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Abstract — The set of equations suggested lgly the authors earlier'for detgrmining the vector coupling coefﬁ-
cients (VCC) a,, and b, in atoms with the 4" configuration is revised. It is shown that in the basis of complex
d orbitals, the equations obtained earlier permitted a symmetric solution, a,,, = dy,, a0d b, = by, This is Ié()ct
true for real d orbitals considered earlier. The ensuing contradiction between the formal requirement that VCC
be symmetric and the physical equivalence of various VCC sets for non-Roothaan terms (nonsymmetric V

in the basis of real d orbitals and symmetric VCC in the basis of complex d orbitals) is discussed.

As shown earlier, calculating open-shell systems by
the restricted Hartree-Fock (RHF) method [1 - 6]
requires the determination of vector coupling coeffi-
cients (VCC) a;; and b; entering into the energy func-

tional
ERHF = ZZfiHii

+ 22'”»73 (zaif‘]ii - binij) ’
i

where f; are the occupation numbers of one-electron
orbitals, and Hj;, J;, and K; are the core, Coulomb, and
exchange integrals, respectively, The coefficients that we
seek, a;; and by, are nonvariational quantities in the RHF
method. They characterize the state (term) and the con-
figuration of the system [1, 5]. For most frequently
occurring open shells, these coefficients are tabulated in
(5 - 7]. With more complex systems such.as high-sym-
metry systems in certain (non-Roothaan) states, calculat-
ing VCC involves problems discussed in [8 - 12].

The determination of VCC for the most symmetric
systems is of special interest, viz. atoms and atomic
ions in states arising from the d” electronic configura-
tion [7, 12 - 14]. In [12], we obtained a set of equations
for calculating the corresponding VCC. It follows from
[12] that non-Roothaan terms of the gV configuration
can only be described by nonsymmetric VCC matrices:
[layll # llayll* and/or 16yl # byl

Here we treat the set of equations from [12] in
more detail, including complex d orbitals in our study.
T}_le central result of our analysis is the conclusion that
with complex d-orbitals, as opposed to real ones [12],
the set of equations from [12] permits both nonsym-
metric and symmetric solutions for non-Roothaan

terms. The most important inferences from this result
are discussed briefly.

M

VECTOR COUPLING COEFFICIENTS
IN THE BASIS OF COMPLEX d ORBITALS

The set of equations derived in [12] for de.terminir;i%
VCC in transition metal atoms and ions with the
configuration has the form

fzzz (20,0 15 = DKo o)

4
=cOF+cPF+ Y F,

Z (zamn"mn - bmnKmn)
" 3)

= 2 (zaL’mJ!_?m - bg_nnK_mn) ’

where the indices m, m and n are the numbers of 0%661;
d shell orbitals (m > m) with occupation nu? me-
f=N/10; F* = FKd, d) are the Slater-Condon parchar-
ters [15]; and ¢® are some numerical coefficients
acterizing particular L, S multiplets [15].

Physically, equation (2) establishes eguahty
between atomic energies in two Versions are the
restricted Hartree-Fock method [12); thcs? version
atomic theory [15] and the most genera o
equally applicable to atoms and molecules, theé% More
ized coupling operator (GCO) method [1 - £ (2) rep-
explicitly, both the left- and right-f}anfl sides .Ons in an
resent the energy of interelectronic mteract;% Slater-
open d shell, which is the sole concern of t
Condon theory of atomic multiplets [15]:

Vet ality
Equation (3) follows from the condltlortl 05 g?‘t?itals:
of one-electron energies {&,,} for degenerate

@

En=E,; (m>m).
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SYMMETRIC VECTOR COUPLING COEFFICIENTS

In the GCO method, one-electron energies {g,,} are

the eigenvalues of the general coupling operator R
[4, equation (3.8)]:

e, = (0,IR10,) = <0,|F.)0, /7., 3

where F, is the Fock operator for orbital ¢, We write
if‘,,, in the form [4, equation (2.1)] (see also [5, equa-
tions (22) through (11}

F, =}, [I‘HZ (27~ Ky)
k

+ an (2amn.7,, - bmnf{n jI»

whpre the index k numbers the closed-shell orbitals.
Using (6) and bearing in mind that H,, = H,, and

Z(k)(y,m, -K,,) = Z(k)(ka,_,, ~ K,,,) [11, we obtain
(3) directly from equations (4) through (6).

An Important point in calculating vector coupling
cogiﬁc;ents a,, and b,,, for atoms with the d" configu-
lation is that these coefficients are not defined unam-
biguously [12]. They depend on the choice of the basis
of degenerate d orbitals generally defined with an accu-

1aCy to some unitary transformation u. Therefore, if
necessary, we will use the denotations 2 and 5%,
(%) 1
andfalsp Ay, and biY, and a® and b, where the
fé)fe ficients with the indices C (complex) and R (real)
®r to the complex (7) and real (8) basis sets of d
orbitals, respectively:

{doid, ;d_1;d, 5;d 5}, )]
{dzz;dxz;dyz;dxz_yz;dxy} . (8)

res To ((iif_:termine the unknown VCC a2 and b 9 cor-
thepon Ing 1o a certain L, § multiplet characterized by
te (t:oefﬁcwnts ¢, ¢?, and ¢ from (2) and (3), we

Stexpress the integrals J,, and K, for complex d

:rrx glf}?gs[il;r]?ugh the Slater-Condon parameters F°, F?,

(©)

Jo0 = FO+ (36F%+ 36F*) /441,
hasU =0, = FO4 (9F%+ 16F%) /441,
Taa= o y= 10, , = FO4 (36F%+ F') /441,
Tx=Jy = FO+ (18F%24F% /441,
N2 =Ty, =FO4 (<36F%+6F%) /441, (9)
S0 = = J;l,Z =J2
=F%+ (-18F*-4F*) /441,
Ko =K, _, = (9F*+30F*) /441,
Koo= K, _,= (36F*+ 15F*) /441,
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K, .1 = (54F*+40F*) /441,
K1,2 = K—].-—Z = (54F2+5F‘4) /441,
Kl'_z = K_1’2 = 35F4/441,

K, .o =T0F*/441.

_Substituting (9) into (2) and (3) and equating the coef-
ficients of F9, F2, and F* on the right- and left-hand sides
yields two sets of linear equations in 50 (= 2 X 5 X 5)

unknown coefficients 2% and (9

50
N Ay =c PO p2 g, 0.3,

j=1

50
> = 0,
j=1

where x; are the unknowns that we seek, and o< and
b,f,,, , ordered in a certain way (x; =ag g, X% =dp,j, ...
X5 = aO, - Xg = al, 0 ooy X5 = w2, 0 Xyg = b(), Qs soey
Xsp = by, 5), and A are the corresponding (real) coef-
ficients.

The set (2a), (3a) comprises 15 linear equations in 50
unknowns, and therefore, there is a certain arbitrariness in
determining the VCC. This is typical of VCC calculations
on systems with degenerate open shells [7, 9 - 12).
According to [9, 10, and 12}, this arbitrariness has no
effect on physically meaningful results, Quantum chemi-
cal calculations with various VCC sets give the same total
energy of the system, density matrix, etc., as required.

The set (2a), (3a) can conveniently be solved in two
stages [12]: 1) Equations (3a) are solved to find 12 cho-
sen variables. 2) The obtained 12 variables expressed in
terms of the remaining 38 are substituted into three equa-
tions (2a). The undefined 35 variables may be required to
meet arbitrary additional relations (see below).

The A, coefficients are rational, and the set (32) can
therefore {:e solved in integer numbers; that is, the exact
solution can be obtained. In [12], we developed the cor-
responding procedure as a special integral computer pro-
gram, and used this program to analyze equatll(ons (22)
and (3a) in the basis of real d orbitals (A; = %fi )). Here
we apply a similar procedure to complex d orbitals (7).

A comparison of the results obtained in [12] and in
this work reveals a qualitative difference between gen-
eral solutions of the sets (2a), (3a) for non-Roothaan
terms. These terms in the " configuration are charac-
terized by the inequality ¢® # ¢ [12]. In basis (8) of
real orbitals, the set (2a), (3a) is consistent if and only
if one of the matrices of the VCC that we seek is non-
symmetric, that is, Ha,,l,,ll # Ha i and/or ||b,,,|| #
\1B,0sV, ina spite of the arbitrariness in the choice of the
VCC (15 equations in 50 unknowns) [12]. In basis (7)
of complex d orbitals, there arise o restrictions on the
a,, and b, we seek for non-Roothaan terms, and they
can be obtained in an arbitrary form, either symmetric
or nonsymmetric (depending on various additional

relations, see above).

(2a)

i=45,..,15, (3a)
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For Roothaan terms (that is, when ¢® = ¢®[12]), nei-
ther of the basis sets leads to restrictions on the VCC.
Thus we can use the standard Roothaan form [1], a,,,= a
and b,,, = b, which also makes the VCC independent of
the choice of the basis of degenerate d orbitals [12].

On the other hand, as shown in [16], the VCC a,,,
and b, for all states should meet the symmetry condi-
tion
bpan = by (10)
(see discussion in the next section). Therefore, we con-

sider symmetric solutions in the basis of complex d
orbitals in more detail.

To represent the VCC a,,, and b,,, which are solu-
tions of (2a), (3a), and (10), in a form convenient for
practical use, let us introduce the additional relation

Ay = 4, (11

which leaves the set (2a), (3a), (10) consistent, (With
the relation b,,, = b [9 - 12, 17] instead of (11), the set
(22), (3a), (10) is inconsistent when ¢@ # c@,)

With relations (10) and (11), we have 16 unknowns
to be determined from 15 equations (2a) and (3a). Solv-
ing them yields the following expressions for the coef-
ficients g and b,f,,, :

a=c /5072 +B/10,
bo,1=~7(-5¢® +12¢“) /502 — 4B/10, (12)
by ==7(5¢® +2¢®) /5072 - 4B/10;

amn - anm ’

bo,-1 = b1,~z = b-l,z = bo,v

b_y = by,
bO.Z = ("‘bO, 1 + 3b1,2) /2,
by, 2= (=by, + 3b,,) /2, (13)

byy = (~by,+2b, ;) /2+ /2,
b2’_2= (b0’1+b1’2)/4+ﬁ/2,
bmm=B; (m=0’+1:“1,+2,—2),

where {3 is some arbitrary parameter.

For Roothaan terms (that is, when ¢® = c®), we
may introduce yet another relation, b, = b. This gives
b=p=~7c¢®/10f% and q = 2c® — 7¢@y 1 10072,
These VCC values coincide with those obtained earlier
using the basis set of real d orbitals [12, equation (11)].

DISCUSSION

For proof of the validity of the suggested procedu
for calculating the VCC, we refer to g %ietaileg compalf-
1son [12, 18] of calculations on transition metal atoms
performed using two versions of the restricted Hartree—
Fock method and the same basis of real Gauss func-
tions (145s9p5d) / [8s4p2d] from [19]. The results
obtained from the generalized coupling operator
method [1 - 4] with the VCC from [12] and from the
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method based on the Roothaan-Hartree-Fock atomic
theory [20] were compared.

In more detail, the comparison procedure was as fol-
lows. For each particular L, § multiplet with the @¥ con-
figuration, several ab initio GCO calculations with
various sets of VCC (symmetric and nonsymmetric for
Roothaan terms and various sets of nonsymmetric VCC
for non-Roothaan terms) were performed. The results
(the total energy, the coefficients of expansion of AOs
in the basis (Gauss) functions, etc.) were identical to
each other for all terms and coincided completely with
the corresponding data [18, 19] obtained using the
atomic theory [20].

Considering the last circumstance leads us to con-
clude that clearly enough, similar GCO calculations on
transition metal atoms with complex d orbitals and sym-
metric VCC, (12) and (13), should give the same results
[12, 13, and 14] because the initial equations (2) and (3:)
for calculating VCC were derived for an arbitrary basis
of d orbitals, Therefore various VCC sets for non-
Roothaan terms (nonsymmetric [12] in the basis of real
d orbitals and symmetric (12) and (13) in the basis of
complex orbitals) are physically equivalent to each other.

On the other hand, it follows from [16] that for all
states, the VCC q,,, and b,,, should be symmetric (10).
The authors of [16] revised the variational procedure in
the RHF method with energy functional (1) to obtain
the Fock operator in the form

F, =fm[l?+2(27k—f<k)
k (14a)

+ Efn (2Amn'7n - ank") :l’

A= Opn+ay) ! 2, By =B+ bum) /2. (14b)

The coefficients of the Coulomb and exchange oper-
ators are different here from those in the usual expres-
sion (6). .

According to (14), (3) should include the new
coefficients A,, and B,, (14b) rather than the vCC
a,, and b,

2 (2Amn‘7mn - anKmn)
n (3)

= Z (2A yd = B Kog) -
n

A comparison of the two sets used to determgetgﬁ
VCC, {(2), (3)} and {(2), (3)}, readily shows [16] 1'%
they become equivalent (but not identical) if the 12
is augmented by (10).

It follows that according to [16], for non'ROOtLliar?
terms in the d" configuration, all the necessary reél 13)
ments are met only by symmetric VCC (12) o itals.
determined using the basis set of complex d Of 1
Similarly, for Roothaan terms, the criterion ©

selects only symmetric VCC as permitted sets althoug
1993



SYMMETRIC VECTOR COUPLING COEFFICIENTS

both symmetric and nonsymmetric VCC lead to the
same SCF solution [12].1

We conclude that there is a certain contradiction
between the formal requirement that the VCC be sym-
metric [16] and physical equivalence of various VCC
sets in systems with open shells. This contradiction has
not yet been resolved (the problem is discussed in more
detailin [16, 18, and 21]). It is, however, important that
our finding of the symmetric solution ((12) and (13)) for
the VCC proves in principle that it is possible to calcu-
late atomic non-Roothaan states in the d¥ configuration
using the general coupling operator approach [2 - 6]
with energy functional (1). Earlier, this possibility was
only suggested for states separable by multiplicity [7)
&that is, for the Roothaan 2D(d}, &), 3D(d*, d%), and
S(dP) states).
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