
Doing Webservices Composition by Content-based Mashup
Example of a Web-based Simulator for Itinerary Planning

Mohamadou Nassourou
Department of Computer Philology & Modern German Literature

University of Würzburg
Am Hubland

D - 97074 Würzburg
mohamadou.nassourou@uni-wuerzburg.de

Abstract: Webservices composition is traditionally carried
out using composition technologies such as Business Process
Execution Language (BPEL) [1] and Web Service
Choreography Interface (WSCI) [2]. The composition
technology involves the process of web service discovery,
invocation, and composition. However these technologies are
not easy and flexible enough because they are mainly
developer-centric. Moreover majority of websites have not yet
embarked into the world of web service, although they have
very important and useful information to offer. Is it because
they have not understood the usefulness of web services or is it
because of the costs? Whatever might be the answers to these
questions, time and money are definitely required in order to
create and offer web services. To avoid these expenditures,
wrappers [7] to automatically generate webservices from
websites would be a cheaper and easier solution. Mashups
offer a different way of doing webservices composition. In web
environment a Mashup is a web application that brings
together data from several sources using webservices, APIs,
wrappers and so on, in order to create entirely a new
application that was not provided before.
This paper presents first an overview of Mashups and the
process of web service invocation and composition based on
Mashup, then describes an example of a web-based simulator
for navigation system in Germany.

Keywords: Mashup, Webservice Composition, Wrappers

Introduction

A Mashup is a website or an application which integrates data
from several sources in order to provide a more useful and
concise service. They create composite web applications in an
ad hoc manner.
Mashups retrieve data from content providers through
APIs/Webservices, Web feeds (RSS,Atom) and Screen
Scraping. Originally they were used in music for combining
tracks from different artists. A Mashup could be viewed as a
software engineering design pattern that provides a simplified
interface to a larger body of code.

Majority of websites have not embarked into the world of web
service although they have very important and useful
information to offer. Is it because they have not understood the
usefulness of web services or is it because of the costs?

Whatever the answers to these questions might be, time and
money are definitely required in order to create and offer web
services. To avoid these expenditures, wrappers [3] to
automatically generate webservices from websites would be a
cheaper and easier solution.

In fact offering a webservice implies simply providing data
that could be automatically processed by a machine. Every
XML document is automatically processable by any machine.
So the information that is dedicated to human consumption
could be processed by machines as well, if it is formatted as
XML. Wrappers to extract relevant information are a good
solution for clients.

Background

A Mashup is a web application that integrates data from
several sources into a single completely new service. A
Mashup site is supposed to access data from other sites and
process that data in order to add its value. They retrieve data
from content providers through APIs/Webservices, Web feeds,
and screen scraping technique.

Content aggregation has been around decades ago. Traditional
dynamic web applications are usually made of aggregated
contents. Portals are an example of older content integration
technique. They use portlets to generate information that are
combined into a single web page. The portlets could be locally
hosted or remotely accessed from another server. However
portals combine information basically on the server side. The
aggregated contents are presented separately without
overlapping and remodeling.

Mashups to the contrary offer a more robust and sophisticated
content aggregation both on the client side as well as on the
server side. In other words they present completely new
structured hybrid contents.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online-Publikations-Server der Universität Würzburg

https://core.ac.uk/display/35088624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Architecture of a Mashup

In web environment a Mashup application comprises three
parts: Content Providers, Mashup site, and Client’s Web
Browser.

Figure.1 shows a concise architecture of a Mashup

 Figure.1 Architecture of a Mashup

Content Providers expose their services through
APIs/Webservices, Web feeds, or HTML pages. Then a
Mashup Site calls the relevant API or develops Screen
Scraping method such as wrappers to retrieve needed data,
which are either integrated on the server or sent to Client's
Web Browser for mashing and presenting.

a) Content Providers

They offer data that client browsers need to retrieve and
combine. Data are obtained using API/webservice or
provider’s web pages contents (HTML documents).

b) Mashup Site.

This is the site which hosts the Mashups. Often Mashups use a
combination of both server and client-side programming
languages (e.g PHP, Javascript) to perform their data
aggregation.

c) Client’s Web Browser

This is the user interface to the Mashup. Several Mashups use
client-side programming languages (e.g Javascript) to
combine and compose their contents.

Types of Mashup
Basically there are three types of Mashup.

a) Presentation-level Mashups
These are based on web clipping technique. They make use of
existing web application interfaces.

b) Logic-based Mashups
These are Mashups which borrow functionality of any web-
enabled application.

c) Content-based Mashups
Content-based Mashups rely mostly on screen scraping
technique to assemble data from any web-enabled data
sources.

Mashup Operators

In a RESTful [10] style webservice, the process of creating a
Mashup involves the following operations:

a) Retrieve representation of some resources.
b) Filter those representations.
c) Pipe the filtered representations to next steps.
d) Compose / Combine the filtered representations in different
 models.
e) Select one model of the composition results.
f) View the selected model.

In general a Mashup connects to several websites, retrieves
representations of some resources, filters each one of them.
Then it combines them in different ways. In fact web service
composition theory states that the output of one service is used
as the input to another one. After that it selects the appropriate
composition according to its defined objectives. Finally it
presents the result to the client's web browser or save it in any
relevant format for further use.

A Practical Web-based Simulator for Itinerary
Planning in Germany

This section explains how to create a novel and useful web
service out of the following services: Google Map API [4],
YellowMap web service [5], and RVM (Rhein-Main-
Verkehrsverbund) web site [6]. The created web service is
invoked by the simulator which displays the result as shown in
Fig. 2.

Fig. 2 shows the graphical user interface of the simulator with
a sample result.

 Fig.2 Graphical User Interface of the Simulator

Google Map APIs offer many operations. I was mainly
interested in displaying the transportation connections from
departure to destination localities on the map. GoogleMap is
displayed within an HTML document. To use the map a key
which is obtained through online registration at [7] is required.
Once the key is received the following sample Javascript code
shows how to call the map and customize it:
<html>
<head>
<script
src='http://maps.google.com/maps?file=api&v=2&k
ey=ABQIAAAAPOtupwlC6PfGjGrTwq9ykxTpRofnNLHdS2
OYZupVNjxiHHlQMhQzubJ_5N1qnGKX05tjUKJbLHAv4w'
type='text/javascript'>
</script>
<script type='text/javascript'>
var map = new
GMap(document.getElementById('map_canvas'));
map.centerAndZoom(new GPoint(8.660002, 49.878916), 2);
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
</script>
</head>
<body>
<div id='map_canvas' style='width: 1000px; height:
700px'></div>
</body>
</html>

The retrieval of the coordinates of a given location from
Google Map API was done with the following sample PHP
program:

$station = ''Darmstadt Hauptbahnhof'';
$url =
"http://maps.google.com/maps/geo?q=$station&output=csv&k
ey=ABQIAAAAPOtupwlC6PfGjGrTwq9ykxTpRofnNLHdS2
OYZupVNjxiHHlQMhQzubJ_5N1qnGKX05tjUKJbLHAv4w
";
$ch = curl_init();
curl_setopt($ch, CURLOPT_URL, $url);
curl_setopt($ch, CURLOPT_VERBOSE, 1);
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
$response = curl_exec($ch);
curl_close($ch);
$data = explode(",", $response);
$latitude = $data[3];
$longitude = $data[2];

The connection and query are made using CURL library [11].

From YellowMap's web service, the address of a location
given its coordinates, and pedestrian route are obtained.
The RMV web site provides full transportation connections
from departure to destination localities.
However it does not offer pedestrian route direction.
To retrieve the needed information from RMV web site I
wrote a wrapper which has been explained in [8].

Briefly the wrapper operates as follows:
A query with departure and destination stations as parameters
was sent to RMV web site. Then the web site returned a result
in HTML form containing the route directions. After parsing
the page, relevant information such as departure station,
arrival station, departure time, arrival time, locomotives (bus,
tram, train, pedestrian) were obtained.
The input to GoogleMap web service is the stations names that
were returned by the RMV web site.
So invoking GoogleMap webservice returned the coordinates
of each station.

YellowMap web service was used to obtain the pedestrian
route direction. By supplying the coordinates of the start and
end of pedestrian stations that were returned by GoogleMap,
YellowMap offered street names and junctions that constitute
the required pedestrian route.
Finally the itinerary was generated by substituting the
pedestrian phase of RMV’s response with the YellowMap’s
pedestrian route direction.
After that the result was formatted as XML document which
was used as a completely new web service in turn.

Discussion

The invocation of YellowMap web service was not as simple
as expected because of lack of sufficient documentation.
Sample codes to illustrate the usage of each operation are
missing.

According to web service composition theory, the output of
one service is used as the input to another one. However this is
not a straight forward process. In fact several problems were
encountered such as schema mapping between data types,
large data, as well as data quality problems.

For instance some addresses returned by the YellowMap
service were unrecognized by the RMV service and vice
versa. YellowMap and RMV services were responding with
different addresses for some given coordinates.

Quite often the stations names retrieved from RMV website
had to be processed before passing them to Google Map web
service in order to retrieve their coordinates.

Conclusion

This research shows that Mashups are viable alternatives to
traditional webservices creation and composition. An
overview of Mashup technology has been presented. How to
use existing web technologies such as PHP, Javascript, Google
Map API, YellowMap webservice, and RMV website for
developing a practical web-based simulator for itinerary
planning in Germany has also been described.

References

[1] http://en.wikipedia.org/wiki/Business_Process_Execution
 _Language
[2] http://www.w3.org/TR/wsci/
[3] http://code.google.com/apis/maps/index.
[4] http://www.yellowmap.de/
[5] http://www.rmv.de/
[6] http://code.google.com/apis/maps/signup.html
[7] Mohamadou Nassourou (2010), "Empirical Study on
 Screen Scraping Web Service Creation
 Case of Rhein-Main-Verkehrsverbund (RMV)“.
[8] www.php.net/
[9] http://en.wikipedia.org/wiki/JavaScript
[10] http://en.wikipedia.org/wiki/Representational_
 State_Transfer
[11] http://php.net/manual/en/book.curl.php

	Keywords: Mashup, Webservice Composition, Wrappers
	Introduction

