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Summary  
 
Disruption of differentiation pathways is one of the hallmarks of cancer. In 

rhabdomyosarcoma (RMS), a human tumor arising from myogenic precursors, the 

muscle differentiation program is disabled resulting in uncontrolled proliferation. 

Whether the differentiation block is due to overexpression of inhibitors, deficient 

function of activators, or both remained unknown. This study shows that RMS cells 

but not non-neoplastic muscle cells overexpress ΔNp73, a pan-inhibitor of the p53 

family of tumor suppressor genes. Experimental overexpression of ΔNp73 in normal 

muscle precursor cells inhibited myogenic differentiation and promoted malignant 

transformation in cooperation with the RMS oncogenes IGF2 and PAX3/FKHR. Vice 

versa, RNAi knockdown of ΔNp73 reduced the tumorigenicity of established RMS 

tumor cells. As ΔNp73 is a dominant-negative inhibitor of the p53 family, inhibition of 

differentiation by ΔNp73 suggests that the p53 family members (p53, p63 and p73) 

are critically involved in myogenic differentiation control. Indeed, this study 

demonstrates that all three p53 family members cooperate to activate the late stages 

of the differentiation process by regulating the activity of the retinoblastoma protein 

RB. The function of RB is known to be required for both the permanent cell cycle exit 

and the activation of muscle-specific genes. Whereas p53 regulates RB protein 

levels, p63 and p73 control the activation state of RB by modifying its 

phosphorylation via the cyclin-dependent kinase inhibitor p57KIP2. Ablation of these 

p53 family functions blocks the differentiation program and promotes malignant 

transformation. Induction of cellular differentiation therefore contributes to the tumor 

suppressor activities of the p53 family and provides an explanation for the high 

frequency of p53 pathway alterations in rhabdomyosarcoma patients. 
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Zusammenfassung 
 
Krebserkrankungen zeichnen sich häufig durch Störungen zellulärer 

Differenzierungsprozesse aus. So weisen Rhabdomyosarkome, die aus 

Muskelvorläuferzellen hervorgehen, Differenzierungsdefekte auf, die zur 

unkontrollierten Proliferation der Tumorzellen führen. Bislang ist ungeklärt, ob die 

Differenzierungsdefekte auf der verstärkten Expression von Inhibitoren, der defekten 

Funktion von Aktivatoren oder einer Kombination von beidem beruht. In dieser Arbeit 

wird gezeigt, dass im Unterschied zu normalen Muskelzellen RMS-Zellen verstärkt 

ΔNp73, einen Pan-Inhibitor der p53-Tumorsuppressorfamilie, exprimieren. Die 

experimentelle Überexpression von ΔNp73 in normalen Myoblasten blockierte die 

Muskeldifferenzierung und förderte in Kombination mit klassischen RMS-Onkogenen 

wie IGF2 oder PAX3/FKHR die maligne Transformation. Umgekehrt führte die 

Hemmung von ΔNp73 durch RNAi zur Reduktion der Tumorigenität von RMS-

Tumorzellen. Da ΔNp73 als dominant-negativer Inhibitor der p53-Familie wirkt, lies 

die Hemmung von Differenzierungsprozessen durch ΔNp73 vermuten, dass die p53-

Familienmitglieder (p53, p63, und p73) an der Regulation der Muskeldifferenzierung 

beteiligt sind. Tatsächlich konnte in dieser Arbeit gezeigt werden, dass die drei p53-

Familienmitglieder bei der Induktion später Differenzierungsstadien kooperieren, 

indem sie die Aktivität des Retinoblastoma-Proteins RB regulieren. Die Funktion von 

RB ist bekanntermassen sowohl für den permanenten Zellzyklusarrest als auch für 

die Aktivierung Muskel-spezifischer Gene notwendig. Während p53 die 

Proteinspiegel von RB reguliert, kontrollieren p63 und p73 den Aktivierungsgrad von 

RB, indem sie dessen Phoshphorylierungszustand über den Zyklin-abhängigen 

Kinaseinhibitor p57KIP2 modifizieren. Eine Hemmung dieser Funktionen blockiert das 

Differenzierungsprogramm und fördert die Tumorentstehung. Die Aktivierung 

zellulärer Differenzierungsprozesse stellt somit einen entscheidenden Bestandteil der 

Tumorsuppressoraktivität der p53-Familie dar und liefert eine Erklärung für die 

Häufigkeit von Mutationen im p53-Signalweg bei Rhabdomyosarkom-Patienten.  
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1. Introduction 
 
1.1. The p53 Family Members  
 

Introduction  
 
The transcription factor and tumor suppressor p53 and its two homologues p63 and 

p73 form a protein family. Despite the structural and functional similarities between 

p53, p63 and p73 (Fig. 1), the knockout phenotypes and the expression patterns of 

p53 family members are quite different from each other. In the following sections, 

each p53 family members will be described in detail.  

 

 

 
 
Figure 1. Gene structure of the p53 family members. 
The percent identity at the amino acid level is indicated for the TA (transactivation 
domain), DBD (DNA binding domain) and OD (oligomerization domain).  
 
 

1.1.1. The p53 Gene 
 

p53 was discovered more than 25 years ago as a protein interacting with the 

oncogenic T antigen from SV40 virus (Linzer et al., 1979). The p53 gene contains an 

internal promoter and can transcribe twelve different mRNAs in normal human 

tissue, which can encode at least nine p53 protein isoforms (Fig. 2A and B). These 

p53 isoforms are expressed in several normal human tissues in a tissue dependent 

manner (Bourdon et al., 2005). 
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Figure 2. The human p53 gene. 
A. The human p53 contains an aternative promoter and transcribes multiple splice 
variants. B. The human p53 gene generate nine different p53 protein isoforms : p53, 
p53β p53γ, Δ133p53, Δ133p53β, and Δ133p53γ due to alternative promoters in 
intron 4 and alternative splicing of intron 9, but also Δ40p53, Δ40p53β, and Δ40p53γ 
due to alternative splicing of intron 2 and alternative initiation of translation 
(Reviewed in Bourdon et al., 2005). 
 

 

Molecular and biochemical assays revealed that p53 is a sequence-specific DNA-

binding transcription factor. p53 is normally a short-lived protein that is maintained at 

low, often undetectable, levels in normal cells. Furthermore, tight regulation of p53 

function is crucial for normal cell growth and development and one mechanism by 

which p53 function is controlled through the interaction with mouse double minute 2 

protein (Mdm2) (HDM2, human homolog) (Kubbutat et al., 1997). Mdm2 possesses 

E3 ubiquitin ligase activity towards p53. Through its ability to ubiquitinate p53 and 

target it for proteasomal degradation, Mdm2 plays a key role in retaining p53 at very 

low concentration under non-stressed condition. At the same time, the Mdm2 gene 

is a positive transcriptional target of p53, the expression of which is often elevated 
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subsequent to induction of p53 activity. This defines a negative feedback loop 

wherein p53 upregulates Mdm2, whereas Mdm2 downregulates p53. This loop can 

be viewed as a regulatory module, into which a plethora of incoming signals feed 

and thereby modulate p53 levels and activity in accordance with intracellular and 

extracellular cues (Daujat et al., 2001; Juven-Gershon and Oren, 1999; Momand et 

al., 2000). 

 

 

1.1.2. p53 as a guardian of the genome 
 

p53 is activated when cells are stressed or damaged. Recent research has 

confirmed the existence of several independent pathways by which p53 can be 

activated (Fig. 3). One pathway is triggered by DNA damage. It appears that 

different types of DNA damage activate different enzyme activities that modify the 

p53 protein at different amino-acid residues, and so the nature of the stress signal is 

transmitted to the protein, and presumably its activity, by a code inherent to the 

posttranslational modifications that reflect the different types of stress (Colman et al., 

2000). For example, gamma radiation activates the ATM (Ataxia Telangiectasia 

Mutated) kinase and the Chk2 (checkpoint kinase 2), both of which can 

phosphorylate the p53 protein, while UV-radiation activates ATR (Ataxia 

telangiectasia and Rad3-related protein), Chk1 (checkpoint kinase 1) and casein 

kinase-2, which results in the modification of different amino-acid residues on the 

p53 protein. A second pathway is triggered by aberrant growth signals, such as 

those resulting from expression of the oncogenes Ras or Myc. In this case, 

activation of p53 depends an a protein called p14ARF that physically interacts with 

Mdm2 and blocks Mdm2 induced degradation of p53 (Pomerantz et al., 1998). In 

addition, a wide range of chemotherapeutic drugs, hypoxia or both heat and cold 

shock conditions, which result in denatured proteins and RNA aggregation, induces 

p53. Furthermore, spindle poisons, which block chromosome segregation, or 

inflammation with its associated nitric oxide signalling can also trigger a p53 

response.  
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Figure 3. The diversity of cancer-related signals that activate p53 contributes to the 
central role the p53 protein as a tumor suppressor. See text for details (reviewed in 
Vogelstein et al., 2000). 

 

 

When the cell is confronted with these various stress signals, activated p53 is a 

subject to a complex and diverse array of covalent post-translational modifications, 

which markedly influence the expression of p53 target genes. Post-translational 

modification of p53 involves the covalent addition of a functional group to the p53 

protein after its translation. The most commonly reported post-translational 

modifications of p53 include phosphorylation of serines and/or threonines and 

acetylation, ubiquitylation and sumoylation of lysine residues (Buschmann et al., 

2000; Gu and Roeder, 1997; Melchior and Hengst, 2002; Oda, 2002). The ensuing 

cellular response is dependent on the particular post-translational modifications, 

which are themselves dependent on the cell type and the nature of the external 
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stimuli. Post-translational phosphorylation and acetylation usually drive p53 

activation because these modifications generally result in p53 stabilization, 

accumulation and activation in the nucleus.  

 

Once the p53 protein is activated, it initiates a transcriptional program that reflects 

the nature of the stress signal. The activated p53 protein binds to a specific DNA 

sequence, termed the p53-responsive element (RE), and initiates one of three 

programs that result in cell cycle arrest, cellular senescence or programmed cell 

death (apoptosis) (Vogelstein et al., 2000). Major players in the p53-mediated cell 

cycle arrest are p21 and GADD45 (for G2 arrest). The identify of promyelocytic 

leukemia gene PML as a p53 target gene and p53-deficient cells are resistant to 

PML-induced cell cycle arrest indicate that PML plays a major role in p53 mediated 

cellular senescence (de Stanchina et al., 2004). A large number of genes (bax, noxa, 

puma) directly regulated by p53 are known that contribute to the apoptosis of cells. 

Several p53-regulated genes enhance the secretion of cytochrome c from 

mitochondria into the cytoplasm. Cytochrome c interacts with APAF-1 (another p53 

regulated gene) to initiate a protease cascade, leading to the activation of caspase 9 

and then caspase 3 followed by apoptosis. In addition, p53 regulate a series of 

genes (Fas ligand, Killer/DR5), resulting in the caspase 8 and 3 activation and 

apoptosis. Taken together, anti-proliferative response and senescence upon 

activation of p53 prevents the replication of damaged DNA and division of 

genetically altered cells. Therefore, p53 is thought to play an important role in 

maintaining the integrity of the genome (Lane, 1992). 

 

 

1.1.3. The role of p53 in differentiation  
 
Considerable experimental evidence has accumulated suggesting that a fine 

regulation of p53 activity is required for optimal development and differentiation. p53 

expression and/or activity increases during differentiative processes such as 

hematopoiesis, spermatogenesis (Almon et al., 1993; Kastan et al., 1991) and 

myogenesis (Porrello et al., 2000; Soddu et al., 1996; Tamir and Bengal, 1998). 

Exogenous p53 expression can induce differentiation in a variety of tumor cells in 

vitro (Almog and Rotter, 1997) and in vivo (Bossi et al., 2000), while alterations of 
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theTP53 gene in vivo frequently correlate with undifferentiated phenotypes (Battista 

et al., 1995; Feinstein et al., 1991).  

 

Moreover, it appears that maintaining of a fine balance of p53 protein levels within 

embryonic cells is important for optimal development. By in situ hybridization, it was 

observed that Trp53 mRNA is present at high levels in all mouse embryonic cells 

from embryonic day (E) 8.5 to E 10.5. At later stages of development, Trp53 

expression becomes more pronounced during the differentiation of specific tissues 

and declines in mature tissues (Schmid et al., 1991). Furthermore, the complete 

absence of p53 can result in reduced fertility and exencephaly in some mouse 

strains (Armstrong et al., 1995; Sah et al., 1995) or in mice receiving low folic acid 

concentration in the diet (Choi and Donehower, 1999). Despite the viability of most 

p53- null mice, p53-depletion in Xenopus embryos results in gastrulation failure and 

defects in mesoderm formation (Cordenonsi et al., 2003). All these observations 

strongly support the involvement of the Trp53 gene in cell differentiation and 

development. Nevertheless, the pathways modulated by p53 in these processes are 

still unknown, as are the effectors of these biological events. 

 

 

1.1.4. The role of p53 in the tumor development  
 

The function of the p53 tumor suppressor protein is directly or indirectly 

compromised in most sporadic human tumors (Harris et al., 1993; Nigro et al., 

1989). Furthermore, germ-line p53 mutations cause hereditary cancer in both mice 

and humans (Levine et al., 1995). Patients with germ-line mutations in p53 develop 

the hereditary Li-Fraumeni cancer syndrome, characterized by an increased risk of 

developing a spectrum of tumors including breast cancer, sarcomas, and brain 

tumors (Malkin et al., 1990). Malignant progression is often associated with of p53 

function either through mutations in the TP53 gene itself of by defects in signaling 

pathways that are upstream or downstream of p53. Analysis of many tumors has 

shown that TP53 is mutated in about half of cancers (Fig. 4), resulting in a loss of its 

apoptotic function. These tumor-associated mutations in TP53 are predominantly 

point mutations (93%). 
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Figure 4. Location of tumor-associated mutation on p53 gene. 
The most 95% of mutations occur within the DNA-binding domain, whereas the rest 
of the mutations occur in C-terminal and N-terminal region of p53. 
 

 

The result of the mutational inactivation by single amino-acid substitution is that 

many tumor cells retain the ability to express a mutant p53 protein. These proteins 

are often more stable than wild type p53 and therefore present at very high levels in 

the tumor cells. One explanation for the selection of such mutations is that the 

mutant p53 proteins can act as dominant-negative inhibitors (a non-functional 

mutant protein that competes with the normal, non mutated protein, thereby blocking 

its activity) of wild-type p53 (de Vries et al., 2002; Ko et al., 1996). The observation 

that many tumors which harbor TP53 mutations also show a loss of heterozygosity 

(effectively eliminating the wild-type allele) indicates that the efficiency of dominant-

negative inhibition might not be complete and depends on the nature of the initial 

point mutation (Greenblatt et al., 1994).  

 

In summary, the p53 tumor suppressor protein is known to regulate cell cycle 

checkpoints, apoptosis, differentiation and development. Nevertheless, whether 

apoptosis or developmental functions of p53 are equally important for the tumor 

suppressor activity is still unknown.  
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1.1.5. The p63 Gene 
 
The p53 family member p63 gene was identified in 1998 (Yang A., 1998), and 

generates at least six protein isoforms which can be divided into two groups, those 

containing the transcription activation domain (TA isoforms) and those that do not 

(ΔN isoforms). In addition, alternative splicing of the C-terminus generates the α, β, 

or γ variants. The α-form of p63 contains a sterile alpha motif (SAM), which mediates 

protein-protein interactions (Fig. 5). 

 

 

     
 

Figure 5. Scheme of the human p63 gene  
The p63 gene is transcribed into six different transcripts that are generated by 
alternative promoter usage and alternative splicing. Exons are color coded to 
indicate the functional domains. (Adapted from Koster and Roop, 2004). 
 

 

p63 is expressed in a confined manner, with the highest expression found in the 

basal cells of various epithelial tissues where ΔNp63α transcripts are the most 

abundant. In contrast to p53, it is not yet clearly understood how the expression of 

p63 is regulated, nor what determines which transcripts are predominant, although 

DNA damage appears to upregulate the expression of TA forms (Katoh et al., 2000) 

and downregulate the ΔN forms (Liefer et al., 2000).  
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Since the most significant degree of homology between p53 and p63 is in the DNA-

binding domain, and the critical residues for the proper folding of the entire domain 

as well as for the binding to the target DNA sequences, are completely conserved 

(Celli et al., 1999; Yang et al., 1998), studies were performed to determine if p63 

could regulate p53-responsive genes. Transient transfection assays showed that 

p63 activated or repressed transcription of a reporter gene downstream of an 

optimal p53 DNA-binding site (Yang et al., 1998). As predicted from their structures, 

the TA variants can transactivate p53 target genes, whereas the ΔN variants are 

believed to act in a dominant-negative manner (Yang et al., 1998). Furthermore, 

initial studies of p63 biochemical activities found that transient transfection TA-

containing versions of p63 variants could induce both cell cycle arrest and apoptosis 

(Yang et al., 1998). Similar assays were performed with the ΔNp63 variants and 

opposite effects on cell cycle regulation or apoptosis were observed as compared 

with those generated with TAp63 variants (Sasaki et al., 2001; Yang et al., 1998). 

However, further studies on TA- or ΔNp63 variants are required to fully understand 

the role of p63 in cell cycle regulation and apoptosis. 

 

 

1.1.6. The role of p63 in development and differentiation 
 

In contrast to p53-null mice, which are highly tumor prone but lack a considerable 

developmental phenotype, the p63-null mice show several developmental defects. 

For instance, p63 expression is absolutely essential for limb formation and epidermal 

morphogenesis (integument and tongue) including the formation of adnexa (teeth, 

hair, mammary and prostate glands, and sweat and lacrimal glands) (Mills et al., 

1999b). p63-null animals show severe limb truncations or absence of limbs and 

craniofacial malformations. They also fail to develop skin and most epithelial tissues 

(e.g., prostate and mammary glands). The animals do not survive beyond a few 

days postnatally (Mills et al., 1999b). Reminiscent of the knockout phenotype in 

mice, heterozygous germ line point mutations of p63 in humans cause six rare 

autosomal dominant developmental disorders with a strong but not absolute 

genotype-phenotype correlation. Ectrodactyly-ectodermal dysplasia-clefting (EEC 

Syndrome) or the related yet distinct ankyloblepharon-ectodermal dysplasia-clefting 

(Hay-Wells syndrome) were the first discovered (Celli et al., 1999; Hamada et al., 
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2002). There are four additional related human developmental syndromes with p63 

mutations (acro-dermato-ungual-lacrimal tooth (ADULT) syndrome, limb mammary 

syndrome (LMS), Rapp-Hodgkin syndrome, and split hand-split foot (SHFM) 

malformation) that extend the genotype-phenotype correlation (Brunner et al., 2002).  

 

Together, these data clearly establish a fundamental role of p63 in epithelial stem 

cell biology and in the apical ectodermal ridge of the limb bud, where p63-expressing 

cells create a signalling center (Pellegrini et al., 2001). Whether this role is one in 

stem cell selfrenewal or in stem cell differentiation into stratified epithelium remains a 

matter of controversy (Mills et al., 1999a; Yang et al., 1999). In one model, p63 is 

required for the ectoderm to commit to epidermal lineages (Mills et al., 1999a; Yang 

et al., 1999), whereas, in the other model, p63 is not required to commit but to 

maintain the stem cell pool and prevent it from differentiation (Brunner et al., 2002).  

 

 

1.1.7. The role of p63 in the tumor development 
 

In contrast to the high incidence of tumors in p53-compromised mice, the tumor 

phenotype of mice with compromised p63 is much less clear. Whereas p63-/- mice 

die at the birth, p63+/- mice develop tumors, surmising that p63 plays a ‘‘broader 

role’’ in tumor suppression than was previously appreciated (Flores et al., 2005). 

Although p63+/- mice did not display the highly penetrant tumor phenotype of p53+/-

mice, the wild type p63 allele was lost in the tumors that did develop. In addition, 

mice mutant for p63 in combination with p53 mutation lead to a more aggressive 

tumor phenotype (Flores et al., 2005). 

 

Furthermore, recent studies have shown that p63 overexpression in human tumor. In 

addition to frequently amplification of the human TP63 gene in squamous cell, 

cervical, and prostate carcinomas, some studies have shown tumor-suppressive 

activities of same p63 isoforms in human tumors (Hibi et al., 2000). In addition, 

certain tumor types (transitional cell carcinomas, mammary adenocarcinomas, 

squamous cell carcinomas, and osteosarcomas) exhibit loss or reduced expression 

of p63 (Di Como et al., 2002; Koga et al., 2003; Park et al., 2000; Rocco and Ellisen, 

2006; Urist et al., 2002). More recent studies using antibodies or RT-PCR for 

specific isoforms of p63 have shown that ΔNp63α are significantly overexpressed in 
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varios human cancer cells. Such as, head, neck squamous cell carcinomas 

(HNSCC) (Sniezek et al., 2004) and in normal bronchus and squamous carcinomas 

(Massion et al., 2003). Many more studies using antibodies or RT-PCR for specific 

isoforms in additional human tumors are needed to determine the significance of the 

loss or gain of each isoform.  

 

In summary, the role of p63 in tumorigenesis is complex. Unraveling the complex 

web of interactions between different p63 isoforms, in addition to determining how 

these proteins impact other members of the p53 protein family present important 

challenges that will help to better understand the role of p63 in cancer. 

 

 

1.1.8. The p73 gene 
 

During a search for novel interleukins, Caput and co-workers (Kaghad et al., 1997) 

identified a complementary DNA that was predicted to encode a p53-like protein. 

The corresponding gene, called p73, maps to chromosome 1p36, a region that is 

frequently deleted in a variety of human cancers. The p73 gene expresses at least 

six alternatively spliced C-terminal isoforms p73α, β, γ, δ, ε, and ζ (Fig. 6A) and at 

least four alternatively spliced N-terminal isoforms (Fig. 6B), which contain different 

parts of the transactivation domain. Among the various isoforms, TAp73α is the 

longest and contains a sterile alfa motif (SAM domain) involved in protein-protein 

interactions (Fig. 6C). These different mRNAs arise from both alternative splicing 

(AS) and the use of an alternative promoter (AP). The p73 isoforms that are 

regulated by the two promoters are named TAp73 and ΔNp73 (Stiewe et al., 2002a). 

Whereas TAp73 is capable of activating p53-responsive genes such as CDKN1A 

(which encodes p21WAF1/CIP1), p53R2, PUMA and BAX (De Laurenzi et al., 1998; 

Jost et al., 1997; Kaghad et al., 1997), the ΔNp73 isoforms that lack the TA domain 

are incapable of inducing gene transcription and therefore do not induce growth 

arrest or cell death (Stiewe et al., 2002a). 
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Figure 6. The human p73 gene structure and protein isoforms 
A. The splicing patterns generating C-terminal isoforms p73α, β, γ, δ, ε, ζ and the N-
terminal isoforms p73Δex2, p73Δex2/3, ΔNp73, and ΔN’p73 are shown. The arrows 
indicate transcriptional start sites. The ΔNp73 isoform is generated from a cryptic 
promoter within intron 3. B. The exon structure of the N-terminal isoforms is shown 
in comparison to full-length TAp73 (exons 1–5 only). Noncoding sequences are 
depicted in white. C. Domain structure of full-length TAp73α. TA, transactivation 
domain; DBD, DNA-binding domain; OD, oligomerization domain; CT, C terminus 
(Reviewed in Stiewe and Putzer, 2002) 
 

 

 

However, the ΔNp73 isoforms have a very important regulatory role, as they exert a 

dominant-negative effect on p53, TAp63 and TAp73 by blocking their transactivation 

activity, and hence their ability to induce apoptosis (Grob et al., 2001; Kartasheva et 

al., 2002; Stiewe et al., 2002b). This inhibitory function is exerted either by 

competing for binding to the same DNA target sequence (for p53; Fig. 7A) or at the 

oligomerization level (for TAp73; Fig. 7B). Although the ΔNp73 forms can interact 

with TAp73, they seem to have lost the ability to interact with wild-type p53 (Grob et 

al., 2001; Kartasheva et al., 2002; Stiewe et al., 2002b).  
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                 A.                                              B. 
 

 

 

 

 

 

 

 

 

Figure 7. The dominant-negative effect of ΔNp73 on p53, TAp73, and TAp63  
A. Competition with p53, TAp63 and TAp73 for the same p53 promoter-targeting 
sequences. B. Formation of transcriptionally inactive TAp73-ΔNp73 heterodimers.  
 

 

p73 activity is regulated by  some of the same mechanisms as p53 (Zaika et al., 

2001). In addition, novel pathways have been described. A key player in the 

regulation of p73 is E2F1 which, apart from regulating cell proliferation, is also able 

to induce apoptosis (Reviewed in (Stiewe and Putzer, 2002). Whereas activation of 

p53 in response to E2F1 is indirect involving the tumour-suppressor ARF, E2F1 

regulates p73 levels directly, through recognition and transactivation of the TP73 

promoter (Irwin et al., 2000; Stiewe and Putzer, 2000). E2F1-mediated 

transactivation of p73 results in the activation of p53-responsive target genes and 

apoptosis. On the other hand, disruption of p73 function by p73-mutants which 

exhibit a dominant-negative effect (ΔNp73 or p73DD) inhibits E2F1-induced 

apoptosis in p53-defective tumour cells and p53−/− mouse embryo fibroblasts 

(MEFs), indicating that endogenous p73 contributes to E2F1-induced apoptosis in 

the absence of p53 (Irwin et al., 2000; Stiewe and Putzer, 2000; Zaika et al., 2001). 

In the light of these findings, increased expression of p73 by E2F1 might possibly 

constitute a p53-independent anti-tumorigenic safeguard mechanism. Consistent 

with p73 being an important downstream target of E2F1-signalling overexpression of 

oncogenes, which increase E2F1 activity (such as SV40 T antigen, c-Myc and the 

adenoviral E1A protein), induces increased p73 expression, and results in induction 

of p73 target genes and p73-mediated apoptosis (Marin et al., 1998; Steegenga et 

al., 1999; Zaika et al., 2001). 

TAp63TAp63
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Under normal physiological conditions, p73 protein levels are kept low by rapid 

degradation via the ubiquitin–proteasome pathway (Balint et al., 1999; Bernassola et 

al., 2004). Several mechanisms have been shown to stabilize p73, including 

phosphorylation by c-abl, p38 MAPK and c-Jun, acetylation by CBP/p300 and 

SUMOylation (reviewed in (Oberst et al., 2005). For instance, DNA damage affects 

p73 stability and transcriptional activation through distinct mechanisms. The MLH-

1/c-abl signaling cascade plays a central role in DNA damage-induced stabilization 

of p73 (Agami et al., 1999; Gong et al., 1999). In response to genotoxic stress, 

activated c-abl binds to the PXXP motif of p73 and phosphorylates it on Tyr residue 

99 (Agami et al., 1999). In addition, c-abl indirectly promotes p73 phosphorylation on 

Ser/Thr-Pro residues through the activation of the p38 MAP kinase pathway 

(Sanchez-Prieto et al., 2000). p300-mediated acetylation of p73 upon DNA damage 

induced by chemotherapeutic drugs represents an alternative mechanism for p73 

transcriptional activation (Costanzo et al., 2002). Furthermore, p300-mediated 

acetylation of p73 results in protein stabilization and is promoted by the tumor 

suppressor promyelocytic leukemia protein, PML, which, in turn, regulates p73 

transcriptional activity in a PML-nuclear body (PML-NB)-dependent manner 

(Bernassola et al., 2004). Interestingly, p38 MAPK-mediated phosphorylation of p73 

favors its binding to PML and recruitment in the PML-NB, hence assisting p73 

stabilization. Concomitantly, DNA damage-induced phosphorylation of p73 on 

Ser/Thr-Pro residues allows the interaction of p73 with the peptidyl–prolyl cis/trans 

isomerase Pin1, which results in p73 prolyl isomerization, conformational changes, 

acetylation, stabilization, and functional activation (Mantovani et al., 2004). 

Moreover, the checkpoint kinases (Chk1 and Chk2) control p73 activity in response 

to DNA damage (Urist et al., 2004).   

  

Furthermore, p53 and TAp73 can induce expression of the ΔNp73 isoform, which 

creates a dominant-negative feedback loop that regulates the function of both p53 

and TAp73 (Grob et al., 2001; Kartasheva et al., 2002) (Fig. 8). Perturbations of 

these regulatory loops in cancer cells (Stiewe et al., 2002b) or in virally infected cells 

(Allart et al., 2002) resulting in excess or persistent expression of the ΔNp73 isoform 

might result in inhibition of p53 or TAp73. Consequently, loss of these regulatory 

pathways would be predicted to allow inappropriate p53 or TAp73 activity. Thus, it is 
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likely that a balance between the intracellular expression levels of pro-apoptotic 

TAp73 or p53 and antiapoptotic ΔNp73 plays an important role in regulating cell fate 

determination. 

 

 

 

 

 

 

 

 

 

 

Figure 8. ΔNp73 creates a dominant-negative feedback loop that regulates the 
function of both p53 and TAp73. 
Both p53 and TAp73 are activated in response to DNA damage or oncogenes and 
p53 and TAp73 transcriptionally transactivate ΔNp73; this in turn downregulates its 
own promoter to fine-control the steady-state protein levels. ΔNp73 is able to 
functionally inhibit cell-cycle arrest and apoptosis induced by either TAp73 or p53 
(modified from Melino et al., 2002). 
 

 

1.1.9. The role of p73 in development and differentiation  
 

Unlike p63-deficient mice, p73-/- mice survive postnatally and some live well into 

adulthood despite having multiple defects (Yang et al., 2000). p73-/- mice show 

congenital hydrocephalus, hippocampal dysgenesis, due to disappearance of Cajal-

Retzius neurons, and defects of pheromone detection that lead to lack of interest in 

sexually mature females. In addition to these severe neurological defects, p73-/- mice 

show a generalized pan-mucositis with consequent microbiological infections, which 

are characterized by massive neutrophil infiltration at the affected sites. The massive 

inflammation, however, is not clear yet, since no major defects of the lymphoid and 

granulocyte populations are present in these mice. This raises the possibility that the 

inflammation and infections are related to epithelial barrier function (Yang et al., 

2000).  
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In tissue culture models, p73 plays a role in the differentiation of several cell 

lineages. p73 accumulates during retinoic acid-mediated neuronal differentiation in 

neuroblastoma cell lines, whereas p53 levels remained unchanged in response to 

retinoic acid. Under experimental conditions, ectopic overexpression of p73 in 

undifferentiated neuroblastoma cell lines result in neurite extension as well as 

expression of neuronal differentiation markers (De Laurenzi et al., 2000a). Similar 

results were also observed during neuronal differentiation in P19 embryonal 

carcinoma cells exposed to retinoic acid (De Laurenzi et al., 2000a). In addition, the 

ectopic expression of p73 induces oligodendrocyte precursor cell (OPC) 

differentiation, which is inhibited by ΔNp73 (Billon et al., 2004). In addition, p73 gene 

expression is upregulated during muscle differentiation (Fontemaggi et al., 2001) 

and the p73 gene is an in vivo transcriptional target of the muscle regulatory factors 

MyoD, myogenin, Myf5 and Myf6 (Fontemaggi et al., 2005). Moreover, the 

expression of p73 is markedly enhanced during differentiation of myeloid leukemic 

cells (Tschan et al., 2000). Similar to p63, p73 involve in the terminal differentiation 

of human skin keratinocytes (De Laurenzi et al., 2000b).  

 

In summary, these findings suggest a p73-specific role in differentiation that is not 

shared by p53 and, for the most part, not shared by p63 either. Moreover, some data 

provide evidence for the existence of a coordinated network of transcriptional 

activators and repressor controlling p73 expression during differentiation 

(Fontemaggi et al., 2005). Further experiments are necessary to characterize the 

downstream functions of p73 in the various differentiation processes.  

 

 

1.1.10. The role of p73 in the tumor development 
 

Similar to p63+/- mice, p73+/- mice develop malignant tumors at high frequency and 

their spectrum is quite different from that of p53-deficient mice. In addition, mice 

mutant for p73 in combination with p53 mutation present a more aggressive tumor 

phenotype (Flores et al., 2005). However, p73 does not conform to Knudson’s two 

hit hypothesis because extensive studies have revealed only rare mutations in both 

cell lines and primary tumors (Irwin and Kaelin, 2001). Interestingly, p73 mRNA and 

protein levels tend to be higher, and not lower, in tumor tissue compared with the 

surrounding normal tissue. Ependymomas, breast, lung, prostate, ovarian, 
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colorectal, esophageal, and bladder cancers have all been reported to elevate p73 

levels compared with their normal tissue counterparts. Most importantly, patients 

with high p73 protein expression had a worse survival than patients with 

undetectable levels (Sun, 2002; Tannapfel et al., 1999). There is an emerging sense 

that the dominant-negative ΔNp73 isoforms rather than TAp73 might be the 

physiologically relevant components of tumor-associated p73 overexpression, 

functionally overriding an often concomitant increase in TAp73 expression. Tumor-

specific up-regulation of ΔNp73 has been found in ovarian cancer, breast and 

gynecological cancer, hepatocellular carcinoma, lung, gastric, and thyroid cancer 

and neuroblastoma (Casciano et al., 2002; Concin et al., 2004; Frasca et al., 2003; 

Stiewe et al., 2004; Uramoto et al., 2004; Zaika et al., 2002). Of note, ΔNp73 

overexpression appears to have a clinical impact at least in some cancer types. 

ΔNp73 was found to be an independent prognostic marker for reduced progression-

free and overall survival in lung (Uramoto et al., 2004) and neuroblastoma patients 

(Casciano et al., 2002).  

 

 

Conclusion  
 

Identification of the p53 homologues, p63, and p73 has opened a new chapter in 

developmental and cancer biology. While new p53 target genes and functions are 

published on a monthly basis, the regulation and function of p63 and p73 are still in 

the early stages of discovery. Differences in p53-/-, p63-/- and p73-/- mouse 

phenotypes alone suggest that p63 and p73 regulate signaling pathways that differ 

from p53. Studies of human tumors and human genetic syndromes have shed some 

light on both p63 and p73 function, but a better biochemical understanding of p63 

and p73 will undoubtedly be required to understand the role of these p53 family 

members in tumorigenesis and development.  
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1.2. Skeletal muscle differentiation (myogenesis) 
 
Introduction 
 

Skeletal muscle differentiation (myogenesis) involves a cascade of muscle-specific 

gene expression that is coordinated with permanent withdrawal from the cell cycle. 

The commitment of cells to the myogenic lineage requires either of two members of 

the myogenic basic helix-loop-helix (bHLH) transcription-factor family, MyoD or 

Myf5, which are expressed in proliferating myoblasts prior to the onset of muscle 

differentiation. Further steps in myogenesis require another myogenic bHLH factor, 

myogenin, as well as the MEF2 transcription factor family, which cooperate with the 

myogenic bHLH proteins in the activation of many muscle structural genes. Studies 

on the differentiation of cultured myoblasts have revealed that muscle-differentiation-

specific gene expression occurs in a stereotypic pattern. Within 24 hours of serum 

removal, proliferating myoblasts initiate the expression of myogenin. At the same 

time, the retinoblastoma protein (RB) is activated that is required for MEF2 

dependent gene expression. Furthermore, these cells induce expression of both 

cyclin-dependent kinase (Cdk) inhibitors and RB to exit the cell cycle permanently. 

Once the cells have become post-mitotic, expression of myofibrillar proteins such as 

myosin heavy chain (myHC) and enzymatic genes such as muscle creatine kinase 

(MCK) begins, approximately 36-48 hours after the onset of differentiation, followed 

by fusion of cells into multinucleated myotubes (Fig. 9).  

 

              
 
 
Figure 9. Regulation of myogenesis.  
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1.2.1. Regulation of myogenesis 
 
1.2.1.1. The myogenic regulatory factors 

 

The myogenic regulatory factors (MRFs) belong to the basic helix-loop-helix (bHLH) 

superfamily of transcription factors. MRFs are necessary for the determination and 

terminal differentiation of skeletal muscle progenitor cells (Arnold and Winter, 1998; 

Cossu et al., 1996). The original cloning of MyoD and demonstration that it 

represents a master regulatory gene for the determination of skeletal muscle, 

ushered in a new era of research in skeletal myogenesis (Davis et al., 1987). This 

discovery lead to the cloning of three other factors namely Myf5, myogenin and 

MRF4/Myf-6/Herculin (Braun et al., 1989; Ramirez et al., 2004; Taylor et al., 2000). 

In all cases, overexpresison of these factors converts nonmuscle cells to the 

myogenic lineage, demonstrating their role in myogenic lineage determination and 

differentiation. Whereas MyoD and Myf5 act to determine the myoblast lineage, 

myogenin and MRF4 are important for differentiation and maintenance of the 

terminally differentiated state (Rawls et al., 1995; Rudnicki and Jaenisch, 1995). 

Furthermore, the ability of each factor to initiate the expression of one or more of the 

other three suggests they form a cross-regulatory loop. 

 

 

1.2.1.2. Cell cycle and differentiation  

 

In skeletal muscle cells, cell cycle regulation plays a fundamental role in the 

production and maintenance of the differentiated phenotype. Precursor cells first 

commit to a particular differentiation program, which is marked by expression of 

early differentiation markers. The committed precursors can immediately proceed to 

withdraw from the cell cycle. In contrast to entry into quiescence, this withdrawal is 

irreversible, and in most cases differentiated tissues of organs are unable to reenter 

the cell cycle even under ideal growth conditions. The early differentiation genes 

expressed in committed precursors are mostly tissue specific transcription factors 

required for activation of later genes essential for full differentiation. Typically these 

early transcriptional activators are present in the precursors before terminal cell 

cycle withdrawal, whereas the late differentiation markers are not expressed until the 
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cells become post-mitotic. Terminal cell cycle exit seems to be required in order to 

activate tissue specific gene expression. It follows that cellular mechanisms must 

exist to coordinate these two processes and prevent the onset of differentiation 

before the cells are fully arrested (reviewed in (Lassar et al., 1994). 

 

The activity of the MRF is tightly coupled to the cell cycle (Lassar et al., 1994; Olson, 

1992). In proliferating myoblasts, activated cyclin-dependent kinases (Cdk4) inhibit 

MyoD activity through direct interaction (Halevy et al., 1995; Skapek et al., 1996; 

Skapek et al., 1995; Zhang et al., 1999a). Expression of Id proteins precludes the 

formation of E protein-MRF heterodimers (Benezra et al., 1990). Upon 

differentiation, withdrawal from the cell cycle is initiated and maintained by a positive 

feedback loop in which high p21 and RB expression prevents re-entry into the cell 

cycle and the MRF-E protein complex is activated (Guo et al., 1995; Schneider et al., 

1994). Furthermore, upregulation of p57KIP2 stabilizes MyoD by blocking cyclinE/cdk2 

activity and by direct interaction with MyoD (Reynaud et al., 1999) (Fig. 10). 

 

 

 

 

                   
 

Figure 10. The activity of the MyoD family is coupled to cell-cycle control.  
Green arrows denote positive, whereas blunt red arrows denote negative regulatory 
relationships. 
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1.2.1.3. The retinoblastoma tumor suppressor protein RB in myogenesis 

 

During myogenic differentiation, proliferating myoblasts need to terminally exit from 

the cell cycle before the G1 restriction point (Perry and Rudnick, 2000). RB plays a 

key role in controlling cell cycle progression through the G1 restriction point for entry 

into S-phase (Stevaux and Dyson, 2002). Therefore, it can be hypothesized that RB 

plays a critical role in myoblasts by regulating the switch from proliferation to 

differentiation.  

 

The importance of RB has been demonstrated by the fact that RBloxP/loxP,Myf5-Cre 

mice, lacking RB in myoblasts, died immediately at birth and exhibited high numbers 

of apoptotic nuclei and an almost complete absence of myofibers (Huh et al., 2004). 

In contrast, RBloxP/loxP,MCK-Cre mice, lacking RB in differentiated muscle fibers, 

were viable and exhibited a normal muscle phenotype and ability to regenerate 

indicating that RB plays a crucial role in the switch from proliferation to differentiation 

rather than maintenance of the terminally differentiated state (Huh et al., 2004). 

Moreover, during muscle differentiation, RB becomes hypophosphorylated 

(activated) and mRNA and protein levels increase approximately 10-fold (Martelli et 

al., 1994). In addition, studies using MyoD-converted RB-deficient embryonic 

fibroblasts have suggested that RB is essential for both MyoD and MEF2 

transcriptional activity as well as during the early stages of differentiation in order to 

properly control cell cycle exit and regulation of the progression of the differentiation 

program (Novitch et al., 1999). Although RB-deficient fibroblasts transfected with 

MyoD become myogenic and express early muscle markers such as myogenin, 

expression of late markers such as myosin heavy chain (MHC) is reduced (Novitch 

et al., 1996). In addition, serum restimulation of these partially differentiated RB-

deficient myoblasts results in BrdU incorporation, S-phase entry, and DNA 

synthesis. However, these cells are unable to enter mitosis (Novitch et al., 1996).  

 

Although the last few years have revealed some of the molecular mechanisms 

underlying the cooperation of RB and differentiation-specific transcription factors in 

the execution of specific transcription programs during terminal differentiation 

(Korenjak and Brehm, 2005), the mechanisms that activate RB during myogenesis 

still remain unclear.  
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Conclusion  
 

It is clear that a great deal of information has been obtained regarding many aspects 

of skeletal muscle development. However, several questions concerning 

coordination of cell cycle and terminal differentiation remain and we are only now 

beginning to understand the many factors involved in these processes. 

 

 

1.3. Rhabdomyosarcoma (RMS) 
 

Introduction 
 

Rhabdomyosarcoma (RMS) is a tumor derived from the skeletal muscle lineage. 

RMS is the most common soft-tissue sarcoma of childhood, with an annual 

incidence of 4 to 7 cases per million children. Based on histopathologic features, two 

major subtypes, embryonal (ERMS) and alveolar (ARMS), were identified and 

associated with distinct clinical characteristics and genetic alterations. In RMS, the 

muscle program is only partially activated despite the presence of virtually all the 

MRF (Tapscott et al., 1993). RMS cells fail to both complete the myogenic program 

and irreversibly exit the cell cycle, resulting in uncontrolled proliferation and 

incomplete myogenesis (Merlino and Helman, 1999). Although the origin of RMS 

cells has not yet been precisely defined, it is known that these cells do not arise from 

differentiated myofibers. Nevertheless, the myogenic identity of these cells has been 

clearly established (Dias et al., 1990).  

 

 

1.3.1. Epidemiology and Pathology of RMS 
 

Soft tissue sarcomas are the sixth most common malignancy in childhood and 

rhabdomyosarcomas constitute 50% of soft tissue sarcomas. This tumor accounts 

for 10-15% of solid malignant tumors and 6% of all malignancies in children under 

15 years of age. In the United States the male to female ratio is 1.5:1, the tumor is 

twice as common in Caucasians as in African-Americans and approximately 250 

new cases are diagnosed every year (Adamson et al., 2005).  
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Rhabdomyosarcomas arise from undifferentiated mesenchymal cells. It manifests 

immunohistochemical expression of muscle specific proteins such as myosin, 

desmin, myoglobin and Z-band protein (Dagher and Helman, 1999). Histologically, 

there are four subtypes: embryonal, alveolar, botryoid and pleomorphic. 

 

Embryonal: Fifty-four percent of rhabdomyosarcomas in the third Intergroup 

Rhabdomyosarcoma Study (IRS-III) (Crist et al., 1995) and approximately 70% of 

non-metastatic rhabdomyosarcomas in the fourth Intergroup Rhabdomyosarcoma 

Study (IRS-IV) were of the embryonal subtype (Crist et al., 2001). This subtype 

usually occurs before 8 years of age and accounts for 80% of genitourinary tumors, 

60% of head and neck tumors and 50% of tumors at other sites. The tumor is poorly 

circumscribed, soft and whitish in color. Morphologically, it resembles developing 

skeletal muscle of the 7-10 week old fetus. (O'Neill et al., 2003). [See Fig. 11A for an 

example of an embryonal rhabdomyosarcoma.] 

 

Botryoid: This variant of the embryonal subtype occurs in hollow cavities such as the 

vagina, biliary tract and nasopharynx. The tumor resembles a bunch of grapes. 

Microscopically, small round cells surround a loose myxoid stroma with a central 

zone of round and spindle cells. Botryoid tumors have the best prognosis and are 

typically found in children under five years of age (O'Neill et al., 2003). [See Fig. 11B 

for an example of a botryoid rhabdomyosarcoma.] 

 

Alveolar: The tumor is named because of its lung-like architecture under the 

microscope. It is second in frequency to the embryonal subtype. Tumors are often 

more firm and less myxoid and occur more commonly on the limbs and trunk. Under 

the microscope, large round cells with a predominantly eosinophilic cytoplasm 

growing in thin strands of fibrovascular stroma with “free floating” tumor cells are 

seen. It generally occurs in 10-30 year old patients and 80% are associated with the 

t(2;13)(q37;q14) chromosomal translocation. Presence of an alveolar component in 

any rhabdomyosarcoma requires that it be labeled as alveolar. Only undifferentiated 

rhabdomyosarcoma has a worse prognosis than the alveolar variety (O'Neill et al., 

2003). [See Fig. 11C for an example of an alveolar rhabdomyosarcoma.] 
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A.                                         B.                                         C. 

 

 

 

 

Figure 11. Pathologic Classification of Rhabdomyosarcomas  

A. Embryonal rhabdomyosarcomas such as this case have abundant 
rhabdomyoblasts containing deeply eosinophilic cytoplasm. B. Botryoid 
rhabdomyosarcoma. A small-cell neoplasm abuts an epithelial surface, with 
condensation of tumor cells in the immediate subepithelial zone. C. The microscopic 
features of alveolar rhabdomyosarcoma are readily apparent in this micrograph. 
Undifferentiated tumor cells line fibrovascular septae, with the central cells "falling 
out" to give the alveolar appearance. (Adapted from Pediatric Neoplasia book: 
Morphology and Biology by David M. Parham) 
 

 

Pleomorphic: This subtype usually occurs on the limbs and trunks of adults over 45 

years old. It comprises only 1% of childhood rhabdomyosarcomas. Large 

pleomorphic cells with multinucleated giant cells are characteristic. 

Immunohistochemistry is usually required to distinguish it from liposarcoma or 

malignant fibrous histiocytoma. [See Fig. 12 for an example of Pleomorphic 

rhabdomyosarcoma.] 
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Figure 12. An example of a pleomorphic rhabdomyosarcoma (classic variant; left) 
and diffusely positive desmin reactivity (right; A); myoglobin positively (B); MyoD1 
(nuclear, left) and fast myosin (cytoplasmic) positively (C); and myogenin, myf 3 
(nuclear, left) and myf4 (nuclear) positively (D). (Adapted from Pediatric Neoplasia 
book: Morphology and Biology by David M. Parham) 
 

 

1.3.2. Molecular pathogenesis of rhabdomyosarcoma (RMS) 
 

1.3.2.1. Alveolar RMS  

 

Chromosomal analyses of RMS cases demonstrated nonrandom translocations 

associated with the ARMS subtype (Barr et al., 1993). The most prevalent finding is 

a translocation involving chromosomes 2 and 13, t(2;13)(q35;q14), that was 

detected in 70% of published ARMS cases. The chromosome 13 locus juxtaposed 

with either PAX3 or PAX7 is FKHR (FOX01A), which encodes a member of the fork 

head transcription factor family (Davis et al., 1994; Galili et al., 1993). The encoded 

FKHR product is organized with an N-terminal fork head DNA binding domain and a 

C-terminal transcriptional activation domain. The translocations break within intron 7 

of PAX3 or PAX7 and intron 1 of FKHR and thus create two chimeric genes on the 

derivative chromosomes (Barr et al., 1998; Davis et al., 1995; Fitzgerald et al., 

2000). These gene fusion events result in alterations at the level of protein function, 

gene expression, and subcellular localization. For instance, the PAX3/FKHR and 
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PAX7-FKHR fusion proteins activate transcription from PAX binding sites but are 10-

100-fold more potent as transcriptional activators than the wild-type PAX3 and PAX7 

proteins (Bennicelli et al., 1996). In addition, when PAX3/FKHR was introduced into 

chicken embryo fibroblasts and NIH3T3 fibroblasts, the expression of this fusion 

protein leads to cellular transformation, including morphological changes, focus 

formation and anchorage independent growth (Lam et al., 1999; Scheidler et al., 

1996). In these studies, wild-type PAX3 failed to produce these changes. 

Furthermore, downregulation of fusion gene expression in an ARMS cell line using 

antisense oligonucleotides resulted in cell death, presumably by promoting 

apoptosis (Fredericks et al., 2000). However, Keller et al. reported the first mouse 

model of alveolar rhabdomyosarcoma using a conditional PAX3/FKHR knock-in 

allele (Keller et al., 2004). In these mice, alveolar rhabdomyosarcomas occur but at 

very low frequency, and FKHR haploinsufficiency does not appear to accelerate 

tumorigenesis. However, PAX3/FKHR homozygosity with accompanying Ink4a/ARF 

or p53 pathway disruption substantially increases the frequencies of tumor 

formation, indicating that PAX3/FKHR alone is not sufficient for tumorigenesis and 

additional cooperating genetic alteration are required to cause transformation.  

 

 

1.3.2.2. Embryonal RMS (ERMS) 

 

Although no consistent chromosomal rearrangements have been identified in ERMS, 

molecular analyses of polymorphic loci revealed frequent allelic loss on chromosome 

11 (Koufos et al., 1985). Several results from allelic loss studies suggest that ERMS 

tumorigenesis frequently involves inactivation of an imprinted tumor suppressor by 

allelic loss of the active maternal allele and retention of the inactive paternal allele. 

For instance, studies of the human 11p15 chromosomal region and the 

corresponding mouse region demonstrated the imprinting of several genes within the 

region (Loh et al., 1992; Scrable et al., 1989). For instance, H19 is preferentially 

expressed from the maternally inherited alleles and IGFII is imprinted in the opposite 

direction so that the paternally inherited alleles are preferentially expressed (Tycko, 

1994).  
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1.3.2.3. p53 and RB in rhabdomyosarcoma pathogenesis 

 

Somatic mutations of TP53 and dysregulation of its associated regulatory proteins 

have been implicated in the development of a variety of tumors, including RMS 

(Diller et al., 1995; Felix et al., 1992). Although lymphomas are the most prominent 

neoplasms in p53-null mice, p53 heterozygotes over a year old develop mostly 

sarcomas, 19% of which are RMS (Harvey et al., 1993). Furthermore, conditional 

PAX3/FKHR knock-in mice develop RMS frequently on a p53-compromised 

background but only very rarely in p53-proficient mice (Keller et al., 2004). Apart 

from mouse studies, the Li-Fraumeni cancer syndrome, which is associated with 

germline p53 mutations, was initially identified from a RMS patient as the index case 

and includes these tumors along with other soft-tissue sarcomas (Li and Fraumeni, 

1969). In addition, further mutations affecting p53 function have been identified in 

RMS patients. For instance, RMS or other sarcomas demonstrate Mdm2 

overexpression (Keleti et al., 1996) and homozygous deletions at the 9p21 region 

which contains both CDKN2A and ARF (Brookes et al., 2002). Both changes result 

in p53 dysfunction due to increased degradation via Mdm2.  

 

Inherited alterations in the RB1 gene, another tumor suppressor gene, are 

associated with the development of a variety of tumors, including retinoblastoma, 

osteosarcomas and other sarcomas including RMS (Cance et al., 1990). Though 

various sarcomas were found to have acquired RB mutations, no such mutations 

were identified in sporadic cases of RMS. However, genetic changes were detected 

in genes that regulate RB function. In particular, RMS cases have been identified 

with amplification of CDK4 gene and deletions of the CDKN2A and CDKN2B 

(p15INK4B) (Iolascon et al., 1996). The CDK proteins inhibit RB function by 

phosphorylation and thereby promote cell-cycle progression, whereas the CDKN loci 

encode inhibitors of the cyclin-dependent kinases CDK4 and CDK6. Supporting a 

role of the CDK alteration for RMS development, transfection of CDKN2A into 

p16INK4A-deficient ERMS cell line RD, led to reduced CDK6 kinase activity, G1 

growth arrest, and acquisition of a more differentiated morphology (Urashima et al., 

1999).  
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Conclusion  
 

Rhabdomyosarcoma (RMS) is an aggressive childhood muscle cancer for which 

outcomes are poor when the disease is advanced. RMS cells fail to both complete 

the myogenic program and irreversibly exit the cell cycle, resulting in uncontrolled 

proliferation and incomplete myogenesis (Merlino and Helman, 1999), which could 

contribute to an aggressive tumor phenotype. For a better understanding of the 

initiation and progression of RMS we need more information regarding the 

differentiation defect of RMS. Furthermore, this information needs to be integrated 

with studies of the clinical behavior of human tumors to optimize the diagnosis and 

to define directions in which possible therapeutic strategies can be designed to 

rescue these defective differentiation pathways. 
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1.4. Aim of the study 
 

The p53 family is considered a family of proapoptotic transcription factors and the 

tumorsuppressor activity of p53 is typically attributed to its proapoptotic function 

(Schmitt et al., 2002). However, knockout mice of the p53 family members p63 and 

p73 present with a developmental phenotype indicative of essential functions in 

differentiation control. A link between the role of the p53 family in differentiation 

control and its tumor suppressor activity is appealing but experimental evidence has 

been missing. To identify the missing link, this study addresses the role of the p53 

family in rhabdomyosarcomas, a tumor where loss of differentiation is intimately 

coupled to tumor formation. Rhabdomyosarcomas harbor a variety of genetic and 

molecular lesions that compromise the ability of the tumor cells to exit the cell cycle 

and complete the muscle differentiation program resulting in uncontrolled 

proliferation. Involvement of the tumor suppressor gene p53 in rhabdomyosarcoma 

is suggested by the presence of p53 mutations in RMS tumors and by the occurence 

of rhabdomyosarcomas in human families and in knockout mice carrying a germ-line 

mutation in one p53 allele (Merlino and Helman, 1999). Interestingly, in many tumors 

p53 is inactivated by missense mutations that endow p53 with new functions („gain-

of-function“) including the dominant-negative inhibition of the closely related family 

members p63 and p73 (Di Como et al., 1999; Marin et al., 2000). Therefore p53 

mutations frequently disable not only the tumorsuppressive function of p53 but rather 

the function of the complete p53 family. Considering that myogenic differentiation is 

accompanied by changes in the expression level of all three p53 family members, 

we hypothesized that the p53 family has essential functions in coordinating 

differentiation. Ablation of these functions would compromise terminal cell cycle exit 

and differentiation and therefore contribute to tumor development in the muscle 

lineage. To test this hypothesis we investigated questions related to the role of the 

p53 family in both RMS development and myogenic differentiation. 

 

1. The p53 family in RMS development. Do RMS tumors harbor functional 

alterations of the p53 family in addition to p53 mutations? Is p53 family 

dysfunction linked to the tumorigenic phenotype of RMS cells? Does 

experimental inhibition of p53 family function (via the pan-p53 family inhibitor 

ΔNp73) promote malignant transformation of muscle progenitor cells? 
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2. The p53 family in myogenic differentiation. What is the molecular function of 

the p53 family in myogenic differentiation control? How does a pan-p53 family 

inhibitor (ΔNp73) affect differentiation? How do individual p53 family members 

contribute to differentiation? 
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2. Materials and Methods  
 
2. 1. Materials  
 
2.1.1. Buffers and media  
 
All buffers were prepared and diluted in aquabidest. 
 
 
1. Phosphate-buffered saline (PBS), pH 7.3 
 

NaCl                                                137mM (0.9%) 
KCl                                                   2.7mM 
KH2PO4                                            1.5mM 
Na2HPO4 x 2 H2O                            8.0mM 
 

2. Tris-buffered saline (TBS), pH 7.3 
 

NaCl                                                137mM (0.9%) 
Tris/HCl                                            2mM 
 

3. PBS/T (PVDF membrane washing buffer) 
 

Tween-20 in TBS 0.1% 
 

4. 10xStock Blotting buffer 1Liter.  
 

Glycine                                               145.6g 
Tris                                                     30.28g 
 

5. 5xStock SDS running buffer for 1 Liter. 
 

Tris base                                            15.1g 
Glycine                                                72g 
SDS                                                     5g 
 

6. 50xTAE buffer for 1Liter. 
 
Tris                                                   242g 
Acetic acid                                        27.1ml  
0,5M EDTA                                       200ml 
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7. RIPA (radioimmunoprecipitation assay)  buffer 
 

Tris                                                  50mM pH 7.2 
NaCl                                                150mM 
SDS                                                 0.1% 
Na-Doxyholat                                 1% 
Triton X-100                                     1% 
 

8. Annealing buffer  
 

KAc                                                   100mM 
HEPES-KOH                                     30mM pH 7.4  
MgAc                                                 2mM 
 

9. Blocking buffer for Immunofluorescence  
 

Horse serum                                        10% 
BSA (bovine serum albumin)               1% 
PBS                                                 1x 
 

10. Naphthol AS-MX phosphatase stock for 1 Liter 
 

Naphthol AS-MX stock  25mg 
N:N Dimethylformamide  1.25ml 
Tris/HCL buffer pH 8.3  0.2M 
 

11. Incubating solution 
 
Naphthol AS-MX stock       10ml 
Fast blue BB  6mg 
Filter, use immediately 
 

12. Cytomix (5ml) 
 

FCS                                                   10% 
ATP                                                    0.1M ATP 
Reduced Glutathion                            0.25M 
 

13. RPMI medium 
 

RPMI1640 500ml 
Pen/Strep 5ml 
Amphotercin B 2.25ml 
FCS 50ml 
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14. DMEM medium 
 

DMEM                                               500ml 
Pen/Strep 5ml 
FCS                                                   50ml 
 

15. Ham’s F-10 Medium 
 

Ham’s F-10                                                   500ml 
FCS                                                   15% 
BSA                                                    0.5mg/ml 
Fetuine                                                 0.5mg/ml 
EGF                                                    10ng/ml 
Dexamethasone                                  0.39µg/ml 
Insulin                                                  0.18 mg/ml 
Creatin                                                 1mM 
Pyruvate                                              100ng/ml 
Uridine                                                 50µg/ml 
 
 
16. Differentiation Medium for C2C12 cells  
 

DMEM                                              500ml 
Pen/Strep 5ml 
Horse Serum                                     10ml 
 

17. Differentiation Medium for SH-SY5Y cells 
 

DMEM                                              500ml 
Pen/Strep 5ml 
Retionic acid                                     10µM  
 

18.Differentiation Medium for HSMM cells 
 

DMEM                                              500ml 
Pen/Strep 5ml 
Amphotercin B                                  2.25ml 
BSA                                                   0.5mg/ml  
EGF                                                   10ng/ml 
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2.1.2. Primary antibodies  
 

Mouse monoclonal Actin beta (ab6276), Klon AC-15 Abcam Ltd 

Mouse monoclonal MHC (MF 20) University of Iowa, Iowa city 

Mouse monoclonal Myogenin (F5D) University of Iowa, Iowa city 

Mouse monoclonal anti-p57 Kip2 (ab3223)                   Abcam Ltd. 

Mouse monoclonal PCNA (sc-56) SantaCruzBiothech 

Mouse monoclonal p73a/β (Ab-4) Coctail Dunn Labortechnik 

Mouse monoclonal anti-Human p73 (ER-15) BD Pharminigen 

Mouse monoclonal Rb (G3-245) BD Pharminigen 

Mouse monoclonal phospho-RB (S807/811) Cell Signaling Technology 

BrdU (Ab-3) Oncogene Research Products 

Mouse monoclonal p53 (ChIP) Ab-1 Oncogene Research Products 

Mouse monoclonal p63 (ChIP) Ab-1 Oncogene Research Products 

Mouse monoclonal TAp73 (ChIP) clone 5B429 (IMG-226) Imgenex 

Rabbit polyclonal Anti p21(C-19) SantaCruzBiothech 

Rabbit polyclonal MyoD (M-13) SantaCruzBiothech 

Mouse monoclonal p53 (DO1) Dr. B. Vojtesek  

 

2.1.3. Secondary antibodies  
 
Alexa 680 anti rabbit IgG   MoBi Tec 

Alexa 680 anti mice IgG   MoBi Tec 

Alexa 546 anti mice IgG Molecular Probes 

Stabilized Goat Anti-Rabbit (HRP-Conjugated) Pierce 

Stabilized Goat Anti- Mice (HRP-Conjugated) Pierce 

 
 
2.1.4. Chemicals 
 
Acrylamid Mix (29:1; 40%) Rotiphorese Gel 40 (29: 1) Roth 

Acetic acid   Roth 

Agar-Agar Roth 

Agarose for DNA/RNA Elektrophorese Roth 

Albumin bovine, fraction V Roth 

Ammoniumpersulfate (APS) Applichem 
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Ampicillin Roth 

Bradford-Solution: Protein Assay / Phosphoracid Methanol  Bio-Rad 

Bone Morphogenic Protein-2 (BMP-2), kindly provided by Dr. Walter Sebald 

Cesiumchloride  Roth 

Chloroform  Applichem 

Chloroform: Isoamylalcohol 24 : 1  Applichem 

DNA-Loadingbuffer 6x  Fermentas 

Dimethylsulfoxid (DMSO)  Roth 

Dithiotreitol (DTT)  Applichem 

EDTA-Disodiumsalt-Dihydrat (Na2EDTA)  Applichem 

Ethanol  Roth 

Ethidiumbromide-Solution 1% (10mg/ml)  Roth 

α-D(+)-Glucose Monohydrat  Roth 

Glycerole Roth 

Glycine Roth 

HEPES  Applichem 

Hydrochloric acid (HCl)  Roth 

Loadingbuffer DNA IV  Applichem 

Milk powder  Roth 

Magnesiumchloride (MgCl2)  Sigma 

β-Mercaptoethanole  Sigma 

Methanole  Roth 

Fast blue BB   Sigma 

Naphthol AS-MX phosphate Sigma 

Nonidet P-40 (NP40) Fluka 

2-Propanole (Isopropanole)  Roth 

Potassiumacetate (KAc)  Roth 

Potassiumchloride (KCl)  Applichem 

Potassiumhydroxide (KOH)  Applichem 

Propidiumiodine  Roth 

Protease and phosphatase inhibitors Cocktail, EDTA-free  Roche 

Roti-Load1,  4x konzentriert Roth 

Roti-Phenol Phenol:Chloroform:Isoamylalcohol (25:24:1) Roth 

Sodiumchloride (NaCl)  Roth 
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Sodiumcitrate  Applichem 

Sodiumdeoxycholate  Applichem 

Sodiumhydroxide (NaOH)  Roth 

Sodiumlaurylsulfate (SDS)  Roth 

SDS-Solution 10%  Applichem 

N,N,N’,N’-Tetramethylethylendiamine (TEMED)  Appichem 

Tris  Roth 

Triton X100  Applichem 

Tryptone  Roth 

Tween 20  Applichem 

Retionic acid  Sigma 

Yeast extracts  Roth 

X-Ray developer LX 24  Kodak 

X-Ray fixer AL4  Kodak 

 
2.1.5. Cell culture reagents  
 
Dulbecco’s modified Eagle-Medium (DMEM)  PAA Laboratories 

Fetal Bovine Serum (FBS)  PAA Laboratories 

Horse Serum Biochrom AG 

Hygromycine B-Lösung (50 mg/ml)  PAA Laboratories 

jetPEI Q  Biogene 

MEM Aminoacids (10x)  PAA Laboratories 

Penicillin / Streptomycin (100x)  PAA Laboratories 

Trypsin/EDTA 1:250 (10x)  PAA Laboratories 

 
2.1.6. Enzymes and biomolecules  
 
Adenosintriphosphate (ATP)  Applichem 

γ-32P-Adenosintriphosphate ([γ-32P]-ATP)  Amersham 

Alkaline Phosphatase CIAP  Fermentas 

Desoxynucleotitriphosphate-Mix (dNTPs)  Fermentas 

DNA-standard GeneRuler DNA Ladder Mix  Fermentas 

DNA-standrad MassRuler DNA Ladder Mix  Fermentas 

HotStarTaq DNA polymerase  QIAGEN 
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L-Glutathion, reduced  Roth 

Klenow-Fragment  Fermentas 

Pfu Ultra DNA polymerase  Stratagene 

Poly (dIdC)  Sigma 

PageRuler Prestained Protein Ladder  Fermentas 

Random Hexamer Primer Mix  Roche 

Restrictionsendonucleases (diverse)  Fermentas 

Restrictionsendonucleases PacI and NcoI  NEB 

Ribonuclease A, DNase-free (RNase)  Applichem 

T4 DNA Ligase  Fermentas 

 

2.1.7. Kits 
 
Nucleobond PC 100 (Midi)  Macherey-Nagel 

NucleoSpin Plasmid (250)  Macherey-Nagel 

QIAshredder (250)  QIAGEN 

Omniscript RT Kit 200  QIAGEN 

RiboGreen RNA Quantitation Kit  Molecular probes 

RNase-Free DNase Set (50)  QIAGEN 

RNeasy Mini Kit (250)  QIAGEN 

TriPure RNA Isolation Kit  Roche 
Wizard SV Gel and PCR Clean-Up System  Promega 

 

2.1.8. Laboratory equipments 
 

Analytical balance CP225D  Sartorius 

CCD-Camera CoolSNAP Coherent 

Centrifuge 5810R Eppendorf 

Centrifuge 5415R Eppendorf 

Centrifuge Avanti J-20 XP Beckman coulter 

Computer  Appel 

Cuvette for Electroporation Biorad 

Dampfsterilisation HICLAVE HV-110 BPW 

Deep freezer HERAfeeze Heraeus  
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Electrophoresis-chamber HE33 mini Amersham 

Electrophoresis-chamber Biometra 

Electrophoresis-chamber HE 100 SuperSub Amersham 

Electrophoresis-chamber mighty small SE260 Amersham 

Electroporation Gene Pulser II Bio-Rad 

Electroporation Micro Pulser Bio-Rad 

Extraction system for Cellcultur (BioChem-VacuuCenter BVC 21) Vacuubrand 

Fluorescence activated cell sorter (FACS) Becton Dickinson 

Fluorescence-Microscope Axiovert 200 Zeiss 

Freezer (-80) Liebherr 

Gel-Documentation E.A.S.Y. 440K Herolab 

Gel chamber PowerPac Biorad 

Hoods Class 2 BDK 

Incubator HERAcell 240 Heraeus 

Microscope DMIL Leica 

Refrigerator Profi line Liebherr 

Laser-Scanner Odyssey-Imager Li-Cor Biosciences 

Microwave 8022 Privileg 

Nitrocellulose-Membran Hybond-ECL Amersham 

PCR-hood Captair bio Erlab 

pH-Meter BlueLine Schott 

Photometer BioPhotometer Eppendorf 

Precision balance 572-35 Kern 

Refrigerator Profi line Liebherr 

Semy-dry Blot-Apparatur Trans-Blot SD cell Bio-Rad 

Thermocycler GeneAmp PCR System9700 Applied Biosystems 

Thermocycler Mastercycler gradient Eppendorf 

Thermomixer comfort Eppendorf 

Water treatment plant Purelab ultra ELGA LabWater 

Ultracentrifuge L7-ultracentrifuge Beckman coulter 

UV-Transilluminator TFX-20.M Vilber Lourmat 

Vacuumpumpe N820AN.18                                                      KNF 

Vortex genie 2                                                                          Scientific industries 

X-ray film                                                                                   Biomax Kodak 
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X-ray box13 x 18 cm                                                            Dr.Goos-Suprema 
 
 
2.1.9. Primers  
 
Name                                           Sequence                                           used for  
 
hp53for                  5’-TTGCCGTCCCAAGCAATGGATG-3’ SQ-RT-PCR 

hp53rev                 5’-TCTGGGAAGGGACAGAAGATGAC-3’             SQ-RT-PCR 

hp63-for                 5’-CCCTCCAACACCGACTACCC-3’                   SQ-RT-PCR 

hp63-rev                5’-CACCGCTTCACCACCTCCGT-3’                     SQ-RT-PCR 

hTAp63-for            5’-GACCTGAGTGACCCCATGTG-3’                     SQ-RT-PCR 

hTAp63-rev           5’-CGGGTGATGGAGAGAGAGCA-3’                    SQ-RT-PCR 

hΔNp63 for            5’-TGCCCAGACTCAATTTAGTGAG-3’                SQ-RT-PCR 

hΔNp63 for            5’-AGAGAGAGCATCGAAGGTGGAG-3’              SQ-RT-PCR 

hp73-for                 5’-GACGGAATTCACCACCATCCT-3’                  SQ-RT-PCR 

hp73-rev                5’-CCAGGCTCTCTTTCAGC-3’                              SQ-RT-PCR 

hTAp73-for            5’-GGCTGCGACGGCTGCAGAGC-3’                    SQ-RT-PCR 

hTAp73-rev      5’-GCTCAGCAGATTGAACTGGGCCAT-3’ SQ-RT-PCR 

hDNp73-for         5’-CAAACGGCCCGCATGTTCCC-3’                 SQ-RT-PCR 

hDNp73-rev        5’-TGGTCCATGCTGCTGCTCAGC-3’               SQ-RT-PCR 

hΔN2p73-for          5’-GGCTGCGACGGCTGCAGGGA-3’          SQ-RT-PCR 

hΔN2p73-rev         5’-CAGGCGCCGGCGACATGG-3’                  SQ-RT-PCR 

mp53-F418            5’-GCAGTCTGGGACAGCCAAG-3’                  SQ-RT-PCR 

mp53-R418           5’-GGTAAGGATAGGTCGGCGG-3’                SQ-RT-PCR 

mp63-F388            5’-CCACAGGGCGCTGTTATC-3’                     SQ-RT-PCR 

mp63-R388           5’-CTGGGCAAGCACAGATCC-3’                       SQ-RT-PCR 

mTAp63-for           5’-CGACCCTTACATCCAGCGTTTCA-3’            SQ-RT-PCR 

mTAp63-rev          5’-GAGAGAGGGCATCAAAGGTGGAG-3’           SQ-RT-PCR 

mΔNp63-for           5’-CAATGCCCAGACTCAATTTAGTGA-3’            SQ-RT-PCR 

mΔNp63-rev          5’-GGCCCGGGTAATCTGTGTTGG-3’                SQ-RT-PCR 

mp73-for617     5’-CCCACCACTTCGAGGTCACCTT-3’              SQ-RT-PCR 

mp73-rev617    5’-ATGCACGTTTGCTGGCAGCTCC-3’               SQ-RT-PCR 

mTAp73-for      5’-CCAAGAAAGGCGCTAAGC-3’                         SQ-RT-PCR 

mTAp73-rev      5’-TGGTGTCGAAGGTGGAGCT-3’                    SQ-RT-PCR 

mDNp73-for   5’-ACCTAGCCACCCAGACCCAT-3’                 SQ-RT-PCR 
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mDNp73-rev   5’-GACTTGGCAGTGCTCGACTG-3’                    SQ-RT-PCR 

mActa-F                5’-CTGAGGAGCACCCGACTCTG-3’                     SQ-RT-PCR 

mActa-R                5’-AGGGAGGAGGAAGAGGCAGC-3’                 SQ-RT-PCR 

mALP-F386     5’-CCGATCGGGACTGGTACTC-3’                   SQ-RT-PCR 

mALP-R386    5’-GGAGAGCGAAGGGTCAGTC-3’          SQ-RT-PCR  

mCcna2A-F           5’-CAGCCTGCCTTCACCATTC-3’                       SQ-RT-PCR 

mCcna2A-R          5’-TCACAGCCAAATGCAGGG-3’                         SQ-RT-PCR 

mCcnG2-F457      5’-TCTTGGCCCTTATGAAGGTG-3’                     SQ-RT-PCR 

mCcnG2-F457      5’-GTGTCGCTGAGCTTCAAATG-3’                       SQ-RT-PCR 

mCdc6-F372         5’-ACGGACCCCCTCGCTCACATAC-3’                SQ-RT-PCR 

mCdc6-F372         5’-TCCCAGGAGCGCCAGAAAGG-3’                   SQ-RT-PCR 

hCKM-F355   5’-GGTCACCCCTTCATCATGAC-3’                    SQ-RT-PCR 

hCKM-F355   5’-CCTTCTCCGTCATGCTCTTC-3’                    SQ-RT-PCR 

mCKM-F280   5’-TCAAGGGTTACACTCTGCCT-3’                   SQ-RT-PCR 

mCKM-R280  5’-TTCACCCACACAAGGAAGC-3’                        SQ-RT-PCR 

mGadd45a-F         5’-CGATAACGTGGTACTGTGCC-3’                     SQ-RT-PCR 

mGadd45a-R        5’-TTAATCACGGGCACCAC-3’                            SQ-RT-PCR 

mIGFII-F348      5’-CATCGTGGAAGAGTGCTG-3’                         SQ-RT-PCR 

mIGFII-F348      5’-CACTGATGGTTGCTGGAC-3’                       SQ-RT-PCR 

mIGFIIBam-for   5’-GACGGATCCATGGGGATCCCAGTGGGGAAG-3’ cloning 

mIGFIIBam-rev  5’-GACGGATCCTCACTGATGGTTGCTGGACAT-3’ cloning 

mMEF2C-F           5’-ATTCCTGCTGTTCCACCTCC-3’                    SQ-RT-PCR 

mMEF2C-R           5’-AACGCGGAGATCTGGCTTAC-3’                 SQ-RT-PCR 

mMHC-F384    5’-GAGATGGCCACCATGAAG-3’                       SQ-RT-PCR 

mMHC-R384    5’-CACCTTATTCTCCGTGGC-3’                        SQ-RT-PCR 

mMyf5-For301   5’-AGCTTGCAAGAGGAAGTC-3’                       SQ-RT-PCR 

mMyf5-Rev301  5’-AGGGCTGTTACATTCAGG-3’                         SQ-RT-PCR 

mMyogenin-F504   5’-GCGGACTGAGCTCAGCTTAAG-3’             SQ-RT-PCR 

mMyogenin-R504  5’-GCTGTCCACGATGGACGTAAG-3’              SQ-RT-PCR 

hMyogenin-F312   5’-CCGTGGGCGTGTAAGGTGTG-3’                 SQ-RT-PCR 

hMyogenin-R312   5’-ACTGCAGGAGGCGCTGTGAG-3’              SQ-RT-PCR 

mMyoD-F416        5’-TGGCAGATGCACCACCAG-3’                    SQ-RT-PCR 

mMyoD-R416       5’-AGTGCAAGTGGCCTTCGC-3’                       SQ-RT-PCR 

mMyoD-for    5’-CGGGATCCATGGAGCTTCTATCGCC-3’           cloning 
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mMyoD-rev   5’-GCGGATCCTCAAAGCACCTGATAAATC-3’         cloning 

myoDseq_1    5’-GACCTGGACCCGCGCCTG-3’                       sequencing 

myoDseq_2         5’-ATGGCGTTGCGCAGGATC-3’                        sequencing 

hMyoD-F311    5’-CCTACTGTGGGCCTGCAAG-3’                  SQ-RT-PCR 

hMyoD-F311   5’-AGTCGCCGCTGTAGTGCTC-3’                   SQ-RT-PCR 

hNEFH-F289    5’-GGAGATAACTGAGTACCGGCG-3’            SQ-RT-PCR 

hNEFH-R289   5’-CCGACACTCTTCACCTTCCAG-3’             SQ-RT-PCR 

mOsteocalcin-F258   5’-TTCTGCTCACTCTGCTGACC-3’               SQ-RT-PCR 

mOsteocalcin-R258   5’-AGATGCGTTTGTAGGCGG-3’                    SQ-RT-PCR 

mp21-F358           5’-TGTCCAATCCTGGTGATGTCC-3’              SQ-RT-PCR 

mp21-R358         5’-TCAGACACCAGAGTGCAAGAC-3’             SQ-RT-PCR 

mp27-F274       5’-GTGTCCAGGGATGAGGAAG-3’                   SQ-RT-PCR 

mp27-R274      5’-TAATTCCTCCTGGCAGGC-3’                    SQ-RT-PCR 

mp57-F345      5’-CAGGACGAGAATCAAGAG-3’                  SQ-RT-PCR 

mp57-R345 5’-GGTTCCTGCTACATGAAC-3’                     SQ-RT-PCR 

hPAX3/FKHR-S   5’-GCACTGTACACCAAAGCACG-3’                SQ-RT-PCR 

hPAX3/FKHR-AS  5’-CTGTGGATTGAGCATCCACC-3’               SQ-RT-PCR 

hPAX3/FKHRNot-F   5’-CGAGCGGCCGCAGGATGACCACGCTGGCC-3’  cloning 

hPAX3/FKHR-Pac-R  5’-CGCTTAATTAATCAGCCTGACACCCAGCT-3’   cloning  

pSuperRetro        5’-CCCCTTGAACCTCCTCG-3’                        sequencing 

mRb-F450            5’-TGTGAGCATCGAATCATG-3’                       SQ-RT-PCR 

mRb-R450        5’-AATCTGGTCCAAATGTCG-3’                        SQ-RT-PCR 

hRB-F371      5’-CCGAGAAGGACCAACTGATC-3’                 SQ-RT-PCR 

hRB-R371     5’-GGTCCAAATGCCTGTCTCTC-3’                   SQ-RT-PCR 

mRfc3-F                5’-GAGCATCAGACTATCACAACCC-3’             SQ-RT-PCR 

mRfc3-R                5’-GAGCATCAGACTATCACAACCC-3’          SQ-RT-PCR 

mTncc-F                5’-CAGAAACCCACACCTGAGGAG-3’               SQ-RT-PCR 

mTncc-R                5’-AGGCAACCGTGCAAGACC-3’                      SQ-RT-PCR 

mp21-ChIP-S        5’-CGGAGACCAGCAGCAAAATCG-3’             ChIP 

mp21-ChIP-AS      5’-TGACACATACACACCCCAGGCAC-3’         ChIP 

mp57-ChIP-S        5’-TCTGTCAGGCCATGTCGG-3’                    ChIP 

mp57- ChIP-AS     5’-AGTTGGGCCCATCCTAGC-3’                     ChIP 

mRB-ChIP-S         5’-GACGACGCGGGCGGAGACAGG-3’             ChIP 

mRB-ChIP-AS        5’- AACGCTCCCCGAGGAAAACCGGACGC-3’  ChIP 
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2.1.10. siRNA oligos 
 
pSUPER-NS-S 
5’-GATCCCCTTCTCCGAACGTGTCACGTTTGGATCCAAACGTGACACGTTCGGAGAATTTTTA-3’ 
pSUPER-NS-AS 
5’-AGCTTAAAAATTCTCCGAACGTGTCACGTTTGGATCCAAACGTGACACGTTCGGAGAAGGG-3’ 
 

pSUPER-mp53si1-S 
5’-GATCCCCGTCTGTTATGTGCACGTACTTGGATCCAAGTACGTGCACATAACAGACTTTTTA-3’ 
pSUPER-mp53si1-AS 
5’-AGCTTAAAAAGTCTGTTATGTGCACGTACTTGGATCCAAGTACGTGCACATAACAGACGGG-3’ 
 

pSUPER-mp63si1-S 
5’-GATCCCCGAGACCGGAAGGCAGATGATTGGATCCAATCATCTGCCTTCCGGTCTCTTTTTA-3’ 
pSUPER-mp63si1-AS 
5’-AGCTTAAAAAGAGACCGGAAGGCAGATGATTGGATCCAATCATCTGCCTTCCGGTCTCGGG-3’ 
 

pSUPER-mp73si8-S 
5’-GATCCCCGGCCATGCCTGTTTACAAGTTGGATCCAACTTGTAAACAGGCATGGCCTTTTTA-3’ 
pSUPER-mp73si8-AS 
5’-AGCTTAAAAAGGCCATGCCTGTTTACACGTTGGATCCAACTTGTAAACAGGCATGGCCGGG-3’ 
 

2.1.11. Adenoviral vectors 
 
pAdEasy-1 vector     (Stratagene) 

pShuttle-CMV           (Stratagene)      
Ad-GFP                    (AG Stiewe) 

Ad-mutRB                 (AG Stiewe) 

Ad-RB                       (AG Stiewe) 

Ad-p57                      (AG Stiewe) 

 

2.1.12. Retroviral vectors 
 

pWPI                                  (kindly provided by D. Trono) 

pWPI-ΔNp73α                    (AG Stiewe) 

pRSV-Rev                          (kindly provided by D. Trono) 

pCMV-dR8.74                    (kindly provided by D. Trono) 

pMD2G                               (kindly provided by D. Trono) 
pSUPER siRNA Vector      (Oligoengine) 

pSUPER p53si               (AG Stiewe) 
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pSUPER p63si                   (AG Stiewe) 

pSUPER p73si8                 (AG Stiewe) 

pQxIP                                    (BD Bioscience) 

pQxIP-p53DD                     (cloned in this study) 

pQxIP-ΔNp73α                   (cloned in this study) 

pQxIH                                 (BD Bioscience) 

pQxIH-IGFII                        (cloned in this study) 

pQxIH-MyoD                       (cloned in this study) 

pQxIH-Pax3/FKHR3           (cloned in this study) 

pQxIH-p73DD                     (cloned in this study) 

 

 

 

2.2. Methods  
 
2.2.1. Cell culture 
 

In this study, all cells were incubated in a scientific incubator at 37°C in a humid 

atmosphere of 95% air, 5% CO2. Cells were grown in monolayer culture and 

harvested at appropriate confluence for further passage by standard culture 

techniques. Cells were routinely harvested by rapid exposure to 0.2% trypsin 

containing 0.001% EDTA. The cells were then plated in dishes or wells. C2C12 

myoblasts were cultivated in Dulbecco’s modifed Eagle’s medium (DMEM) 

supplemented with 20% (v/v) fetal bovine serum (FBS), 60 mg/l (100 U/ml) penicillin 

and 100 mg/l streptomycin. Human rhabdomyosarcoma cell lines (RD, JR1, CT-TC, 

Rh18, Rh30, Rh41), human neuroblastoma cells SH-SY5Y, murine NIH3T3, 

fibroblast and packaging cell lines (RP, 293T, Ad293) were maintained in DMEM 

supplemented with 10% (v/v) fetal bovine serum (FBS), 60 mg/l (100 U/ml) penicillin 

and 100 mg/l streptomycin. Human skeletal muscle myoblasts (HSMM) cell lines 

were cultured in growth medium consisting of Ham’s F10 (Gibco, Grand Island, NY) 

supplemented with 15% fetal calf serum, bovine serum albumin (0.5 mg/ml), fetuin 

(0.5 mg/ml), epidermal growth factor (EGF; 10 ng/ml), dexamethasone (0.39 mg/ml), 

insulin (0.18 mg/ml), creatine (1 mM), pyruvate (100mg/ml), and uridine (50 mg/ml). 

Primary murine myoblasts were isolated as described (Watson et al., 1997). 
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2.2.2. Differentiations conditions  
 

To prepare differentiated myotubes, myoblasts were grown to 70% confluence. After 

washing in PBS, the cells were exposed to differentiation medium (DMEM, 2% heat-

inactivated horse serum). In our differentiations condition, we could detect multi- 

nucleated myotubes within 72h. The differentiation index was calculated by counting 

at least 200 nuclei per dish and applying the following formula: differentiation index = 

number of nuclei in differentiated cells / total number of nuclei. For osteoblast 

differentiation, C2C12 myoblasts were washed in PBS and growth medium was 

replaced by DMEM containing 5% FBS supplemented with 300 ng/ml BMP-2 for five 

days. NIH3T3–MyoD cells were prepared by infection with a retroviral vector 

encoding MyoD and the hygromycin resistance gene. Two days after infection, the 

cells were selected in medium containing Hygromycin. The MyoD-transformed cells 

formed multinucleated myotubes when exposed to differentiation medium. To induce 

neuronal differentiation, the SH-SY5Y cells were differentiated for seven days in the 

presence of 10µM retinoic acid (RA). 

 

2.2.3. Construction of plasmids 
 

ΔNp73α and ΔNp73α (R292H) were cloned into the retroviral vector pQCXIP 

through BamHI digestion. pQCXIH-p73DD and pMSCVpuro-p53DD were generated 

by inserting the expression cassette into the BamHI site of the retroviral vectors. A 

full-length IGFII cDNA was amplified from C2C12 cDNA by PCR using the following 

primers: 5′-GACGGATCCATGGGGATCCCAGTGGGGAAG-3′ and 5′-

GACGGATCCTCACTGATGGTTGCTGGACAT-3′ and cloned into BamHI site of the 

retroviral vector pQCXIH. The sequence of the IGFII cDNA was confirmed by 

automated DNA sequencing. PAX3/FKHR cDNA was amplified from pcDNA3.1-

PAX3/FKHR vector (kindly provided by Frederic G. Barr) by PCR using the following 

primers: 5′- CGAGCGGCCGCAGGATGACCACGCTGGCC-3′ and 5′-

CGCTTAATTAATCAGCCTGACACCCAGCT -3′ and cloned into NotI/PacI sites of 

retrovirus vector pQCXIH. MyoD cDNA was amplified from a MyoD expression 

construct (kindly provided by Antonio Giordano) by PCR using the following primers: 

5′- CGGGATCCATGGAGCTTCTATCGCC -3′ and 5′- 

GCGGATCCTCAAAGCACCTGATAAATC -3′ and cloned into BamHI site of the 
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retroviral vector pQCXIH. To generate the adenoviral vector AdGFP-p57, the p57 

cDNA was isolated from pBSmp57 plasmid (kindly provided by P. Zhang) and 

cloned into pShuttle (kindly provided by B. Vogelstein). Insert was confirmed by 

restriction analysis. The plasmid was purified in sufficient quantity for the subsequent 

cotransformation steps. Linearized and dephosphorylated pShuttle-p57 DNA was 

electroporated into BJ5183 cells which have the cellular components that are 

necessary to carry out recombination between the pShuttle vector and the E1-

deleted, pAdEasy-1 vector. Adenovirus vectors AdGFP-RB and AdGFP mutRB were 

described previously (Stiewe et al). All the plasmids were confirmed by DNA 

sequencing. Retroviral vectors pRSV-Rev, pCMV-dR8.74 (packaging plasmids) and 

pMD2G (envelop plasmid) were kindly provided by D. Trono. 

 

2.2.4. Chromatin immunoprecipitation 
 

Chromatin immunoprecipitation (ChIP) assays were performed by using a modified 

protocol from Upstate Biotechnology. Cells in a 20 cm dish were fixed at 37°C for 10 

min with 1% formaldehyde. After crosslinking, cells were washed, harvested, and 

resuspended in 300 μl RIPA lysis buffer and sonicated under conditions yielding 

fragments ranging from 200 to 1000 bp. Samples were diluted ten times with ChIP 

dilution buffer and precleared for 2 hr at 4°C with recombinant protein A agarose 

beads coated with BSA and salmon-sperm DNA. Precleared lysates were used for 

an overnight immunoprecipitation using 5 μg of specific antibodies (IgG2, p53, p63 

and p73) at 4°C. Complexes were collected for 1 hr using recombinant protein A 

agarose beads coated with BSA and salmon-sperm DNA. After washing, complexes 

were eluted for 1 hr at room temperature in elution buffer (1% SDS, 0.1 M NaHCO3), 

and formaldehyde crosslinking was reversed overnight at 65°C. Eluted DNA was 

recovered through ethanol precipitation and used as a template for PCR. The PCR 

primer sets and antibodies used for ChIP are described in 2.1.2 and 2.1.9.  

 
2.2.5. Muscle injury model and histology  
 

To induce muscle regeneration in vivo, the tibialis anterior (TA) muscles of 6-week 

old C57BL/6 mice were injected with cardiotoxin. The muscle were harvested, fixed 

in 4% paraformaldehyde, and embedded in paraffin. Paraffin sections were prepared 
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for hematoxylin/eosin staining by standard methods. Uninjected muscles were used 

as control. For gene expression analysis, total RNA from TA muscles was extracted 

with TriPure isolation reagent (Roche). 

 
2.2.6. Flow cytometric cell cycle analyses  
 

After 2 days in differentiation medium, cells were harvested in 500µl PBS. To fix the 

cells (1x107), cell pellets were resuspended dropwise in 5 ml 70 % cold ethanol. 

Then fixed cells were treated with RNAseA (100 µg/ml) and propidium iodide 

(10mg/ml), and examined with a fluorescence activated cell sorter (FACS, Becton 

Dickinson). Subsequently, data analysis was performed by using the CellQuest 

program (BD Biosciences, San Jose, CA). 

 

2.2.7. Immunofluorescence assay 
 

Cell lines were grown in 12-well tissue cultures plates containing sterile coverslips. 

Cells were washed once in Tris-buffered saline (TBS), fixed in 100% cold methanol 

(-20°C) for 10 min, washed three times for 5 minutes in 1xTBS and blocked with 

blocking buffer (10% horse serum, 1% BSA, 1XPBS) at room temperature for 30 

min. Cells were then incubated with the diluted primary antibody in (1%BSA in TBS) 

for 60 min. Primary antibodies used were anti-myosin heavy chain (anti-MHC). After 

being washed three times in 1xTBS, the cells were incubated for 45 min secondary 

antibody. Secondary antibodies (see 2.1.3) were used at 1/2000 dilution. Cells were 

washed three times in 1xTBS. To visualize the nuclei, the final wash contained 1ng 

of 4’,6-diamidino-2-phenylindole (DAPI) per ml. The immunochemically stained cells 

were viewed at 100X magnification under a fluorescence microscope (Axiovert 200, 

Zeiss). 

 

2.2.8. BrdU staining  
 

C2C12 mouse myoblasts were seeded at a density of 4 to 6x104 cells per 12-well on 

glass coverslips in differentiation medium and cultured for 5 days, followed by 24 h 

in DMEM supplemented with 10 % FBS and 10 µM bromodeoxyuracil (BrdU). Cells 

were then washed 3 times in ice-cold PBS, fixed with 70 % ethanol/ 50 mM glycine 
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(pH 2.0) and stained for myosin heavy chain (MHC; antibody: MF-20, University of 

Iowa, Iowa City; dilution 1:1000) and BrdU antibody: (Ab-3, Oncogene; dilution 

1:100) for one hour at room temperature. Secondary antibodies were isotype-

specific anti-mouse IgGs (Molecular Probes; dilution 1:1000) conjugated with Alexa 

Fluor 488 (BrdU) or Alexa Fluor 546 (MHC). Nuclei were counter-stained with 1 µM 

DAPI. Dried coverslips were mounted using the ProLong Antifade Kit (Molecular 

Probes) according to the manufacturer’s protocol. 

 

2.2.9. Whole-cell extract preparation 
 

Cells were washed once with phosphate-buffered saline (PBS) and lysed in 200µl of 

RIPA buffer containing protease and phosphatase inhibitors cocktails (Roth) Cellular 

debris was removed by centrifugation at 14.000 rpm for 10 min. Cell extracts were 

stored at -80°C until use. Total protein concentration was quantitated by Bradford 

assay (Bio-Rad). 

 

2.2.10. Western Blot analysis 
 

Whole-cell lysates (100 or 200 µg of protein) were separated in Tris acetat  

acrylamid gels and blotted onto PVDF membrane (Amersham Bioscience). After 1 h 

blocking with 10% milk powder in TBS, the membrane was incubated overnight at 

4°C with primary antibodies (see 2.1.2). After being washed three times in 1xTBST, 

the membrane was incubated with HRP-conjugated secondary antibody (see 2.1.3). 

Proteins were visualized by ECL and membranes were exposed to film (Kodak). 

 

2.2.11. Generation of retroviruses 
 

2.2.11.1. Transfection of packaging cells and generation of retrovirus 
containing supernatant 
 

The amphotropic packaging cells were transfected with retroviral vector plasmids by 

using Jet Pei Transfection Kits (Biogene). Briefly, packaging cells (5x105) were 

plated into 60-mm tissue culture dish (Greainer) and 24h later transfected with 5µg 

of vector DNA. Three hours later, cells were washed once with 1xPBS and replaced 
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with fresh medium. To transduce the target cells, virus vector particle-containing 

supernatant was harvested after approximately 2 days. 

 

2.2.11.2. Transduction of cell lines with retroviruses  

 

 5x104 target cells were transduced once with virus supernatant for 36h in 6-well 

tissue culture plates in the presence of 4 µg/ml Polybrene. After approximately 5 

days, when nontransduced control cells died in the presence of appropriate 

selection, bulk cultures were expanded and used for experiments. 

 

 

2.2.12. Generation of adenoviruses  
 

2.2.12.1. Cloning and generating AdEasy™ Recombinants  

 
To produce adenoviruses, we used the AdEasy™ Adenoviral Vector System from 

stratagene. First, our gene of interest was cloned into pShuttle vector by using an 

appropriate site(s) in the MCS. Insert was confirmed by restriction analysis and DNA 

(shuttle vector plus gene of interest) was purified in sufficient quantity for the 

subsequent cotransformation steps. Linearized shuttle plasmid DNA was 

electroporated into BJ5183 cells which have the cellular components that are 

necessary to carry out recombination between pShuttle vector and E1-deleted 

adenovirus vectors such as the pAdEasy-1 vector. 

 

2.2.12.2. Transfection of 293 cells and preparation of primary viral stocks  

 
To produce adenovirus, the purified recombinant adenovirus plasmid was 

transfected into 293cells by using Jet Pei Transfection Kits.. After approximately 

seven days adenovirus containing supernatant was harvested. To prepare high titer 

virus stock, 293 cells were seeded on eight 150mm cell culture dishes in DMEM 2% 

with FCS and infecteded with 10 µl adenovirus containing supernatant. After two to 

three days, cells were harvested in 5 ml 1xPBS + 10% glycerol and frozen at –80°C.  
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2.2.12.3. Transduction of cell lines with adenoviruses   

 

After washing with PBS, cells were infected once with high titer adenovirus for one 

hour in the presence of DMEM 2% FCS. To control transgenic protein expression, 

cells were harvested and analyzed by western blot. 

 

2.2.13. shRNAs construction 
 

In this study, we used the pSUPER.retro RNAi System as a vector system for stable 

expression of short interfering RNA. This system provides a mammalian retroiral 

expression vector that directs intracellular synthesis of siRNA-like transcripts. To 

induce silencing of our target genes, the pSUPER.retro vector was used in concert 

with a pair of 64-nt oligonucleotides, each containing a unique 19-nt sequence (see 

2.1.10) derived from the target transcript. These oligos were annealed and ligated 

into the vector between the Bglll/HindIII sites. After transformation into competent 

cells (Top10F’), the presence of the insert was confirmed by restriction analysis. 

 

2.2.14. RNA isolation, cDNA Synthesis, semi quantitative RT-PCR and 
microarray analysis 
 

In this study, for total RNA isolation from primary muscle cells we used TriPure RNA 

Isolation Reagent (Roche). For all other cells, the RNeasy Mini Kit (Qiagen) was 

used. The RNA extraction and reversetranscription were performed as described in 

the manufacturer’s instruction. RNA quantitation was performed with the RiboGreen 

RNA Quantitation Reagent Kit (Molecular Probes). RNA (2 µg) from each cell line 

was reverse-transcribed into cDNA using the Omniscript cDNA Synthesis Kit 

(Qiagen). cDNA (2 µl) was amplified by PCR. For the microarray analysis, total RNA 

from cells was extracted TriPure isolation reagent (Roche). These RNA samples 

were labeled as described in the manufacturer’s instruction (Qiagen) and hybridized 

to Affymetrix high-density oligonucleotide arrays, the murine genome 430 2.0 Array. 

Raw expression data obtained with Afimetrix’s software were analyzed with the 

software GeneSpring QXVersion 7.1 (Silicon Genetics). 
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2.2.15. Alkaline phosphatase activity (ALP) analysis  
 

To examine alkaline phosphatase activity histochemically, cells were fixed for 10 min 

with 3.7% formaldehyde at room temperature. After washing with PBS, the cells 

were incubated for 20 min with a mixture of 0.1 mg/ml of naphthol AS-MX phosphate 

(Sigma), 0,5% N, N-dimethlformamide, 2 mM MgCl2, and 0.6 mg/ml of fast blue BB 

salt (Sigma) in 0.1 M Tris-HCl, pH 8.5, at room temperature.  

 

2.2.16. The 3D collagen matrix model and confocal microscop. 
 

C2C12 myblasts were added to collagen solution (100µl MEM, 50µl Bicarbonat and 

750 µl Vitrogene) and mixed (1:2) with DMEM supplemented with 20% FBS. After 

polymerization of the lattice, 3D collagen matrix cultures (collagen concentration: 

1.67 mg/mL) of C2C12 myoblasts were allowed to differentiate for 5 days. Samples 

were fixed by PFA (4%) and stained for myosin heavy chain and beta actin. 3D 

confocal backscatter microscopy of fixed samples was carried out on a Leica TCS 

4D system (Leica, Bensheim, Germany). 

 

2.2.17. Mice 
 

Cells (5x106 cells/100 µl) were injected subcutaneously into flank of 7-9 week old 

CD-1 athymic nude mice (nu/nu). The animals were monitored twice weekly until the 

tumor size reached 10 mm in diameter.  
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3. Results 
 

3.1. Increased expression of p73 in rhabdomyosarcoma (RMS) 
 
ΔNp73 is frequently overexpressed in a variety of human tumors, but not in normal 

tissues (Casciano et al., 2002; Concin et al., 2004; Frasca et al., 2003; Stiewe et al., 

2004; Uramoto et al., 2004; Zaika et al., 2002). Deregulated expression of ΔNp73 

can bestow oncogenic activity upon the TP73 gene by functionally inactivating the 

tumor suppressor function of p53 and TAp73 (Grob et al., 2001; Slade et al., 2004; 

Stiewe et al., 2002a). ΔNp73 expression might therefore be selected for in human 

cancer. Thus, we analyzed ΔNp73 expression in various human cancer types by 

semiquantitative RT-PCR. Unique primers (see 2.1.9) were designed for isoform-

specific amplification of TAp73 and the two different ΔNp73 variants ΔNAS 

(generated by alternative splicing) and ΔNAP. (generated by the alternative 

promoter). Compared to normal skeletal muscle tissues and human skeletal muscle 

myoblasts, we detected increased expression of TAp73 (15 of 20 samples), ΔNAP 

(12 of 20 samples) and ΔNAS (12 of 20 samples) in primary human 

rhabdomyosarcoma (Fig. 13). Interestingly, almost all RMS tumors show 

overexpression of at least one of the oncogenic ΔNp73 isoforms (16 of 20 samples). 

Importantly, there is no tumor with high levels of the tumor-suppressive TAp73 

isoform in the abscence of concomittant ΔNp73 expression. 

 

 

 

 

 

 

 

 

Figure 13. Tumor-specific up-regulation of p73 isoforms in primary 
rhabdomyosarcoma. 
Expression of NH2-terminal p73 isoforms was analyzed by semiquantitative RT-PCR 
in 20 primary RMS tumors, compared with four normal skeletal muscle tissues or 
human skeletal muscle myoblasts (HSMM). Amplification of GAPDH demonstrates 
use of equal amounts of total RNA. H20, no template control.  
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In addition to primary rhabdomyosarcoma samples, we analyzed the p73 expression 

level in various rhabdomyosarcoma cell lines. Similarly, both TAp73 and ΔNp73 

isoforms were simultaneously up regulated in 3 of the 5 cell lines on the RNA (Fig. 

14A) and protein level (Fig. 14B). Although these results suggested an association 

of increased p73 expression with rhabdomyosarcoma of the alveolar subtype, no 

such correlation was observed with primary patient samples (Fig. 13). 

 

 

A.                                                                    B. 
 

 

 

 

 

 

 

 

 

Figure 14. Increased expression of TAp73 and ΔNp73 in rhabdomyosarcoma 
cell lines.  
A. Semiquantitative RT-PCR analysis of p73 isoforms (TAp73, ΔNp73) in 
rhabdomyosarcoma cell lines. p73 transcripts were amplified with isoform-specific 
primer pairs. Amplification of GAPDH demonstrates use of equal amounts of total 
RNA. 1, RD; 2, JR1; 3, Rh30; 4, Rh18; 5, Rh41; 6, BJ fibroblasts, negative control; 
H2O, no template control. eRMS: embryonal subtype, aRMS : alveolar subtype). B. 
Cell extracts were subjected to immunoblot analysis for p73 (anti-p73, ER15). 
Arrows indicate p73 protein isoforms.  
 

 

Taken together, our results show that high levels of TAp73 and oncogenic ΔNp73 

isoforms (ΔNAS and ΔNAP) are seen in both primary rhabdomyosarcoma samples 

and established cell lines. High levels of the E2F target gene TAp73 are typically a 

result of p16-RB-E2F pathway alterations which are commonly observed in multiple 

tumor types (Irwin et al., 2000; Stiewe and Putzer, 2000; Zaika et al., 2001). 

Because TAp73 transcripts are frequently aberrantly spliced in tumor cells (ΔNAS) 

and TAp73 is a transactivator of the ΔNp73 promoter (ΔNAP) (Grob et al., 2001; 

Kartasheva et al., 2002), we hypothesized that high TAp73 levels in RMS cells drive 
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expression of oncogenic ΔNp73 isoforms. To evaluate this, we specifically silenced 

TAp73 by RNA interference. Small interfering RNAs (siRNAs) are 21-23 bp double-

stranded RNA molecules that elicit gene-specific silencing in mammalian cells. 

When the RNA polymerase III is used to transcribe siRNA strands that are linked in 

cis, so forming a hairpin structure, these small RNAs were called short hairpin RNAs 

(shRNAs). Here, the Rh30 RMS cell line was transduced with retroviruses 

expressing short-hairpin RNAs (shRNAs) directed against p73 sequences specific 

for TAp73 but not ΔNp73. A non-silencing control shRNA was used as a control for 

unspecific silencing effects. After puromycin selection, successful downregulation of 

TAp73 was verified by western blot analysis (Fig. 15A). As shown in Figure 15B, 

efficient knockdown of TAp73 induces downregulation of ΔNp73 confirming that 

TAp73 is indeed the major cause for high levels of the oncogenic ΔNp73 isoform. As 

ΔNp73 in turn sequesters TAp73 (and also TAp63) in transcriptionally inactive 

complexes, high levels of p73 in RMS tumors are indicative of p63/p73 dysfunction. 

 

 

 

 

                A.                                                       B. 
 

 

 

 
 
 
 
 

Figure 15. Knockdown of TAp73 induces downregulation of ΔNp73. 
A. Whole cell extracts of Rh30 cells, expressing TAp73-shRNAs (TAsi) or non-
silencing shRNAs (ns) as a control, were immunoblotted with anti-p73 (ER15) and 
anti-actin (ab6276) antibodies. B. Expression of TAp73 and ΔNp73 mRNA in 
shRNA-expressing cell lines. The cDNAs were amplified with TAp73- and ΔNp73-
specific primers. Amplification of GAPDH demonstrates use of equal amounts of 
total RNA. H2O, no template control. 
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3.2. RNAi-mediated downregulation of p73 inhibits RMS 
development in nude mice 
To determine whether tumor-specific up-regulation of p73 isoforms plays a critical 

role in the development and progression of rhabdomyosarcoma, we generated RMS 

cell lines, in which p73 levels are reduced by RNA interference. To silence p73 

expression in the human rhabdomyosarcoma Rh30 cell line, the cells were 

transduced with retroviral vectors expressing a p73-directed or a non-silencing 

shRNA as a control. After puromycin selection, successful downregulation of p73 

was verified by western blot analysis (Fig. 16). Compared to non-silenced control 

cells, endogenous p73 protein was nearly undetectable in three different p73-shRNA 

expressing clones, while the level of actin remained unchanged. 

 

 

 

 

 

 

 

 

 

Figure 16. RNAi ablation of endogenous p73 expression in Rh30 cells.  
Whole cell extracts from three different Rh30-p73 shRNA clones (K2, K7, K8) or a 
Rh30-non-silencing shRNA control clone (NS) were immunoblotted with anti-p73 
(ER15) and anti-β-actin (ab6276) antibodies. 
 

 

We injected three selected Rh30-p73 shRNA cell clones subcutaneously into nude 

mice. The injected animals were monitored until the tumor size in control mice 

reached 10 mm in diameter. 23 of 25 mice injected with the control Rh30 clone 

developed tumors. In contrast, only 6 of 35 mice, which were injected with the three 

selected Rh30-p73 shRNA cell clones developed tumors (Table 1). Taken together, 

Rh30 cells stably transfected with p73-directed shRNA expressing retroviral vectors 

displayed highly reduced tumorigenicity in vivo. To exclude colonal artifacts, we also 

injected polyclonal Rh30-p73 shRNA cells into nude mice. Similarly, RNAi ablation of 
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p73 in polyclonal Rh30 cells resulted in inhibition of tumorigenicity (Fig. 17) 

indicating that high p73 expression is critical for RMS tumor development in vivo. 

 

 

 

 

 

 

 

 

 

 

Table 1. RNAi ablation of endogenous p73 expression inhibits tumorigenicity 
of RMS cell lines in nude mice.  
Cells (5x106 cells in a volume of 100 µl) from transduced cell lines were injected s.c. 
into the right or left flank of 7-9 week old CD-1 athymic nude mice (nu/nu). The 
animals were observed until the tumor size in controls reached 10 mm in diameter. 
Numbers represent the number of mice with tumor/total number of mice injected. 
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Figure 17. RNAi ablation of endogenous p73 expression in Rh30 cells.  
A. Whole cell extract from bulk cultures of Rh30-p73 shRNA (p73) cells or control 
Rh30 non-silencing shRNA (NS) cells were immunoblotted with anti-p73 (ER15) and 
anti-actin (ab6276) antibodies. B. Cells (5x106 cells in a volume of 100 µl) from 
transfected cell lines were injected s.c. into the right or left flank of 7-9 week old CD-
1 athymic nude mice (nu/nu). The animals were observed until the tumor size in 
controls reached 10 mm in diameter. Numbers represent the number of mice with 
tumor/total number of mice injected. 
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3.3. ΔNp73 cooperates with IGFII and PAX3/FKHR to transform 

C2C12 myoblasts to tumorigenicity  
 

To evaluate further the oncogenic function of ΔNp73α in vivo, the murine myoblast 

cell line C2C12 was transduced with ΔNp73α or empty vector (mock) expressing 

retroviruses. The expression of ΔNp73α was verified by western blot analyses (Fig. 

18A). C2C12-mock and -ΔNp73α myoblasts were injected subcutaneously (s.c) into 

nude mice. As shown in Figure 18B, no tumor formation was detected in the control 

group and only 1 of 20 mice, which were injected with C2C12-ΔNp73α myoblasts, 

developed a tumor. ΔNp73 expression alone is therefore not sufficient to transform 

C2C12 myoblasts to tumorigenicity. 

 

 

A.                                                      B. 
 

 

 

 

 

 

 

 

Figure 18. C212-ΔNp73α myoblasts failed to from tumors in nude mice. 

A. Stable expression of ΔNp73α in C2C12 cells. After appropriate selection, cell 
extracts were subjected to immunoblot analysis for p73 (anti-p73, ER15). B. Cells 
(5x106 cells/100 µl) from transfected cell lines were injected s.c. into right or left flank 
of 7-9 week old CD-1 athymic nude mice (nu/nu). The animals were observed until 
the tumor size reached 10 mm in diameter. Numbers represent the number of mice 
with tumor/total number of mice injected. 
 

 

Since single oncogenes are rarely sufficient to induce transformation, we tested 

cooperation of ΔNp73α with the known RMS oncogenes IGFII and PAX3/FKHR 

(Merlino and Helman, 1999). Thus, C2C12-mock and C2C12-ΔNp73α myoblasts 

were transduced with retroviral vectors expressing PAX3/FKHR or IGFII. After 
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hygromycin selection, successful transduction was verified by semiquantitative RT-

PCR (Fig. 19A). When the various myoblasts populations were injected 

subcutaneously into nude mice only IGFII+ΔNp73α and PAX3/FKHR+ΔNp73α cells 

formed tumors at a high rate (Fig. 19B). These results strongly support that ΔNp73α 

interacts with PAX3/FKHR and IGFII to play a critical role in the development of 

rhabdomyosarcoma.  
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Figure 19. Cooperative oncogenic effect of ΔNp73α in vivo. 
A. The expression of ΔNp73, PAX3/FKHR and IGFII mRNA in different transduced 
cell lines. The cDNAs were amplified with ΔNp73, PAX3/FKHR and IGFII primers. 
Amplification of GAPDH demonstrates use of equal amounts of total RNA. H2O, no 
template control. B. Cells (5x106 cells/100 µl) from transfected cell lines were 
injected s.c. into right or left flank of 7-9 week old CD-1 athymic nude mice (nu/nu). 
The animals were observed until the tumor size reached 10 mm in diameter. 
Numbers represent the number of mice with tumor/total number of mice injected.  
 

A characteristic feature of rhabdomyosarcoma is an inherent block of the myogenic 

differentiation program. Interestingly, ΔNp73α inhibited differentiation of parental and 

PAX3/FKHR myoblasts and also the accelerated and enhanced differentiation of 

IGFII myoblasts (Fig. 20A, B) (Florini et al., 1996). These findings suggest that by 

interfering with differentiation ΔNp73α unleashes the oncogenic activities of 

PAX3/FKHR (and IGFII) and enables tumor development. 
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A.                                                                        B. 
 

 

 

 

 

 

 

 

Figure 20. ΔNp73 blocks differentiation of parental and oncogene-expressing 
myoblasts. 
A. Immunofluorescence staining for myosin (myHC) of C2C12 cell lines expressing 
the indicated transgenes (IGFII, PAX3/FKHR, ΔNp73). The cells were fixed and 
stained for myHC (anti-myHC, MF20) before and 5 days after the start of 
differentiation. The cells were counterstained with DAPI to visualize nuclei. B. The 
indicated C2C12 cell lines were allowed to differentiate for five days. Proteins were 
extracted from cells and myosin (myHC) expression was determined by western blot 
analysis. The amount of protein in each sample was normalized by β-actin 
expression. 
 

 

3.4. Ectopic expression of ΔNp73α blocks myogenic differentiation 
 

To explore more precisely the underlying molecular mechanism of the ΔNp73α 

induced differentiation block, we took advantage of the C2C12 differentiation model 

in vitro. C2C12 myoblasts can be induced to differentiate by culturing them in 

mitogen poor medium (DM). Upon serum starvation, these cells terminally exit from 

the cell cycle. After induction of intermediate muscle specific genes such as 

myogenin, C2C12 cells elongate and fuse to form multinuclear myotubes, which 

express late muscle specific markers such as myosin (myHC). To examine the effect 

of ΔNp73α on myogenic differentiation, C2C12-mock and C2C12-ΔNp73α myoblasts 

were shifted into differentiation media (DM) and allowed to differentiate for 5 days. 

On day 3 of differentiation, C2C12 control cells formed multinuclear myotubes. In 

contrast, the differentiation of C2C12-ΔNp73 myoblasts into multinuclear fibers was 

absent (Fig. 21). Interestingly, we observed that ΔNp73 expressing C2C12 

myoblasts continued to proliferate under differentiation conditions. 
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Figure 21. Ectopic expression of ΔNp73α blocks myogenic differentiation. 
C2C12-mock and -ΔNp73 myoblasts were allowed to differentiate for five days and 
monitored by phase-contrast microscopy. On day 3 and 5, control C2C12 cells 
formed long and large multinucleated cells or fibers. In contrast, C2C12-ΔNp73 
myoblasts continued to grow and were unable to form myotubes.  
 
 

The absence of myotubes in the ΔNp73α population was further confirmed by 

immunofluorescence staining and immunoblotting for myosin heavy chain (myHC) 

as a marker of mature muscle fibers (Fig. 22A and B).  

 
 
A.                                                                                  B. 
 
 
 
 
 
 
 

Figure 22. Ectopic expression of ΔNp73α blocks myogenic differentiation. 

A. C2C12-mock and -ΔNp73 myoblasts were cultured in differentiation media. At the 
indicated time points of differentiation, cells were harvested for western blotting with 
antibodies against p73 (ER15) and myHC (MF20). Cell lysates were normalized for 
expression of β-actin (ab6276). B. Immunofluoresence staining for myHC. Cells 
were placed into differentiation media (DM). At days 0 and 5, the cells were fixed 
and stained for myHC (green). To visualize nuclei, the cells were counterstained with 
DAPI (blue). 
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Furthermore, we investigated the effect of ΔNp73 on myogenesis in both human 

skeletal muscle myoblasts (HSMM) and primary murine muscle satellite cells. HSMM 

cells were transduced with viral vectors expressing ΔNp73α or an empty vector 

control (mock). Transduced HSMM cells were differentiated for 3 days with 2% 

horse serum and observed by phase-contrast microscopy. Under differentiation 

condition, HSMM-mock cells formed multinuclear myotubes expressing muscle 

differentiation markers such as muscle creatin kinase (MCK). In contrast, HSMM-

ΔNp73 myoblasts failed to form differentiated myotubes and to induce muscle 

differentiation markers (Fig 23A and B).  
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 B. 
 
 
 
 
 

Figure 23. Ectopic expression of ΔNp73α blocks myogenic differentiation of 
human skeletal muscle myoblasts (HSMM).  
A. Transduced HSMM cells were differentiated for 3 days with 2% horse serum and 
observed by phase-contrast microscopy. B. Empty vector (mock) or the ΔNp73α 
expressing HSMM cells were cultured in differentiation media. At the indicated time 
points, cells were harvested for semi-quantitative RT-PCR for muscle creatin kinase 
(MCK), a late muscle differentiation marker. Amplification of GAPDH demonstrates 
use of equal amounts of total RNA. H20, no template control. 
 
 

To analyze the impact of ΔNp73 on myogenic differentiation in primary murine 

muscle satellite cells, myoblasts were isolated from ΔNp73αflox transgenic mice as 
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described in materials and methods. In these mice expression of ΔNp73α is 

prevented by a transcriptional stop cassette that is flanked by loxP sites. To induce 

ΔNp73α expression in the isolated myoblasts, recombination was induced by 

infection with 100 moi (multiplicity of infection) of Adeno-Cre. Recombination 

efficiency was analyzed by RT-PCR using primers specific for ΔNp73α (Fig. 24A). 

With Adeno-Cre or Adeno-GFP (control) infected cells were incubated either in 

growth medium (GM) or induced to differentiate for 30 hours in differentiation 

medium (DM). Subsequently, cells were analyzed for the expression of the muscle 

differentiation marker myosin (myHC) by semi-quantitative RT-PCR analysis and 

observed by phase-contrast microscopy (Fig. 24A and B). Similar to the results 

obtained in the C2C12 myoblast cell line, ΔNp73α induced a complete differentiation 

block in primary murine muscle satellite cells. 

 

 

 
A.                                                             B. 
 
 
 
 
 
 
 
 
 
 

Figure 24. Inducible expression of the ΔNp73α transgene interferes with 
myogenic differentiation in isolated primary murine muscle satellite cells.  
A. Cells were analyzed for the expression of ΔNp73α, α1-actin and the muscle 
differentiation marker gene myosin (myHC) by semi-quantitative RT-PCR. 
Amplification of GAPDH demonstrates use of equal amounts of total RNA. H20, no 
template control B. Adeno-Cre or Adeno-GFP infected cells were allowed to 
differentiate for 30 hours and observed by light microscopy. Whereas control cells 
(+AdGFP) undergo terminal differentiation into multinuclear myotubes, induction of 
ΔNp73α by Adeno-Cre inhibits execution of the myogenic differentiation program.  
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To test whether ΔNp73α can also override myogenic differentiation signals induced 

by a 3D tissue environment, the differentiation of C2C12 cells after incorporation into 

3D fibrillar collagen was investigated in the presence of serum. Whereas mock 

myoblasts upregulated myHC and differentiated into multicellular muscle fiber-like 

structures, ΔNp73α prevented myHC upregulation and maintained a dispersed 

single-cell state (Figure. 25). Thus, ΔNp73α not only inhibits differentiation induced 

by serum withdrawal but also overrides synergistic growth factor and ECM-induced 

differentiation signals.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. ΔNp73α overrides growth factor and ECM-induced differntiation 
signals in a 3D collagen lattice. 
Mock and ΔNp73α expressing myoblasts were embedded in a 3D collagen lattice for 
5 days and analyzed for expression of actin (green) and myHC (red) by confocal 
fluorescence microscopy. 
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3.5. ΔNp73 expressing myoblasts fail to induce cell cycle arrest in 

differentiation medium 
Differentiation conditions cause a cell cycle arrest in G0/G1 and subsequently the 

timely ordered activation of muscle specific gene expression. Interestingly, under 

differentiation conditions, ΔNp73 expressing C2C12 myoblasts continued to 

proliferate (Fig. 21). Thus, we examined the effect of ΔNp73 on cell cycle 

progression in more detail during myogenesis. In growth factor rich medium mock 

and ΔNp73α myoblasts showed no significant difference in their proliferation rate 

(Fig. 26A). Under conditions of mitogen deprivation mock myoblasts completely 

withdrew from the cell cycle within one day. In contrast, ΔNp73α myoblasts slowed 

down markedly but continued to proliferate resulting in a progressive increase in cell 

number (Fig. 26A). Similarly, expression of the proliferating cell nuclear antigen 

(PCNA) was completely repressed in mock but not in ΔNp73α cells (Fig. 26B). 
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Figure 26. C2C12-ΔNp73 myoblasts fail to arrest in differentiation medium. 
A. C2C12-mock and C2C12-ΔNp73 cells were allowed to differentiate for four days. 
The cells were counted at the indicated time points. Results are the mean +/- 
standard deviation of three independent experiments.  
B. C2C12-ΔNp73 and C2C12-mock cells were incubated either in growth medium 
(GM) or induced to differentiate for 48 hours in differentiation medium (DM) and 
harvested for western blot analysis with antibodies against PCNA (sc-56). The cell 
lysates were normalized for expression of β-actin (ab6276). 
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Cell cycle profiles demonstrate that only very few mock cells (6%) remain in S-phase 

2 days after differentiation induction compared to more than 22% of the ΔNp73α 

cells (Fig. 27). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 27. C2C12-ΔNp73 myoblasts fail to arrest in differentiation medium.  
Cell cycle analysis was performed on C2C12-mock and C2C12-ΔNp73α myoblasts 
(see methods). Cells were incubated either in growth medium (GM) or induced to 
differentiate for 48 hours in differentiation medium, stained with propidium iodide for 
DNA content and examined with a flow cytometer. 
 
 
 
Importantly, cell cycle withdrawal during myogenic differentiation is known to be 

permanent and restimulation with growth factors does not cause cell cycle reentry 

(Fig. 28A). All nuclei within multinuclear, myHC expressing myotubes remained 

permanently arrested and failed to incorporate BrdU whereas ΔNp73α cells rapidly 

increased their proliferation rate and showed a BrdU incorporation index of more 

than 90% (Fig. 28A and B). These data indicate, that ΔNp73α myoblasts are 

sensitive to growth factor depletion and slow down their proliferation rate but fail to 

permanently withdraw from cell cycle progression. 
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A.                                                                       B. 
 

 
 

 

 

 

 

 

 

 

Figure 28. C2C12-ΔNp73α myoblasts fail to permanently withdraw from cell 
cycle progression. 
A. Proliferation curve of mock (solid line) and ΔNp73α (dashed line) myoblasts 
during differentiation (DM) and subsequent restimulation with 10% FCS (DM). B. 
Immunofluorescence staining for myHC (red), BrdU (green) and DAPI (blue) of 
differentiated myocytes 24 hours after restimulation with FCS in the presence of 
BrdU. 
 
 
 
3.6. Ectopic expression of ΔNp73 blocks progression but not 

initiation of the myogenic differentiation program 

 
The myogenic differentiation program is initiated by a limited set of transcription 

factors that progressively unfold a complex program of gene expression (Jahnson et 

al., 1995; Melendez et al., 2003). ΔNp73α is a protein with sequence-specific DNA-

binding properties suggesting that it interferes with the expression of critical genes 

during differentiation (Grob et al., 2001; Kartasheva et al., 2002; Stiewe et al., 

2002a). With the advent of microarray technology, it has become possible to 

investigate changes in gene expression profiles in a biological process on an 

unprecedented scale.  

 

To identify the critical genes affected by ΔNp73 expression, the gene expression 

profiles of C2C12-mock with C2C12-ΔNp73α myoblasts were compared by 

microarray analysis. C2C12-mock and -ΔNp73α myoblasts were induced to 
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24h after induction of differentiation), total RNA was extracted from the cells. These 

RNA samples were labeled and hybridized to high-density oligonucleotide arrays 

(Affymetrix GeneChip® Mouse Genome 430 2.0 Array). Raw expression data 

obtained with Affymetrix’s software were further analyzed with the GeneSpring 

software (Silicon Genetics). A total of 646 genes were induced or repressed by more 

than 3-fold during the differentiation of mock myoblasts. The expression levels of 

these 646 genes correlate between the two cell types both in proliferation medium 

and 6 hours after induction of differentiation. Only 23/646 genes (3.6%) were 

expressed differentially in the two cell types at the 0 hour (Fig. 29A) and 19/646 

(2.9%) at the 6-hour time point (Fig. 29B). In contrast, 24 hours after induction of 

differentiation 261/646 genes (40.4%) are expressed differently (> 3-fold) between 

the two cell types (Fig. 30). Of 73 genes that show expression changes during the 

first 6 hours of differentiation in mock cells, 53 genes (72.6%) were also altered in 

the ΔNp73α myoblasts. Of 188 genes that are changed more than 3-fold between 6 

hours and 24 hours of differentiation in the mock cells, only 5 (2.6%) were changed 

in ΔNp73α cells (Fig. 30).  

 

A.                                                                   B.                     
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Expression profiles of genes that change their expression levels 3 
folds.  
A. In comparison to C2C12-ΔNp73α myoblasts, 23 genes in C2C12-mock showed 3 
fold change or higher in their relative expression levels at time 0h in differentiation. 
B. At time from 0h to 6h in differentiation, 19 genes in both cell lines are similarly 3 
fold up or down regulated. 
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Figure 30. Expression profiles of genes that change their expression levels 3 
folds from 6h to 24h in myogenic differentiation.  
261 genes in C2C12-mock myoblasts showed 3 fold change whereas only 5 genes 
change their expression pattern in C2C12-ΔNp73α myoblasts 
 

 

Functional annotation of the list of 646 genes revealed the presence of several 

muscle-related genes, known p53 target genes and genes related to cell proliferation 

(Fig. 31). In mock cells the muscle-related genes were induced or repressed most 

prominently at 24 hours of differentiation (Fig. 31A). Consistent with the observed 

differentiation defect, only few changes were observed in ΔNp73α myoblasts (Fig. 

31A). Furthermore, as expected from the function of ΔNp73 as a dominant-negative 

inhibitor of p53 family members, most of the p53 target genes that showed 

expression changes in the mock cells were unchanged in the ΔNp73α cells (Fig. 

31B). Finally, consistent with the defects in permanent cell cycle withdrawal, a 

number of cell proliferation related genes failed to be silenced in the ΔNp73α 

myoblasts (Fig. 31C). 
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A.                                              B.                                        C. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Expression profiles of muscle specific (A), cell cycle regulating (B) and 
p53 related target genes (C) that change their expression levels 3 fold during 
myogenic differentiation. 
 
 
 
Although a number of genes known to be involved in myogenesis were identified, we 

took a further step to verify our microarray results. Thus, the expression of 

representative genes from muscle specific, cell cycle regulating and p53 related 

target genes were analyzed with semiquantitative RT-PCR. As shown in Figure 32, 

these genes show an expression pattern very similar to those detected by the 

microarray analysis.  
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Figure 32. Semiquantitative RT-PCR analysis for the expression of muscle specific 
genes (Acta1, myogenin and Tnnc2), p53 target genes (Cdkn1a, Ccng2 and 
Gadd45a) and cell cycle related genes (Ccna2, Rfc3 and Cdc6). 
 

 

 

Together, these data show on the basis of genome-wide expression profiles that 

ΔNp73α does not interfere with the early, initiating steps but rather has profound 

impact on the progression to later stages of differentiation that require terminal cell 

cycle exit. 

 

 

 

 

 

0h 6h 24h 0h 6h 24h

Cdc6

Gadd45a

Acta1

Myog

Ccng2

Cdkn1a

Tnnc2

Ccna2

Rfc3

0h 6h 24h 0h 6h 24h

C2C12
mock

C2C12
ΔNp73α

C2C12
mock

C2C12
ΔNp73α

0h 6h 24h 0h 6h 24h

Cdc6

Gadd45a

Acta1

Myog

Ccng2

Cdkn1a

Tnnc2

Ccna2

Rfc3

0h 6h 24h 0h 6h 24h

C2C12
mock

C2C12
ΔNp73α

C2C12
mock

C2C12
ΔNp73α

C2C12
mock

C2C12
ΔNp73α

C2C12
mock

C2C12
ΔNp73α

1.
0

2.
0

3.
0

4.
0

5.
0

0.
5

0.
2

0.
1

Relative expression level

Repressed Induced

1.
0

2.
0

3.
0

4.
0

5.
0

0.
5

0.
2

0.
1

Relative expression level

Repressed Induced



                                                                                                                          Results 

 72 
 

3.7. ΔNp73 inhibits late stages of myogenic differentiation  
 

To locate the differentiation block more precisely, C2C12-mock and C2C12-ΔNp73α 

myoblasts were allowed to differentiate for 0, 1, 2, 3, 5, and 7 days and harvested for 

semi-quantitative RT-PCR analysis of muscle specific differentiation markers. During 

in vitro differentiation, similar to mock cells, the expression of muscle specific 

transcription factors MyoD and Myf5 remained unchanged in the C2C12-ΔNp73α 

myoblasts (Fig. 33). Whereas in C2C12-mock myoblasts the expression of 

myogenin, the major driving force for myogenic differentiation, was highly induced on 

day 1, its expression was present but delayed in C2C12-ΔNp73α myoblasts (Fig. 

33). Interestingly, downstream targets of myogenin, MEF2C, myosin (myHC) and 

muscle creatine kinases (CKM), were absolutely absent in C2C12-ΔNp73α 

myoblasts (Fig. 33). The block to differentiation therefore occurs primarily after the 

myogenin expression step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33. ΔNp73 inhibits late stages of myogenic differentiation. 
C2C12-mock and -ΔNp73α myoblasts were differentiated by culturing them in 
medium containing 2 % horse serum (DM). At the indicated days in DM, cells were 
harvested. The expression of muscle specific genes was analyzed by 
semiquantitative RT-PCR. Amplification of GAPDH demonstrates use of equal 
amounts of total RNA. H20, no template control. 
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It has been previously demonstrated that the retinoblastoma protein (RB) promotes 

myoblast cell cycle arrest and is required for high-level expression of late markers of 

skeletal muscle differentiation. However, expression of intermediate muscle 

differentiation markers, such as myogenin, is not effected by RB-loss (Shimizu-

Yoshida et al., 2001). Thus, we analyzed RB activity in C2C12-ΔNp73α myoblasts 

during myogenesis. Initially, we compared the differentiation potential of ΔNp73α -

expressing with RB-/- 3T3-fibroblasts in a myogenic conversion assay. In vitro, 3T3 

fibroblasts can be induced to differentiate by transfection with MyoD, a myogenic 

basic helix-loop-helix (bHLH) transcription factor. Firstly, we generated ΔNp73α 

expressing 3T3 cell lines by retroviral gene transfer. The expression of ΔNp73 was 

verified by western blot (Fig. 34A). Then, we compared the differentiation ability of 

3T3-wt, 3T3-ΔNp73α and 3T3-RB-/- fibroblasts following transduction with MyoD 

retrovirus containing supernatant. After hygromycin selection, cells were incubated 

for 3 days in differentiation medium and harvested for semiquantitative RT-PCR 

analysis. As shown in Figure 34B, MyoD induced myogenic differentiation only in 

wild-type 3T3 fibroblasts. In contrast, MyoD did not induce differentiation of 3T3-

ΔNp73α and 3T3-RB-/- fibroblasts, although both cell types expressed the 

intermediate muscle differentiation marker myogenin (Fig 34B).  
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Figure 34. RB-loss and ΔNp73α-expression block MyoD-induced differentiation 
at the myogenin step.  
A. Stable expression of ΔNp73α in 3T3 fibroblasts. After puromycin selection, cell 
extracts were subjected to immunoblot analysis for p73 (anti-p73, ER15). B. 3T3-wt, 
3T3-ΔNp73α and 3T3-RB-/- fibroblasts were transduced with MyoD(+) or empty (-) 
vector containing retroviral supernatant. After selection, cells were allowed to 
differentiate for 3 days and harvested for semiquantitative RT-PCR analysis.  
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Taken together, ΔNp73α and RB-loss both block myogenic differentiations at the 

transition from the myogenin- to the myosin-positive state. The similar phenotype of 

RB-loss and ΔNp73α expression suggests that RB function, which is required for the 

high level expression of late markers of differentiation, might be compromised by 

ΔNp73α. 

 

 

 

3.8. C2C12-ΔNp73α myoblasts show a defect in RB activation 

during myogenesis 
 

Because the similar phenotype of RB-loss and ΔNp73α-expression suggests that RB 

function might be compromised by ΔNp73α, we further analyzed RB expression in 

C2C12-ΔNp73α myoblasts during myogenesis. C2C12-mock and C2C12-ΔNp73α 

myoblasts were differentiated  and harvested either for semi-quantitative RT-PCR or 

for western blot analysis. The induction of RB gene transcription is a key event in the 

process of skeletal muscle differentiation. As expected, the expression of the 

retinoblastoma gene Rb1 was strongly induced in C2C12-mock cells at day 2 (Fig. 

35A). In contrast, the upregulation of RB expression was abolished in C2C12-

ΔNp73α myoblasts (Fig. 35A). Furthermore, in differentiating wild-type myoblasts we 

observed an increase in protein amount and in electrophoretic mobility indicating a 

shift from inactive, hyperphosphorylated to active, hypophosphorylated RB species 

(Fig. 35B). This activation of RB was absent in ΔNp73α myoblasts. Whereas the 

reduced levels of RB protein can be explained by transactivation defects of the Rb1 

gene (Fig. 35B), the failure to dephosphorylate RB has other reasons. 
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Figure 35. C2C12-ΔNp73α myoblasts fail to activate RB during myogenesis.  
C2C12-mock and -ΔNp73α myoblasts were differentiated and harvested at the 
indicated time points. The expression of the retinoblastoma gene (Rb1) was 
analyzed by semiquantitative RT-PCR. Amplification of GAPDH demonstrates the 
use of equal amounts of total RNA. H20, no template control. B. At days 0, 1, and 2 
of differentiation, cells were harvested. Cell extracts were subjected to immunoblot 
analysis for p73 (anti-p73, ER15) and RB (anti-RB, G3-245). ppRB: 
hyperphosphorylated RB ; pRB: underphosphorylated RB. The cell lysates were 
normalized for β-actin expression (anti-actin, ab6276). 
 
 
 

In summary, C2C12-ΔNp73α myoblasts fail to activate RB during myogenesis. 

Physiologically various cyclin-dependent kinases (CDKs), which are regulated by 

cyclin-dependent kinase inhibitors (CKI), control RB activity (Stevaux and Dyson, 

2002). CKIs induce cell cycle arrest in response to anti-proliferative signals, 

including myogenic (Skapek et al., 1995), myeloid (Yaroslavskiy et al., 1999) and 

neural differentiation (Sasaki et al., 2000). Furthermore, it has been shown that mice 

deficient for the CKIs p21Cip1 and p57Kip2 display severe defects in skeletal muscle 

development (Zhang et al., 1999b). Thus, we analyzed these two CKIs in C2C12-

mock and ΔNp73α myoblasts during differentiation. Whereas mock myoblasts 

induce expression of both p21 and p57, expression of these CKIs is almost absent in 

ΔNp73α myoblasts both on the mRNA and protein level (Fig. 36A, B). These findings 

provide a simple explanation for the inability to activate RB and the failure of 

ΔNp73α myoblasts to exit the cell cycle and induce muscle-specific gene 

expression. 
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A.                                                                                    B. 
 

 

 

 

 

 

 

 

Figure 36. C2C12-ΔNp73α myoblasts show defects in the expression of the 
CDK inhibitors p21CIP1 and p57KIP2.  
A. C2C12-mock and C2C12-ΔNp73α cells were harvested for RNA isolation at the 
indicated time points. The expression of p21CIP1 and p57KIP2 genes was analyzed by 
semiquantitative RT-PCR. Amplification of GAPDH demonstrates the use of equal 
amounts of total RNA. H20, no template control B. Myoblasts were analyzed by 
western blot with antibodies against p73 (anti-p73, ER15), p21CIP1 (anti-p21, C-19) 
p57KIP2  (anti-p57, ab3223) and PCNA (anti-PCNA, sc56). The cell lysates were 
normalized for β-actin expression (anti-actin, ab6276). 
 
 
 

3.9. Active RB rescues the differentiation defect of C2C12-ΔNp73α 

myoblasts 
 
To investigate if the observed defect in RB inactivation is causally related to the 

block in differentiation, we tried to rescue the differentiation defect with ectopic 

expression of RB. For this, ΔNp73α myoblasts were infected with recombinant 

adenoviruses expressing wild-type RB (AdGFP-RBwt), a constitutively active, 

phosphorylation-site mutant of RB (AdGFP-Rbmut) or an empty virus control 

(AdGFP). After infection, cells were allowed to differentiate for 3 days. Subsequently, 

cells were photographed under a fluorescence microscope and harvested for 

western blot analysis. As shown in Figure 37A, C2C12-ΔNp73α cells infected with 

AdGFP or AdGFP-RBwt did not show any signs of differentiation. In contrast, 

C2C12-ΔNp73α cells infected with AdGFP-RBmut(PS) formed differentiated 

myotubes (Fig. 37A). Consistent with this observation, only C2C12-ΔNp73α 

myoblasts expressing constitutively active RB expressed the differentiation marker 
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myosin. Importantly, wild-type RB was inactivated by hyperphosphorylation and 

therefore unable to induce differentiation (Fig. 37B).  

 

 

 

            A.                                                    B. 
 
 
 
 
 
 
 
 
 
 
 
Figure 37. The introduction of constitutively active RB rescues the 
differentiation defect of C2C12-ΔNp73α myoblasts.  
A. C2C12-ΔNp73α myoblasts were infected with the adenoviral vectors Ad-GFP, 
AdGFP-RBwt and AdGFP-RBmut(PS). After infection, cells were allowed to 
differentiate for 3 days and observed under the fluorescence microscope. B. At day 
3 after differentiation, cells were harvested for western blotting with antibodies 
against p73 (ER15), RB (G3-245), ppRB (anti phospho-RB, s807/811), myHC 
(MF20). The cell lysates were normalized for β-actin expression (anti-actin, ab6276). 
 

 

 

However, in combination with p57 (AdGFP-p57), hyperphosphorylation of wild-type 

RB was prevented resulting in expression of MHC (Fig. 38). Thus, active RB, either 

in form of a constitutively active mutant or as a combination of wild-type RB with 

p57, rescues the ΔNp73α-induced differentiation block proving that defects in 

activating RB are indeed the underlying cause. 
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Figure 38. Combination of p57 with wtRB rescues differentiation defect of 
C2C12-ΔNp73α myoblasts.  
C2C12-ΔNp73α myoblasts were infected with the adenoviral vectors AdGFP, 
AdGFP-p57, AdGFP-RBwt, and AdGFP-Rbmut(PS) alone or in the indicated 
combinations. After adenovirus infection, cell were allowed to differentiate for 3 days. 
At day 3 of differentiation, cells were harvested for western blotting with antibodies 
against myHC (MF20) , p57 (ab3223), and RB (G3-245). The cell lysates were 
normalized for β-actin expression (anti-actin, ab6276). 
 

 

 

To test, whether rhabdomyosarcoma cells and C2C12-ΔNp73α myoblasts have a 

similar defect in myogenesis. Rh30 cells were infected with AdGFP, AdGFP-RBwt, 

AdGFP-Rbmut(PS), AdGFP-p57 or a combination of AdGFP-RBwt and AdGFP-p57. 

After infection, cells were allowed to differentiate for 3 days. Subsequently, Rh30 

cells were observed under fluorescence microscope and harvested for western blot 

analysis. As shown in Figure 39A, Rh30 cells infected with Ad-GFP, AdGFP-RBwt, 

AdGFP-p57 did not show any signs of differentiation. In contrast, Rh30 cells 

expressing the constitutively active form of RB or a combination of AdGFP-RBwt and 

AdGFP-p57 exhibit morphological and biochemical signs of differentiation (Fig. 39A 

and B). Similar to ΔNp73α myoblasts, these results provide a simple explanation for 

the inability of Rh30 cells to differentiate due to inactivation of RB.  
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A.                                                                                B. 
 

 

 

 

 

 

 

 

 

 

Figure 39. Combination of p57 with wtRB rescues differentiation defect of 
Rh30 rhabdomyosarcoma cells.  
A. The Rhabdomyosarcoma cell line Rh30 was infected with AdGFP as a control, 
AdGFP-RBwt, AdGFP-Rbmut(PS), AdGFP-p57 or a combination of AdGFP-p57 and 
AdGFP-RBwt. After adenovirus infection, cell were allowed to differentiate for 3 days 
and observed under the fluorescence microscope. B. At day 3 of differentiation, cells 
were harvested for western blotting with antibodies against, myHC (MF20) , p57 
(ab3223), RB (G3-245). The cell lysates were normalized for β-actin expression 
(anti-actin, ab6276). 
 

 

 

3.10. p53 family members are activated during muscle 
differentiation in vitro and muscle regeneration in vivo 
 

Since ΔNp73α functions as a dominant-negative inhibitor of the transactivation-

competent p53 family members, ΔNp73α might inhibit the activation of RB by 

interfering with essential functions of the p53 family in this process. In murine C2C12 

myoblasts myogenic differentiation induced by growth factor withdrawal is 

associated with increasing expression of all three p53 family members (Fig. 40). 

Whereas p53 transcription progressively increases during the first 36 hours, 

expression of p63 and p73 peaks between 6 and 12 hours of differentiation (Fig. 40).  
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Figure 40. p53 family members are activated during muscle differentiation. 
C2C12 cells were induced to differentiate into myotubes by incubation in medium 
containing 2% horse serum. RNA was isolated from the cells at the indicated time 
points (hours) and expression of p53, p63 and p73 was measured by 
semiquantitative RT-PCR. Expression of the housekeeping gene GAPDH is shown 
as a control. 
 

 

 

Furthermore, we analyzed the expression of all three p53 family members in primary 

murine muscle satellite cells. As shown in Figure 41A, similar to C2C12 myoblasts, 

p53 transcription progressively increases during the first 48 hours. In addition, both 

p63 and p73 expression peaks early during the differentiation process. By using 

isoform-specific primer pairs, we detected that expression of TAp73 peaked between 

6 and 12 hours of differentiation, whereas the ΔNp73 isoform was expressed at low 

but constant levels (Fig. 41C). Interestingly, ΔNp63 expression was increased at 24h 

during differentiation of primary myoblasts, whereas expression of TAp63 remained 

unchanged over the time course of differentiation (Fig. 41B). Isoform-specific 

upregulation of individual p53 family members during the myogenic differentiation 

process suggests possible functions in differentiation control. 
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Figure 41. p53 family members are activated during muscle differentiation. 
Primary murine muscle satellite cells were either incubated in growth medium (GM) 
or induced to differentiate for 6, 12, 24, 48 and 72 hours in differentiation medium 
(DM). At the indicated time points, cells were analyzed for the expression of total 
p53, p63, p73 and the TAp63, TAp73, ΔNp63 and ΔNp73 isoforms by semi-
quantitative RT-PCR analysis. Amplification of GAPDH demonstrates the use of 
equal amounts of total RNA. H20, no template control. 
 

 

 

Furthermore, we analysed the expression of p53 and p63/p73 during muscle 

regeneration in an in vivo muscle injury model. Upon injury, muscle satellite cells 

reenter the cell cycle, proliferate, and then exit the cell cycle either to renew the 

quiescent satellite cell pool or to differentiate into mature myofibers. To induce 

muscle regeneration, we injected cardiotoxin into tibialis anterior (TA) muscles of 6 

week-old C57BL/6 mice. As shown in Figure 42, histological analysis demonstrated 

global myofiber fragmentation and edema at days 1 and 2 after injury. The number 

of mononucleated cells/cross-section area increased significantly after cardiotoxin 

injection with a peak around day 3. This increase in cell number is attributable to 

both inflammatory cell infiltration and proliferation of satellite cells. Myotubes started 

to appear at day 5 and became more evident at days 7 and 10 postinjection. The 

morphology at day 14 was characterized by the presence of central nuclei, a known 
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hallmark of recent muscle regeneration in nearly all myofibers. The regeneration 

process shifted morphologically from a phase of proliferation to differentiation at 

around day 3 after injury. 
 

 

 
 

Figure 42. Histological analysis of muscle regeneration in vivo. 
Tibialis anterior muscles of 6 week old C57/BL6 mice were injected with 100 μl of 10 
μM cardiotoxin, which induces necrolysis of myofibers without damaging satellite 
cells. At the indicated days, the muscles were harvested, fixed in 4% 
paraformaldehyde, and embedded in paraffin. Histological sections were prepared 
for hematoxylin/eosin staining by standard methods. 
 

 

To investigate the gene expression of p53 family members during muscle 

regeneration, RNAs were isolated from cardiotoxin injected muscles. As shown in 

Figure 43, muscle regeneration induced by cardiotoxin is associated with changes in 

the expression of all three p53 family members. After an inital increase in p53 

transcription (most likely due to toxic effect of cardiotoxin), p53 expression peaked at 

the days 3 to 10 when new myotubes began to develop. In contrast to p53, p73 

expression strongly increased before RB, p21, and p57, which are all essential for 

cell proliferation or myogenesis, were upregulated (on day 3). In contrast, p63 

expression was induced between days 3 and 5. Taken together the results show that 

p53 family members were activated during both muscle differentiation in vitro and 

muscle regeneration in vivo. 
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Figure 43. p53 family members are activated during muscle regeneration. 
Muscle regeneration was induced by intramuscular injection of cardiotoxin in 6 
week-old C57BL/6 mice. Total RNA was extracted at the indicated days and 
analyzed for the expression of p53, p63, p73, RB, p21, and p57 by semi-quantitative 
RT-PCR analysis. Amplification of GAPDH demonstrates the use of equal amounts 
of total RNA. H20, no template control. 
 
 
 
3.11. Interference with p53 family members compromises myogenic 
differentiation 
 

To evaluate, whether the p53 family members transcriptional activity is required for 

the induction of muscle differentiation, we used dominant-negative mini-proteins of 

p53 (p53DD) or p63/73 (p73DD), which allowed us to characterize the specific 

function of either p53 or p73 during myogenesis. These dominant-negative proteins 

are short C-terminal fragment of p53 or p63/73 that can complex with wild-type p53 

or p63/73 and inhibit their activities (Fig. 44A). Thus, C2C12 myoblasts were 

transduced with p53DD, p73DD or a combination of p53DD and p73DD retrovirus 

containing supernatant. The expression of dominant-negative proteins in C2C12 

myoblasts was verified by western blot (Fig. 44B). 
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Figure 44. Dominant-negative inhibitors of p53 and p63/p73.  
A. p53DD (inhibitor of p53) and p73DD (inhibitor of both p63 and p73) are short C-
terminal fragments of p53 or p63/73 that can complex with wild-type p53 or p63/73 
and inhibit their activities (Irwin et al., 2000). B. Expression of dominant-negative 
proteins in C2C12 myoblasts. After retroviral infection and subsequent selection, cell 
extracts were subjected to immunoblot analysis for p53 (anti-p53, DO1), p73 (anti-
p73, ER15) and β-actin (anti –actin, ab6276). 
 

 

 

To analyze, whether the inhibition of p53 family members by dominant negative 

proteins interferes with myogenic differentiation, the cell lines were allowed to 

differentiate for 5 days. The cultures were examined by immunofluoresence staining 

(Fig. 45A) and western blot (Fig. 45B) for the differentiation marker myHC (myosin 

heavy chain). As shown in Figure 45B, in comparison to mock cells, a reduction of 

~65% in the differentiation indices was observed in p53DD-expressing myoblasts, 

whereas p73DD-myoblasts showed a reduction of ~60%. Interestingly, expression of 

both dominant-negative proteins (p53DD + p73DD) mimicked the effect of ΔNp73α 

and blocked the differentiation process almost completely.  
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A.                                                                                    B. 

                                                                                          
                                                                                         C. 
 

 

                                                                                                 

 

 

 
Figure 45. Expression of dominant-negative inhibitors of the p53 family 
interferes with myogenic differentiation. 
A. Immunofluoresence staining for MHC of C2C12 cell lines expressing the indicated 
dominant-negative inhibitors of p53 family members. The cells were fixed on day 5 
of differentiation and stained for MHC (red). The cells were counterstained with DAPI 
to visualize nuclei. B. The differentiation index was calculated as described in 
Materials and Methods C. Immunoblot for myHC (anti-myHC, MF20). The amount of 
protein in each sample was normalized for β-actin (anti-actin ab6276) expression. 
 

 

 

These results indicate that the two inhibitors have additive functions supporting the 

hypothesis that p53 and p63/p73 have different but complementary functions in 

differentiation control. To delineate these different functions of p53 and p63/73 at the 

molecular level, dominant-negative inhibitor expressing myoblasts were analyzed for 

expression of several differentiation-regulated genes. Total RNA was extracted from 

control and dominant-negative protein expressing C2C12 myoblasts incubated in the 

presence of differentiation medium. As shown in Figure 46, similar to ΔNp73α 

expressing myoblasts, the two inhibitors (alone or in combination) have no 

significant effect on myogenin or MyoD expression, but interfere with expression of 

myHC or muscle creatin kinase (MCK) (Fig. 46).  
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Figure 46. Dominant-negative inhibitors of p53 family members inhibit late 
muscle specific gene expression. 
C2C12-mock, C2C12-p53DD, C2C12-p73DD and C2C12-p53DD+p73DD myoblasts 
were differentiated in medium containing 2 % horse serum. At the time indicated 
days, cells were harvested and expression of muscle specific genes was analyzed 
by semiquantitative RT-PCR. Amplification of GAPDH demonstrates the use of 
equal amounts of total RNA. H20, no template control 
 

 

 

Furthermore, we investigated the expression of RB and p57. As expected, RB and 

p57 mRNA levels increase (Fig. 47A) and RB becomes hypophosphorylated 

(activated) during muscle differentiation in mock cells (Fig. 47B). Whereas p73DD 

myoblasts only induced the expression of RB, p53DD myoblasts induced the 

expression of p57 (Fig. 47A). Importantly, expression of both RB and p57 in 

p53DD+p73DD myoblasts is almost absent both on the mRNA and protein level (Fig 

47A and B). Taken together, RB induction is primarily compromised by p53DD, 

whereas p57 induction is impaired by p73DD. This confirms that the p53 family 

members coordinate progression to later stages of differentiation by regulating RB.  
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A. 

 

 

 

 
 
 

 
B. 
 
 
 
 
 
Figure 47. p53 family members coordinate progression to later stages of 
differentiation by regulating RB activity 
C2C12-mock, C2C12-p53DD, C2C12-p73DD and C2C12-p53DD+p73DD myoblasts 
were differentiated in medium containing 2 % horse serum. At the indicated days, 
cells were harvested and expression of RB and p57 was analyzed by 
semiquantitative RT-PCR. Amplification of GAPDH demonstrates the use of equal 
amounts of total RNA. H20, no template control B. Proteins were extracted from the 
indicated cells and RB (anti-RB, G3-245) protein was analyzed in a western blot.  
 
 
 
To rule out effects of p53DD and p73DD unrelated to their dominant-negative 

function, we also used RNA interference as an independent method. C2C12 

myoblasts were transfected with shRNA constructs directed against p53, p63, and 

p73. A non-silencing shRNA was used as a control. Efficient knock-down was 

confirmed by RT-PCR (Figure 48).  
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Figure 48. RNAi ablation of endogenous p53 family members in C2C12 cells 
C2C12 myoblasts were transfected with shRNA constructs directed against p53, 
p63, and p73. A non-silencing shRNA was used as a control. After puromycin 
selection, successful downregulation of the targeted genes was verified by RT-PCR. 
Amplification of GAPDH demonstrates the use of equal amounts of total RNA.  
 

 

 

To analyze, whether specific knock-down of single p53 family members impaired 

differentiation similar to expression of dominant-negative inhibitors, cells were 

induced to differentiate and harvested for semi-quantitative RT-PCR. As shown in 

Figure 49, specific knock-down of any single p53 family member impaired the 

expression of the muscle differentiation marker myHC. Consistent to our dominant-

negative experiments, inhibition of p53 primarily compromised induction of RB, 

whereas shRNAs directed against either p63 or p73 interfered with p57 induction 

(Fig. 49).  
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Figure 49. Specific knock-down of single p53 family members impaired 
differentiation  
Myoblasts expressing the indicated shRNAs were differentiated in medium 
containing 2 % horse serum. At the indicated time points, cells were harvested and 
analyzed for expression of myosin (myHC), p57 and RB by semiquantitative RT-
PCR. Amplification of GAPDH demonstrates the use of equal amounts of total RNA. 
 

 

 

To investigate further p53- and p73-specific roles in myogenesis, primary myoblasts 

were explanted from both p53-/-and p73-/- knockout mice and compared to wild-type 

myoblasts. The isolated myoblasts were incubated either in growth medium or 

induced to differentiate for 6, 24, 48 or 72 hours. Subsequently, the cells were 

analyzed for the expression of the late muscle differentiation marker gene myosin 

(myHC), p57 and RB by semi-quantitative RT-PCR. As shown in Figure 50, 

consistent with dominant-negative or RNAi-mediated inhibition of p53 in C2C12 

cells, p53-/- primary myoblasts showed reduced expression of myosin (myHC) in 

comparison to wild-type (p53+/+) myoblasts. Furthermore, our semi-quantitative RT-

PCR analysis showed that p53-/- primary myoblasts did not upregulate RB, whereas 

p57 upregulation was similar to wild-type myoblasts. These results demonstrate that 

p53 is essential for activating RB transcription. 
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Figure 50. p53-/- myoblasts have reduced differentiation capacity  
Primary p53-/- and wild-type (p53+/+) myoblasts were incubated either in growth 
medium (GM) or induced to differentiate for 6, 24 and 48 hours in differentiation 
medium (DM). At the indicated hours, cells were harvested to analyze expression of 
the late muscle differentiation marker gene myosin (myHC), p57 and RB by semi-
quantitative RT-PCR.  
 

 
Interestingly, we observed no differentiation defect in p73-/- myoblasts. As shown in 

Figure 51, primary p73-/- myoblasts expressed muscle structural genes, like myosin 

(myHC), and the cell cycle related genes p57 and RB at similar levels as wild-type 

myoblasts. Since p63 and p73 have similar activities in regulating p57 expression in 

C2C12 cells, it can be suspected that p63 compensates for p73-loss. 

 
 
 
 
 
 
 
 
 
 
Figure 51. Absence of differentiation defect in p73-/- myoblasts  
Primary p73-/- and wild-type (p73+/+) myoblasts were incubated either in growth 
medium (GM) or induced to differentiate for 6, 24, 48 and 72 hours in differentiation 
medium (DM). Expression of the late muscle differentiation marker gene myosin 
(myHC), p57 and RB was analyzed by semi-quantitative RT-PCR.  
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3.12. Regulation of Rb and p57 expression by p53 family members  
 

We further investigated regulation of RB and p57KIP2 expression by the p53 family. 

C2C12 myoblasts were electroporated the expression plasmids encoding p53, 

TAp73α, TAp73β, ΔNp73α, ΔNp63α and TAp63γ. As shown in Figure 52, the major 

transactivating p53 family members (p53, TAp73β, TAp63γ) induced transcription of 

the Rb1 gene, which has a typical p53 binding site in the promoter region. The 

difference between TAp73α and TAp73β can most likely be attributed to 

transactivation inhibitory functions located in the C-terminus of the α-isoform (Liu 

and Chen, 2005). In contrast, consistent with recent reports, p57KIP2 is transactivated 

only by TAp73β and ΔNp63α but not by p53 (Beretta et al., 2005). The analysis of 

the sequences upstream of the p57KIP2 transcriptional start or in the introns of 

p57KIP2 failed to reveal any p53-binding sites arranged in tandem, as usually is seen 

in p53-responsive promoters. Considering the lack of p53-responsiveness, the 

absence of typical p53 binding sites is not surprising and suggests that other 

mechanisms of promoter targeting are employed by TAp73β and ΔNp63α. Our 

experiment further revealed, that although both TAp73α and ΔNp73α fail to 

transactivate RB and p57KIP2, only ΔNp73α has dominant-negative activity when co-

expressed with p53 or TAp73β (Fig. 52B).  
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Figure 52. Regulation of RB and p57 expression by p53 family members. 
C2C12 myoblasts were electroporated with the indicated expression plasmids. 
Subsequently, cells were harvested for semi-quantitative RT-PCR.  
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To analyze if the p53 family members contribute to RB and p57 regulation during 

myogenic differentiation, we investigated recruitment of p53, p63 and TAp73 to the 

respective promoter regions by chromatin immunoprecipitation. As shown in Figure 

53, upon differentiation p53 associated with the RB promoter and p63 and TAp73 

were recruited to the p57KIP2 promoter, whereas none of the investigated proteins 

was bound to these promoters in proliferating myoblasts.  

 

 

 

 

 

 

 

 

Figure 53. Recruitment of p53 family members to the RB and p57 promoter 
regions in vivo.  
C2C12 cells were maintained in the presence of GM or DM for 2 days. Proteins were 
cross-linked to DNA by direct incubation of living cell with formaldehyde. Genomic 
DNA was extracted, immunoprecipitated with anti-p53, p63,p73 or without antibody 
and the bound promoter sequences were amplified from the immunoprecipitate by 
PCR. 
 

 

Taken together these data correlate with the dominant-negative and RNAi results 

and support the hypothesis of a functional dichotomy in the p53 family with respect 

to differentiation control. p53 on the one side regulates RB expression and p63/p73 

on the other side are in control of p57. The two p53 family functions are 

complementary and cooperate to fully activate RB which is essential for efficient 

myogenic differentiation. 

 

 

3.13. ΔNp73 interferes with osteoblastic and neuronal 

differentiation 
 

To evaluate whether the inhibition of differentiation by ΔNp73α is limited to 

myogenesis or represents a more general phenomenon, we analyzed the effect of 
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ΔNp73α overexpression on osteoblastic and neuronal differentiation processes. It is 

known that bone morphogenetic protein-2 (BMP2) converts the myogenic 

differentiation pathway of C2C12 myoblasts into that of osteoblast lineage. To 

induce osteblasts differentiation, C2C12-mock and C2C12-ΔNp73α myoblasts were 

differentiated for 5 days in medium containing 5% FCS in the absence or presence 

of 300 ng/ml BMP2 and harvested for semi-quantitative RT-PCR analysis or stained 

for the osteobast marker gene alkaline phosphatase. As shown in Figure 54A, 

differentiation of mock myoblasts in the presence of BMP2 almost completely 

inhibited the formation of multinucleated, myosin heavy chain expressing myotubes, 

and induced the appearance of numerous alkaline phosphatase (ALP) expressing, 

blue-stained cells. By contrast, no ALP-positive cells were seen in C2C12-ΔNp73α 

myoblasts. Furthermore, semi-quantitative RT-PCR showed that BMP2 induced 

expression of osteoblastic differentiation markers such as alkaline phosphatase 

(ALP) or osteocalcin only in mock cells but not in C2C12-ΔNp73α myoblasts (Fig. 

54B).  
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Figure 54. ΔNp73α interfered not only with the myogenic differentiation 
program but also effectively inhibited BMP2 induced conversion into the 
osteoblast lineage. 
A. C2C12-mock and -ΔNp73α myoblasts were maintained in 5% FCS. To induce 
osteblastic differentiation, 300 ng/ml BMP2 was added. Subsequently, cultures were 
allowed to differentiate for 5 days. After five days, cells were stained for the 
osteoblast marker gene alkaline phosphatase and photographed at 10x 
magnification under the phase-contrast microscope. B. Cells were harvested and 
analyzed by semi-quantitative RT-PCR for the expression of muscle (myHC) or 
osteoblast (alkaline phosphatase, ALP ; osteocalcin) marker genes.  
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To evaluate the effect of overexpressed ΔNp73α on neuronal differentiation, we 

used human SH-SY5Y neuroblastoma cells. These cells have a basal neuroblast-

like morphology with rounded cell bodies and occasional short processes, but they 

differentiate into a neuronal-like phenotype on contact with retinonic acid (RA) or 

neurotrophic factors. SH-SY5Y neuroblastoma cells were transfected with pQCXIP 

(mock) or pQCXIP-ΔNp73α plasmids. After puromycin selection, the expression of 

ΔNp73α in C2C12 was verified by western blot (Fig. 55A). To induce neuronal 

differentiation, the cells were differentiated for seven days in the presence of 10µM 

retinoic acid (RA). In the presence of retinoic acid (RA), SH-SY5Y-mock cells 

showed neurite extension as a morphological marker of neuronal differentiation, 

whereas SH-SY5Y-ΔNp73α cells remained in a basal neuroblast-like morphology 

with rounded cell bodies (Fig. 55B). Consistent with this observation, RA treatment 

strongly induced expression of neurofilament as a biochemical marker of neuronal 

differentiation in SH-SY5Y-mock cells, whereas its expression was significantly 

reduced in ΔNp73α transfectants. (Fig. 55C). In summary, these data clearly show 

that the p53 family inhibitor ΔNp73α is a potent repressor of differentiation in multiple 

experimental settings including myogenic, osteoblastic and neuronal differentiation. 
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Figure 55. Ectopic expression of ΔNp73α blocks retinoic acid (RA) induced 
neuronal differentiation of SH-SY5Y neuroblastoma. A. Expression of ΔNp73α in 
SH-SY5Y cells. After puromycin selection, cell extracts were subjected to 
immunoblot analysis for p73 (anti-p73, ER15). B. SH-SY5H morphology after 7 days 
in differentiation medium containing 10 µM retinoic acid. Cells were photographed 
using an inverted phase-contrast microscope at 100x magnification. C. Cells were 
analyzed by semi-quantitative RT-PCR for the expression of neurofilament as a 
biochemical marker of neuronal differentiation.  
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4. Discussion  
 
4.1 Oncogenic function of p53 family members in human 
rhabdomyosarcoma (RMS) 
 

A role for p53 in suppression of RMS development has been previously suggested. 

Although lymphomas are the most prominent neoplasms in p53-null mice, p53 

heterozygotes over a year old develop mostly sarcomas, 19% of which are RMS 

(Choi and Donehower, 1999). Furthermore, conditional PAX3/FKHR knock-in mice 

develop RMS frequently on a p53-compromised background but only very rarely in 

p53-proficient mice (Keller et al., 2004). Apart from mouse studies, the Li-Fraumeni 

cancer syndrome, which is associated with germline p53 mutations, was initially 

identified from a RMS patient as the index case and includes these tumors along 

with other soft-tissue sarcomas (Li and Fraumeni, 1969). Interestingly, in many 

tumors p53 is inactivated by missense mutations that endow p53 with new functions 

("gain-of-function") like the dominant-negative inhibition of the closely related family 

members p63 and p73 (Di Como et al., 1999; Marin and Kaelin, 2000). Therefore 

p53 mutations frequently disable not only the tumorsuppressive function of p53 but 

rather the function of the complete family. 

 

A detailed analysis of p73 in tumor cells indicated that ΔNp73 is frequently 

upregulated in a variety of primary cancers. In some cases, overexpression of p73 

could even be correlated with an advanced tumor stage or poor prognostic 

parameters (Casciano et al., 2002; Concin et al., 2004; Frasca et al., 2003; Stiewe et 

al., 2004; Uramoto et al., 2004; Zaika et al., 2002). In this study we provide first 

evidence that ΔNp73 is also upregulated in human rhabdomyosarcoma. 

Interestingly, almost all RMS tumors showed overexpression of at least one of the 

oncogenic ΔNp73 isoforms (~75%). Furthermore, there was no tumor with high 

levels of the tumor-suppressive TAp73 isoform in the absence of concomittant 

ΔNp73 expression. Similarly, both TAp73 and ΔNp73 isoforms were simultaneously 

up-regulated in RMS cell lines. Concomitant upregulation of both p73 isoforms can 

be explained by the regulatory feedback loop connecting TAp73 and ΔNp73. p16-

RB-E2F pathway alterations result in elevated levels of the E2F-target gene TAp73 
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in many tumors (Irwin et al., 2000; Stiewe and Putzer, 2000; Zaika et al., 2001). 

Increased TAp73 expression in turn is associated with the generation of aberrantly 

spliced ΔNp73 encoding transcripts and in transactivation of the ΔNp73-promoter 

(Grob et al., 2001; Kartasheva et al., 2002; Stiewe et al., 2002b). Consistently, we 

observed overexpression of both TAp73 and ΔNp73 in RMS samples and showed 

that knockdown of TAp73 induces downregulation of ΔNp73 confirming that TAp73 

is indeed the major cause for high levels of the oncogenic ΔNp73 isoform.  

 

Steady-state expression levels of endogenous p73 are kept extremely low under 

physiological conditions (Balint et al., 1999; Bernassola et al., 2004). It has been 

demonstrated that the induced ΔNp73 forms transactivation-defective complexes 

with p73 (and also p63) resulting in the stabilization of p73 proteins on a high, but 

transcriptionally inactive level through inhibition of its degradation (Fig 56) (Moll and 

Slade, 2004).  

 

                           
Figure 56. ΔNp73 forms transactivation-defective complexes with p73.  

p16-RB-E2F pathway alterations result in elevated levels of the E2F-target gene 
TAp73 in many tumors and increased TAp73 expression in turn is associated with 
the generation of aberrantly spliced ΔNp73 and in transactication of the ΔNp73-
promoter. Subsequently, the induced ΔNp73 forms transactivation-defective 
complexes with p73 (and also p63) and inhibits its degradation, which results the 
stabilization of p73 proteins. Arrows represent activation, whereas bars represent 
inhibition.  
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In addition, ΔNp73 competes with p53 for binding to p53 target promoters (Grob et 

al., 2001; Stiewe et al., 2002a). However, higher concentrations of ΔNp73 are 

needed for inhibition of p53 than for inhibition of p63/p73 (data not shown). 

Likewise, p53 missense mutations inactivate p53 better than p63/p73. p73 (ΔNp73) 

overexpression and p53 mutations can therefore cooperate to provide complete 

inhbition of the p53 family and are not necessarily mutually exclusive. An example is 

provided by the Rh30 cell line in our studies, which contains a DNA contact 

mutation in p53 (R273C). The importance of p73 overexpression for the tumorigenic 

phenotype even in the presence of a p53 mutation is illustrated by the dramatic 

reduction of tumor growth following RNAi-mediated knockdown of p73 in vivo. 

Because our shRNA targets not only the oncogenic ΔNp73 but also all other p73 

isoforms, it can be assumed that this reduction of tumor growth in the presence of a 

mutant p53 is a result of the activated function of p63 following RNAi-mediated 

knockdown of ΔNp73. Although these experiments need to be confirmed in other 

rhabdomyosarcoma types as well as in different cell lines, our experiments with 

RNA interference based knockdown of p73 (eventually in combination with p53 

knockdown) establish on experimental basis for new p73-targeted therapies in RMS 

treatment. 

 

Since single oncogenes are rarely sufficient to induce transformation (Merlino and 

Helman, 1999) and C2C12-ΔNp73α myoblasts failed to form tumors in nude mice, 

we tested cooperation of ΔNp73α with the known RMS oncogenes IGFII and 

PAX3/FKHR. When the various myoblasts populations were injected subcutaneously 

into nude mice only IGFII+ΔNp73α and PAX3/FKHR+ΔNp73α cells formed tumors at 

a high rate. These results strongly support that ΔNp73α interacts with PAX3/FKHR 

and IGFII to play a critical role in the development of rhabdomyosarcoma. 

Importantly, this finding provides evidence for collaborative interactions between 

primary and secondary alterations in rhabdomyosarcoma. To understand why single 

oncogenes do not result in tumor formation whereas combinations together with 

ΔNp73α do requires further experiments. 
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4.2. Molecular mechanisms of myogenic inhibition by ΔNp73α  

 

Disruption of differentiation is hallmark of cancer (Alema and Tato, 1994). In 

rhabdomyosarcoma (RMS), a human tumor arising from myogenic precursors 

(Merlino and Helman, 1999), the muscle program is only partially activated despite 

the presence of virtually all the MRFs (Tapscott et al., 1993). Although the origin of 

RMS cells has not yet been precisely defined, it is known that these cells do not 

arise from differentiated myofibers. Nevertheless the myogenic identity of these cells 

has been clearly established (Dias et al., 1992). RMS cells fail to both complete the 

myogenic program and irreversibly exit the cell cycle, resulting in uncontrolled 

proliferation and incomplete myogenesis (Merlino and Helman, 1999). Whether 

these differentiation inactivation in RMS is achieved by overexpression of inhibitors, 

deficient function of activators, or both remains until now unknown. In our study, we 

show that ectopic expression of ΔNp73α inhibits myogenic differentiation. Thus, we 

speculate that ΔNp73α unleashes the oncogenic activities of PAX3/FKHR (and 

IGFII) and enables tumor development by interfering with differentiation. 

 

To understand the mechanistic basis, we investigated the impact of ΔNp73 on 

myogenic differentiation in C2C12 myoblasts, which faithfully mimic skeletal muscle 

differentiation in vitro (Blau et al., 1985). Skeletal muscle differentiation 

(myogenesis) involves a cascade of muscle-specific gene expression that is 

coordinated with permanent withdrawal from the cell cycle. The commitment of cells 

to the myogenic lineage and progression through the myogenic differentiation 

process requires the bHLH transcription factor family of myogenic regulatory factors 

(MRFs), including MyoD, Myf5, Myogenin, and MRF4 (Blau et al., 1985). Whereas 

early markers of the myogenic program, such as Myogenin, can be expressed in 

proliferating cells, late markers of the differentiation program including muscle 

structural genes like myosin heavy chain (MHC) are induced only after cell-cycle 

withdrawal. In our experiments, C2C12 myoblasts transduced with an empty 

retroviral vector (mock) arrest, elongate, align and fuse to form multinuclear 

myotubes that stain positive for myosin heavy chain as a marker for differentiated 

muscle cells within three days, whereas ΔNp73α expressing C2C12 cells fail to 

differentiate. Similar results were obtained in primary human and murine myoblasts 

indicating that ΔNp73α induces a complete differentiation block in both established 
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murine and primary human myoblasts. Moreover, ΔNp73α not only inhibits 

differentiation induced by serum withdrawal but also overrides synergistic growth 

factor and ECM-induced differentiation signals in a 3D tissue environment. 

 

In skeletal muscle cells, cell cycle regulation plays a fundamental role in the 

production and maintenance of the differentiated phenotype. In growth factor rich 

medium mock ΔNp73α myoblasts showed no significant difference in their 

proliferation rate. Under conditions of mitogen deprivation mock myoblasts 

completely withdrew from the cell cycle within one day whereas ΔNp73α myoblasts 

slowed down markedly but continued to proliferate resulting in a progressive 

increase in cell number. Terminal cell cycle exit is required in order to activate tissue 

specific gene expression. Once the muscle cells exit from the cell cycle, they are 

unable to reenter the cell cycle even under ideal growth conditions. As expected 

after restimulation with growth factors all nuclei within multinuclear, myHC- 

expressing control myotubes remained permanently arrested and failed to 

incorporate BrdU. Interestingly, ΔNp73α cells rapidly increased their proliferation 

rate and showed a BrdU incorporation index of more than 90%. Our data clearly 

demonstrate that ΔNp73α myoblasts are sensitive to growth factor depletion and 

slow down their proliferation rate but fail to permanently withdraw from cell cycle 

progression. In addition, microarray analyses demonstrated that consistent with the 

defects in permanent cell cycle withdrawal a number of cell proliferation related 

genes failed to be silenced in the ΔNp73α myoblasts. Furthermore, as expected 

from the function of ΔNp73α as a dominant-negative inhibitor of p53 family 

members, most of the p53 target genes that showed expression changes in the 

mock cells were unchanged in the ΔNp73α cells. Importantly, consistent with the 

observed differentiation defect, only few changes were observed in C2C12-ΔNp73α 

myoblasts wheares in mock cells the muscle-related genes were induced or 

repressed most prominently at 24 hours of differentiation. In summary, we show on 

the basis of genome-wide expression profiles that ΔNp73α does not interfere with 

the early, initiating steps but rather has profound impact on the progression to later 

stages of differentiation that require terminal cell cycle exit.  

 

The retinoblastoma tumorsuppressor protein (RB) plays a critical role in establishing 

the G0 arrest observed in differentiated myocytes and muscle cells lacking RB fail to 
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exit the cell cycle (Novitch et al., 1996; Zacksenhaus et al., 1996).  In addition, RB is 

specifically required for execution of the later steps in skeletal myogenesis, and its 

absence molecularly uncouples the early and late phases of this differentiation 

program (Novitch et al., 1996). Our analysis on the expression of typical muscle 

differentiation markers during myogenesis demonstrated that MyoD and Myf5, which 

play roles in specifying muscle lineage, are expressed at equivalent levels in 

proliferating and differentiating myoblasts irrespective of genotype. Myogenin, one of 

the first markers to be expressed after the onset of differentiation, was also similarly 

expressed in both mock and ΔNp73α myoblasts. However, downstream targets of 

Myogenin (MEF2C, MHC, CKM) were absent in ΔNp73α expressing cells. These 

data demonstrate that the block to differentiation occurs primarily after the Myogenin 

expression step. In addition, in a direct comparison both RB-/- and ΔNp73α-

expressing fibroblasts stopped the MyoD-induced differentiation program at the 

Myogenin step. The similar phenotype of RB-loss and ΔNp73α-expression 

demonstrates that RB function might be compromised by ΔNp73α. As expected, the 

expression of the retinoblastoma (RB) gene was strongly induced in C2C12-mock 

cells during myogenesis. In contrast, the upregulation of RB expression was 

abolished in C2C12-ΔNp73α myoblasts. Furthermore, in differentiating wild-type 

myoblasts we observed an increase in protein amount and in electrophoretic mobility 

indicating a shift from inactive, hyperphosphorylated to active, hypophosphorylated 

RB species. This activation of RB was absent in ΔNp73α myoblasts. Whereas the 

reduced levels of RB protein can be explained by transactivation defects of the Rb1 

gene, the failure to dephosphorylate RB has other reasons.  

 

The activity of RB is regulated by cyclin-dependent kinases (CDKs), which 

phosphorylate and inactivate RB. During myogenic differentiation CDKs are 

redundantly inhibited by the two CDK inhibitors (CKIs) p21CIP1/CDKN1A and 

p57KIP2/CDKN1C resulting in the activation of RB. Furthermore, mice lacking both p21 

and p57 fail to form myotubes, display increased proliferation and apoptotic rates of 

myoblasts, and display endoreplication in residual myotubes (Zhang et al., 1999b). 

Thus, we analyzed these two CKIs in C2C12-mock and ΔNp73α myoblasts during 

differentiation. Whereas mock myoblasts induced expression of p57, expression of 

this CKI was absent in ΔNp73α myoblasts both on the mRNA and protein level. In 

addition to p57, p21 is another CKI involved in RB regulation. The p21CIP1 promoter 
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contains characteristic p53 binding elements and was activated by ectopic 

expression of all transactivating p53 family members (el-Deiry et al., 1993). 

However, during muscle differentiation p21 induction has been previously shown to 

be p53-independent, which has been explained by direct induction of p21 by MyoD 

(Parker et al., 1995). In our experiments ΔNp73α reduced but not completely 

abrogated p21 induction. The severe differentiation defect of ΔNp73α myoblasts, 

however, demonstrates that the low levels of p21 in the absence of p53 family 

function are inadequate to support differentiation. Therefore, although p53 itself 

might be dispensible (Parker et al., 1995), the p53 family as a whole is certainly 

required for p21 to reach levels needed for completing the differentiation program. 

 

To analyze if the observed defect in RB activation is causally related to the block in 

differentiation, we tried to rescue the differentiation defect with ectopic expression of 

RB. In our study, we infected ΔNp73α myoblasts with recombinant adenoviruses 

expressing wild-type RB (AdGFP-RBwt), a constitutively active, phosphorylation-site 

mutant of RB (AdGFP-RBmut) or an empty virus control (AdGFP). Only cells 

expressing the constitutively active form of RB stopped proliferating and exhibited 

morphological and biochemical signs of differentiation. Furthermore, immunoblots 

showed that wild-type RB was inactivated by hyperphosphorylation and therefore 

unable to induce differentiation. However, in combination with p57 (AdGFP-p57), 

hyperphosphorylation of wild-type RB was prevented resulting in expression of 

MHC. Thus, active RB, either in form of a constitutively active mutant or as a 

combination of wild-type RB with p57, rescued the ΔNp73α-induced differentiation 

block proving that defects in activating RB were indeed the underlying cause. 

 

Similar to myoblasts transfected with ΔNp73α, RMS cells maintain RB in the 

hyperphosphorylated state when exposed to mitogen-poor differentiation-inducing 

media, explaining in part their failure to growth arrest or differentiate under these 

conditions (Knudsen et al., 1998). Transfection with active forms of RB 

(phosphorylation-insensitive RB or the combination of wild-type RB with p57) 

rescues the differentiation defect of RMS cells that express high endogenous levels 

of ΔNp73. This provides compelling evidence that RB dysfunction in RMS can be 

caused by inhibition of essential functions of the p53 family in differentiation.  

 



                                                                                                                   Discussion 

 102 
 

Although the last few years have revealed some of the molecular mechanisms 

underlying the cooperation of RB and differentiation-specific transcription factors in 

the execution of specific transcription programs during terminal differentiation 

(Korenjak and Brehm, 2005), the mechanisms that activate RB during myogenesis 

and other cellular differentiation processes via the expression of CKIs still remained 

unclear. Here, we demonstrate that the oncogenic ΔNp73α inhibits essential 

functions in the activation process of RB and that these functions are commonly 

disabled in rhabdomyosarcomas (RMS). In addition, our results show that the p53 

family inhibitor ΔNp73α is a potent repressor of differentiation in multiple 

experimental settings including osteoblastic and neuronal differentiation, although 

further experiments are needed to understand the molecular basis for these 

differentiation blocks. 

 

 

4.3 The role of p53 family members in myogenesis  
 

p63, p73 and p53 compose a family of transcription factors involved in the cell 

response to stress and development. They encode for multiple p63, p73 or p53 

proteins containing different protein domains (isoforms) due to alternative splicing, 

promoter usage and initiation of translation. p53 is the most frequently mutated gene 

in cancer (50%) and loss of p53 activity is considered to be ubiquitous to all cancers. 

The tumor suppressor gene p53 is central to an intricate network of pathways that 

senses various types of cellular stress to coordinate cell fate decisions such as cell 

cycle arrest, senescence or apoptosis (Macleod et al., 1995). The importance of p53 

in preventing genotoxic stress is undisputed. However, the physiological role of p53 

in unstressed cells is still a matter of debate. p63 and p73 are likely candidates to 

compensate for p53 functions in various processes since all p53 family members 

share >60% amino acid identity within the DNA binding domain allowing them to 

regulate an overlapping set of target genes (Kaghad et al., 1997; Yang et al., 1998). 

In this study, we describe that in primary murine myoblasts all p53 family members 

are expressed. Whereas p53 mRNA levels progressively increase during 

differentiation, both ΔNp63 and TAp73 expression peak around the first day during 

differentiation. TAp63 and ΔNp73 mRNAs are detectable but unchanged over the 
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time course of differentiation. Similar expression changes were observed in 

regenerating muscles in vivo.  

 

The retinoblastoma gene has a typical p53 binding site in the promoter region 

(Porrello et al., 2000). Since ΔNp73α functions as a dominant-negative inhibitor of 

the transactivation-competent p53 family members, ΔNp73α might inhibit the 

activation of RB by interfering with essential functions of the p53 family in this 

process. When ectopically expressed all the major transactivating proteins of the 

p53 family (p53, TAp73β, TAp63γ) induce RB. The observed difference between 

TAp73α and TAp73β can most likely be attributed to transactivation inhibitory 

functions located in the C-terminus of the α-isoform (Liu et al., 2005). The activity of 

RB is regulated by cyclin-dependent kinases (CDKs), which phosphorylate and 

inactivate RB. Thus, the regulated expression of cyclin-dependent-kinase inhibitors 

(CKIs) plays a key role in controlling the cell cycle during differentiation of many cell 

types. However, despite the clearly recognized abilities of p21 and p57 to promote 

G1 arrest, the precise regulation of these two CKIs during myogenesis is not yet 

clear. We demonstrate that p57KIP2 is transactivated only by TAp73β and ΔNp63α 

but not by p53. The analysis of the sequences upstream of the p57KIP2 

transcriptional start or in the introns of p57KIP2 failed to reveal any p53-binding sites 

arranged in tandem, as usually is seen in p53-responsive promoters (Beretta, 2005; 

Blint et al., 2002; Vaccarello et al., 2005). Considering the lack of p53-

responsiveness, the absence of typical p53 binding sites is not surprising and 

suggests that other mechanisms of promoter targeting are employed by TAp73β and 

ΔNp63α. Moreover we demonstrate that upon differentiation p53 associated with the 

RB promoter and p63 and TAp73 were recruited to the p57KIP2 promoter, whereas 

none of the investigated proteins was bound to these promoters in proliferating 

myoblasts. Regarding the mechanism of p73 up-regulation, it has been recently 

suggested by others that MyoD is a transcriptional regulator of these genes which 

displaces the negative regulator δEF1/ZEB from E-boxes present in its regulatory 

region (Fontemaggi et al., 2005; Strano et al., 2001). Our observation in wild-type 

muscle cells that TAp63γ and TAp73β were recruited to the p57KIP2 promoter, 

indicates a possible MyoD-p63/73-p57 pathway that might play a physiological role 

in myogenesis.  
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Considering the profound impact of ΔNp73 on myogenic differentiation, it appears 

remarkable that none of the homozygous knockout mice of single p53 family 

members have an overt muscle phenotype in vivo. However, similar to myoblasts 

expressing p53DD or a p53-directed shRNA, myoblasts isolated from p53-null mice 

fail to induce RB resulting in deficient MHC expression upon differentiation in vitro 

(Porrello et al., 2000). Despite this clear requirement for p53 in vitro, additional 

factors in the microenvironment of the myotome or the regenerating muscle tissue 

might compensate for the loss of p53 in vivo. In fact, our studies demonstrate that 

TAp63γ and TAp73β can both activate RB suggesting that p63/p73 might 

compensate for p53-loss in vivo. 

 

Although both p63 and p73 knockout mice present with developmental defects, 

severe muscle abnormalities have not been reported (Slade et al., 2004). However, 

our experiments with RNAi-mediated knockdown of p63 or p73 have revealed 

essential functions for both p63 and p73. Knockdown of either factor was sufficient 

to inhibit p57 induction and impaired the progression to late stages of differentiation. 

In contrast to the acute depletion of p63/p73 in our experiments, knockout mice have 

developed in the absence of p63 or p73. We therefore assume that during 

myogenesis developmental plasticity in signalling pathways might allow p63 to 

compensate for p73-loss and vice versa. Considering the similar function of the two 

proteins in the differentiation process functional compensation appears very likely, 

so that a muscle phenotype might only become apparent in homozygous compound 

double or triple knockouts or upon acute ablation of a single factor in vivo. 

 

In summary, our experiments show that all p53 family members are involved in 

regulating the process of muscle differentiation. Whereas the early steps of 

differentiation up to expression of Myogenin can occur in the absence of the p53 

family, the later stages involving permanent cell cycle exit and activation of muscle-

specific gene transcription require active RB which is dependent on p53 family 

functions. The functions of the individual members are distinct but complementary. 

p53 is required to induce transcription of the RB gene, whereas p63/p73 control 

expression of p57 which maintains RB in an active hypophosphorylated state (Fig. 

57). In tumors of muscle origin, p53 family function is frequently disabled by p53 

mutations and ΔNp73 overexpression. Inhibition of ΔNp73 by RNA interference 
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reduces tumor growth in vivo providing evidence for ΔNp73 as an attractive new 

target for RMS treatment. Recent publications may have a profound impact on our 

understanding of p53 family member’s tumour suppressor activity. But in this study, 

we demonstrate that differentiation control contributes to the tumor suppressor 

activity of the p53 family.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57. p53 family members are involved in regulating the process of 
muscle differentiation. 
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