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Abstract - The set of equations suggested ~ the authors earlier for determining the vector coupling coeffi­
cients (VCC) amn and bmn in atoms with the d configuration is revised. It is shown that in the basis of complex 
d orbitals, the equations obtained earlier permitted a symmetric solution, amn = anm and bmn = bnm • This is not 
true for real d orbitals considered earlier. The ensuing contradiction between the formal requirement that VCC 
be symmetric and the physical equivalence of various VCC sets for non-Roothaan terms (nonsymmetric VCC 
in the basis of real d orbitals and symmetric VCC in the basis of complex d orbitals) is discussed. 

As shown earlier, calculating open-shell systems by 
the restricted Hartree-Fock (RHF) method [1 - 6] 
requires the determination of vector coupling coeffi­
~ients (VCC) aij and bij entering into the energy func­
tIOnal 

ERHF = 2DHii 
i 

+ LD~(2aijJij-bijKij)' 
I j 

(1) 

where h are the occupation numbers of one-electron 
orbitals, a?d H ii, Jij, and Kij are the core, Coulomb, and 
exchange mtegrals, respectively. The coefficients that we 
seek, aij and hij' are nonvariationaI quantities in the RHF 
methoC1. They characterize the state (tenn) and the con­
figura~on of the system [1, 5]. For most frequently 
occumng ?pen shells, these coefficients are tabulated in 
[5 - 7]. WIth more complex .systems such.as high-sym­
~etry sys!ems in certain (non-Roothaan) states, calculat­
mg VCC mvolves problems discussed in [8 - 12]. 

The d~terminati?n ?f VCC for the most symmetric 
~yste~s IS of s?~clal mterest, viz. atoms and atomic 
I?nS m states ansmg from the d~ electronic configura­
tIOn [7, 12 ~ 14]. In [12], we obtamed a set of equations 
for calculatmg the corresponding VCC. It follows from 
[12] that non-Ro?thaan terms of the dN configuration 
can only be descnbed by nonsymmetric VCC matrices' 
/laijll "1= /laijW and/or /bijl!::t: IIbijW. . 

Here ~e .treat !he set of equations from [12] in 
more detaIl, mcludmg complex. d orbitals in our study. 
T~e central result o~ our analysIs is the conclusion that 
WIth complex d:orbltals, as opposed to real ones [12], 
the s~t of equatIOns from [12] permits both nonsym­
metric and symmetric solutions for non~Roothaan 
term~. The most. important inferences from this result 
are dIscussed bnefly. 

VECTOR COUPLINO COEFFICIENTS 
IN THE BASIS OF COMPLEX d ORBITALS 

The set of equations derived in [12] for determining 
VCC in transition metal atoms and ions with the d

N 

configuration has the form 

m n 

L (ZamnJ mn - bmnKmn) 

n (3) 

n 

where the indices m m and n are the numbers of open , - . umber 
d shell orbitals (m > m) with occupatIOn n 
j = N/10' Fk = Fk(d cl) are the Slater-Condon parame­

" fi· t char­ters [15]; and dk) are some numerical coef Clen s 
acterizing particular L, S multiplets [15]. 

Physically, equation (2) establish~s eqt~~ 
between atomic energies in two verSIons 0 th 
restricted Hartree-Fock method [12]; these

l 
are siO~ 

atomic theory [15] and the most genera ver al 
~qually applicable to atoms and molecules, the6!eMor~ 
lzed coupling operator (OCO) method p - f (2) rep­
explicitly, both the left- and right-hand sIdes? . an 
resent the energy of interelectronic interactlOn~;~er_ 
open d shell, which is the sole concern of the a 
Condon theory of atomic multiplets [15]. 

d'· of equality 
Equation (3) follows from the con ItlOn d orbitalS: 

of one~electron energies {gm} for degenerate 
(4) 

gm = tw; (m > m). 
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In the GCO method, one-electron energies {Em} are 

the eigenvalues of the general coupling operator R 
[4, equation (3.8)]: 

Em = (<1».&1 $m) = ($mIFml<l>m)/fm, (5) 

where Fm is the Fock operator for orbital «Pm. We write 
Fm in the form [4, equation (2.1)l(see also [5, equa­
tions (22) through (11)]) 

F. =1.[ H + ~ (2J.-K".) 

+ ~. (2am.l. - bm.K".) J. 
(6) 

where the index k numbers the closed-shell orbitals. 
Using (6) and bearing in mind that Hmm = HllIJ1J. and 

L
Ck

(2Jkm - Kkm) = ~ (2Jkm - Kkm) [1], we obtain ) ~w - -
(3) directly from equations (4) through (6). 

An .important point in calculating vector coupling 
co~ffic~ents amn and bmn for atoms with the dN configu­
r~tion IS that these coefficients are not defined unam­
bIguously [12]. They depend on the choice of the basis 
of degenerate d orbitals generally defined with an accu­
racy to some unitary transformation u. Therefore, if 
necessary, we will use the denotations a (u) and b (u) 

mn mn' 

and al~o a~;; and b!~), and a~~) and b!~), where the 
coeffiCIents with the indices C (complex) and R (real) 
ref~r to the complex (7) and real (8) basis sets of d 
orbItals, respectively: 

{(2;dxz ;dyz ;d 2 2;dxy }' .. X-)' 

(7) 

(8) 

To determine the unknown VCC a (C) and b (C) cor-
respo d' . mn mn 
th n mg to a certaIn L, S multiplet characterized by 
m~ coefficients e(O), e(2), and e(4) from (2) and (3), we 

b~t express the integrals J and K for complex d mrtlfu ~ ~ 

and ! S rough the Slater-Condon parameters PO, F, 
J:" [15]: 

Jo,o :::::: p> + (36P2+ 36r) 1441, 

JI,I ::: J-1._1 = J 1._1 :::::: p> + (9F2 + 16;4) 1441, 

'2.2::: J-2._2 == J2._2 = pO+ (36F2+ r) 1441, 

Jo• I :: JO,_1 == p> + (18P2_24p4) 1441, 

)0.2 = JO._2 ==p-O+ (-36p2 + 6r) 1441, (9) 

J 1 2 == J == J" - J , 1.-2 -1,2 - -1.-2 

==pO+ (-18p2-4p4) 1441; 

Ko,] == KO,_I = (9p2+30r)/441, 

Ko, 2 == Ko. -2 = (36F2 + 15r) 1441, 

K1,_1 = (S4pl+ 40r) /441, 

K1,2 = K_I -2:::: (S4F1 + 5P) 1441, 
. (9) 

KI,_2 = K-1•2 = 35P 1441, 

K1,_2 = 70F' 1 441. 
Substituting (9) into (2) and (3) and equating the coef­

ficients of FO, P, and p4 on the right- and left-hand sides 
yields two sets of linear equations in SO (= 2 X 5 x 5) 
unknown coefficients a (C) and b CC). mn mn • 

so 
LAili == c(2(I-l») /[2, i = 1,2,3, (2a) 
j=1 

so 

L./vijXj = 0, i = 4,5, ... , 15, (3a) 
j= 1 

where Xj are the unknowns that we seek, and a,~C;; and 
b~C;: , ordered in a certain way (Xl = ao,o, Xz = ao, It ... , 
Xs = ao, -z, X6 = al,O' ... , XZ5 = a_z. -2' • X26 = bo•o, ... , 
Xso = b_z -2), and Aij are the correspondmg (real) coef­
ficients .. 

The set (2a), (3a) comprises 15 linear equations in 50 
unknowns, and therefore, there is a certain arbitrariness in 
determining the VCC. This is typical ofVCC calculations 
on systems with degenerate open shells [7, 9 - 12]. 
According to [9, 10, and 12], this arbitrariness has no 
effect on physically meaningful results. Quantum chemi­
cal calculations with various VCC sets give the same total 
energy of the system, density matrix, etc., as required. 

The set (2a), (3a) can conveniently be solved in two 
stages [12]: 1) Equations (3a) are solved to find 12 cho­
sen variables. 2) The obtained 12 variables expressed in 
terms of the remaining 38 are substituted into three equa­
tions (Za). The undefined 35 variables may be required to 
meet arbitrary additional relations (see below). 

The A· coefficients are rational, and the set (3a) can 
therefore be solved in integer numbers; that is, the exact 
solution can be obtained. In [12J, we developed the cor" 
responding procedure as a special integral computer pro­
gram and used this program to analyze equations (Za) 
and (3a) in the basis of real d orbitals (Ajj::: A~R». Here 
we apply a similar procedure to complex d oroItals (7). 

A comparison of the results obtained in [12] and in 
this work reveals a qualitative difference between gen­
eral solutions of the sets (2a), (3a) for non-Roothaan 
terms. These terms in the dN configuration are. charac­
terized by the inequality e(2) :1= .e(4) [1~J. In ~asls (8) of 
real orbitals, the set (2a), (3a) IS conSIstent If a~d only 
if one of the matrices of the VCC that we seek IS non­
symmetric, that is, lIamn ll:l= IlamnW andlor Ilbmnll,* 
I\bmn W, in spite of the arbitrariness in the choice ~f the 
VCC (15 equations in 50 un~owns) [12J. ~n baSIS (7) 
of complex d orbitals, there anse no restrictIOns on the 
a

llln 
and bmll we s7ek for n?n-Roothaan .tenus, and th~y 

can be obtained III an arb1n:ary form, e~ther sy~etrIc 
or nonsyrnmetric (dependmg on vanous addItional 
relations, see above). 
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For Roothaan terms (that is, when e(2) = e(4) [12]), nei­
ther of the basis sets leads to restrictions on the VCC. 
Thus we can use the standard Roothaan form [1], am1l = a 
and b = b, which also makes the VCC independent of 
the ch;ice of the basis of degenerate d orbitals [12]. 

On the other hand, as shown in [16], the VCC amn 
and bm1l for all states should meet the symmetry condi­
tion 

amn :: anm , bmn :: bnm (10) 

(see discussion in the next section). Therefore, we con­
sider symmetric solutions in the basis of complex d 
orbitals in more detail. 

To represent the VCC amn and bm1l, which are solu­
tions of (2a), (3a), and (10), in a form convenient for 
practical use, let us introduce the additional relation 

amn = a, (11) 

which leaves the set (2a), (3a), (10) consistent. (With 
the relation bmn = b [9 - 12, 17] instead of (11), the set 
(2a), (3a), (10) is inconsistent when e(2) i: C(4).) 

With relations (10) and (11), we have 16 unknowns 
to be determined from 15 equations (Za) and (3a). Solv­
ing them yields the following expressions for the coef­
ficients a and b~;; : 

a = c(O) 150f2 + P/10, 

bO,l = -7 (-5C(2) + 12c(4» 150f2 - 4~/1O, (12) 

b l ,2 = -7 (5C(2) +ZC(4» /50/2 - 4P/I0; 

bO,_1 = b l ,_2 = b_1•2 = bO•I , 

b_I._2 = b 1• 2, 

bO•2 = (-bo, I + 3bl•2) IZ, 

bO,-2 = (-bo, I + 3bl,2) 12, 

bl, -1 = (-bo, I + 2b1, 2) 12 + ~/Z, 
b2,-2 = (bo•l + bI,2) 14 + P/2, 

bmm=P; (m=0,+1,-I,+2,-Z), 

where 13 is some arbitrary parameter. 

(13) 

F?r Roothaan terms (that is, when e(2) = e(4», we 
may mtroduce yet another relation. bmn :: b. This gives 
b = P = -7C(2) 1 10/2, and a :: (2e(O) - 7C(2» 1 lOOp. 
These VCC values coincide with those obtained earlier 
using the basis set of real d orbitals [12, equation (11)]. 

DISCUSSION 

For pro~f of the validity of the suggested procedure 
~or calculatmg the VCC, we refer to a detailed compar­
Ison [12, 18] of calculations on transition metal atoms 
performed using two versions of the restricted Hartree­
~ock method and the same basis of real Gauss func­
tlOn~ (14s9p5d) 1 [8s4p2d] from [19]. The results 
ob tamed from the generalized coupling operator 
method [1 - 4] with the VCC from [12] and from the 

method based on the Roothaan-Hartree-Fock atomic 
theory [20] were compared. 

In more detail, the comparison procedure was as fol­
lows. For each particular L, S multiplet with the dN con­
figuration, several ab initio GCO calculations with 
various sets ofVCC (symmetric and nonsymmetric for 
Roothaan terms and various sets of nonsymmetric VCC 
for non-Roothaan terms) were performed. The results 
(the total energy, the coefficients of expansion of AOs 
in the basis (Gauss) functions, etc.) were identical to 
each other for all terms and coincided completely with 
the corresponding data [18, 19] obtained using the 
atomic theory [20]. 

Considering the last circumstance leads us to con­
clude that clearly enough, similar GCO calculations on 
transition metal atoms with complex d orbitals and sym­
metric VCC, (12) and (13), should give the same results 
[12, 13, and 14] because the initial equations .(Z) and (~) 
for calculating VCC were derived for an arbltrary baSIS 
of d orbitals. Therefore various VCC sets for non­
Roothaan terms (nonsymmetric [12] in ~e basis o~real 
d orbitals and symmetric (12) and (13) In the baSIS of 
complex orbitals) are physically equivalent to each other. 

On the other hand it follows from [16] that for all 
states, the VCC amn a~d bmn shoul~ b~ symmetric (l~). 
The authors of [16] revised the varIational procedure ~n 
the RHF method with energy functional (1) to obtam 
the Fock operator in the form 

frm =fm[ H+ ~ (2J.-k.) 
(14a) 

+ Lt. (2Am.J, - B •• K,) J 
n 

Amn = (amn + anm) 12, Bmn = (bmn + bnm) / Z. (14b) 
The coefficients of the Coulomb and exchange oper­

ators are different here from those in the usual expres-
sion (6). .. 

According to (14), (3) should include the ;~~ 
coefficients A and B (14b) rather than the mn mn 
amn and bmn: 

L (ZAmn1mn - BmnKmn) 
n (3') 

= 2: (2AwnJ!!1n - BrPnKwn) • 

• n d t d termine the A companson of the two sets use 0 e h t 
VCC, {(2), (3)} and {(2), (3')}, re.adily: shIO)Vf; g:~:tt~r 
they become equivalent (but not Identic a I 
is augmented by (10). h 

. 6 £ -Root aan It follows that accordmg to [1 ], or non uire-
terms in the dN configuration, all the necessary red (13) 
ments are met only by symmetric VCC (12) a~bitals. 
determined using the basis set of com1?le~ d °of [16] 
Similarly, for Roothaan terms, the. cntenon lthough 
selects only symmetric VCC as permItted sets a 
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both symmetric and non symmetric VCC lead to the 
same SCF solution [12].1 

We conclude that there is a certain contradiction 
between the formal requirement that the VCC be sym­
metric [16] and physical equivalence of various VCC 
sets in systems with open shells. This contradiction has 
not yet been resolved (the problem is discussed in more 
detail in [16, 18, and 21]). It is, however, important that 
our finding of the symmetric solution «(12) and (13)) for 
the VCC proves in principle that it is possible to calcu­
late atomic non-Roothaan states in the dN configuration 
using the general coupling operator approach [2 - 6] 
with energy functional (1). Earlier, this possibility was 
only suggested for states separable by mUltiplicity [7] 
~that is, for the Roothaan 2D(d1, cfJ), SD(tP, fi6), and 
S(d5) states). 
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