
Reference Architecture, Design
of

Cascading Style Sheets Processing Model

Mohamadou Nassourou
Department of Computer Philology & Modern German Literature

University of Würzburg
Am Hubland

D - 97074 Würzburg
mohamadou.nassourou@uni-wuerzburg.de

Abstract: The technique of using Cascading Style Sheets
(CSS) to format and present structured data is called CSS
processing model. For instance a CSS processing model for
XML documents describes steps involved in formatting and
presenting XML documents on screens or papers.
Many software applications such as browsers and XML
editors have their own CSS processing models which are part
of their rendering engines. For instance each browser based
on its CSS processing model renders CSS layout differently, as
a result an inconsistency in the support of CSS features arises.
Some browsers support more CSS features than others, and
the rendering itself varies. Moreover the W3C standards are
not even adhered by some browsers such as Internet Explorer.
Test suites and other hacks and filters cannot definitely solve
these problems, because these solutions are temporary and
fragile.
To palliate this inconsistency and browser compatibility issues
with respect to CSS, a reference CSS processing model is
needed. By extension it could even allow interoperability
across CSS rendering engines.
A reference architecture would provide common software
architecture and interfaces, and facilitate refactoring, reuse,
and automated unit testing. In [2] a reference architecture for
browsers has been proposed. However this reference
architecture is a macro reference model which does not
consider separately individual components of rendering and
layout engines.
In this paper an attempt to develop a reference architecture
for CSS processing models is discussed.
In addition the Vex editor [3] rendering and layout engines, as
well as an extended version of the editor used in TextGrid
project [5] are also presented in order to validate the
proposed reference architecture.

Keywords: CSS, XML, Processing Model, Reference Architecture.

Introduction

The visual appearance of texts and graphics on a display area
is affected by the operating system and screen size of the
machine where it is presented, as well as the applied
formatting technique such as CSS rendering engine. Moreover
graphics libraries normally included in the layout engines
could also affect documents appearance. The operating system
and screen size are out of the scope of this paper.
I will mainly talk about the CSS rendering engines, and
possible solutions to inconsistencies and incompatibility that
exist among them.
Cascading Style Sheets (CSS) is a style sheet language
recommended by W3C [1]. It allows authors and users to

attach style (e.g. fonts, spacing) to structured documents such
as HTML, XML. CSS separates presentation from the content
of documents, thereby simplifying Web authoring and site
maintenance.
In other words CSS defines how structured data could be
displayed independently of their structures.
The technique of using CSS to format and present structured
data is called CSS processing model. For instance a CSS
processing model for XML documents describes steps
involved in formatting and presenting XML documents.

In order to understand the role of a CSS processing model in a
rendering engine, a clear distinction between rendering and
layout engines must be made. For instance browsers engines
do have rendering and layout engine modules.

A rendering engine module transforms graphics elements and
texts that constitute a web document into a raster that can be
displayed on screens or papers, while a layout engine module
has got the role of computing the positions where to display
those textual and graphical elements.
A CSS processing model is part of the rendering engine
module. However it could be split between the two engine
modules as well.

Each browser based on its CSS processing model renders CSS
layout differently, as a result inconsistencies in CSS features
support occur. Some browsers support more CSS features than
others, and the rendering itself varies. Moreover the W3C
standards are not even adhered by some browsers such as
Internet Explorer. Of course there exist some solutions known
as CSS hacks and filters to resolve these inconsistency and
incompatibility problems. Test suites cannot definitely solve
these problems, because test cases cannot be exhaustive.
Therefore these solutions are temporary, very fragile, and
cannot be exhaustive. To solve these problems effectively and
durably, as well as facilitate the usage of CSS for effectively
and unanimously styling structured data in browsers and
WYSIWYG (What You See Is What You Get) editors, a
reference CSS processing model is necessary.
W3C hosts a web editor project called Amaya [20]. Amaya
possesses a CSS processing model which has not been
declared as a reference model for rendering CSS. Therefore no
reference architecture has been so far officially proposed for
CSS processing models. This paper is the first attempt to
propose a reference architecture that W3C could even provide
interface classes for implementing it, and thereby eliminating
the need to interpret its CSS specification.

CSS is fast evolving and becoming omnipresent in several
XML processing technologies, it is therefore important to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online-Publikations-Server der Universität Würzburg

https://core.ac.uk/display/35088722?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

define a reference architecture for CSS processing models in
order to keep backward and forward compatibility between
CSS rendering engines. The reference architecture would
provide common software architecture, and facilitate
refactoring, reuse, and automated unit testing.
In [2] a reference architecture for browsers has been proposed.
However this reference architecture is a macro reference
model which does not consider separately individual
components of rendering and layout engines.
This paper discusses the following points:

a. A reference architecture for CSS processing models
b. An algorithm for implementing CSS processing

model
c. A flowchart of CSS processing model

Additionally rendering and layout engines of the Vex editor
(Visual Editor for XML) [3] and its extended version used in
TextGrid project [5] are also presented in order to validate the
proposed reference architecture.

Rendering Process

In general a rendering engine is a software program that reads
marked up content (such as HTML, XML, etc.), and style
sheet (such as CSS, XSL, etc.), and displays the marked up
content on a media type (e.g: screen, paper) according to
formatting information defined by the style sheet.
In other words a rendering engine requires as input what to
paint, how to paint, and where to paint. The inputs are the
document to be formatted, the formatting document, and the
area or media type where to present the formatted document.

This paper describes the rendering of XML documents with
CSS, and the displaying of the result on a canvas.

For reference sake, the basic CSS syntax is as follows:
selector {property: value}. This is called a CSS rule.
For instance p {color: black} will apply a value of 'black' to
the color property for the text contained in an XML element 'p'
representing the selector.

The rendering process is divided into three steps:

a) Mapping between CSS properties and graphics drawing
methods

This mapping involves establishing correspondences between
CSS properties and graphics (SWT/Swing) drawing functions.
For each CSS property, a drawing function is identified, and is
used to implement it. Then a table holding CSS properties
with their corresponding drawing functions is created.

b) Mapping between CSS selectors and XML elements

An XML document is transformed into a tree structure made
of XML elements. Then comparison between the XML
elements with CSS selector names is made.
If a match is found, CSS properties of the selector will be
applied to the text node of the corresponding XML element.

c) Painting the formatted XML elements on a Canvas

This is where the graphics drawing functions are used to draw
the output on the canvas. Depending on how one would like
the output to be displayed, it is possible to display an element
text node as soon as the matching between a selector and an
XML tag is found, or make a temporary storage to hold
processed elements, and display the result after having
formatted all the elements.

Proposed Reference Architecture

In general software architecture refers to the ways of
designing computer software components, modules and the
communication between them.
A reference architecture is an agreed architecture for a given
domain of knowledge, that provides templates derived from
successful solutions for particular problems.

The Reference Architecture is a kind of layered architectural
diagrams with each layer depending on the layer above it. Its
purpose is to provide common workbenches, and facilitate
refactoring, reuse, and automated unit testing.

Fig. 1 shows the proposed architecture.

 Rendering Engine

 Processing Model

 Fig. 1. A reference architecture for CSS processing model

Description of the Architecture

The proposed architecture comprises a rendering engine, a
layout engine, and an output media.
The rendering engine consists of a processing model and a
Mapper. The processing model produces Labeled Graphics
Lib (Libraries) and Labeled Structured Data (XML elements)
objects. The Mapper establishes correspondences between the
two in order to generate displayable objects, which are passed

Graphics Lib CSS

Parser

 Composer

Labeled Graphics Lib

Structured Data

Parser

 Matcher

Labeled Structured Data

 Mapper

 Output Media

 Layout Engine

Lexer

Tokenizer

Lexer

Tokenizer

to the Layout Engine to perform the actual presentation on a
media type (canvas, paper…). Graphics Lib could be an
SWT/Swing/AWT library, or any other graphics library. In
this case it is an SWT (Standard Widget Toolkit) library.
Structured data could be an XML/HTML document.
The Labeled Graphics Lib component is a table containing
SWT printing functions, and corresponding CSS properties
and values. The mapping between CSS properties (color, font-
size…) and SWT printing functions (drawstring, drawline,…)
produces correspondences between each CSS property and an
SWT output function.
A table (e.g HashMap in Java) could be used to hold CSS
properties as keys and SWT drawing functions as values.

Below is an example of what the table might look like:

CSS properties SWT functions
color: black Drawstring
font-size: 12px Drawstring
text-decoration: underline drawLine
list-style-type: circle drawOval
list-style-type: circle fillOval
border: 1pt solid black fillRectangle
……….. ……….
 Table 1. sample of CSS properties SWT functions mapping

Labeled Structured Data represents the modified XML
document whereby an attribute style is added to each XML
element. The style attribute is made of CSS declarations
(property, value) that have to be applied to the XML element.
This step is important because it assigns to each element some
defined properties including elements having prior no defined
properties, or lower specificity.
In fact rendering CSS is not a trivial task, because it involves
some principles such as cascading, inheritance, and
specificity. These principles are important for selecting the
appropriate CSS properties for a given XML element.
Cascading is concerned with the way styles are assigned to
XML documents. Styles could be attached to an XML
document through external style sheet, embedded styles, or
inline styles.
Inheritance means that properties applied to parent element
are also valid for child element.
Specificity implies that the most specific rule must be used.

The Tokenizer

A Tokenizer known as lexical analyzer splits a stream of text
into tokens, using for instance whitespace (tabs, spaces, line
break, etc). It does not know anything about the meaning or
syntax of expressions.

The Lexer

A Lexer is basically a Tokenizer, which is able to identify
tokens based on their functions. For example it could find out
that one token is a number, another one is a string literal.

The Parser

A parser also called syntactic analyzer takes the stream of
tokens from the Lexer and checks whether it is compliant with

a defined grammar or structure. Then it converts the stream
into an abstract syntax tree or parse tree.
Because of the difficulty to develop context-sensitive parsers,
unifying Lexers and parsers is becoming a common trend. In
other words it is possible to include a Lexer as a module
within a parser.

CSS Parsers

The function of a CSS parser is to construct a CSS object
model for the rules, declarations and selectors contained in the
style sheet.

Simple API for CSS (SAC) [9] is a common API for event-
based CSS parsing defined by the W3C. It is closely modeled
on the SAX API for XML parsers.
SAC 1.3 is implemented in several languages. In java there are
many implementations supporting CSS2 among them:

a. Flute 1.2
b. Batik SAC 1.2 CSS Parser (Apache).
c. CSS Parser (David Schweinsberg).

Batik is smaller and faster than Flute. But Flute is easy to
update, because Parser.jj (JavaCC file) which describes CSS2
grammar is provided. Unfortunately for almost a decade now
the Flute parser has not been officially updated.

The package org.milyn.magger [14] is a CSS Parser that uses
Apache Flute for the SAC parsing and Apache Batik for the
resulting CSS Selector/Condition model. Batik has problems
parsing some CSS rules while Flute does it without difficulty.

CSS parsers such as the above mentioned ones include
Tokenizers/Lexers. However for sake of maintenance and
reusability, it would be recommendable to clearly separate
these components.

As mentioned above SAC is a specification for event-based
CSS parsing. Therefore implementations of SAC are also
event-based parsing systems. However a tree-based approach
specification might be desirable as well, because CSS files are
usually not very big.

XML Parsers

Usually an XML parser reads an XML document, identifies all
the XML elements and transfers the data for further
processing.
There are several XML parsers among them Simple API for
XML (SAX) [12] and Document Object Model (DOM) [13].
DOM is a W3C specification system. However there is no
formal specification for SAX. Moreover there are other
parsers such as Pull-parsers that are similar to SAX, and Data
binding parsers that resemble DOM.

A DOM parser is a tree-based parser that creates a literal tree
in memory, based on the hierarchical structure of the XML
document. It requires loading the entire document before
starting parsing, and a complete parse tree is produced,
regardless of the size of the document. One can navigate and
manipulate the tree until it is cleared from the memory. DOM
is simple and easy to understand, but resource intensive which

might be overcome by using disk space as memory (persistent
DOM).
A SAX parser is an event-based parser, which calls handler
functions when certain events such as finding text node, child
element are encountered. In other words it parses the
document line by line. It doesn't keep the parsed tree in
memory instead a virtual tree is generated. Therefore it is
generally faster and requires fewer resources. However
manipulating, traversing, and serializing XML documents are
hard, because the parsed XML tree is not kept in memory.
Moreover XSLT and XPath which require accessing XML
nodes at any time cannot be used without starting the parsing
operation again.

Any way selecting a parser must be application dependent.

The package org.xml.sax provides classes and interfaces for
SAX. It is a component API of the Java API for XML
Processing.
The package org.w3c.dom provides interfaces for the
Document Object Model (DOM), which is a component API
of the Java API for XML Processing.

The Graphics Lib (SWT)

The package org.eclipse.swt.graphics contains classes that
allow management of graphics resources. The class
org.eclipse.swt.graphics.GC encapsulates all of the drawing
API, including how to draw lines, shapes, text, images, and
filled shapes.
Using a GC one can draw onto a Canvas. A Canvas is a region
of the screen where an application can draw things. It has got a
default method called paint() that must be overridden in order
to perform custom graphics on the canvas. A Canvas
component could also be used to catch input events from a
user.

The Composer

The composer generates composite SWT drawing functions
according to supplied CSS declarations (properties and
values).

The Matcher

Its task is to find out which CSS properties have to be applied
to which XML element. It does that by comparing CSS
selectors with XML tags.

The Mapper

The role of the Mapper is to generate formatted XML objects
containing functions of the Labeled Graphics Lib (SWT) and the
corresponding XML elements.

The Layout Engine

The purpose of the Layout Engine is to create a visual
representation of the formatted XML objects. This visual
representation is a nested hierarchy of rectangular boxes,
implemented as a tree of objects. A rectangular box is an
implementation of the W3C box model.

The Output Media

It is the target medium (e.g., print the results on papers,
display them on the screen such as canvas, render them as
speech, etc.). In this case a canvas is used for rendering the
structured data (XML document).

Design of the Processing Model

Software design involves usually components and algorithms
implementation issues as well as the architectural view.
Following are an algorithm as well as a flowchart describing
the working principle of a CSS processing model.

A Sample Practical Algorithm

Following steps could be implemented:

1. First parse the CSS file using Flute/Batik/… which
implements the SAC recommendation, Create a
HashMap of rules with each one containing triplet of
[Selector][property(ies)][value(s)].

2. Then parse the XML document using SAX/DOM/…
and create a tree structure of the document. Each
element of the tree is made of
[Element][attribute(s)][value(s)]

3. Compare each [Element] with each [Selector]
4. If a match is found
5. Check if it is Pseudo-element, if it is not go to step 10
6. Check if ‘content’ property is present, if it is there go

to step 9
7. Check if more properties are there, if yes then go to

step 10
8. Go to step 3 next element
9. Evaluate value of content property. Eval() is a

function that must be implemented to evaluate the
value of the content property. For instance counter ()
function requires counting of some elements

10. Then apply corresponding SWT/Swing/AWT
drawing methods for each property (including
inherited ones) to the text node of the XML element,
and pass the drawing functions with the text node to
the Layout Engine for display

11. Repeat steps 3 to 10 till all the elements and selectors
are covered

The HashMap holding CSS selectors and declarations must be
correlated with the SWT graphics. All the CSS declarations
(property, value) must be mapped to drawing primitives of the
SWT graphics. This is explained with table 1.

The following flowchart provides more details about the
processing model.
In the flowchart the Analyzer comprises Tokenizer, Lexer, and
Parser. The output of the CSS and XML analyzers are
collections of CSS rules [Selector][property][value] and XML
DOM [Element][attribute][value] respectively. Pty stands for
property, Val for value, and attr for attribute.

 The following Flowchart of the Processing Model shows
stepwise how the model is executed.

 Fig. 2. Flowchart of the processing model

CSS XML

Selector
Pty,Val

Element
Attr,Val,Text

Selector

Element

Eval(Val), Val of
other properties

 Apply SWT on Text

Val of properties

Canvas / Storage

Parent node /
default values

A

B

B

A

Stop

Next selector

Content
property
 ?

More selectors?

=
?

No

Yes

No Yes Yes No

Yes No

More elements?

 Layout Engine

Analyzer Analyzer

Pseudo-element?

No

Yes

A

More
properties
 ?

No

Yes

Validation of the Reference Architecture

To recover the architecture of the CSS processing model used
in the Vex editor [3] and its extended version implemented in
TextGrid project, I applied pattern-based techniques. I first
built the above described conceptual reference architecture,
then the source code of the Vex editor was searched to find
instances of those patterns in a top-down manner. It might be
important to mention that I could have used a bottom-up
strategy, which involves a systematic analysis of CSS
rendering engines in order to build the reference architecture.

Vex is an editor for XML documents based on the Eclipse
platform [4]. It hides the raw XML tags from the user,
providing instead a wordprocessor-like interface.
The TextGrid [5] project provides a multipage editor
environment to users. A source editor which uses the
Structured Source Editor (SSE) document object model
(DOM) of the Web Standard Tools (WST) [15], and the Vex
editor whose DOM is derived from the WST’s DOM. This
implies that the Vex editor depends on the source editor to
perform its task.
Vex uses CSS to style the text in the editor. However its
documentation does not include a description of the
architecture of its CSS processing model. Its layout engine has
been introduced as an implementation of the W3C CSS box
model [7].

Following is a description of the Vex Engine made of
rendering and layout engines.

The Vex Engine

The Vex engine comprises a rendering and a layout engine.
The rendering engine is exactly the processing model. The
Matcher component produces Labeled XML objects by
comparing CSS selectors with XML tags. Contrary to the
proposed reference architecture, its Mapper is made part of the
Layout Engine. The Layout Engine draws XML elements on
the Canvas by mapping the Labeled XML objects to SWT
graphics primitives.

Following is a diagram of the Vex engine.

 Processing Model

Fig. 3. Architecture of Vex Engine

Batik [11] was first used to parse CSS files, and then replaced
with Flute [9], because Batik seems to have problems parsing
some CSS where Flute does it without difficulty.
Flute and Batik parsers do not present Tokenizers or Lexers
separately, but rather consider them as modules of the parser.
As mentioned previously this approach is undesirable as far as
maintenance and reuse are concerned.
Moreover making the Mapper part of the Layout Engine
increases the difficulty of refactoring and reuse. Therefore I
would suggest a modification of the Vex Layout Engine,
which does not even comply with the previous definition of
layout engine.
If you are interested in understanding Vex CSS rendering and
layout engines, please have a look at [17].

The standard Vex editor uses SAX to generate an object
model for XML documents.

The TextGrid’s Vex Editor

The data model of the extended Vex in TextGrid project uses
the SSE’s DOM of the WST. In fact the sse.core package
provides a method called IModelManager that can be used to
share structured document between many clients at runtime.
This is how the Vex editor is synchronized with the source
editor to retrieve its DOM.
Obviously this is a nice approach because there is no need to
parse and reparse XML documents.
However as I pointed it out before, this might not be the best
approach to do it for the following reasons:

1. The Vex editor does not function without the source
editor, thereby limiting the use of the editor.

2. It is not clear to me so far which type of parser the
SSE DOM uses. Is it a tree-based or an event-based
one?
This is important because of memory and parsing
time issues. From my own investigations it appears
that it uses a tree-based approach, which I need to
confirm from the SSE source code. Simply try
opening a very big XML file (e.g > 3 Megabytes),
the editor will hang.

3. The SSE data model might not be adequate for Vex
because SSE DOM is a hierarchical one, while Vex
looks at XML documents as sequence of words.
CSS3 properties (e.g calc(),…etc) might not be easily
implementable.

The tree-based approach could be improved by making the
DOM persistent, that is storing the nodes of the DOM as
objects in an object database. Because disk storage access is
slower than memory access, it is a challenge to define a
method for efficient persistence. Usually binary representation
of the document is used.

The Vex Layout Engine

The purpose of the Vex Layout Engine is to create a visual
representation of a document given a CSS stylesheet.
This visual representation is a nested hierarchy of rectangular
boxes, implemented as a tree of objects.

SWT/Swing CSS

Flute/Batik

XML

SAX/DOM

 Matcher

 Labeled XML Objects

 Canvas

 Layout Engine

There are two main types of box. Block boxes containing
other boxes and stack their children vertically. Inline boxes
whose children are stacked horizontally and are splittable to
wrap content into series of lines.

After having examined the CSS rendering process of the Vex
editor in order to validate the proposed reference architecture,
some browsers’ CSS Rendering Engines such as Gecko,
Webkit, KHTML were briefly investigated. However I have
planned to thoroughly analyze their CSS processing models in
the near future.

CSS design principles

In order to make CSS achieve its goals, W3C recommends the
use of some design principles such as:

• Forward and backward compatibility between all
CSS levels

• Complementary to structured documents such as
HTML and XML applications

• Vendor, platform, and device independence
• Maintainability
• Simplicity
• Network performance
• Flexibility
• Richness
• Alternative language bindings
• Accessibility

Discussion and Conclusion

The lack of reference architecture and design for CSS
processing models has led to a strong competition between
Mozilla's Gecko layout engine used in Firefox, the WebKit
layout engine used in Apple Safari and Google Chrome, the
similar KHTML engine used in KDE's Konqueror browser,
and Opera's Presto layout engine. Unfortunately none of them
has perfectly implemented the W3C CSS 2.1 specification as
well as the upcoming CSS 3 level.

It is therefore very important to agree on a common
architecture and design for CSS processing models.

Of course there are already some solutions known as CSS
hacks and filters to inconsistency and incompatibility
problems. Test suites for guarantying interoperability among
browsers’ rendering engines have also been introduced.
However these solutions are temporary, very fragile, and
cannot be exhaustive.

A reference architecture for CSS processing model as a
solution to browsers and XML editors inconsistencies and
compatibility issues has been discussed. An algorithm and a
flowchart describing how basically CSS rendering engines
work have been presented. The described working principle is
extensible.
The proposed reference architecture has been validated with
the help of CSS rendering engine of the Vex editor, as well as
briefly using KHTML, Gecko and Webkit rendering engines.

Additionally the Vex editor used in the TextGrid project has
also been explained.
The aim of this research was to find out whether a single CSS
rendering engine for all browsers was possible. The results of
this paper show that it is in fact doable, if the W3C
specification is followed and a reference architecture for CSS
rendering engine is agreed upon.

Future Work

Implementation of the proposed architecture as well as the
design patterns will be the next steps of this research.
Additionally, thorough examination of some browsers’ CSS
Rendering Engines such as Gecko, Webkit, KHTML, and
Presto in order to further validate the architecture will also be
performed. A basic standalone CSS debugger would also be
designed and implemented.
Finally knowing that CSS is constantly evolving, an
interactive tool for automatically updating the implemented
architecture would be developed. Even though it might be a
separate research on its own, it would however facilitate
comprehension and extension of the software.

References

[1] http://www.w3.org/Style/CSS/
[2] Alan Grosskurth and Michael W. Godfrey. A Reference
 Architecture for Web Browsers. Proceedings of the
 IEEE International Conference on Software Maintenance,
 2005
[3] http://vex.sourceforge.net/index-old.html
[4] http://www.eclipse.org/
[5] http://www.textgrid.de/
[6] http://www.tei-c.org/Guidelines/P5/
[7] http://www.w3.org/TR/CSS2/box.html
[8] http://en.wikipedia.org/wiki/Web_browser_engine
[9] http://www.w3.org/Style/CSS/SAC/
[10] http://www.w3.org/TR/CSS21/intro.html
[11] http://xmlgraphics.apache.org/batik/javadoc/org/apache/
 batik/css/parser/package-summary.html
[12] http://en.wikipedia.org/wiki/Simple_API_for_XML
[13] http://en.wikipedia.org/wiki/Document_Object_Model
[14] http://www.milyn.org/javadoc/v1.0/magger/org/milyn/ma
 gger/CSSParser.html
[15] http://www.eclipse.org/webtools/wst/components.html
[16] http://en.wikipedia.org/wiki/Comparison_of_layout_
 engines_(CSS)
[17] To appear: Mohamadou Nassourou (2010),
 Understanding the Vex Engine, in (http://www.opus-
 bayern.de/uni-wuerzburg/abfrage_suchen.php?la=de),
 University of Würzburg
[18] http://www.wiki.gis.com/wiki/index.php/Cascading_
 Style_Sheets
[19] Architecture and evolution of the modern web browser,
 Alan Grosskurth, Michael W. Godfrey David R. Cheriton
 School of Computer Science, University of Waterloo,
 Waterloo, ON N2L 3G1, Canada,
 http://grosskurth.ca/papers/browser-archevol-
 20060619.pdf
[20] http://www.w3.org/Amaya/

	Keywords: CSS, XML, Processing Model, Reference Architecture.
	Introduction
	Usually an XML parser reads an XML document, identifies all the XML elements and transfers the data for further processing.

	The package org.xml.sax provides classes and interfaces for SAX. It is a component API of the Java API for XML Processing.
	The package org.w3c.dom provides interfaces for the Document Object Model (DOM), which is a component API of the Java API for XML Processing.
	After having examined the CSS rendering process of the Vex editor in order to validate the proposed reference architecture, some browsers’ CSS Rendering Engines such as Gecko, Webkit, KHTML were briefly investigated. However I have planned to thoroug...
	CSS design principles
	The aim of this research was to find out whether a single CSS rendering engine for all browsers was possible. The results of
	this paper show that it is in fact doable, if the W3C specification is followed and a reference architecture for CSS rendering engine is agreed upon.

	Implementation of the proposed architecture as well as the design patterns will be the next steps of this research. Additionally, thorough examination of some browsers’ CSS Rendering Engines such as Gecko, Webkit, KHTML, and Presto in order to further...
	Finally knowing that CSS is constantly evolving, an interactive tool for automatically updating the implemented architecture would be developed. Even though it might be a separate research on its own, it would however facilitate comprehension and exte...

