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Introduction 

In recent years there has been increasing interest in a general theory concerning 
rare events, for which a handy and traditional name is laws of small numbers. 
Whenever one is concerned with rare events i.e., events with a small probability of 
occurence, the Poisson-distribution shows up in a natural way which is statistical 
folklore. 

So the basic idea is simple, but its applications are nevertheless far-reaching and 
require therefore a complex mathematical machinery. The closely related book by 
David Aldous [lJ "Probability Approximations via the Poisson Clumping Heuristic" 
demonstrates this need in an impressive way. But this book focuses narrowly on 
examples, though ranging over many fields of probability theory, and does not try 
to constitute a complete account of any field. 

We will describe in the following in a quite informal way a general theory first 
and then apply this theory to a specific subfield of regression analysis. In prose: 
If we are interested only in those random elements among independent replicates 
of a random element Z, which fall into a given subset A of the sample space, the 
best way to describe this random sample (with Binomial sample size) is via the 
concept of truncated empirical point processes. If the probability for Z falling into 
A is small, then the Poisson approximation entails that we can approximate the 
truncated empirical point process by a Poisson point process with the sample size 
now being a Poisson random variable. This is what we will call first step Poisson 
process approximation. 

Often, those random elements falling into A follow closely an ideal or limiting 
distribution; replacing their actual distribution by this ideal one, we generate a 
second step Poisson process approximation to the initial truncated empirical process. 

Within certain error bounds, we can therefore handle those observations among 
the original sample, which fall into A, like ideal observations, whose stochastic 
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behavior depends solely upon a few (unknown) parameters. This approach permits 
the application of standard methods to statistical questions eoneerning the original 
and typieally nonparametric sample. 

If the subset A is located in the center of the distribution of Z, then regression 
analysis turns out to be within the scope of laws of small numbers. ii the subset A 
is however located at the border, then extreme value theory is typieally eovered by 
our theory. These specifications lead to characteristic results in eaeh ease. 

As the Hellinger distance provides a more aecurate bound for the approximation 
of product measures in terms of their margins, as does the Kolmogorov-Smirnov or 
the variational distance, we will foeus on the formulation of laws of small numbers 
within the Hellinger distance. 

1. Foundations: First and second order Poisson process approximations 

Let Z be a random element (re) in a sample space S bearing a O'-algebra Band 
let ZI, ... , Zn be independent replicates of Z. Fix a subset A E B and consider 
only those observations among ZI, ... ,Zn falling into A. Arranged in the order of 
their outcome, we can denote these Zi E A by VI, ... , VKA(n), where the random 
number 

n 

KA(n) := L IA(Zi) 
i=1 

is Binomial distributed B(n,p) with probability p = P{Z E A}: 

r-------=----,S 
Zi 

A 

v ) 
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It is intuitively clear and is for example verified in Falk and Reiss [10] that 
VI, V2 , ••• are independent replicates of a re V, whose range is the set A and whose 
distribution is the conditional distribution of Z given Z E A 

{ } { I } p{ZEBnA.} 
P V E B = P Z E B Z E A = PiZ E A} , BE ß. 

Moreover, KA(n) and VI, V2 , ••• are independent. 
If p = PiZ E A} is small and n is large, it is weH known that B(n,p) can be 

approximated within a reasonable error bound by the Poisson distribution 

k = 0,1, ... 

with A = np. 
The practical significance of the Poisson approximation of Binomial distribu­

tions was presumably first discovered by L.von Bortkiewicz [4]. He also seems to be 
the first to term this approximation a law 0/ small nu.mbers. For recent references 
we refer to the article by Arratia et al. [2] and the literature cited therein. A 
bound for the Hellinger distance between B(n,p) and Pnp was established by Falk 
and Reiss [10]. 

The randomnumber KA(n) = :E~=I 1A(Zd will consequently for p = PiZ E A} 
small and n large behave like a Poisson random variable (rv ) TA (n) wi th parameter 
np 

KA(n) '" TA(n), 
v 

where ,...., indicates approximation in distribution. As KA(n) is independent of 
v 

those Zi falling into A, T( n) will share this property and so we arrive at our first 
law of small numbers or 

First order Poisson process approximation 

The error of the preceding approximation is determined only by the error of the 
approximation of KA(n) by TA(n) or of B(n,p) by Pnp , respectively. 

Different to the global Poissonization technique, where the fixed sample size n 
is replaced by a Poisson rv T( n) with parameter n 

T( n) independent of Zl, Z2, ... , our approach is a local Poissonization in the set A. 
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Let now the set A depend on the sampIe size n i.e. A = An, such that the 
sequence Al, A2 , ••• of sets is decreasing 

In this case, the conditional distribution of Z, given Z E An, can often be 
approximated by some ideallimiting distribution i.e., 

p {V E .} = p {Z E . I Z E An} '" P {W E .}, 
nl arge 

where W is a re with this ideal distribution and the error of this approximation 
decreases with increasing sampIe size n. 

This observation suggests the second law of small numbers or 

Second order Poisson process approximation 

where W l , W2 , ..• are independent replicates of W; TA(n) and the sequence W l , W2 , 

... are independent. 
The error of this approximation is obviously determined by the distance of 

the distributions of V and W. Combining the first and second order Poisson 
approximation we arrive at the approximation 

with the total error being the sum of two errors, which are completely different in 
nature. 

If the subsets An are locataed in the center of the distribution of Z, then 
regreJJion analYJiJ turns out to be within the scope of the laws of small numbers 
as we will see in the next section. If the subsets An are located at the border, then 
extreme value theory is typically covered by our preceding approach. This can easily 
be motivated if one is interested only in those observations among an iid sampIe 
which exceed a certain threshold. As these are the largest observations, extreme 
value theory shows up in a natural way (cf. Leadbetter et al. [18], Galambos [13], 
Resnick [25], Reiss [23], Davison and Smith [7] and the literature cited therein). For 
details we refer to Falk et all. [12], where the preceding quite informal introduction 
is made rigorous via the concept of point processes. 

In the present article we demonstrate in the next section how the preceding 
approach can be made rigorous in regression analysis and we will utilize it to 
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nonparametric and semiparametric eonditional curve estimation. In the semipara­
metrie setup we will derive in partieular asymptotically optimal estimators from 
loeal asymptotie normality (LAN) of eertain Poisson processes which approximately 
deseribe our initial sampie. In the following example we first describe in an informal 
way, why regression analysis turns out to be within the scope of laws of small 
numbers. 

Example. Let Z = (X, Y) be a random vector in R2 and fix x E R. We are 
interested in the eonditional distribution function (df) F(· Ix) := P{Y ~ . I X = x} 
of Y given X = x. 

In this ease we ehoose the data window 

An := [x - an/2, x + an/2] X R 

with windowwidth an > 0 for the data Zi = (Xi, 1';), i = 1, ... , n: 

Then, 

x 

n 

KAn(n): = 2: 1AJZi) 
i=1 

n 

= 2: l[x-an/2,x+a n/2)(Xi) 
i=1 
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is B(n,p)-distributed with 

Pn = P{Z E An} = P{X E [x - an/2,x + an/2)} ,...., g(x)an, 

where we assume that X has a density g, say, near x being continuous and positive 
at x. 

If Z = (X, Y) has a joint density f, say, on An, then we obtain for t E [0,1] 
and s E IR 

P{V:S (x - an /2 + tan's)} 

= P{Z:s (x - an/2 + tan,s),z E An}/P{Z E An} 

= P {x - an /2 :s X :s x - an /2 + tan, Y :S s} / pn 

l x-an/2+tan J" 
= feu, w)du dw 

x-a n /2 -00 

= J" an t f(x + anu - an/2, w)du dW/Pn -00 io 
~ ["00 S 1t f(x, w)du dw/g(x) 

= t ["00 f(x,w)dw/g(x) = tF(s I x) 

under suitable regularity conditions on f (near x). 
Consequently, we obtain the approximation 

where U is on [x - a n /2, x + an /2] uniformly distributed, Wj follows the conditional 
df F(· Ix), TAn (n) is Poisson Pnang(x) distributed and TAn (n), W I , W2 , . .. ,UI , U2 , 

... are all independent! 
In this examplt> our approach entails that the information we are interested in 

is essentially contained in the second component of Vi. 
We close this section with some quite informal remarks why we prefer the 

Hellinger distance in our considerations. 

Let X, Y be re's with values in some measurable space (S,8). The Hellinger 
distance (between the distributions) of X and Y is defined by 

where Jl is a dominating measure and f, 9 are Jl-densities of the distributions of X 
and Y. 
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For vectors X = (Xl, ... , X k), Y = (Y1 , ... , Yi.) of independent copies of X 
and Y we have 

H(X, Y) S k1/ 2 H(X, Y), 

whereas for the variational distance d(X, Y) := sUPBEB I P{X E B} - P{Y E B} I 
we only get the bound 

d(X, Y) S kd(X, Y). 

Since in general d(-, .) S H (., .) we deduce 

d(X, Y) S k1
/

2 H(X, Y) 

(cf. section 3.3 in Reiss [23]). 

If d(X, Y) and H(X, Y) are therefore of the same order, the Hellinger distance 

provides a more accurate bound than the variational distance i.e., k1 / 2 compared 
with k. 

Within our framework we obtain consequently for the second order Poisson 
process approximation the bound 

s (/ H 2 ((V1, ... ,Vk), (W1, ... ,Wk» £(TA(n»(dk)Y/2 

S (/ kH2(V, W)£(TA(n»(dk») 1/2 

= H(V, W)E(TA(n»1/2 = H(V, W)(np)1/2, 

where the first inequality is suggested by the convexity theorem (see Lemma 3.1.3 
in Reiss [24]). By £(Z) we denote the distribution of a random element Z. On the 
other hand, 

d((Vl' ... ' VTA(n), (W1, ... , WTA(n)) 

= / kd(V, W)£(TA(n»(dk) = d(V, W)np. 

Consequently, we obtain the estimate 

S H(V, W)(np)1/2, 
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which is more accurate than d(V, W)np if np ;::: 1 and d(V, W) and H(V, W) are of 
the same order; but this is typically the case. 

We note that the preceding quite informal considerations can be made rigorous 
via the concept of point processes (cf. Falk and Reiss [10,11]' Falk et al. [12], Reiss 
[24]). 

2. Estimation of conditional curves 

This section is devided into three parts. In the first part we make the Poisson 
process approach to regression analysis rigorous. Part two and three are concerned 
with nonparametric and semiparametric applications, respectively. 

2.1. The Poisson process approach 

Let Z = (X, Y) be a (d + m)-dimensional random vector and denote again by 
F(- I x) := P{Y :S . I X = x} the conditional df of Y given X = x, x E JRd. 
Applying our approach one may study the fairly general problem of evaluating a 
functional parameter T(F(· I x)) based on independent replicates Zj = (Xi, Yi), i = 
1, ... , n, of Z. This can be done in a nonparametric setup, where typical functionals 
are the regression mean TI(F) = It F(dt) on the regression quantile T2 (F) = 
F-I(q) = inf{t E JR : F(t) ;::: q}, q E (0,1), as well as in a parametric setup, where 
F(- I x) is a member of a parametric family {Fd(- I x) : () E e}, e E JRk, and 
T(Fu(- I x)) := (). 

While classical nonparametric regression analysis focuses on the problem of 
estimating the conditional mean TI(F(· I x)) = It F(dt I x) (a recent reference is, 
for example, Eubank [8]), the estimation of general regression functionals T(F(- I 
x)) has been receiving increasing interest only in recent years (see, for example, 
Stute [30], Hardle et al. [15], Truong [31], Samanta [26], Manteiga [21], Jones 
and Hall [17], Goldstein and Messer [14], Bhattacharya and Gangopadhyay [3], 
Chaudhuri [5]. 

Statistical inference based on (Xl, Yd, ... , (Xn , Yn ) for a functional T(F(- Ix)) 
has obviously to be based on those Yi among YI , ... , Yr" whose corresponding X j -

values are close to x. Choose therefore as in t.he example in the preceding section a 
windowwidth an = (anI, . .. , and) E (O,oo)d and define as the data-window for Xi 

. _ d [. lid . lid] Sn . - X j=l X J - anj /2, x J + anj /2 

=: [x - a~/d /2, x + a~/d /2]. 
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The data set Y; with Xi E Sn is described in a mathematically precise way by 
the truncated empirical point process 

n K(n) 

Nn(B) := L t:Yi(B)cXi(Sn) = L cV;(B), BE Sm, 
;=1 i=1 

where 
n 

K(n):= Lcxi(Sn) 
i=1 

is the number ofthose Y; with Xi E Sn which we denote by VI, V2 , ••• By cx(B) = 
IB(x) = 1 if X E Band 0 otherwise we denote the Dirac-measure with mass one 
at x. From Lemma 1 in Falk and Reiss [10] we know that K(n) and VI, V2 , .•• are 
independent, where 

P{V E .} = P{Y E . 1 X E Sn}, 

and K(n) is B(n,Pn)-distributed with Pn = P{X E Sn} '" volume of Sn if 11 an 11 
is small (under suitable regularity conditions). By 11 11 we denote the Euclidean 
norm. 

If we replace in N" the sampIe size K( n) by a Poisson rv r( n) with parameter 
E(K(n)) = npn, whichis also independent ofV1 , V2 , ••• , then we obtain the Poisson 
process approximation N~ of N n , defined by 

r(n) 

N~(B) := L cVi(B), BE Sm. 
i=1 

The error of this approximation is determined only by the error of the approximation 
of K(n) by r(n) (see Theorem 2 in Falk and Reiss [IOD. 

Theorem 2.1.1. (First order Poisson process approximation). We have for 
the H ellinger distance 

(1) 

where C is a universal constant with C ~ va. 
It is intuitively dear and was already shown in the example of the previous 

section (with d = m = 1) that for 11 an 11-+ 0 

P{V E·} = P{Y E·I X E Sn} -> P{Y E·I X = x}. 
lIa n 11----0 
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This implies the approximation of N~ by the Poisson process 

r*(n) 

N~*(B):= L cw,(B), BE Jam, 
;=1 

where W 1 , W 2 , ••• are independent replicates of a random vector W with target df 
F(- I x), and r*(n) is a Poisson rv with parameter n vol(Sn)g(x); 9 denoting the 

marginal density of X and vol(Sn) := n1=la~jd the volume of Sn. The rv r*(n) 
and W 1 , Wz, ... are again independent. 

Theorem 2.1.2. (Second order Poisson process approximation). Suppose 
that the random vector (X, Y) has a joint density f on the strip [x - co, x + col x IRm 

for some co E (O,oo)d, which satisfies uniformly for c E (-co, co) C IR d and y E IR m 

the expansion 

where J(II rl(y) 114 +(rz(y»4)f(x,y)dy < 00 and (.,.) denotes the usual inner 

product on ]Rd. Then we have for 11 an 11 small 

(3) 

Corollary 2.1.3. Combining (1) and (3) we obtain under the conditions of Theorem 
2.1.2 the bound 

With equal binwidths anI = ... = and = Cn, the preceding bound reduces 

to O(cn + (nc~d+4)/d)I/Z). While the function r2 in expansion (2) collects the 
remainders left over, the function rl reflects the dependence of the conditional 
distribution of Y given X near x from the conditional distribution of Y given 
X=x. 

Example. Suppose that (X, Y) is bivariate normally distributed i.e., 

{ (( )

2 
1 1 z - ttl 

f(z,y) = exp - --
271"0"10"2(1 - p2) 2(1 - p2) 0"1 
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where J-LI, J-L2, E JR, aI, a2 > 0 and p E (-1,1). Taylor expansion of the exponential 
function at 0 entails the expansion 

(
f(X+C,y))1/2 _ { 1 (2(X-J-LJ)c+c

2 
2pc ( ))} - exp + -- y - J-L2 

f(x, y) 4(1 - p2) ai ala2 

= 1 + c 1 (_p_(y _ J-L2) _ x - J.LI) 
2(1 - p2) ala2 ar 

+ O(c2dl exp(d2 I y 1)(1 + y2)) 

=: 1 + cTI(Y) + ° (<;.2 r2 (y)) 

with some appropriate positive constants d l , d2 . 

Proof of Theorem 2.1.2. The densities of the intensity measures on JRm 
pertaining to N~ and N~* are given by 

and 

By the monotonicity theorem due to Csiszar [6) (see also Liese and Vajda [20) or 
Theorem 3.2.1 in Reiss [24])and expansion (2) we obtain 

H2(N~*, N~) ::; J (f~*(y)I/2 - f~(y)I/2 r dy 

mm 

= n vol(Sn) J { (1_1 1 d f(x + aIjd z, y)dz y/2 -f(x, y)I/2 r dy 
mm [2' 21 

= o( n vol(Sn) 11 aIjd 114). 

The preceding approach can be extended to several points Xl, ... , Xr with the 
corresponding bounds summing up (see Falk and Reiss [11) for details). 
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2.2. Applications: The nonparametric case 

The usual nonparametric estimate of a functional T( F) based on an iid sample 
Y1, ... , Yn with common df F is T(Fn), where Fn(t) := n-1 L:7=1 l(-oo,tj(Y;) 
denotes the pertaining empirical df. Within our framework, the empirical df 

n 

i=l 

pertaining to those Y; among YI, ... ,Yn with Xi E Sn, suggests itself as a non­
parametric estimate of FC I x). The resulting estimate of T( FC I x)) is 

T(FnC I Sn)). Observe that Fn is the standardized df pertaining to the random 
measure N n . 

For the mean value functional TI we obtain for example 

T (F (. IS)) = ftp. (dt IS) = L:~I Y; lSn(Xi) 
1 n n n n ",n 1 (X) 

L.....=I Sn • 

which is the Nadaraya-Watson estimator. Following Stone [28,29] and Truong [31] 

we call T( Fn (- I Sn)) kernel estimator of a general regression functional T( F(· I x)). 

In the following we suppose for the sake of a clear presentation that the 
dimension m of Y is 1. 

Theorem 2.2.1. Suppose that for some a > 0, bE (0,1/2] and C > ° 
(4) 

:<:::: Ck-o, kEN, 

where Fk(· Ix) denotes the empirical df pertaining to k independent rvs with 
common df F(· I x). If the vector (X, Y) satisfies condition (2), then we obtain 

for the kernel estimator T(Fn(· I Sn)) with eq1£aZ binwidths anI = ... = and = Cn 
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With the particular choice Cn = O(n-d/(dH»), we obtain roughly the rate 

Op(n-2/(dH») for T(Fn(· I Sn)) - T(F(· I x)) which is known to be the optimal 
attainable accuracy under suitable regularity conditions in case of the mean value 
functional (Stone [28,29]), and quantile functional (Chaudhuri [5]) (for a related 
result we refer to Truong [31]). 

The proof of Theorem 2.2.1 is based on the following elementary result (see 
Lemma 1 in Falk and Reiss [11 D. 
Lemma 2.2.2. Let VI, V2 , ••• be a sequence of rvs such that for some a > O,j.l E lR 
and 6 E (0, 1/2J 

Then we have with r being a Poisson rv with parameter A > 0 and independent of 
each Vi, i = 1,2, ... 

where D depends only on C (with the convention Vr = 0 if r = 0). 

Proof of Theorem 2.2.1. Put Vk := T(Fk (· I x)), k = 1,2, ... , and j.l := 

T(F(· I x)). Since T(Fn(· I Sn)) is a functional of the empirical point process, we 
obtain from Corollary 2.1.3 

= ~~fu\P{ (ncng~x))1/2 (VrO(n) - j.l) ::; t} - 4>(t)\ 

+0 (cn + (nc~dH)/d)I /2) , 
where r*(n) = N~*(IR) is Poisson distributed with parameter ,\ = ncng(x) and 
independent of each Vi, V2 , .•• The assertion is now immediate from Lemma 2.2.2. 

Condition (4) is satisfied for a large class of functionals T for which a Berry­
Esseen result is available i.e., U- and V-statistics, M, Land R estimators. See, for 
example, the monograph by Serfling [27J. 
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2.3. Applications: The semiparametric case 

Assume now that the conditional distribution P.?{Y E . 1 X = x} = Q.?(.) 
of Y( E JR.m) given X = x E JR.d is a member of a parametric family, where the 
parameter space e is an open subset of JR.k • Under suitable regularity conditions 
we establish asymptotically optimal estimates based on N n of the true underlying 
parameter 1'}o. Since the estimation problem involves the joint density of (X, Y) as 
an infinite dimensional nuisance parameter, we actually have to deal with a special 
semiparametric problem: Since we observe data Y; whose Xi-values are only close 
to x, our set of data VI' ... ' VK(n), on which we will base statistical inference, is 
usually not generated according to our target conditional distribution Q.?(-) but 
to some distribution being close to Q.?(.). This error is determined by the joint 
density f of (X, Y) which is therefore an infinite dimensional nuisance parameter. 
As a main tool we utilize local asymptotic normality (LAN) of the Poisson process 
N~*. (For a general approach to semi parametric problems we refer to the book by 
Pfanzagl [22].) 

Suppose that for 1'} E e the probability measure Q.?(.) has Lebesgue-density 
q,J. We suppose that the density f of the random vector (X, Y) exists on a strip 
[x - Eo, X + Eo] x JR.m and is a member of the following class of functions 

=: {f : [x - Eo, X + Eo] X JR.m -; JR.+ such that 0 < 9f(x) := J f(x, y)dy :S Cl 

and for any E E (0, Eo] 

I 
P /2 (x + E, y) I 2 

J1/2(X, y) - (1 + (E, hf(Y))) :S C2 11 E 11 rf(y) 

where Cl, C2 , C3 are fixed positive constants. The leading term h f of the above 
expansion reflects the dependence between the conditional distribution of Y given 
X near x and X = x (compare with condition (2)). 
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The class of possible distributions Q of (X, Y), which we consider, IS then 
characterized by 

P:= P(:F(CI,C2 ,C3 ),8) 

:= {p I lRd+ m 
: P has density f E :F(CI , C2 , C3 ) on [x - co, x + co] 

such that the conditional density f(· I x):= f(x,·) / J f(x,y)dy 

is an element of {qd : {) E 8} }. 

Note that P(:F( Cl, C2 , C3 ), 8) forms a semiparametric family of distributions, 
where the densities f E :F( Cl, Cz, C3 ) form the nonparametric part (in which we 
are primarily not interested), and where the k-dimensional parametric part (we are 
primarily interested in) is given by 8. As a consequence, we index expectations, 
distributions etc. by E I,d, C I,d etc. 

A main tool for the solution of our estimation problem is the following extension 
of Corollary 2.1.3 which follows by a careful study of the proof of Theorem 2 in 
Falk and Reiss [11]. By this result we can handle our data Vi, ... , VK(n) within 
a certain error bound as being independently generated according to Qd, where 
the independent sample size is a Poisson rv r*(n) with parameter n vol(Sn)gf(x)j 
in other words, we can handle the empirical point process N n (which we observe) 
within this error bound as the ideal Poisson process N~*. 

Lemma 2.3.1. We have 

Notice that in the preceding result the distribution of the Poisson process 

N~*(·) = L:;~~n) cw;(·) depends only on {) and the real parameter gf(x) = 
J f(x, y)dy, with n vol(Sn)gf(x) being the expectation of the Poisson rv r*(n). 

By the preceding model approximation we can reduce the semi parametric 
problem Cf,d(Nn ) with unknown f E :F(CI , C2 , C3 ) and {) E 8 to the (k + 1)­
dimensional paremetric problem 
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where r*(n) is a Poisson rv with expectation n vol(Sn)b, bE (0, Cd, W 1, W2, ... are 
iid random vectors with distribution Q{) and r*(n) and W1, W2, ... are independent. 

We require Hellinger differentiability of the family {q{) : 19 E e} of densities at 
any 190 E e i.e., we require the following expansion 

for some measurable function V{)o = (VOl, .•• , VOk)t, VOi E L 2( Q{)o), i = 1, ... , k and 
some remainder term r{),{)o satisfying 

Denote by M(IR) the space of all finite point measures on IR, endowed 
with the smallest O"-algebra M(IR) such that all projections M(IR) :1 fJ. H 

fJ.(B), B E R, are measurable, and define the statistical experiment En = 
(M(IR),M(IR), {L{)o+t6n(N~*) : tEen}), where bn = (n VOI(Sn))-1/2 and 
en = {t E IRk : 190 +tbn E e}. Throughout the rest we suppose that n vol(Sn) --+ 00 

as n --+ 00. 

It is well known that condition (5) implies the local asymptotic normality (LAN) 
of the statistical experiments (IRm,Rm,{Q{)o+tn-1/2 : tEen}). Without further 
assumptions this result remains true for En if the marginal density g f( x) of X at 
point x does not depend on 19, which is intuitively clear and which can immediately 
be seen from the likelihood process of En. But this would be a rather restrictive 
condition. The following result, which is adopted from Falk and Marohn [9], shows 
that in order to get LAN of En it suffices to require the function g(x) to be smooth 
at 190 . 

Theorem 2.3.2. (LAN of En). Fix b > o. Under condition (5) we have with 
bn = b + O(bn) and 19 n = 19 0 + tbn 

with central sequence Zn,{)o : M(IR) --+ IRk given by 

and Rn,{)o,t --+ 0 in Lb,{)o(N~*)-probability, where (s,t)b,{)o := s'bf(19o)t, s,t,E IRk, 
and the k x k-matrix f( 190 ) := (f vOivojdQ{)o );,jE{l , ... ,k} is assumed to be positive 
definite. 
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Note that under alternatives of the form bn = b + O(bn), {Jn = (Jo + tbn, the 
central sequence Zn,t'Jo does not depend on the nuisance parameter b, which will 
become lateron the value of the marginal density of X at x. If we allow bn = 
b + O( bn) instead, then LAN of (En)n still holds, but the central sequence depends 
on the nuisance parameter b, which cannot be estimated without affecting the 
asymptotics (see Falk and Marohn [9] for details). 

We recall the famous convolution theorem of Hajek (see, for example, Ibragimov 
and Has'minskii [16], Theorem 9.1, p. 154). Suppose that condition (5) holds for 
190 E e and that Tn(N~*) is an asymptotically bn-regular sequence 0/ estimators in 
190 based on N~* i.e., 

under 190 +tbn for some probability measure G on lRk where -+v denotes convergence 
in distribution. Then there exists a probability measure H on lRk such that 

where N(O, b-1 r- 1 (19 0 )) is the standard normal distribution on (lRk, (., . )b,t'Jo) with 
mean vector 0 and covariance matrix b-1 r-1 ((Jo) and * denotes convolution. 

In view of this convolution theorem, a bn-regular sequence of estimators Tn(N~*) 
is called asymptotially efficient in 190 (in the sense of Fisher) if 

under 190 . 

By Theorem 2.3.2 we know that Zn,t'J o is central and hence, 

r· (n) 

8nZn,t'Jo(N~*) + 190 = r*(n)-lr- 1 ({Jo) L vt'Jo(Wi ) + 190 

i=l 

is asymptotically efficient in 190 for each b > O. Note that this is true however only 
under the condition bn = b + o( 8n ) in which case Zn,t'Jo is central. If we replace 

the unknown underlying parameter 190 by any 8;;-1_consistent estimator ßr * (n) = 

ßn(N~*) of (Jo i.e., 8;;-1(ßr.(n) - 190 ) is stochastically bounded under {Jo, we obtain 
that 
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is asymptotically efficient in 190 , whenever the function 19 -4 r( 19) is continuous at 
190 and 

under 190 (and b) for any K > O. 

Denote by F = FDo the distribution function of QDo and by FI(t) := 

[-I2:::=11(_=,tj(Wj), t E JRm, the empirical df pertaining to an iid sample 
Wj, ... , WI with common distribution QDo' Using conditioning techniques, ele­
mentary calculations show that condition (6) is satisfied if the function 19 -4 r( 19) 
is continuous at 190 and the following two conditions hold 

as I -4 00 for any K > 0 and 

(8) (j VD(S)F(ds)+r(190)(19-190))/II19-190 11 ~ O. 
liD-Do 11->0 

Note that y'n-consistency of I n(W1, ... , Wn) implies !5;I-consistency of JrO(n) = 
J rO(n)(W1"", WrO(n»)' We remark that under the present assumptions yn­
consistent estimators actually exist (cf. LeCam [19], Proposition 1, p. 608). 

In the following we discuss one standard family {QD : () E 0} (of possible 
conditional distributions) which satisfies conditions (5) and (6). Further examples 
can easily be constructed as well. 

Example (Exponential families). Let {QD : () E 0}, 0 c 0* open, be a k­
parametric exponential family of probability measures on JR with natural parameter 
space 0* C JRk i.e., 

qD(X) = d~D (x) = exp(({),T(x)) - K({))), x E JR, 

for some a-finite measure l/ on JR and some measurable map T = (Tl' ... , Tk) : JR -4 

JR k, where the functions {I, T1, ... , Tk} are linear independent on the complement 
of each l/-null set and K ( ()) : = log J exp( (() , T( x)) )dl/( x ). It is well known that the 
function () -4 ED T is analytic in the interior of 0*. From Theorem 1.194 in Witting 
[32J we conclude that for {)o E 0* the family {QD} is Hellinger-differentiable at {)o 

with derivative 
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where 'V = (a~i )i=1 , ... ,k denotes the nabla-operator. In this case, we get r( {)o) = 
COViJoT and condition (8) is implied by 

EiJ T - EiJoT - 'VEiJoT ({) - {)o) --t 0 

11 {) - {)o " 

for {) --t {)o and 'V EiJoT = COViJoT. Notice that COViJoT is positive definite by the 
linear independence of {I, T1 , •.• , Td (Witting [32], Theorem 1.153). Condition (7) 
trivially holds since the integrand is independent of s. 

We can rewrite r.n(N~*) in the form 

with T : M(IR) --t IRk given by 

if J.l = I:rl~) C: Wi is an atomization of J.l. 

The preceding considerations are summarized m the following result with 

Poisson process N~* = I:~:ln) C:Wi' 

Theorem 2.3.3. Fix b > 0 and suppose that the family {QiJ : {) E e} satisfies 

conditions (5) and (6) for any {)o E e(C IRk). Let -an = -an(W1 , ••• , Wn) be any 

fo-consistent estimator of each '19 0 and put T(N~*) := -a r*(n)(W1",., Wr*(n». If 
bn = b + o(bn ) then 

r*(n) 
= T*(n)-lr-I(T(N~*» L vT(N~*)(Wi) + T(N~*) 

;=1 

is an asymptotically efficient estimator i. e., asymptotically efficient in {)o for all 
'19 0 E e. 

By means of Lemma 2.3.1 and Theorem 2.3.2, we can now establish asymptotic 
efficiency of an estimator r.(Nn) of {)o along regular paths in P(F( Cl, C2 , C3 ), e). 

Definition 2.3.4. A path A --t PiJo+>.t E P(F(C},C2 ,C3 ),e), t E IRk, A E (-c:,c:) 
for some c: > 0, is regular in '19 0 , if the corresponding marginal densities of X satisfy 
\ giJo+>.t(x) - giJo(x) \= O(A) for A --t o. 
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Now, we are in the proper position to state our main result. 

Theorem 2.3.5. Suppose that the family {Qd : t9 E e} satisfies condition (5) and 

(6) for any t90 E e. Let vol(Sn) -+ 0,11 an 11-+ 0, n vol(Sn) 11 an 11
4

/
d-+ 0, and 

n vol(Sn) -+ 00. Then 

is asymptotically efficient in the sense 

under regular paths Pdo+ton in P, whereas for any other estimator sequence Tn(Nn ) 
of t9 0 based on N n, which is asymptotically bn -regular along regular paths Pdo+to n , 

we have 

for some probability measure H on IRk. 

Proof. By Lemma 2.3.1 we can replace N n by N~* and hence, the assertion follows 
from the asymptotic efficiency of K(N~*) established in Theorem 2.3.3 together with 
elementary computations. 

Remark . If we choose an,l = .,. = an,d = Cn, then we obtain vol(Sn) = 
Cn, n· vol(Sn) 11 an 11 4 / d= O(nc~dHl/d) and bn = (ncn)-l/2. The choice 

Cn = 12(n)n-d/(dHl with l(n) -+ O,n -+ 00, results in bn of minimum order 
O(l(n)-ln-2 /(dHl). The factor l(n)-l which may converge to infinity at an 
arbitrarily slow rate actually ensures that the approximation of N n by N~* is 
close enough so that asymptotically the nonparametric part of the problem of the 
estimation of t90 i.e., the joint density of (X, Y), is suppressed. In particural, it 
ensures the asymptotically unbiasedness of the optimal estimator sequence K(N n). 
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