+P2](R) = σσσσ[P1](R) ∩∩∩∩ σσσσ[P2](R)

Proof: See appendix.

The evaluation of intersection aggregation will cause more headaches. First we need some technical definitions.

Definition 17 Nmax(PR), P↑↑↑↑v, YY(P1, P2)R

a) Given P = (A, <P) and a database preference PR, the set of non-maximal values Nmax(PR) is defined as:

 Nmax(PR) := R[A] − max(PR)

b) Given v ∈ dom(A), the following set is called ‘better than’ set of v in P: P↑v := {w ∈ dom(A): v <P w}

c) YY(P1, P2)R := {t ∈ R : t[A] ∈ Nmax(P1R) ∩ Nmax(P2R) ∧ P1↑ t[A] ∩ P2↑ t[A] = ∅ }

In the terminology of [DaP90] Nmax(PR) is a down-set (or order ideal), whereas max(PR) is an up-set (or order

filter). Likewise, P↑v is an up-set.

Proposition 9 σσσσ[P1♦♦♦♦ P2](R) = σσσσ[P1](R) ∪∪∪∪ σσσσ[P2](R) ∪∪∪∪ YY(P1, P2)R

Proof: See appendix.

Efficiently evaluating YY(P1, P2)R is a difficult recursive task in general. Therefore it is an interesting future

challenge to figure out conditions under which YY(P1, P2)R can be simplified.

5.3 Evaluation of prioritized accumulation

Next we investigate σ[P1&P2](R). Since P1&P2 ≡ P1 for shared attributes (Proposition 4 a) we assume A1 ∩

A2 = ∅ . The evaluation of prioritized accumulation can be done by grouping.

Proposition 10 σσσσ[P1&P2](R) = σσσσ[P1](R) ∩∩∩∩ σσσσ[P2 groupby A1](R), if A1 ∩∩∩∩ A2 = ∅∅∅∅

Proof: Let P1 = (A1, <P1) and P2 = (A2, <P2). From Proposition 4 b, Proposition 8 and Definition 16 we get:

σ[P1&P2](R) = σ[P1+(A1↔&P2)](R) = σ[P1](R) ∩ σ[A1↔&P2)](R)

 = σ[P1](R) ∩ σ[P2 groupby A1](R) Q.e.d.

Example 10 Evaluation of a prioritized accumulation query

We assume P1 = Make↔ , P2 = AROUND(Price, 40000) and this database set Cars(Make, Price, Oid):

 Cars = {(Audi, 40000, 1), (BMW, 35000, 2), (VW, 20000, 3), (BMW, 50000, 4)}

The informal query “For each make give me an offer with a price around 40000” translates into:

 σ[P1&P2](Cars) = σ[P1](Cars) ∩ σ[P2 groupby Make](Cars)

 = Cars ∩ {(Audi, 40000, 1), (BMW, 35000, 2), (VW, 20000, 3)}

 = {(Audi, 40000, 1), (BMW, 35000, 2), (VW, 20000, 3)} ☺

Proposition 11 σσσσ[P1&P2](R) = σσσσ[P2](σσσσ[P1](R)) , if P1 is a chain

Proof: If P1 is a chain, all tuples in σ[P1](R) have the same A1-value. Then Proposition 10 specializes as stated.

Thus a cascade of preference queries is a special case of a prioritized preference query, if P1 is a chain.

 19

5.4 Evaluation of Pareto accumulation

Now we state the main decomposition theorem for the evaluation of Pareto preference queries.

Proposition 12 σσσσ[P1⊗⊗⊗⊗ P2](R) = (σσσσ[P1](R) ∩∩∩∩ σσσσ[P2 groupby A1](R)) ∪∪∪∪

 (σσσσ[P2](R) ∩∩∩∩ σσσσ[P1 groupby A2](R)) ∪∪∪∪ YY(P1&P2, P2&P1)R

Proof: Due to Proposition 5, Proposition 9 and Proposition 10 we get:

 σ[P1⊗ P2](R) = σ[(P1&P2) ♦ (P2&P1)](R)

 = σ[P1&P2](R) ∪ σ[P2&P1](R) ∪ YY(P1&P2, P2&P1)R

 = (σ[P1](R) ∩ σ[P2 groupby A1](R)) ∪

 (σ[P2](R) ∩ σ[P1 groupby A2](R)) ∪ YY(P1&P2, P2&P1)R Q.e.d.

This theorem gives a good insight into the structure of the Pareto-optimal set σ[P1⊗ P2](R), re-enforcing also our

claim that ‘⊗ ’ treats P1 and P2 as equally important:

- The first term contains all maximal values of (P1&P2)R.

- The 2nd term contains all maximal values of (P2&P1)R.

- The 3rd term contains values that are neither maximal in (P1&P2)R nor in (P2&P1)R.

Note that if P1 or P2 is a chain, then Proposition 11 can be applied to speed up evaluation.

Example 11 Evaluation of Pareto accumulation

Assume P1 = LOWEST(A), the dual preference P2 = HIGHEST(A) and R(A) = {3, 6, 9}. We compute

σ[P1⊗ P2](R). Due to Proposition 6, Proposition 3d, g) we immediately know:

 σ[P1⊗ P2](R) = σ[P1♦ P2](R) = σ[P1♦ P1∂](R) = σ[A↔](R) = R

To countercheck, since both P1 and P2 are chains Proposition 12 specializes as follows:

σ[P1⊗ P2](R) = σ[P2](σ[P1](R)) ∪ σ[P1](σ[P2](R)) ∪ YY(P1&P2, P2&P1)R

 = {3} ∪ {9} ∪ YY(P1&P2, P2&P1)R

We have: Nmax((P1&P2)R) ∩ Nmax((P2&P1)R) = {6, 9} ∩ {3, 6} = {6}

Since P1&P2↑6 ∩ P2&P1↑6 = {3} ∩ {9} = ∅ , we get YY(P1&P2, P2&P1)R = {6}

Thus we finally arrive at: σ[P1⊗ P2](R) = {3} ∪ {9} ∪ {6} = R ☺

5.5 Filter effect of Pareto accumulation

Preference queries under the BMO query model avoid both the empty-result effect and the flooding effect with

irrelevant results. We want to study how the filter effect of a Pareto preference can be characterized.

Definition 18 Result size

Let P = (A, <P). The result size of σ[P](R) is defined as: size(P, R) := card(πA(σ[P](R)) = card(max(PR))

Size(P, R) counts the number of different A-values appearing in the result of a preference query under the BMO

query model. Obviously if card(R) > 0, then 1 ≤ size(P, R) ≤ card(πA(R)).

 20

Definition 19 Strength of a preference filter

Given P1 = (A, <P1) and P2 = (A, <P2), we say that P1 is a stronger preference filter than P2, if size(P1, R) ≤

size(P2, R). Conversely, P2 is said to be a weaker preference filter than P1. Note that ‘stronger than’ is a (non-

strict) partial order on the set of all preferences, given A and R.

Proposition 13 Result sizes of complex preferences

a) size(P1+P2, R) ≤ size(P1, R), size(P1+P2, R) ≤ size(P2, R)

b) size(P1♦ P2, R) ≥ size(P1, R), size(P1♦ P2, R) ≥ size(P2, R)

c) size(P1&P2, R) ≤ size(P1, R)

d) size(P1⊗ P2, R) ≥ size(P1&P2, R), size(P1⊗ P2, R) ≥ size(P2&P1, R)

Proof:

a) Let P1 = (A, <P1) and P2 = (A, <P2), where P1and P2 are disjoint preferences. From Proposition 8 we get:

size(P1+P2, R) = card(πA(σ[P1+P2](R))) = card(πA(σ[P1](R) ∩ σ[P2](R)))

 ≤ card(πA(σ[P1](R))) = size(P1, R)

b) Let P1 = (A, <P1) and P2 = (A, <P2). Then due to Proposition 9 we get:

size(P1♦ P2, R) = card(πA(σ[P1♦ P2](R))) = card(πA(σ[P1](R) ∪ σ[P2](R) ∪ YY(P1, P2)R))

 ≥ card(πA(σ[P1](R))) = size(P1, R)

c) Let P1 = (A1, <P1), P2 = (A2, <P2) and A = A1 ∪ A2. Then due to Proposition 10 we get:

size(P1&P2, R) = card(πA(σ[P1&P2](R))) = card(πA(σ[P1](R) ∩ σ[P2 groupby A1](R)))

 ≤ card(πA(σ[P1](R))) = size(P1, R)

d) Let P1 = (A1, <P1) and P1 = (A2, <P1). Then due to Proposition 5 and Proposition 13 b) we get:

size(P1⊗ P2, R) = size((P1&P2)♦ (P2&P1), R) ≥ size(P1&P2, R)

Since ‘+’, ‘♦ ’ and ‘⊗ ’ are commutative, the remaining inequalities holds, too. Q.e.d.

Using the notation “P ⇛ Q iff P is a stronger preference filter than Q, given A and R”, we thus can state:

P1+P2 ⇛ P1, P1+P2 ⇛ P2, P1 ⇛ P1♦ P2, P2 ⇛ P1♦ P2, P1&P2 ⇛ P1,

P1&P2 ⇛ P1⊗ P2, P2&P1 ⇛ P1⊗ P2

We want to interpret the filter effect of Pareto accumulation in a rough analogy to the Boolean ‘AND/OR’-

programming of search engines using an exact match query model. We have:

 P1⊗ P2 ⇚ P1&P2 ⇛ P1, P1⊗ P2 ⇚ P2&P1 ⇛ P2

This behavior justifies the following interpretation: Seen from the perspective of P1 and P2, resp., forming

P1&P2 and P2&P1 has a stronger filter effect, hence resembling ‘AND’ operations in the exact match query

model. Then continuing to form P1⊗ P2 has a weaker filter effect, hence resembling ‘OR’ operations in the

exact match query model. Since the BMO query model automatically adapts to the quality of the database set R,

as a net effect we get an automatic ‘AND/OR’-like filter effect of Pareto accumulation.

This is an important observation compared to search engines with an exact match query model, struggling to

combat the empty-result nuisance and the flooding effect. There are work-arounds that attempt to mitigate this,

 21

e.g. parametric search, which basically is a semi-automatic, repetitive attempt of query refinement. The other

countermeasure is the so-called ‘expert mode’, offering a Boolean query interface with logical AND, OR and

NOT operations. However, this approach has been known as inadequate for a long time ([VGB61]). BMO data-

bases take all this burden from the user by automatically and adaptively finding the best possible answers.

6 Practical aspects

Now we show how our complex preference model fits into database and Internet practice.

6.1 Integration into SQL and XML

The early origins that eventually led to the contributions of this paper trace back to [KiG94], proposing a deduc-

tive approach to programming with preferences as partial orders. The theory of subsumption lattices in [KKT95]

can provide the formal backbone guaranteeing the existence of a model theory and a corresponding fixpoint

theory with subsumption in general deductive databases. Subsumption lattices generalize the usual powerset

lattices of Herbrand models to arbitrary partial orders. In turn, Herbrand models, representing the exact match

query model, are a special case of subsumption models. As a consequence this meets one crucial point from our

introductory list of desiderata: We can compatibly extend declarative database query languages under an exact

query model, which includes object-relational SQL databases and XML databases, by preferences under a BMO

query model.

• Preference SQL

The product Preference SQL, whose first release was available already in the fall of 1999, has been the first

instance of an extension of SQL by preferences as strict partial orders. No publications have been released in the

past, but recently [KiK01] gives an overview. Preference SQL implements a plug-and-go application integration

by a clever rewriting of Preference SQL queries into SQL92 code, making it available e.g. on DB2, Oracle 8i

and the MS SQL Server. Preference SQL is in commercial use as Preference Search cartridge for INTERSHOP

e-commerce platforms. The preference model implemented covers all previous base preference constructors,

Pareto accumulation (‘AND’) and cascading preferences. Preferences can be applied following a new PREFER-

RING clause. Here are two self-explaining examples:

SELECT * FROM car WHERE make = ‘Opel’

PREFERRING(category = 'roadster' ELSE category <> 'passenger' AND

price AROUND 40000 AND HIGHEST(power))

CASCADE color = 'red' CASCADE LOWEST(mileage);

SELECT * FROM trips

PREFERRING start_date AROUND '2001/11/23' AND duration AROUND 14

BUT ONLY DISTANCE(start_date)<=2 AND DISTANCE(duration)<=2;

The quality functions LEVEL and DISTANCE can supervise required quality levels (BUT ONLY clause) and can

be exploited for advanced query explanation. In [KFH01], describing experiences from a smart meta-comparison

shop using Preference SQL, benchmarks from real customer queries show that typical result sizes of Pareto pref-

 22

erences under BMO query semantics ranged from a few to a few dozens, which is exactly what’s required in

shopping situations.

• Preference XPATH

Preference XPATH ([KHF01]) is a query language to build personalized query engines in an attribute-rich XML

environment. It implements the full presented preference model (currently up rank(F)), the prototype runs on the

native XML database system TAMINO from Software AG and on XALAN. Standard XPATH is compatibly

extended as follows: The production “LocationStep: axis nodetest predicate*” is upgraded as

“LocationStep: axis nodetest(predicate|preference)*”. To delimit a hard selection (i.e.

predicate) XPATH uses the symbols ‘[‘ and ‘]‘. For soft selections (i.e. preference) ‘#[’ and ‘]#’ are

used. Here are two sample queries, where Pareto accumulation is written as ‘AND’ and prioritized accumulation

is expressed by ‘PRIOR TO’:

 Q1: /CARS/CAR #[(@fuel_economy)highest and (@horsepower)highest]#

Q2: /CARS/CAR #[(@color)in("black", "white")prior to(@price)around 10000]#

#[(@mileage)lowest]#

Preference XPATH can be applied in other XML key technologies like XSLT, Xpointer or Xquery.

• The ‘skyline of’ clause

A restricted form of Pareto accumulation is the ‘SKYLINE OF’ clause proposed in [BKS01]. It is a non-strict

variant for specifying P = P1 ⊗ P2 ⊗ … ⊗ Pk, where each Pi must be a LOWEST or HIGHEST preference,

hence a chain. Efficient evaluation algorithms have been given in [KLP75], [BKS01] and [TEO01].

6.2 The ranked query model

Soft constraints implemented by numerical accumulation rank(F) are in use today in several database and infor-

mation retrieval applications.

• Multi-feature query engines

One typical use is in multi-feature query engines to rank objects according to a complex technical features, e.g.

to support queries by image content on color, texture or shape. Since rank(F) constructs chain preferences in

most cases, a BMO-query semantics would return exactly one best-matching object. Definitely, this is a too

small set to choose from in general. For more alternative choices, the “k-best” query model is applied, returning

k objects with a (user-)definable k. In BMO-terms this amounts to retrieve some non-maximal objects, too.

There is already the SQL/MM proposal for incorporating multi-feature queries into SQL. Algorithms like Quick-

Combine ([GBK00, BGK00]) can be used to speed up the computation of rank(F) under the “k-best” semantics.

• Full-text search engines

Another area are full-text search engines, where search keywords can be understood as special preferences, each

yielding a numerical score indicating their relevance. The combining function F for rank(F) is typically some

 23

monotonic scalar product employing the cosine function, if the classical vector space model from information

retrieval is used. SQL has been extended by a text cartridge (Oracle 8i), a text extender (DB2) or text datablade

(Informix), implementing a k-best query model. The XXL prototype of [ThW00] is a representative of providing

the k-best semantics in the XML context.

Let’s spend a word on the issue of non-numerical vs. numerical ranking or of attribute-based search vs. full-text

search: If efficient implementations of the full preference model are available, then there are much more options

how to model preferences in a given application, ranging from purely non-numerical to purely numerical and any

combinations in between. For instance, an interesting combination of attribute-rich search and full-text search

would be a synthesis of Preference XPATH and XXL. Likewise Preference SQL merges well with SQL and

ranked text (cartridges, extenders, datablades). Ranked text itself may be one feature in a multi-feature query.

Theoretically it may be the case that numerical ranking subsumes all other preferences (which amounts to prove

that every preference constructor is a sub-constructor of SCORE or rank(F)). However, it is preferable to sup-

port a plurality of preference constructors: Identify as many preference constructors as possible that (1) fre-

quently occur in the real world, (2) have an intuitive semantics and (3) possess efficient evaluation algorithms.

7 Summary and outlook

We presented a preference model which is tailored for database systems. Many requirements of a personalized

real world are met by preferences modeled as strict partial orders: It unifies non-numerical and numerical rank-

ing, it has an intuitive semantics that is understood by everybody and it can be mapped directly into a well-

developed mathematical framework. This preference model features a variety of preference constructors that are

frequently needed in practice. In particular we introduced Pareto accumulation for equally important preferences

and prioritized accumulation for ordered importance among preferences. Intended for technical assembly we

showed that the preference constructors of disjoint union, linear sum and intersection aggregation fit into this

framework, too. This wide spectrum of options to model preferences opens the door for a systematic approach to

preference engineering, where preferences can be combined inductively, including situations where they come

from different parties with potentially conflicting intentions. Such a preference mix may be comprised of subjec-

tive preferences from daily life experiences, driven by personal intentions, and of sophisticated technical prefer-

ences. Various portions of the presented preference model have already been prototyped or are in commercial

use in SQL or XML environments. Despite this vast application scope, preferences as strict partial orders possess

an almost Spartan formal basis. This simplicity in turn is the key for a preference algebra, where many laws are

valid that are of interest for a preference optimizer. We have given a collection of laws which all have an intui-

tive interpretation, a key proposition being the non-discrimination theorem for Pareto accumulation. This formal

basis enabled us to define the declarative semantics of preference queries under the BMO query model, which

can cope with the notorious empty-result and flooding problems of search engine technology. Moreover, we

succeeded to present fundamental decomposition theorems for the evaluation of Pareto and of prioritized prefer-

ence queries. Beyond the scope of this paper, however, has been the issue of efficiency of preference query

evaluation. Due to the inherent non-monotonic nature of preference queries, this is a major challenge.

 24

Our roadmap into a “Preference World” includes the following investigations: A persistent preference reposi-

tory, personalized query composition methods, preference mining from query log files, a preference query opti-

mizer (e.g. heuristic transformations like ‘push preference’, cost-based optimization to choose between direct

implementations of the Pareto operator and divide & conquer algorithms exploiting the decomposition princi-

ples, or the use of index methods for efficient ‘better-than’ testing). The conflict tolerance of our preference

model forms the basis for research concerned with e-negotiations and e-haggling. Finally, we work on enhance-

ments of our preference model to incorporate additional intuitive semantic features. Eventually in a Preference

World technologies comparable to the exact-match world should become available, ranging from E/R/Preference

modeling to efficient and scalable preference query languages for SQL and XML.

Acknowledgments:
I would like to thank Thorsten Ehm and Bernhard Möller for carefully reading a draft of this paper, giving valu-

able suggestions to improve its technical presentation. Likewise I appreciate the cooperation of Ulrich Güntzer in

the Preference World project and the contributions of Gerhard Köstler throughout the Preference SQL project.

Literature:

[ACM00] Special issue of the Communications of the ACM on Personalization, vol. 43, Aug. 2000.

[Arr59] K. Arrow: Rational Choice Functions and Orderings. Economica 26: pp. 121–127, 1959.

[BGK00] W-T. Balke, U. Güntzer, W. Kießling: Applications of Quick-Combine for Ranked Query Models.

Proc. 1st DELOS Workshop on Information Seeking, Searching and Querying in Digital Libraries, Zu-

rich, 2000.

[BKS01] S. Borzsonyi, D. Kossmann, K. Stocker: The Skyline Operator. Proc. 17th Intern. Conf. On Data Engi-

neering, Heidelberg, Germany, April 2001.

[BLL01] M. Bichler, J. Lee, H.S. Lee, J.-Y. Chung: ABSolute: An Intelligent Decision Making Framework for

E-Sourcing. Proc. 3rd Intern. Workshop on Advanced Issues of E-Commerce and Web-Based Infor-

mation Systems, pp. 21-30, San Jose, USA, June 2001.

[CYC96] W. W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, C. Larson: CoBase - A Scalable and Extensi-

ble Cooperative Information System. Journal of Intelligent Information Systems, 6(3):223-259, 1996.

[DaP90] B.A. Davey, H.A. Priestley: Introduction to Lattices and Order. Cambridge Mathematical Textbooks,

Cambridge University press, 1990.

[GaL94] T. Gaasterland, J. Lobo: Qualified Answers that Reflect User Needs and Preferences. Proc. VLDB

1994, Santiago de Chile.

[GBK00] U. Güntzer, W.-T. Balke, W. Kießling: Optimizing Multi-Feature Queries for Image Databases. Proc.

26th Intern. Conf. on Very Large Databases (VLDB 2000), pages 419-428, Cairo, Egypt, 2000.

[KeR93] R. Keeney, H. Raiffa: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Cam-

bridge University Press, UK, 1993.

[KiG94] W. Kießling, U. Güntzer: Database Reasoning - A Deductive Framework for Solving Large and Com-

plex Problems by means of Subsumption. Proc. 3rd Workshop on Information Systems and Artificial

Intelligence, Springer LNCS 777, pp. 118-138, Hamburg, 1994.

 25

[KiK01] W. Kießling, G. Köstler: Preference SQL − Design, Implementation, Experiences. Technical report

2001-7, Institute of Computer Science, Univ. of Augsburg, Oct. 2001, submitted for publication.

[KiQ01] A. Kiss, J. Quinqueton: Multiagent Cooperative Learning of User Preferences, 5th European Confer-

ence on Principles and Practice of Knowledge Discovery in Databases (PKDD), Freiburg, Sept. 2001.

[KFH01] W. Kießling, S. Fischer, S. Holland, T. Ehm: Design and Implementation of COSIMA - A Smart and

Speaking E-Sales Assistant. Proc. 3rd Intern. Workshop on Advanced Issues of E-Commerce and

Web-Based Information Systems, pp. 21-30, San Jose, USA, June 2001.

[KHF01] W. Kießling, B. Hafenrichter, S. Fischer, S. Holland: Preference XPATH: A Query Language for E-

Commerce. Proc. 5th Intern. Konferenz für Wirtschaftsinformatik, Augsburg, Germany, pp. 425-440,

Sept. 2001.

[KKT95] G. Köstler, W. Kießling, H. Thöne, U. Güntzer: Fixpoint Iteration with Subsumption in Deductive

Databases. Journal of Intelligent Information Systems, Vol. 4, pp. 123-148, Boston, USA, 1995.

[KLP75] H. T. Kung, F. Luccio, F.P. Preparata: On Finding the Maxima of a Set of Vectors. Journal of the

ACM, 22(4): 469-476, 1975.

[Min98] J. Minker: An Overview of Cooperative Answering in Databases. Proc. 3rd Intern. Conf. on Flexible

Query Answering Systems, Springer LNCS 1495, pp. 282-285, Roskilde, Denmark, 1998.

[Mot88] A. Motro: VAGUE: A User Interface to Relational Databases that Permits Vague Queries. ACM

Transactions on Office Automation Systems, Vol. 6, No. 3, pp. 187-214, 1988.

[PeS01] J. E. Peris, C. Sanchez: Characterization of Social Choice Sets in terms of Individual’s Maximal Sets:

The Fixed Agenda Framework. Springer, Social Choice and Welfare (2001) 18: pp. 113 – 127.

[TEO01] K.-L. Tan, P.-K. Eng, B. C. Ooi: Efficient Progressive Skyline Computation. Proc. 27th Intern. Conf.

on Very Large Databases, pp. 301-310, Rome, Italy, Sept. 2001.

[ThW00] A. Theobald, G. Weikum: Adding Relevance to XML. Proc. of the 3rd Intern. Workshop on the Web

and Databases, LNCS, Springer, 2000.

[VGB61] J. Verhoeff, W. Goffmann, J. Belzer: Inefficiency of the Use of Boolean Functions for Information

Retrieval Systems, Comm. of the ACM, Dec. 1961, Vol. 4, No. 2.

Appendix:

(A) “Discrimination” theorem for P1&P2:

(a) P1&P2 ≡≡≡≡ P1 if P1 = (A, <P1) and P2 = (A, <P2)

 (b) P1&P2 ≡≡≡≡ P1 + (A1↔↔↔↔&P2) if A1 ∩∩∩∩ A2 = ∅∅∅∅

Proof:

 (a) Let P1 = (A, <P1) and P2 = (A, <P2). Then P1&P2 = (A , <P1&P2). For x, y ∈ dom(A) we get:

x <P1&P2 y iff x <P1 y ∨ (x = y ∧ x <P2 y) iff x <P1 y ∨ false iff x <P1 y

(b) Let P1 = (A1, <P1) and P2 = (A2, <P2) where A1 ∩ A2 = ∅ . For x = (x1, x2), y = (y1, y2) ∈ dom(A1) ×

dom(A2) let x <P1* y iff x1 <P1 y1. Then P1 is an order embedding into P1* = (A1 ∪ A2, <P1*).

Since A1 ∩ A2 = ∅ , P1* and P2 are disjoint preferences, hence P1* and A1↔&P2 are disjoint, too.

 26

Thus P1* + (A1↔ &P2) = (A1 ∪ A2, <P1*+(A1↔&P2)) is a disjoint union preference. Now we get:

x <P1+(A1↔&P2) y iff x <P1*+(A1↔&P2) y iff x1 <P1 y1 ∨ (x <A1↔&P2 y)

 iff x1 <P1 y1 ∨ (x1 = y1 ∧ x2 <P2 y2) iff x <P1&P2 y Q.e.d.

 (B) “Non-discrimination” theorem: P1 ⊗⊗⊗⊗ P2 ≡≡≡≡ (P1 & P2) ♦♦♦♦ (P2 & P1)

Proof:

Let P1 = (A1, <P1) and P2 = (A2, <P2). Then:

P1 ⊗ P2 = (A1 ∪ A2, <P1⊗ P2)

P1 & P2 = (A1 ∪ A2, <P1&P2), P2 & P1 = (A2 ∪ A1, <P2&P1)

(P1 & P2) ♦ (P2 & P1) = (A1 ∪ A2, <(P1&P2)♦ (P2&P1))

Let x = (x1, x2) and y = (y1, y2) ∈ dom(A1) × dom(A2). For abbreviation let:

B := ‘x1 <P1 y1’, C := ‘x1 = y1’, D := ‘x2 <P2 y2’, E := ‘x2 = y2’

If x = y, then ¬B ∧ ¬D holds. On the other hand, if x ≠ y, then ¬C ∨ ¬D holds. (*)

 (1) x <P1⊗ P2 y iff (B ∧ (E ∨ D)) ∨ (D ∧ (C ∨ B))

 iff ((B ∧ E) ∨ (B ∧ D)) ∨ ((D ∧ C) ∨ (D ∧ B))

 iff (B ∧ E) ∨ (B ∧ D) ∨ (D ∧ C)

 (2) x <(P1&P2)♦ (P2&P1) y

 iff (B ∨ (C ∧ D)) ∧ (D ∨ (E ∧ B))

 iff (B ∧ (D ∨ (E ∧ B))) ∨ ((C ∧ D) ∧ (D ∨ (E ∧ B)))

iff (B ∧ D) ∨ (B ∧ E ∧ B) ∨ (C ∧ D ∧ D) ∨ ((C ∧ E) ∧ D ∧ B)

iff x <P1⊗ P2 y ∨ ((C ∧ E) ∧ D ∧ B) (**)

Now take a closer look at the last disjunctive term H := C ∧ E ∧ D ∧ B in (**) above: In both cases that x ≠ y

or x = y, due to (*) ¬H holds. Therefore immediately from Boolean algebra we can continue (**):

 iff x <P1⊗ P2 y Q.e.d.

(C) Theorem: σσσσ[P1+P2](R) = σσσσ[P1](R) ∩∩∩∩ σσσσ[P2](R)

Proof: Consider P1+P2 = (A, <P1+P2), the database preference (P1+P2)R and w ∈ R[A]:

w ∈ Nmax((P1+P2)R) iff ∃ v ∈ R[A]: w <P1+P2 v iff ∃ v ∈ R[A]: w <P1 v ∨ w <P2 v

Since P1 and P2 have to be disjoint preferences, we can continue:

 iff (∃ v ∈ R[A]: w <P1 v) ∨ (∃ v ∈ R[A]: w <P2 v)

 iff w ∈ Nmax(P1R) ∨ w ∈ Nmax(P2R)

Thus: Nmax((P1+P2)R) = Nmax(P1R) ∪ Nmax(P2R)

Then: σ[P1+P2](R) = {t ∈ R: t[A] ∈ max((P1+P2)R)}

 = {t ∈ R: t[A] ∈ R[A] − Nmax((P1+P2)R)}

 = {t ∈ R: t[A] ∈ R[A] − (Nmax(P1R) ∪ Nmax(P2R))}

 27

 = {t ∈ R: t[A] ∈ (R[A] − Nmax(P1R)) ∩ (R[A] − Nmax(P2R))}

 = {t ∈ R: t[A] ∈ max(P1R) ∩ max(P2R)} = σ[P1](R) ∩ σ[P2](R) Q.e.d.

(D) Theorem: σσσσ[P1♦♦♦♦ P2](R) = σσσσ[P1](R) ∪∪∪∪ σσσσ[P2](R) ∪∪∪∪ YY(P1, P2)R

Proof: Consider P1♦ P2 = (A, <P1♦ P2), the database preference (P1♦ P2)R and w ∈ R[A]:

 w ∈ Nmax((P1♦ P2)R) iff ∃ v ∈ R[A]: w <P1♦ P2 v iff ∃ v ∈ R[A]: w <P1 v ∧ w <P2 v

At this point we must be careful when distributing the existential quantifier into the conjunction:

 iff ∃ v, v’ ∈ R[A]: w <P1 v ∧ w <P2 v’ ∧ (v ∈ P1↑w ∧ v’ ∈ P2↑w ∧ v = v’)

 iff (∃ v ∈ R[A]: w <P1 v) ∧ (∃ v’ ∈ R[A]: w <P2 v’) ∧

 (∃ v ∈ Nmax(P1R), ∃ v’ ∈ Nmax(P2R): v ∈ P1↑w ∧ v’ ∈ P2↑w ∧ v = v’)

 iff w ∈ Nmax(P1R) ∧ w ∈ Nmax(P2R) ∧

 (∃ v ∈ Nmax(P1R), ∃ v’ ∈ Nmax(P2R): v ∈ P1↑w ∧ v’ ∈ P2↑w ∧ v = v’)

Setting XX(P1, P2)R := {w ∈ R[A]: ∃ v ∈ Nmax(P1R), ∃ v’∈ Nmax(P2R): v ∈ P1↑w ∧ v’ ∈ P2↑w ∧ v = v’}

we continue: iff w ∈ Nmax(P1R) ∧ w ∈ Nmax(P2R) ∧ w ∈ XX(P1, P2)R

Thus: Nmax((P1♦ P2)R) = Nmax(P1R) ∩ Nmax(P2R) ∩ XX(P1, P2)R

Then we get: σ[P1♦ P2](R) = {t ∈ R: t[A] ∈ max((P1♦ P2)R)} =

{t ∈ R: t[A] ∈ R[A] − Nmax((P1♦ P2)R)} =

{t ∈ R: t[A] ∈ R[A] − (Nmax(P1R) ∩ Nmax(P2R) ∩ XX(P1, P2)R)} =

{t ∈ R: t[A] ∈ (R[A] − Nmax(P1R)) ∪ (R[A] − Nmax(P2R)) ∪ (R[A] − XX(P1, P2)R)} =

{t ∈ R: t[A] ∈ max(P1R) ∪ max(P2R) ∪ (R[A] − XX(P1, P2)R)} =

σ[P1](R) ∪ σ[P2](R) ∪ {t ∈ R: t[A] ∈ R[A] − XX(P1, P2)R}

We have: t[A] ∈ R[A] − XX(P1, P2)R iff

 t[A] ∉ XX(P1, P2)R iff

 t[A] ∈ {w ∈ R[A]: ¬ (∃ v ∈ Nmax(P1R), ∃ v’ ∈ Nmax(P2R): v ∈ P1↑w ∧ v’ ∈ P2↑w ∧ v = v’) iff

 ¬ (∃ v ∈ Nmax(P1R), ∃ v’ ∈ Nmax(P2R): v ∈ P1↑ t[A] ∧ v’ ∈ P2↑ t[A] ∧ v = v’) iff

 ¬ (t[A] ∈ Nmax(P1R) ∩ Nmax(P2R): P1↑ t[A] ∩ P2↑ t[A] ≠ ∅) iff

 (t[A] ∈ Nmax(P1R) ∩ Nmax(P2R): P1↑ t[A] ∩ P2↑ t[A] = ∅)

Setting YY(P1, P2)R := {t ∈ R : t[A] ∈ Nmax(P1R) ∩ Nmax(P2R) ∧ P1↑ t[A] ∩ P2↑ t[A] = ∅ }

we finally get: σ[P1♦ P2](R) = σ[P1](R) ∪ σ[P2](R) ∪ YY(P1, P2)R Q.e.d.

