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I. INTRODUCTION

We are going to be concerned in what follows with the
workings of two information measures that have received
much attention lately, those of Fisher []j] and Tsallis
B[], respectively. Our goal is to show that their inter-
play naturally yields a type of Naudts’ duality [

Fisher’s information measure (FIM) [[l.f] was advanced
already in the twenties, well before the advent of Infor-
mation Theory (IT), being conventionally designed with
the symbol I [[J] (see Eq. (.1]) below for the pertinent
definition). Much interesting work has been devoted to
the physical applications of FIM in recent times (see, for
instance, @,E,E,E] and references therein). Frieden and
Soffer [[lj have shown that Fisher’s information measure
provides one with a powerful variational principle, the
extreme physical information (EPI) one, that yields the
canonical Lagrangians of theoretical physics [,ﬂ] Ad-
ditionally, I has been shown to provide an interesting
characterization of the “arrow of time” alternative to the
one associated with Shannon’s S |

Tsallis’ measure is a generalization of Shannon’s one.
Notice that IT was created by Shannon in the forties
[@,@] One of its fundamental tenets is that of assigning
an information content (Shannon’s measure) to any nor-
malized probability distribution. The whole of statistical
mechanics can be elegantly re-formulated by extremiza-
tion of this measure, subject to the constraints imposed
by the a priori information one may possess concerning
the system of interest @] It is shown in [ﬂ,ﬂ,ﬂ] that
a parallel process can be undertaken with reference to
Tsallis’ one, giving rise to what is called Tsallis’ ther-
mostatistics, responsible for the successful description of
an ample variety of phenomena that cannot be explained
by appeal to the conventional one (that of Boltzmann-
Gibbs-Shannon) {1

II. A BRIEF FISHER PRIMER

Fisher’s information measure I is of the form
1 0f]?
1= [ s [rog 5]

where x is a stochastic variable and 6 a parameter on
which the probability distribution f(z,6) depends. The
Fisher information measure provides a lower bound for
the mean-square error associated with the estimation of
the parameter #. No matter what specific procedure we
chose in order to determine it, the associated mean square
error €2 has to be larger or equal than the inverse of the
Fisher measure [ﬂ] This result, i.e., e > %, is referred
to as the Cramer-Rao bound, and constitutes a very pow-
erful statistical result [f.

The special case of translation families deserves special
mention. These are mono parametric families of distri-
butions of the form f(z — 6) which are known up to the
shift parameter 6. Following Mach’s principle, all mem-
bers of the family possess identical shape (there are no
absolute origins), and here Fisher’s information measure
adopts the appearance

1 [of]?
I=[|de= |=]| .
/xf[%]
The parameter 6 has dropped out. I = I[f] becomes
then a functional of f.
At this point we introduce the useful concept of escort

probabilities (see [E] and references therein), that one
defines in the fashion

(2.1)

(2.2)

Fy(z) = 7]“(33)‘7

f f(z)adz’

q being any real parameter, qu(x)dx = 1, and, of
course, for ¢ = 1 we have F; = f.
The concomitant “escort-FIM” becomes

(2.3)
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1F,] = / do F(x) [ kT

that, in terms of the original f(x) acquires the aspect

S ey (2]’

I|F,| = 2.5
We shall denote with I, the new “escort-FIM”
—2 | 9f(x) 2
J da flay2 [252)]
= (2.6)

b= T )

(Notice that for ¢ = 0 the integration range must be finite
in order to avoid divergences in the denominator.)

The parameter ¢ can be identified with Tsallis’ nonex-
tensivity index ], which allows one to speak of
“Fisher measures in a nonextensive context”. Their main
properties have been discussed in [E]

III. THE EXTREME PHYSICAL INFORMATION
PRINCIPLE (EPI)

The Principle of Extreme Physical Information (EPT)
is an overall physical theory that is able to unify sev-
eral sub-disciplines of Physics [[lf]. In Ref. [f] Frieden
and Soffer (FS) show that the Lagrangians in Physics
arise out of a mathematical game between an intelli-
gent observer and Nature (that FS personalize in the
appealing figure of a “demon”, reminiscent of the cele-
brated Maxwell’s one). The game’s payoff introduces the
EPI variational principle, which determines simultane-
ously the Lagrangian and the physical ingredients of the
concomitant scenario.

FS [} envision the following situation, involving
Fisher’s information for translation families: some physi-
cal phenomenon is being investigated so as to gather suit-
able, pertinent data. Measurements must be performed.
Any measurement of physical parameters appropriate to
the task at hand initiates a relay of information I (or I, in
a non-extensive environment) from Nature (the demon)
into the data. The observer acquires information, in this
fashion, that is precisely I (or I;). FS assume that this
information can be elicited via a pertinent experiment.
Nature’s information is called, say, J [ﬂ,ﬂ]

Assume now that, due to the measuring process, the
system is perturbed, which in turn induces a change §.J.
It is natural to ask ourselves how the data information
I, will be affected. Enters here FS’s EPI: in its relay
from the phenomenon to the data no loss of information
should take place. The ensuing new Conservation Law
states that 0.J = 1, or, rephrasing it

§(I, — J) =0, (3.1)

so that, defining an action A,

Aq — Iq - J7 (32)

EPI asserts that the whole process described above ex-
tremizes A,. FS [M.F conclude that the Lagrangian for
a given physical environment is not just an ad-hoc con-
struct that yields a suitable differential equation. It pos-
sesses an intrinsic meaning. Its integral represents the
physical information A, for the physical scenario. On
such a basis some of the most important equations of
Physics can be derived for ¢ =1 ,E] For an interesting
Quantum Mechanical derivation see [[L7]. A cosmological
application of the nonextensive (¢ # 1) conservation law
(B-1)) is reported in [[§. Mechanical analogs that can
be built up using this law are discussed in [@] Notice,
however, that the last two references use an old Tsal-
lis” normalization procedure (advanced in [[3[I4]), that
cannot be assimilated within the framework of the escort
distribution concept.

IV. SOLUTIONS TO THE VARIATIONAL
PROBLEM

According to EPI, J is fixed by the physical scenario
[ﬂ] We adopt here a more modest posture by assuming
that J embodies only the normalization constraint, and
say nothing regarding a specific physical scenario. J is
just

J =2 / f(z) dz, (4.1)
where )\ is the pertinent Lagrange multiplier. Such a J
has been successfully employed in [E] with reference to a

quantum mechanical problem. Playing the Frieden-Soffer
game, i.e., performing the variation @), leads then to

2f f4+(q—2) fP+ql, fP+XAQ f79=0

a g¢-dependent, non-linear differential equation that
should yield our “optimal” probability distribution f (we
set @ = [ f%dz). Now, one should demand that, for
g =1, (4.2) become identical to the differential equation
that arises in such circumstances (see that equation in
[E], for instance, and call A" the concomitant Lagrange
multiplier used there). This requirement is fulfilled if we
set A=\ — gly. The g = 1-expression becomes then

2ff_ f.2+A/f2:07

where, of course, one has @ = 1. The solution of Eq.

([£3) is of the form

(4.2)

(4.3)

fo=1(x) = A? cos® k(x — x0) (4.4)

where k is a constant to be determined below and A, xq
are arbitrary integration constants.



It easy to show that (@) has, as a first integral,

Prl fP+aQ 0 =c f2, (4.5)

where c is an integration constant. This equation involves
Fisher’s generalized information for translation families.
We must solve it having (E) in mind. In order to estab-
lish the consistency between ([L.§) and (B-§) we introduce
a set of normalized variables

- A
z=/\/Ed:C, )\ZI—Q, E:IE,
q q

(the integral is an indefinite one) in terms of which Egs.

(@), (@), (@), and (@) are transformed into
L[S e

(4.6)

T (4.7)
Jy =X T J{Zdz / f(2) dz, (4.8)
(an indefinite integral),
2f "+ (@=2) fPHa fP+A =0, (49)
and
[P+ 24N pra=c (4.10)

Inserting ([.10) into (.) we conclude that the inte-
gration constant acquires the aspect

2Q+ A\

c= ,
T2 — T1

(4.11)

where zo and x; are the integration limits, to be fixed
by the remaining parameters of the theory. A quite in-
teresting point is that the general solution of ) can
be given in closed form as

i
NCESYIT

where the constants ¢ A must be of such nature that a
real f ensues.

/ dz = z — const. = £ daf, (4.12)

V. SYMMETRY PROPERTIES OF THE EPI
PROBABILITY DISTRIBUTION

We start by changing variables in @) to

e
7z)

(5.1)

and obtaining

v tauu +Bud+yu=0, (5.2)

with

1
a=(2q—1),ﬁ:§q(q—1),726. (5.3)
(A complete study of the properties of equation (@) is
found in [2d]). Further, we effect the transformation

f—=1/f (5.4)

so that

u— —u, v ——u, v ——u". (5.5)

If we require that equation (f.9) be invariant under this
transformation, the parameters «, 8 and v must change
according to a = —a, 8 — 8 and v — v respectively.
This entails that the parameter ¢, that characterizes the
degree of non-extensivity of the system, transform as ¢ —
1 —g. A property of this type has been called “duality”
by Naudts [E], although in his case the relationship is of
the form ¢ — % (duality between ¢ > 1 statistics and
g < 1 one). In our case, the duality arises between two
g-values whose sum adds up to unity.

Introducing now into (@) the new variable

h=7 (5.6)
we get
2hh" — (q+ 2)h* — gh? — AhTH! =0, (5.7)
which under the substitution ¢ — 1 — ¢, becomes
201" + (¢ = 3)h” + (¢ = A* = AW*™1=0.  (5.8)

This equation can be rewritten, if we first define

w(q) = (=h'% — h? — A2~ 4 ch379), (5.9)

as
2hh" + (q = 2)h™ + qh* — ch®™ " +w(q) =0,  (5.10)

where the terms in w(q) correspond to the (transformed)
first integral of ([L.9)

P+ P Afra=cf, (5.11)
which under (f.g) becomes
R + h? + Ah?79 = ch3 1. (5.12)

As a consequence, w(q) in (p.10)) vanishes and the
equation ([.g), under the transformation (f.g), turns out
to retain its form, changing ¢ — 1 — ¢ and é — —\. It is
convenient at this point to effect a slight change of nota-
tion and denote by f,; the solution to @) that obtains
when the nonextensivity index is ¢. The above symmetry
argument entails



< 1

fa(E,A) —. (5.13)

- =

flfq (_)‘7 _C)

Using this symmetry property we can re-obtain the
probability distribution (@) for g = 1, i.e., the ordinary,

extensive one, in term of the probability distribution for
¢ = 0, that can be easily calculated from (§.10)

fP=@-1) 2=  q=0. (5.14)
The solutions are
fo(z):étl {l—tamh2 c-1 (z—zo)} c>1,
A 2

(5.15)

and

f0(2)257 {1—l-taun2 12_6 (z—zo)} c<1,

(5.16)

where the last solution must be normalized in a finite
interval. The symmetry transformation (f.13) yields now
the general solution for g =1

- 1

fl (5, )\) — 7]00(_5\7 —5) .

This is to be compared with the result (jt.4). We start
with (p.16), effect the transformation (f.17) and reach

¢ 5 V1+A

TI1EN T

(5.17)

fi1(2) (5.18)

(z — 20)
which, after a little algebra that involves also going back
to the 2 variable adopts indeed the form ([L4]) with A2 =
¢/N and k = v/A/2. A similar analysis can be performed
for (b.19)).

We have thus found the general solution for the (exten-
sive) EPI variational treatment corresponding to a J that
entails just normalization of the probability distribution.
Notice that, within the context of Naudts’ effort [E], the
extensive thermostatistics ¢ = 1 is self-dual. Instead,
according to the present Fisher framework, the self-dual
instance obtains for ¢ = 1/2.

VI. CONCLUSIONS

We have shown that the EPI principle, used in con-
junction with a Fisher measure constructed with escort
distributions that depend upon the Tsallis index ¢, ren-
ders a probability distribution endowed with a remark-
able symmetry: a Naudts'like duality [ff].

Tsallis enthusiasts had thought, before the advent of
Naudts work [fJ, that a different statistics obtains for
each different value of the nonextensivity indexr q. The

duality concept is then important because it ascribes the
same statistics to a given pair of (suitably related) ¢-
values. We have shown here that such a pair can be
selected in two distinct manners, i.e., a la Naudts or a la
Fisher, and have detailed the prescription corresponding
to the latter choice.

Finally, we have also ascertained which is the general
(normalized) probability distribution that extremizes the
physical information.
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