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1. INTRODUCTION 

1.1. History and prevalence of Allergy 

The term allergy was originally defined by Clemens Von Pirquet (1874-1929) as ’’an altered 

capacity of the body to react to a foreign substance,’’ which was an extremely broad 

definition that included all immunological reactions. Allergy is now defined in a much more 

restricted manner as ’’disease following a response by the immune system to an otherwise 

innocuous antigen’’ and refers to IgE-mediated immediate hypersensitivity reactions of the 

immune system to specific substances called allergens (such as pollen, insect venom, drugs or 

food). As many as 40% of people in Western populations show an exaggerated tendency to 

mount IgE responses to a wide variety of common environmental allergens. This state is 

called atopy and seems to be influenced by several genetic loci (Janeway et al., 2001).   

The existence of allergic reaction can be documented by the measurement of IgE antibodies to 

specific allergens in the blood (Radioallergosorbent test - RAST) and by the use of skin prick 

test (evaluating immediate hypersensitivity reactions after epicutaneous application of the 

allergen). 

Allergic diseases such as asthma, allergic rhinitis, atopic dermatitis and food allergy afflict up 

to 20% of the human population in most countries and are believed to be increasing in 

prevalence (Kim H. et al., 2001).  More often allergic reactions occur in the gastrointestinal 

and respiratory tract due to the direct interaction with environmental allergens. Inhalation is 

the most common route of allergen entry causing allergic rhinitis (hay fever), allergic 

conjunctivitis and allergic asthma. Allergic rhinitis and conjunctivitis are commonly caused 

by environmental allergens that are only present during certain seasons of the year (certain 

grass and tree pollen).  
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A more serious syndrome is allergic asthma, which is triggered by allergen-induced activation 

of submucosal mast cells in the lower airways (Janeway et al., 2001).  Allergic asthma is a 

chronic inflammatory disease of the respiratory tract with rising incidence and prevalence in 

industrial countries. According to the World Health Organization, asthma affects 150 million 

people worldwide and is the most prevalent chronic disease of childhood (Epstein M., 2004). 

Asthma morbidity and mortality have increased over the last two decades, particularly in 

western countries (Beasley et al., 2000). Among children, higher prevalence rates have been 

found in industrialized Western countries than in developing countries in Asia and Africa 

(Beasley et al., 2000). In the Middle East, asthma prevalence is reported to be lower than in 

developed countries (Behbehani et al., 2000). The International Study of Asthma and 

Allergies in Childhood (ISAAC) was the first study carried out worldwide using standardized 

questionnaires in order to create a reliable global map of childhood allergy. They studied 

257.800 children aged 6 to 7 years in 38 countries, and 463.801 children aged 13 to 14 years 

in 56 countries including Europe, Asia, Africa, Australia, North and South America. The 

prevalence of rhinitis with itchy-watery eyes (rhinoconjunctivitis) in 1996 varied across 

centres from 0.8 - 14.9% in the 6-7 year-olds and from 1.4 – 39.7% in the 13-14 year-olds 

(Strachan et al., 1997). Wheezing prevalence (indicative of asthma) ranged from 4.1 to 32.1% 

in the younger age group and from 2.1 to 32.2% in the older age group and was particularly 

high in English speaking countries and Latin America (Asher and ISAAC Committee, 1998).  

Allergic asthma is a common medical problem faced by emergency units and intensive care 

specialists. Data from Australia, Canada and Spain have reported that allergic asthma 

accounted for 1 to 12% of all adult emergency visits (Rodrigo et al.,2004). It is estimated that 

there are 18 asthma-related deaths per million people and 180,000 deaths per year (WHO, 

2000). 
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High prevalence and increasing evidence of allergic asthma in the last decades underlines the 

importance to understand the pathogenesis of disease in order to develop novel therapeutic 

interventions (Hahn et al., 2003). 

 

1.2. Hypothesis explaining the increasing prevalence of asthma 

Although the immunological processes leading to the development of allergic disease are 

relatively well defined, it is still not understood why the exposure to allergens causes atopic 

disorders in some individuals but not in others. However, it is clear that both genetic and 

environmental factors are involved. Concordance rates for the occurrence of allergic diseases 

are higher in monozygotic twins than in dizygotic twins indicating that genetic factors play an 

important role in the development of allergic disorders.  (Skadhauge et al., 1999). Individuals, 

with two atopic parents are at great risk of developing an allergic disease than those with only 

one atopic parent (approximately 47% versus 24%), but the specific allergic disease in those 

individuals may be different from those of the parents (Paul, 1997).  

The association of genes and their polymorphisms with features of asthma has been an 

important advance over the past decade (Bochner et al., 2005). Several genomic regions are 

reported to be associated with the development of asthma and allergy (Munthe-Kaas et al., 

2004). Recent studies evaluated the genetic linkage between asthma phenotypes to 

chromosome 20p13, which was described as an asthma susceptibility gene by Van Eerdewegh 

et al., 2002, (Raby et al., 2004). 

 Munthe-Kaas et al (2004) reported the association of the development of allergy and asthma 

with chromosome 2q33, which contains the candidate gene cytotoxic  T-lymphocyte antigen 

(CTLA-4). Based on there findings, the authors summarized that a role for CTLA-4 
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polymorphisms exists in determining the Th1/Th2 balance and identifying CTLA4 signaling 

as a potential target in atopic disease.  

In addition the Th2 cluster on human chromosome 5q23-35, containing loci for the Th2 

cytokines IL-4, IL-5, IL-9, IL-13 and other potentially relevant genes, has been shown by 

various studies to have a significant linkage with total IgE levels (Marsh DG et al., 1994). 

The investigation of Toll-like receptor (TLR) genotypes revealed the possibility of 

involvement of genetic variations in TLR2 as a major determinant in the susceptibility to 

asthma and allergies in children of farming families (Eder et al., 2004).  Furthermore, studies 

on TLR4 and CD14 gene polymorphism evaluated, that decreased IL-12 and IL-10 

production was associated with a TLR4 polimorphism (Asp299Gly) (Fageras et al., 2004). 

Because the generation of these particular cytokines might be important in downregulating the 

Th2 response, deficiency in this response might explain how innate immune responses could 

be important determinants of allergy and influence the outcome of intervention studies that 

use microbial stimuli as immune modulators (Bochner et al., 2005).   

Whereas the role of heritability in the development of atopic disease is documented, it is not 

able to explain the ’’epidemy of atopy’’ that has been observed over the past three decades. 

The reason for this phenomenon is still not known, however, there are several possible 

explanations for the increase in allergic asthma.  

First, it is possible that the genetic background of the human population living in developed 

versus developing countries is different, resulting in higher propensity to develop atopic 

diseases. However, this appears not to be the case, as people from developing countries show 

an increase in allergic diseases when they are exposed to western living conditions (Waite et 

al., 1980). Interestingly, the increase in atopic disorders observed in former East Germany has 

been partly attributed to an increase in westernization. These phenomenon could be explained 
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by the increase in industrial pollution levels and consequently, higher atopy rates. Contrary to 

preliminary expectations, German studies have shown that the prevalence of atopic conditions 

is not related with the exposure to polluted environments (Hirsch et al., 1999). 

Comprehensive studies performed in the UK also conclude that it is unlikely that air pollution 

has contributed substantially to the rise in prevalence of asthma and allergic disease in recent 

decades (Devereux et al., 1996).  

Secondly, epidemiological studies indicate that the increased prevalence of allergic diseases is 

associated with a reduced microbial stimulation of the immune system (Boini, 2005). The 

hygiene hypothesis, proposed by Strachan 1989, states that a reduced exposure to allergens in 

early life is solely implicated in the growing propensity for allergy sensitization. Important 

elements of the hypothesis include helminth infection, exposure to endotoxins, exposure to 

pets and growing up on a farm (Platts-Mills et al., 2005). According to this theory, the 

exposure to infectious agents in the early childhood prevents the development of allergen-

specific Th2 cells because they establish Th1-based immunity (McGeady, 2004)(Hertzen and 

Haahtela, 2004) and modulates so called Th1/Th2 balance (Matricardi et al., 2002).  This 

assumption is supported by previous studies indicating that Th1 cells producing cytokines 

such as IFN-γ are able to suppress Th2 immune responses both in vitro and in vivo (Parronchi 

et al., 1992) (Lack et al., 1996) (Li et al., 1996). Recent studies demonstrated that not only 

infections caused by bacterial and viral pathogens but also the exposure to Th1-inducing 

bacterial components could decrease the development of allergic disease and indoor 

endotoxin exposure early in life may protect  against allergic sensitization (Braun-Fahrlander 

et al., 2002) (Eder and Mutius, 2004). Endotoxin (also referred to as lipopolysaccharide 

(LPS)) is a conserved bacterial component and one of the most well known activators of the 

innate immune system. This molecule is an integral constituent of the outer membrane of 
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gram-negative bacteria. When peripheral immature DC are exposed to LPS, the maturation of 

these APC is induced, increasing the expression of MHC class II and costimulatory 

molecules. This stimulates the production of proinflamatory cytokines such as TNF-α, IL-1 

and IL-6. Moreover, LPS induces the production of IL-12 by these cells, promoting the 

generation of Th1 immune responses (Hilkens et al., 1997). These immunomodulatory 

properties of LPS further support epidemiological findings as the influence of LPS exposure 

on the development and maintenance of allergic diseases. Several studies reported the 

influence of Bacille Calmette-Guerin (BCG) vaccination on the reduction of atopic disease 

(Shirakawa et al., 1997). BCG inoculation in mice, delivered 14 days before allergen 

sensitization, reduced the formation of specific IgE  in response to allergen, with an increase 

in production of IFN-y (Herz et al., 1998). Similar results have been obtained in mice with the 

a single injection of heat-killed Mycobacterium vaccae, another potent inducer of Th1 

responses (Wang et al., 1998), and with Listeria.  

Finally, over the last half of the 20th century, there have been major changes in diet and 

physical activity. There are three distinct, but strongly interrelated, aspects of lifestyle that 

could be relevant to the prevalence and severity of asthma: diet, physical activity and obesity 

(Platts-Mills et al., 2005). The possibility that obesity is related to asthma was first suggested 

in 1994, and there have been multiple reports of an association between an elevated body 

mass index (BMI) and asthma since then (Luder et al., 2004). The most obvious one is that it 

is much easier to document BMI than diet or physical activity. However, although some of 

the obesity data are convincing, they are not consistent, and the association between obesity 

and asthma is certainly not comparable with obesity and diseases such as childhood type 2 

diabetes (Platts-Mills et al., 2005). In a typical study, the prevalence of wheezing was 13% 
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among those in the quintile with the highest BMI and 7% among those in the lowest BMI 

quintile (Berkey et al., 2000). 

Further, several studies concluded that full expansion of the lungs had a more potent effect on 

bronchial smooth muscle than isoprenaline (beta-adrenergic agonist which has a powerful 

stimulant action on the heart, increasing cardiac output and heart rate). Additionally, 

prolonged shallow breathing ( 20min) can lead to increased non-specific bronchial  reactivity 

(Fredberg et al., 1999) ( Skloot et al., 1995). 

 

1.3. Molecular and Immunological mechanisms of asthma 

Asthma is a chronic inflammatory condition of the airways that is characterized by a 

prominent eosinophilic inflammatory infiltrate in the bronchial mucosa. (Flood-Page et al., 

2003).  The inflammation causes a narrowing of the air passages, which limits the flow of air 

into and out of the lungs. Common symptoms include shortness of breath, wheezing, 

coughing and chest tightness (Paul, 1997). Allergens entering the body by way of the 

respiratory or digestive tracts or through the skin (Kidd, 2003).  The immune system is 

designed to either respond or tolerate foreign antigens. In atopic individuals non-pathogenic 

foreign proteins elicit an allergic class of response (Epstein M., 2004).  

In pre-disposed individuals, initial exposure to allergen leads to the activation of allergen-

specific T helper 2 (Th2) cells and IgE synthesis, which is known as allergic sensitization 

(Figure 1). Subsequent exposure to allergen cause inflammatory-cell recruitment and 

activation and mediator release, which are responsible for early (acute) allergic responses 

(EARs) and late allergic responses (LARs). In the EAR, within minutes of contact with 

allergen, IgE-sensitized mast cells degranulate and release both pre-formed and newly 

synthesized mediators in sensitized individuals. These include histamine, leukotrienes and 
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cytokines, which promote vascular permeability, smooth-muscle contraction and mucus 

production. Chemokines released by mast cells and other cell types direct recruitment of 

inflammatory cells that contribute to the LAR, which is characterized by an influx of 

eosinophils and Th2 cells. Eosinophils release an array of pro-inflammatory mediators, 

including leukotrienes and toxic proteins (eosinophil cationic protein, eosinophil peroxidase, 

major basic protein and eosinophil-derived neurotoxin), and they might be an important 

source of IL-3, IL-5, IL-13 and granulocyte/macrophage colony-stimulating factor 

(Hawrylowicz and O’Garra., 2005). 
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Figure 1. Mechanism of atopic allergy. 
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The initial immunological events in the response to inhaled antigen include antigen uptake by 

professional APCs, processing into immunogenic peptides and presentation, in the context of 

major histocompatibility complex (MHC) molecules, to naïve T cells in the lymph nodes that 

drain the lung.  In this regard, pulmonary dendritic cells (DCs) play a critical role in sampling 

and presenting antigen in the lung, which leads to activation and expansion of CD4+ T cells 

and preferential  production of T helper subset 2 (Th2)-biased adaptive immune responses 

(Akbari et al., 2001). In the respiratory tract, an extensive network of DC is located in the 

mucosa of the nose and large conducting airways of the lung (Schon-Hegrad et al., 1991). In 

this place, DC have the capacity to capture the allergen (Vermaelen et al., 2001) and then, 

they become mature and migrate to the draining lymph nodes where the presentation of all 

allergens to naïve CD4+ T cells is initiated. Both Th2-biased immune responses as well as 

immune responses that protect against allergic disease and asthma depend on activation of 

antigen-specific T cells by APCs (Akbari et al., 2003).  

For instance, subset of DCs (DC1) that produce IL-12 and express high levels of 

costimulatory molecules, such as B7.1 and B7.2, induce Th1 response, associated with the 

production of IFN-γ and IL-2 (Rissoan et al., 1999).  In contrast, DC2 subsets associated with 

the production of IL-4, IL-5 and IL-13 and expressing low levels of costimulatory  molecules 

(Stumbles et al., 1998) (Eisenbarth et al., 2002). Predisposition towards the development of 

Th2 responses may be genetically determined, and occur more frequently in atopic 

individuals. In other situations, DCs induce T cell unresponsiveness, anergy or apoptosis 

(Inaba et al., 1991). Whereas immature DCs may be important in inducing deletional 

tolerance or anergy, for example, in central tolerance, mature DCs expressing high levels of 

costimulatory molecules (ICOSL, OX-40L, B7-1, B7-2) may be required for induction of 

regulatory cells (Akbari et al., 2001) and for induction of peripheral tolerance mediated by 
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suppression, particularly in response to exogenous environmental allergens (Akbari et al., 

2003).  The consequence of antigen recognition is activation, differentiation, and clonal 

expansion of CD4+ T helper 2 (Th2 cells), alteration of the quantity and type of cell surface 

molecules, production and secretion of IL-4, IL-5, IL-13 cytokines, and generation of cells 

that can provide help to B lymphocytes (Epstein M., 2004). 

 

1.4. Th2 based pathway leads into the pathogenesis of allergy 

Atopic disease is dependent on the production of the cytokines IL-4, IL-5 and IL-13 by 

allergen-specific Th2 cells that are generated from naive CD4+ precursors (Lewis., 2002) 

after recognition the allergen-derived peptides on the surface of APC. The recruitment of Th2 

cells is also induced after allergen challenge with allergic asthma (Kroegel et al., 1996). 

Antigen-induced AHR and pulmonary eosinophilia are prevented in T cell-deficient mice or 

after depletion of murine CD4+T lymphocytes with specific antibodies (Gonzalo et al., 

1996)(Gavett et al., 1994). Furthermore, the application of allergen-specific Th2 cells (but not 

Th1) generated in vitro to naïve mice can induce airway eosinophilia, mucus hypersecretion 

and AHR after allergen challenge (Cohn et al., 1997).  

IL-4 is a essential for Th2-cell development, which is not produced by DC. Potential 

candidates for the early production of IL-4 include a population of NK1.1+CD4+T cells, 

which can rapidly produce large amount of IL-4 upon suitable activation in vivo. 

Alternatively, naïve T cells itself produce IL-4 in the absence of Th1-skewing signals such as 

IL-12. Mast cells, Basophils and eosinophils have also been suggested to be responsible for 

this early production since they have the capacity to produce this cytokine later during the 

allergic immune response, however, the initial source of this ``early IL-4`` is still not well-

known (Paul ., 1997). 
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Upon ligation with its receptor, IL-4 activates in T lymphocytes a cytoplasmic protein, the 

signal transducer and activator of transcription 6 (STAT-6). Upon activation, this protein 

dimerizes and translocates to the nucleus, where it modulates transcription through binding to 

STAT-6-response elements. Among others, STAT-6 induces the expression of the 

Transcription factor GATA-3. GATA-3 directly transactivates the IL-5 promoter, inducing 

IL-5 production. In addition, GATA-3 seems to be a chromatin remodelling factor that allows 

the transcription of the IL-4/IL-13 locus, playing an essential role in the development of 

CD4+Th2 cells (Finotto et al., 2004).  IL-4 and IL-13, two related cytokines with overlapping 

functions, are considered to be key players in IgE class switching. Both cytokines share the 

IL-4Rα subunit in their receptor complex. IL-4Rα-/- mice are strongly impaired in type 2 T-

helper cell (Th2)-dependent immune reactions, and cells driven from these mice completely 

fail to respond to IL-4 or IL-13, which suggests that neither cytokines has functional receptor 

lacking this chain (Barner et al., 1998)(Mohrs et al., 1999). Class switching to IgE, and to 

IgG1, in mice is induced when B cells simultaneously receive two stimuli: one is the 

activation of the shared IL-4/IL-13 receptor by one of its ligands, and the other is the ligation 

of CD40 by CD40L, which is expressed on activated T cells (Worm et al., 1997)(Bacharier et 

al., 1998).  IgE is essential for immediate hypersensitivity reactions. Most IgE being produced 

is located predominantly in tissues where it binds to the high-affinity IgE receptor (FcεRI) 

expressed on the surface of mast cells and basophils (Kawakami and Galli, 2002). Binding of 

IgE to FcεRI renders mast cells and basophils ``sensitized`` to a new challenge with the 

allergen. Upon secondary exposure with multivalent allergen, the crosslinking of FcεRI–

bound IgE initiates the activation of mast cells and basophils by promoting the aggregation of 

FcεRI. Initially, IL-4 was believed to be exclusively responsible for the class switch to IgE in 

the mouse. The discovery that IL-13 can also induce IgE class switching in human B cells 
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(Punnonen et al., 1993)(Defrance et al., 1994) suggested a possible role for IL-13 in mice as 

well. IL-13-induced IgE production was indeed demonstrated in transgenic mice which 

expressed IL-13 in lymphoid tissues, but lacked a functional IL-4 gene (Emson et al., 1998).  

Beside of contribution to isotype switching in B cells, investigations on overexpression of IL-

13 in the lung and in acute models of asthma in mice have defined important roles for IL-13 

in the induction of mucus hypersecretion, goblet cell hyperplasia, subepithelial fibrosis, 

eotaxin production, eosinophil accumulation and the promotion of enhanced airways 

hyperreactivity(AHR) to cholinergic stimuli (Foster et al., 2003). 

The role of IL-4 in allergic inflammation is not limited, to its capacity to induce the 

production of allergen-specific IgE/IgG1 by B cells. IL-4 is also able to induce the rolling on 

and adhesion to endothelial cells of circulating eosinophils (Patel, 1998). These effects are 

achieved by the capacity of IL-4 to induce the production of eotaxin (a potent chemotactic 

factor for eosinophils) and to increase the expression of adhesion molecules such as the 

vascular cell-adhesion molecule-1(VCAM-1) by endothelial and other structural cells 

(Mochizuki et al., 1998). In addition, IL-4 acts directly on lung fibroblasts inducing a 

fibrogenic responses, which further amplify the inflammatory response during the allergic 

process (Saito et al., 2003). 

Other cytokines produced by activated allergen-specific Th2 cells that also contribute to the 

pathogenesis of allergic asthma are IL-5 and IL-9. IL-5 is a key cytokine in eosinophil 

differentiation and maturation in the bone marrow as well as in recruitment and activation at 

sites of allergic inflammation. (Flood-Page et al, 2003). IL-5 stimulates the expansion and 

differentiation of eosinophil precursors, upregulates expression of its own specific receptor α 

chain during human eosinophil development, (Tuvernier J et al, 2000) primes eosinophils for 

enhanced chemotaxis and hyperadherence and delays apoptosis. (Sehmi R et al., 1992). In 
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animal studies, monoclonal antibodies (mAbs) directed against IL-5 have been shown to 

suppress airway eosinophilia and airway hyperresponsiveness (AHR)(Matsumoto et al., 

2003). Genetically IL-5-deficient mice have been shown to fail to develop airway 

eosinophilia and AHR after allergen challenge (Foster et al., 1996). Moreover, adoptive 

transfer of IL-5-producing CD4+ Th2 type cells resulted in airway eosinophilia and AHR 

after allergen challenge in IL-5-deficient mice (Hogan et al., 1998).  

IL-9 is another Th2-derived cytokine, which is thought to play an important role in th e 

development of asthma. Evidence from both murine and human studies shows the IL-9 gene 

to be located within an area of the chromosome associated with susceptibility to AHR 

(Postma et al., 1995)(Nicolaides et al., 1997). The biological effects of IL-9 are pleiotropic, as 

it acts as a growth factor for mouse T cells, a maturation factor for B cells (Vink et al., 1999) 

and proliferation factor for mast cells and hematopoietic progenitors (McMillan et al., 2002). 

In allergy, the expression of IL-9 and its receptor is increased and this increase correlates to 

changes in lung function (Shimbara et al, 2000). Eosinophils also synthesize and secrete IL-9 

and evidence suggests that IL-9 may potentiate eosinophil function in vivo via interactions 

with IL-5. IL-9 has been found to increase eosinophil survival, as well as IL-5-mediated 

differentiation and maturation (Louahed et al., 2001). In another in vitro study, IL-9 was 

found to stimulate mucin production in respiratory epithelial cells (Longphre et al., 1999).  

The method of targeting T cells to treat allergic asthma is an interesting strategy that has not 

yet been explored extensively. In contrast to current therapies, some T-cell directed therapies 

harbour the potential to induce long-lasting suppression or even complete remission of 

disease. 
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1.5. Therapeutic strategies for allergic disease 

Several potential points of therapeutic intervention are proposed for the treatment of allergic 

diseases (Figure 2). One possibility is to block activation of allergen-specific Th2 cells, either 

directly or indirectly through effects on antigen-presenting cells: for example by treatment 

with anti-inflammatory drugs, such as glucocorticoids, or by allergen immunotherapy. 

Another option is to block effector molecules that cause the clinical symptoms of allergic 

disease: for example, by treatment with antihistamines, leukotriene antagonists, neutralizing 

antibodies specific for Th2 cytokines or antibodies specific for IgE. 
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Figure 2. The allergic pathway and potential points of intervention. 
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Current treatments for allergy and asthma are mainly based on pharmacological interventions, 

such as treatment with antihistamins, glucocorticoids or β-agonists (Holgate et al., 

2003)(Barnes , 1997). Although these treatments are highly effective for controlling disease in 

most individuals, many patients must take these drugs for life. 

Corticosteroids are the one of the most effective treatments currently available for atopic 

diseases and high doses of oral corticosteroids would control almost every atopic patient. 

However, systemic side effects limit the dose that can be given over long periods, and this led 

to the development of topical steroids. There is little doubt that inhaled corticosteroids have 

revolutionized the treatment of asthma and are now first-line treatment for chronic asthma in 

patients of all ages and severity of disease (Barnes et al., 1998). Herewith, beside of efficiency 

they do not cure disease and allergic inflammation recurs when treatment is stoped. Advances 

in understanding how corticosteroids suppress inflammation at a molecular level may lead to 

the development of safer steroids, or drugs that mimic their key anti-inflammatory actions. 

Corticosteroids bind to a cytosolic glucocorticoid receptor which translocates to the nucleus 

and binds as a homodimer to DNA to activate genes. The principal action of corticosteroids is 

to suppress multiple inflammatory genes, including cytokines, inflammatory enzymes, 

adhesion molecules and inflammatory mediator receptors, and this is why corticosteroids are 

so effective in complex inflammatory conditions (Barnes., 1999). However, steroids show 

more immediate effects and also induce long-lasting changes in the differentiation of T cells. 

Soon (3-4 h) after systemic steroid administration, glucocorticoids induce a redistribution of 

cells, and there effectiveness has been shown to be attributed with reduced activation of 

peripheral T cells, as well as IL-4 and IL-5 expression (Gemou-Engesaeth et al., 

2002)(Bentley et al., 1996). This redistribution also affects T regs, which are found more 

frequently in the peripheral blood following steroid treatment. Significantly increased FOXP3 
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mRNA expression was found in unstimulated peripheral blood CD4+ T cells of both patients 

with severe asthma treated with systemic glucocorticoids and patients with moderate asthma 

treated with inhaled glucocorticoids but not in patients with untreated moderate asthma. The 

higher T reg activity in glucocorticoid-treated patients with asthma is demonstrated by 

increased IL-10 mRNA expression, which tightly correlated with the FOXP3 expression 

(Karagiannidies et al., 2004).    

Antihistamins are effective in rhinitis and reduce itch in atopic dermatitis, but have no clear 

benefit in asthma (Van Ganse et al., 1997). New antihistamins have been claimed to have 

additional anti-asthma effects that are not mediated through H1-receptor blockade. These 

effects include an inhibitory effect on eosinophil chemotaxis and adherence to endothelial 

cells, and inhibition of eosinophil recruitment into asthmatic airways after allergen challenge 

(Barnes., 1999). 

Cysteinyl leukotrienes, generated from the rate-limiting enzyme 5´- lipoxygenase (5-LO), are 

potent bronchoconstrictors and inducers of plasma exudation, and there is some evidence that 

they may promote eosinophilic inflammation. 5-LO inhibitors and Cysteinyl-leukotriene 

receptor (Cys-LT1) antagonists have been developed for the treatment of asthma, and possibly 

other atopic diseases. In challenge studies they reduce allergen- and exercise-induced asthma, 

as well as several other challenges. In clinical trials they improve asthma symptoms, lung 

function and reduce the need for rescue bronchodilator treatment (Drazen et al., 1999). 

A monoclonal anti-IgE antibodies – Omalizumab, was first humanized therapeutic antibody 

approved by FDA (U.S. Food and Drug Administration, 2003) for treatment of asthma and 

the first approved therapy designed to target immunoglobulin E (IgE) (Curtiss., 2005). 

Omalizumab targeting the high-affinity receptor binding site on human IgE. Bound IgE is not 

available for basophil binding, degranulation is attenuated, and allergic symptoms are 
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reduced. In asthma trials, omalizumab reduced inhaled corticosteroid and rescue medication 

requirements and improved asthma control and asthma quality of life in moderate to severe 

allergic asthmatics with disease poorly controlled by inhaled corticosteroids (Belliveau., 

2005). 

 

1.6. Neutralizing strategies of Th2 type cytokines 

Different therapeutic strategies that aim to neutralize Th2-type cytokines or to restore the 

dysregulated Th2-dominated allergic reactions are currently in (pre)clinical development 

(Heijink and Oosterhout., 2005). There are several possible approaches to inhibit specific 

cytokines. These include the use of drugs that inhibit cytokine synthesis, humanized blocking 

antibodies to cytokines or their receptors, soluble receptors that `mop up´ secreted cytokines 

to receptor antagonists and drugs that block the signal-transduction pathways activated by 

cytokines. On the other hand, there are cytokines that suppress the allergic inflammatory 

process and these may have therapeutic potential. 

As asthmatics have elevated IL-5 protein levels in serum and marked eosinophil infiltration in 

bronchial biopsies, removing IL-5 is a proposed therapy for asthma. In support of a role for 

IL-5 in asthma, various experimental studies have shown a reduction in pulmonary 

inflammation, including eosinophilia, in IL-5-deficient mice or animals treated with 

neutralising anti-IL-5 monoclonal antibodies (Foster et al., 1996)(Hamelmann et al., 1997). 

Despite cumulative evidence for a therapeutic role for IL-5 depletion in asthmatics, clinical 

administration of a humanized monoclonal antibody against IL-5 in mild asthmatics show no 

effect on airway hyperresponsiveness (Leckie et al., 2000). More recent study confirmed that 

anti-IL-5 treatment did not significantly alter clinical parameters in mild asthmatics (Flood-

Page et al., 2003).  
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Inhibition of IL-4 may be helpful in type I allergic reactions, where IL-4 is not only critically 

important for Th2 cell differentiation at the beginning of an immune response, but is also 

responsible for downstream events leading to differentiation and activation of effector cells 

(Mueller et al., 2002). Potential selective IL-4 inhibitors are the soluble extracellular domain 

of the IL-4 receptor alpha chain (sIL-4Rα) or antibodies to IL-4 (Renz et al., 1996)(Henderson 

et al., 2000).  Both have been shown to inhibit allergen-specific IgE, airway eosinophilia, and 

AHR to methacholine, when given during sensitization in mice. In contrast, the eosinophilic 

inflammation could be reduced only marginally and AHR was not affected when IL-4 

antagonists were applied during allergen challenge (Coyle et al., 1995). However, it was 

recently reported that inhalation of sIL-4Rα ameliorated asthma scores in patients with 

moderate asthma during phase I/II clinical studies (Borish et al., 2001).  

A selective IL-13 inhibitor on the basis of a soluble hIL-13R fusion protein (sIL-13Ra2-FC) 

or antibodies against IL-13 have been shown to inhibit the development of AHR, goblet cell 

metaplasia, and eosinophilic inflammation in a murine model for allergic asthma, when 

applied during   allergen challenge (Wills-Karp et al., 1998)(Blease et al., 2001). 

Additionally, various studies have further illustrated redundancy and overlap in function 

between the four major (IL-4, IL-5, IL-13 and IL-9) Th2 cytokines (Fallon et al., 2002), and it 

has been suggested that a single cytokine antagonists might have limited efficacy (Hahn et al., 

2003). 

IL-4 and IL-13 share one common receptor subunit, the IL-4 receptor alpha chain (IL-4Rα 

chain), therefore the blocking of IL-4Rα would lead to a complete inhibition of both IL-4 and 

IL-13 signalling (Duschl,. 2000). Indeed, mice lacking a functional gene for this receptor 

subunit fail to respond to either cytokine and are selectively impaired in Th2-associated 
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immune responses in models of parasite infections and allergies (Urban et al., 1998)(Mohrs et 

al., 1999) (Cohn et al., 1999)(Noben-Trauth et al., 1999).  

Previously, a highly efficient murine IL-4 antagonist (QY) has been developed (Grunewald et 

al., 1997), where the amino acids glutamine 116 and tyrosine 119 were mutated to aspartic 

acid. This murine mutant is analogous to the R121D/Y124D double mutant of human IL-4. 

QY binds with high affinity to the murine IL-4Rα without inducing signal transduction 

(Figure 3), has no detectable activity upon proliferation or differentiation of murine cells, and 

an excess of QY completely inhibits responses toward wild-type IL-4. Like its human 

analogue, the QY mutant is an antagonist for IL-13 (Grunewald et al., 1997). Recent 

experiments with monocytic cells from mice lacking a functional γc gene showed, that QY is 

a complete inhibitor for IL-4 in the absence of  γc as well (Andersson et al., 1997). 

                        

IL-13Rα-chainγc-chain

IL-4Rα-chain
IL-4Rα-chain

IL-4/IL-13-Inhibitor 
(QY)

 

                        Figure 3. Inhibition of the IL-4/IL-13 system with the inhibitory molecule QY. 

 

Recent studies demonstrate, that use of an IL-4/IL-13 receptor antagonist QY shows a 

complete inhibition of IL-4 and IL-13 mediated reactions in vitro. In addition, specific IgE 

synthesis and the development of immediate type hypersensitivity could be inhibited 
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completely during primary sensitization with ovalbumin (OVA) in mice (Grunewald et al., 

1998).  In congruence with this study other experiments demonstrated the efficient prevention 

of the development of an allergic airway condition (Tomkinson et al., 2001). However, a 

recent study in a murine asthma model showed, that beside of the improvement of the allergic 

condition after application of IL-4/IL-13 inhibitor during allergic sensitization, the inhibition 

of an IL-4/IL-13 system after the development of allergic airway pathologic condition did not 

show any significant reduction of all measured allergic parameters (Hahn et al., 2003).  

All of the above mentioned treatments focus on the non-allergen-specific alleviation of 

symptoms, rather than treating the underlying cause. So far, the only allergen-specific 

treatment that has the potential for a long-term ´curative´ approach is Allergen Specific 

Immunotherapy (SIT)(Wachholz and Durham., 2004).  

 

1.7. Mechanism of Allergen Specific Immunotherapy 

Traditional SIT has been in use for almost a century and is one of the few specific 

immunomodulatory treatments that are commonly used for an immune-mediated pathology 

(Norman., 2004). It involves the injection of increasing doses of specific allergen extract into 

the patient, and it is highly effective in carefully selected patients who have IgE-mediated 

disease, such as allergic rhinitis, asthma and venom anaphylaxis. The allergen is generally 

given subcutaneously, but it can also be administered sublingually or intranasally (Wilson et 

al., 2003). Recent studies suggest, that SIT not only gives symptom relieve in allergic disease 

but also modifies the natural course of disease by reducing the risk of developing new allergic 

sensitizations and inhibiting the development of clinical asthma in children treated for allergic 

rhinitis (Frew., 2003). Whereas the clinical efficacy of specific immunotherapy is well 

documented, its molecular mechanisms are incompletely understood. 
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Successful SIT is associated with decreased ex vivo T cell allergen-specific proliferation, a 

reduced ratio of IL-4, IL-5 or IL-13 production and decreases the recruitment of effector cells 

at the site of inflammation (Lewis., 2002) (Till et al., 2004).  Moreover, it suppress the 

antigen specific IgE´s synthesis and increases level of serum allergen-specific IgG1, IgG4 and 

IgA antibodies (Jutel et al., 2003).  Observed increase in IgG4 and decrease in IgE often occur 

months after a therapeutic response of SIT. This suggests that these alterations are a late 

maker for successful SIT (Akdis et al., 2001) (Till et al., 2004). IgG4, which has little pro-

inflammatory activity, has been proposed to compete with IgE for binding to mast cells and 

basophils – presumably through competition for allergen binding, although the mechanisms 

for this are still unclear. IgG4 might also reduce IgE-facilitated allergen presentation by 

preventing the binding of allergen-IgE complexes to APCs (Wachholz and Durham., 

2003)(Wachholz et al., 2003). 

Early studies indicated that effective allergen immunotherapy was associated with immune 

deviation from a disease-promoting Th2 response towards a Th1 response (Jutel et al., 1995) 

(Ebner et al., 1997) (Wachholz et al., 2002). However, not all reports agree on the increase in 

IFN-y-associated responses after allergen immunotherapy (Soderlund et al., 1997)(Van Bever 

et al., 1998)(Klimek et al., 1999). Subsequently, evidence from studies on immune responses 

to insect venoms, indicates that successful allergen immunotherapy is associated with a 

decrease in the allergen-specific Th2 response and the induction of allergen-induced IL-10-

secreting T cells (Akdis et al., 1998)(Till et al., 2004). Evidence for T-cell production of IL-

10 in response to allergen, both in bee-keepers who had become tolerant following repeated 

insect stings and in non-atopic individuals, has also been used to support the contention that 

IL-10 regulates tolerance to allergen (Akdis et al., 1998). Furthermore, neutralization of IL-10 

in allergen-stimulated peripheral-blood cultures restores production of Th2 cytokines. More 
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recently, several laboratories have reproduced these findings for both systematically 

introduced allergens (Faith et al., 2003) and aeroallergens (Francis et al., 2003)(Nouri-Aria et 

al., 2004)(Oldfield et al., 2002) and have shown an increase in either IL-10 alone or both IL-

10 and IFN-y. The IL-10-expressing cells that are detected after allergen immunotherapy have 

been shown to be CD25+ T cells (Francis et al., 2003)  and SIT-induced unresponsiveness 

could be prevented by depletion of CD25+ T cells in vitro (Jutel et al., 2003). However, it is 

unclear as yet whether these are naturally occurring Treg cells, or activated effector cells that 

upregulate CD25 and have deviated from a Th2 phenotype towards an IL-10-secreting 

phenotype, or a third population that is distinct from either of these. This regulatory T-cell 

population contains at least some allergen-specific cells, because it responds to allergen 

during in vitro culturing (Hawrylowicz et al., 2005). 

Besides of efficiency SIT has several limitations. The first is the considerable risk of adverse 

side-effects, including severe anaphylaxis, through the interaction of IgE with the injected 

allergen. Second, the protocol requires administration of allergen for a sustained period of 

several years to maximize long-lasting effects (Casale et al., 2004). 

Taken together, SIT remains the only curative and non-symptomatic treatment of allergy, and 

understanding the immune mechanism that underlies successful allergen immunotherapy 

offers the potential to improve current allergen-immunotherapy regimens.  

 

1.8. Regulatory T cells in allergy 

There is increasing evidence that the occurrence of allergic disease itself reflects an imbalance 

between IL-10-secreting regulatory T cells and Th2 cells. Recent study showed an increased 

frequency of IL-4-secreting, allergen-specific T cells in atopic patients and an increased 

frequency of IL-10-secreting, allergen-specific T cells in non-atopic individuals (Akdis et al., 
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2004). Moreover, both naturally occurring Treg cells and inducible populations of antigen-

specific IL-10 secreting regulatory T cells have been shown to inhibit Th2 responses in 

experimental allergies (Hawrylowicz  et al., 2005). Studies in humans provide evidence that 

induction of IL-10 synthesis is associated with amelioration of disease symptoms (John M et 

al., 1998)(Hawrylowicz et al., 2002). Additionally, animal studies described the suppression 

of allergic airway inflammation resulted by transfer of IL-10 to the lungs and after adoptive 

transfer of IL-10-transfected T cells (Stampfli et al., 1999)(Oh et al., 2002). Several reports 

showed that IL-10 modulates many cells and effector functions associated with allergic 

disease and therefore it has the role in the natural regulation of immune homeostasis in the 

lungs (Table 1)(Royer et al., 2001)(Jeannin et al., 1998)(Nouri-Aria et al., 2004)(Arock et al., 

1996). 

 

 

  

 

 

 

 

                        Table 1.  Functions of IL-10 relevant to allergy and asthma. 

 

It has been realized that in addition to the recognition of MHC/peptide complexes, the 

activation of resting T-cells requires a second or ``costimulatory`` signal (Schwartz ., 1990). 

Costimulatory receptor CD28, expressed on the cell surface of resting and activated T cells 

and its counterreceptors B7-1(CD80) and B7-2(CD86) expressed on antigen presenting cells 

(Köhler et al., 1975), in particular on DC, and are further upregulated upon APC activation 

Interleukin IL-10 inhibits 
 Activation of mast cells and there cytokine generation  

 Survival of eosinophils and there cytokine production  

 Function of antigen-presenting cells (APC), including the 

maturation of dendritic cells, the expression of MHC class II 

and co-stimulatory molecules 

 Activation of Th2 cells
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(Sharpe AH et al., 2002). While CD28 is constitutively expressed, its inhibitory relative 

CTLA-4, shares common ligands and is induced as an intracellular protein in response to T 

cell activation and transported to the immunological synapse where it is though to dominantly 

inhibit signaling (Chambers et al., 2001). 

Recently, it has been reported that stimulation of immune system with a superagonistic mAb 

to CD28 disproportionately expandes Treg cells (Lin and Hünig., 2003). Authors observed a 

fourfold higher increase of CD4+CD25+ T cells due to the in vivo application of a CD28 

supseragonist, than the increase of CD4+CD25- T cell subsets. Herewith, the expanded 

population of CD4+CD25+ T cells display all features of Treg cells, suggesting that CD28 

superagonistic therapy will be useful for the treatment of a variety of immunological 

conditions (Lin and Hünig., 2003). 
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2. AIMS 

 

In order to improve allergy therapy various potential anti-allergic strategies were investigated 

in this thesis work for therapeutic effects in a mouse model for allergic airway inflammation.  

•  First a mouse model for SIT was established in order to study the immunological 

mechanisms underlying successful SIT.  

•  Since adjuvant therapies are likely to improve the treatment efficacy, strategies 

combining the SIT with other therapeutic approaches were investigated. Beside the 

therapeutic effects of SIT alone, the IL-4/ IL-13 system was inhibited by use of an 

antagonistic IL-4 molecule.  

•  Furthermore anti CD28 monoclonal antibodies were used in order to induce T 

regulatory cells in vivo which should promote an anti-allergic effect in mouse model of 

allergic airway inflammation. 
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3. MATERIALS AND METHODS 
 
3.1. Animals 

Female BALB/c mice between 4-6 weeks of age were purchased from Harlan Winkelman 

(Borchen, Germany) or Charles River (Sulzfeld, Germany) and were maintaned under specific 

pathogen-free conditions. At the onset of the experiments, animals were between 6-8 weeks 

of age. All animal experiments were performed according to the guidelines for the care and 

use of experimental animals prepared and published by the Society for Laboratory Animal 

Sciences (GV-SOLAS), Biberach a.d. Riss, 1988. 

 

3.2. Anaesthesia 

To perform an allergic sensitization the animals were anaesthetised for 20-30 min with 

intraperitoneal injection of Ketamine 100mg/ml (Pharmacia)/Xylazin 2% (Bayer) mixture in 

sterile PBS. The concentration of anaesthetics were 80µg Ketamine and 10 µg Xylazin for 

one gram of animal body weight. In order to make a read out of experiments mice were 

subjected to a intraperitoneal injection with a  lethal dose, which was 10 times concentrated 

anaesthetic solution. 

 

3.3. Methods of blood collection  

The blood was collected at various time points of sensitization and therapy courses. Therefore 

mice exposed to an infrared light for 5 min. Then a small incision was performed on the tail 

vein and blood was collected in tubes. At the end of experiments (24 hours after the last 

challenge), mice subjected to lethal anaesthesia and bled from axilar vein. Blood was 

coagulated at 4°C followed by centrifugation for 20 min at 7500 rpm. Collected sera stored at 

-20 for further analysis. 
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3.4. Induction of OVA-specific Th2 responses 

To induce an allergen specific airway inflammation, Ovalbumin (OVA) was weekly 

administered as antigen to BALB/c mice, for a period of 4 weeks. For intranasal 

immunization mice were anaesthetised with intraperitoneal injection of Ketamine/Xylazin 

(sec. 3.2). After 5-7 min they were lied down onto the back and subjected to intranasal 

immunization with 50µg Ovalbumin (OVA) (Sigma Grade V, Deisenhofen, Germany) in 50 

µl sterile PBS. (Figire 4A). Subsequently, they were challenged intranasally at day 61 and 62 

with 50µg OVA/50µg PBS and 24 hours later mice were sacrificed. To obtain a negative 

control group, instead of OVA, mice were intranasally immunized with PBS (Group - no 

sensitization), at the same time points of immunization (Figure 4B). 

 

A.  

 

 

 

B. 

 

 

 

 

Figure 4. Immunization scheme. A. Allergen specific sensitization (7 x OVA), B. no sensitization. 

 

3.5. Experimental setup of allergen specific immunotherapy 

After 5 times application of antigen, the allergen sensitization is completed (day 28). Then 

allergic were mice subjected to allergen specific immunotherapy (SIT), where PBS solutions 

    Challenge 
50 µg OVA/PBS      
                            Analysis 

                                                                            Challenge 
Weekly sensitization 50µl PBS                           50µl PBS     
                                                                                                   Analysis 

Weekly sensitization 
 50µg OVA/PBS 

  Day  0            7            14           21          28                 61+62        63 

Day    0            7            14           21          28                  61+62        63  
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with increasing doses of OVA (1µg-1mg) were administered intranasally or alternatively 

subcutaneously (Figure 5). After completing the allergen specific immunotherapy course, 

mice challenged twice with 50µg OVA and 24 hours later subjected to analysis. During SIT 

course, non sensitized and OVA sensitized control groups underwent PBS applications. 

 

 

                                                                                                                               

                                                                                                                        

 

Figure 5.  Allergen immunization and therapy scheme. 

 

3.6. Production and purification of the IL-4/IL-13 inhibitor  

For inhibition of the IL-4/IL-13 system a murine double mutated IL-4 variant was used, 

which has been constructed previously by site directed mutagenesis (Q116D, Y119D). The 

cytokine inhibitor was produced in the E-coli expression system in a pET-30a vector 

(Stratagene, Amsterdam, The Netherlands). The protein-containing inclusion bodies were 

denaturated with 8 mol/L guanidinium chloride, 100mmol/L Tris-HCl pH 8.0, and 2-

mercaptoethanol and were renaturated by extensive dialysis against 120mmol/L NaCl, 

2mmol/L KCl, 3 mmol/L NaH2PO4, and 7 mmol/L Na2HPO4. The refolded protein was 

purified by ionexchange chromatography on a CM-Sepharose Fast Flow column (Pharmacia, 

Freiburg, Germany) equilibrated with 25 mmol/L ammonium acetate and eluted with a 0 to 

0.5 mol/L NaCl gradient. Finally, the material was applied on a reverse phase HPLC column 

and eluted by a gradient of acetonitrile from 30% to 50%. Remaining endotoxins were 

removed by affinity chromatography by using AffinityPak Detoxi-Gel column (Pierce/KMF, 

                 Allergen Specific immunotherapy                         Challenge                
      1µg—-5µg—25µg---125µg--625µg-1000µg-1000µg   50 µg OVA/PBS   
                                                                   Analysis 
        

Sensitization 
 50µg OVA/PBS 

Day 0    7    14    21   28          33       36       40       43       47       50       54              61+62       63      
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St Augustin, Germany) according to the manufacturer´s instructions. Endotoxin 

concentrations were determined by using Pyrogent Gel-Clot Limulus Amebocyte Lysate Test 

(Bio Whittaker, Verviers, Belgium) and were less than 0.06 endotoxin units/ml. Final protein 

concentrations were determined by the bicinchoninic acid method (Pierce/KMF) by using 

BSA as standard. Before use the inhibitory function of the inhibitor was assessed in vitro by a 

receptor binding test in the Biacore 2000 System (Biacore, Freiburg, Germany) and inhibition 

of cell proliferation in the IL-4 sensitive pre B cell line BAF/3. The IL-4 variant was 

lyophilized and stored at -80°C. 

 

3.7. Application of IL-4/IL-13 inhibitor (QY) 

To address the therapeutic potential of IL-4/IL-13 inhibitor in a mouse model for allergic 

airway inflammation, the inhibitory molecule was tested in established and persisting disease. 

Allergic sensitization was performed as described above (sec. 3.4). Subsequently, the groups 

of mice were treated intranasally with 10µg QY/PBS during allergic sensitization – 

prophylactic regimen (Figure 6A), whereas other groups were therapeutically administered to 

10µg QY/PBS, after completion of allergic sensitization (Figure 6B). In addition, IL-4/IL-13 

inhibitor was used as an adjuvant for allergen specific immunotherapy, where 10µg QY 

inhibitor applied intranasally in parallel with increasing doses of OVA (Figure 6C).  

 

A. 

 

 

 

  

Weekly sensitization                                       Challenge 
      50µg OVA                                                50µg OVA         
      10µg QY                                                    10µg QY 

 Analysis 

Day 0    7    14    21   28                                    61+62        63      
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B. 

 

                     

          

 

 

C. 

                                               

                   

            

 

 

Figure 6.  Application scheme of IL-4/IL-13 inhibitor (QY). A. Application of QY during allergic 
sensitization. B. Application of QY after allergic sensitization. C. Combination of QY inhibitor with 
SIT. 
 

3.8. Application of CD28 superagonist mAb in a mouse model for allergic airway 

inflammation 

To study the therapeutic potential of CD28 superagonist mAb (D665), the previously 

described mouse model for allergic airway inflammation was used (sec 3.4). Different doses 

of a-CD28 mAb were applied intraperitoneally at various time points of allergic sensitization 

(prophylactic regimen) or after completion of allergic sensitization (therapeutic regimen), four 

days before analysis (day 39)(Table 2). Isotype control antibodies (Mouse IgG1, PFR-01) 

were used as a control, at the same time points as the a-CD28 was administered. For all 

experiments the read out was performed 24 h after the last challenge at day 43. 

 

Analysis 

Weekly sensitization                                                                                                     Challenge 
  50µg OVA                   10µg --10µg --10µg --10µg --10µg --10µg --10µg (QY)     50µg OVA                
                                                                                                                                   

Weekly 
sensitization 
 50µg OVA 

                    Allergen Specific immunotherapy 
         1µg—-5µg—25µg---125µg--625µg-1000µg-1000µg 
         10µg—10µg—10µg—10µg—10µg—10µg—10µg(QY) 

    Challenge 
   50µg  OVA 

Day    0     7     14   21   28       33      36       40       43       47       50      54               61+62        63

Analysis 

 Day   0     7    14    21   28           33      36       40       43      47       50       54                     61  +  62            63 
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  Table 2.  Experimental design of administration of a-CD28 mAb´s.                                    

 

3.9. Bronchoalveolar Lavage (BAL) 

In order to evaluate an allergic airway inflammation, mice were sacrificed. After lethal 

anaesthesia mice bled from the axillar vein, to reduce further blood contamination with lung 

tissue during Bronchoalveolar lavage (BAL) preparation. The trachea was cannulated and 

BAL was performed by flushing lung and airways 3-4 times with 1ml sterile PBS containing 

10% fetal calf serum (FCS) (PAA laboratories, Linz, Austria).  

 

 

 

Sensitization                                                                                      Challenge 

Negative controls              PBS            PBS            PBS            PBS            PBS                                                          PBS  
                                           Iso                                 Iso                                 Iso                                       Iso 
                                           PBS            PBS           PBS            PBS            PBS                                                           PBS  
                                    50µg a-CD28 
                                          
                                           PBS            PBS           PBS            PBS            PBS                                                           PBS 
                                   100µg a-CD28 
  
                                           PBS            PBS           PBS             PBS            PBS                                                          PBS 
                                    50µg a-CD28                50µg a-CD28                 50µg a-CD28 
 
Prophylactic                      OVA          OVA          OVA           OVA           OVA                                                         OVA 
treatment                     50µg a-CD28   
 
                                           OVA          OVA          OVA           OVA           OVA                                                        OVA 
                                   100µg a-CD28 
                                           OVA          OVA          OVA           OVA           OVA                                                        OVA 
                                    50µg a-CD28                 50µg a-CD28                 50mg a-CD28  
 
Therapeutic                        OVA          OVA          OVA           OVA           OVA                          50µg a-CD28        OVA  
treatment   
                                         
                                            OVA          OVA          OVA           OVA           OVA                         100µg a-CD28        OVA 
 
Positive contol                   OVA          OVA          OVA           OVA           OVA                                                         OVA 
                                            Iso                                 Iso                                  Iso                                    Iso 
 
 

0                 7                14                21                28                                      39               41+42           Day 
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3.10. Determination of differential cell counts in the BAL fluid 

BAL total cells were counted with a cell counting camera, therefore similar amounts (1:1) of 

BAL fluids and Trypan Blue solution (Sigma-Aldrich, Steinheim, Germany) were mixed 

together. Subsequently, BAL fluids were spun onto the glass slides (10 min at 600U/min) 

using a cytospin (Shandon Southern Products Ltd., Asmoor, UK) and air dried glass slides 

were stained with Diff-Quick (Dade Behring, Marburg, Germany) according to the 

manufacturer’s instructions. The number of different cell types – eosinophils, neutrophils, 

macrophages, lymphocytes were determined microscopically by using standard cytological 

criteria.       

 

3.11. Lung Histology 

Lung tissues were fixed in 10 % phosphate-buffered formalin for 24 hours and embedded in 

paraffin wax. Embedded tissues were cut to 2-3 µm sections followed by staining with 

Hematoxilin-Eosin (H&E). The stained sections visualized by light microscopy and examined 

for inflammatory infiltrates. 

 

3.12. Detection of cytokines by ELISA             

For the detection of IL-4, IL-5, IFN-γ and IL-10, in the BAL fluid and cell culture 

supernatants sandwich ELISA’s (OptEIA-SET, BD Pharmingen, San Diego, CA) were used. 

The assays performed in polyvinyl chloride microtiter plates (Dynatech, Denkendorf, 

Germany) according to the manufacturer’s instructions. The plates were coated with 

unconjugated capture mAb for mouse IL-4, IL-5, IFN-γ or IL-10 overnight at 4°C. Next day 

the plates were washed and then blocked with assay diluent (10% FCS/PBS). After washing 

step undiluted BAL fluids or cell culture supernatants and recombinant standards were 
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applied into the plate wells and incubated for 2h at RT. The detection performed with 

biotinylated anti-mouse IL-4, IL-5, IFN- γ or IL-10, respectively. The binding reactions 

visualized with a conjugate of streptavidin-Horseradish peroxidase (HRP) followed by 

incubation with the substrate TMB reagent (BD Pharmingen, San Diego, CA). After 30 min 

reaction stopped with 1M phosphoric acid and absorbance was read at 450 nm in an ELISA 

micro plate reader (SLT Spectra, Tecan, Crailsheim, Germany).   

 

3.13. Measurement of serum OVA specific antibody titers  

Circulating OVA specific IgE and IgG subclasses were measured in the sera by ELISA. 96-

well plates were coated over night at 4°C with 100µl 0.1 mol/L NaHCO3  containing 100µg 

OVA/ml. Then plates were blocked for 2 hours at 37°C with 200µL 3% Bovine serum 

albumin (BSA) in PBS. Plates washed, and 100µl of 8 series with 2-fold serum dilutions in 

PBS containing 1% BSA was applied overnight at 4°C. The amount of bound antibody was 

detected using either Biotinylated monoclonal antibodies against mouse IgE (R35-118), 

followed by visualization with a conjugate of streptavidin-HRP or using horseradish 

peroxidase conjugated antibodies against mouse heavy chain classes (for the detection OVA 

specific IgG1 and IgG2a subclasses). After 45 min of incubation at RT with TMB substrate 

(BD Pharmingen, San Diego, CA) the reaction stopped with 1M phosphoric acid. Plates were 

read in a microplate autoreader (SLT Spectra, Tecan, Crailsheim, Germany) at 450nm. 

Quality of ELISA’s and detection antibodies was controlled using a laboratory standard serum 

pool, which was applied on each ELISA plate and was collected 20 days after sensitization 

with OVA. Data evaluated by determination of serum titers, which was the serum dilution 

lying 1.5 fold over background optical density of non immunized mice. 
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3.14. Cell preparation and in vitro T cell activation           

Single-cell suspensions from the mediastinal lymph nodes or from spleens were prepared by 

teasing them through a steel mesh and discarding the cell debris. The cells were counted with 

cell counting camera in dilution to 1:10 of cell suspension /Trypan Blue solution and 

resuspended at 2x106 cells/ml in cell culture medium (RPMI 1640 medium supplemented 

with 10 mM Hepes, 2mM L-Glutamine, 10% FCS, 10µg/ml streptomycin, 10 U/ml penicillin, 

50µM 2-mercaptoethanol). The cellular suspensions (200µl) were applied onto a cell culture 

plates and either left in medium alone, or were cultured with 10µg OVA. Alternatively, the 

plates were coated over night at 4°C with mAb to CD3ε (145-2C11, 10µg/ml) 

(BD/Pharmingen, San Diego, CA) and stimulated in the presence of recombinant human IL-2 

30µl/well (200U/ml), (Novartis, Basel, CH) at 37°C in a humidified atmospare containing 5% 

CO2. After 48h cell culture supernatants were harvested and tested for the presence of 

cytokines. 

 

3.15. Immunofluorescent staining of intracellular cytokines with Flow Cytometry 

Single cell suspensions were prepared from spleens. The cells were resuspended at 2x106 

cells/ml in RPMI medium containing 10% FCS and then stimulated with phorbol ester 

(5µg/ml) and calcium ionophore (0.5 µM) for 4 hours (both reagents from Sigma) at 37°C in 

a humidified atmosphere containing 5% CO2. Brefeldin A (2µg/ml, Sigma) was added for the 

last 2h of the in vitro culture period. The stainings were performed according to the 

instructions from Pharmingen. Briefly, after 4 hours of stimulation, cells were washed with 

FACS Buffer (PBS containing 2.5% FCS and 0.1% sodium azide (Merck, Darmstadt, 

Germany)) and were fixed with 4% formalin in PBS for 20 min at RT and followed by 20 min 

incubation with  anti-CD16/CD32 mAb (2.4G2; Fc Block (5µg/ml)). Subsequently, cells were 
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stained with FITC-labelled anti-CD4 mAb (L3T4) and PerCP-Cy5.5-labled anti CD25 (PC61) 

for the detection of Treg cells. After 15 min of staining in the dark, cells were permeabilized 

with a buffer containing 1% FCS, 0.1% sodium azide and 0.1% saponin (Sigma) in PBS for 

30 min at RT in the dark and additionally incubated with anti-CD16/CD32 mAb (2.4G2; Fc 

Block (5µg/ml)). This was followed by intracellular staining of IL-10 with PE labelled anti-

IL-10 mAb (JES5-16E3), resuspended in the permeabilization buffer. Finally cells were 

washed with permeabilization buffer and FACS buffer and analyzed using BD FACS Canto 

Flow cytometer (Becton Dickinson). Specificity of antibody binding was controlled by 

staining with isotype matched control antibodies. All antibodies were purchased from 

Pharmingen. 

 

3.16. Detection of FoxP3 positive cells by flow cytometry 

The staining of FoxP3 positive cells was performed using the APC anti-mouse/rat FoxP3 

Staining Set (eBioscience, San Diego, USA), according to the manufacturer´s instructions. 

Briefly, the single cell suspensions were prepared from spleens and resuspended at 1x106 

cells/ml. After washing step with Fax buffer, cells were incubated with anti-CD16/CD32 mAb 

(2.4G2; Fc Block (5µg/ml)) for 15min at 4°C, in the dark, followed by extracellular stainings 

of CD4 with FITC-labeled anti-CD4 mAb (L3T4) (Pharmingen) and CD25 with PE-labeled 

anti-CD25 mAb (PC61)(eBioscience). 30min later stained cells were washed and 

subsequently fixed and permeabilized with Fix/Perm buffer, for 2h at 4°C in the dark. Then, 

permeabilized cells were additionally stained with anti-CD16/CD32 mAb (2.4G2; Fc Block 

(5µg/ml)) and without washing step stained for intracellular FoxP3 with APC labelled anti-

FoxP3 mAb (FJK-16s), for 30min at 4°C. Finally, washed cells were resuspended with FACS 
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buffer and analyzed using BD FACS Canto Flow cytometer (Becton Dickinson). Specificity 

of antibody binding was controlled by staining with isotype matched control antibodies. 

 

3.17. Statistical analyses 

Statistical significance for normally distributed samples were analyzed by an unpaired t-test. 

Non-normal data or data with unequal variances were tested for significance using the Mann-

Whitney Rank Sum Test. Values of P<0,05 were considered statistically significant. 
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4. RESULTS 

4.1. In vivo mouse model for allergic airway inflammation 

To study the immune mechanisms of allergen specific immunotherapy, a previously 

established mouse model for allergic airway inflammation was used (Hahn et al., 2003), 

which shares many features of asthma in humans. For the establishment of the allergen 

specific Th2 state, mice are immunized five times intranasally  with 50µg Ovalbumin (OVA) 

(sec. 3.4) and after an allergen free interval they are subsequently challenged two times with 

50µg OVA.  

Intranasal allergen sensitization resulted in an increased and persisting OVA-specific IgE 

synthesis in the blood serum (Figure 7) and was associated with an enhanced synthesis of IL-

4 in the BAL fluids (Figure 7).  
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Figure 7. Serum OVA specific IgE and IL-4 in BAL fluid. Data are given as means +/- SEM. *P<0,05 
vs non sensitized mice. Mann-Whitney rank sum test. 
 

Furthermore, the described mouse model showed an increased eosinophilic infiltrate in the 

BAL fluid and in H&E stained lung tissue sections, when compared to non sensitized 

subjects. These findings was correlated with an enhanced IL-5 synthesis in the BAL fluid of 

OVA sensitized mice (Figure 8). 
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Figure 8. Allergic airway pathologic condition. A.Percentage of Eosinophils in BAL fluid; B. IL-5 
levels in BAL fluid measured by ELISA. Data are given as means */- SEM, *P<0,05, unpaired t test. 
C. Lung tissue sections were stained with H&E and examined microscopically for inflammatory 
infiltrate. 
 

All above mentioned findings suggest, that intranasal application of antigen efficiently 

established an allergen specific Th2 state and approves the use of this model to study various 

strategies for allergy therapy.  

X 200 
 
 
 
 
 
X 300 

No sensitization            7 x OVA 
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4.2. Establishment of an efficient route of Allergen Specific Immunotherapy in a murine 

model for allergic airway inflammation 

The first goal of the present study was the establishment of allergen specific immunotherapy 

(SIT) in a mouse model for allergic airway inflammation, that could show similar effects as 

observed in human studies. In order to efficiently reverse an allergic phenotype in this murine 

system, two different routes of SIT application were suggested - the traditional subcutaneous 

and the intranasal administration of increasing doses of specific allergen, directly to the 

effector organ.  

To evaluate the efficiency of different routes of SIT, several independent experiments were 

performed using the similar experimental design (Table 3). 

 

Table 3. Experimental design of allergen specific immunotherapy. OVA-Ovalbumin. 

 

BALB/c mice were weekly immunized and subsequently challenged intranasally with 50µg 

OVA. 24 hours after the last challenge, animals were sacrificed and several clinical and 

immunological parameters were analysed. Therapeutic groups were subjected to increasing 

doses of OVA from 1µg to 1mg intranasally or alternatively subcutaneously, after completion 

of allergic sensitization.  

First, OVA specific antibodies were detected in sera. Figure 9 shows that the treatment of 

allergic animals with intranasal SIT significantly reduced the OVA specific IgE levels, 

          Immunization                                Allergen specific immunotherapy                     Challenge       Analysis 

Groups               Day      0      7      14      21      28                 33     36     40     43     47     50     54                    61+62            63 

 No sensitization                       PBS                                                            PBS                                                   PBS                -- 
 
 7 x OVA                                  OVA                                                           PBS                                                   OVA              -- 
 
 7 x OVA + SITi.n.                   OVA                                                 OVA (1µg-1mg) i.n.                                   OVA              --
  
 7 x OVA + SITs.c.                   OVA                                                 OVA (1µg-1mg) s.c.                                   OVA             -- 
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whereas the subcutaneous application only slightly reduced synthesis of allergen specific IgE. 

In parallel with the reduction of OVA specific IgE´s, we observed in both groups significantly 

increased titers of OVA specific IgG1, in comparison to OVA sensitized untreated mice.  

In contrast to the subcutaneously treated groups that show no significant differences regarding 

to OVA specific IgG2a titer, the intranasal treatment resulted in a remarkable increase of 

OVA specific IgG2a in comparison to OVA sensitized untreated groups (Figure 9C).  
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Figure 9.  Serum OVA specific antibodies and IL-4 levels in BAL fluids. A: IgE, B: IgG1, C: IgG2a, D: 

IL-4. Titer of OVA specific antibodies in the sera and IL-4 levels in the BAL fluids were determined 

by ELISA after completion of sensitization and therapy courses. Data are given as means (n=8-10) +/- 

SEM,. *P<0,05, **P<0,005 vs OVA sensitized untreated mice. Mann-Whitney rank sum test. 



Results                                                            
                                                         
 

 - 45 -                                            

The reversal in the immunoglobulin induction was associated with a considerable suppression 

of IL-4 synthesis in the BAL fluids of intranasally treated mice (Figure 9D). Furthermore, 

here we demonstrate that subcutaneous administration of SIT also reduces the IL-4 levels in 

the airways, when compared to OVA sensitized untreated mice, however this suppressive 

effect was statistically not significant. Moreover, the analysis of IL-4 secretion in in vitro 

stimulated spleen cell culture supernatants either with a-CD3/IL-2 or specifically with OVA, 

did not show any significant trends between the untreated and the SIT treated groups (data not 

shown). 

Subsequently, the differential cell counts in the lavage fuids were determined, using standard 

cytological criteria.  

 

 

Table 4.  Absolute numbers of total cells and the different cell types present in the airways. Data are 
given as means (n=8-10) +/- SEM. *P<0,05, **P<0,005 vs OVA sensitized untreated mice, Mann-
Whitney rank sum test.  
 
 

As shown in Table 4, none of the therapeutic routes had the influence on the total cell 

numbers in the airways, in comparison to non-sensitized or OVA sensitized untreated groups. 

However further observation of stained BAL cells revealed considerable difference between 

the groups. As it is already described (sec. 4.1), sensitization of mice with OVA results in the 

strong airway inflammation indicated by the increase of eosinophils in the BAL fluid. 

 
                                                                                                                Groups 
 
Cells 104/ml                  no sensitization              7 x OVA                 7 x OVA + SITi.n.             7 x OVA                7 x OVA + SITs.c.      
 
Total cells                         11±2,1                        12,4±2,6                     10,2±1,2                       8,25±1,0                  10,4±2,3 
Eosinophils                       0,1±0,03                     2,6±0,8                    0,5±0,2**                     2,3±0,8                     1,1±0,4 
Neutophils                        1,7±0,2                       3,2±0,5                     3,0±0,6                       1,5±0,2                     2,8±0,5*     
Lymphocytes                    0,1±0,03                     0,3±0,06                  0,25±0,05                    0,45±0,2                   0,4±0,09 
Macrophages                    11,3±1,9                     7,4±1,0                     6,4±0,8                       3,8±0,7                     5,7±0,9 
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Subsequently, the treatment of allergic mice with allergen specific immunotherapy 

remarkably suppressed the eosinophil number in the airways.  

 

In the present study, the comparison of different routes of SIT administration clearly 

demonstrate, that the direct application of SIT to the effector organ reduces the airway 

inflammation more efficiently, than the subcutaneous regimen, where we see only a slight 

reduction of the eosinophilic infiltrate in the airways (Table 4).  

In order to confirm the clinical efficiency of SIT in this experimental model for allergic 

airway inflammation, IL-5 was detected in the BAL fluids, which is the responsible cytokine 

for differentiation and maturation of eosinophils. Interestingly, a direct relation between the 

eosinophil numbers and IL-5 levels in the BAL fluids was found. As figure 10 demonstrates a 

significant suppression of IL-5 was detectable in the BAL´s of intranasally treated mice which 

correlates with a remarkable reduction of airway eosinophilia in these subjects. 
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Figure 10.  IL-5 levels in the BAL fluids. IL-5 levels were measured by ELISA after completion of the 
sensitization and therapy courses. Data are given as means (n=9-10) +/- SEM. **P<0,005 vs OVA 
sensitized untreated mice, unpaired t test. 
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Although, the subcutaneous administration of increasing doses of specific antigen during 

allergen specific immunotherapy reduced the production of IL-5 and decreases eosinophilic 

infiltrates in the BAL fluids, these effects were not significantly different when compared to 

OVA sensitized untreated groups. These findings are in line with other tested parameters such 

as OVA specific antibody titers and IL-4 levels. 

 

In the present study, we wanted to investigate whether the allergen specific immunotherapy is 

able to reverse the allergic phenotype due to the modulation of Th2/Th1 responses, as it was 

described by several authors (Secrist et al., 1993)(Jutel et al., 1995)(Ebner et al., 1997). On 

the other hand we wanted to check whether the Th2/Th1 shift is the central mechanism or a 

secondary effect of successful immunotherapy. Since in the past few years, it has been 

proposed that the induction of IL-10 producing regulatory T-cells is one of the key event of 

successful SIT in patients (Till et al, 2004)(Akdis et al., 1998).  

To test both hypotheses in our SIT model, first the IFN-γ levels were measured in the BAL 

fluids and in in vitro stimulated spleen cell culture supernatants. No significant differences in 

the levels of IFN-γ were found in the BAL fluids as well as in cell culture supernatants, 

stimulated either with a-CD3/IL-2 or with OVA, from different groups of mice (data not 

shown).  

Subsequently, we checked whether the synthesis of IL-10 secretion is affected through the 

application of SIT to allergic mice. Figure 11 illustrates the levels of IL-10 in BAL fluids, 

measured by ELISA.  
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Figure 11. IL-10 levels in BAL fluids. IL-10 levels were measured by ELISA after completion of the 
sensitization and therapy courses. Data are given as means (n=9-10) +/- SEM. **P<0,005 vs OVA 
sensitized untreated mice, unpaired t test. 
 

 
Here we show, that OVA sensitization resulted in the suppression of IL-10 production, when 

compared to non sensitized mice. Furthermore, we observed that intranasal therapy restores 

this reduction significantly, that was not the case in subcutaneously treated animals.  

 

Taking together these findings indicate that the described mouse model for allergic airway 

inflammation is a suitable system to study different therapeutic interventions in allergy. 

Moreover, based on the obtained results we demonstrated that the intranasal immunotherapy 

is efficiently reversed the allergic phenotype in a similar way as in human studies, in contrast 

to the subcutaneous regimen that only showed little effects in this murine system.  

 

4.3. IL-4/IL-13 inhibitor as adjuvant for allergen specific immunotherapy 

After the establishment of intranasal allergen specific immunotherapy in our mouse model, 

we wanted to investigate the therapeutic potential of an IL-4/IL-13 inhibitor as adjuvant for 

allergen specific immunotherapy. We used the already described murine system of allergic 
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airway inflammation and subsequently treated mice with intranasal SIT alone or in 

combination with the QY IL-4/IL-13 inhibitor. Furthermore, to demonstrate the anti-allergic 

effect of QY inhibitor, groups of mice were integrated that received cytokine immunotherapy 

during or after allergic sensitization as indicated in Table 5. 

 

 

Table 5. Sensitization and therapy scheme.  

Mice were bled during the experiments and sera were checked for OVA specific antibodies. 

IgE titres were measured by ELISA. Data were collected in 3 independent animal 

experiments. Data shown are from one representative experiment.  

Intranasal OVA sensitization resulted in increased IgE synthesis at day 32 after allergic 

sensitization was completed and persisted at the end of the experiment. Similar to human SIT, 

intranasal SIT in mice led to a steady and significant reduction of OVA specific IgE synthesis 

at the end of the experiment. IgE levels in mice treated with SIT in combination with the QY 

IL-4/IL-13 inhibitor, showed similar levels as mice treated with allergen immunotherapy 

           
                       Day       0   7   14   21  28          33   36   40   43   47   50   54             61+62              63 

 
       7 x PBS                          PBS                                       PBS                                  PBS        
 
       7 x OVA                         OVA                                       PBS                                  OVA 
   
       7 x OVA                         OVA                               1µg-1mg OVA                          OVA         
        +SIT 
 
 
      7 x OVA                         OVA                                 1µg-1mg OVA                         OVA 
      +SIT/QY                                                                    10µg QY 
 
       
      7 x OVA                         OVA                                    10µg QY                               OVA 
 + QY(after sens.) 
 
     7 x OVA                         OVA                                        PBS                                   OVA 
+ QY(during sens.)          10µg QY                                                                            10µg QY 

          Sensitization                             Therapy                              Challenge          Analysis 
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alone (Figure 12). Mice, however, which had received an immunotherapy with the IL-4/IL-13 

inhibitor alone after allergic sensitization was completed, did not show significant decreases 

of IgE titers, although mean values were decreased when compared to untreated OVA 

sensitized mice. As a control for the efficacy of the IL-4/IL-13 inhibitor, mice were treated 

prophylactically during allergen sensitization. As demonstrated previously (Hahn C. et al., 

2003), these mice showed a significant reduction of OVA specific antibodies, when compared 

to untreated OVA sensitized mice.  
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Figure 12.  OVA specific IgE´s. After sensitization and therapy courses IgE levels were measured by 

ELISA. Data are given as means (n=7-8) +/- SEM. **P .001, Mann-Whitney rank sum test. 

 

Next we analyzed sera for OVA specific IgG1 and IgG2a antibodies. Both immunoglobulin 

isotypes increased under intranasal SIT when compared to untreated OVA sensitized mice. 

Animals, which have been treated with SIT in combination with the QY IL-4/IL-13 inhibitor 

showed no significant difference in comparison to mice treated with SIT alone. In contrast, as 

published previously (Grunewald SM. et al., 1998) both treatment with the QY inhibitor 

during allergic sensitization, as well after allergic sensitization suppressed specific IgG1 and 



Results                                                            
                                                         
 

 - 51 -                                            

IgG2a antibody synthesis when compared to untreated OVA sensitized mice (Figure 13).    
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Figure 13  OVA specific IgG´s. After sensitization and therapy courses Ig levels were measured by 
ELISA. Data are given as means +/- SEM. **P .001, Mann-Whitney rank sum test. (n=7-8). A. OVA 
specific IgG1, B. OVA specific IgG2a. 
 
 

After sensitization and therapy mice were challenged twice intranasally. Mice were sacrificed 

24 hours later and bronchoalveolar lavages were performed. All groups showed similar total 

cell counts in the BAL fluid (data not shown). Intranasal OVA sensitization, however, 

resulted in increase of eosinophils in the bronchoalveolar lavage fluid in comparison to non 

sensitized mice (Figure 14).  
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Figure 14.  Airway eosinophilia. After completion of the sensitization and therapy courses, 
BAL´s were performed and the amount of eosinophils was determined. Data are means (n=7-
8) +/- SEM , *P .05, **P .001, unpaired t-test. (n=5-7). 
 
 
Mice, which received intranasal SIT showed a significant reduction of eosinophils in the 

bronchoalveolar lavage fluid, when compared to untreated OVA sensitized mice. Cytokine 

directed immunotherapy alone after allergic sensitization also resulted in a significant 

reduction of the eosinophil amounts. The combination of allergen specific and cytokine 

directed immunotherapy, however, did not induce a further decrease of eosinophil amounts in 

the BAL fluid (Figure 14), when compared to mice treated with SIT alone or cytokine 

inhibitor alone in each of the 3 independent animal experiments performed. As demonstrated 

previously (Hahn C. et al., 2003), the prophylactic application of the QY inhibitor during 

allergic sensitization resulted in a complete inhibition of airway eosinophilia in comparison to 

untreated OVA-sensitized mice. 

The histological analysis of lung sections showed similar results (Figure 15). Allergic 

sensitization was associated with a strong peribronchial eosinophil rich inflammatory 

infiltrate, which was decreased in mice treated with SIT alone. The combination of SIT and 

immunotherapy with the QY cytokine inhibitor, however did not show any obvious 

differences in comparison to mice, which received only SIT. In line with the decreased 

eosinophilia in the BAL fluid, the inhibition of IL-4/IL-13 system during allergic sensitization 

resulted in decreased peribronchial eosinophilic infiltrates in the lung tissues, which confirms 

the efficiency of QY inhibitor in this mouse system.  
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 7 x PBS                 7 x OVA              7 x OVA + SIT          7 x OVA                   7 x OVA               7 x OVA 

                                                                                              + SIT + QY           + QY(after sens.)  + QY(during sens.) 

 
Figure 15.  Lung histologies. Lung tissues were fixed and embedded in paraffin wax. Sections were 
stained with Hematoxylin-Eosin (H&E). Magnification A: 200x, B: 300x. 
 

Next we investigated the cytokine profiles in the BAL fluids as well as in spleen cell 

suspensions after in vitro restimulation with anti CD3/IL-2 or specifically with OVA. 

In congruence with the eosinophils in the BAL fluid, IL-5 levels were significantly increased 

in OVA sensitized mice, when compared to non sensitized control group. Mice, which have 

been subjected to SIT showed a significant reduction of IL-5 levels, when compared to OVA 

sensitized group. In mice, which were treated with SIT in combination with the QY IL-4/IL-

13 inhibitor, there was no significant difference of IL-5 values in the BAL fluid  in 

comparison to mice treated with SIT alone (Figure 16). Group of mice, which were treated 

after allergic sensitization with QY inhibitor instead of SIT, showed decreased mean IL-5 

levels in the BAL fluid, when compared to untreated OVA sensitized mice. However, this 

difference was not significant. The inhibition of the IL-4/IL-13 system during allergic 

sensitization, however, reduced IL-5 levels significantly, when compared to untreated OVA 

sensitized group (Figure 16). In vitro restimulated spleen cell cultures did not show any 

significant differences in IL-5 levels between the groups (Figure 16). Moreover, in OVA 

stimulated spleen cell cultures IL-5 had a non detectable level, similar to the cell suspensions 

taken from the unstimulated medium cultured cells.   
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Figure 16.  IL-5 levels were measured in the BAL fluids and in vitro a-CD3/IL-2 stimulated spleen 
cell cultures by ELISA after completion of the sensitization and therapy courses. Data are means (n=7-
8) +/- SEM. *P .05, **P .001, unpaired t-test. 
 

Furthermore IL-4 levels in the bronchoalveolar lavage fluid were found to be increased in 

OVA sensitized mice in comparison to non sensitized control animals. Allergen 

immunotherapy resulted in decrease of IL-4 levels, when compared to OVA sensitized mice. 

Secretion of IL-4 in the BAL fluid was elevated in mice, which were treated both with the QY 

IL-4/IL-13 inhibitor alone and in combination with SIT, when compared to mice treated with 

SIT alone. Furthermore, mice, which were treated prophylactically and subsequently 

challenged with the QY inhibitor, showed highest levels of IL-4 in BAL fluid. This reflects 

the cross reactivity of the ELISA detection antibody between the wild type and the QY IL-

4/IL-13 inhibitor, which is a mutated IL-4 molecule, and indicates remaining amounts in the 

lung of the intranasally applied inhibitory protein (Figure 16). However, in mice that were 

subjected to IL-4/IL-13 inhibitor during allergic sensitization this effect was restored by 

decreased levels of IL-4 in a-CD3/IL-2 stimulated spleen cell cultures. Analysis of IL-4 

secretion in a-CD3/IL-2 as well as OVA stimulated spleen cell cultures, show no significant 

trends between the other groups. Similar to IL-5 levels, in OVA stimulated or in unstimulated 

medium cultured spleen cell supernatants, we could not measure detectable levels of IL-4. 
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Figure 17.  IL-4 levels were measured in the BAL fluids and in vitro a-CD3/IL-2 stimulated spleen 
cell cultures by ELISA after completion of the sensitization and therapy courses. Data are means (n=7-
8) +/- SEM. *P .05, **P .001, unpaired t-test 
 

In addition IL-13 levels were determined in the BAL fluid as well as after in vitro T cell 

stimulation with anti CD3/IL-2. IL-13 levels were found to be at baseline levels of non 

sensitized mice showing no significant differences in all groups (data not shown). 

 

The IFN-γ production was determined in BAL fluids and in vitro stimulated spleen cell 

cultures, however no significant differences were found between the groups (Figure 18).
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Figure 18. IFN-y  levels were measured in the BAL fluids and in vitro stimulated spleen cell cultures 
by ELISA after completion of the sensitization and therapy courses. Data are means (n=7-8) +/- SEM. 
*P .05, **P .001, unpaired t-test 
 

In addition, we measured IL-10 levels in the BAL fluids and in in vitro stimulated spleen cell 

cultures, in order to detect the induction of an IL-10 producing regulatory T-cell response.  

OVA sensitization decreased IL-10 levels in the BAL fluid in comparison to non sensitized 

mice. Allergen specific immunotherapy restored IL-10 amounts in the BAL back to levels of 

non sensitized mice. Mice, which received SIT in combination with the QY IL-4/IL-13 

inhibitor showed similar increased IL-10 levels in the BAL as mice, which were treated with 

SIT alone. IL-10 levels in the BAL fluid of mice, which were treated with QY cytokine 

inhibitor both during and after allergic sensitization were at baseline levels of non sensitized 

animals (Figure 19).  
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Figure 19. IL-10 levels were measured in the BAL fluids and in vitro stimulated spleen cell cultures by 
ELISA after completion of the sensitization and therapy courses. Data are means (n=7-8) +/- SEM. 
*P .05, **P .001, unpaired t-test. 
 

An a-CD3/IL-2 stimulated spleen cells supernatants showed increased IL-10 levels in mice, 

that were treated with SIT when compared to untreated OVA sensitized mice and non 

sensitized control mice. However, SIT in combination with IL-4/IL-13 inhibitor, did not show 
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any significant differences in comparison to mice treated with SIT alone. In OVA or in 

medium cultured spleen cell supernatants there was undetectable level of IL-10. 

 

Next, we wanted to know, whether the above mentioned increase of IL-10 in the BAL fluid 

and in restimulated spleen cell suspensions was associated with an increased percentage of 

IL-10/CD25 positive regulatory T cells. Therefore, spleen cells were stained for CD4 and 

CD25, and subsequently for intracellular IL-10. Stained cells were analysed by flow 

cytometry. 

Indeed, we could show that the number of IL-10 positive CD25 positive CD4 T cells was 

significantly increased in mice, which received SIT (0,44 +/- 0,02, n=7) when compared to 

untreated OVA sensitized mice (0,3 +/- 0,04, n=7, p=0,002) and non sensitized mice (0,28 +/- 

0,03, n=8). However, no significant differences were found between mice, which received 

SIT in combination with the QY cytokine inhibitor (0,34 +/- 0,02, n=8) and mice which 

received the QY inhibitor during allergic sensitization (0,25 +/- 0,03, n=7) or after allergic 

sensitization instead of SIT (0,33 +/- 0,02, n=7) when compared to untreated OVA sensitized 

mice.  

 

Thus, taking together our results indicate, that intranasal allergen specific immunotherapy 

efficiently reverse the allergic phenotype by reducing specific IgE synthesis and airway 

eosinophilia. This was associated with decrease of IL-4, IL-5 synthesis in BAL fluids and 

increased IL-10 levels in BAL´s and spleen cell cultures. In addition, FACS staining revealed 

the association between the amount of IL-10 and increased percentage of IL-10 secreting 

CD4+CD25+ T cell population. However, mice treated with IL-4/IL-13 inhibitor during SIT, 

did not show any significant differences. 
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4.4. The role of regulatory T cells in allergy 
 
4.4.1. The prophylactic application of a CD28 superagonist in a mouse model for 
allergic airway inflammation 
 
During last couple of years there is an increasing evidence that the development of allergic 

disease such as rhinitis, asthma and atopic eczema is controlled by several populations of 

regulatory T cells including CD4+CD25+ Treg (Umetsu et al.,2003).  With regard to these T 

cell subsets, recently demonstrated that in vivo administration of CD28 superagonist  leads to 

the preferential expansion and strong activation of naturally occurring CD4+CD25+CTLA-

4+FoxP3+ Treg cells over conventional T cells (Beyersdorf N., 2005)  

The following study was designed in order to investigate the effects of CD28 superagonist 

mAb in our murine system. Therefore first we performed a precursor experiment, where the 

groups of non sensitised mice were treated with various doses (50µg, 100µg, 200µg) of a-

CD28 or with isotype control antibodies as a negative control group. After 7 days total serum 

IgE and various cytokines in in vitro restimulated spleen cell cultures were measured by 

ELISA. Application of a-CD28 to non sensitized mice induced a dose dependent increase of 

total serum IgE and increased the secretion of the cytokines IL-4, IL-10 and IFN-y  (Figure 

20) in a-CD3/IL-2 stimulated spleen cell cultures, when compared to the negative control 

group. 
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Furthermore, the intracellular staining of IL-10 in CD4+CD25+ T cells, revealed the dose 

dependent increase of these T cell populations as already demonstrated previously (Lin and 

Hünig, 2003). 
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Figure 20.  Serum total IgE and cytokines in in vitro a-CD3/IL-2 stimulated spleen cell culture. A: 
Total IgE, B: IL-4, IL-10 and IFN-γ levels measured by ELISA. Data are given as means (n=3) +/- 
SEM,. *P<0,05, **P<0,005 vs isotype control group, unpaired t test. 
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Next, we performed a second animal experiment (Table 6) where various doses of a-CD28 

(Gr. 3,5,7) or an isotype control antibody (Gr.10) were applied during allergic sensitization. 

Read out was performed 24 h after the last allergen challenge at day 43. 

 

Table 6. Experimental set up of a-CD28 application. 

 

Whereas the OVA specific IgE`s where not detectable in non sensitized a-CD28 treated mice 

(Gr. 2,4,6), the treatment with a-CD28 together with OVA sensitization resulted in a dose 

dependent increase of serum OVA specific IgE´s (Figure 21).   

 

Figure 21.  Titers of serum OVA specific IgE. A. Dynamic of OVA specific IgE at different time points 
of experiment, B. OVA specific IgE at day 43. Titers of OVA specific antibodies determined by 
ELISA. Data are given as means (n=5) +/- SEM,. *P<0,05, **P<0,005 vs  positive contol group 
(Gr.10), Mann-Whitney rank sum test. 

                                                                Sensitization                                   Therapy                         Number of animals   
 
Negative controls:              Group 1:         7 x PBS                        4 x 100µg Iso (day 0, 14, 28 39)             3 
                                           Group 2:         7 x PBS                        1 x 50µg a-CD28 (day 0)                         5 
                                           Group 4:         7 x PBS                        1 x 100µg a-CD28 (day 0)                       5 
                                           Group 6:         7 x PBS                        3 x 50µg a-CD28 (day 0, 14, 28)             5 
Positive control:                 Group 10:       7 x OVA                       4 x 100µg Iso (day 0, 14, 28, 39)            5 
Prophylactic treatment:      Group 3:         7 x OVA                       1 x 50µg a-CD28 (day 0)                        5 
                                           Group 5:         7 x OVA                       1 x 100µg a-CD28 (day 0)                       5 
                                           Group 7:         7 x OVA                       3 x 50µg a-CD28 (day 0, 14, 28)             5 
Therapeutic treatment:       Group 8:         7 x OVA                       1 x 50µg a-CD28 (day 39)                       5 
                                           Group 9:         7 x OVA                       1 x 100µg a-CD28 (day 39)                    5                    
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Furthermore the amount of Eosinophils in the BAL fluid was increased in OVA sensitized a-

CD28 treated mice, when compared to OVA sensitised mice, which were subjected to the 

isotype control. The percentage of Eosinophils was extremely high in group 7, which received 

the highest dose of a-CD28. In contrast, non sensitized mice which were treated with the a-

CD28 antibody showed no airway eosinophilia (Figure 22). All groups, which received the 

allergic sensitisation and a-CD28 therapy (groups 3,5,7) showed enhanced levels of IL-5 in 

the bronchoalveolar lavage (BAL) fluid in comparison to OVA sensitised mice, which were 

treated with the isotype control (Gr.10)(Figure 22). Herewith, in OVA sensitized a-CD28 

treated mice (Gr. 3,5,7) IL-5 levels in the BAL´s were significantly higher than in the non 

sensitized control groups (Figure 22). In both a-CD3/IL-2 and OVA stimulated spleen cell 

cultures, OVA sensitized a-CD28 treated mice showed a stronger secretion of IL-5 than OVA 

sensitized mice, which were treated with isotype control (Figure 22). However, there was no 

additional IL-5 secretion in OVA sensitized a-CD28 treated animals, when compared to the 

non-sensitized a-CD28 treated control groups. 
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Figure 22. Percentage of Eosinopils and IL-5 levels. A. Eosinophils [%] in BAL fluids, B. IL-5 level 
in BAL fluids, C. IL-5 levels in in vitro a-CD3/IL-2 stimulated spleen cell culture, D. IL-5 levels in in 
vitro OVA stimulated spleen cell culture. Data are given as means (n=3-5) +/-  SEM, *P<0,05, 
**P<0,005 vs positive control group (Gr.10), unpaired t test. 
 

We did not see significant differences regarding to the IL-4 levels in the BAL fluids between 

all the groups. The exception was the group, which received 1x50µg a-CD28 at day 0 

(Gr.3)(Figure 23). In a-CD3/IL-2 or OVA stimulated spleen cell cultures IL-4 secretion was 

significantly increased in non sensitized or OVA sensitized animals that received the highest 

doses of a-CD28 (Gr. 6 and 7), when compared to OVA sensitized control group (Figure 23). 
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Figure 23. IL-4 levels measured by ELISA. A. IL-4 levels in BAL fluids. B. IL-4 levels in in vitro a-
CD3/IL-2 stimulated spleen cell culture. Data are given as means (n=3-5) +/- SEM,. *P<0,05, 
**P<0,005 vs  positive control group (Gr.10), Mann-Whitney rank sum test. 
 
 
Subsequently, we measured the IFN-γ levels in the BAL fluid and in spleen cell cultures. Data 

indicated that the application of a-CD28 to non sensitized mice reduced IFN-γ levels in the 

BAL fluid, when compared to non sensitised mice, which received the isotype control (Gr.1). 

This could be further decreased in the groups, which received the allergic sensitization 

together with a-CD28 antibody therapy (Figure 24). In contrast, we found a dose dependent 

increase of IFN-γ in a-CD3/IL-2 stimulated cell cultures of non sensitized a-CD28 treated 

groups (similar results were obtained in the precursor experiment), which was similar in OVA 

sensitized a-CD28 treated mice. However, after OVA specific stimulation of spleen cells IFN- 

γ levels were reduced in OVA sensitized a-CD28 treated mice, when compared to non 

sensitized a-CD28 treated control mice. In OVA sensitized mice, which received the highest 

dose of a-CD28 (Gr.7) IFN-γ levels were significantly reduced, when compared to OVA 

treated mice which received the isotype control (Figure 24).  
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Figure 24.  IFN-γ levels detected with ELISA. A. IFN-γ in BAL fluids, B. IFN-γ in in vitro a-CD3/IL-2 
stimulated spleen cell culture, C. IFN-γ in in vitro OVA stimulated spleen cell culture. Data are given 
as means (n=3-5) +/- SEM, *P<0,05, **P<0,005, unpaired t test. 
 

IL-10 levels in the BAL fluid seemed to be reduced by allergic sensitisation and was lowest in 

OVA sensitized mice, which received the isotype control antibody. Treatment with a-CD28 

increased IL-10 levels in the BAL fluid in all groups when compared to OVA sensitized mice 

treated with the isotype control (Figure 25). However, a-CD28 therapy did not significantly 

increase IL-10 levels in all groups over background levels of non sensitized mice, which 

received the isotype control (Gr.1). In a-CD3/IL-2 stimulated spleen cell cultures, similar 

trends could be observed (Figure 25). In OVA stimulated spleen cell cultures, however, no 

significant differences were found (data not shown). 
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Figure 25. IL-10 levels in BAL fluids and in vitro a-CD3/IL-2 stimulated spleen cell cultures. Data are 

given as means (n=3-5) +/- SEM,. *P<0,05, **P<0,005 vs  positive control group, Mann-Whitney 

rank sum test (A.), unpaired t test (B). 

 

To test, whether the application of the superagonistic mAb induced T reg cell expansion in 

our mouse system, we made an extracellular stainings of spleen cells for CD4/CD25 and 

intracellular stainings for the Treg cell markers FoxP3 and IL-10.  

The results indicated that the application of a-CD28 mAb to non-sensitized mice (Gr.2,4,6) 

induced a dose dependent expansion of CD25+IL-10+ cells among CD4+ T cell population in 

comparison to non-sensitized/isotype control mice (Gr.1)(Figure 26). In OVA sensitized a-

CD28 treated groups these T cell subsets were not further increased (Gr.3,5,7), when 

compared to non sensitised a-CD28 treated mice. Herewith, the only OVA sensitized group 

that received the highest dose of a-CD28 (Gr.7) showed a significant increase of CD25+IL-

10+ T cell subsets, when compared to positive control group (Figure 26).  

Furthermore the FoxP3+ T cell population was analysed within the groups. Surprisingly, no 

significant trends were observed in all groups (data not shown).  
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Figure 26. CD25+ IL-10+ T cells among CD4+ spleen T cell subsets. In vitro activated spleen cells 
were stained for CD4 and CD25 and subsequently intracellulary for IL-10. Stained cells were 
measured by FACS. Data are the mean percentage of CD25+ IL-10+ (n=3-5) T cell subsets. 
 

Taken together our results indicate that the application of a-CD28 by itself leads to a dose 

dependent expansion of CD4+CD25+IL-10+ T cell subsets. Furthermore it induces Th2 

polarization with IL-4 and IL-5 cytokine production, which results in the increase of total IgE. 

The treatment with a-CD28 during allergic sensitization preferably induced Th2 polarization, 

which could not be downregulated by Treg cells. Despite a slight effects of a single 

IL-10
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application of 50µg or 100µg anti CD28 during allergic sensitisation a multiple injections of 

a-CD28 mAb has stronger influence on all measured parameters.  

 
4.4.2. The therapeutic application of a CD28 superagonist in a mouse model for allergic 
airway inflammation 
 

In order to investigate the therapeutic effects of a-CD28, the administration of various doses 

of mAb´s were performed after completion of the sensitization course, four days before 

analysis (Table 6). Mice, that were treated with 50 µg mAb´s (Gr.8), showed a decrease of 

OVA specific IgE titers and the application of 100µg (Gr.9) resulted in a significant reduction 

of this parameter (Figure 27).  

 

 

Figure 27. Titer of serum OVA specific IgE. A. Dynamic of OVA specific IgE at different time points 
of experiment, B. OVA specific IgE at day 43. Titer of OVA specific antibodies in the sera determined 
by ELISA. Data are given as means (n=5) +/- SEM,. *P<0,05, **P<0,005 vs  positive control group, 
Mann-Whitney rank sum test. 
 

Furthermore, both groups showed a significantly reduced percentage of airway eosinophils in 

comparison to positive control group (Gr.8: 1,6±0.4%, p=0,02; Gr.9: 1±0.5%, p=0,006). 
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Moreover, in the group that received 100µg of a-CD28, IL-4 and IL-5 levels were reduced in 

the BAL fluid and were nearly completely suppressed after in vitro restimulation of spleen 

cell cultures with OVA in comparison to OVA sensitized mice, which were treated with the 

isotype control antibody (Figure 28).  

 

 

 
 
Figure 28. IL-4 and IL-5 levels in in vitro OVA stimulated spleen cell cultures, detected by ELISA. 
Data are given as means (n=5) +/- SEM,. *P<0,05, **P<0,005 vs  positive control group, Mann-
Whitney rank sum test. 
 

We also analyzed the BAL fluid for secretion of the Th1 cytokine IFN-y, which was 

significantly increased in both therapeutically treated groups in comparison to OVA sensitised 

mice, which received the isotype control (Figure 29).  
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Figure 29. IFN-γ levels in BAL fluids. Data are given as means (n=3-5) +/- SEM *P<0,05 vs positive 
control group, unpaired t test. 
 

Furthermore, we detected IL-10 amounts in the BAL fluid and in spleen cell cultures. Our 

results indicate, that the therapeutic application of mAb to CD28, like in the prophylactic 

setting, significantly increased IL-10 secretion in the BAL fluid as well as in a-CD3/IL-2 

stimulated cell cultures in comparison to OVA sensitized mice, which were treated with the 

isotype control (Figure 30).                                                                        

 

Figure 30.  IL-10 levels in BAL fluids and in vitro a-CD3/IL-2 stimulated spleen cell cultures. Data 
are given as means (n=3-5) +/- SEM P<0,05 vs positive control group, unpaired t test. 
 
 
 In addition, we wanted to know whether the improvement of the allergic state in the 

therapeutically treated groups is due to the expansion of the T reg cell populations. Therefore 

we performed FACS analysis, where spleen cells were stained extracellullary for CD4 and 

CD25 and intracellulary for FoxP3 and IL-10.  We observed the expansion of CD25+ IL-10+ 

secreting cell subsets among CD4+T cell populations in both therapeutically treated groups, 

which is in line with the IL-10 data (Figure 30). Furthermore, the therapeutic application of a-
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CD28 mAb resulted in a significant increase of FoxP3 expression in CD4+CD25+ T cell 

populations, when compared to negative groups (Figure 31). 

 
 
 
 
  Gr.1                                     Gr.10                                                                                    Gr.1                                    Gr.10 
                         

                         
 Gr.8                                     Gr.9                                                          Gr.8                                     Gr.9             

                

 

Figure 31. CD25+ IL-10+ and CD25+ FoxP3+ T cells among CD4+ spleen T cell subsets. For the 
staining of intracellular IL-10, the spleen cells were in vitro activated and stained for CD4 and CD25, 
followed by staining of IL-10. For intracellular detection of FoxP3, non activated spleen cells were 
stained for CD4/CD25 with subsequent staining of FoxP3. Stained cells were analysed by FACS. Data 
are given as mean percentages of CD25+IL-10+ or CD25+FoxP3+ (n=3-5) CD4+T cell subsets. 
 

Obtained results indicate that the therapeutic application of a superagonistic mAb to CD28 

after allergic sensitization, relieves the allergic condition by reduction of OVA specific IgE 

and airway eosinophilia in line with the reduction of Th2 cytokines in the BAL fluid as well 

as in OVA stimulated spleen cell cultures in our mouse system. This is accompanied by an 

increase of CD25+Foxp3+ and CD25+IL-10+ CD4+T cell subsets. These findings underlie 

the importance of further investigations to estimate the therapeutic potential of superagonist 

mAb in allergy therapy. 

 
5. DISCUSSION 
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5.1. Allergen Specific Immunotherapy in the management of allergic disorders 

This thesis work deals with the regulatory mechanisms of allergic airway disorders in a 

murine system. Since, the allergen specific immunotherapy currently remains as a cornerstone 

in the management of respiratory allergies, we addressed the present study to the investigation 

of a mechanism, which leads into the efficiency of this approach. Despite its use in clinical 

practice for nearly a century, the underlying immunologic mechanisms are slowly being 

elucidated (Akdis CA. et al., 2004)(Till SJ. et al., 2004).Understanding the immune 

mechanisms that prevent disease occurrence in nonallergic individuals and studies 

investigating the regulatory mechanisms under efficient therapeutic approaches in allergic 

diseases offer promise for new immune interventions. 

 

In our study we established a model for local intranasal immunotherapy. We found, that local 

intranasal allergen immunotherapy could efficiently reverse the allergic phenotype by 

reducing OVA specific IgE synthesis and airway eosinophilia significantly in comparison to 

untreated OVA sensitized animals. Van Oosterhout et al. were the first to publish a mouse 

model for allergen specific immunotherapy where subcutaneous allergen immunotherapy with 

OVA efficiently inhibited airway eosinophilia and airway hyperresponsiveness (Van 

Oosterhout AJ. Et al., 1998) . We demonstrate here, that also local immunotherapy efficiently 

reversed the allergic phenotype in our murine allergy model. We used a previously 

established murine asthma model, where intranasal OVA sensitization induces persisting IgE 

synthesis and an eosinophil rich allergic airway inflammation (Hahn C. et al., 2003). We 

found, that local intranasal allergen immunotherapy could efficiently reverse the allergic 

phenotype by significantly reducing OVA specific IgE synthesis and airway eosinophilia in 
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comparison to untreated OVA sensitized animals. Furthermore, local SIT decreased IL-4 and 

IL-5 and increased IL-10 levels as well as the amount of IL-10 producing T reg cells. 

Previous studies addressing the mechanisms of successful SIT reported that SIT induces a 

shift from Th2 towards a Th1 response (Secrist H. et al., 1993)(Jutel M. et al., 1995). 

Therefore, we speculated that an IL-4/IL-13 inhibitor as adjuvant during SIT should enhance 

this effect and improve treatment efficacy. This hypothesis, however, was disproved by our 

experiments, since mice, which were treated with the IL-4/IL-13 inhibitor during SIT did not 

show any additional beneficial therapeutic effects when compared to mice treated with 

allergen immunotherapy alone.  

Furthermore, mice were treated prophylactically with the QY IL-4/IL-13 inhibitor during 

allergic sensitization in our study, in order to underline the antiallergic potential of the 

inhibitor, which has been demonstrated previously (Hahn C. et al., 2003). Mice, which 

received the inhibitor during allergic sensitization, showed a significant reduction of OVA 

specific antibodies. Mice, however, which had received the IL-4/IL-13 inhibitor after allergic 

sensitization did not show significant decreases of IgE titers. This data is in congruence with 

the study of Hahn et al., where the QY IL-4/IL-13 inhibitor efficiently prevented the 

development of an allergic phenotype. In established allergy, however, IL-4/IL-13 inhibition 

did not significantly ameliorate allergic airway inflammation. In another study it has been 

described that upon prolonged allergen exposure IL-4 receptor alpha chain knockout mice 

produced allergen specific IgE`s leading to anaphylaxis (Grunewald SM. et al., 2001). Here 

we report that IL-4/IL-13 inhibition as adjuvant for allergen immunotherapy does not show 

additional beneficial effects.  

In summary, all these findings together indicate, that although IL-4 and IL-13 are major 

players for inducing an allergic immune response, other factors seem to control an established 
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allergy, where IL-4 and IL-13 play a minor role. One candidate cytokine might be IL-5, which 

is essential for the maturation, differentiation and survival of eosinophils in allergic responses 

(Lewis DB., 2002). Recent works has shown the potential importance of another Th2 

cytokine, IL-9. IL-9 has been shown to act on many cell types involved in asthma, including 

T-cells, B-cells, mast cells, eosinophils and epithelial cells. The development of transgenic 

mice over expressing IL-9 has suggested an important role in the development of the 

asthmatic phenotype, including eosinophilic inflammation, bronchial hyperresponsiveness, 

elevated IgE-levels and increased mucus secretion (Temann UA. et al., 1998)(Soussi-Gounni 

A. et al., 2001).  

The dose and application mode of the IL-4/IL-13 inhibitor might also be substantial for 

treatment effects. An efficient resorption and the in vivo inhibitory activity of the intranasally 

applied IL-4/IL-13 inhibitor is indicated by the fact, that prophylactic treatment during 

allergic sensitization efficiently prevented the development of the allergic phenotype in our 

model. The treatment regimen used in this investigation was selected with reference to 

previous studies with the QY IL-4/IL-13 antagonist, where dose responses were performed 

and where intranasal allergic sensitization and allergic airway inflammation could efficiently 

be inhibited by weekly intranasal applications of 10µg of the same inhibitor together with the 

allergen. The inhibition of allergic sensitization with intranasal versus intraperitoneal 

application of identical doses of the QY IL-4/IL-13 inhibitor was equal in that study (Hahn C. 

et al., 2003). 

The lack of therapeutic effects of an IL-4/IL-13 inhibitor as adjuvant for SIT may indicate, 

that the inhibition of Th2 cytokine production is not a fundamental event in successful 

immunotherapy but rather an epiphenomenon. This view is supported by other studies 
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showing that a Th2 to Th1 switch does not always occur in successful immunotherapy (Till 

SJ. et al., 2004)(Till S. et al., 1997)(Wachholz PA. et al., 2002)(Francis JN. et al., 2003). 

An increase of IL-10 under SIT was first described by Bellinghausen et al.(Bellinghausen I. et 

al., 1997). In the past few years, it has been proposed that the induction of IL-10 producing 

regulatory T-cells is one of the key mechanisms for successful SIT since the increase of IL-10 

and IL-10 producing regulatory T-cells was found to be a highly consistent finding in many 

studies investigating the immunomechanisms of SIT in patients (Till SJ. et al., 2004)(Akdis 

CA. et al., 1998). In a murine asthma model Vissers et al. demonstrated recently that 

subcutaneous allergen immunotherapy induced a suppressive memory responses mediated by 

IL-10 (Vissers JL. et al., 2004). In mice treated with monoclonal antibodies against IL-10 

receptors, the beneficial effects of SIT were largely abrogated. This underlines the idea that 

the induction of IL-10 producing regulatory T-cells is a key mechanism for successful SIT. In 

line with this, our SIT model showed an increased IL-10 production in the BAL fluid as well 

as in spleen cell cultures. Furthermore, we found the increased number of IL-10 producing T 

reg cells. The SIT induced increase of IL-10 producing T reg cells, however, was absent in 

mice, which have been treated with the QY IL-4/IL-13 inhibitor as adjuvant during 

immunotherapy. Thus, IL-4 and IL-13 might be critical controlling cytokines for regulatory 

T-cells. Previously Akbari et al. showed that pulmonary dendritic cells, exposed to respiratory 

antigens transiently produced IL-10 and stimulated the development of CD4 T regulatory 1 

like cells that also produced IL-10 (Akbari O. et al., 2001). The adoptive transfer of these 

latter cells induced an antigen specific unresponsiveness in recipient mice. Therefore, the 

induction of IL-10 producing pulmonary dendritic cells might be responsible for the effects of 

intranasal immunotherapy in our mouse model.  



Discussion                                                          
                                                         
 

 - 76 -                                            

In conclusion we show here, that a cytokine directed immunotherapy, using an IL-4/IL-13 

inhibitor as adjuvant for allergen specific immunotherapy did not enhance anti allergic effects. 

This supports the viewpoint that not a shift from a Th2 to a Th1 cytokine profile but other 

factors e.g. the induction of IL-10 producing regulatory T-cells might be key events in 

successful allergen immunotherapy.  

 

5.2. The role of regulatory T cells in allergies 

Over the past few years there is a increasing evidence that the regulatory T cells could 

contribute to suppressive and regulatory events in allergic disorders. Several different 

populations of T cells are described to have these regulatory properties. Recent studies 

described that both naturally occurring Treg cells and antigen-driven IL-10-secreting 

regulatory T cells have been implicated in the regulation of allergen-induced Th2 responses in 

mice and humans (Stassen M. eta al., 2004)(Ling EM. et al., 2004)(Akbari O. et al., 

2001)(Francis JN. et al., 2003). 

In human studies, the reduction of allergic symptoms after successful allergen immunotherapy 

was associated with the appearance of IL-10 producing T reg cells (Francis JN., 2003)(Jutel 

M., 2003). In animal studies, a population of CD4+ T cells induced by OVA immunization 

has been shown to inhibit the development of IgE responses (Curotto de Lafaille, et al., 2001). 

However, mouse studies on the role of Treg cells in different aspects of allergic disease and 

asthma are less studied (Van Oosterhout AJ. and Bloksma N., 2005). 

 

To investigate the role of regulatory T cells in the mouse model for allergic airway 

inflammation, we used the superagonistic monoclonal antibodies to CD28. Recent 

observations argue, that superagonistic a-CD28 is able to induce an in vivo and in vitro 
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expansion of CD4+CD25+  regulatory T cell populations, mimicking the effects of natural 

ligands by costimulating the T-cell response, without TCR engagement (Hünig T. and 

Dennehy K., 2005). 

Administration of a various doses of a-CD28 mAb in parallel with OVA sensitization, 

resulted in a slight increase of IL-10+ CD25+ Tcell subsets of CD4+ spleen cells. Besides, 

however, the mice that were treated during allergic sensitization phase showed the stronger 

Th2 response, than the allergic mice that were immunized only with OVA. In congruence 

with these phenomena are the increased OVA specific IgE titers, associated with an enhanced 

secretion of Th2 type cytokines and accompanied by airway eosinophilia. Moreover, the 

treatment of mice with a-CD28 mAb, at the sensitization phase did not show any obvious 

differences in the expression of FoxP3, which is a marker of naturally occurring T reg cells.  

In support of a Th2-promoting role of CD28-derived signals, previously, it was noticed that 

the polyclonal activation of CD4 T-cells by the CD28 superagonist resulted in the expression 

of a functional Th2 profile, which was further supported by an increase in IL-4 producing 

cells in vivo (Rodriguez-Palmero M. et al., 1999). Moreover, after conventional costimulation 

or polyclonal activation by CD28 superagonist, but not after TCR stimulation alone, the Th2 

promoting transcription factor GATA-3 was rapidly induced (Rodriguez-Palmero M. et al., 

1999).  

On the other hand, conflicting results were observed, when a-CD28 mAb were used at the 

allergen challenge phase. Here we demonstrate that administration of a-CD28 mAb in 

established allergic state significantly relives allergic symptoms, by reducing airway 

eosinophilia, decreasing OVA specific IgE titer in line with suppression of Th2 cytokines in 

OVA stimulated spleen cell cultures. Furthermore, therapeutic application of a-CD28 mAb 

significantly increases IL-10 synthesis and expands IL-10+CD25+ regulatory T cell 
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population as well as FoxP3+ T cell subsets. In agreement with these findings are the previous 

studies reporting that in vivo stimulation with superagonistic a-CD28 increased the 

CD4+CD25+ cell population which indeed exhibit all phenotypic and functional features of 

regulatory T-cells, such as high expression of CTLA-4 and transcription factor FoxP3, lack of 

IL-2 but massive IL-10 production (Lin C.H. and Hunig T., 2003). 

Moreover, we highlight that the increase of IL-10+ T cell population in our mouse model of 

allergic airway inflammation was associated with the downregulation of the allergic condition 

and indeed underlies their anti-allergic effect. IL-10 has previously been reported to be a 

potential regulatory factor in allergen-induced airway inflammation. This has been shown by 

transfer of engineered IL-10-producing T cells which reduced AHR and inflammation in a 

murine model (Oh JW. et al., 2002). Furthermore, recent studies show that the transfer of 

allergen-specific CD4+CD25+ T regulatory cells to sensitized mice abrogates the features of 

allergic airway disease in vivo (Kearley J. et al., 2005).  

Taking together our findings rise the idea to further study the strategies for IL-10 induction, 

including the expansion of the naturally occurring CD4+CD25+ population or enhancement 

of regulatory T cell function. 
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6. SUMMURY  
 
Allergic disease are inflammatory disorders in which aberrant immune regulation occurs, and 

susceptible individuals mount allergen specific T helper 2 (Th2) responses, which drives 

disease pathology. Recent studies indicate that Th2 responses that are characteristic of allergic 

manifestations can be regulated by both naturally occurring CD4+CD25+ regulatory (Treg) 

cells and antigen-driven IL-10-secreting CD4+ regulatory T cells. Evidence is also emerging 

that successful Allergen specific immunotherapy (SIT) might work through the induction of 

IL-10-secreting regulatory T cells. 

In the first part of this work, I demonstrated the efficiency of allergen specific immunotherapy 

in the mouse model for allergic airway inflammation. Here I could show that intranasal 

administration of SIT abrogates allergic symptoms more efficiently, than the subcutaneous 

treatment. Furthermore, an IL-4/IL-13 (QY) inhibitor was used as an adjuvant for SIT, which 

has been demonstrated to have an anti-allergic potential, when administered prophylactically 

during allergic sensitization. However, the combination therapy with SIT and the inhibitory 

molecule QY did not show any significant enhancement in regards to all measured allergic 

parameters, when compared to monotherapy with SIT. These results provide the evidence, 

that shift from Th2 to Th1 cytokine profile might not be a key event in successful SIT. 

Subsequently, the investigation of immune mechanisms under successful SIT demonstrate 

that the increase of IL-10 secreting CD4+ T regulatory cells is associated with the suppression 

of airway inflammation in our mouse system, suggesting that these T cell subsets might be 

involved in the regulatory mechanisms of allergic disorders. 

In agreement with these findings is the second part of this work, where superagonistic a-

CD28 mAb´s were used for the expansion of T regulatory cell subsets in our murine model 

for allergic airway inflammation. Here I could show, that the application of a-CD28 mAb 
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during allergic sensitization, resulted in the establishment of a Th2 state, rather than a 

stimulation of a Treg cell population, supporting the Th2 promoting role of a-CD28 mAb 

together with TCR engagement. However, interesting findings were obtained by application 

of the superagonistic a-CD28 mAb in the challenge phase in established allergy. Conversely 

to the previous experiment, therapeutic administration of a-CD28 mAb lead to the generation 

of IL-10 secreting CD4+CD25+ T cell population in line with the induction of anti-allergic 

effects. 

Taking together the results of this study argue for the anti-inflammatory properties of T 

regulatory cells in allergic disease and highlights importance of these T cell subsets in the 

suppression of Th2 cell-driven response to allergen. Moreover, these observations suggest 

that the induction of IL-10 in vivo by T regulatory cells may represent a novel treatment 

strategy for allergic disorders. 
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7. Zusammenfassung 
 
Allergische Erkrankungen sind Störungen, bei denen es zu Immunfehlregulationen kommt 

und die bei empfänglichen Individuen zur Entstehung von Allergen spezifischen T-Helfer 2 

(TH2) Immunantworten führen. Neuere Untersuchungen deuten darauf hin, dass die für 

Soforttypallergien charakteristischen TH2 Immunantworten sowohl durch natürlich 

vorkommende  CD4+CD25+ regulatorische T Zellen (Treg) als auch durch Antigen 

induzierte IL-10-secreting CD4+ regulatorische T Zellen kontrolliert werden können. 

Weiterhin gibt es Hinweise, dass eine erfolgreiche Allergen spezifische Immuntherapie über 

die Induktion von IL-10 sezernierenden T reg Zellen vermittelt wird. 

In ersten Teil der Arbeit wird die Effizienz einer Allergen spezifischen Immuntherapie (SIT) 

in einem Mausmodel für allergische Atemwegsentzündung demonstriert. Als 

Allergieparameter wurden Allergen spezifisches IgE im Serum, verschiedene TH1 und TH2 

Cytokine in der brochoalveolären Lavage Flüssigkeit und nach in vitro Restimulation in 

Milzzellen untersucht. Weiterhin wurden Histologien von Lungengewebe angefertigt, um das 

eosinophile Entzündungsinfiltrat und die Asthma typische Becherzellmetaplasie darzustellen. 

Weiterhin wurden durch FACS Untersuchungen regulatorische T Zellen nachgewiesen. 

 Es konnte gezeigt werden, dass im Mausmodell die intranasale Applikationsform der SIT die 

allergischen Symptome effizienter bekämpfen konnte, als die beim Menschen etablierte 

subcutane Applikationsform. Um Mechanismen zu definieren die eine SIT effizienter machen 

könnten wurde ein IL-4/IL13 Inhibitor (QY) als Adjuvans für die SIT benutzt. Für den 

Zytokininhibitor konnte gezeigt werden, dass bei einer Applikation während der allergischen 

Sensibilisierung die Entstehung einer TH2 Immunantwort und die Ausbildung allergischer 

Symptome verhindert wird. Die Applikation des Inhibitors zusammen mit einer SIT zeigte 

jedoch keine zusätzlichen signifikanten antiallergischen Effekte im Vergleich zur 
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Durchführung der SIT als Monotherapie. Diese Ergebnisse deuten möglicherweise daraufhin , 

dass der bekannte Wechsel einer TH2 Immunantwort zu einer TH1 Antwort während der SIT 

nicht der Schlüsselmechanismus zu einer erfolgreichen Behandlung ist. Insbesondere weil 

unter der SIT auch in unserem Mausmodell die Induktion von IL-10 sezernierenden CD4+ T 

regulatorischen Zellen mit der Suppression der allergischen Atemwegsentzüdnung 

vergesellschaftet waren, so dass möglicherwiese diese Zellen für den Therapieerfolg relevant 

sind . 

Um die Rolle regulatorischer T Zellen im Allergiemodell näher zu beleuchten wurde im 2. 

Teil der Arbeit ein  monoklonaler superagonistischer anti-CD28 Antikörper benutzt, von dem 

bekannt ist dass T regulatorische Zellen in vivo induziert werden. 

Es konnte gezeigt werden, dass die Applikation des Antikörpers während der allergischen 

Sensibilisierung die Etablierung einer TH2 Immunantwort verstärkte. Im Gegensatz dazu 

wurden durch die therapeutische Applikation des anti CD28 Antikörpers in einer etablierten 

Allergie,  IL-10 sezernierende CD4+CD25+ T Zellen induziert, welches mit einer 

Abschwächung der gemessenen Allergieparameter einherging. 
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9. ABBREVIATIONS 
 
APC:                           Antigen presenting cells 

AHR:                          Airway hyperresponsiveness 

BAL:                           Bronchoalveolar lavage fluid 

BCG:                          Bacillus calmette-guerin 

BMI:                           Body mass index 

BSA:                           Bovine serum albumine 

CD:                             Cluster of differentiation 

CTLA-4:                     Cytotoxic T lymphocyte-associated protein-4  

DC:                             Dendritic cell 

DNA:                          Deoxyribonucleic acid 

EARs:                         Early (acute) allergic responses 

ELISA:                        Enzyme-linked immunosorbent assay 

Eos:                             Eosinophils 

FACS:                         Fluorescence-activated cell sorting 

FCS:                            Fetal calf serum 

FcεRI:                          Fc epsilon receptor I 

FoxP3:                         Forkhead box P3 

H&E:                           Hematoxylin and Eosin 

HRP:                            Horseradish Peroxidase 

ICOS:                           Inducible co-stimulator 

Ig:                                 Immunoglobulin  

IFN-y:                          Interferon y 

IL:                                Interleukin 

IL-4Rα:                        IL-4 receptor α 
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i.n.:                                Intranasal 

i.p.:                                Intraperitoneal 

ISAAC:                         International study of asthma and allergies in childhood 

iso:                                Isotype 

LARs:                           Late allergic responses 

LPS:                              Lypopolysaccharide 

Lymph:                         Lymphocyte 

mAb:                             monoclonal antibodies 

macr:                             macrophages 

MHC:                            Major histocompatibility complex 

n:                                   Number of animals 

neutr:                             Neutrophils 

NK:                               Natural killer 

NS:                                Not significant 

OVA:                            Ovalbumin 

PBS:                              Phosphate buffered saline 

QY:                               IL-4/IL-13 inhibitor, double mutated IL-4 molecule (Q116D, Y119D) 

RNA:                            Ribonucleic acid 

s.c.:                                Subcutaneous 

SEM:                             Standard Error 

SIT:                               Allergen specific immunotherapy 

STAT-6:                        Signal transducer and activator of transcription 6 

TCR:                             T-cell receptor 

Th cell:                          T helper cells 

TLR:                              Toll-like receptor 

TNF-α:                          Tumor necrosis factor-α 
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Treg:                            T regulatory cells 

VCAM-1:                    Vascular cell-adhession molecule 1 

WHO:                          World health organization 
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