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 2 

ABSTRACT 1 

1. The response of dispersal towards evolution largely depends on its 2 

heritability for which upper limits are determined by the trait’s repeatability. 3 

2. In the Linyphiid spider E. atra, we are able to separate long- and short 4 

distance dispersal behaviours (respectively ballooning and rappelling) under 5 

laboratory conditions. By performing repeated behavioural trials for females, 6 

we show that average dispersal trait values decrease with increasing testing 7 

days. By comparing mated and unmated individuals during two periods 8 

(before and after mating for the mated group and the same two periods for 9 

the unmated group), we show that mating has no effect on the mean 10 

displayed dispersal behaviour or its within-individual variation. 11 

Repeatabilities were high and consistent for ballooning motivation but not 12 

for rappelling.  13 

3. Ballooning motivation can be regarded as highly individual-specific 14 

behaviour, while general pre-dispersal and rappelling behaviours showed 15 

more individual variation.  Such difference in repeatability between long- 16 

and short distance dispersal suggests that short- and long-distance 17 

dispersal events are triggered by different ecological and evolutionary 18 

mechanisms. 19 

20 
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INTRODUCTION 1 

Dispersal refers to the movement of individuals or propagules with potential 2 

consequences for gene flow across space (Kokko & Lopez-Sepulcre, 2006; Ronce, 2007) 3 

and comprises three consecutive stages: emigration, transfer and immigration (Ims & 4 

Yoccoz, 1997; Bowler & Benton, 2005). It allows escape from areas with unfavourable 5 

conditions and influences the genetic cohesion of species across space and their global 6 

persistence despite local extinctions (Bowler & Benton, 2005; Ronce, 2007). Dispersal has 7 

been shown to affect speciation, inbreeding depression, and the evolution of sociality and 8 

many life history traits (Clobert et al., 2001; Ronce, 2007). Because dispersal strongly affects 9 

the dynamics and evolution of spatially structured populations (Ronce, 2007), it is also 10 

considered a key life history trait driving population responses to changing environments. 11 

Understanding its causes and consequences is therefore a prerequisite when aiming to 12 

manage natural populations within the context of conservation (Kokko & Lopez-Sepulcre, 13 

2006) and ecosystem functioning (Kremen, 2007).  14 

 15 

While dispersal is often considered as a fixed trait, especially in modelling (Clobert et 16 

al.,2001; Ronce, 2007), there is growing evidence that dispersal functions are largely 17 

condition-dependent (Bowler & Benton, 2005). This implies that dispersal should be regarded 18 

as a plastic trait with very specific responses towards internal and external conditions 19 

(Ronce, 2007). Consequently, dispersing individuals should not be considered as a random-20 

subset of their source populations. Mating status is one of the factors that may greatly 21 

influence dispersal decisions. Limited time windows for mating and subsequent decreasing 22 

expectations of successful reproduction should motivate unmated females to disperse as 23 

time is progressing. These patterns were shown, for example in spider mites (Li & Margolies, 24 

1993; Suiter & Gould, 1992). 25 

Dispersal studies often focus on movement behaviours and it is not always clear 26 

whether observed patterns or underlying mechanisms are really dispersal specific (Van Dyck 27 
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& Baguette, 2005). For instance, butterflies fly often large distances for foraging or mate 1 

location and have subsequently large home-ranges (Van Dyck & Baguette, 2005). Birds may 2 

make exploratory forays outside their home range preparatory to dispersal (Dingemanse et 3 

al. 2003). These behaviours are therefore not related to dispersal as such. Interpreting these 4 

movements as dispersal movements is consequently dangerous and can lead to 5 

idiosynchratic insights. Similarly in spiders, short distance movements at the ground level are 6 

often the result of random local movements that eventually lead to the colonization of non-7 

natal habitat (Bonte et al., 2003b; 2004). In the same vein, smaller spiders use silk as 8 

transport medium to ‘travel’ through the air; Bell et al., 2005). Smaller spiders belonging to 9 

the Linyphiidae, disperse predominantly by using silk threads as either a sail (so-called 10 

ballooning) for long-distance dispersal or a bridging thread (so-called rappelling) for short-11 

distance dispersal. Both dispersal modes are preceded by tiptoe-behaviour, which involves 12 

stereotyped actions such as stretching of the legs, rising of the abdomen and production of 13 

long silk threads (Bell et al., 2005). Prior to ballooning, spiders produce silk threads and then 14 

take-off attached to the thread for distances of up to several hundred meters (Thomas et al., 15 

2003). In case of rappelling, the distal ends of the silk threads become attached to a 16 

substrate, and are used to bridge short distances. Because these behavioural components 17 

can be quantified under standardized laboratory conditions, spiders can be regarded as 18 

excellent biological models to test dispersal theory in a natural system. In earlier 19 

contributions, we made use of these properties to document evolution of dispersal propensity 20 

both between (Bonte et al., 2003a) and within species (Bonte et al. 2006, 2007). Because we 21 

focused predominantly on wolf spiders that perform tiptoe behaviour only for ballooning, we 22 

were able to show that long-distance dispersal is determined by heritable variation (Bonte & 23 

Lens, 2007), but that its expression also depends on the prevailing environmental conditions, 24 

like wind velocity (Bonte et al.,  2007). Because some Linyphiid spiders perform both short- 25 

and long distance behaviour under laboratory conditions and in natural situations, they 26 

comprise excellent model organisms to contrast evolutionary mechanisms of both dispersal 27 
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modes (Bonte et al. 2008b). These dispersals are performed in the adult life phase, but 1 

females show generally higher dispersal motivation than males (Bonte et al. 2008b). 2 

 3 

Experimental studies of tiptoe behaviour in Linyphidae as a proxy for dispersal go 4 

back to earlier work from Legel & Van Wingerden (1980), Weyman & Jepson (1994) 5 

Weyman et al. (1994, 1995). Different attempts to estimate the trait heritability resulted in 6 

often completely different estimates ranging from 0 to 0.30 (Bonte et al., 2003; unpub. data). 7 

One possible reason for these variable results is that the studied behaviour does not 8 

necessarily precede the same movement behaviour. Indeed, as outlined above, tiptoe 9 

behaviour can both precede long and short-distance dispersal (or movement). Ronce (2007) 10 

argues correctly that short- and long-distance dispersal events may rely on different 11 

mechanisms from a mechanical and evolutionary point-of-view or are even accomplished by 12 

different types of individuals.  13 

 14 

Because only traits that are manifested consistently within individuals as well as 15 

differing between individuals can respond to selection (Boake, 1989), we studied 16 

repeatability of long- and short distance dispersal in a spider to infer upper limits of 17 

heritability. We additionally assessed the consistency of dispersal traits and its between-18 

individual variation in relation to mating status because changes in internal state may heavily 19 

influence dispersal decision making (Bonte et al. 2008b). 20 

 21 

 22 

 23 

 24 

25 
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MATERIAL AND METHODS 1 

Behavioural trials - Experiments were conducted with 36 female offspring from field 2 

caught mated females Erigone atra (collected in crops in the vicinity of Ghent, September 3 

2007). These females were individually bred under standardized conditions (temperature of 4 

25°C, RH approx 70% and prey, i.e. collembolans and fruit flies ad libitum). Seven days after 5 

final moulting we started the behavioural trials. All females were individually, daily screened 6 

for their aeronautic behaviour in a wind tunnel (cfr. Bonte et al. 2008a,b) with upward wind 7 

velocity of 1.2 ± 0.2 m/s and ambient temperature of 25°C. All females were acclimatized for 8 

one hour to the conditions of the wind tunnel. During trials of 15’, we recorded tiptoe 9 

frequency, duration of the tiptoe behaviour as general pre-dispersal behaviours. Depending 10 

on the performed dispersal behaviour and the frequency, probability and duration of each 11 

rappelling and ballooning could be derived. The ‘frequency’ comprises the number of times 12 

an individual ballooned or rappelled during a trial; the ‘probability’ reflects whether an 13 

individual showed ballooning or rappelling at least once during a trial. As argued by Bonte et 14 

al. (2008b), the frequency and probability of the behaviours are regarded as a measure for 15 

dispersal motivation; the duration of tiptoe behaviour prior to a dispersal event reflects the 16 

investment in silk thread length, which related to the potential dispersal distance for 17 

ballooning (Bonte et al., 2008a) or the effective distance moved during rappelling.  18 

During the behavioural trials, spiders were allowed to show multiple dispersal events 19 

to quantify dispersal motivation. Therefore, individuals were gently put back after dispersal 20 

on the platform (hence minimizing manipulation by the experimenter) after removing the 21 

previously produced silk threads with a small brush. In case individuals performed multiple 22 

ballooning or rappelling events, we calculated the average value during each trial. During the 23 

first five days, all females were tested in unmated condition. On day six, half of the females 24 

(randomly assigned) were mated with similarly bred males. During this day and the following 25 

day, no experiments were conducted. On day eight, all females were again tested for their 26 

aeronautic behaviour during four subsequent days.  27 
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Data analysis - Repeatability is directly useful as a measure of the within-individual 1 

consistency of behaviour. Repeatability and consistency are related but not synonymous 2 

terms describing behaviour (Cummings & Mollaghan, 2006). Repeatability is defined by the 3 

intraclass correlation (r), which indicates the proportion of total variation in a trait that is due 4 

to differences between individuals (Falconer & Mackay, 1996). It is based on repeated 5 

measures of the same individuals followed by an analysis of variance. Since it is computed 6 

as a ratio, its values are always expressed relative to the variation between individuals. A low 7 

repeatability may therefore indicate either low overall variation in behaviour (low variation 8 

between and within females) or high variation due to random patterns. Its usual application 9 

has been to set an upper limit on heritability but it may also be useful for studies of 10 

stereotypy of behaviour (Boake, 1989). Consistency, on the other hand, is a term we use to 11 

evaluate variation of behaviour relative to each individual’s successive performances. This 12 

measure evaluates an individual’s consistency independent of variation across individuals. 13 

We used repeated measure mixed models to analyze the daily performed (test day is 14 

the repeated unit) behaviours as a function of the period (period up to mating versus the 15 

period after mating in half of the individuals) and the induced mating treatment. An interaction 16 

between factors mating and period should indicate that females show different behaviours in 17 

the period prior to and after the induction of mating, depending on their mating status (mated 18 

versus unmated). We modelled the individual*period variance component in order to assess 19 

how mating status affected the between-individual variation in behaviour. When this 20 

interaction component (random effect) approached zero, we included only the factor 21 

‘individual’ as a repeated measure (repeated tests on subsequent days; random factor) to 22 

test overall repeatability.  23 

Depending on the error function, we used mixed models with a Binomial distribution 24 

(logit-link function) for ballooning- or rappelling incidence, a Poisson distribution for 25 

frequencies of performed behaviours (log-link function) and a normal distribution for duration 26 

of tiptoe displays. An additional regression was performed with ‘test day’ as a continuous 27 

factor (instead of period as a fixed one) in order to test whether the behaviours decreased or 28 
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increased systematically with time. We used the Satterthwaite procedure to approximate 1 

denominator degrees of freedom. Analyses were conducted with Proc Mixed (normal 2 

models) and Proc Glimmix (Poisson and Binomial models). Covariance tests (Z-tests) were 3 

used to test the significance of the variance components related to repeated individual tests.  4 

 5 

 Repeatability was calculated as the intraclass correlation coefficient (r), i.e. the ratio of 6 

between-individual variance (s²A) to the total variance (Vt = between + within: s²A+s²R). An 7 

intraclass correlation coefficient close to 1 indicates a high repeatability, one close to zero 8 

none. Monte Carlo permutations (10000 permutations) were used to derive the standard 9 

error on the derived intraclass correlation coefficients.  10 

Consistency of behaviours that refer to a frequency or duration of each female were 11 

calculated as coefficient of variation or the standard deviation expressed as a fraction of the 12 

mean (CV= /mean; Cummings & Mollaghan, 2006). For the duration of tiptoe behaviour 13 

preceding rappelling and ballooning, CV is calculated for the trials in which an individual 14 

effectively performed the respective dispersal behaviour. For each individual’s probability to 15 

perform either ballooning or rappelling during a behavioural trial, we calculated the frequency 16 

of the performed behaviour during all repeated trials. High values for the latter subsequently 17 

indicates consistent performance of either rappelling or ballooning over all behavioural trials. 18 

For ease of interpretation, we took the inverse of CV, so large high values also indicate high 19 

consistency for these behaviours. Average values and standard errors over all tested 20 

females (n=37) are given. 21 

 22 

 23 

24 
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RESULTS 1 

Mating status had no effect on the between-individual variation in any of the 2 

behavioural traits ( individual*mating ~ 0 for all behaviours). Therefore we have calculated trait 3 

repeatability over all test days, irrespective of the individual’s mating status. The repeatability 4 

of the behaviours showed considerable variation (Fig. 1). Repeatability for general pre-5 

dispersal behaviours (tiptoe frequency and tiptoe duration) and the behaviours related to 6 

short distance dispersal (rappelling) showed overall low repeatabilities. The repeatability of 7 

rappelling frequency was low (0.13±0.05) but significantly different from zero. All behaviours 8 

related to long distance dispersal were significantly larger than zero and were highest for 9 

ballooning probability and ballooning frequency (r > 0.40).  10 

 11 

The consistency of tiptoe frequency, ballooning and rappelling duration were 12 

considerably higher than those for ballooning and rappelling frequency (Table 1). 13 

Consistency of ballooning and rappelling probability was high and deviated significantly from 14 

random (i.e., frequency of 0.5) for both (95% confidence intervals rappelling: [0.62-0.74], 15 

95% confidence intervals ballooning: [0.75-0.85]). 16 

 17 

The period in which the tests were performed had the most prominent effect on the 18 

expressed dispersal behaviour (Table 2). The duration of the tiptoe behaviour prior to 19 

effective rappelling and ballooning events did not differ between the two periods. The 20 

average tiptoe duration was on average 1.66±0.68SE seconds shorter in the second period. 21 

The frequency of the performed tiptoe (-1.34±0.28SE events), ballooning (-0.19±0.07SE) and 22 

rappelling (-0.50±0.14SE) behaviour was lower in the second period compared to the first 23 

one. Similarly, the probability that an individual performed ballooning or rappelling decreased 24 

respectively 0.10±0.06SE and 0.21±0.06SE. For ballooning probability, however, the 25 

difference tended to be more pronounced for unmated females in the second period (-26 

17±0.05 SE for unmated females compared to -0.38±0.07SE for females that are mated in 27 



 10 

between both testing periods). The values of the behaviours decreased gradually, as can be 1 

seen in the regression analyses (Table 2). 2 

 3 

 4 

 5 

6 
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DISCUSSION 1 

Female Erigone atra show a significant decrease in dispersal behaviour during daily 2 

repeated behavioural trials. No effects of mating status were found, despite a trend of 3 

decreasing ballooning activity in unmated, but not in mated females. Repeatabilities of 4 

general pre-dispersal behaviours, rappelling behaviour and the duration of the tiptoe 5 

behaviour prior to ballooning were low. In contrast, repeatabilities of ballooning probability 6 

and frequency were high. High individual consistency of tiptoe frequency, duration of the 7 

tiptoe behaviour prior to rappelling and ballooning probability indicate that overall low 8 

repeatabilities are due to both low within- and between individual variation. In contrast, high 9 

repeatability and consistency of ballooning probability show the presence of strong between-10 

individual and low within-individual variation. Consequently, ballooning motivation should be 11 

regarded as highly individual-specific behaviour, while general pre-dispersal and rappelling 12 

behaviours showed more within-individual variation.   13 

 14 

Our study demonstrates that the quantification of tiptoe behaviour in Erigone (and 15 

probably all Linyphiid spiders) without considering the subsequent dispersal mode will largely 16 

hide evolutionary and ecological patterns that underlie the dispersal behaviour. The 17 

phenotypic variation in dispersal behaviour provides the basis for natural selection. Since 18 

repeatability is a measure that compares the relative variation between and within 19 

individuals, it may set an upper bound for heritability, although it is not its direct substitute 20 

(Boake, 1989). Our repeatability estimates indicate high within-individual variation for general 21 

pre-dispersal behaviour. Therefore, we could falsely deduce that dispersal in spiders is 22 

predominantly regulated by plasticity. Low repeatability for tiptoe behaviour at longer time 23 

frames has been previously reported by Bonte et al. (2003a). When considering short-24 

distance (rappelling) and long-distance dispersal (ballooning) separately, we found that this 25 

low repeatability only holds for rappelling. In contrast, long distance dispersal (i.e., ballooning 26 

motivation) was characterised by high repeatabilities and consistency. An individual’s 27 

ballooning behaviour is therefore expected to be at least partly heritable and similar under 28 



 12 

altered environmental conditions. This does, however, not implicate that the behaviour is 1 

fixed over all environmental conditions because the trait’s expression may be partially 2 

modulated by body condition. As previously shown, dispersal behaviours may vary with 3 

temperature during development (Bonte et al., 2003a; Bonte et al. 2008b) or starvation 4 

during the adult life phase (Legel & Van Wingerden 1980; Weyman et al. 1994; Bonte et al., 5 

2008a). The decrease of many dispersal trait values during the subsequent repeated trials 6 

suggests at least that either aging or experience affect the trait expression, but not mating 7 

status as such.  8 

 9 

From a more conceptual point-of-view, our experiments point out (i) that dispersal 10 

should be considered as a non-fixed trait and (ii) that long- and short distance dispersal are 11 

shaped by different ecological and evolutionary mechanisms. This is the first study to report 12 

differences in repeatability between long- and short distance dispersal and therefore confirms 13 

the predictions that short- and long-distance dispersal events rely on different mechanisms 14 

(Higgins et al., 2003) and that they are potentially accomplished by different types of 15 

individuals (Ronce, 2007). This implies that, at least in our model system, long-distance 16 

dispersers are a non-random subsample of the population, while short distance dispersal is 17 

expressed in a more random way. Of course, the apparent random patterns in short distance 18 

behaviour can be the result of more subtle reaction norms towards environmental conditions 19 

that change at much shorter time intervals or due to the specific testing conditions that do not 20 

induce strong patterns (cfr. Bonte et al., 2007). Additionally, it is not unreasonable that 21 

variation in short-distance displacement is governed by mechanisms related to different 22 

selection pressures than long distance dispersal (e.g., mate location, kin competition versus 23 

escaping habitat deterioration; Ronce, 2007) or by pressures related to optimal foraging (Van 24 

Dyck & Baguette,  2005). Therefore, decision making for short distance dispersal can be 25 

expected to be based on information about the environment over a short time and small 26 

spatial scales and should therefore favour plasticity. In contrast, decisions on long-distance 27 
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dispersal should be based on information that is gathered at longer time and larger spatial 1 

scales, i.e. inherited (both genetic and non-genetic) information on the stability of the habitat.   2 

 3 

Although a high ballooning repeatability does not automatically imply that the trait as 4 

such shows heritable variation, it at least demonstrates that trait is largely fixed during 5 

adulthood with strong variation among individuals. Effects of common environment or 6 

maternal effects are evident in other mechanisms behind the similarity in ballooning 7 

behaviour within individuals (cfr. estimated broad sense heritability; Falconer & Mackay, 8 

1996). The presence of additive variation for ballooning propensity in juvenile wolf spiders 9 

(Bonte & Lens, 2007) and paternal influences on the expression of ballooning behaviour 10 

(Bonte et al., 2008b) suggest that the expression can be under genetic control, although 11 

more appropriate experiments are needed to validate this.  However, for ballooning 12 

motivation, we noticed a tendency of decreased expression during the repeated trials too, 13 

although mainly for unmated females. Aging or experience with the behavioural trials induces 14 

consequently systematic changes in the ballooning dispersal behaviour, thereby conserving 15 

the prevalent genetic between-individual variation.  16 

 17 

 18 
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Table 1. Consistency of the different dispersal and tiptoe behaviours (mean values and standard error for 1 

all females, n=36). The consistency of behaviours recorded as either frequencies or duration are depicted 2 

as 1/CV (see text); those for ballooning or rappelling probability are calculated as the frequency of 3 

behaviours in repeated behavioural trials. Values can consequently not be compared between probability 4 

measurements and other (frequency, duration) behaviours. Large values indicate high consistency of the 5 

behaviour. 6 

 7 
Behaviour Consistency SE 

Tiptoe frequency 1.49 0.03 

Tiptoe duration 1.08 0.06 

   

Ballooning frequency 0.56 0.12 

Ballooning duration 2.17 0.05 

   

Rappelling frequency 0.74 0.07 

Rappelling duration 1.75 0.04 

   

Rappelling probability 0.68 0.03 

Ballooning probability 0.79 0.02 

 8 
 9 
 10 
 11 
 12 

13 
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Table 2. Test statistics of period (period prior or after the induction of the mating treatment) and mating 1 

treatment (individuals either mated or not mated after period 1) on the different considered dispersal 2 

behaviours. Slope gives the estimates of the separate regression of the behaviours on time (continuous 3 

factor).  Significance levels: ns: p>0.1; * < 0.1; ** < 0.5; *** < 0.01; **** < 0.001 4 

Factor Period mating period*mating Slope  

Tiptoe duration F1,26.2=12.91 **** F1,35=1.55 
ns

 F1,28=1.80 
ns

 -0.372±0.117**** 

Tiptoe frequency F1,37.1=17.40 **** F1,59.1=3.39 * F1,45.6=0.90 
ns

 -0.048±0.019*** 

     

Duration tiptoe before 
ballooning 

F1,22.8=1.76 
ns

 F1,40.1=1.85 
ns

 F1,24.8=2.90 
ns

 0.038±0.284
ns 

Ballooning frequency F1,23.3=6.62 ** F1,97.6=1.08 
ns

 F1,34.5=2.37 
ns

 
-0.094±0.087* (unmated) 
 0.026±0.034

ns
 (mated) 

Ballooning probability F1,41.6=5.09 ** F1,48.2=2.36 
ns

 F1,47=2.94 
*
 

-0.140 ±0.123* (unmated) 
 0.004±0.049

ns
 (mated) 

     

Duration tiptoe before 
rappelling 

F1,52=1.74 
ns

 F1,63=2.18 
ns

 F1,63=0.03 
ns

 -1.313±0.384
ns 

Rappelling frequency F1,31.8=16.65 *** F1,52.8=3.14 * F1,37.8=0.12 
ns

 -0.095±0.026*** 

Rappelling probability F1,41.8=5.09 ** F1,74.9=4.09 
ns

 F1,74.8=0.90 
ns

 -0.142±0.048*** 

 5 
 6 

 7 

 8 

9 
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  1 
Fig 1. Repeatability (mean intraclass correlation coefficient r and SE) of the recorded tiptoe- and dispersal 2 

behaviours. Behaviours marked with * show significant between-individual variation (*: P<0.05; **: P<0.01; 3 

***: P<0.001)  4 
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