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Abstract 

Deep personalization of database queries re-
quires a semantically rich, easy to handle and 
flexible preference model. Building on prefer-
ences as strict partial orders we provide a variety 
of intuitive and customizable base preference 
constructors for numerical and categorical data. 
For complex constructors we introduce the no-
tion of ‘substitutable values’ (SV-semantics). 
Preferences with SV-semantics solve major open 
problems with Pareto and prioritized preferences. 
Known laws from preference relational algebra 
remain valid under SV-semantics. These power-
ful modeling capabilities even contribute to im-
prove efficient preference query evaluation. 
Moreover, for the first time we point out a se-
mantic-guided way to cope with the infamous 
flooding effect of query engines. Performing a 
series of test queries on sample data from an e-
procurement application, we provide evidence 
that the flooding problem comes under control 
for deeply personalized database queries. 

1. Introduction 

Personalization of database queries is an increasingly im-
portant issue. For instance let’s consider e-procurement, 
which is one of the fastest growing application areas for 
e-commerce. There are multiple reasons, why today the 
sales process in e-procurement is still a business with lots 
of costly human interaction. The misery starts already 
with the product search. Often B2B customers are forced 
  
 
 
 
 
 
 

to manually scroll through huge electronic product cata-
logs. Frequently commercial search engines simply inter-
pret the customer’s search conditions as hard constraints, 
yielding the embarrassing ‘empty result’ effect. A failing 
solution attempt is to interpret the search constraints as 
‘or’-conditions, causing the ‘flooding’ effect. Another 
time-consuming and error-prone approach is parametric 
search. Offering a plain full-text search is no remedy ei-
ther, because B2B product search is largely an attribute 
based search, if e-catalog standards (being mostly XML-
based) are in place. Thus state-of-the-art approaches to 
find products are not enough for the B2B customer ([23]). 
In fact, a good product search demands a personalized 
search engine that can handle attribute-rich e-catalog data, 
that can be personalized to the customer’s wishes, roles 
and situations, and that fully automatically delivers best 
alternatives when there is no perfect match. 

Let’s consider the following motivating example from 
an e-procurement setting. 

Example 1 Personalized query composition 

Let’s assume that an embodied virtual agent called Homer 
is a notebook reseller. A business woman named Marge 
contacts him telling her purchase interests: 

/1/ “I am interested in notebooks. The CPU speed must 
be at least 2 GHz. 

/2/ The order quantity should be around 40, and           
equally important, the main memory capacity 
should be the highest possible.” 

Homer as a clever salesman maintains a preference re-
pository and thus knows that Marge has long-term prefer-
ences, too: 

/3/ “Her favorite manufacturers are Toshiba and Hew-
lett Packard, which is equally important to her ex-
plicit customer preferences.”  

Naturally, Homer has his own vendor preferences: 
/4/ “I want to maximize my profit margin. But since I 

am a fair dealer for Marge, all her customer prefer-
ences are more important to me.”  ☼ 
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This example emphasizes the need for various compo-
nents interoperating during the personalization process: 
Personalized query composition has to inductively as-
semble the query from various sources, including explicit 
customer preferences entered e.g. through the search 
mask, long-term customer preferences matching the cur-
rent situation, and current vendor preferences. Long-term 
preferences should be detectable by automatic preference 
mining algorithms and be managed intelligently in a pref-
erence repository. 

In our example we carefully differentiated between 
hard constraints (“must”) and preferences (“should”). Ex-
tending the exact-match query paradigm of database 
query languages by preferences to specify soft constraints 
is considered a necessity for successful personalization by 
many researchers. Research on preferences in databases 
reaches back quite some time (see e.g. [22], [16], [20]). A 
powerful framework founded on preferences as strict par-
tial orders has been proposed recently by [13]. This con-
structor-driven approach was implemented by Preference 
SQL ([19]), its first commercial release being available in 
1999, and by Preference XPath for XML databases ([18]). 
Skyline queries ([6]) and numerical ranking ([1]) are spe-
cial cases of [13]. To date an extensive amount of theo-
retical results on preferences exists (see e.g. [2], [7]).  

 
The main focus of this paper is concerned with seman-

tic issues of personalized query composition. Since it is 
well-known that even simple scenarios like above exam-
ple cannot be modeled by numerical ranking or by skyline 
queries, more powerful preference frameworks are 
needed. Moreover, modeling preferences only by raw 
numbers neglects the importance of an intuitive seman-
tics, which must be a key issue for personalization. Here 
we extend the constructor-driven approach of strict partial 
order preferences to pave the way for a paradigm shift 
towards a more semantic-guided personalization. Let‘s 
coin the term “deep personalization” for it.  

The rest of this paper is organized as follows: We re-
visit needed concepts in section 2. In section 3 we show 
how to customize base preference constructors. Section 4 
is dedicated to enhancing preferences with more intuitive 
semantics, called SV-semantics. In section 5 we analyze 
the impact of this extension on preference query optimiza-
tion. Section 6 investigates the issue of preference query 
cardinalities and exhibits striking impacts on the annoying 
flooding effect. A discussion of related work in section 7 
and a summary and outlook in section 8 conclude this 
work. All proofs are collectively presented in the appen-
dix of this paper. 

2.   Basic Preference Concepts Revisited 

To be self-contained let’s revisit needed concepts from 
[13]. Most preferences appearing in practical database 
applications can be modeled by strict partial orders. 

2.1   Preferences 

Definition 1 Basic definitions for preferences 

Let A = {A1, A2, …, Ak} be a set of attributes Aj with 
domains dom(Aj), 1 ≤ j ≤ k. The domain of A is defined 

as dom(A) := ×Aj ∈ A dom(Aj). 
a) A preference P on a set of attributes A is defined as 

P = (A, <P), where <P ⊆ dom(A) × dom(A) is a 
strict partial order (i.e. irreflexive and transitive).  
x <P y is interpreted as “I like y better than x”. 

b) The unordered (synonym incomparability) relation 
||P  ⊆ dom(A) × dom(A) is defined as:  

x ||P y   iff   ¬(x <P y)  ∧  ¬(y <P x)   
c) A preference P is a chain (synonym total order) iff 

for all x, y ∈ dom(A), x ≠ y:   x <P y  ∨  y <P x   
d) A preference P is an anti-chain iff <P = ∅. The anti-

chain on an attribute A is denoted as A↔.   
e) A preference P is a weak order, if negative transitiv-

ity holds, i.e. for all x, y, z ∈ dom(A):    
       ¬(x <P  y)  ∧  ¬(y <P z)  implies  ¬(x <P z)   

f) The maximal values of P = (A, <P) are defined as:  
max(P) := {v∈ dom(A) | ¬∃ w ∈ dom(A): v <P w} 

 
Note that in general ||P is reflexive and symmetric, but not 
transitive. If P is a weak order, then ||P is transitive. 

To specify a preference P = (A, <P) we allow a great 
flexibility. Any first order predicate on dom(A) can be 
given for <P, possibly using built-in predicates including 
equality of values (=, ≠) and numeric constraints (<, ≤, >, 
≥).  But <P may also be written in some programming 
language. For the ease of use we promote a constructor-
based approach, distinguishing between base preference 
constructors and complex preference constructors. 
Throughout this paper we will use the following notation: 
• Creating a base preference constructor: 

base  bname(A, paramlist) {definition of <P_new}; 
• Defining a base preference P: 

P := bname(actual_A, actual_params); 
• Creating a complex preference constructor: 

complex Pref1 cname Pref2 {definition of <P_new}; 
• Defining a complex preference P: 

P := actual_Pref1 cname  actual_ Pref2; 
 

To illustrate this notation let’s repeat some preference 
constructors presented in [13].  

Example 2 Sample use of preference constructors 

  base SCORE(A, f) {x <P_new y  iff  f(x) <  f(y)}; 
  base HIGHEST(A) {x <P_new y  iff   x < y}; 
  base AROUND(A, z) {x <P_new y  iff  
                                        abs(x − z) > abs(y − z)}; 
     complex Pref1 ⊗ Pref2 {(x1, x2) <P_new (y1, y2)   iff    
                 (x1 <Pref1 y1  ∧  (x2 <Pref2 y2 ∨  x2 = y2)) ∨  
                 (x2 <Pref2 y2  ∧  (x1 <Pref1 y1 ∨  x1 = y1))}; 
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The preferences labeled /2/ in Example 1 can be stated as: 
       P1 := AROUND(quantity, 40);  
       P2 := HIGHEST(capacity); P3 := P1 ⊗ P2;    ☼ 
 
Note that paramlist for base constructors is optional, like 
in HIGHEST. Defining P1 by AROUND constructs a base 
preference P1 = ({quantity}, <P1), instantiating the set of 
attributes A by {quantity} and <P1 by <P_new.  This single-
attribute case is also abbreviated as P1 = (quantity, <P1). 
Defining P3 by ⊗ constructs a complex preference P3 = 
({quantity, capacity}, <P3), instantiating <P3 by <P_new 
which is defined in terms of <P1 and <P2.  

Definition 2 Preference sub-constructor 

C2 is a preference sub-constructor of C1, if the definition 
of <C2-new can be gained from <C1-new by some specializing 
constraints. 
 
For instance, HIGHEST is a sub-constructor of SCORE: 
specialize f(x) := x (see Example 2).  

Since sub-constructors are due to specializing con-
straints, sub-constructor hierarchies are taxonomic. This 
observation economizes proof efforts: Properties proved 
for a constructor are inherited to all its sub-constructors. 

2.2   Preference query languages 

In personalized database applications a cooperative query 
model is needed that supplements the exact-match query 
of SQL or XPath. Personalized constraints may be hard 
constraints (in which case the exact-match model is ap-
propriate) or preferences, i.e. soft constraints. Whether 
preferences can be satisfied depends on the current data-
base contents, capturing the status of the real world. Thus 
a match-making between wishes and reality has to be ac-
complished. To this purpose the BMO query model 
(“Best Matches Only”) has been introduced in [13].  

Given a schema R(A1: dom(A1), …, Am: dom(Am)) we 
consider a preference P = (A, <P), where A ⊆ {A1, …,  
Am}. For an instance of R let PR denote the subset prefer-
ence obtained by restricting P from dom(A) to πA(R), i.e. 
the currently available A-values in R. 

Definition 3 Preference selection, BMO-size 

a) Preference selection σ[P](R) is defined as: 
  σ[P](R) = {t ∈ R | t[A] ∈ max(PR)} 
b) t ∈ σ[P](R) is a perfect match  iff  t[A] ∈ max(P). 
c) card(σ[P](R)) is called the BMO-size of σ[P](R). 

 
σ[P](R) retrieves all maximal values from the instance 

of R. Not all of them are necessarily perfect matches of P. 
Thus the principle of query relaxation is implicit in above 
definition. Moreover, any non-maximal values of PR are 
excluded; hence can be considered as discarded on the fly. 
Thus only best matching tuples are retrieved. 

In many personalized e-commerce applications 
σ[P](R) serves as an intelligent pre-selection, which is the 

basis for further sales negotiations. Therefore it is often 
important that BMO-sizes come in “handy portions”. 

Example 3 A preference query and its BMO result  

Continuing Example 2 we evaluate σ[P3](Sales), given 
this small sales relation: 
    Sales(quantity, capacity, notebook) = 
    {(45, 768, 1), (20, 1024, 2), (30, 1024, 3), (45, 512, 4), 
 
Notebook 1 is better than 4, because it has the same quan-
tity but a better capacity; 3 is better than 2, but 1 and 3 are 
incomparable. Thus we get a result with BMO-size 2:  
    σ[P3](Sales) = {(45, 768, 1), (30, 1024, 3)} ☼ 
 

Note that σ[P] has been implemented in Preference 
SQL (as PREFERING-clause) and in Preference XPath. 
For brevity we will stick to the algebraic notation σ[P]. 

3.  Customization of Base Constructors 

In [13] several intuitive preference constructors were pre-
sented, which have proven their usefulness in e-commerce 
([19]). We will extend this repertoire in several respects.  

3.1  The base preference constructor SCOREd 

When dealing with numerical scores, it is a common prac-
tice to group ranges of scores together; e.g., forming 
grades at school, or offering differential price discounts in 
e-procurement, or setting target deadlines for events to 
happen (e.g. “payment due within two weeks”), etc. Now 
we show how to model such real-world practice on top of 
a given preference constructor. 

Definition 4 SCOREd  

Given a utility function f: dom(A) → ℝ and some d ∈ 
ℝ0+, we define for all v ∈ dom(A):  

      fd: dom(A) → {if d = 0 then ℝ else ℤ}, where 
      fd(v) := {if d = 0 then f(v) else f(v) / d} 
      base SCOREd(A, f) {x <P_new y  iff  fd(x) < fd(y)}; 
 
Each preference constructed by SCOREd is constructible 
by SCORE and vice versa. Thus due to [9] SCOREd con-
structs a weak order. Choosing d > 0 effects that values 
with identical fd-values become unordered:       
      x ||P-new y  iff  fd(x) = fd(y) 

In this way a categorical view on numerical scores is 
achieved. As we will see later on, certain unordered val-
ues can be interpreted as ‘substitutable’ or ‘equally good’. 

Now we present several sub-constructors of SCOREd, 
focusing on preferences P = (A, <P), where A is a single 
attribute with a numerical domain, i.e. dom(A) ⊆ ℝ. 

3.2  Sub-constructors of SCOREd 

Given v, low, up ∈ dom(A) we define the distance of v 
from the closed interval [low, up] as follows: 
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     dist[low, up]: dom(A) →  ℝ0+ 
     dist[low, up](v) := {if v ∈ [low, up] then 0 else  
                                    if v < low then low − v else v − up} 

Given d ∈ ℝ0+ we group distances together as follows: 

      distd[low, up]: dom(A) →  {if d = 0 then ℝ0+ else ℕ0} 
      distd[low, up](v) :=  {if d = 0 then dist[low, up](v)  
                                                   else dist[low, up](v) / d} 

Definition 5 BETWEENd  

base BETWEENd(A, [low, up]) {x <P_new y  iff  
                     distd[low, up](y) < distd[low, up](x)}; 
 
For d > 0 a BETWEENd preference can be envisioned 

as a one-dimensional dart board: Perfect matches hit the 
interval [low, up] at distd being 0, second bests are those 
with distd being 1, and so on. Values with identical distd-
values become unordered. 

Special cases of this construction are obtained by iden-
tifying low = up =: z (setting distd[z, z] =: distd[z]) and by 
choosing z as the finite infimum or supremum of dom(A). 

Definition 6 AROUNDd, LOWESTd, HIGHESTd 

a) base AROUNDd(A, z) 
            {x <P_new y  iff  distd[z](y) < distd[z](x)}; 

b) base LOWESTd(A) 
            {x <P_new y  iff distd[infA](y) < distd[infA](x)}; 

c) base HIGHESTd(A) 
                  {x <P_new y  iff distd[supA](y) < distd[supA](x)}; 

Example 4 AROUNDd, LOWESTd 

Let dom(age) = [6, 20] ⊆ ℝ, hence infA = 6. Further let d 
= 2 and R(age) = {7, 8, 11, 13}.  
• Let P := AROUND2(age, 10): Since dist2[10](v) = 1 

if v ∈ {8, 11} and dist2[10](v) = 2 if v ∈ {7, 13}, we 
get σ[P](R) =  {8, 11}. 

• Let P := LOWEST2(age): Since dist2[6](7) = 1 = 
dist2[6](8),  dist2[6](11) = 3 and dist2[6](13) = 4, we 
get σ[P](R) =  {7, 8}.   ☼ 

 
It should be emphasized that above parameter d de-

fines a symmetrical distance from the perfect hit. If, how-
ever, the application semantics suggests an unsymmetrical 
treatment, d has to be replaced properly by two parame-
ters d1 and d2. 

Now we study categorical data, not requiring any nu-
merical operations for defining the preference order. 

Definition 7 LAYEREDm 

Let L = (L1, …, Lm+1), m ≥ 0, be an ordered list of sets 
with the following properties:  
• L is a partition of dom(A). 
• Exactly m out of these m+1 sets are given as finite 

enumerations of values from dom(A). 
• The remaining set is specified as ‘other values’. 

We define a function layer: dom(A) → ℕ as follows: 
          for i ∈ {1, …, m + 1}, for all v ∈ Li:   layer(v) := i. 
    base LAYEREDm(A, L) {x <P_new y  iff  
                             layer(y) < layer(x)}; 
 

LAYEREDm is a sub-constructor of SCOREd, special-
izing d = 0 and f(v) = layer(v). Relating LAYEREDm to 
other constructors on categorical attributes as defined in 
[13] yields: 

Proposition 1 Sub-constructors of LAYEREDm 

a) POS/POS is a sub-constructor of LAYEREDm: 
    m = 2, L = (POS1-set, POS2-set, ‘other values’) 

b) POS/NEG is a sub-constructor of LAYEREDm: 
    m = 2, L = (POS-set, ‘other values’, NEG-set) 

c) POS is a sub-constructor of LAYEREDm: 
    m = 1, L = (POS-set, ‘other values’) 

d) NEG is a sub-constructor of LAYEREDm: 
    m = 1, L = (‘other values’, NEG-set) 

e) ANTI-CHAIN is a sub-constructor of LAYEREDm: 
    m = 0, L = (‘other values’) 

 
The categorical view of numerical data by BE-

TWEENd for d > 0 is reflected by this relationship to 
LAYEREDm: Defining layer(v) := distd[low, up](v) + 1 
for all v ∈ dom(A), then BETWEENd maps values onto m 
= max{distd[low, up](infA), distd[low, up](supA)} layers. 

3.3  Extensibility of base preference constructors 

Our repertoire can be extended as required by the applica-
tion semantics. For illustration we present three examples.  

Definition 8 SuperSCOREd  

Given a utility function f: dom(A) → ℝ and some e ∈ 
ℝ0+, we define for all v ∈ dom(A): 

base SupereSCORE(A, f)  
            {x <P_new y  iff  f(x) < f(y) – e}; 

 
SupereSCORE constructs a strict partial order, but no 
weak order for e > 0. SCORE0 is a sub-constructor of Su-
pereSCORE, but not vice versa. Values are unordered if 
their f-values differ at most by e, i.e. if they are ‘close 
together’:       x ||P-new y  iff  abs(f(x) − f(y)) ≤ e  
 

These results plus relationships, which can be proved 
for our numerical base constructors and the EXPLICIT 
constructor from [13], are visualized in Figure 1.  

All sub-constructors presented so far are defined on a 
single attribute. Now we give an example of a multi-
attribute base constructor. (In [7] it was claimed this one 
cannot be expressed in our framework.) 

Example 5 Base constructor on multiple attributes 

 base Cho-Ex10.1({A1, A2}){(x1’, x2’) <P_new (x1, x2)  
                                                     iff   x1 = x2  ∧  x1’ ≠ x2’} 
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        SupereSCORE 
                                       

      EXPLICIT                SCOREd 
 

  LAYEREDm    BETWEENd              
 
   

  POS/POS                 POS/NEG      AROUNDd  
 

 
          POS        NEG       LOWESTd HIGHESTd    

 
                        

                       ANTI-CHAIN    
         

Figure 1: Extensible base preference sub-constructor hierarchy. 
 

Next we demonstrate how to build new custom-
tailored constructors. As pointed out in [13], the linear 
sum constructor ‘⊕’ can be viewed as a convenient design 
method for sophisticated base constructors.  

Example 6 Custom-designed base constructor 

Assume we need a “MyAROUND” constructor like this:  
A perfect match is the value z. All values v, where 
v < z, are better than all values w, where w > z. 
Different parameters d1 and d2 should be available 
for v and w, respectively. 

Given an attribute A with dom(A) ⊆ ℝ and z ∈ dom(A), 
let A1 and A2 denote attributes where 
• dom(A1) := {v ∈ dom(A) | v ≤ z}, hence supA1 = z, 
• dom(A2) := {v ∈ dom(A) | v > z}, hence infA2

  = z. 
 
Then P1 := HIGHESTd1(A1)  and P2 := LOWESTd2(A2) are 
preferences.  Since dom(A1) ∩ dom(A2) = ∅, P := P1 ⊕ P2 
is a preference with the desired properties. 
 
     base MyAROUNDd1, d2(A, z)  

          { HIGHESTd1(A1)  ⊕ LOWESTd2(A2)}; 
(e.g.)   P := MyAROUND5, 2 (quantity, 40)    ☼ 
 

Thus the choice of base constructors can be custom-
ized as desired to deeply personalize database queries. 
Now we turn our attention to complex constructors. 

4.  Preferences with SV-Semantics 

A distinctive feature of strict partial orders is that unor-
dered values may exist. Often people have a strong opin-
ion about better-than relationships for a selected choice of 
options, but without being complete: For some values 
they don’t mind or some values may be equally good for 
them in a given scenario, etc. Thus the freedom of not 
having to specify a total order is not a bug, but rather a 
valuable asset for real world modeling. 

4.1  SV-relations 

Our interest concentrates on a debatable effect caused by 
unordered values. To this end we will study the Pareto 
constructor ‘⊗’ as stated in Example 2 more closely.  

Example 7 The impact of unordered values 

Given dom(Ai) = [−10, 10] ⊆ ℝ for i ∈ {1, 2, 3}, we con-
sider P1 := AROUND0(A1, 0), P2 := LOWEST0(A2),  
P3 := HIGHEST0(A3), P4 := P1 ⊗ P2 and P5 := P3 ⊗ P4. 
For v = (−5, 3, 4) and w = (5, 1, 8) ∈ × dom(Ai) we get: 
• −5 ||P1 5,    3 <P2 1,    4 <P3 8 
• (−5, 3) ||P4 (5, 1),    v ||P5 w  

But there are situations where some unordered values 
should be treated as substitutable (synonym: equally 
good): For P1 we might be indifferent between a mis-
match of +5 or –5 from the perfect match 0. If so, then it 
is reasonable to re-assess the relationship of v with w in 
P4. The intuitive feeling is that we would rather expect: 

   (−5, 3) <P4 (5, 1)  
This is because w and v, though not equal, are substitut-
able wrt. P1 and w is better than v wrt. P2. This in turn 
would change the rating for v and w in P5: v <P5 w    ☼ 
  

The challenge now becomes to find out, how the defi-
nition of ‘⊗’ must be adapted to capture the intuitive se-
mantics of substitutability: 

a) Values x and y can only be substitutable, if both are 
unordered. 

b) If x is better than z and x can be substituted by y, 
then y should be better than z as well. 

c) Dually, if z is better than x and x can be substituted 
by y, then z should be better than y as well. 

d) Substitutability should be an equivalence relation. 
 
Thus not all unordered values need to be substitutable!  

E.g., point d) is no consequence from a), since ||P is not 
transitive in general. This is the very reason, why simply 
replacing ‘x1 = y1’ by ‘x1 ||P1 y1’ and ‘x2 = y2’ by ‘x2 ||P2 
y2’ in the definition of ‘⊗’ is semantically not justified in 
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general. Technically this flaw impacts that would ‘⊗’ 
violate the strict partial order property ([7]).  

Definition 9 SV-relation 

Given P = (A, <P), ≅P is called substitutable values rela-
tion (SV-relation for short) iff for all x, y∈ dom(A): 

a) x ≅P y   implies    x ||P y  
b) x ≅P y  ∧  ∃ z : z <P x   implies    z <P y   
c) x ≅P y  ∧  ∃ z : x <P z   implies    y <P z  
d) ≅P is reflexive, symmetric and transitive.  

Unordered values that are not substitutable are called 
alternative values. 

Example 8 SV-relations 

Case study 1: P := POS(A, {a1, a2, a3}), where dom(A) = 
{a1, a2, a3, a4, a5}, has this ‘better-than’ graph (see [13]): 
 
 a1 a2 a3 layer 1 
 
 

     a4        a5  layer 2 
 

Given x, y ∈ dom(A), SV-relations are e.g.: 
• x ≅P y   iff   layer(x) = layer(y)           // regular case 
• x ≅P y   iff   x = y  ∨ x, y ∈ {a1, a2} ∨  x, y ∈ {a4, a5} 
• x ≅P y   iff   x = y               // trivial case 

 
Case study 2: Consider an EXPLICIT preference P with 
this ‘better-than’ graph: 
            a              b  level 1 
 
       c   level 2 
 
   d  level 3 
 

There is only the trivial SV-relation:    x ≅P y   iff   x = y   
Because c <P a and ¬(c <P b), a and b are alternatives. 
Also, c and b are alternatives, since c <P a but ¬(a <P b). 
 
Case study 3: Consider an EXPLICIT preference P with 
this ‘better-than’ graph: 
 
             a  b level 1 
 
 
   c  d level 2 
 

• x ≅P y  iff   x = y  ∨  x, y ∈ {c, d} 
This is a non-trivial SV-relation. Note that negative transi-
tivity is violated here; hence P is no weak order. 
 
Case study 4: Consider P with this ‘better-than’ graph: 
 
 a b c d 
 
 
        e       f 
• x ≅P y   iff   x = y  ∨  x, y ∈ {a, b}  ∨  x, y ∈ {c, d} 

Negative transitivity is violated, but ≅P is non-trivial. ☼ 

Proposition 2 Properties of SV-relations 

a) ‘=’ is an SV-relation for each preference P (called 
trivial SV-relation). 

b) If P is the anti-chain A↔, each partition of dom(A) 
defines an SV-relation. 

 
In Example 8 we have seen cases, where P is not a 

SCOREd preference, but has a non-trivial SV-relation. 
Also we have seen instances of alternative values, which 
are not substitutable (not equally good). For SCOREd it 
turns out that the full ||P-relation is a valid SV-relation. 

Proposition 3 Regular SV-relation for SCOREd 

Given a SCOREd preference P, let’s define for all x, y ∈ 
dom(A):         x ≅P y   iff   x ||P y 

a) ≅P is an SV-relation (called regular SV-relation). 
b) If P is not a chain, then ≅P is non-trivial. 

 
Referring back to the discussion on the categorical 

view on numerical data imposed by SCOREd for d > 0, 
this result says that all values with equal fd-values may be 
‘substitutable’ or ‘equally good’. However, this nice be-
havior does not hold for other constructors like EX-
PLICIT or SupereSCORE, which are no weak orders. 

4.2 Enriching the preference definition 

From now on we will enrich our definition of preferences 
to accommodate the semantics of SV-relations. 

Definition 10 Preferences with SV-semantics 

Enriching Definition 1 a) we use the following notation: 
• A preference P with an SV-relation ≅P is denoted as: 

   P = (A, <P, ≅P). 
• Each base constructor receives one additional pa-

rameter for the SV-relation.  
 

Let’s explore the impact of SV-relations for inductive 
preference construction. These aspects are important: 
• Consider a base preference Pi = (Ai, <Pi, ≅Pi). Then 

≅Pi does not affect <Pi itself, but expresses that it is 
admissible to substitute ≅Pi-values for each other. 

• A complex constructor C, using Pi in its definition 
for <P_new, can make use of ≅Pi. This does affect 
<P_new! Moreover, if an SV-relation ≅P_new can be de-
termined for P, then C can inductively be used itself 
as input for complex preferences.  

4.3  Complex constructors with SV-semantics 

We present in detail, how Pareto and prioritized construc-
tion can be enriched by SV-semantics. A Pareto prefer-
ence combines equally important preferences P1 and P2, 
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whereas the combination of P1 with a less important P2 is 
modeled by a prioritized preference.  

Definition 11 Pareto and prioritized constructors 

We assume P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2). 
a) Pareto constructor ‘⊗’ 

• A1 and A2 don’t overlap: 
    complex P1 ⊗ P2 {(x1, x2) <P_new (y1, y2)   iff  
                (x1 <P1 y1  ∧  (x2 <P2 y2 ∨  x2 ≅P2 y2)) ∨  

                     (x2 <P2 y2  ∧  (x1 <P1 y1 ∨  x1 ≅P1 y1)); 
               (x1, x2) ≅P_new (y1, y2)   iff   x1 ≅P1 y1  ∧  x2 ≅P2 y2}; 

• Otherwise: Identify overlapping attributes above. 
 

b) Prioritized constructor ‘&’ 
• A1 and A2 don’t overlap: 

     complex P1 & P2 {(x1, x2) <P_new (y1, y2)   iff   
                    x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧   x2 <P2 y2); 

               (x1, x2) ≅P_new (y1, y2)   iff   x1 ≅P1 y1  ∧  x2 ≅P2 y2}; 
• Otherwise: Identify overlapping attributes above. 

 
Note that ≅P_new is defined using ≅P1 and ≅P2. 

Example 9 Pareto preferences with SV-semantics 

Let’s revisit Example 7 introducing SV-relations, e.g.: 
 P1 := AROUND0(A1, 0, ≅P1) where ≅P1 is regular 
 P2 := LOWEST0(A2, ‘=’), P3 := HIGHEST0(A3, ‘=') 
 P4 := P1 ⊗ P2, P5 := P3 ⊗ P4 
 
For v = (−5, 3, 4) and w = (5, 1, 8) we now can state: 
• Since ≅P1 does not change <P1 we get as before:  

−5 ||P1 5,   3 <P2 1,   4 <P3 8 
• Since –5 ≅P1 5 we now get: (-5, 3) <P4 (5, 1) 
• Since 4 <P3 8, (−5, 3) <P4 (5, 1) we now get: v <P5 w 

 
This is our intuitively expected result, provided that ≅P1 
holds in the given application situation.       ☼ 

Example 10 Prioritization with SV-semantics 

Assuming P1 := POS(category, {luxury, sport}, ‘=’) and 
P2 := POS(color, {red}, ‘=’), let’s consider P := P1 & P2.  
Given R = {(luxury, black), (sport, green), (sport, red)}, 
we get the following results: 
• Since sport = sport and green <P2 red:  

   (sport, green) <P (sport, red)   
• Since luxury ≠ sport:  (luxury, black) ||P (sport, red) 

   (luxury, black) ||P (sport, green) 
Thus σ[P](R) = {(sport, red), (luxury, black)}. 

Now suppose that ‘luxury’ and ‘sport’ shall be substi-
tutable: P1 := POS(Category, {luxury, sport}, ≅P1) where 
≅P1 is regular. This changes the picture: 
• As before: (sport, green) <P (sport, red)   
• Since luxury ≅P1 sport we get:  

  black <P2 red implies (luxury, black) <P (sport, red) 
   black ||P2 green implies (luxury, black) ||P (sport, green) 

Therefore σ[P](R) = {(sport, red)}, offering less alterna-
tives than before.      ☼ 
 

The following main theorem is the result of our se-
mantically well-founded approach. 

Theorem 1 Preservation of strict partial order  

Given P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2), consider 
P := P1 ⊗ P2 and P := P1 & P2, respectively. Then P = (A1 
∪ A2, <P, ≅P) is a preference with SV-semantics, i.e.: 

a) <P is a strict partial order on A1 ∪ A2. 
b) ≅P is an SV-relation for <P. 

 
Please refer to Definition 1 for dealing with overlapping 
A1 and A2; <P  and  ≅P are due to Definition 11a, b. 

Consequently inductive preference construction, being 
essential for personalized query composition, preserves 
strict partial order, too! Moreover, obeying to SV-
semantics is the most general approach to preserve strict 
partial order for ‘⊗’ and ‘&’. 

Theorem 2 Further properties of ‘⊗’ and ‘&’ 

a) Pareto or prioritized preferences don’t possess regu-
lar SV-relations in general.  

b) Any relaxation of SV-semantics for Pareto or priori-
tized construction violates strict partial order. 

 
In [13] we reported an interesting correlation between 

prioritization and grouping for trivial SV-relations. Now 
we extend this observation to arbitrary SV-relations. 

Definition 12 Grouped preference 

Given P = (B, <P, ≅P) and the anti-chain A↔ = (A, ∅, ≅A), 
A↔

 & P is called a grouped preference. As a synonym 
we also write:  P groupby A 
 
Due to Proposition 2b, ≅A can be any partition of dom(A). 
If ≅A is trivial, then grouping is done wrt equal A-values. 
Otherwise a sophisticated grouping effect is achieved by 
building groups wrt substitutable A-values.  
 

Grouped preferences appear in skyline queries ([6]). If 
DIFF attributes are given, then a skyline preference can 
be characterized as P := (P1 ⊗ … ⊗ Pn) groupby DIFF, 
where each Pi is a LOWEST0 or HIGHEST0 preference. 
Due to Figure 1 and Theorem 1 we can extend the class of 
skyline preferences without violating strict partial orders. 

Definition 13 Skyline preference with SV-semantics 

A skyline preference P is defined as 
     

           P := (P1 ⊗ … ⊗ Pn) groupby DIFF  
 

where Pi := HIGHESTdi(Ai, ≅Pi) or Pi := LOWESTdi(Ai, 
≅Pi),  i ∈ {1, …, n}, and DIFF↔ = (DIFF, ∅, ≅DIFF).  
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A numerical preference is a weighted combination of 
SCOREdi preferences P1, …, Pn, applying a combining 
function F. In the Appendix we show how to adapt the 
‘rankF’ constructor to SV-semantics. There it is also 
shown, how the complex constructors intersection (‘♦’), 
disjoint union (‘+’) and linear sum (‘⊕’) presented in [13] 
can be enriched by SV-semantics. 

4.4  Expressiveness Results 

The next result suggests that for deep personalization a 
rich repertoire of complex constructors with SV-
semantics should be supported.  

Theorem 3 Expressiveness of complex constructors 

a) Pareto is no sub-constructor of rankF and vice versa. 
(Skyline preferences cannot be expressed by rankF.) 

b) Pareto is no sub-constructor of ‘&’ and vice versa. 
c) ‘&’ is no sub-constructor of ‘rankF’ and vice versa. 

(Grouped preferences are not expressible by rankF.) 
 

Thus personalization that solely relies on numerical 
ranking is of rather limited expressiveness. 

Example 11 Deeply personalized query  

Let’s get back to our motivating Example 1. Personalized 
preference composition has to inductively construct a 
complex preference P from the statements labeled /2/ 
(customer preferences), /3/ (long-term preferences from 
the repository) and /4/ (vendor preferences). Using ‘⊗’ to 
model equal importance and ‘&’ for ordered importance 
we can state: P := (Pcustomer ⊗ Prepository) & Pvendor 
 

Our sales story leaves open the issues of how to cate-
gorize numerical data (i.e. choices of d-parameters) and of 
substitutability (i.e. choices of SV-relations). This knowl-
edge can be gained in manifold ways, e.g. by interviewing 
the customer, from personalized long-term knowledge in 
the preference repository, from defaults, etc. For our sales 
story we assume this scenario:  
• Marge lets Homer know that a deviation up to +3 or 

−3from the stated quantity don’t really worry her. 
• From the preference repository it is known that 

Marge doesn’t mind capacity differences up to 256 
Mbytes and that Toshiba and HP are equally good 
manufacturers for her that can be substituted. 

 
Then we can complete the definition of P e.g. as follows: 

Pcustomer  := AROUND3(quantity, 40, ‘regular’) ⊗ 
           HIGHEST256(capacity, ‘regular’); 
Prepository := POS(make, {‘Toshiba’, ‘HP’}, ‘regular’); 
Pvendor     := HIGHEST0(profit_margin, ‘regular’); 
 
Using Preference XPath syntax our entire sales sce-

nario, including the hard customer constraint labeled /1/, 
can be expressed declaratively by one query statement:  

/Notebook  
   [CPU_speed >= 2.0]       
  #[(quantity around (3, 40, ’reg’) and  
     capacity highest(256, ’reg’) and 
     make in((’Toshiba’,’HP’), ’reg’))      
     prior_to profit_margin  
              highest(0, ’reg’)]# 
 

Note that hard constraints are scoped by “[ … ]”, pref-
erences by “#[ … ]#”; Pareto is ‘and’, prioritization is 
‘prior to’, POS is ‘in’.    ☼ 

5.  Query Optimization Issues 

After we have discussed our semantic intuition about sub-
stitutable values let’s explore its implications for the op-
timization of deeply personalized preference queries. 

5.1  Preference Algebra 

In [13] we have identified many algebraic laws amongst 
preferences with trivial SV-relations. The subsequent 
main theorem is the key that these laws carry over to non-
trivial SV-relations. 

Definition 14 SV-order 

Given P = (A, <P1, ≅P), let A/≅P denote the set of equiva-
lences classes of dom(A) over ≅P. For all X, Y ∈ A/≅P we 
define: 
• X <[P] Y  iff  ∀ x ∈ X, ∀ y ∈ Y: x <P y 
• X ≅[P] Y  iff  ∀ x ∈ X, ∀ y ∈ Y: x ≅P y 

 

Then [P] = (A/≅P, <[P]) is called SV-order. 

Theorem 4 Every SV-order is a strict partial order 

Moreover, ≅[P] is the trivial SV-relation, i.e. equality of 
equivalence classes. 
 

Consequently all preference algebra laws given in [13] 
hold for any SV-order, characterizing preferences with 
non-trivial SV-relations. For more details see the Ap-
penix. 

5.2  Preference Relational Algebra 

Declarative query languages with hard constraints like 
SQL or XPath can be seamlessly extended by preference 
selection towards Preference SQL or Preference XPath, 
supporting the BMO query model. Implementing such 
preference query languages can be accomplished by loose 
coupling and query rewriting ([19]). For higher perform-
ance tight coupling is required, integrating the preference 
selection operator directly into the database kernel and 
extending relational algebra towards a preference rela-
tional algebra.  

To date many transformation laws for preference rela-
tional algebra are known ([17], [7], [10]). For illustration, 
here are two laws, given a preference P = (A, <P): 
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 d = 0 d = 5 d = 9 d = 15 d = 25 d = 30 d = 50 

BETWEENd 1 20 20 27 39 56 97 
AROUNDd 3 3 3 26 41 49 74 

LOWESTd 4 6 4 6 9 6 9 

 
Figure 2: Sample BMO-sizes for base preferences with varying parameter d. 

 
• Push preference over Cartesian product:  

If A ⊆ attr(R), then    σ[P](R × S) = σ[P](R) × S  
• Push preference over union: If A ⊆ attr(R), then 

  σ[P](R ∪ S) = σ[P](σ[P](R) ∪ σ[P](S)) 
 

The proofs for such laws sometimes critically rely on 
the transitivity of the given preference order. Since ac-
cording to Theorem 4 strict partial order property is pre-
served for arbitrary SV-relations, all such transformation 
laws carry over to preferences with SV-semantics.  

6.  Observations on BMO-sizes 

The BMO query model avoids the notorious ‘empty re-
sult’ effect and reduces the ‘flooding’ effect. But the latter 
can exhibit two opposite effects from a personalization 
point of view: The BMO-size is too large, i.e. fewer alter-
natives would be preferable. Or, the BMO-size is too 
small, i.e. more alternatives would be preferable. 

Our constructor-based approach offers two semanti-
cally guided opportunities to influence the BMO-sizes of 
preferences queries: choosing the d-parameters of base 
constructors and choosing the SV-relations. We will in-
vestigate in more detail both options subsequently. 

6.1  BMO-sizes for base preferences 

Let’s start with a basic property of SCOREd for varying d. 
At first guess one might conjecture that d1 ≤ d2 implies 
σ[SCOREd1(A, f)](R) ⊆ σ[SCOREd2(A, f)](R), however: 

Proposition 4 BMO-sizes of SCOREd are non-
monotonic in d. 

Thus the BMO-size cannot be influenced deterministi-
cally by d; it also depends on the data distribution. But 
statistically speaking, it is reasonable to assume the fol-
lowing rule of thumb: Choosing a larger d tends to in-
crease the BMO-size of σ[SCOREd](R). 
 

Note that the choice of d only impacts BMO-sizes, if 
there are no perfect matches. The BMO-sizes observed in 
the next example nicely demonstrate this non-monotonic 
behavior and support our rule of thumb stated as well. 

Example 12 BMO-sizes for varying parameter d 

We used a data set taken from a real-life application. The 
COSIMAB2B prototype ([14]), being a sophisticated sales 
agent for e-procurement portals, works with an XML-

based electronic product catalog for storage and transport 
boxes and waste containers. There are attributes on nu-
merical domains (like length, height, width, weight) and 
on categorical domains (like color, type of material) as 
well. This sample catalog comprises about 1000 such 
sales objects. Using Preference XPath we executed a se-
ries of test queries for different settings of d. Characteris-
tic patterns of observed BMO-sizes for base preference 
queries on numerical domains are given in Figure 2.      ☼ 

6.2  BMO-sizes for complex preferences 

Choosing the right SV-relations is an important factor in 
influencing BMO-sizes for complex constructors, in par-
ticular for Pareto and prioritized preferences. The follow-
ing classification of SV-relations is important. 

Definition 15 More liberal than (≅2 ≽P ≅1) 

Given SV-relations ≅1 and ≅2 for a preference P, ≅2 is 
more liberal than ≅1 (≅2 ≽P ≅1) if: 
     ≅2 ≽P ≅1   iff  (∀x, y ∈ dom(A):  x ≅1 y  implies  x ≅2 y) 
 

If ≅2 ≽P ≅1, then each substitutable value of ≅1 is also 
substitutable in ≅2, but ≅2 may have additional ones, 
which is regarded as a more liberal behavior. 

Proposition 5 Properties of ≽P  

a) ≽P is a non-strict partial order on the set of all SV-
relations of a preference P. 

b) If P is constructed by SCOREd, then the regular 
(trivial) SV-relation is the greatest (smallest) ele-
ment of ≽P. 

Example 13 Liberality of SV-relations 

Given dom(A) = {a1, a2, a3, a4, b1, b2, b3}, for P := POS(A, 
{a1, a2, a3, a4}, ≅P) we know that: 
• layer(x) = 1  iff   x ∈ {a1, a2, a3, a4}. 
• layer(x) = 2  iff   x ∈ {b1, b2, b3}. 

Then choices for ≅P are e.g.: 
• x ≅1 y   iff   layer(x) = layer(y)           // regular case 
• x ≅2 y   iff   x, y ∈ {a1, a2}  ∨  x, y ∈ {a3, a4} ∨   

                            x, y ∈ {b1, b2, b3} 
• x ≅3 y   iff   x, y ∈ {a1, a3}  ∨  x, y ∈ {a2, a4} ∨  

                            x, y ∈ {b1, b2, b3} 
• x ≅4 y   iff   x = y              // trivial case 

We get:    ≅1 ≽P  ≅2,   ≅1 ≽P  ≅3,   ≅2 ≽P  ≅4,   ≅3 ≽P  ≅4        ☼
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Qα reld = 0 % reld = 5 % reld = 10 % reld =15 % reld = 20 % reld = 30 % 
trivial SVs 8 10 10 28 51 116 
regular SVs 8 2 2 2 1 1 

 
Qβ reld = 0 % reld = 5 % reld = 10 % reld =15 % reld = 20 % reld = 30 % 

trivial SVs 4 4 15 33 51 101 
regular SVs 4 4 4 5 12 19 

 
Qγ reld = 0 % reld = 5 % reld = 10 % reld =15 % reld = 20 % reld = 30 % 

trivial SVs 48 48 62 67 72 104 
regular SVs 8 8 10 14 14 24 

 
Qδ reld = 0 % reld = 5 % reld = 10 % reld =15 % reld = 20 % reld = 30 % 

trivial SVs 388 476 519 502 545 519 
regular SVs 84 44 35 31 23 5 

 
Figure 3: Sample BMO-sizes for complex preferences with varying SV-relations.

The following main theorem supports the common 
experience that accepting more things as substitutable 
typically ends up in having fewer alternative choices left. 

Theorem 5 Monotonicity of BMO-sizes for ⊗, & 

Let P1 = (A1, <P1, ≅1), P1* = (A1, <P1, ≅1*), differing only 
wrt the SV-relation, likewise P2 = (A2, <P2, ≅2), P2* = (A2, 
<P2, ≅2*). 

a) σ[P1 ⊗ P2](R)  ⊆  σ[P1* ⊗ P2*](R)   

 if  ≅1 ≽P1 ≅1* and   ≅2 ≽P2 ≅2* 

b) σ[P1 & P2](R)  ⊆  σ[P1* & P2](R)    if  ≅1 ≽P1 ≅1*    
c) σ[P1 & P2](R)  ⊆  σ[P1 ⊗ P2](R) 

Theorem 6 Smallest / largest BMO-sizes for ⊗, & 

Consider SCOREd preferences P1 = (A1, <P1, ≅P1) and 
P2 = (A2, <P2, ≅P2). Varying ≅P1 and ≅P2 we have: 

a) Trivial ≅P1 and ≅P2 yield largest BMO-sizes for  
σ[P1 ⊗ P2](R) and σ[P1 & P2](R), resp. 

b) Regular ≅P1 and ≅P2 yield smallest BMO-sizes for 
σ[P1 ⊗ P2](R) and σ[P1 & P2](R), resp. 

Example 14 BMO-sizes for varying SV-relations 

We measured the BMO-sizes of the following queries for 
different choices of z, low, up, set1, set2 and set3, evalu-
ated against the same test collection as in Example 12: 
 
• Qα = σ[LOWESTd1(height, ≅1) ⊗ 
               HIGHESTd2(length, ≅2)](test_coll)  
• Qβ = σ[AROUNDd1(height, z, ≅1) ⊗ 
                  BETWEENd2(length, [low, up], ≅2)](test_coll) 
• Qγ = (σ[POS(color, set1, ≅1) ⊗ POS(material, set2, ≅2))  

                             & HIGHESTd3(height, ≅3)](test_coll) 
• Qδ = σ[POS(color, set1, ≅1) ⊗ NEG(material, set2, ≅2)  

  ⊗ AROUNDd3 (height, ≅3) ⊗ HIGHESTd4(length, ≅4) 

  ⊗ HIGHESTd5(width, ≅5) ⊗ BETWEENd6(weight, 
         [low, up], ≅6)](test_coll) 

 
In Figure 3 we present selected test runs with charac-

teristic effects concerning the flooding effect. The pa-
rameter reld indicates an equal proportion of the domain 
size. E.g., in Qα d1 and d2 are chosen such that (d1 ∗ 100) / 
(supheight − infheight) = (d2 ∗ 100) / (suplength − inflength) = 
reld.      ☼ 

 
The observed drops of BMO-sizes from trivial SV-

relations to regular SV-relations are quite striking. In par-
ticular, looking at Qδ in Figure 3 the often heard claim 
that Pareto queries are inherently prone to flooding seems 
to be refuted. The transition to equivalence classes in 
Theorem 4 algebraically explains this phenomenon. Note 
that a personalized query often has some hard constraints 
in addition to preferences (cmp. our Example 11), yield-
ing even smaller query results. Thus the flooding effect 
becomes much less of an issue for deeply personalized 
database queries. 

 
In many application scenarios BMO-results are intelli-

gent pre-selections, which have to be refined afterwards. 
In our e-procurement example the virtual salesman Homer 
would apply his so-called presentation preferences to 
decide which item to pick first from the BMO-set to start 
the sales negotiation ([14]). This decision depends on 
many things, including sales psychology, and may even 
involve non-transitive arguments like majority voting. 

As a synergetic effect, smaller BMO-sizes often coin-
cide with faster query evaluation, in particular if the heu-
ristics of ‘push preference’ for preference relational alge-
bra is applied Moreover, deep personalization with a rich 
repertoire of preference constructors enables the chance to 
implement specialized efficient evaluation algorithms for 
each constructor (see e.g. [10]). 
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7.  Related Work 

The work of Chomicki ([7]) contains a fine survey on 
preference research. He investigates preference queries 
under the BMO model, calling it the ‘winnow’ operator. 
His definitions relax the strict partial order semantics of 
preferences. In particular, Pareto and prioritized prefer-
ences are defined using ||P1 and ||P2 instead of SV-
relations, which fails to preserve strict partial order ([7], 
theorem 4.14). To abandon strict partial orders without 
need does impact the declarative semantics of preference 
query languages. The theory of subsumption lattices 
([20]) guarantees both the existence of a model theory and 
of a corresponding fixpoint theory for BMO queries, if 
strict partial order is maintained. As reported in [7], some 
transformation laws of preference relational algebra are 
invalidated, if transitivity is dropped. This negative im-
pact on query optimization is avoided by preferences with 
SV-semantics. For a survey on the decades-long discus-
sion in decision theory on the sense or nonsense of non-
transitive preferences see [8]. 

The importance of personalization in database queries 
is also emphasized in [21], proposing a preference model 
relying on scores and numerical ranking. Its lack of intui-
tive semantics may become an issue, since people usually 
don’t think in plain numbers. Thus it is difficult to explain 
what a degree of interest of 0.755 really means. Adding 
more preference functionality as announced makes much 
sense, see e.g. [4] describing a personalized application 
that integrates numerical ranking with linguistic variables 
and categorical preferences. The smooth integration of 
personalization and database queries with the use of struc-
tured user profiles proposed in [21] has been supported by 
Preference SQL and Preference XPath for sophisticated 
applications ([15], [14]). There persistent preference re-
positories can be queried e.g. by Preference XPath to find 
best-matching preferences for a given situation ([11]). 
Efficient preference mining algorithms ([12]) can feed 
their findings into the repository.  

Our deep personalization capabilities offer a novel 
means to combat the infamous flooding effect. So far in 
literature it has been criticized that Pareto preferences are 
impractical, because BMO-sizes get too large for increas-
ing numbers of attributes. Empirical and analytical studies 
for skyline queries seemingly support that view (see e.g. 
[6], [5], [3]). But such investigations did not explore the 
full picture; instead only the worst case being d = 0 and 
trivial SV-relations has been investigated. Pareto prefer-
ences with categorical constructors haven’t been consid-
ered either. However, we showed that reasonable choices 
of d and the SV-relations offer a novel, semantically 
guided way to influence BMO-sizes. Naturally, just like 
in the conventional relational model there are always que-
ries with large result cardinalities. But with deep personal-
ization the flooding effect can be controlled much better. 
Moreover, smaller BMO-sizes often coincide with faster 
query evaluation, in particular if the heuristics of ‘push 

preference’ for preference relational algebra is applied. 
Another approach to address the flooding problem is the 
Top-k query model, which can be problematic, if the in-
tuitive semantics of the top k objects is unclear. As proved 
in [7], Top-k and BMO can be combined consistently. 

8.  Summary and Outlook 

Deep personalization of database queries and applications 
requires a semantically rich, easy to handle and flexible 
preference model for query composition. The constructor-
driven foundation of preferences as strict partial orders 
serves all these requirements. In this paper we have ex-
tended this approach in various crucial ways. First we 
showed up possibilities how to model a categorical view 
on numerical data for base constructors. Second, we dem-
onstrated, how to custom-build new base constructors.  
Third we enriched preferences by SV-semantics, being a 
novel and semantically well-founded way to influence 
complex constructors. We could prove that inductive 
preference construction with SV-semantics (including 
Pareto, prioritization and numerical ranking) preserves the 
strict partial order property. All proposed constructor ex-
tensions were implemented in Preference XPath, using 
loose coupling and query rewriting into XPath for rapid 
prototyping. 

Our increased modeling capabilities come with no 
added performance penalties. We showed that known 
transformation laws of preference relational algebra re-
main valid under SV-semantics. Thus increased query 
performance (over the loosely coupled case) can be ex-
pected for tightly coupling the BMO query optimizer with 
an existing database kernel for exact-match queries.  

The BMO query model avoids the embarrassing 
‘empty result’ effect. Concerning the annoying flooding 
effect we presented novel insights. We could relate lower 
and upper bounds for BMO-sizes of Pareto and prioritized 
preference queries to regular and trivial SV-relations. Per-
forming a series of test queries using Preference XPath on 
real e-catalog data, we reported evidence that BMO-sizes 
can come up in handy portions. This observation makes 
us confident that also the flooding problem can be tamed 
in a semantically guided way. 

There are many more research challenges for person-
alized database applications. For cost-based query optimi-
zation, which was not the topic here, analytic methods to 
estimate BMO-sizes for the full constructor spectrum are 
essential. For extended modeling explorations on how to 
integrate imprecision (e.g. fuzzy sets) with preference 
constructors seems worthwhile. Preferences and user 
modeling are investigated within the interdisciplinary 
Bavarian research cooperation FORSIP on “Situated, In-
dividualized and Personalized Human-Computer Interac-
tion” (www.forsip.de). E.g., the fully automated sales 
agent COSIMAB2B, which was recently exhibited at the 
computer fair SYSTEMS 2003 in Munich, enables a deep 
personalization of the B2B sales process and automates 
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skills that so far could be performed only by human ven-
dors. We also continue to extend Preference XPath be-
yond what was presented in this paper. Preference con-
structors on tree-structured and set-valued XML-objects 
as well as extensions to deal with ontologies are being 
added. Of course, upgrading Preference XPath to Prefer-
ence XQuery will be done concurrently. We will require 
all of this advanced functionality to build a deeply per-
sonalized notification system for future MPEG-7 multi-
media libraries. 
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9.  Appendix 

We present the proofs of all propositions and theorems stated before explicitly or implicitly in the text. In addition, we 
list several laws from preference algebra and give some more illustrating examples. 

9.1  Material related to section 3 

Lemma 1 Properties of SCOREd 

a) SCOREd and SCORE are equally expressive. 
b) SCOREd constructs a weak order. 
c) x ||P-new y  iff  fd(x) = fd(y) 

 
Proof: 

a) fd is a valid score function for SCORE. Since f0 is identical to f, SCOREd and SCORE are equally expressive. This 
also implies that SCOREd constructs a strict partial order. 

b) Due to a theorem by Fishburn ([9]), a necessary condition that a strict partial order P can be represented as a 
SCORE preference is that P is a weak order, which in turn implies that ||P is transitive. Thus due to a) SCOREd con-
structs a weak order. 

c) Obvious.            qed 

Lemma 2 Properties of base constructors on numerical attributes 

a) BETWEENd is sub-constructor of SCOREd. 
        x ||P_new y   iff   distd[low, up](x) = distd[low, up](y) 

b) AROUNDd is sub-constructor of BETWEENd. 
       x ||P y   iff   distd[z](x) = distd[z](y) 

c) LOWESTd and HIGHESTd are sub-constructors of AROUNDd. 
     x ||P_new y   iff   distd[infA](x) = distd[infA](y) 
     x ||P_new y   iff   distd[supA](x) = distd[supA](y) 

 
Proof: 

a) Specialize f(a) :=  − dist[low, up](a) in SCOREd: 
  x <P_new y  iff   fd(x) < fd(y) 

                 iff  {if d = 0 then – dist[low, up](x) else − dist[low,  up](x)/d} <   
                                     {if d = 0 then – dist[low, up](y) else − dist[low,  up](y)/d} 
    Since for a > 0: − a = − a  + 1, we can continue: 
                             iff  {if d = 0 then – dist[low, up](x) else − dist[low,  up](x)/d + 1} < 
                                    {if d = 0 then – dist[low, up](y)  else − dist[low,  up](y)/d + 1} 
                              iff  {if d = 0 then dist[low, up](y) < dist[low, up](x)  
                                                  else dist[low, up](y)/d < dist[low, up](x)/d 
                              iff  distd[low, up](y) < distd[low, up](x) 
  

b) Specialize z := low := up in BETWEENd. 
c) In AROUNDd specialize z := infA for LOWESTd and z := supA for HIGHESTd, respectively.   qed 

 
For the ‘better-than’ graph of an EXPLICIT preference P a level-function is defined with the following properties: 
• x <P y implies level(y) < level(x), but not vice versa 
• level(x) = level(y) implies  x ||P y, but not vice versa 

 
It is interesting to note that for LAYEREDm the definitions of a layer and a level coincide. Moreover, for LAYEREDm 
also the reverse directions of above implications hold: 
• x <P y  iff   layer(y) < layer(x) 
• x ||P y   iff   layer(x) = layer(y) 
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Lemma 3 EXPLICIT is no sub-constructor of SCOREd and vice versa. 

Proof: Consider this ‘better-than’ graph of a preference P, being EXPLICIT but not LAYEREDm: 
 
             x y 
 
             
             z 
         

          w 
 
We have ¬(x <P y) and ¬(y <P z), but x <P z. This violates negative transitivity; hence P is no weak order and cannot be 
specified by SCOREd.            qed 

Lemma 4 Properties of SupereSCORE 

a) SupereSCORE constructs a strict partial order. 
x ||P_new y   iff   abs(f(x) −  f(y))  ≤  e 

b) SupereSCORE constructs no weak order, hence is no sub-constructor of SCOREd. 
 
Proof: 

a) Irreflexivity: x <P x  iff  f(x) < f(x) – e   iff  0 < – e   iff  false 
       Transitivity: x <P y ∧ y <P z  iff  f(x) < f(y)  – e  ∧  f(y) < f(z)  – e   

           implies   f(x) < f(z)  – e  – e < f(z)  – e    iff   x <P z  
 

b) Let’s study the SupereAROUND sub-constructor of SupereSCORE, which is defined by specializing f(v) :=  – 
distz(v), where distz(v) := abs(v – z). 

Assume dom(A) = [6, 20] ⊆ ℝ, z = 10 and R(A) = {7, 8, 9, 10, 11, 12, 13, 14}. 
Choosing e = 2 we get: dist10(v) = 0,  if  v = 10   

 dist10(v) = 1,  if  v ∈ {9, 11} 
 dist10(v) = 2,  if  v ∈ {8, 12} 
 dist10(v) = 3,  if  v ∈ {7, 13} 
 dist10(v) = 4,  if  v = 14 

 
          Thus the ‘better-than’ graph of P := Super2AROUND(A, 10) for R(A) looks as follows: 
 
        9        11          10     8    12 
 
 
 
 

   14    7   13         
 
         Obviously this is no weak order; hence it does not represent a SCOREd preference.    Qed 
 

9.2  Material related to section 4 

Proposition 2 (see section 4.1) Properties of SV-relations 

a) ‘=’ is an SV-relation for each preference P (called trivial SV-relation). 
b) If P is the anti-chain A↔, each partition of dom(A) defines an SV-relation. 

 
Proof: 

a)  ‘=’ trivially satisfies Definition 9. 
b) Each partition of dom(A) for an anti-chain A↔ satisfies Definition 9a, b and c, because < A↔ = ∅. qed 
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Proposition 3 (see section 4.1) Regular SV-relation for SCOREd 

Given a SCOREd preference P, let’s define for all x, y ∈ dom(A): x ≅P y   iff   x ||P y 
a) ≅P is an SV-relation (called regular SV-relation). 
b) If P is not a chain, then ≅P is non-trivial. 

 
Proof: 

a)  
- By definition:   x ≅P y   implies   x ||P y  
- x ≅P y  ∧  z <P x 

iff   x ||P y  ∧  z <P x   
iff   {if d = 0 then f(x) = f(y)  else  f(x) / d  =  f(y) / d} ∧  

               {if d = 0 then f(z) < f(x)  else  f(z) / d  < f(x) / d}   
           implies   {if d = 0 then f(z) < f(y)  else  f(z) / d  <  f(y) / d}   iff    z <P y   

- x ≅P y  ∧  x <P z  
iff    x ||P y  ∧  x <P z  

        iff   {if d = 0 then f(x) = f(y)  else  f(x) / d  =  f(y) / d} ∧ 
                     {if d = 0 then f(x) < f(z)  else  f(x) / d  < f(z) / d }     

          implies   {if d = 0 then f(y) < f(z)  else  f(y) / d  < f(z) / d}    iff   y <P z  
- ||P is reflexive and symmetric in general.  

 Since SCOREd constructs a weak order, ||P is transitive due to [9], hence ≅P is transitive. 
b) If P is not a chain, then there are v, w ∈ dom(A), v ≠ w: v ||P w, hence v ≅P w.       qed 

 
We give two useful lemmas concerning the dual preference constructor (‘∂’) and the intersection of SV-relations. 

Theorem 1 (see section 4.2) Preservation of strict partial order for Pareto and prioritized construction 

Given P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2), consider P := P1 ⊗ P2 and P := P1 & P2, respectively.  
Then P = (A1 ∪ A2, <P, ≅P) is a preference with SV-semantics, i.e.: 

a) <P is a strict partial order on A1 ∪ A2. 
b) ≅P is an SV-relation for <P. 

 

Proof:  
We start with P := P1 ⊗ P2: 

a) <P is a strict partial order: 
- Irreflexivity: x <P x   iff   (false ∧  (false ∨  true)) ∨ (false  ∧  (false ∨  true))  iff  false 
- Transitivity: For abbreviation we define: 

F1 ≡ ‘x1 <P1 y1’, F2 ≡ ‘x2 <P2 y2’, F3 ≡ ‘x2 ≅P2 y2’, F4 ≡ ’x1 ≅P1 y1’, 
F5 ≡ ’y1 <P1 z1’, F6 ≡ ’y2 <P2 z2’, F7 ≡ ’y2 ≅P2 z2’, F8 ≡ ’y1 ≅P1 z1’, 
F9 ≡ ’x1 <P1 z1’, F10 ≡ ’x2 <P2 z2’, F11 ≡ ‘x2 ≅P2 z2’, F12 ≡ ‘x1 ≅P1 z1’ 

Due to Definition 9 for SV-relations we can state:      // *** 
◦ Because ≅P1 and ≅P2

 did not change <P1 and <P2: F1 ∧ F5 implies F9, F2 ∧ F6 implies F10 
◦ Because SV-relations are transitive:    F4 ∧ F8 implies F12, F3 ∧ F7 implies F11 
◦ Because of properties of SV-relations:    F1 ∧ F8 implies F9, F2 ∧ F7 implies F10,  

F3 ∧ F6 implies F10, F4 ∧ F5 implies F9 
Then we get:   x <P y  ∧  y <P2 z 

iff   [(F1 ∧ (F2 ∨ F3)) ∨ (F2 ∧ (F1 ∨ F4))] ∧ [(F5 ∧ (F6 ∨ F7)) ∨ (F6 ∧ (F5 ∨ F8))] 
iff   [(F1 ∧ F2) ∨ (F1 ∧ F3) ∨ (F2 ∧ F4)] ∧ [(F5 ∧ F6) ∨ (F5 ∧ F7) ∨ (F6 ∧ F8)] 
iff   (F1 ∧ F2 ∧ F5 ∧ F6) ∨ (F1 ∧ F2 ∧ F5 ∧ F7) ∨ (F1 ∧ F2 ∧ F6 ∧ F8) ∨  

             (F1 ∧ F3 ∧ F5 ∧ F6) ∨ (F1 ∧ F3 ∧ F5 ∧ F7) ∨ (F1 ∧ F3 ∧ F6 ∧ F8) ∨ 
             (F2 ∧ F4 ∧ F5 ∧ F6) ∨ (F2 ∧ F4 ∧ F5 ∧ F7) ∨ (F2 ∧ F4 ∧ F6 ∧ F8) 
According to // *** we can now continue:  

implies   (F9 ∧ F10) ∨ (F9 ∧ F10) ∨ (F9 ∧ F10) ∨ 
                (F9 ∧ F10) ∨ (F9 ∧ F11) ∨ (F9 ∧ F10) ∨ 
                 (F9 ∧ F10) ∨ (F9 ∧ F10) ∨ (F10 ∧ F12) 
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iff   ((F9 ∧ F10) ∨ (F9 ∧ F11)) ∨ ((F9 ∧ F10) ∨ (F10 ∧ F12)) 
iff   (F9 ∧ (F10 ∨ F11)) ∨ (F10 ∧ (F9 ∨ F12))   iff   x <P z     qed 
 

b) ≅P is an SV-relation: 
- x ≅P y   iff   x1 ≅P1 y1 ∧  x2  ≅P2 y2 

       implies   x1 ||P1 y1  ∧  x2  ||P2 y2   
iff   ¬(x1 <P1 y1)  ∧  ¬(y1 <P1 x1)  ∧  ¬(x2  <P2 y2)  ∧  ¬(y2  <P2 x2)  implies   x ||P y 

- [Please note that the given proof consistently renames variables x, y, z in Definition 9b).] 
  x <P y  ∧  y ≅P z   

        iff  (F1 ∧ (F2 ∨ F3)) ∨ (F2 ∧ (F1 ∨ F4)) ∧  (F8 ∧ F7) 
iff  ((F1 ∧ (F2 ∨ F3)) ∧ F8 ∧ F7) ∨ ((F2 ∧ (F1 ∨ F4)) ∧ F8 ∧ F7) 

        implies   ((F9 ∧ (F2 ∨ F3)) ∧ F7) ∨ ((F10 ∧ (F1 ∨ F4)) ∧ F8) 
        implies   ((F9  ∧ (F10 ∨ F11))  ∨  ((F10  ∧ (F9 ∨ F12))  iff   x <P z 

- [Please note that the given proof consistently renames variables x, y, z in Definition 9c).] 
  x <P y  ∧ x ≅P z   

iff    (F1 ∧ (F2 ∨ F3)) ∨ (F2 ∧ (F1 ∨ F4)) ∧ (F12 ∧ F11) 
iff    ((F1 ∧ (F2 ∨ F3)) ∧ F11 ∧ F12)  ∨  ((F2 ∧ (F1 ∨ F4)) ∧ F11 ∧ F12) 
implies   ((z1 <P1 y1  ∧  (F2 ∨ F3))  ∧  F11)  ∨  ((z2 <P2 y2 ∧ (F1 ∨ F4)) ∧  F12) 
implies   ((z1 <P1 y1  ∧  (z2 <P2 y2  ∨  z2 ≅P2 y2))   ∨ 

           ((z2 <P2 y2  ∧  (z1 <P1 y1  ∨  z1 ≅P1 y1))   iff   z <P y 
- ≅P is reflexive, symmetric and transitive, since it is the intersection of two equivalence relations ≅P1 and ≅P2.

            qed 
 
Now let’s turn to P := P1 & P2: 

a) <P is a strict partial order: 
- Irreflexivity: x <P x   iff   false ∨  (true  ∧  false)   iff    false 
- Transitivity: Given the same abbreviations and implications [***] as stated in the proof for Pareto preferences 

above we can conclude: 
x <P y  ∧  y <P z 

iff   (F1 ∨ (F4  ∧  F2))  ∧  (F5 ∨ (F8  ∧  F6)) 
iff   (F1 ∧ F5) ∨ (F1 ∧ F6 ∧ F8) ∨ (F2 ∧ F4 ∧ F5) ∨ (F2 ∧ F4 ∧ F6 ∧ F8) 
implies  F9 ∨ (F6 ∧ F9) ∨ (F2 ∧ F9) ∨ (F10 ∧ F12) 
iff   F9 ∨ (F9 ∧ (F2 ∨ F6)) ∨ (F10 ∧ F12)  iff  F9 ∨ (F10 ∧ F12)  iff  x <P z 

 
b) ≅P is an SV-relation: 

-  x ≅P y implies x ||P y:  Clear (see Pareto preferences). 
- [Please note that the given proof consistently renames variables x, y, z in Definition 9b).] 

x <P y  ∧  y ≅P z   
iff   (F1 ∨ (F4  ∧  F2)) ∧ (F8 ∧ F7) 
iff   (F1 ∧ F8 ∧ F7) ∨ (F4 ∧ F2 ∧ F8 ∧ F7) 
implies   (F9 ∧ F7) ∨ (F4 ∧  F10 ∧  F8) 
implies   (F9 ∧ F7) ∨  (F12 ∧  F10)  implies F9 ∨  (F12 ∧  F10)  iff   x <P z 

- [Please note that the given proof consistently renames variables x, y, z in Definition 9c).] 
  x <P y  ∧  x ≅P z   

iff   (F1 ∨ (F4  ∧  F2))  ∧  (F12 ∧ F11) 
iff   (F1 ∧ F12 ∧ F11) ∨ (F4 ∧ F2 ∧ F12 ∧ F11) 
implies   (z1 <P1 y1 ∧ F11) ∨ (z1 ≅P1 y1 ∧ F2 ∧  F11) 
implies   (z1 <P1 y1 ∧ F11) ∨ (z1 ≅P1 y1 ∧  z2 <P2 y2)  
implies   z1 <P1 y1 ∨ (z1 ≅P1 y1 ∧  z2 <P2 y2)   iff   z <P y   

- ≅P is reflexive, symmetric and transitive:  Clear (see Pareto preferences).    qed 

Theorem 2 (see section 4.2) Further properties of ‘⊗’ and ‘&’ with SV-semantics 

a) Pareto or prioritized preferences don’t possess regular SV-relations in general.  
b) Any relaxation of SV-semantics for Pareto or prioritized construction violates strict partial order. 
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Proof:  

a) Given two weak order preferences P1 and P2, then due to [7], Proposition 4.15, P := P1 ⊗ P2 is not a weak order. 
The same holds, if P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2) are weak orders with SV-semantics. As can be seen 
from the case studies in Example 8, it’s straightforward to find alternative values, prohibiting the existence of a 
regular SV-relation. 

b) All SV-properties are required to establish the proof of Theorem 1. An example, which relaxes SV-properties and 
hence violates strict partial order, can be found in the proof of [7], theorem 4.14.    qed 

 
A numerical preference is a weighted combination of preferences P1, … Pn.  

Definition 16 Numerical preference constructor with SV-semantics (‘rankF’) 

For 1 ≤ i ≤ n let Pi := SCOREdi(Ai, fi, ≅Pi) and fdi(xi) := {if di = 0 then fi(xi) else fi(xi) / di}. 
Further we assume an n-ary combining function F: ℝ × … × ℝ → ℝ: 
 

complex rankF(P1, …, Pn)  
       {(x1, …, xn) <P_new (y1, … yn)   iff   F(fd1(x1), …, fdn(xn)) < F(fd1(y1), …, fdn(yn)); 

           (x1, …, xn) ≅P_new (y1, … yn)   iff   x1 ≅P1 y1  ∧  …  ∧  xn ≅Pn yn}; 

Lemma 5 Preservation of strict partial order for rankF 

Given Pi := SCOREdi(Ai, fi, ≅Pi), 1 ≤ i ≤ n, for P := rankF(P1, …, Pn) the following holds: 
a) <P is a strict partial order on A1 ∪ … ∪ An. 
b) ≅P is an SV-relation for <P. 

 
Proof:  

a) Obvious, since SCOREdi is equally expressive as SCORE and  ≅P1, …, ≅Pn are not utilized for <P. 
b) ≅P is an SV-relation: 

- x ≅P y   iff  x1 ≅P1 y1  ∧  …  ∧ xn  ≅Pn yn  
          implies  x1 ||P1 y1  ∧ … ∧  xn ||Pn yn 

     iff  fd1(x1) = fd1(y1) ∧ … ∧  fdn(xn) = fdn(yn)   
     iff  F(fd1(x1), …, fdn(xn)) = F(fd1(y1), …, fdn(yn))  iff  x ||P y   

- z <P x  ∧  x ≅P y    
   iff   F(fd1(z1), …, fdn(zn)) < F(fd1(x1), …, fdn(xn))  ∧  x1 ≅P1 y1  ∧  …  ∧ xn  ≅Pn yn 

   implies  F(fd1(z1), …, fdn(zn)) < F(fd1(x1), …, fdn(xn)) ∧  fd1(x1) = fd1(y1) ∧ … ∧  fdn(xn) = fdn(yn)   
   iff   F(fd1(z1), …, fdn(zn)) < F(fd1(y1), …, fdn(yn))  iff   z <P y 

- x <P z  ∧  x ≅P y    
   iff   F(fd1(x1), …, fdn(xn)) < F(fd1(z1), …, fdn(zn))  ∧  x1 ≅P1 y1  ∧  …  ∧ xn  ≅Pn yn 

    implies   F(fd1(x1), …, fdn(xn)) < F(fd1(z1), …, fdn(zn))  ∧  fd1(x1) = fd1(y1) ∧ … ∧  fdn(xn) = fdn(yn)   
     iff   F(fd1(y1), …, fdn(yn)) < F(fd1(z1), …, fdn(zn))   iff   y <P z    

- ≅P is reflexive, symmetric and transitive: Obvious.       qed 
  
From Definition 16 it is obvious that <P cannot benefit from SV-information. However, since ≅P is inherited from ≅P1, 
…, ≅Pn it has an impact on BMO sizes, if P itself is part of a more complex preference.  

Example 15 Impact of SV-relations in rankF 

Consider P := rankF(P1, P2), a preference P3 and P4 := P & P3. Then <P4 is defined as follows: 
 

(x1, x2,
  x3) <P4 (y1, y2,

 y3)   iff  (x1, x2) <P (y1, y2) ∨ ((x1, x2) ≅P (y1, y2) ∧ x3 <P3 y3) 
                        iff  F(fd1(x1), fd2(x2)) < F(fd1(y1), fd2(y2)) ∨ (x1 ≅P1 y1 ∧ x2 ≅P2 y2 ∧ x3 <P3 y3)  ☼ 

Lemma 6 Properties of rankF  

a) Let P := rankF(P1, …, Pn): ≅Pi is regular (1 ≤ i ≤ n)    iff    ≅P is regular   
b) rankF constructs a weak order.     
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Proof:  

a) ≅Pi is regular (1 ≤ i ≤ n)     
      iff   ( ∀ xi, yi ∈ dom(Ai):   xi  ≅Pi yi    iff   xi  ||Pi yi,   1 ≤ i ≤ n )    
      iff   ( ∀ x = (x1, …, xn), y = (y1, …, yn) ∈ dom(A1) × … × dom(An): 

  x1 ≅P1 y1  ∧  …  ∧ xn  ≅Pn yn   iff   x1 ||P1 y1  ∧ … ∧  xn ||Pn yn ) 
      iff   ( ∀ x = (x1, …, xn), y = (y1, …, yn) ∈ dom(A1) × … × dom(An):  x ≅P y  iff   x ||P y ) 
     iff    ≅P is regular  

b) P := rankF(P1, …, Pn) is a weak order, because it can be characterized as a SCORE(A, f, ≅P) preference as follows: 
• A := A1 ∪ … ∪ An 
• f: dom(A) → ℝ, f((x1, …, xn)) := F(fd1(x1), …, fdn(xn))      qed 

 
Note that Definition 16 can now be considered to cover also the case that instead of a SCOREdi preference also a nu-
merical preference can be supplied. 
 

The intersection preference constructor ‘♦’ assembles a preference P from two preferences P1 and P2 that act on the 
same attribute set A.  

Definition 17 Intersection preference constructor with SV-semantics (‘♦’) 

We assume P1 = (A, <P1, ≅P1) and P2 = (A, <P2, ≅P2). 
complex P1 ♦ P2  {x <P_new y   iff   x <P1 y  ∧   x <P2 y;    x ≅P_new y  iff   x ≅P1 y  ∧   x ≅P2 y};  

Lemma 7 Intersection ‘♦’ is a preference sub-constructor of Pareto ‘⊗’   

Proof:  
Given P := P1 ⊗ P2 where P1 = (A, <P1, ≅P1) and P2 = (A, <P2, ≅P2), applying the definition of ‘⊗’ for the case of identical 
attributes we get for all x, y ∈ dom(A): 

 
x <P y    iff   (x <P1 y  ∧  (x <P2 y  ∨  x ≅P1 y))  ∨                

                               (x <P2 y  ∧  (x <P1 y  ∨  x ≅P2 y)) 
iff   (x <P1 y  ∧  x <P2 y)  ∨  (x <P1 y  ∧  x ≅P1 y))  ∨                

                                   (x <P2 y  ∧  x <P1 y)  ∨  (x <P2 y  ∧  x ≅P2 y))         // property of SV-relations 
iff   (x <P1 y  ∧  x <P2 y)  ∨  false)  ∨ (x <P2 y  ∧  x <P1 y)  ∨  false) 
iff   (x <P1 y  ∧  x <P2 y)  ∨  (x <P2 y  ∧  x <P1 y)  iff    x <P1 y  ∧  x <P2 y    
 

x ≅P y   iff   x ≅P1 y  ∧   x ≅P2 y         qed 
 

Let range(<P) := {x ∈ dom(A) | ∃y ∈ dom(A): (x, y) ∈ <P  or  (y, x) ∈ <P}. Two preferences P1 = (A1, <P1) and P2 = 
(A2, <P2) are disjoint preferences, if range(<P1) ∩ range(<P2) = ∅.  

The disjoint union preference constructor ‘+’ assembles a preference P from two disjoint preferences P1 and P2 that 
act on the same attribute set A.  

Definition 18 Disjoint union preference constructor with SV-semantics (‘+’) 

We assume disjoint P1 = (A, <P1, ≅P1) and P2 = (A, <P2, ≅P2). 
complex P1 + P2   {x <P_new y  iff   x <P1 y  ∨   x <P2 y;    x ≅P_new y  iff   x ≅P1 y  ∧   x ≅P2 y}; 

Lemma 8 Preservation of strict partial order for ‘+’ 

Given disjoint P1 = (A, <P1, ≅P1) and P2 = (A, <P2, ≅P2), for P := P1 + P2 the following holds: 
a) <P is a strict partial order on A. 
b) ≅P is an SV-relation for <P. 

 

Proof: 
a) Obvious, since ≅P1 and ≅P2 are not utilized for <P. 
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b) ≅P is an SV-relation: 
- x ≅P y   iff  x ≅P1 y ∧  x ≅P2 y 

    implies  x ||P1 y  ∧  x ||P2 y 
      iff  ¬(x <P1 y)  ∧  ¬( y <P1 x)  ∧  ¬(x <P2 y) ∧  ¬( y <P2 x)   
       iff  (¬(x <P1 y) ∧  ¬( x <P2 y))  ∧  (¬(y <P1 x) ∧  ¬( y <P2 x))  
      iff  ¬(x <P1 y  ∨  x <P2 y)  ∧  ¬(y <P1 x  ∨  y <P2 x) 
      iff  ¬(x <P y)  ∧  ¬(y <P x)  iff  x ||P y   
- z <P x ∧  x ≅P y   iff   (z <P1 x  ∨  z <P2 x)  ∧  x ≅P1 y ∧  x ≅P2 y 

          iff   (z <P1 x  ∧  x ≅P1 y ∧  x ≅P2 y)  ∨  (z <P2 x  ∧  x ≅P1 y ∧  x ≅P2 y) 
        implies   z <P1 y  ∨   z <P2 y   iff   z <P y 

- x <P z ∧  x ≅P y   iff   (x <P1 z  ∨  x <P2 z)  ∧  x ≅P1 y ∧  x ≅P2 y  
          iff   (x <P1 z  ∧  x ≅P1 y ∧  x ≅P2 y)  ∨  (x <P2 z  ∧  x ≅P1 y ∧  x ≅P2 y) 
          implies   y <P1 z  ∨  y <P2 z   iff   y <P z    

- ≅P is reflexive, symmetric and transitive: Obvious.       qed 
 

The linear sum constructor ‘⊕’ assembles a preference P from P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2), assuming 
that dom(A1) ∩ dom(A2) = ∅; hence P1 and P2 being disjoint. Assuming that dom(A1) and dom(A2) are union-
compatible we define a new attribute A, where dom(A) = dom(A1) ∪ dom(A2). 

Definition 19 Linear sum preference constructor with SV-semantics (‘⊕’) 

We assume P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2) where dom(A1) ∩ dom(A2) = ∅. 
complex P1 ⊕ P2 

   {x <P_new y  iff  x <P1 y  ∨  x <P2 y  ∨  (x ∈ dom(A2) ∧  y ∈ dom(A1)); 
                   x ≅P_new y  iff   x ≅P1 y  ∨  x ≅P2 y }; 
 
Note that <P_new of linear sum cannot exploit ≅P1 or ≅P2. 

Lemma 9 Preservation of strict partial order for ‘⊕’ 

Given P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2), where dom(A1) ∩ dom(A2) = ∅ and dom(A) = dom(A1) ∪ dom(A2), 
then for P := P1 ⊕ P2 the following holds: 

a) <P is a strict partial order on A. 
b) ≅P is an SV-relation for <P. 

 
Proof:  

a) Obvious, since ≅P1 and ≅P2 are not utilized for <P. 
b) ≅P is an SV-relation:     

- x ≅P y   iff  x ≅P1 y  ∨  x ≅P2 y  implies x ||P1 y  ∨   x ||P2 y 
From the definition of <P and observing that its right-hand side is a disjoint disjunction, we see that x ||P1 y im-
plies x ||P y  and x ||P2 y  implies x ||P y, implying that  x ||P y.   
  

- z <P x  ∧  x ≅P y  iff   (z <P1 x  ∨  z <P2 x  ∨  (z ∈ dom(A2)  ∧  x ∈ dom(A1)))  ∧  x ≅P y  
 iff   ((z <P1 x  ∨  z <P2 x)  ∧  x ≅P y)  ∨ (z ∈ dom(A2)  ∧  x ∈ dom(A1))) ∧  x ≅P y 
 iff   ((z <P1 x  ∨  z <P2 x)  ∧  x ≅P y)  ∨  false 
 iff   (z <P1 x  ∨  z <P2 x)  ∧  x ≅P y 
 iff   (z <P1 x  ∧  x ≅P y)  ∨  (z <P2 x  ∧  x ≅P y)  
 iff   (z <P1 x  ∧  (z ≅P1 x  ∨  z ≅P2 x))  ∨  (z <P2 x  ∧  (z ≅P1 x  ∨  z ≅P2 x))    
 implies   z <P1 y  ∨   z <P2 y  

 Since ¬(z ∈ dom(A2)  ∧  y ∈ dom(A1)) holds, we can continue:   
 iff   z <P1 y  ∨   z <P2 y  ∨  (z ∈ dom(A2)  ∧  y ∈ dom(A1))  iff   z <P y 
 

- x <P z  ∧  x ≅P y   iff   (x <P1 z  ∨  x <P2 z  ∨  (x ∈ dom(A2)  ∧  z ∈ dom(A1)))  ∧  x ≅P y  
 iff  ((x <P1 z  ∨  x <P2 z)  ∧  x ≅P y)  ∨  (x ∈ dom(A2)  ∧  z ∈ dom(A1)))  ∧  x ≅P y 
 iff  ((x <P1 z  ∨  x <P2 z)  ∧  x ≅P y)  ∨  false 
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 iff  (x <P1 z  ∨  x <P2 z)  ∧  x ≅P y 
 iff   (x <P1 z  ∧  x ≅P y)  ∨  (x <P2 z  ∧  x ≅P y)   
 iff   (x <P1 z  ∧  (x ≅P1 y  ∨  x ≅P2 y))  ∨  (x <P2 z  ∧  (x ≅P1 y  ∨  x ≅P2 y))    
 implies   y <P1 z  ∨   y <P2 z  

 Since ¬(z ∈ dom(A1)  ∧  y ∈ dom(A2)) holds, we can continue:   
      iff   y <P1 z ∨  y <P2 z ∨  (y ∈ dom(A2) ∧  z ∈ dom(A1))  iff   y <P z  
   

- Reflexivity and symmetry of ≅P is clear. 
≅P is transitive: x ≅P y  ∧  y ≅P z   iff   (x ≅P1 y  ∨  x ≅P2 y)  ∧  (y ≅P1 z  ∨  y ≅P2 z) 
                  iff   (x ≅P1 y  ∧  y ≅P1 z)  ∨  (x ≅P1 z  ∨  y ≅P2 z)  ∨ 

                             (x ≅P2 y  ∧  y ≅P1 z)  ∨  (x ≅P2 z  ∨  y ≅P2 z)  
Since x ≅P y implies ¬(x ∈ dom(A2)  ∧  y ∈ dom(A1)) ∧  ¬(y ∈ dom(A2)  ∧  x ∈ dom(A1)) we can continue: 
                  iff  (x ≅P1 y  ∧  y ≅P1 z)  ∨  false  ∨  false ∨  (x ≅P2 z  ∧  y ≅P2 z)  
                  iff   (x ≅P1 y  ∧  y ≅P1 z)  ∨   (x ≅P2 z  ∧  y ≅P2 z)  

                  implies   x ≅P1 z  ∨   x ≅P2 z)   iff    x ≅P z    qed 

Theorem 3 (see section 4.4) Expressiveness of complex constructors with SV-semantics 

a) Pareto is no sub-constructor of rankF and vice versa. (Skyline preferences cannot be expressed by rankF.) 
b) Pareto is no sub-constructor of ‘&’ and vice versa. 
c) ‘&’ is no sub-constructor of ‘rankF’ and vice versa. (Grouped preferences are not expressible by rankF.) 

 
Proof: 

a) We start with showing that rankF is no sub-constructor of Pareto: 
• From Lemma 12a it follows that if (x1, x2) ∈ max(P1 & P2) or (x1, x2) ∈ max(P2 & P1), then (x1, x2) ∈ max(P1 ⊗ 

P2), too. Thus if we find P1, P2 and a combining function F such that (x1, x2) is maximal in P1 & P2 or in P2 & 
P1, but not in rankF(P1, P2),  the proof is achieved: 
Let P1 := LOWEST0(A1, ‘=’), P2 := LOWEST0(A2, ‘=’), P  := rankF(P1, P2) where F(f1(x1), f2(x2)) := −x1 − x2 
and consider R = {(6, 4), (6, 1), (6, 8), (2, 7), (2, 9), (3, 2)} ⊆ dom(A1) × dom(A2). Then σ[P](R) = {(3, 2)}, 
however σ[ P1 & P2](R) =  {(2, 7)} and σ[P2 & P1](R) = {(6, 1)}. 
 

Now let’s prove the reverse:  
• Given P1:= SCOREd(A1, f1, ≅P1) and P2 := SCOREd(A2, f2, ≅P2), we prove that there exists P := P1 ⊗ P2 such 

that P cannot be constructed by rankF(P1, P2): 
We study an example with AROUND0, being a sub-constructor of SCOREd. Let P1 := AROUND0(A1, 0, ≅P1), 
P2 := AROUND0(A2, 1, ≅P2), where both ≅P1 and ≅P2 are regular, and P := P1 ⊗ P2. Considering R = {(−5, 2), (5, 
0), (−5, 3), (−5, 4), (6, 2)} ⊆ dom(A1) × dom(A2), then the ‘better-than’ graph of P restricted to R looks as fol-
lows: 

 
     level 1:                (−5, 2)               (5, 0)  // remark:  (−5, 2) ≅P (5, 0)  
 
 
     level 2:              (−5, 3) (6, 2)                              // remark:   (−5, 3) ||P (6, 2), but ¬ (−5, 3) ≅P (6, 2) 
 
 
   level 3:              (−5, 4) 
 

Now observe that ¬((−5, 3) <P (6, 2)) and ¬((6, 2) <P ((−5, 4)), but (−5, 3) <P (−5, 4), violating negative transi-
tivity, hence not representing a weak order. But due to Lemma 6b rankF constructs a weak order for any F. 

 
b) Lemma 12a and Lemma 7 reveal that ‘⊗’ and ‘&’ are recursively related in a very subtle way. Thus ‘&’ cannot be 

a sub-constructor of ‘⊗’ and vice versa. 
 

c) We start with showing that ‘&’ is no sub-constructor of rankF: 
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• Assume P2 := LOWEST0(B, ‘=’) and consider P := P2 groupby A ≡ A↔ & P2, where A↔ = (A, ∅, ‘=’). Consid-
ering R = {(6, 4), (6, 3), (6, 8), (2, 7), (2, 9), (3, 2)} ⊆ dom(A) × dom(B), the ‘better-than’ graph of P restricted 
to R looks as follows: 

 
level 1:             (6, 3)       (2, 7) (3, 2)   

  
  

level 2:             (6, 4)       (2, 9)  
 
 

level 3:             (6, 8) 
 

Now observe that ¬((6, 3) <P (2, 7)) and ¬((2, 7) <P ((6, 4)), but (6, 3) <P (6, 4) violating negative transitivity, 
hence not representing a weak order. But due to Lemma 6b rankF constructs a weak order for any F. 
  

Now let’s prove the reverse:   
• From Lemma 12b it follows that if (x1, x2) is maximal in P1 & P2, then x1 is maximal in P1. Thus if we find P1, 

P2 and a combining function F such that (x1, x2) is maximal in rankF(P1, P2) but x1 is not maximal in P1, then 
the proof is achieved. 
Let P1 := LOWEST0(A1, ‘=’),  P2 := LOWEST0(A2, ‘=’) and P := rankF(P1, P2), where F(f1(x1), f2(x2)) := −x1 − 
x2. Note that since ≅P1 is trivial, Lemma 12b applies. Now consider R = {(6, 4), (6, 1), (6, 8), (2, 7), (2, 9), (3, 
2)} ⊆ dom(A1) × dom(A2): Then σ[P](R)  = {(3, 2)}. However, we have 3 ∉ σ[P1](R) = {2}. 

 
That grouped preferences and skyline preferences cannot be expressed by rankF follows from Theorem 3a, c. The latter 
observation was also made by [7] for skylines without the DIFF operator and without the extension to SV-semantics. qed 

9.3  Material related to section 5 

Theorem 4 (see section 5.1) Every SV-order is strict partial order 

Moreover, [P] = (A/≅P, <[P]) is a strict partial order,  where ≅[P] is the trivial SV-relation, i.e. equality of equivalence 
classes. 
 
Proof: 
- <[P] is well-defined: 

Consider x <P y for some x ∈ X, y ∈ Y. Then for each x’ ∈ X by Definition 9 b) x’ <P y holds. Likewise, for each 
y’ ∈ Y by Definition 9 c) x <P y’ holds. Thus the definition of X <[P] Y is independent from the chosen representa-
tive for X and Y. 

- <[P] is irreflexive: 
X <[P] X  iff  (∀ x ∈ X, ∀ y ∈ X: x <P y)  implies (∀x ∈ X: x <P x)  iff  false 

- <[P] is transitive: 
X <[P] Y ∧  Y <[P] Z  iff  (∀ x ∈ X, ∀ y ∈ Y: x <P y)  ∧  (∀ y ∈ Y, ∀ z ∈ Z: y <P z) 

Considering a fixed, but arbitrary y0 ∈ Y we can continue: 
    implies  (∀ x ∈ X: x <P y0  ∧  ∀ z ∈ Z: y0 <P z) 

By transitivity of <P we get: 
    implies  (∀ x ∈ X, ∀ z ∈ Z: x <P z)  iff  X <[P] Z 

- ≅ [P] is trivial: 
For X ≠ Y by the definition we get: 

X ≅[P] Y iff  ∀x ∈ X, ∀ y ∈ Y: x ≅P y  implies (Proposition 2a)  ∀x ∈ X, ∀ y ∈ Y: false  iff  false 
         Thus ≅[P] is the equality of equivalence classes for A/≅P, hence it represents the trivial SV-relation on A/≅P. qed 
 

In [13] we have identified many algebraic laws amongst preferences with trivial SV-relations. Now we extend them 
towards arbitrary SV-relations. To this end we extend this notion of equivalence of preferences in [13], being an order 
isomorphism for <P, to include an order-isomorphism for SV-relations. 
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Definition 20 Equivalence of preferences (P1 ≡ P2) 

P1 = (A, <P1, ≅P1) and P2 = (A, <P2, ≅P2) are equivalent (P1 ≡ P2), if for all x, y ∈ dom(A): 
• x1 <P1 y1   iff   x <P2 y  
• x1 ≅P1 y1   iff   x ≅P2 y 

Lemma 10 Commutativity and associativity 

a) Pareto (‘⊗’) is commutative and associative 
b) Prioritization (‘&’) is associative, but not commutative. 
c) Intersection (‘♦’) is commutative and associative. 
d) Disjoint union (‘+’) is commutative and associative. 
e) Linear sum (‘⊕’) is associative, but not commutative. 

 
Proof: For illustration we give the proof for the associativity of ‘&’: 
 
Given P1 = (A1, <P1, ≅P1), P2 = (A2, <P2, ≅P2) and P3 = (A3, <P3, ≅P3), let P := (P1 & P2) & P3 and P* := P1 & (P2 & P3). 
For all x =  (x1, x2, x3), y = (y1, y2, y3) ∈ dom(A1) × dom(A2) × dom(A3) we get: 
 
 x <P y    iff   (x1, x2) <P1&P2 (y1, y2)  ∨  ((x1, x2) ≅P1&P2 (y1, y2) ∧  x3 <P3 y3) 

iff    x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  x2 <P2 y2) ∨  (x1 ≅P1 y1 ∧  x2 ≅P2 y2  ∧  x3 <P3 y3) 
iff    x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  ( x2 <P2 y2  ∨  (x2 ≅P2 y2 ∧  x3 <P3 y3)) 

  iff    x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  (x2, x3) <P2&P3 (y2, y3))   iff    x <P* y   
 
Associativity of ≅P is obvious, since:  ≅P1&P2 iff x1 ≅P1 y1 ∧ x2 ≅P2 y2      qed 

Lemma 11 Distributivity 

a) ‘⊗’ does not distribute over ‘&’ and vice versa. 
b) ‘&’ distributes over ‘+’:  P := P1 & (P2 + P3) ≡ (P1 & P2) + (P1 & P3) 

 
Proof: 

a) It’s easy to find counterexamples. 
b) The <P-part is covered by [7], theorem 4.7; the ≅P-part is straightforward.   qed 

Lemma 12 Intuitive interpretations of ‘⊗’ and ‘&’ 

a) P1 ⊗ P2  ≡  (P1 & P2) ♦ (P2 & P1)     (non-discrimination theorem for Pareto) 
b) If P1 = (A, <P1, ≅P1) and P2 = (A, <P2, ≅P2), where ≅P1 and ≅P2 are the same or ≅P1 is trivial, then:  

P1 & P2  ≡  P1                 (discrimination theorem for prioritization)   
 
Proof: 

a) Let P := P1 ⊗ P2 and P* := (P1 & P2) ♦ (P2 & P1). For all x = (x1, x2), y = (y1, y2) ∈ dom(A1) × dom(A2) after hav-
ing done some Boolean algebra transformations we can state: 

x <P* y    iff   x <P y  ∨  ((x1 ≅P1 y1 ∧  x1 <P1 y1) ∧ (x2 ≅P2 y2  ∧  x2 <P2 y2))    
Due to the SV-properties in Definition 9 we can continue: 

            iff   x <P y  ∨  (false ∧  false)   iff   x <P y        
x ≅P* y    iff   x ≅P1&P2 y  ∧  x ≅P2&P1 y   iff   x1 ≅P1 y1  ∧  x2 ≅P2 y2  ∧  x2 ≅P2 y2  ∧  x1 ≅P1 y1 

iff   x1 ≅P1 y1  ∧  x2 ≅P2 y2  iff   x ≅P y   
 

b) Note that the case of overlapping attribute sets in Definition 11b applies: 
For all x, y ∈ dom(A), x ≠ y, we get:    x <P1&P2 y   iff   x <P1 y  ∨ (x ≅P1 y ∧  x <P2 y)    [*] 
In case of P1 = (A, <P1, ≅A), P2 = (A, <P2, ≅A) we can continue [*]: 

              iff   x <P1 y  ∨  (x ≅A y  ∧   x <P2 y)   iff   x <P1 y  ∨  false   iff   x <P1 y     
In case of P1 = (A, <P1), P2 = (A, <P2, ≅P2) we can continue [*]: 

              iff   x <P1 y  ∨  (x = y  ∧   x <P2 y)   iff   x <P1 y  ∨  false   iff   x <P1 y     
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For x = y irreflexivity yields: x <P1&P2 y   iff   false iff    x <P1 y     
 x ≅P1&P2 y   iff   x ≅P1 y  ∧  x ≅P2 y        [**] 

In case of P1 = (A, <P1, ≅A), P2 = (A, <P2, ≅A) we can continue [**]:  
                   iff   x ≅A y  ∧  x ≅A y   iff   x ≅A y   

In case of P1 = (A, <P1), P2 = (A, <P2, ≅P2) we can continue [**]: 
                             iff   x = y  ∧  x ≅P2 y    iff   x = y     qed 
 
This theorem is an algebraic support for the intuitive interpretation that: 

a) Pareto construction P1 ⊗ P2 treats both preferences as equally important. 
b) Prioritized construction P1 & P2 treats P1 as more important than P2. Under the given conditions the winner P1 even 

“takes it all”. 

Example 16 Prioritization: The winner takes it all  …  sometimes 

We study P1 := POS(A, {1, 2, 3}, ≅P1) and P2 := POS(A, {1, 2}, ≅P2), where dom(A) = {1, …, 6}.  
Now let R(A) = {2, 3, 4} ⊆ dom(A) and consider P := P1 & P2 . 
 
• Case 1:    x ≅P1 y  iff  x ≅P2 y iff  x, y ∈ {1, 2} ∨  x, y ∈ {3} ∨  x, y ∈ {4, 5, 6}  

Our proposition applies, yielding that σ[P](R) = {2, 3}, which are all of P1’s favorites in R. Note that here 2 and 3 
are not substitutable. 
 

• Case 2:    Let  x ≅P1 y   iff   x, y ∈ {1, 2, 3} ∨  x, y ∈ {4, 5, 6},  // ≅P1 is regular 
           let   x ≅P2 y   iff   x, y ∈ {1, 2} ∨  x, y ∈ {3, 4, 5, 6}.  // ≅P2 is regular 

Lemma 12b does not apply here, hence: σ[P](R) = {2}. Note that now 2 and 3 are substitutable for P1. Therefore 
only that one favored by P2 turns up in σ[P](R).        ☼ 

 
As a new law we present a sort of idempotent behavior, nicely demonstrating once more the intuitive nature of our 

framework and its technical flexibility, allowing complex preference construction on overlapping sets of attributes. 

Lemma 13 “Idempotency” for prioritized and Pareto preference construction 

a) P1 & P2  ≡  P1 & (P1 ⊗ P2) 
b) P1 ⊗ P2  ≡  (P1 ⊗ P2) & P1 

 
Proof: We assume preferences P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2). 

a) Let P := P1 & (P1 ⊗ P2). Then P is defined of the set of attributes A = A1 ∪ (A1 ∪ A2) = A1 ∪ A2. This means that 
in Definition 11b the case of overlapping attribute sets applies. 

 
 (x1, x2) <P (y1, y2)     iff   x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  (x1, x2) <P1⊗P2 (y1, y2)) 
        iff   x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  ((x1 <P1 y1  ∧  (x2 ≅P2 y2  ∨  x2 <P2 y2))  ∨ 

      (x2 <P2 y2  ∧  (x1 ≅P1 y1  ∨  x1 <P1 y1)))) 
Due to our SV-properties we can continue:      

             iff   x1 <P1 y1  ∨  (false ∨ (x1 ≅P1 y1  ∧  x2 <P2 y2  ∧  (x1 ≅P1 y1  ∨  x1 <P1 y1))) 
        iff   x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  x2 <P2 y2  ∧  (x1 ≅P1 y1  ∨  x1 <P1 y1)) 

Again, due to our SV-properties we can continue:      
        iff   x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  x2 <P2 y2  ∧  x1 ≅P1 y1)  ∨  false 
        iff   x1 <P1 y1  ∨  (x1 ≅P1 y1  ∧  x2 <P2 y2)   iff   (x1, x2) <P1&P2 (y1, y2) 
 

b) Let P := (P1 ⊗ P2) & P1. Then P is defined of the set of attributes A = (A1 ∪ A2) ∪ A2 = A1 ∪ A2. This means that 
the case of overlapping attribute sets applies again. 

 
 (x1, x2) <P (y1, y2)     iff   (x1, x2) <P1⊗P2 (y1, y2)  ∨  ((x1, x2) ≅P1⊗P2 (y1, y2)  ∧  x1 <P1 y1)   
        iff   (x1, x2) <P1⊗P2 (y1, y2)  ∨  (x1 ≅P1 y1  ∧  x2 ≅P2 y2 ∧  x1 <P1 y1)   

Due to our SV-properties we can continue:      
             iff   (x1, x2) <P1⊗P2 (y1, y2)  ∨  false   iff   (x1, x2) <P1⊗P2 (y1, y2)  qed 
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An intuitive reading of these algebraic properties is the following:  
Repeating a preference in a less important argument does not change anything. 

(A German saying would express this as “Getretener Quark wird breit nicht stark.”) 
 

Now we list a series of further useful laws, given under Proposition 3 in [13]. 

Lemma 14 Further useful preference algebra laws 

• Laws for dual preference construction   
a) (P∂)∂  ≡  P  
b) (P1 ⊕ P2)

∂  ≡  P2
∂  ⊕ P1

∂ 
c) POS(A, V, ≅A)∂  ≡  NEG(A, V, ≅A),  NEG(A, V, ≅A)∂   ≡  POS(A, V, ≅A) 
d) HIGHESTd(A, ≅A) ≡ LOWESTd(A, ≅A)∂ 

• Laws for intersection preference construction 
e) P ♦ P   ≡  P 
f) P ♦ Pδ  ≡ A↔   for the anti-chain A↔ = (A, ∅ , ≅ P) 
g) If P = (A, <P, ≅ P), then P ♦ A↔  ≡  A↔   for the anti-chain A↔ = (A, ∅ , ≅ P). 

• Laws for Pareto preference construction 
h) P ⊗ P   ≡  P 
i) If P = (A, <P, ≅ P), then P ⊗ A↔ ≡ A↔  for the anti-chain A↔ = (A, ∅ , ≅ P)  
j) P ⊗ P∂  ≡  A↔  for the anti-chain A↔ = (A, ∅ , ≅ P) 

• Laws for prioritized preference construction 
k) If P1 and P2 are chains, then P1 & P2 is a chain. 
l) If P = (A, <P, ≅ P), then P & A↔

  ≡ P for the anti-chain A↔ = (A, ∅ , ≅ P). 
m) P & P∂   ≡  P 
n) If P = (A, <P, ≅ P), then P groupby A ≡  A↔ for A↔ = (A, ∅) or A↔ = (A, ∅, ≅ P). 

 
Proof: We present only those parts not covered already by [13]. 

a) It can be proved that ≅P is SV-relation for P  iff   ≅P is SV-relation for P∂. Therefore we have: 
 ≅(P∂)∂  is SV-relation for (P∂)∂   iff  ≅(P∂)∂  is SV-relation for P∂

   iff   ≅(P∂)∂  is SV-relation for P 
b)              x ≅(P1 ⊕ P2)∂  y  iff  x ≅P1 ⊕ P2  y  iff  x ≅P1 y  ∨  x ≅P2 y  iff  x ≅P1∂ y ∨  x ≅P2∂ y  iff  x ≅P1∂  ⊕ P2∂ y  
c) Given P1 := POS(A, V, ≅A) and P2:= NEG(A, V, ≅A),  then from [13] we know that: 

           P1  ≡  V↔ ⊕ other-set↔ and P2 ≡  other-set↔ ⊕ V↔ 
   Thus:      P1

∂  ≡  (V↔ ⊕ other-set↔)∂  ≡  (other-set↔)∂ ⊕ (V↔)∂  ≡  other-set↔ ⊕ V↔  ≡ P2 
           P2

∂  ≡  (P1
∂)∂  ≡  P1 

d) Let P1 := LOWESTd(A, ≅A) and P2 := HIGHESTd(A, ≅A). 
            x <P1∂ y   iff   y <P1 x  iff   {if  d = 0 then x < y else distinfA(x) / d <  distinfA(y) / d} 

  Applying the duality principle for partially ordered sets we can continue:   
             iff   {if  d = 0 then x < y else distsupA(y) / d <  distsupA(x) / d}  iff    x <P2 y 

         Since ≅P1 and ≅P2 are identical by assumption we are done.  
e) x ≅P♦P y    iff   x ≅P y ∧  x ≅P y   iff   x ≅P y  
f) x ≅P♦Pδ y   iff   x ≅P y  ∧  x ≅Pδ y   iff  x ≅P y  ∧  x ≅P y  iff   x ≅P y   
g) x ≅P♦A↔  y  iff   x ≅P y ∧  x ≅P y   iff   x ≅P y  

Case h), i, and j) are direct corollaries from Lemma 7: 
h) P ⊗ P   ≡  P ♦ P   ≡  P 
i) P ⊗ A↔  ≡  P ♦ A↔  ≡  A↔  
j) P ⊗ P∂  ≡  P ♦ P∂  ≡  A↔  
k) If P1 and P2 are chains, then ≅P1 and ≅P2 are restricted to the trivial SV-relation ‘=’.  
l) Immediate from Lemma 12b. 
m) ≅P is identical to ≅P∂, hence Lemma 12b applies. 
n) Immediate from Lemma 12b, since ‘P groupby A’ is a synonym for A↔ & P.    qed 
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9.5  Material related to section 6 

Proposition 4 (see section 6.1) BMO-sizes of SCOREd are non-monotonic in d. 

Proof: Assuming d2 > d1 > 0, this effect is due to the following property: 
 

- x <Pd1 y  iff   f(x)/d1 < f(y)/d1  implies   f(x)/d1 <  f(y)/d1  iff  f(x)/d2 <  f(y)/d2 
             implies   f(x) /d2  ≤  f(y)/d2  iff  x <Pd2 y ∨ x ||Pd2 y 

- Assuming in addition that f(x) < f(y): 
x ||Pd1 y  iff   f(x)/d1 = f(y)/d1   

          implies  0 ≤ (f(y) − f(x))/ d1 ≤ 1 implies 0 ≤  (f(y) − f(x))/ d2 ≤ 1 
       implies  f(x) /d2  ≤  f(y)/d2  iff   x <Pd2 y ∨ x ||Pd2 y 

 
As a net effect we have a non-monotonic behavior: If value x is not in the BMO-set for d1, it may get into it for some d2 
> d1. On the other hand, if x is in the BMO-set for d1, then there is no guarantee that x stays in it for d2 > d1.  qed 

Example 17 BMO-sizes for varying family parameter d 

We study Pd := SCOREd(A, f) for a given relation R(A) = {a1, a2, a3}, where f(a1) = 2.5, f(a2) = 3.2 and f(a3) = 3.5. Let’s 
define BMO-size(d) := card(σ[Pd](R)). 
 

- d1 = 1.0: f(a1) / d1  =  2.5/1.0  =  2.5   =  3, 
f(a2) / d1  =  3.2/1.0  =  3.2   =  4, 
f(a3) / d1  =  3.5/1.0  =  3.5   =  4,  yielding BMO-size(d1) = 2 

- d2 = 1.7: f(a1) / d2  =  2.5/1.7  =  1.59  =  2, 
f(a2) / d2  =  3.2/1.7  =  1.88  =  2,  
f(a3) / d2  =  3.5/1.7  =  2.06  =  3,  yielding BMO-size(d2) = 1 

- d3 = 2.0: f(a1) / d3  =  2.5/2.0  =  1.25  =  2, 
f(a2) / d3  =  3.2/2.0  =  1.60  =  2, 
f(a3) / d3  =  3.5/2.0  =  1.75  =  2,  yielding BMO-size(d3) = 3 

 
Thus d1 ≤ d2 does not imply that BMO-size(d1) ≤ BMO-size(d2).      ☼ 

Proposition 6 Proposition 5 (see section 6.2) Properties of ≽P  

a) ≽P is a non-strict partial order on the set of all SV-relations of a preference P. 
b) If P is constructed by SCOREd, then the regular (trivial) SV-relation is the greatest (smallest) element of ≽P. 

 
Proof: 

a) Immediate, since logical implication is reflexive, transitive and asymmetric: 
≅P ≽P ≅P 
≅3 ≽P ≅2 ∧ ≅2 ≽P ≅1  implies  ≅3 ≽P ≅1 
≅1 ≽P ≅2 ∧ ≅2 ≽P ≅1   implies  ≅1 ≡ ≅2 

b) For a regular SV-relation of SCOREd (cmp. Proposition 3) all unordered values are substitutable. On the other 
hand, for every SV-relation substitutable values must be unordered (Definition 9a). For the trivial SV-relation no 
two different values are substitutable.           qed 

Theorem 5 (see section 6.2) Monotonicity of BMO-sizes for ⊗ and & 

Consider P1 = (A1, <P1, ≅1), P1* = (A1, <P1, ≅1*), differing only wrt the SV-relation, and similarly P2 = (A2, <P2, ≅2), P2* = 
(A2, <P2, ≅2*). 

a) σ[P1 ⊗ P2](R)  ⊆  σ[P1* ⊗ P2*](R)  if  ≅1 ≽P1 ≅1* and   ≅2 ≽P2 ≅2* 

b) σ[P1 & P2](R)  ⊆  σ[P1* & P2](R)    if  ≅1 ≽P1 ≅1*    
c) σ[P1 & P2](R)  ⊆  σ[P1 ⊗ P2](R) 
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Proof: 

a) If  ≅1 ≽P1 ≅1* and  ≅2 ≽P2 ≅2*, then from Definition 11a it is clear that: 
        for all x, y ∈ dom(A1 ∪ A2):    x <P1* ⊗ P2* y implies x <P1 ⊗ P2 y 

     Then according to [7], Theorem 5.5, the proof is immediate. 

b) If  ≅1 ≽P1 ≅1*, then from Definition 11b it is clear that: 
        for all x, y ∈ dom(A1 ∪ A2):    x <P1* ⊗ P2 y implies x <P1 ⊗ P2 y 

     Again according to [7], Theorem 5.5, the proof is immediate. 
c) Direct corollary from Lemma 12a: 

(x1, x2) <P1 ⊗ P2_new (y1, y2)   iff    (x1, x2) <P1 & P2_new (y1, y2)  ∧  (x1, x2) <P2 & P1_new (y1, y2) 
    implies   (x1, x2) <P1 & P2_new (y1, y2)      qed 

Theorem 6 (see section 6.2) Smallest / largest BMO-sizes for ⊗ and & 

Consider SCOREd preferences P1 = (A1, <P1, ≅P1) and P2 = (A2, <P2, ≅P2). Varying ≅P1 and ≅P2 we have: 
a) ≅P1 and ≅P2 being trivial yield largest BMO-sizes for σ[P1 ⊗ P2](R) and σ[P1 & P2](R), resp. 
b) ≅P1 and ≅P2 being regular yield smallest BMO-sizes for σ[P1 ⊗ P2](R) and σ[P1 & P2](R), resp. 

 
Proof: Direct corollary from Theorem 5 and Proposition 5b.        qed 

 
 
  
 


